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Abstract

The growing market for electrical vehicles requires inexpensive, long-lasting batteries. LiFePO4 (LFP) melt-synthesized

from ore concentrate fits this role, but the manufacturing process requires additional steps that includes grinding large

ingots into a nanoparticle suspension followed by a dessication step. Spray drying, rather than tray drying, creates a

mesoporous powder that enhances wettability. Adding lactose and high-Mw polyvinyl alcohol (PVA) to the suspension

of nanostructures followed by pyrolysis, creates a carbon-cage that interconnects the cathode nanoparticles, imparting

better capacity (LiFePO4/C: 161 mA h g−1 at 0.1C), discharge rate (flat plateau, 145 mA h g−1 at 5C), and cyclablity

(91 % capacity retention after 750 cycles at 1C). Particle size affects battery stability; PVA increases the suspension’s

viscosity and alters the powder morphology, from spherical to hollow particles. A model describes the non-Newtonian

suspension’s rheology changing: shear, temperature, LFP and PVA loading. Carbon precursors prevent the nanoparticles

from sintering during calcination but lactose gasifies 50 % of the carbon, according to the chemical and allotropic com-

position measurements (CS analyzer, XPS, and Raman). The carbon-cage imparts microporosity and we correlate the

SEM and TEM powder’s morphology with N2 physisorption porosimetry. Ultrasonication of the suspension fragments

the PVA chain, which is detrimental to the final cathode performance.
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1. Introduction

Lithium-ion batteries power our life: cellphones and computers count in the billions of units, and a new technology

sector aims to scale-up batteries for the automotive industry and for stationary energy storage systems.[1] For this

strategic vision, batteries with high-efficiency, long-life, and low-cost are the best choice to facilitate the transition from

fossil fuel vehicles to electric. This vision also requires electric storage units to create a reliable and flexible grid system to5

smooth-out a fluctuating supply from renewable sources.[2] The cathode represents the bottle-neck of this technology as its

capacity is an order of magnitude lower than the graphite anode. The lithium-sulfur cell with a glass solid-state electrolyte

promises to lead the next generation of batteries, but despite their outstanding cycle life (above 15000), and improved

capacity (reaching 500 mA h g−1), cost and scalability are potential deterrents for adoption.[3] Carbon nanotubes (CN)
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demonstrate high power output and excellent cycling performance in a ZnFe2O4−C/LiFePO4−CNT battery, but only at10

a laboratory scale (10000 cycles at 10C, retained 85 % of the initial capacity).[4] LiCoO2, at 273 mA h g−1, is currently

the cathode of choice for electric vehicles, but is costly and has safety and environmental issues.[5] LiFePO4 (LFP) has

a lower capacity (170 mA h g−1) but it costs less, is thermally stable, and its precursors are environmentally benign.[6, 7]

LFP electrical performance is optimal at a particle size of 200 nm,[8] with a carbon black[9] or metal oxides[10, 11] coating

since LiFePO4 has a low Li+ diffusivity in the olivine crystalline matrix and a low electrical conductivity. Melt-cast15

processes produce pure, crystalline materials with lower-grade purity precursors at 40 % the cost.[12, 13] In our process,

a furnace heats the precursors to above 1100 ◦C and after reaction, the molten liquid is poured into molds to form ingots.

Subsequently, a jaw crusher and a roller grinder produce granules then a powder 25µm in diameter. A wet media mill

reduces the particle size to 200 nm in water. Removing solvent from nanoparticle suspension requires the same diligence

as drying pharmaceutical ingredients. The cathode material oxidizes, sinters into chunks, and Li3PO4 segregates when20

drying in a furnace. Spray drying preserves the original chemical and morphological properties because of the short

contact time of the material in contact with the hot air (10 s to 60 s), delivering fine monodispersed granules. In addition,

spray drying is already an established technology in the catalyst, pharmaceutical and food industries because of they

are easy to scale-up, high productivity and low operating costs. In this paper, we demonstrate the scale-up feasibility

of spray drying melt-synthesized LiFePO4 and inexpensive organic precursors that self-assemble into a carbon cage.25

This increases the cathode cyclability and discharge rate similarly to CN, but at a higher productivity-rate and lower

cost of carbon-precursors (250 fold with respect to CN).[14] The organic precursors are mixed with the suspension and

pass through a two-fluid compressed-air nozzle atomizer feeding into the drying chamber where hot air evaporates the

water and microscopic droplets form (up to 100 µm), The suspended nanoparticles (primary particles, 0.07 µm to 0.2 µm)

agglomerate into porous, spherical or doughnut-shaped, secondary particles (5µm to 50 µm). The resulting porous powder30

is then calcined to pyrolyze the organic precursors to semi-graphitic carbon, which enhances the electrical conductivity of

the material. Finally, we evaluated the electrochemical quality of the LFP/C cathode in coin cells.

2. Experimental section

We reported our reagents and characterization techniques under Electronic Supplementary Information (ESI).

2.1. Nanoparticle suspension preparation35

An induction furnace at 1100 ◦C melted the precursors and synthesized LFP in a graphite crucible with a capacity

of 50 kg The feed materials were: LiH2PO4, P2O5, Li2CO3 and iron ore concentrate (>99 % Fe2O3 with SiO2 impurity)

with a Li/Fe/P: 1.03/1/1.03 stoichiometry,[15, 16, 17] and we cast the melt into 200 mm ingots.[18] LFP is the dry solid

fraction of our feed material, constisting of 97.8 % LiFePO4 and 2.2 % γ-Li3PO4 (±0.4 % CI95%
n=6 , by AAS and XRD; 95 %

confidence interval estimate, with a two-tail t-test for a sample number n).40

A Pulverisette 1 model II, Fritzch jaw crusher ground the ingots to 1 mm to 3 mm gravel, processing 13 kg h−1 of

material. A roller grinder (MPE 6F granulizer, Chicago) further reduced the particle size to a dv,50 of 27 µm and dv,99

of 200µm; treating 2 kg h−1 of material at a 10 % feed rate. A wet media mill (NETZSCH - LMZ 4) ground the powder,
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equipped with a 0.1 mm mesh filter and loaded with 3.2 L of 0.68 mm yttria-stabilized zirconia beads, which filled 75 %

of the total volume of the grinding chamber. Pilot and commercial grinding chambers are made of ceramic rather than45

stainless steel to minimize iron contamination. We filled the apparatus with 25 L of deionized water and loaded 25 kg

of LFP, with a 0.008 mass ratio of Tween-20 surfactant in the mixing tank. We scaled-up the process based on our

previous laboratory experience and added LFP progressively at a rate slow enough to avoid plugging the mesh filters

(20 kg h−1).[19] A cooling system pumped water at 15 ◦C around the grinding chamber and mixing tank (ESI Figure 1S).

We sampled the slurry at the outlet of the grinding chamber every 15 min and immediately analyzed by laser scattering to50

avoid agglomeration. We operated the wet media mill until the particle size distribution (PSD) median reached 200 nm.

2.2. Spray drying

Despite the Tween-20 surfactant, the suspended primary particles tended to settle when stored for weeks. A mechanical

mixer homogenized the slurry periodically and an aliquot of material was weighed and ultrasonicated for 15 min before each

experiment to de-agglomerate the nanoparticles.[20] For standard feed materials, we added binders (lactose or polyvinyl55

alcohol solution, 1 % to 7 %) and mechanically stirred the suspension for an additional 15 min. For ultrasonicated slurries

(US), we added the binders while stirring and ultrasonicating for 15 min. We spray dried the feed material with a GEA

Niro Mobile MinorTM-PSR pilot-scale spray dryer (0.8 m I.D. x 0.8 m height / 60◦ cone chamber Figure 1). An 11 kW

electrical coil heated 90 kg h−1 of drying air to 350(2) ◦C, which flowed co-currently with the spray, leaving the bottom

of the chamber at 125(2) ◦C. We chose a two-fluid nozzle, with 0.7 mm I.D. for the liquid and 3.1 mm I.D. 5.0 mm60

O.D. for the atomizing air, based on laboratory-scale tests of flowability of LFP suspensions through a bore restriction

(ESI).[21, 22] Compressed air at 0.25 MPa to 0.40 MPa fed the nozzle while a peristaltic pump fed the suspension at flow

rates between 130 mL min−1 to 180 mL min−1, creating a fine mist. A cyclone separated the resulting powder, with a 50 %

cut-off efficiency for 0.7 µm, 1600 kg m−3 secondary particles. Before feeding the suspension, we reached thermal steady

state with an equivalent volumetric flow of water (up to 90 mL min−1) during 2 h.65
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Figure 1: GEA Mobile minor spray dryer setup. The recovery yield averaged 80 %: 10 % of the material coats the chamber and another 10 %
escapes the cyclone.
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2.3. Calcination and electrochemical tests

We loaded 2 g of spray dried powder into an alumina crucible and inserted it in a tube furnace flushed with a N2

atmosphere. We let the powder outgas at 100 ◦C for 2 h and then increased the temperature to 700 ◦C for 2 h to calcine

the material. The electrode of carbon coated LFP was prepared by mixing the pyrolyzed active material (LiFePO4/C,

500 mg), with carbon black C65 as conductive additive, and polyvinylidene fluoride (PVDF) at a weight ratio of 84:9:7 in70

N-methyl-2-pyrrolidone (NMP) solvent. The mixture was then shaken in a Turbula 3D mixer for 20 min, and homogenized

in a tube roller overnight with 5 mm by 6 mm cylindrical beads. The uniform slurry was spread onto a piece of aluminum

foil current collector using the doctor blade technique. The electrode dried in a vacuum oven at 80 ◦C overnight. Disc-

shaped electrodes with a loading of 1.8(1) mg cm−2, and a thickness of 24 µm, were cut and assembled in coin cells (2032)

in an argon filled glove box. A lithium metal foil was used as the negative electrode, LiFePO4/C as the positive one,75

Celgard 2400 as the separator, and 1 M LiPF6 in ethylene carbonate-dimethyl carbonate (weight ratio of 1:2) solvent as

the electrolyte. The electrochemical tests were performed on the cells at 30 ◦C on a Arbin BT2000 electrochemical station

with cut-off voltages of 2.2 V and 4.0 V vs Li+/Li at a 0.1C-rate for galvanostatic cycling and at 0.1C to 10C-rates to

determine the power performance.

3. Results and discussion80

3.1. LFP characterization and elemental analysis

Spray drying atomizes the suspension into droplets that have a short residence time in the chamber (14 s). As long as

the droplets contain any(water, the water evaporates below its boiling point, and by the time the powder become bone-

dry, the spray dryer effluent temperature has dropped to 125 ◦C, due to the latent heat of vaporization. This phenomena

minimizes any oxidation or chemical alteration of the feed material, even when spray drying up to an inlet temperature85

of 350 ◦C, as long the outlet temperature remains below such transitions.[22] In comparison, drying the slurry in air on

a hot plate at 180 ◦C, partially overoxidizes the material to Fe3+: Li3Fe2(PO4)3 and Fe2P that have characteristic XRD

peaks at 27.5◦ and 41.0◦ 2θ.[23, 24] Instead, the only additional crystalline phase of spray dried LFP is a constituent

of the formulation (γ-Li3PO4), because of its stoichiometric deficiency of iron, which beneficial for the final battery

formulation.[15] While we add an excess of phosphorus, some volatilizes in the spray dryer and somer reacts with the90

graphite crucible forming Fe2P, which remains embedded in the crucible pores. The synthesis yields LiFePO4 and the

excess of lithium and phosphate recombine forming γ-Li3PO4 (Figure 2a).

Solid-state reactions form γ-Li3PO4 (COD ref: 901-282), at a phase transition temperature of 1170 ◦C, with improved

ionic conductivity vs. the β-Li3PO4 (COD ref: 901-2500), synthesized by wet chemical reaction (3 × 10−7 S cm−1 vs.

4 × 10−8 S cm−1).[25] Milling in water and drying dissolves and recrystallizes this phase. However, Li3PO4 is poorly95

soluble in water (0.4 g L−1 at 20 ◦C). In a slurry containing 50 % LFP, there are 11 g L−1 of Li3PO4. Only 4 % of Li3PO4

is in solution, the remaining is embedded in the solid matrix of LFP as γ-Li3PO4. The Rietveld refinement estimates

γ-Li3PO4 at 1.4(3) % for our samples (ESI Table 1S). However, the calcined samples without carbon precursors diffract

more (1.9 % γ-Li3PO4), while spray dried samples or calcined samples with a carbon precursor diffract less (1.2(1) %
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a)

b)

Figure 2: a) The spray dried LFP (red, bottom) presents broad peaks; calcination improves crystallinity and the sample diffracts three times
more (black, top). Top-right insert: # LiFePO4, * Li3PO4. b) The primary particles suspended in water agglomerate to secondary particles
during spray drying. The resulting powder is homogeneous but sampling the suspension induces changes and increases the experimental
variance. Error bars for a CI95%

n=5 .

γ-Li3PO4), despite starting from the same feed material (2.2 % Li3PO4 by AAS). The carbon coating is a few nanometers100

thick and does not suppress the XRD signal from the bulk LFP (in our conditions the penetration length ranges from

30 µm to 200 µm along the 2θ angle). This indicates that, after spray drying, part of the Li3PO4 is amorphous or coats the

surface into mono-atomic layers. Calcination sinters Li3PO4 and the structure becomes more crystalline. While carbon

precursors coat the LFP surface, and the resulting carbon layer introduces a mass transfer resistance that limits crystal

growth and sintering for both LiFePO4 and γ-Li3PO4 on the one hand, on the other hand, the Scherrer equation calculates105

30 % smaller crystallite size after calcination due to instrument resolution for this trace compound (as Li3PO4 is unlikely

to sublime as since its melting point is 1206 ◦C, ESI Table 1S). The LiFePO4 average crystallite size, after spray drying, is

invariant with respect to lactose or PVA concentration (27 nm by Scherrer equation from profile fitting and shape factor:

0.9), but it is a function of the LFP’s melt synthesis conditions. PSD laser scattering, SEM and TEM morphology confirm

an average primary particle size of 80 nm by number distribution, which indicates that several crystal grains constitute110

the milled primary particles.[26] Calcination of the spray dried powders induce sintering and improve crystallinity also for

the LiFePO4 phase. The absence of carbon precursors (neat LFP) sinters the primary particles together forming 220 nm

crystallites. Lactose hinders sintering and limits crystallites growth to 80 nm (XRD, SEM). From AAS we converted the

5



Table 1: Spray dried powders from LFP suspensions with additives in water—all slurries include the Tween-20 surfactant. PSD: secondary
particle size mode and (distribution at one standard deviation). Carbon: total carbon relative to a bone dry LFP powder (CI95%

n=3 ). Sa: specific

surface area (CI95%
n=3 ), Vpore: pore volume (CI95%

n=3 <0.01 cm3 g−1) and porosity ϕ. “Py”: pyrolyzed powders. “US”: ultrasonicated suspension.

Sample ωi LFP + additive PSD carbon Sa Vpore ϕ

gi/gtotal% µm gC/gLFP% m2 g−1 cm3 g−1 %

LFP-neat 52% + none 11(10) 0.36(1)% 28.1(8) 0.27 49%
LFP-neat-Py 52% + none 11(8) 0.1% 2.9(2) 0.06 17%
LFP-L 48% + 7% lactose 8(6) 5.9% 21.6 0.19 40%
LFP-L-Py 48% + 7% lactose 8(4) 3.1% 28.9 0.20 42%
LFP-LP 45% + 5% lactose, 0.45% PVA 12(20) 5.20(9)% 19.4 0.22 43%
LFP-LP-Py 45% + 5% lactose, 0.45% PVA 12(5) 2.9% 32.3 0.23 45%
LFP-LPU 45% + 5% lactose, 0.45% PVA, US 11(8) 5.1% 19.9 0.19 41%
LFP-LPU-Py 45% + 5% lactose, 0.45% PVA, US 11(8) 2.9% 26.0 0.21 43%

measured concentrations to molar ratio between the two ions (on average Li+/Fe3+ = 1.09). We assumed the excess

lithium to form Li3PO4 (as the only other component we detected on XRD). This corresponds to 0.03 mol of Li3PO4 per115

mole of LiFePO4, and in terms of mass fraction: 97.8 % LiFePO4 and 2.2 % Li3PO4 (±0.4 % CI95%
n=6 ). AAS and XRD

measurements indicate either that the spray dried material suffers from a depletion in the iron content at some point

during the process or an unintentional overload of lithium phosphate during the re-melt synthesis.

3.2. Particle size and powder morphology

The primary particles have an arithmetic mean D4,3 diameter of 130(60) nm, with a dv,10, dv,50, dv,90 of 70 nm,120

120 nm and 190 nm. However, laser scattering fails to measure particles smaller than 30 nm, which are present (SEM,

TEM), and underestimates the sub-100 nm fraction. The specific surface area measured by laser scattering, assuming LFP

spherical particles with a skeletal density of 3570 kg m−3, is 15 m2 g−1, which underestimates the value measured by N2

physisorption (average 23 m2 g−1, BET). Moreover, particle shape changes as a function of the particle size. Wet media

milling attrits primary particles smaller than 50 nm to spherical shapes (TEM), while the others remain as an elongated125

prisms, in which one dimension is twice the others (SEM: sphericity 0.8, aspect ratio 0.5). On the other hand, spray dried

secondary particles are spherical or doughnut-shaped, and the mean diameter lies between 5 µm to 50µm depending on

the spray drying conditions (Figure 2b, Table 1, ESI Figure 2S). Spherical particles are preferred as they are denser, but

a synergistic effect between excessive drying rate and slurry viscosity, creates doughnut holes in the higher-tail of the

PSD (Figure 3j).[22] PVA increases the mixture viscosity by a factor of 4 and the secondary particle size, produces more130

blowholes, but decreases density. A binderless suspension yields a powder (LFP-neat) with ρt = 1120(10) kg m−3; the LFP-

lactose powder (LFP-L) reaches ρt = 1140(10) kg m−3; while adding PVA (LFP-LP and LFP-LPU): ρt = 1070(50) kg m−3

(CI95%
n=3 ). The organic binders fill the nano and mesopore fraction of the powder (porosimetry), as result, LFP-L should

be denser than LFP-neat (calc: 1200 kg m−3). The two powders have similar PSD and we attribute the inconsistency

to blowholes. This macroporosity averages 2 µm to 50 µm (SEM) and reduces drastically the macroscopic density of the135

powder (ρt), but not the microscopic packing efficiency of the primary particles. In fact, from porosimetry, the apparent

particle density ρp is much higher, as we measure only pores up to 0.3 µm in diameter. LFP-neat has ρp = 1820(30) kg m−3;

LFP-L ρp = 2130 kg m−3; LFP-LP ρp = 2020 kg m−3; LFP-LPU ρp = 2110 kg m−3; and the density increases coherently

with the addition of binders (calc: 2000 kg m−3 to 2100 kg m−3). This measure gives a better estimate regarding how the

primary particles pack together and suggests strategies to improve the energy density of the cathode: by re-milling the140
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50 µm, a 5 µm, b 1 µm, c 100 nm, d

50 µm, e 5 µm, f 1 µm, g 100 nm, h

50 µm, i 5 µm, j 1 µm, k 100 nm, l

50 µm, m 5 µm, n 1 µm, o 50 µm, p

Figure 3: Particle morphology by SEM: “a” to “d” belong to the spray dried neat LFP suspension (adding lactose does not change the texture).
However, calcination of LFP powders without carbon precursor sinters the primary particles together “g” and “h”, but not the secondary: “e”
and “f”. Lactose prevents sintering and the powder remains nanostructured: “i” to l”. Adding PVA changes the morphology of the spray dried
material, creating submicron rods: “m” to “o”. Calcination of this material breaks some particles, revealing that they are hollow “p”.

calcined powder to compact the blowholes (this work) or scaling spray-drying to achieve a slower drying-rate and avoid

their formation. The structure of spherical, dense particles is unaffected by calcination; while particles with blowholes,

which are mechanically less resistant, break during calcination and expose their internal voidage (Figure 3p).

3.3. Pyrolysis and carbon layer

Spray drying coats homogeneously the primary particles with the carbon precursors (lactose and PVA), even inside the145

secondary particles. As the water recedes from the drying droplet, the capillary forces push the solvent, saturated with

the carbon precursors, inside the pores of the forming secondary particles (also confirmed by a decrease in pore volume

from N2 physisorption porosimetry, Table 1). The primary particles, on the outer shell of the secondary particles, have a

thinner coating vs. the bulk, as we see from TEM images of the spray dried material. However, the carbon precursors’

morphology before calcination looks identical, like an amorphous nanometric coating that surrounds the primary particles150

and fills the interparticle voids, regardless of the type of carbon precursor added or ultrasonication (LFP-L, LFP-LP,

LFP-LPU: ESI Figure 3S-5S). The presence of the carbon precursors’ coating blurs the TEM images from the bulk of

the material. In contrast, the neat LFP powder, with no carbon, has a better defined primary particles’ contours and

sharper edges (LFP-neat: ESI Figure 6S). Calcination pyrolyzes lactose into a 1 nm to 3 nm layer of semi-graphitic carbon
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5 nm, a

50 nm, b

5 nm, c 5 nm, d

Figure 4: Carbon coat morphology by TEM after pyrolysis: lactose decomposes into a thin layer of semi-graphitic carbon (arrows, 1 nm to
3 nm, “a”), coating the primary LFP particles “b”. The addition of PVA superimposes over the thin layer of lactose a grid-like carbon structure
interconnecting the primary particles (circled, “c”). Ultrasonication depolymerizes PVA into a short-chain polymer so the carbon grid is now
smaller—“d”.

and evenly redistributes the carbon on the surface of the material, by partial gasification and condensation (Figure 4a).155

The carbon thickness of the surface and the bulk of the secondary particles were the same (LFP-L-Py: ESI Figure 7S,

Figure 4b). However, a long polymeric chain PVA adds a new morphology after calcination: a cage, reticular grid-like

carbon that connects several primary particles, covering pores voids up to 100 nm diameter (LFP-LP-Py: ESI Figure 8S,

Figure 4c). Ultrasonication breaks the PVA’s polymeric chain and the grid-like carbon appears smaller, between 5 nm to

20 nm in size (LFP-LPU-Py: ESI Figure 9S, Figure 4d). The surfactant Tween-20, lactose monohydrate and PVA are160

the three sources of carbon that coat the primary particles. Respectively, with a stoichiometric mass ratio νi: 57 %, 40 %,

55 % of carbon, and their contribution is linear with the amount used (ωi: gi/gLFP; Eq. 1a).

Cspray dried =
∑

νiωi

Cpyrolyzed =
∑

νiωiβi

(1)

The sample variability is comparable to the regression (Cspray dried: gcarbon/gpowder): five random samples have been

repeated three times, giving an average ±0.1 % CI95%
n=3 and a relative error between 1 % to 5 %. While the linear regression

has a standard error of the mean of ±0.2 % with an R2 = 99 % (ESI Figure 10S). During pyrolysis part of the carbon165

oxidizes to CO and CO2: excluding the direct reaction with gaseous oxygen, carbon at 700 ◦C reacts with steam (water-

gas reaction). The carbon precursors’ hydroxyl groups dehydrate, cyclize the molecule, and form unsaturated species,

generating semi-graphitic carbon and water.[27] From a regression analysis, the βi coefficient indicates for each component

the fraction of carbon left after pyrolysis (standard error of the mean is ±0.1 %, R2 >99 %, Eq. 1b). Tween-20 loses the

most carbon during pyrolysis (βi = 0.15), followed by lactose (0.52) and finally PVA (0.75).170

3.4. N2 physisorption porosimetry

A high Sa promotes greater wettability and Li+ flow from the solid material, however, melt-synthesized LFP is

intrinsically non-porous (type II isotherms).[28] Milling LFP creates nanoparticles (primary particles), and spray drying

coalesces the material into a meso-macro porous spherical secondary particle. The pore network correlates to the packing

efficiency of the agglomerate. The lack of a plateau over a range of high P/P0 indicates incomplete pore filling and develop175

a macroporous structure, which correlates to the void fraction between secondary particles.[22] Scaling-up spray drying
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from a laboratory unit (Yamato GB-22) to a pilot unit (this work) did not modify the porosity of the material. Spray dried

powders, with or without binders, all exhibit a type II isotherm with a small H1 hysteresis loop in the P/P0 0.85-0.995

range (ESI Figure 11S).[29] H1 hysteresis is often associated with agglomerates of approximately uniform spheres (the

primary LFP particles).[30] While the small hysteresis’ area correlates with the lack of narrow necks (ink-bottle pore180

shape), indicating no morphological difference in arrangements of the nanoparticles between the core and the shell of the

secondary particle (homogeneous distribution).[31] Spray dried powders without binders have high specific surface area

and pore volume (Sa: 28 m2 g−1, Vpore: 0.27 cm3 g−1), indicating no pore blockage in the secondary particles. While the

addition of binders lowers the Sa of the powder, as the pores are gradually filled with organic precursors (20 m2 g−1,

0.2 cm3 g−1, Table 1). Total Vpore decrease by 25 %, but pore size distribution is invariant, peaking at 45 nm, which185

corresponds to the average inter-primary-particle void length (blue vs. red, black and green Figure 5).

Figure 5: Comparison between BJH (top) and NLDFT (bottom) pore size distribution methods. Spray dried powders with (red, black green)
or without carbon precursors (blue) shows similar pore morphology in the meso-macro pore region 5 nm to 300 nm. Calcination pyrolyzes the
carbon precursors and partially sinters the LFP primary particles (open symbols).

This shows how spray drying disperses evenly the solvated organic binders over the surface of the solid LFP. In

contrast, incipient wetness impregnation of a tungsten solution over a solid titania support selectively filled pores smaller

than 10 nm as the tungsten loading increased.[32] Calcination imparts a radical alteration of the material. The Sa for

the samples deprived or with an insufficient quantity of carbon precursor, decrease from 28 m2 g−1 (before pyrolysis) to190

as low as 3 m2 g−1 (after pyrolysis) (Table 1). Loss of Sa is seen in SEM imaging and XRD: at 700 ◦C the uncoated LFP

nanoparticles sinter. The primary particles grow in size up to 1µm (SEM) and XRD peaks are sharper and twice as

intense. On the other hand, the samples containing the carbon precursor increase the Sa from 20 m2 g−1 to 30 m2 g−1 and
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produce a small microporous structure (5 % to 15 % of the total Sa) and a novel pore structure between 5 nm to 10 nm

(BJH and NLDFT). Accordingly, an additional H4 hysteresis loop appears between P/P0 0.45-0.85 for the pyrolyzed195

powders, which is associated with the filling of micropores, in micro-mesoporous carbons; as the adsorption branch is

now a composite of Types I and II isotherms (ESI Figure 11S).[31] The new narrow-mesopore structure arise from a

combination of factors: calcination in the presence of carbon precursors induces partial sintering of the LFP’s primary

particles (XRD). The pore volume is invariant, but the pore size shifts from 45 nm (before pyrolysis, colour symbols) to

5 nm and 45 nm (after pyrolysis, open symbols, Figure 5). In the absence of carbon (diamonds) the material extensively200

sinters, the secondary particle shrinks (SEM), and the Vpore drops to 0.06 cm3 g−1. Lactose and PVA maximize the

micropore Vpore and Sa (upward triangles: 5.2 m2 g−1 with the V − t method, and 9.0 m2 g−1 by NLDFT); lactose alone

does not create a substantial microporosity (circles: 0.7 m2 g−1, and 2.5 m2 g−1); while ultrasonication degrades the carbon

precursors (downward triangles: 0.8 m2 g−1, and 0.9 m2 g−1). To explain the difference in microporosity we propose that

lactose coats evenly the LFP primary particles, pyrolysis decrease the thickness of the coating layer (from 6 nm to 3 nm205

based on a mass balance),[33] which keeps adhering to the LFP surface (TEM). The thinner carbon layer exposes a gap

that ranges in the micropore region. PVA creates a carbon grid that extends between nanoparticles, ranging between

30 nm to 100 nm (TEM), which correlates with the decrease in mesoporosity (open symbols, upward triangle Figure 5).

Instead, the carbon grid filament measures 1.1(1) nm in thickness (TEM), and indicates the presence of narrow CN,

catalyzed on the surface of LFP.[34] Single-wall CN have a thin diameter (1.35 nm),[35] and would explain the increased210

N2 adsorption in the micropore region (1.4 nm average pore volume by NLDFT); however, their characteristic peaks are

absent in the Raman spectra. Hydrothermal synthesis of LiFePO4 with adenosine triphosphate and ascorbic acid, creates

a similar mesoporous carbon nanowire that interconnects the LiFePO4 nanosheet.[36] Ultrasonication decomposes PVA

and the pore size distribution follows the same trend as the sample with lactose.

3.5. Rheology of the nanoparticles suspension215

The LFP suspension with Tween-20 surfactant exhibit a Newtonian rheology when the solid mass fraction is less than

20 %. Increasing solid loadings shifts it to a shear-thinning non-Newtonian fluid behavior (Figure 6).

Figure 6: The shear increasing isotherms at 25.0 ◦C (upward triangles) on top of the shear decreasing curves (downward triangles). Viscosity
increases with the solid mass fraction of LFP in water (blue, red, black). The addition of less than 7 % lactose does not modify the rheology

of the material; while PVA increases the viscosity of the slurry (green). Error bars for a CI95%
n=3 .
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Dynamic apparent viscosity (µ, Pa s) decreases with shear rate (γ̇sr, s−1) and the Herschel-Bulkley model fits best the

data (R2 >99.5 %):[37]

µ = τ0/γ̇ +Kγ̇n−1 (2)

Eq. 2 characterizes fluids with suspended solid, even in Newtonian conditions, and requires three rheometric parameters:220

consistency (K, Pasn relates to the apparent viscosity), flow index (n, a measure of shear-thinning) and yield stress (τ0,

Pa). When τ < τ0 the material behaves as a solid (τ0 = 2 Pa to 3 Pa), and occurs when the solid mass fraction of LFP

is above 60 % or at 50 % along with binders (>3 % lactose or >0.8 % PVA). In those conditions, the Tween-20 surfactant

fails to maintain the LFP nanoparticles suspended and after standing still for a few hours, the material reticulates into

a bulk solid with the consistency of yogurt (i.e. τ0 = 10 Pa at room temperature). The process is reversible, indicating225

that the nanoparticles create a network through sol-gel physical bonds.[38] The network deforms elastically when stress is

applied, via direct contact between particles. When the applied stress reaches τ0, the network breaks up, beyond which

point the suspension flows viscously.[39] Shear increasing-decreasing curves also show this thixotropic behavior. The shear

increasing curve has greater viscosity, and as the analysis progresses, more energy is transferred to the material, breaking

more bonds and lowering the apparent viscosity during the shear decreasing isotherm. The two curves have a hysteresis230

area that is maximum when the material has more suspended solids and in the presence of PVA binder (ωLFP = 43.3 %

with ωPVA = 0.86 %: ∆hyst = 10 000 Pa s−1, n = 0.68). Below the mentioned conditions, ∆hyst decreases proportionally

with the solid mass fraction (at ωLFP = 51.9 %: ∆hyst = 3000 Pa s−1, n = 0.81; ωLFP = 35.6 %: ∆hyst = 700 Pa s−1, n

= 0.91 and ωLFP = 17.6 %: ∆hyst = 100 Pa s−1, n = 0.98). Also the viscosity index follows the same trend, reaching

Newtonian flow (n = 1) in dilute, binder-less conditions. PVA contributes in creating a sol-gel network among LFP235

nanoparticles, probably by physical bonds via the PVA hydroxyl functional groups and not by dehydration reaction as

the rheology is again reversible during consecutive shear increasing-decreasing isotherms and we are in the presence of

an aqueous system weakly alkaline (pH 8).[32] PVA which is detrimental when spray-drying as viscosity increases and

requires more energy for atomization, but is favorable when testing the electrochemistry of the material, as the PVA

network pyrolyzes into a better electron conductive cage. Temperature reduces the apparent viscosity of the suspension240

with an exponential trend in a 1/T plot; solid loading, binders or different shear rates modify the magnitude of the effect

but not the trend (Table 2).

At −8.9 ◦C an ωLFP = 51.9 % binder-less suspension freezes. The process is not reversible, after thawing the material

is 70 % more viscous over the entire range of temperature. PSD scattering reveals that 20 % of the solid nanomaterial

agglomerates into 2 µm to 10 µm particles. Ultrasonication breaks the agglomerates and restore the original PSD and245

rheology. Since the change in apparent viscosity between the shear increasing and decreasing branches is negligible, we

modelled the data considering four factors: LFP and PVA mass fraction, temperature and the increasing branch of the

shear rate (Eq. 3).
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Table 2: Rheology of LFP suspensions; the apparent viscosity (µ, ±0.05 mPa s) increases with: increasing solid mass fraction (ωLFP), or
increasing PVA binder content (ωPVA). While µ decreases when temperature (T ) increases, or increasing shear rates (γ̇sr). “US”: ultrasonicated
suspension.

ωLFP ωPVA T γ̇sr µ
gLFP/gtotal gPVA/gtotal

◦C s−1 mPa s

17.6 0 25.0 4000 1.5
31.3 0 25.0 4000 2.3
35.6 0 25.0 4000 5.2
51.9 0 45.0 4000 6.3
51.9 0 25.0 4000 8.4
60.2 0 25.0 4000 12.7
43.3 0.86 25.0 100 80.1
43.3 0.86 45.0 100 56.7
43.3 0.86 57.0 100 48.8
48.3 0 5.0 4000 10.5
48.3 0 25.0 4000 6.0
48.3 0 45.0 4000 4.2
48.3 0 65.0 4000 3.9
38.2 1.15 25.0 500 65.0
38.2 1.15 25.0 1500 43.4
38.2 1.15 25.0 4000 31.9
45.0 0.45 25.0 1000 22.4

45.0, US 0.45, US 25.0 1000 10.3
0 4.0 25.0 1000 31.8
0 4.0, US 25.0 1000 16.4

A = e
Ea
R ( 1

T − 1
293 )

C = 1 + cPVA ∗ ωPVA

τ0 = τ∗
(

1 + (cPVA ∗ ωPVA)
2
)((

1 − ωLFP

ω0

)−4

− 1

)

µ = A ∗

[
τ0
γ̇sr

+K ∗ C ∗ γ̇
−0.2rp

(
ωLFP
ω0

)4

sr

(
1 − ωLFP

ω0

)−Bω0
]

(3)

A modified Arrhenius type relationship (A term) explains the temperature variation (T , K) for the apparent viscosity

(µ, Pa s): at 20 ◦C A = 1; when T = 5 ◦C A = 1.4 and when T = 70 ◦C A = 0.4; the Ea regress to 16 300(500) J mol−1
250

(standard error). Interestingly, the regressed trend overlaps with the viscosity variation of pure water (in mPa s) and

the regressed Ea agrees with previous studies for pure water (n = 7, 15 800(200) J mol−1, standard error).[40, 41] When

comparing our regressed data with another regression where we imposed the Ea of pure water, the Mann-Whitney U

Statistic determined no statistically significant difference between the two groups (p = 0.934). We can therefore infer that

temperature only affects the rheology of the solvent, and not the solid or interfacial property of the suspended LiFePO4255

nanoparticles. The PVA mass fraction linearly correlates with the consistency index K (C term) and quadratically with the

yield stress τ0, for slurries up to 0.04 ωPVA (gPVA/gtotal).[42] The quadratic function best fit the liquid-to-solid transition

of our feed material when it contains PVA, the constant is set to 1 to impose neutrality for a binderless suspension, while

the proportionality coefficient cPVA regress to 700. The yield stress (τ0, Pa) increases with increasing particle volume

fraction (ϕ, L L−1) with a Maron-Pierce relationship and τ∗ is a fitting parameter which correlates to the solid particle260

size.[39] When we regressed the same equation using mass fractions we obtained τ∗ = 0.006 Pa and ω0 = 0.77 which
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represents the maximum (mass) packing fraction. The remaining re-elaboration of the Herschel-Bulkley model include an

empirical formula for evaluating the Newtonian index, as it depends systematically on particle aspect ratio (in our case

rp = 0.5) and solid loading.[43] The same rheological study on suspended particles regressed the Einstein coefficient B

as a function of rp (in our case B = 2.5) and we decided to apply the Krieger equation,[44] as a modification formula,265

to include a concentrated regime flow, for the consistency index K. With the Krieger modification, K = 1.2 × 10−3 Pasn

regress to the viscosity of the solvent (water at 20 ◦C is 1 mPa s), and our regression improves: R2 and adjusted R2 scores

are equal; R2 passes from 99.3 % to 99.9 %; and the standard error of the estimate: from 10.0 mPa s to 4.5 mPa s (ESI

Figure 12S). Converting solid mass fractions to volume fractions, and writing Eq. 3 in terms of volume fraction, does not

fit the data with respect to shear increase and solid loading. (R2 = 99.6 % and standard error of the estimate: 7.7 mPa s).270

When regressing using volume fractions, Ea = 14 300(900) J mol−1, τ∗ = 0.25 Pa, K = 0.0030 Pasn, ϕ0 = 0.66 and cPV A

= 370. The maximum (volumetric) packing fraction is in agreement with experimental data on micron-sized particles

but the yield stress fitting parameter diverges from the proposed trend: for 50µm particles, τ∗ measured 0.05 Pa; and

for 2.5 µm, τ∗ measured 3 Pa.[43] We extend the study into the submicron region with a broad distribution of primary

particle sizes and obtain τ∗ = 0.25 Pa, indicating that nanoparticles act as viscosity reducers, as already demonstrated275

in crude oil rheology studies.[45] We also conducted a thixotropy study of a 50 % solid slurry. When shear is applied,

γ̇sr from 0 s−1 to 50 s−1, it takes an average of 2.5 s to reach 95 % of the steady state measured stress. Continuing from

50 s−1 to 500 s−1 it takes 1.3 s; 500 s−1 to 5000 s−1 0.9 s; while 5000 s−1 to 500 s−1 1.5 s; 500 s−1 to 50 s−1 3 s; 50 s−1

to 0 s−1 10 s. Imposing different temperatures (−5 ◦C to 65 ◦C) does not influence thixotropy, as there is no statistical

difference between the temperature groups (p = 0.998). This effect has to be taken into consideration as the slurry that280

undergoes atomization is subject to a rheology different from the expected one. Feeding 100 mL min−1 of slurry from the

tank through the pipe imposes a shear of 500 s−1, and given the dimension of the apparatus, a contact time of 10 s. The

pipe is then connected to the nozzle attachment, a steel duct in which the slurry passes at γ̇sr = 100 s−1 for 7 s. Finally

the nozzle reduces the cross-section to a 0.7 mm bore, where the slurry shear at 50 000 s−1 for 2 ms. This final sudden

change in diameter (and shear rate) is unlikely to impose any actual decrease in the apparent viscosity. The thixotropy285

of the feed material imposes a kinetic limitation for the apparent viscosity variation due to shear and the short contact

time for both the atomizer and the droplet drying (a few ms) leaves the material behaving in the 100 s−1 shear range.

3.6. Ultrasonication

In water, long chain PVA organizes to a pseudo-micelle conformation around the nanoparticles. This increases the

hydrodynamic radius and thus the intrinsic viscosity of the medium.[46] In fact, adding 0.45 % PVA to a suspension of 45 %290

LFP increases the apparent viscosity 4-fold with respect to a binderless slurry. However, when ultrasound (US) is applied

to a suspension containing PVA, the apparent viscosity drops 2-fold, permanently (Table 2). The LFP primary particle

size distribution remains unchanged (before US: 130(60) nm vs. after US: 120(50) nm, spanning from dv,10: 70 nm, dv,50:

110 nm, to dv,90: 190 nm). So, we attributed this effect to the depolimerization of PVA; in fact, applying US to a 4.0 %

PVA solution in water, registered a 2-fold drop in viscosity. Ultrasonication degradates organics and polymers via a macro-295

radical mechanism,[47, 48] and depolymerizes aqueous solutions of PVA, as cavitation and macro-turbulence induce shear
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forces that break the polymer’s chemical bonds.[49, 50] The Mark—Houwink equation characterizes the intrinsic viscosity

of a polymer with its molecular weight, while the Solomon—Ciuta equation estimates the intrinsic viscosity from single-

concentration apparent viscosity measurement.[51] The 4.0 % PVA solution has an apparent viscosity of 32.0(8) mPa s at

25 ◦C, a Newtonian behavior, and an average molecular weight of Mw = 170 000 g mol−1 (manufacturer specifications).300

US depolymerizes the 4.0 % PVA solution to a 90 000 g mol−1 polymer, halving the chain length (µ = 16.8(2) mPa s).

With 45 % LFP and 0.45 % PVA, the effect of US is even more pronounced. Lower polymer concentrations lead to higher

polymer degradation because the polymer chains are less overlapped.[52] As a result, viscosity decreases from 22 mPa s to

10 mPa s at γ̇sr = 1000 s−1. Assuming both the LFP suspension and PVA contribute to the final viscosity in an additive

way, a 45 % LFP suspension has a µ = 6 mPa s. Subtracting the LFP contribution from the LFP+PVA suspension, the305

PVA drops in viscosity 4-fold after US (16 mPa s to 4 mPa s), which corresponds to a 30 000 g mol−1 low molecular weight

polymer.
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Figure 7: (a) XPS spectra for the different carbon coating and control sample, and high resolution spectra of C1s (b) and O1s (c) for LFP-LP-

Py. (d) Raman spectra, the vertical bars are the CI95%
n=3 for each material. The small peak at 950 cm−1 correlates with the stretching modes

of PO4
3- (Full range ESI Figure 13S).

3.7. Carbon coat chemical analysis

X-ray photoelectron spectroscopy (XPS) is a surface sensitive technique that determines the chemical composition in

atomic percentages of the elements and the amount of carbon–carbon/carbon–oxygen bonding (Table 3).310

We investigated the effect of different carbon precursor coating on the LFP base material compared to the calcined

control sample (LFP-neat-Py) by high resolution deconvolution of the C1s and O1s spectra. The XPS survey of the

control and pyrolyzed samples containing lactose (LFP-L-Py), lactose-PVA (LFP-LP-Py), and ultrasonicated lactose-
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Table 3: XPS elemental composition (at. ±0.2 %).

Sample P2p C1s O1s Fe2p

LFP-L-Py 7.5 41.5 46.6 4.4
LFP-LP-Py 8.4 39.8 46.3 5.4
LFP-LPU-Py 6.9 45.5 42.8 4.9
LFP-neat-Py 12.4 20.0 59.6 8.0

PVA (LFP-LPU-Py) clearly shows the elemental peaks of P, C, O and Fe, respectively (Figure 7a). Due to the presence of

iron, the only lithium (Li1s) peak cannot be quantified, as they overlap. The Fe2p signal has a sensitivity factor over ten315

times greater than Li1s, also compared to peak intensity of carbon, lithium provides a very low sensitivity, approximately

1/18 that of carbon.[53] The calibration of all the samples peaks referred to the C1s species, corresponding to the

adventitious carbon from the XPS instrument. In LFP-LP-Py, deconvoluting the C1s signal (Figure 7b) yields four peaks,

the binding energy at 285.0 eV (C−C/C−−O) assigned to aliphatic and aromatic structures, 286.8 eV (C−O−C/C−O)

ascribed to epoxy carbon and hydroxyl carbon, 288.0 eV (C−−O) corresponds to carbonyl carbon and 289.2 eV (O−C−−O)320

represent carboxylate carbon.[54] Figure 7c shows the O1s core level spectrum: the binding energy at 530.5 eV (M−O) is

characteristic of the ”O2- (OI)” ions of the crystalline network bonded to a metal,[55] indicating Fe−O shear the orbital

O1s in LiFePO4 linkage. The characteristic peak at 531.8 eV (C−−O/O−C−−O) is attributed to the superoxide anions ”O-

(OII)” and the peak at 533.5 eV (C−O) represent the superoxide anion ”O2- (OIII)”.[56] Comparing the high resolution

spectra (ESI Figure 14S) and the atomic percentages (at. %) of the samples illustrated in Table 4 showed a higher325

proportion of C−O groups in the lactose sample, compared to lactose-PVA and the ultrasonicated one.

Table 4: Identification of functional groups and their at. % obtained from high resolution XPS spectra, fitting of the C1s (top) and O1s peaks
(bottom). Raman intensity ratio between carbon’s D and G bands (bottom, last column).

Sample (C1s) C−C/C−−C C−O/C−O−C C−−O O−C−−O

LFP-L-Py 36.9 4.6 1.2 3.2
LFP-LP-Py 37.6 3.0 1.9 3.0
LFP-LPU-Py 36.8 3.3 1.9 2.7
LFP-neat-Py 18.1 1.1 – 1.7

Sample (O1s) M−O C−−O/O−C−−O C−O ID/IG

LFP-L-Py 7.2 40.7 4.5 0.77(3)
LFP-LP-Py 7.3 42.9 3.0 0.76(1)
LFP-LPU-Py 7.8 42.7 3.4 0.76(3)
LFP-neat-Py 13.0 64.4 1.7

Similarly, a higher proportion of metal oxides is detected in the ultrasonicated sample compared to lactose and lactose-

PVA samples. Instead, the at. % of the functional groups C−C/C−−C is higher in the lactose-PVA powder compared to

the other two. No other significant differences between the carbon and oxygen high resolution spectra could be observed

in the coated samples. In comparison, the control sample LFP-neat-Py consist of very low at. % of aliphatic, aromatic330

and epoxy carbon, in addition no presence of carbonyl carbon, which justifies the uncoated behavior of the control sample

(low percentages of C−O linkages are due to the presence of adventitious carbon). Instead, the control sample shows high

percentages of metal bonding (M−O) due to the interaction of metal with oxygen in the LiFePO4 base compound; this

justifies that the interaction between oxygen and carbon been created by addition of the carbon precursors and the carbon

coat adheres chemically with the LiFePO4. We further investigated the LiFePO4/C powders by calculating the intensity335
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ratio between the D and G bands of carbon with Raman spectroscopy (ID/IG) (Figure 7d). The D band (1345 cm−1) is

associated with out of plane vibrations: disordered sp3 tetrahedral amorphous carbon. The G band (1600 cm−1) correlates

to in-plane vibrations: graphitic sp2 carbon.[57] The three samples’ spectra overlap with no statistical differences, and

the ID/IG is as-well invariant (one-way ANOVA test, p = 0.49, Tab. 4). This further confirms that the carbon coating is

chemically equivalent and differs only in terms of morphology between the three main samples (carbon-grid, TEM).340

3.8. Electrochemical tests

At the beginning, we run preliminary tests to identify how the spray drying conditions, secondary particle size and

carbon content affect the discharge capacity (ESI Table 1S). Small particles, with a narrow size distribution, are more

stable during cycling (by linearly extrapolating the trend between the 30th to 45th cycle). The spray dried LFP powder

with lactose, with a D4,3 diameter of 7(3)µm (distribution at one standard deviation) is stable after 15 cycles (red345

circles, ESI Figure 15S). The samples reach the maximum capacity after several activation cycles, which is normal. The

activation is related to pulverization due to the presence of a thicker carbon coating (present inside the interparticle

void fraction: TEM and N2 physisorption porosimetry) or large particle agglomerates. By cracking these agglomerates,

new active surfaces become accessible. This effect is modest, improving 1 % of the battery’s capacity, indicating that

the primary particles are already well dispersed and the carbon coat has an uniform thickness with lactose. Increasing350

the secondary particle diameter to 12(10) µm (yellow diamonds, ESI), broadens the distribution and the cyclability rate

drops twice as fast with respect to the previous material. PVA increases the viscosity of the slurry, and the size of the

particles (32(23)µm). The discharge capacity drops sooner and one battery fails, due to incomplete and uneven carbon

coverage and probably mechanical detachment of the material (black upwards triangles, ESI). On the other hand, adding

lactose and PVA, maintains both batteries active and relatively stable, despite the larger particle size: 32(21) µm (green355

downwards triangles, ESI). Therefore, we optimized the spray drying conditions to deliver a fine powder (D4,3 = 10 µm).

Spray drying the suspension without binders and calcination, produce a material with poor electrochemical capacity (due

to the lack of a carbon coat and sintering) but stable cyclability (yellow squares, Figure 8a).

Subsequently, we optimized the binder formulation, aiming for a 3 % carbon coating after pyrolysis. During spray

drying with binders, to compensate for the LFP suspension’s higher viscosity, we increased the atomization pressure to360

0.40 MPa and obtained particles with a mode below 12 µm. We prepared three powders with similar characteristics after

pyrolysis, in terms of: carbon content, secondary particle size and Sa (Table 1). For the first, we spray dried a suspension

of LFP with 14.5 % lactose (mass basis on dry LFP, LFP-L-Py, red circles). Then 11 % lactose and 1 % PVA (LFP-LP-

Py, black upward triangles). While the third sample contained 11 % lactose, 1 % PVA and was ultrasonicated before and

during spray drying (LFP-LPU-Py, green downward triangles), to compare the role of US as dispersing force. All materials365

are initially cycled at 0.1C for 10 cycles (not shown) and have a rapid activation, reaching the maximum capacity after

6 cycles. During the first 100 cycles at 1C, the materials behave similarly, with no statistical differences (ANOVA on

ranks test, p = 0.33). After, however, the lactose-based material’s discharge capacity quickly fades due to polarization

of the cathode, while the lactose-PVA materials remain constant. This supports the hypothesis that the carbon-cage

helps to dissipate the charge and maintains the nanoparticles cohesive, thus improving the cathode’s cyclability. We370
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a) b)

c) d)

Figure 8: a) Cyclability at 1C discharge rate and 0.1C for the neat LFP. Error bars represent 1 standard deviation, n = 2. Adding PVA
significantly improves the cyclability of the battery vs. the lactose based material (p < 0.02). b) Normalized cyclability at 1C discharge rate
(one every 10 cycles is conducted at 0.1C and not shown on the graph for simplicity). Lactose-PVA confer greater stability, the coin-cell
battery would retain 80 % of the initial capacity after 1700 cycles (vs. lactose: 1100 cycles). Ultrasonication shortens the PVA’s chain length
and induce instability in the trend. c) Rate performance (bottom-left axes, symbols) and Galvanostatic curves (top-right). The addition of
high-Mw PVA (black lines and upward triangles) creates an extended carbon grid that better distributes the electric charge across the LFP
nanoparticles, improving the discharge capacity. d) Discharge curves at increasing C-rates. An extended carbon-grid (solid line) dissipates the
charge more efficiently at high C-rates with respect to a shorter carbon-grid (dashed) or no grid (dotted).

repeated and extended the cyclability tests over 750 cycles at 1C (Figure 8b). To avoid charge accumulation and dendrite

formation, one every 10 cycles is conducted at 0.1C, this allowed the lactose-based cathode to regenerate for comparative

results.[58] This methodology gives us a better understanding of the cathode’s aging process, as the crystalline matrix

deforms during Li+ intercalation. This results in mechanical stress that fractures the cathode and isolate part of the

nanomaterial, consequently the discharge capacity drops. At 750 cycles, LFP-LP-Py retains 91 % of the initial capacity375

(150.7 mA h g−1 at 1C). LFP-L-Py 86 % (153.7 mA h g−1 at 1C). Both materials decline linearly, but the carbon cage

further extends cyclability by 50 % vs. the lactose-based material. LFP-LPU-Py retains 81 % (initial: 150.0 mA h g−1 at

1C). Despite having an even better cyclability up to 100 cycles, the material quickly deteriorates and the trend becomes

unstable. The PVA’s chain length after ultrasonication is shorter, and the resulting carbon-cage does not connect the

nanoparticles together (TEM). We speculate that ultrasonication induces a better dispersion of the lower-end tail of380

the primary particle size distribution. Small nanoparticles tend to clump together into bigger, more resistant clusters.

Ultrasound breaks these clusters and the spray dried powder is less resistant to mechanical stress, and ages faster. This

explains the lower cyclability, but the better rate performance with respect to the lactose based material, as the carbon
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cage still plays a role in dissipating the electric charge more efficiently. Galvanostatic cycling at 0.1C, for LFP-LP-Py, LFP-

LPU-Py and LFP-L-Py, shows a single flat plateau at 3.4 V versus Li+/Li, indicating the two-phase reaction between the385

LFP triphylite and the heterosite FePO4 upon lithiation/de-lithiation reactions (Figure 8c). No extra plateau related to

impurity phases was observed. A polarization of 50 mV was observed for all three samples indicating that all three samples

are sufficiently well carbon coated for this cycling.[59] In the rate performance test, the capacities at different C-rate (0.1

to 10) were normalized with respect to the capacity at 0.1C (Figure 8c). The rate capabilities of the samples up to 10C are

comparable to what is typically found for high performance materials.[60, 15] By increasing the C-rate, the difference in390

rate capability between these three samples becomes more obvious. LFP-LP-Py exhibited the highest discharge capacity

of 135 mA h g−1 at 10C (84 % normalized capacity vs. initial: 161 mA h g−1 at 0.1C); LFP-LPU-Py 123 mA h g−1 at

10C (79 % vs. initial: 156 mA h g−1 at 0.1C); and LFP-L-Py 124 mA h g−1 at 10C (77 % vs. initial: 162 mA h g−1 at

0.1C). Considering the pyrolyzed powders contain 94.9(4) % LiFePO4 active material (the rest is carbon and γ-Li3PO4),

LFP-LP-Py reaches the maximum attainable capacity at 0.1C: 169.7(7) mAh/g(LiFePO4) (170 mA h g−1 theoretical). We395

made sure that the three contrast samples have similar active material loading, thickness (experimental section), carbon

loading and secondary particle size (Table 1) for comparative kinetic investigation. The chemical composition is also

similar (XPS and Raman), thus we conclude that adding high-Mw PVA to lactose and pyrolysis produce a morphological

difference in the carbon coating. A carbon-cage interconnects the primary particles (TEM) which improves even further

the discharge rate and cyclability versus the lactose-based covered cathode. The powder gains microporosity as a result,400

which shortens the diffusion path of the Li+ in the solvent, increasing access to the active surface area (porosimetry,

Table 1). The discharge curves have flat plateau up to 1C for all materials (Figure 8d). By increasing the discharge rate

up to 5C, a single plateau is still found for the lactose-PVA material (solid line). The addition of high-Mw PVA creates

an extended carbon grid, interconnecting LFP primary particles, that minimizes the polarization of the cathode during

discharging. While for the other two samples, the discharge curves progressively fall shorter and the plateau disappears,405

indicating polarization (i.e. kinetic limitation) in the materials.

4. Conclusions

Melt-synthesized LFP nanoparticles, spray dried and coated with lactose and PVA, delivers a high-performance

LiFePO4/C cathode material (135 mA h g−1 at 10C). We propose an industrially scalable route, from solid state re-

actions, to LFP nanoparticles suspended in water. The slurry feeds a 0.8 m I.D. spray dryer, that generates 7 kg h−1 of410

mesoporous powder, promoting Li+ wettability and providing a homogeneous dispersion of the carbon precursors, even

inside the secondary particles. A fine powder (D4,3 < 12 µm) improves cyclability, but a suspension containing PVA is

more viscous and spray drying requires 0.40 MPa to atomize the slurry. We model the suspension rheology, based on shear,

temperature, LFP and PVA loading in water. We prove that high-Mw PVA pyrolyzes into a carbon-cage that intercon-

nects the nanoparticles and we model the pyrolysis step, as part of the carbon gasifies. The cage forms carbon-nanopores415

averaging 1.4 nm in diameter, and contributes to 30 % of the Sa. The electrically conductive carbon-cage dissipates the

charge more efficiently at high C-rates, and a bigger cage improves the cyclability by holding the nanoparticles together.
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This reduces the mechanical stress due to lattice deformation of the LFP’s crystallites during Li+ de/intercalation, and

delays the cathode’s fracturing. Ultrasonication depolymerizes PVA; the resulting carbon-grid is smaller, does not inter-

connect the LFP nanoparticles, and induces battery failure. However, changing the acoustic frequency and amplitude,420

may better disperse the suspension without fragmenting the PVA chain.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors recognize the support of Natural Science, Engineering Research Council of Canada and the Canadian425

Foundation for Innovation through the Automotive Partnership Canada program and our industrial partner Johnson-

Matthey Battery Materials. The authors appreciate the collaboration of Dr. Pierre Sauriol (Polytechnique Montreal)

and Dr. Delin Li, Dr. Wojciech Kasprzak, (and colleagues) of CanmetMATERIALS for generating the pilot scale melt-

synthesized LFP ingots used for this study.

References430

[1] J. Wang, X. Sun, Olivine LiFePO4: the remaining challenges for future energy storage, Energy Environ. Sci. 8 (2015)

1110–1138. doi:10.1039/C4EE04016C.

[2] Z. P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, M. Fowler, Z. Chen, Batteries and fuel cells for emerging

electric vehicle markets, Nature Energy 3 (2018) 279–289. doi:10.1038/s41560-018-0108-1.

[3] J. B. Goodenough, M. H. Braga, Batteries for electric road vehicles, Dalton Trans. 47 (2018) 645–648. doi:10.1039/435

C7DT03026F.

[4] A. Varzi, D. Bresser, J. von Zamory, F. Müller, S. Passerini, ZnFe2O4−C/LiFePO4−CNT: A novel high-power

lithium-ion battery with excellent cycling performance, Advanced Energy Materials 4 (10) (2014) 1400054. doi:

10.1002/aenm.201400054.

[5] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414 (2001) 359.440

doi:10.1038/35104644.

[6] A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, J. B. Goodenough, Effect of structure on the Fe +
3 /Fe +

2

redox couple in iron phosphates, Journal of The Electrochemical Society 144 (5) (1997) 1609–1613. doi:10.1149/

1.1837649.

[7] J. Li, J. K. Barillas, C. Guenther, M. A. Danzer, A comparative study of state of charge estimation algorithms for445

LiFePO4 batteries used in electric vehicles, Journal of Power Sources 230 (2013) 244–250. doi:10.1016/j.jpowsour.

2012.12.057.

19

http://dx.doi.org/10.1039/C4EE04016C
http://dx.doi.org/10.1038/s41560-018-0108-1
http://dx.doi.org/10.1039/C7DT03026F
http://dx.doi.org/10.1039/C7DT03026F
http://dx.doi.org/10.1039/C7DT03026F
http://dx.doi.org/10.1002/aenm.201400054
http://dx.doi.org/10.1002/aenm.201400054
http://dx.doi.org/10.1002/aenm.201400054
http://dx.doi.org/10.1038/35104644
http://dx.doi.org/10.1149/1.1837649
http://dx.doi.org/10.1149/1.1837649
http://dx.doi.org/10.1149/1.1837649
http://dx.doi.org/10.1016/j.jpowsour.2012.12.057
http://dx.doi.org/10.1016/j.jpowsour.2012.12.057
http://dx.doi.org/10.1016/j.jpowsour.2012.12.057


[8] J. Liu, Z. Wang, G. Zhang, Y. Liu, A. Yu, Size-controlled synthesis of lifepo4/c composites as cathode materials for

lithium ion batteries, Int. J. Electrochem. Sci. 8 (2013) 2378–2387.

[9] F. Croce, A. D’Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati, A novel concept for the synthesis of450

an improved LiFePO4 lithium battery cathode, Electrochemical and Solid-State Letters 5 (3) (2002) A47–A50.

doi:10.1149/1.1449302.

[10] A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. V. Schalkwijc, Nat. Mater. 4 (2005) 366. doi:10.1002/anie.

200702505.

[11] Y. Wang, Y. Wang, E. Hosono, K. Wang, H. Zhou, The design of a LiFePO4/carbon nanocomposite with a core-455

shell structure and its synthesis by an in situ polymerization restriction method, Angewandte Chemie International

Edition 47 (39) 7461–7465. doi:10.1002/anie.200802539.

[12] M. Gauthier, M. K. Domroese, J. A. Hoffman, D. D. Lindeman, J. R. G. Noel, V. E. Radewald, J. Rouillard,

R. Rouillard, T. Shiota, J. L. Trice, In-situ short circuit protection system and method for high-energy electrochemical

cells, US6099986 (1997).460

[13] M. Gauthier, M. Armand, K. Zaghib, S. Poirier, R. Bellemare, Alloyed and dense anode sheet with local stress

relaxation, US6265099 (2001).

[14] D. Bresser, D. Buchholz, A. Moretti, A. Varzi, S. Passerini, Alternative binders for sustainable electrochemical energy

storage – the transition to aqueous electrode processing and bio-derived polymers, Energy Environ. Sci. 11 (2018)

3096–3127. doi:10.1039/C8EE00640G.465

[15] M. Talebi-Esfandarani, S. Rousselot, M. Gauthier, P. Sauriol, G. Liang, M. Dollé, LiFePO4 synthesized via melt
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