

Education

KwaZulu-Natal Department of Education REPUBLIC OF SOUTH AFRICA

LIFE SCIENCES P2

............

PREPARATORY EXAMINATION

SEPTEMBER 2017

MARKING GUIDELINE

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

This marking guideline consists of 10 pages.

Please turn over

PRINCIPLES RELATED TO MARKING LIFE SCIENCES

- 1. **If more information than marks allocated is given** Stop marking when maximum marks is reached and put a wavy line and 'max' in the right-hand margin.
- 2. **If, for example, three reasons are required and five are given** Mark the first three irrespective of whether all or some are correct/incorrect.
- 3. **If whole process is given when only a part of it is required** Read all and credit the relevant part.
- 4. **If comparisons are asked for but descriptions are given** Accept if the differences/similarities are clear.
- 5. **If tabulation is required but paragraphs are given** Candidates will lose marks for not tabulating.
- 6. **If diagrams are given with annotations when descriptions are required** Candidates will lose marks.
- 7. **If flow charts are given instead of descriptions** Candidates will lose marks.
- 8. **If sequence is muddled and links do not make sense** Where sequence and links are correct, credit. Where sequence and links are incorrect, do not credit. If sequence and links become correct again, resume credit.

9. Non-recognised abbreviations

Accept if first defined in answer. If not defined, do not credit the unrecognised abbreviation but credit the rest of the answer if correct.

10. Wrong numbering

If answer fits into the correct sequence of questions but the wrong number is given, it is acceptable.

11. **If language used changes the intended meaning** Do not accept.

12. Spelling errors

If recognisable, accept the answer, provided it does not mean something else in Life Sciences or if it is out of context.

- 13. **If common names are given in terminology** Accept, provided it was accepted at the national memo discussion meeting.
- 14. If only the letter is asked for but only the name is given (and vice versa) Do not credit.

15. If units are not given in measurements

Candidates will lose marks. Memorandum will allocate marks for units separately.

16. Be sensitive to the sense of an answer, which may be stated in a different way.

17. Caption

All illustrations (diagrams, graphs, tables, etc.) must have a caption.

18. Code-switching of official languages (terms and concepts)

A single word or two that appear(s) in any official language other than the learners' assessment language used to the greatest extent in his/her answers should be credited if it is correct. A marker that is proficient in the relevant official language should be consulted. This is applicable to all official languages.

SECTION A

QUESTION 1

1.1	1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.1.7 1.1.8 1.1.9	$ \begin{array}{l} A\checkmark\checkmark\\ D\checkmark\checkmark\\ C\checkmark\checkmark\\ A\checkmark\checkmark\\ D\checkmark\checkmark\\ B\checkmark\checkmark\\ C\checkmark\checkmark\\ A\checkmark\checkmark\\ B\checkmark\checkmark \end{array} $	(9 x 2)	(18)
1.2	1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8	Double helix√ (DNA) profile√/profiling Theory√ Population√ Phylogenetic tree√/cladogram Genetically modified√/genetically engineered/transgenic Stem√ cell Biogeography√	(8 x 1)	(8)
1.3	1.3.1 1.3.2 1.3.3	B only√√ None√√ A only√√	(3 x 2)	(6)
1.4	1.4.1 1.4.2 1.4.3	Incomplete√ dominance (a) YY√ (b) YR√ (a) 4√ (b) 1√/2		(1) (1) (1) (1) (1)
1.5	1.5.1	 (a) Homologous chromosomes√/ bivalent (b) Centriole√ (c) Spindle fibre√ 		(5) (1) (1) (1)
	1.5.2 1.5.3 1.5.4	Anaphase I✓ Non-disjunction✓ Two✓/2		(1) (1) (1)
	1.5.5	Crossing over√ Random arrangement of chromosomes at the equator assortment of chromosomes Mark first TWO only	√/Independent	(2) (8)
1.6	1.6.1	Out of Africa√ hypothesis		(1)
	1.6.2	(Homo) erectus√/H. erectus		(1)
	1.6.3	(Homo) habilis√ H. habilis		(1)
	1.6.4	 Genetic evidence ✓ /Mitochondrial DNA Fossil evidence ✓ Mark first TWO only TOTA 	AL SECTION A:	(2) (5) 50

QUESTION 2

2.1	2.1.1	dominant - To have c	allele hildren with th	ne dominant phenotype√/have one e recessive characteristic√/bb parent must be recessive√	(3)
	2.1.2	P ₁	Phenotype	Bent little x Straight little fingers x fingers√	
		Meiosis	Genotype	Bb x bb√	
			G/gametes	B, b x b, b ✓	
		Fertilisation			
		F ₁	Genotype	Bb; Bb; bb; bb	
			Phenotype	bent little finger straight little fingers√	/
		P_1 and $F_1 \checkmark$ Meiosis and	fertilisation√		
				OR	
		P ₁	Phenotype	Bent little x Straight little fingers x fingers √	
			Genotype	Bb x bb√	
		Meiosis		Comotoo	
		Fertilisation		GametesbBBbBb	
				B bb bb	
				1 mark for correct gametes 1 mark for correct genotypes	
		F ₁	Phenotype	bent little fingers; straight little fingers√	
		P_1 and $F_1 \checkmark$ Meiosis and	fertilisation√	Any	(6)
2.2	 attache Each the accord matche 	ing to its antic as up with the	e carrying a sp odon√ complementai	ecific amino acid√ y codon√ of the mRNA in the correct sequence√	(9)

- so that the amino acids are placed in the correct sequence√
 Adjacent amino acids join together by peptide bonds√
- to form a protein√

Copyright reserved

2.3	2.3.1	(a) NNGG√	(1)
		(b) Nngg√	(1)
		(c) Ng; ng√	(1)
	2.3.2	nngg√√	(2) (5)
2.4	some - The c - The v night - Preda - The c - and v	e is variation in the snail population √/some are dark in colour and are white lark snails are camouflaged √ / blend in with the garden at night white snails are not camouflaged √ / do not blend in with the garden at ators eat the white snails √/the white snails die lark snails survive √ vill reproduce √ / pass this characteristic on to their offspring asing the proportion of dark brown snails in subsequent generations √ Any	(5)
2.5	2.5.1	Emu√	(1)
	2.5.2	 They share a more recent √ common ancestor √ 	(2)
	2.5.3	Accept any answer in the following range: 82 - 84 \checkmark mya \checkmark	(2)
	2.5.4	 Millions of years ago a population of ancestors that could fly was separated√ by the sea√ and there was no gene flow√ between the different groups Each group was exposed to different environmental conditions√ and natural selection occurred independently√ in each population The populations of birds on each continent became different√ from each other both genotypically and phenotypically√ Even if the two populations were to mix again√ Eventually they could not interbreed to produce fertile offspring√ Any 	(6)
	2.5.5	 The flightless birds did not use their wings to fly√ and their wings became smaller√/weaker and they therefore lost the ability to fly√ They then passed the characteristic of small/weak wings to their offspring√ which therefore were unable to fly√ Any 	(4)

(15) [40]

QUESTION 3

3.1	3.1.1	(a) Presence or absence of artificial selection \checkmark	(1)
		(b) The number of plants with more than 25 hairs on the leaves \checkmark	(1)
	3.1.2	 The students: Used the same species of <i>Brassica</i>√ Used the same number of plants √ Used one mature leaf from each plant√ Counted the hairs on the same part of the leaf√ Any Mark first TWO only 	(2)
	3.1.3	Artificial selection can be used to increase the number of plants with 25 or more hairs on the leaves $\sqrt{}$	(2)
	3.1.4	 There is a range√ of intermediate phenotypes√ OR 	
		 The variation in the number of hairs√ occurs on a continuous scale√/ continuum 	(2) (8)
3.2	3.2.1	Interphase√	(1)
	3.2.2	 The DNA molecule unwinds√ and the hydrogen bonds break√ so that the two strands separate√/unzip Free DNA nucleotides from the nucleoplasm√ join with complementary bases√ on the original strands which act as templates√ resulting in two identical DNA molecules√ Any 	(6)
	3.2.3	 It ensures that each daughter cell gets an identical copy of the DNA after mitosis√ It ensures that each daughter cell gets the correct number of chromosomes after mitosis√ Mark first TWO only 	(2)
	3.2.4	 (a) - Guanine/G has attached to another guanine ✓ on strand 3 - instead of bonding with cytosine/C ✓ 	(2)
		 (b) - The code on the DNA has changed√ therefore the codons on the mRNA will be different√ and will code for a different amino acid√ The sequence of amino acids in the protein will be different√ resulting in the formation of a different protein√ Any 	(4) (15)

	3.3.7	 If the sequence of genes √/mutations on the DNA is very similar in different species √ then these species are closely related √/shared a common ancestor 		(3) (17) [40]
	3.3.6	 Freely rotating arms√ Longer upper arms than forearms√ Rotation around the elbow joint√ Bare fingertips√ Nails instead of claws√ Opposable thumb√ Mark first THREE only 	Any	(3)
	3.3.5	 (a) The pelvis became wider ✓ and shorter ✓ (b) The foramen magnum moved ✓ to a forward position ✓ 		(2) (2)
	3.3.4	 Scientist have found fossil skulls√ and are able to measure the cranial capacity√/volume of the cranium 	e	(2)
	3.3.3	 Improved intelligence√ enables higher thinking√/ problem solving/ creativity for ma tools 	king	(2)
	3.3.2	Australopithecus africanus√		(1)
3.3	3.3.1	1 500 – 900√ml = 600√ml		(2)

SECTION C

QUESTION 4

Inheritance of blood groups

- Blood groups in humans is controlled by one gene√
- with three alleles \checkmark / I^A, I^B, i
- Each person inherits any 2 of the three alleles ✓ from their parents
- I^A and I^B alleles are co-dominant√
- I^{A} and I^{B} are dominant over the i allele \checkmark / the i allele is recessive to I^{A} and I^{B}
- Inheriting the I^A allele from both parents $\sqrt{}$ having the genotype I^AI^A
- or inheriting the I^A allele from one parent and i from the other parent√/ having the genotype I^Ai
- results in blood group A√
- Inheriting the I^{B} allele from both parents $\sqrt{}$ having the genotype $I^{B}I^{B}$
- or inheriting the I^B allele from one parent and i from the other parent√/ having the genotype I^Bi
- results in blood group B√
- Inheriting I^A from one parent and inheriting I^B from the other parent √/having the genotype I^AI^B
- results in the AB blood group√
- Inheriting the i allele from both parents \checkmark /having the genotype ii
- results in blood group O ✓

Use of blood groups in paternity testing

- If a genetic diagram shows that the mother and the man could produce a child with a particular blood group✓
- then he may be the father √
- but we cannot say for sure that he is the father ✓
- because there are many males with the same blood type√
- If a genetic diagram shows that the mother and the man could not produce a child with a particular blood group✓
- then he is definitely not the father√

Max 5

Max 12

Content: 17 Synthesis: 3

(20)

Assessing the presentation of the essay

Criterion	Relevance (R)	Logical sequence (L)	Comprehensive (C)
Generally	All information provided is relevant to the question.	Ideas are arranged in a logical sequence.	All aspects of the essay have been sufficiently addressed.
In this essay in Q4	 Only provided information relevant to: The inheritance of blood groups The use of blood groups in paternity testing No irrelevant information included. 	 Information on: The inheritance of blood groups The use of blood groups in paternity testing is presented in a logical and sequential manner. 	 At least the following marks should be obtained: The inheritance of blood groups 8/12 The use of blood groups in paternity testing 3/5
Mark	1	1	1

TOTAL SECTION C: 20

GRAND TOTAL: 150