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ABSTRACT 

 

 

 

Gómez Vargas, Celina. Ph.D., Purdue University, December 2014. Light-Emitting Diodes 

as an Alternative Supplemental Lighting Source for Greenhouse Tomato Propagation and 

Production. Major Professor: Cary A. Mitchell. 

 

 

 

Intensive year-round local production of greenhouse-grown tomatoes (Solanum 

lycopersicum L.) requires the use of supplemental lighting (SL) to complement solar 

radiation in light-limited seasonal climates. However, SL represents a large expense to 

greenhouse-vegetable production. Currently, energy is second only to labor as the most 

expensive indirect cost of production. Thus, the greenhouse industry is interested in cost-

effective, energy-efficient sources of supplemental photosynthetic light to sustain steady 

supplies of high-quality produce during the off-season. Overhead (OH) high-pressure 

sodium (HPS) lamps are considered the industry standard in greenhouse SL because of 

their capability to deliver adequate photosynthetically active radiation (PAR) to crops. 

However, HPS lamps are inefficient consumers of electrical energy with a high life-cycle 

cost, an intense environmental impact, and an orange-biased, blue-deficient emission 

spectrum. Light-emitting diodes (LEDs) offer an exciting opportunity to improve energy 

efficiency in greenhouse lighting because their relatively low surface temperature allows 

them to operate in close proximity to plant tissue without overheating or scorching plants, 

thereby increasing available PAR at leaf level using less input power than HPS lamps. In 



xv 

 

 

addition, unlike traditional light sources used in commercial greenhouses today, LEDs are 

solid state, robust, long-lasting, and can be designed to emit narrow-band wavelengths that 

can be selected to maximize photosynthesis and growth for specific crops.  

The goal of our research is to enable U.S. greenhouse growers to transition from 

HPS lighting to LED technologies for supplemental photosynthetic lighting. The specific 

objective of this research was to evaluate LEDs as alternative SL sources for greenhouse 

tomato propagation and production. Three research goals were established to support my 

objective: 1) to compare seasonal growth responses to three red:blue ratios of LED SL vs. 

HPS SL vs. ambient light for the propagation of six tomato cultivars; 2) quantify plant 

growth, yield, and energy consumption using intracanopy lighting (ICL) with LEDs (ICL-

LED) or OH-HPS lamps as different SL sources and positions for high-wire greenhouse 

tomato production; 3) compare crop physiological responses to different SL sources and 

positions [ICL-LED vs. OH-HPS vs. hybrid lighting (ICL-LED + OH-HPS)] within an 

indeterminate high-wire tomato canopy.  

Supplemental lighting increased hypocotyl diameter, epicotyl length, shoot dry 

weight, leaf number, and leaf expansion relative to control, whereas hypocotyl elongation 

decreased when SL was applied. For all cultivars tested, the combination of red and blue 

in SL typically increased growth of tomato seedlings. Our results indicate that blue light in 

SL has potential to increase overall seedling growth compared to blue-deficient LED SL 

treatments in overcast, variable-DLI climates. Further production studies showed that the 

ICL-LED technology supports similar growth and yield compared to OH-HPS but at lower 

electrical costs (from SL only). Additionally, we found that CO2 assimilation measured 
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under ambient environmental conditions (A), photosynthetic quantum yield (θ), maximum 

gross CO2 assimilation (Amax) and the light-saturation point of photosynthesis were good 

indicators of how ICL diminishes the top-to-bottom decline in photosynthetic activity that 

typically occurs with OH SL. However, we did not find any yield differences among SL 

treatments, indicating that higher source activity from ICL does not necessarily lead to 

yield increases. Based on the lower energy consumption measured for ICL-LED, and, to a 

lesser extent, for hybrid SL, compared to OH-HPS, we concluded that replacing OH-HPS 

lamps with ICL-LED or hybrid SL has great potential for energy savings during high-wire 

greenhouse tomato production. However, our results showed that higher total canopy 

photosynthesis did not lead to higher yields, most likely due to a redistribution of 

photoassimilate partitioning to non-harvested, vegetative plant parts. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

 

Summary 

 

 Intensive, year-round, local production of greenhouse-grown vegetables requires 

the use of supplemental lighting (SL) to offset seasonally limited solar radiation in northern 

climates. The recent surge in popularity of light-emitting diodes (LEDs) has prompted 

research to evaluate LEDs as SL sources for greenhouse plant propagation and production. 

The review herein explains the need for SL in greenhouse crop production and provides an 

introduction to the importance of light for plant growth and development, followed by a 

review of research reporting plant growth with LEDs as sole-source or SL. 

Introduction 

When greenhouses were first introduced by the French in the seventeenth century, 

they essentially served as sheltered structures for the cultivation of orange trees in 

temperate climates (Raviv and Lieth, 2008). Over time, greenhouses became a semi-

controlled type of protected cultivation aiming to provide and maintain favorable growth 

environments to maximize yield and extend the growing season of high-value crops 

(Jensen and Malter, 1995). Gradually, these structures became important for commercial 

plant production and their use was split into four main areas: floriculture, bedding plants, 

nursery plants, and vegetable crops (Campbell et al., 1969). Common practices for green-
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house vegetable production, especially those related to light management within 

greenhouses, will be discussed in detail in this review. 

Greenhouse vegetable production 

Since the mid-1990s, the greenhouse vegetable industry has expanded in both 

Europe and North America as the preferred production system for high-quality crops 

(Jones, 2008). Today, greenhouses have different configurations that range from simple 

film-covered tunnels, to tall glass-glazed structures with advanced, computer-controlled 

environments (Hanafi, 2003). In general, production costs for greenhouse vegetables are 

higher than those for field production because of the required capital inputs (infrastructure) 

and ongoing expenses (labor, heating, and electricity). However, there are many 

advantages of growing plants in greenhouses including but not limited to the following: 

off-season production, higher yields, better input management and control, extension of 

the growing season, improved produce quality, and high market value.  

Worldwide, the most important greenhouse-grown vegetables are tomato (Solanum 

lycopersicum L.), cucumber (Cucumis sativus L.), lettuce (Lactuca sativa L.), sweet pepper 

(Capsicum annuum L.), eggplant (Solanum melongena L.), and strawberry (Fragaria × 

ananassa L.) (Hickman, 2014). In 2014, an estimate of the world’s total greenhouse 

vegetable production area was 411,262 hectares (Hickman, 2014). According to the 2007 

Census of Horticulture Specialties, the total number of commercial greenhouse farms 

producing vegetables and fresh-cut herbs in the United States (U.S.) was 4,075; this 

accounted for ≈574 hectares (USDA, 2009).  
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Today, the U.S. greenhouse vegetable industry consists of many small, family-run 

operations and a few large facilities (Greer and Diver, 2000). Large greenhouses typically 

are located in the southwestern and western U.S., where climate enables profitable 

production during winter, when vegetable prices are highest (Cook and Calvin, 2005). 

Nevertheless, several greenhouse facilities are also located in light-limited temperate 

climates, where optimal yield and quality of vegetables can be achieved only by using 

supplemental lighting (SL) (Dorais et al., 1991; McAvoy and Janes, 1984; Rodriguez and 

Lambeth, 1975; Tibbitts et al., 1987). However, the use of SL represents an additional 

expense to greenhouse vegetable production. Currently, energy is second only to labor as 

the most expensive indirect cost of production (Frantz et al., 2010). Thus, the greenhouse 

industry is interested in cost-effective, energy-efficient sources of supplemental 

photosynthetic light to sustain steady supplies of high-quality produce during the off-

season. To understand the importance of SL for greenhouse vegetable production, one must 

consider several factors affecting plant responses to light. 

Understanding Plant Growth in Response to Light 

Plant growth and development is affected by three interacting light parameters: 1) 

quantity, which refers to the number of photons incident per unit time on a unit surface; 2) 

quality, referring to the distribution of photons at specific wavelengths; and 3) duration or 

photoperiod, which is the relative length of the light period. Light measurements for 

instantaneous photosynthetic activity are normally expressed as photosynthetic photon flux 

(PPF), which is the number of photons within the photosynthetically active radiation (PAR) 

spectrum (400 to700 nm) incident per unit time on a unit surface (µmol·m‒2·s‒1). Yet, a 
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more useful method to measure light quantity is the daily light integral (DLI) described as 

the cumulative PPF or dose that plants receive during a 24-h day (mol·m‒2·d‒1).  

While it is widely accepted that any wavelength of light within PAR contributes to 

photosynthesis and crop productivity (McCree, 1972), the relative quantum efficiency 

curve, which weights the quantum yield (moles of carbon fixed per moles of photons 

absorbed) for each wavelength of light, indicates that broadband blue (400 to 500 nm) and 

red (600 to 700 nm) light are among the most efficient wavelengths for driving 

photosynthesis and potentially promoting plant growth (Inada, 1976; McCree, 1972). 

Moreover, while PAR is the primary driver of photosynthesis, spectra within and outside 

the 400 to 700 nm spectrum also influence photomorphogenic and photochemical plant 

responses (Fisher and Runkle, 2004). 

Depending on their physiological effects, light-mediated responses in plants can be 

classified into two groups: 1) plant photosynthesis, generally associated with plant growth 

and productivity (Blankenship, 2010), and 2) photomorphogenic responses, which reflect 

changes in plant development and morphology (Brutnell, 2006). Both groups of responses 

are largely controlled by plant pigments and photoreceptors. 

Protein pigments 

Chlorophylls are the most important photoreceptor pigments for photosynthesis in 

higher plants. Although all photosynthetic organisms contain chlorophyll a, only higher 

plants contain chlorophyll b, which serve as accessory pigments for light absorption 

(Blankenship, 2010). Both chlorophylls absorb light most effectively in the blue and red 

regions of the PAR spectrum. Conversely, chlorophyll molecules are poor absorbers of 
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green (400-600 nm) and near-green light, hence the green color of chlorophyll-containing 

tissues. Moreover, although chlorophyll a and b are both involved in the light-harvesting 

reactions centers, only some forms of chlorophyll a are linked to the energy-processing 

centers of photosynthesis (Kriedemann, 2010). Carotenoids, a kind of accessory pigment, 

mainly absorbs light in the blue and green regions of the PAR spectrum. Carotenoids also 

contribute in the photochemical events of photosynthesis but are primarily in charge of 

protecting chlorophyll molecules against photodamage; their abundance in mature leaves 

of higher plants is only one third that of chlorophyll (a + b) (Kriedemann, 2010). Although 

some green light is reflected or transmitted, chlorophyll and carotenoids together absorb 

light throughout most of the PAR spectrum, and thus, are considered the two major 

photosynthetic pigments of higher plants (Franklin, 2005).  

Photoreceptors 

Plant photomorphogenic and physiological responses are generally regulated by 

plant photoreceptors such as ultra-violet (UV), phototropins, cryptochrome, or 

phytochrome, respectively, which are mainly stimulated by UV (100 to 380 nm), blue, and 

the ratio of  red and far-red (700 to 770 nm) light, respectively. Phytochromes are a family 

of proteins that have two interconvertible forms, the physiologically inactive, red-light-

absorbing form (Pr) and the active, far-red-absorbing form (Pfr). The Pr form, which has 

peak absorption (λmax) at 660 nm, undergoes a conformational shift to the Pfr form when it 

absorbs red light. The Pfr form, which has λmax at 730 nm, undergoes a conformational 

shift to the Pr form when it absorbs far-red light (Brutnell, 2006). Additionally, the Pfr 

form slowly converts back to the Pr form in darkness. Because of the relative differences 
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in absorption and the subsequent conformational changes, both forms of phytochrome are 

always present in plants. The ratio of Pfr to total phytochrome (Pfr + Pr) creates a 

phytochrome photoequilibrium that mediates phytochrome-related plant responses, which 

include but are not limited to activation of seed germination, hypocotyl elongation in dark-

grown seedlings, initiation of leaf expansion, flowering regulation, gravitropism, 

phototropism, and the shade-avoidance response (Briggs and Olney, 2001; Brutnell, 2006).  

Phototropins are UV-A- (315 to 380 nm), blue-, and green-light-absorbing 

photoreceptors that mediate several plant responses including phototropism, chloroplast 

movement, light-induced stomatal opening, leaf expansion, nuclear positioning, leaf 

flattening, leaf positioning, sun tracking, and growth inhibition (Folta and Spalding, 2001; 

Kagawa et al., 2001; Kinoshita et al., 2001; Zeiger, 2010). Cryptochromes are UV-A- and 

blue-light photoreceptors responsible for several photomorphogenic responses like 

inhibition of hypocotyl elongation or increased anthocyanin production (Jao et al., 2005; 

Kim et al., 2004; Moe, 1990; Shinkle and Jones, 1988). Cryptochromes sometimes work 

in conjunction with phytochromes to regulate cell elongation and photoperiodic flower 

induction and are also known to interact with phototropins to mediate stomatal opening 

(Zeiger, 2010). Ultra-violet photoreceptors are known to initiate stress responses in plants 

that ultimately affect plant morphology and protein pigment synthesis (Lercari et al., 1992; 

Paul et al., 2005). Interactions between photoreceptor responses can be synergistic or 

antagonistic, depending on the light signals received and/or the plant’s developmental stage 

(Casal, 2000). Because photoreceptors allow plants to alter their growth in response to light 

spectra, they pose the potential for manipulating light in the growing environment to 

control several plant developmental parameters. 
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Light Sources for Greenhouse Plant Production 

Sunlight is the primary light and energy source for all living organisms on earth. 

However, its intensity, duration, and quality are affected by a location’s latitude, sun’s 

relative position (seasonal and daily), cloud density and composition, atmospheric dust, 

moisture, elevation, and the plane of exposure, among others (Bickford and Dunn, 1972). 

It is said that the most stable characteristic of solar radiation is its variability. Thus, little 

reliance can be placed upon sunlight as the only light source with which to grow plants in 

greenhouses on a year-round basis, especially with increasing distance away from the 

equator in either direction. On the other hand, because no electric light source used for SL 

has a spectral distribution identical to sunlight, it is difficult to directly compare plant-

growth responses to variables such as daylength and irradiance under greenhouse and field 

conditions (Withrow and Withrow, 1947).  

Electric light sources  

The use of electric lighting for commercial plant production began with the 

introduction of carbon arc lamps (Siemens, 1880; Parker and Borthwick, 1949). Further 

research in lighting for plant growth led to the search for new lamps with acceptable 

electrical efficiencies, long life spans, and relatively broad light spectra (Wheeler, 2008). 

Withrow and Withrow (1947) suggested that the most important factors to consider when 

using electric lighting for plant growth are the spectral energy distribution, the proportion 

of energy dissipated as radiated infrared (˃770 nm), and the efficiency of producing radiant 

energy within the PAR spectrum. Other factors that must be considered when selecting 
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lamps for greenhouse SL include commercial availability, installation costs, and ease of 

lamp operation and replacement. 

Incandescent (INC) lamps irradiate blue-deficient, yellow (550 to585 nm)- and red-

biased light with high proportions of far-red and infrared radiation, which can cause stem 

elongation in plants (Arthur and Stewart, 1935). For that reason, INC lamps often are used 

for enriching far-red light in plant-growth chambers, for photoperiod control (night breaks) 

in the floriculture industry, and less frequently for supplemental photosynthetic lighting 

(Chia and Kubota, 2010). Although INC lamps have a relatively low initial cost, they 

provide low electrical efficiencies that generally range from 2% to 13% (Agrawal et al., 

1996); most of the electricity they consume is converted into heat rather than light. 

Estimates place lighting as requiring 20% of the world’s electricity consumption, with 70% 

of this energy being consumed by inefficient lamps (International Energy Agency, 2006). 

Thus, INC lamps are gradually being replaced by more energy-efficient lamps, with 

improved ratios of light-to-heat generation. In the U.S., federal law has scheduled the most 

common INC light bulbs to be phased out by 2014. 

Different types of gas-discharge lamps have been used in the horticulture industry; 

however, they tend to be inefficient sources of red light (Withrow and Withrow, 1947). 

Arthur and Stewart (1935) compared growth of buckwheat (Fagopyrum esculentum 

Moench.) using INC lamps vs. three types of low-pressure gas discharge lamps: neon, 

mercury, and sodium in a controlled environment. Their results demonstrated that sodium 

lamps were more energy efficient for plant lighting compared to the other lamps. Further 

research showed that SL with sodium vapor lamps in combination with 2 h per d from 

mercury arc lamps improved plant growth for geranium (Pelargonium × hortorum Bailey), 
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cotton (Gossypium spp.), and buckwheat (Arthur and Harvill, 1937). Later, Johnston 

(1938) compared the development of tomato grown under different combinations of water-

filtered INC lamps in conjunction with mercury arc lamps. He concluded that INC lamps 

combined with up to 51% light from mercury arc lamps produced more dry mass due to 

the additional blue light. Eventually, it was discovered that low-pressure mercury arc lamps 

provided large percentages of UV light, a finding that led to development of fluorescent 

lamps.  

Fluorescent lamps are a type of low-pressure gas discharge lamp that have a 

phosphor coating (fluorescent chemical) on the inside wall of the lamp. Electricity is passed 

between two filament cathodes and transforms the UV energy of excited mercury-vapor 

into radiant energy of visible (380 to 770 nm) and UV wavelengths (Bickford and Dunn, 

1972). The chemical composition of the phosphor coating is what ultimately determines 

the wavelengths of generated light (Sersen, 1990). The light intensity from these lamps 

decreases with the increasing number of operational hours and generally lasts until the 

emissive material has been depleted from the cathode (Bickford and Dunn, 1972).  

Numerous studies have evaluated different types of fluorescent lamps in plant-

growth chambers and greenhouses. Due to their high energy efficiency (compared to INC 

lamps) and wide spectral distribution (series of spikes of different wavelengths used to 

approximate white light), cool-white fluorescent (CWF) lamps, used alone or in 

combination with INC, were long the standard light source in plant-growth chambers for 

seedling propagation of both herbaceous and woody plants (Brown et al., 1979; Cathey and 

Cambell, 1977; Downs, 1975). Nonetheless, when working in large production areas like 

greenhouses, CWF lamps provide limited irradiance levels and require close placement to 
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plant tissue (≤ 1 m) to provide desirable PPF levels. Furthermore, CWFs often cause 

excessive shading of solar light in greenhouses due to their fixtures, are prone to failure 

when exposed to dripping water or water sprays, their light output is temperature sensitive, 

and because they contain mercury, are considered hazardous for human health and require 

proper handling for disposal. For these reasons, CWF lamps are a less suitable option for 

greenhouse vegetable production (Langhans, 1994).  

Current standard for greenhouse SL  

Overhead (OH) high-intensity discharge (HID) lamps are the preferred type of 

greenhouse SL because their high-intensity capability allows them to deliver adequate 

supplemental PAR. However, HID lamps, which include mercury-vapor, metal-halide 

(MH), and high-pressure sodium (HPS) lamps, among others, have a relatively high life-

cycle cost (cost of buying, installing, operating, and maintaining a lamp during its lifetime), 

and have a significant environmental impact compared to other lamps that do not contain 

mercury or other hazardous materials.  

High-pressure sodium lamps are powered by an AC voltage source in series with 

an inductive ballast. At low pressure, xenon gas is used as a "starter gas" in HPS lamps. 

An amalgam of metallic sodium and mercury lies at the coolest part of the lamp and 

provides the vapor required to create an arc. However, the temperature of the amalgam is 

determined to an extent by the lamp power. Higher power results in higher amalgam 

temperature, which increases the mercury and sodium vapor pressure within the lamp 

(Bickford and Dunn, 1972); HPS lamps tend to have high surface temperatures of up to 

450 °C (Spaargaren, 2001). 
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High-pressure sodium lamps are considered the most suitable light source for large-

scale SL in greenhouses. Furthermore, HPS lamps are up to 30% efficient in terms of 

converting electricity into useful light, and the remaining ‘waste’ thermal energy can be 

used to increase ambient greenhouse and plant temperature and offset winter heating costs 

(Tiwari, 2003). Brault et al. (1989) estimated that, in temperate climates, the heat emitted 

from HPS lamps can provide between 25% and 41% of the heating requirement for a 

greenhouse operation. Thus, heat generation is sometimes considered a useful by-product 

of HPS lamps. Also, HPS lamps typically require reflectors to direct the light from the 

bulbs onto crops, thereby providing satisfactory light distribution and efficiency, but as a 

result blocking some sunlight from reaching the crop. Additionally, their significant 

thermal output often requires a considerable separation distance between plants and lamps 

to avoid tissue scorching, which contributes to a higher lamp-power requirement to provide 

adequate PPF at increasing distances (Cathey and Campbell, 1977).   

Like most available light sources, HPS lamps were originally designed for human 

use. These lamps emit a yellow-orange (550 to 630 nm)-biased, low-blue spectrum that 

does not correspond with the absorption peaks of chlorophyll pigments. Nonetheless, as 

mentioned previously, any wavelength of light within the PAR spectrum contributes to 

photosynthesis and crop productivity (McCree, 1972). Thus, with their high-intensity 

capabilities, HPS lamps have been widely adopted for greenhouse SL and currently are the 

most economically viable mass-produced light source available to provide adequate PAR 

irradiances for plant growth. 

Markham (1969) conducted one of the first greenhouse experiments with HPS SL 

and reported that a number of different plants could grow under these lamps (plant species 
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were not described). Further greenhouse research by Meijer (1971) reported more fresh 

and dry mass of tomato and cucumber seedlings grown under HPS compared to MH lamps. 

Austin and Edrich (1974) compared six lamp types (warm white fluorescent, mercury 

fluorescent, mercury halide, HPS, mercury fluorescent with an internal reflector, or low-

pressure sodium) as SL sources for growing cereals in glasshouses during winter. They 

concluded that based on plant growth and lamp + energy costs, HPS lamps were more 

suitable for growing plants to seed. Elgin and McMurtrey (1977) reported similar results 

when comparing flowering and seed production of greenhouse-grown alfalfa (Medicago 

sativa L.) using HPS, MH, mercury vapor, incandescent, or no SL. They concluded that 

HPS was most effective for increasing seed yields.  Later, McAvoy and Janes (1984) 

reported an increase in greenhouse tomato production when plants were grown under HPS 

lamps compared to unsupplemented controls, especially during winter months. Clark and 

Devine (1984) reported enhanced plant growth of 'Altex' rapeseed (Brassica napus L.), 

'Neepawa' spring wheat (Triticum aestivum L.), 'Kay' orchard grass (Dactylis glomerata 

L.), Canada thistle (Cirslum arvense (L.) Scop.), ‘Gaertn.’ Tartary buckwheat, and 

'Buttercrunch' lettuce when using HPS lamps compared to MH and fluorescent lamps in a 

greenhouse experiment. Over the years, HPS lamps have served as an adequate light source 

for greenhouse SL. However, recent interest has focused on alternative SL sources that can 

reduce production costs by decreasing electrical energy consumption while maintaining 

crop yield and quality.  

Light-emitting diodes (LEDs) for Plant Growth 

Light-emitting diodes are a promising SL technology for the greenhouse industry 

as they surpass in many aspects capabilities of commercially available lamps commonly 
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used in horticulture (Morrow, 2008). As described by Bourget (2008), LEDs are robust, 

solid-state semiconductor devices that can be designed to produce narrow-spectrum light 

to maximize photosynthetic quantum efficiency for specific crop species. In 2008, LEDs 

were as electrically efficient as fluorescent lamps and slightly less efficient than HPS lamps 

at converting electrical energy to light (Bourget, 2008). As of 2014, red and blue LEDs are 

up to 38% and 49% efficient, respectively (Nelson and Bugbee, 2014; Philips, 2012).  

The estimated lifetime of LEDs is generally rated for ≈50,000 h of operation before 

their output falls below 70% of its initial intensity (M. Bourget, personal communication, 

2012). Also, unlike traditional HID light sources used in commercial greenhouses today, 

the relative coolness to the touch of LED photon-emitting surfaces allows them to operate 

in close proximity to plant tissue without overheating or scorching plants, thereby 

increasing available PAR at leaf level using less energy. In addition, LEDs can tolerate 

frequent on/off switching and dimming without negative impacts on longevity, unlike 

conventional light sources that fail faster when cycled often (e.g., fluorescent and HPS 

lamps), and/or require some time before restarting (HID) (Avago Technologies, 2008). 

Other benefits of using LEDs include reduced maintenance labor, precise intensity control, 

and high resolution zonal control to ensure that only areas populated by plants are 

irradiated. With ongoing improvements in terms of energy efficiency and availability of 

photosynthesis-driving wavebands, LEDs provide a potential solution to part of the 

profitability issues that greenhouse growers face. 

Testing of LEDs for plant growth in the U.S. began with early models of LED 

arrays in the late 1980s and early 1990s and continues today (Barta et al., 1990; Bula et al., 

1991; Ignatius et al., 1988; Morrow et al., 1989). The need to develop better light sources 
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for space-based plant-growth research gave rise to initial developments of LED lamps for 

plant research. Bula et al. (1991) were the first to test LEDs for plant lighting. They 

reported that growth of lettuce grown under red LEDs (660-nm peak wavelength) 

supplemented with blue fluorescent (BF) lamps was equivalent to that reported in the 

literature using CWF and INC lamps.  

Sole-source lighting with LEDs for space missions  

In a description concerning the characteristics of LEDs for space-based plant 

lighting, Barta et al. (1992) stated that because of their long lifespan, minimal mass and 

volume, and high-quality spectral output for photosynthesis, LEDs were a promising 

alternative for plant irradiation in space-based research or bio-regenerative life-support 

systems. Following this, several research groups examined effects of LED-based lighting 

systems on yield and physiological responses of numerous crops to be included in space 

missions. Morrow et al. (1995) reported that growth and development of dwarf wheat and 

Brassica rapa L. seedlings grown in a spaceflight experiment using red and blue LEDs (no 

spectrum defined) appeared normal and similar to that of plants grown under terrestrial 

conditions. 

Goins et al. (1997) compared photomorphogenesis, photosynthesis, and seed yield 

of wheat plants produced in a growth chamber using 350 μmol·m‒2·s‒1 from either daylight 

fluorescent (white) lamps, red LEDs (660-nm peak wavelength, 25-nm bandwidth at half-

peak height), or a combination of red LEDs + either 1% or 10% blue light provided by BF 

lamps. They reported that plants grown under red LEDs alone produced fewer shoots and 

less seed yield compared to plants grown under white light. However, results showed that 
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wheat grown under red LEDs + 10% BF light had comparable shoot dry-matter 

accumulation and seed yield relative to wheat plants grown under white light. They 

concluded that wheat plants could complete their life cycle under red LEDs alone, but 

larger plants with higher yields are obtained under red LEDs supplemented with blue light. 

Further research by Yorio et al. (2001) compared growth of radish (Raphanus sativus L.), 

spinach (Spinacia oleracea L.), and lettuce using CWF lamps and red LEDs (660-nm peak 

wavelength) with and without additional blue light (10%) from BF lamps at equal PPF. 

They observed higher leaf photosynthetic rates, more stomatal conductance, and additional 

dry mass in plants grown under CWF lamps than those grown under red LEDs, with or 

without supplemental blue light. However, radish and spinach grown under red LEDs 

+10% BF had more dry mass than when no blue light was added. They concluded that the 

addition of blue light improved plant growth but was still insufficient to achieve maximal 

plant growth. 

Furthermore, Massa et al. (2005) developed a reconfigurable red (640-nm peak 

wavelength) and blue (440-nm peak wavelength) LED plant-growth-lighting array 

designed to reduce electrical energy requirements in a life-support system. The 

reconfigurable array had several independent LED “lightsicles” that hung vertically within 

a plant canopy, and each strip contained numerous light engines that were switched on/off 

incrementally as plants grew. The authors grew cowpea (Vigna unguiculata (L.) Walp.) 

and reported that the reconfigurable system illuminated a larger percentage of leaves within 

the canopy than OH lighting and reduced power consumption by only irradiating where 

leaves were present. Other crops that have been evaluated for space-related missions using 

LEDs as sole-source lighting include but are not limited to: potato (Solanum tuberosum L.) 

http://en.wikipedia.org/wiki/Wilhelm_Gerhard_Walpers
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leaf cuttings (Croxdale et al.,1997), lettuce (Massa et al., 2005; Tang et al., 2009;), spinach 

(Johnson et al.,1999), Swiss chard (Beta vulgaris L. 'Ruby Red Rhubarb') (Goins, 2002), 

pepper (Brown et al., 1995), and soybeans (Glycine max L.) (Zhou, 2005). 

LEDs for plant propagation in controlled environments 

The potential of LEDs as the primary light source for plant lighting in controlled 

environments has been vastly explored. Plant-growth chambers and tissue-culture 

laboratories have long adopted the use of LEDs in their search for more efficient light 

sources. Morrow (2008) reported that per watt of input power, LEDs provided three times 

more photosynthetic light than did HID lamps in controlled environments.   

Nhut et al. (2000) grew strawberry leaf explants using red (70%) and blue (30%) 

LEDs (no spectrum defined) vs. fluorescent lamps in a growth room. Their results showed 

that LEDs improved growth of strawberry plantlets grown in vitro compared to fluorescent 

lamps. Other studies have reported successful in vitro production of various plants using 

LEDs, including but not limited to: chrysanthemum (Chrysanthemum indicum L.) 

(Kurilcik et al., 2008), banana (Musa acuminata Colla) (Nhut et al., 2002), Cymbidium 

orchids (Tanaka et al., 1998), Doritaenopsis orchids (Shin et al., 2008), potato (Jao and 

Fang, 2004), grapes (Vitis vinifera) (Poudel et al., 2008), and calla lilies (Zantedeschia 

jucunda ‘Black Magic’) (Jao et al., 2005).  

Hoenecke et al. (1992) evaluated growth of ‘Grand Rapids’ lettuce seedlings using 

high-intensity red LEDs (660-nm peak wavelength) with or without supplemental blue 

light from BF lamps vs. CWF lamps in a growth chamber. Their objective was to determine 

the optimal percentage of blue light to obtain ‘normal’ development of lettuce seedlings 
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grown under red LEDs. They reported that seedlings grown under blue-photon flux levels 

between 15 or 30 μmol·m‒2·s‒1 for 12 h per day (total PPF of 150 or 300 μmol·m‒2·s‒1, 

respectively) showed the most ‘normal’ growth. Later, Schuerguer et al. (1997) evaluated 

the effects of light quality on various anatomical features of pepper leaves and stems using 

MH lamps vs. different spectral combinations of red LEDs (660-nm peak wavelength, 25-

nm bandwidth at half-peak height), far-red LEDs (735-nm peak wavelength, 25-nm 

bandwidth at half-peak height), or blue light from a blue fluorescent lamp. They showed 

that the effects of spectral quality on pepper stem and leaf tissue anatomy (cross-sectional 

area of pepper stems, thickness of secondary xylem, number of intraxylary phloem bundles 

in the periphery of stem pith tissues, leaf thickness, number of chloroplasts per palisade 

mesophyll cell, and thickness of palisade and spongy mesophyll tissue) were generally 

correlated to the percentage of blue light present in the light source, with MH resulting in 

leaves better adapted to maximize light absorption, compared to any of the LED treatments.  

Heo et al. (2002) evaluated effects of LEDs (blue, red, or far-red; 440-, 650-, and 

720-nm peak wavelengths, respectively) and fluorescent lamps on growth and morphology 

of Marigold (Tagetes erecta L. ‘Orange Boy’) and salvia (Salvia splendens F. Sello ex 

Ruem & Schult. ‘Red Vista’) seedlings. Their results showed that dry weight of marigold 

seedlings was reduced when monochromic blue light was used, whereas stem length was 

greatest under 100% blue light compared to a combination of fluorescent lamps + red, blue, 

or far-red LEDs. In contrast, they showed that salvia dry weights were greater under a 

combination of fluorescent lamps with additional blue, red, or far-red light compared to 

monochromatic red or blue and noted that fluorescent + far-red LEDs increased stem 

elongation for salvia.  Also, their study suggested that blooming period for bedding plant 
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production in controlled environments could be reduced when using monochromic blue or 

red LEDs in salvia or fluorescent + far-red LEDs in marigold. More recently, Chia and 

Kubota (2010) evaluated the effect of end-of-day far-red (EOD-FR) light quality [red to 

far-red ratio (R/FR)] and dose on hypocotyl elongation of tomato rootstocks using LEDs 

(red and far-red; 660- and 735-nm peak wavelength, respectively) and INC lamps in a 

growth chamber. They reported that EOD-FR treatments can effectively serve as non-

chemical treatments to produce rootstock-elongated seedlings (for grafting vegetables) 

without reducing plant dry mass, stem diameter, or leaf developmental stage. 

Crops grown under LEDs in controlled environments 

Ménard et al. (2006) conducted a growth-chamber study comparing yield and 

developmental changes of tomato and cucumber grown under different DLIs using HPS 

(providing 510 μmol·m‒2·s‒1) or HPS + supplemental blue LEDs (455-nm peak 

wavelength). They evaluated different PPFs of blue light from LEDs (6.7, 7.5, or 16 

μmol·m‒2·s‒1) and concluded that adding 6.7 μmol·m‒2·s‒1 of blue light for 20 h or 16 

μmol·m‒2·s‒1 of blue light for 12 h, promoted fruit yield of cucumber but had no significant 

effect on tomato yield. They also reported a reduction in internode elongation with the 

addition of blue for both vegetable species. Previous research by Okamoto et al. (1997) 

compared growth of lettuce seedlings using different percentages of red and blue light from 

LEDs at a constant PPF in a growth chamber. The percentages of red light used in the 

experiment were 60%, 70%, 80%, and 90%, with the remainder being blue light. They 

observed a decrease in stem elongation with the increase of blue light and reported greater 

dry mass for plants grown under 80% red and 20% blue light compared to other treatments. 
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Other studies have evaluated the after-effects of sole-source LED lighting on 

growth, development, and yield of plants subsequently transplanted into greenhouses, with 

or without SL. Brazaitytė et al. (2009a) evaluated various wavelength combinations of 

LEDs on the subsequent growth of tomato. They compared HPS lamps vs. five LED 

modules with blue, red, and far-red LEDs (447, 638, 669, and 731-nm peak wavelength, 

respectively), which provided different light intensities that ranged from 178 to 220 

μmol·m‒2·s‒1. Each module was additionally supplemented with LEDs of different peak 

wavelengths that included at least one of the following: 380 nm, 520 nm, 595 nm, 622 nm, 

660 nm, or 669 nm. Initial lighting effects on plant growth and development lasted 4 weeks 

in the greenhouse after sole-source LED lighting treatments had ceased, after which effects 

from the different lighting treatments were no longer noticeable. No treatment effect was 

observed for time of harvest. However, a decrease in total yield was reported for plants 

grown under the LED module supplemented with 595 + 669 nm. A similar study evaluated 

the after-effects of different LED treatments on cucumber growth and yield (Brazaitytė et 

al., 2009b). Results indicated that even though no differences in fruit yield occurred, adding 

green or orange light from LEDs (520 or 622-nm peak wavelength, respectively) 

accelerated plant maturity and thus, could potentially reduce overall energy consumption 

for greenhouse cucumber production. Samuoliene et al. (2010) evaluated the after-effects 

of sole-source LED lighting on strawberries grown in a greenhouse. They reported 

improved carbohydrate accumulation and overall better plant growth when a combination 

of red and blue LEDs (640 and 455-nm peak wavelength, respectively) was used during 

early crop establishment. Johkan et al. (2010) grew red leaf lettuce in a growth chamber 

using different combinations of light spectra to provide a total PPF of 100 μmol·m‒2·s‒1. 
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The treatments evaluated were white fluorescent lamps, red (660-nm peak wavelength, 22-

nm bandwidth at half-peak height), blue (468-nm peak wavelength, 22-nm bandwidth at 

half-peak height), or 1:1 red (655-nm peak wavelength, 20-nm bandwidth at half-peak 

height) + blue (467-nm peak wavelength, 21-nm bandwidth at half-peak height) LEDs. 

After 1 week of treatment, all plants were transplanted into a greenhouse supplemented 

with fluorescent lamps and grown for 28 days. They evaluated the after-effects of light 

quality on subsequent growth and yield and reported that, at harvest, leaf area and shoot 

fresh mass were highest for lettuce plants initially treated with blue alone or red + blue 

LEDs.  

LEDs as SL for greenhouse vegetable production 

Research growing plants under sole-source LEDs indicates that red light generally 

promotes fresh and dry weight, stem elongation, and leaf expansion (Heo et al., 2002; 

Johkan et al., 2010; Wu et al., 2007), and blue light affects morphological development 

and biomass production (Johkan et al., 2010; Kigel and Cosgrove, 1991; Savvides et al., 

2012; Wang et al., 2009). Thus, most studies using LEDs for sole-source lighting 

demonstrate the need for supplementing monochromatic red LEDs with blue to obtain 

acceptable growth and development (Cope and Bugbee, 2013; Goins et al., 1998; Hoenecke 

et al., 1992; Tripathy and Brown, 1995; Yorio et al., 1998). However, plants that develop 

in growth chambers typically are exposed to a limited light spectrum that depends on the 

electric-lamp type used. In contrast, greenhouse-grown plants receive a broad spectrum of 

light from solar radiation in addition to that provided by any SL source. Thus, if LEDs are 

used to supplement sunlight, additional blue light may not be necessary because sunlight’s 
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broad light spectrum contains significant amounts of blue light at midday, which may be 

sufficient for normal plant growth and development. Then again, it is difficult to determine 

photomorphogenic and physiological effects of SL on greenhouse crops because a 

distinction cannot easily be made between light sources. Because SL typically constitutes 

only a fraction of total irradiance received by plants during light-limited seasons, 

photomorphogenic and physiological disorders that have been reported for plants grown 

under narrowband lighting in growth chambers (Morrow, 2008; Morrow and Tibbitts, 

1988; Hogewoning, 2010) are potentially less likely to occur in greenhouse production 

using narrowband SL.  

A small number of published studies have evaluated LEDs as SL for greenhouse 

vegetable production. However, with ongoing improvements in light-output levels, 

expanded wavelength availability and control, higher energy efficiencies, and relatively 

low operating temperatures, efforts continue to be made to test different LED technologies 

for growing greenhouse crops. Hogewoning et al. (2007) were the first to describe the use 

of LEDs for greenhouse tomato production. Their concern with introducing LED lighting 

in greenhouses was related to the capacity of daylight-adapted leaves to re-acclimate their 

photosynthetic apparatus to narrow-band lighting (NBL). They tested the re-acclimation 

capability of leaves to NBL by illuminating older leaves (approx. 70 d old; positioned low 

in the canopy) of a high-wire tomato crop with 70 μmol·m‒2·s‒1 provided by arrays of a 

single LED type with peak wavelengths of 470 nm (blue), 537 nm (green), or 642 nm (red). 

They reported that the maximum photosynthetic capacity of lower, older leaves increased 

over time after being irradiated with NBL, suggesting that leaves can re-acclimate their 

photosynthetic capacity to higher light intensities delivered by supplemental NBL. 
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Additionally, in order to distinguish the effects of leaf age and light intensity on 

photosynthesis, they compared the maximum photosynthetic capacity of tomato leaves at 

different developmental stages. For this purpose, plants were grown horizontally 

(accomplished by constantly binding the growing tip to a horizontal wooden frame) to 

avoid shading of older leaves by newer leaves and thus, ensuring an equal light distribution 

throughout the canopy. Their results showed that older tomato leaves that were never 

exposed to shading kept a similar photosynthetic capacity compared to younger leaves, 

suggesting that losses in photosynthetic capacity commonly observed in lower, older leaves 

of high-wire crops are not attributable to leaf age, but rather to mutual shading inside the 

plant canopy. They suggested that maintaining a continuously high light level within the 

canopy would be an effective way to keep lower leaves, otherwise in a shaded position, 

productive. No effects on fruit yield were mentioned for that study. 

Interlighting and intracanopy lighting (ICL) 

Traditionally, greenhouse crop production has relied on the use of OH lamps for 

SL. However, OH lighting tends to favor upper leaf layers by maximizing light interception 

incident at the top of the foliar canopy. This results in unequal light distribution where the 

middle and lower leaf canopies are shaded and, thus, PAR limited. Additionally, foliar 

canopy architecture differs among species and should be considered as an important factor 

for greenhouse SL. With low-growing rosette crops such as lettuce and cabbage, OH 

lighting seems to be appropriate for delivering adequate PAR to plants positioned 

underneath the lamps. However, mutual shading occurs for planophile crops, where upper 
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leaf layers shade the lower leaf canopy and overhead photons are excluded from the inner 

canopy, thereby inducing premature senescence and leaf abscission (Frantz et al., 2000). 

Some of the first attempts to evaluate LEDs as SL sources for greenhouse-vegetable 

production focused on their relative coolness (i.e., low radiant heat output), which allows 

for greater flexibility in lamp placement and resulting light distribution. This is especially 

beneficial for high-wire cropping systems (i.e., tomato, cucumber, sweet pepper, and 

eggplant) where plants are trained vertically along support wires, thereby creating 

conditions conducive to shading of middle and lower leaves by upper leaves, and 

potentially row-to-row shading, depending on lamp-mounting pattern and row direction. 

Intracanopy lighting (ICL) or interlighting, which refers to the strategy of lighting along 

the side or within the foliar canopy, could help prevent mutual shading for such high-wire 

crops. For this review, we use the terms ‘ICL’ and ‘interlighting’ interchangeably. 

It has been reported that ICL in a sole-source mode can delay leaf senescence for 

cowpea (Frantz et al., 2000; Massa et al., 2005) and soybean (Stasiak et al., 1998) by 

maintaining high irradiances in the understory of the foliar canopy. Other studies have 

shown that partial interlighting (hybrid = OH + ICL) can increase fruit yield (size, weight, 

and/or number), increase percentage of first-class fruit, and extend the post‐harvest shelf 

life of produce (Gunnlaugsson and Adalsteinsson, 2006; Hovi et al., 2004; Hovi-Pekkanen 

et al., 2006; Hovi-Pekkanen and Tahvonen, 2008; Pettersen et al., 2010). Moreover, 

research has shown that hybrid lighting can increase crop photosynthesis in high-wire 

greenhouse production of tomatoes (Trouwborst et al., 2010), cucumber (Pettersen et al., 

2010), and for field-grown soybean (Johnston et al., 1969). However, all of these studies 

were conducted using either fluorescent, microwave-powered, or HPS lamps.  
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To our knowledge, Trouwborst et al. (2010) were the first to measure the effects of 

partial LED interlighting on yield of a high-wire greenhouse-grown cucumber crop. 

Additionally, they quantified light interception and photosynthetic capabilities of different 

vertical leaf levels within the crop. The experiment was conducted for 13 weeks during a 

winter production cycle using either a combination of LED-interlighting + OH-HPS or 

OH-HPS only to provide an average PPF of 221 μmol·m‒2·s‒1. For the hybrid treatment, 

they used LED arrays that provided 80% red (667-nm peak wavelength) + 20% blue (465-

nm peak wavelength) light and 400 W HPS lamps. The LED and HPS portions of the 

hybrid treatment contributed to a PPF of 139 and 82 μmol·m‒2·s‒1, respectively. For the 

OH-HPS treatment, 600 W HPS lamp were used. They reported that hybrid SL improved 

photosynthetic properties in lower leaf layers and increased dry mass allocation to the 

leaves. However, fruit production was not increased when using LEDs + OH-HPS 

compared to OH-HPS only. The authors attributed their results to overall limiting light 

intensities in the experimental greenhouse and reduced light interception resulting from 

leaf curling caused by the LEDs. Dueck et al. (2012) compared the effects of different SL 

systems on growth and production of greenhouse-grown tomatoes in The Netherlands. 

They provided 170 μmol·m‒2·s‒1 of SL from OH-HPS lamps, OH-LED arrays, or hybrid 

lighting with OH-HPS + OH-LEDs or OH-HPS + LED-interlighting. The LED lighting 

was composed of 12% blue (450-nm peak wavelength) and 88% red (660-nm peak 

wavelength) light. They concluded that a combination of OH-HPS + LED-interlighting is 

the most promising alternative for their climate, when taking into consideration production 

parameters and energy costs (lighting + heating) of using the different systems. Another 

experiment compared hybrid lighting using red (660-nm peak wavelength), blue (460-nm 
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peak wavelength), or white (broad spectrum from 400 to 700 nm) LED-interlighting + OH-

HPS vs. OH-HPS lamps (400 W) for the production of greenhouse mini-cucumber (Hao et 

al., 2012). The LED-interlighting treatments provided an additional PPF of 14.5 μmol·m‒

2·s‒1 to that received by plants under the OH-HPS treatment (145 μmol·m‒2·s‒1). The study 

revealed that all hybrid SL treatments improved fruit visual quality (based on a color rating 

scale and fruit curvature ratings) compared to the OH-HPS treatment. However, fruit yield 

increased with LED-interlighting only during early stages of production but gradually 

decreased in effectiveness toward the mid and late stages of production, becoming even 

less effective than the OH-HPS treatment. Jokinen et al. (2012) reported an increase of 

16% in total marketable yield of sweet pepper using LED-interlighting (light spectrum not 

reported) compared to plants grown with no SL. They concluded their results were due to 

an increase in fruit number and earlier fruit maturity induced by LED-interlighting. The 

recorded PPF levels inside the canopy showed less than 10 μmol·m‒2·s‒1 measured close 

to leaves with no SL and up to 300 μmol·m‒2·s‒1 close to leaves with the LED-interlighting 

treatment. 

Research by Lu et al. (2012) compared effects of interlighting on yield and quality 

of greenhouse tomatoes grown at high-planting densities using a single-truss tomato-

production system. They provided different PPFs (ranging from 143 to 70 μmol·m‒2·s‒1 at 

a distance of 5 cm) from lamps with either white (broad spectrum from 400 to 700 nm), 

red (660-nm peak wavelength), or blue (442-nm peak wavelength) LEDs. Results indicated 

that white and red LEDs increased fruit fresh mass by 12% and 14%, respectively, 

compared to plants grown under no SL. However, plants receiving blue LEDs showed no 

increase in fruit fresh mass. After calculating the effects of light quality on fruit fresh mass 
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per unit of photons emitted, the authors concluded that white LEDs were the most efficient 

in promoting fruit fresh mass gain. They suggested that this was due to higher light 

penetration into the foliar canopy by green wavelengths emitted from the white LEDs. 

Deram et al. (2014) compared three light levels (135, 115, or 100 μmol·m‒2·s‒1) 

and three red (661-nm peak wavelength)-to-blue (449-nm peak wavelength) ratios (5:1, 

10:1, or 19:1) of LED-interlighting for high-wire greenhouse tomato production. The light 

intensities were measured using a spectroradiometer and a spherical quantum sensor (for 

comparison). The LED-interlighting arrays were placed no more than 10 cm below the top 

of the plant canopy, and lamp height was adjusted depending on crop growth. Additionally, 

the author compared several LED treatments [different light intensities from interlighting, 

OH-lighting with red light only, bottom lighting with red light only, or hybrid lighting with 

LED-interlighting + OH-HPS (1:1)] vs. OH-HPS lighting. The study showed greater 

vegetative biomass production when a 19:1 red:blue ratio was used, with increasing total 

irradiance resulting in greater growth. However, fruit yield was enhanced only when using 

135 μmol·m‒2·s‒1 at the 5:1 red:blue ratio. Results also showed that marketable fruit 

production was highest when plants were grown under hybrid lighting with LED-

interlighting + OH-HPS (1:1).  

Overhead SL with LEDs 

Martineau et al. (2012) compared OH-HPS (wattage not reported) vs. OH-LED 

lamps [with 400-, 450-, 640-, and 735-nm peak wavelengths + cool white (no spectrum 

defined) LEDs] as SL sources for greenhouse lettuce production. They reported similar 

yield for both treatments even though plants grown under the OH-LEDs received about 
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half of the average irradiance from SL that plants under the OH-HPS lamps received (35.8 

vs. 71.3 mol m‒2, respectively, over 4 weeks). Energy savings of 34% were reported for 

the OH-LED SL treatment compared to OH-HPS. Later, Gajc-Wolska et al. (2013) 

compared several harvest and physiological parameters for greenhouse-grown tomatoes 

using 100 μmol·m‒2·s‒1 of supplemental PPF from OH-LEDs (640-, 660-, and 450- nm- 

peak wavelengths) or OH-HPS (400 W) lamps vs. no SL. The authors reported that 

although both SL treatments improved production relative to unsupplemented controls, 

OH-HPS increased marketable yield and fruit number compared to OH-LED. Moreover, 

they found that most physiological responses were similar between plants grown under 

OH-LEDs or without SL. Another comparison of OH-HPS lamps vs. OH-LED lighting 

investigated the effects of dynamic lighting control (DLC) on energy consumption and 

yield of lettuce plants grown in a greenhouse (Pinho et al., 2013). The LED-DLC treatment 

consisted of warm-white (broad spectrum from 400 to 700 nm) LED lamps that 

automatically compensated for variations of daylight intensity below a defined threshold 

PPF at plant canopy level. The authors used an on-off switching algorithm in order to 

maintain a constant PPF of 150 μmol·m‒2·s‒1 during the lighting period when the available 

solar PPF was below that value. As a reference, two additional lighting treatments were 

used: OH-HPS (400 W) and OH-LED (broad spectrum from 400 to 700 nm) lamps. The 

latter were controlled using a conventional on-off regime based on outside solar 

irradiances. The use of LED-DLC reduced energy consumption by 20% and 52% compared 

to the OH-LED and OH-HPS treatments, respectively. However, plants grown under both 

LED treatments performed similarly in terms of average fresh mass accumulated per 
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electrical energy unit consumed. Results indicated that further optimization of the DLC 

regimes are needed in order to reduce energy consumption without affecting plant yield.  

Current status and challenges for LED-SL technologies 

As indicated by studies evaluating effects of narrow-spectrum lighting on plant 

growth and development, as well as testing of LED technologies for greenhouse operations, 

LEDs seem to be a promising SL technology for greenhouse crop production. Nonetheless, 

significant opportunities remain to optimize spectral-quality effects on plant growth and 

development. Considerable genetic variability across species (and sometimes cultivars) 

exists for plant responses to different red:blue ratios, as well as to other wavelengths that 

may alter productivity and yield of greenhouse vegetables. In addition, studies of targeted 

lighting, changing spectral composition throughout crop life cycles, and 

photomorphogenic optimization of leaf-light interactions are areas for further inquiry to 

fully leverage the benefits of LEDs as SL sources.  

With ongoing, anticipated energy-efficiency improvements, as well as ever-

improving light-distribution architectures, LEDs could become the dominant future SL 

technology for greenhouse crop production, eventually replacing OH-HPS and hybrid 

lighting technologies. Nevertheless, extensive field trials are needed to establish 

economically viable ‘best practices’ for how to use LED lighting in greenhouse 

productions and in this way help encourage its wide-spread adoption for horticultural 

enterprises. This research aims to: 1) quantify growth responses during the propagation of 

different tomato cultivars across seasons under no SL vs. OH-HPS lighting vs. OH arrays 

of high-intensity LEDs (with different red and blue ratios); and to 2) quantify high-wire 
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tomato production during different seasons with and without SL and to evaluate different 

lighting positions + sources (OH-HPS lamps vs. ICL-LEDs towers) for several production 

and energy-consumption parameters, as well as to differentiate physiological responses to 

the different light treatments. Results of these system comparisons, in addition to furthering 

scientific and practical understanding of the impact of LED lighting on plant growth and 

development for tomato, will facilitate the technology development that could allow the 

replacement of HPS lamps with LEDs.  
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CHAPTER 2: GROWTH RESPONSES OF TOMATO SEEDLINGS TO DIFFERENT 

SPECTRA OF SUPPLEMENTAL LIGHTING 

Accepted for publication: Gómez, C. and C.A. Mitchell. 2015. HortScience In press. 

Summary 

Seedlings of six tomato (Solanum lycopersicum) cultivars (‘Maxifort’, ‘Komeett’, 

‘Success’, ‘Felicity’, ‘Sheva Sheva’, and ‘Liberty’) were grown monthly for 2-week 

treatment periods to determine photomorphogenic and developmental responses to 

different light-quality treatments from supplemental lighting (SL) across changing solar 

daily light integrals (DLI). Seedlings were grown in a glass-glazed greenhouse at a mid-

north latitude (lat. 40° N, long. 86° W) under one of five lighting treatments: natural solar 

light only (control), natural + SL from a 100-W high-pressure sodium (HPS) lamp, or 

natural + SL from arrays of red and blue light-emitting diodes (LEDs) using either 80% 

red + 20% blue, 95% red + 5% blue, or 100% red. Varying solar DLI occurred naturally 

for all treatments while constant DLI of 5.1 mol·m‒2·d‒1 was provided for all SL treatments. 

Supplemental lighting increased hypocotyl diameter, epicotyl length, shoot dry weight, leaf 

number, and leaf expansion relative to control, whereas hypocotyl elongation decreased 

when SL was applied. For all cultivars tested, the combination of red and blue in SL 

typically increased growth of tomato seedlings. These results indicate that blue light in SL 

has potential to increase overall seedling growth compared to blue-deficient LED SL 

treatments in overcast, variable-DLI climates.  
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Introduction 

Adequate growing conditions in greenhouses are crucial to ensure successful 

transplant production. A major limitation for tomato-seedling propagation is that peak 

demand can occur when mean solar DLI is lowest. Low DLI, which typically is due to a 

combination of short days and cloud cover, reduces the rate of seedling growth and thus 

extends the transplant-production period. The recommended DLI for tomato-seedling 

growth ranges from 13 to 16 mol·m‒2·d‒1 (Fan et al., 2013; Moe et al., 2006). However, in 

a temperate, seasonally light-limited climate, sunlight rarely provides adequate DLI within 

greenhouses to produce high-quality seedlings when the propagation season begins 

(November, December, or April, depending on the cropping schedule). High-quality 

tomato seedlings should be uniform in size with well-developed leaves and roots; straight, 

short (12 to 13 cm in length), thick stems; and deep-green leaves (Jones, 2008; Lee et al., 

2010). Nevertheless, quality requirements depend on the intended transplant use, as 

morphological preferences for scions, rootstocks, or non-grafted production seedlings are 

different (Chia and Kubota, 2010).  

Supplemental lighting promotes growth of greenhouse-grown vegetable seedlings 

by increasing total DLI. High-pressure sodium lamps are the most widely used electric-

light source for greenhouse SL during transplant production. In general, HPS lamps 

provide an orange-biased spectrum by primarily emitting light in the range of 565 to 700 

nm. Nonetheless, it is widely accepted that any wavelength of light within the 

photosynthetically active radiation spectrum (PAR; 400-700 nm) contributes to 

photosynthesis and crop productivity (McCree, 1972). Thus, with their high-intensity 
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capabilities, HPS lamps can deliver adequate supplemental DLI to support transplant 

production. However, over the past decade, interest has shifted toward alternative SL 

sources that can reduce production costs by decreasing electrical energy consumption while 

maintaining transplant quality. Because LED arrays typically have low power density 

(kW·m‒2) and offer a diversity of narrow wavebands, LED lamps can be designed to 

provide specific light spectra to potentially optimize seedling growth and morphology 

while using less energy than conventional HPS lighting fixtures.  

Several studies have evaluated LEDs for sole-source lighting of vegetable 

transplants including tomato (Fan et al., 2013; Liu et al., 2011; Nanya et al., 2012), pepper 

(Capsicum annuum) (Brown et al., 1995), cucumber (Cucumis sativus) (Hogewoning et 

al., 2010b; van Ieperen et al., 2012), eggplant (Solanum melongena) (Hirai et al., 2006), 

pea (Pisum sativum) (Wu et al., 2007), spinach (Spinacea oleracea) (Yorio et al., 2001), 

radish (Raphanus sativus) (Yorio et al., 2001), and lettuce (Latuca sativa) (Hoenecke et 

al., 1992; Kim et al., 2005; Massa et al., 2008). Findings from sole-source LED lighting 

research indicate that red light (600-700 nm) generally promotes fresh and dry weight gain, 

stem elongation, and leaf expansion (Heo et al., 2012; Johkan et al., 2010; Wu et al., 2007), 

whereas blue light (400-500 nm) affects morphological development and biomass 

production in species-specific and growth-environment-specific ways (Johkan et al., 2010; 

Kigel and Cosgrove, 1991; Savvides et al., 2012; Wang et al., 2009). Most studies using 

LEDs for sole-source lighting demonstrate the need to supplement monochromatic red 

LEDs with blue light to obtain acceptable growth and development (Cope and Bugbee, 

2013; Goins et al., 1998; Hoenecke et al., 1992; Tripathy and Brown, 1995; Yorio et al., 

1998). However, if LEDs are used to supplement sunlight, additional blue light may not be 
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necessary because the broad solar spectrum contains significant amounts of blue light at 

midday, which may be sufficient for normal plant growth and development.  

Other studies have evaluated LEDs as SL for greenhouse vegetable propagation 

(Gislerød et al., 2012; Hernández and Kubota, 2012; Hernández and Kubota, 2014a; 

Hernández and Kubota, 2014b; Hogewoning et al., 2012). Although general crop responses 

have not been broadly determined, one conclusion from those studies is that growth and 

morphological responses to LED SL are species-specific. Yet, potential cultivar-specific 

responses to light quality remain to be defined. The objective of the present study was to 

quantify growth responses of six tomato cultivars to different light-quality treatments from 

SL. We compared photomorphogenic and developmental responses to SL across changing 

solar DLIs at a mid-north latitude to reveal cultivar and/or spectral effects. Results are 

expected to provide baseline information to assist in designing SL protocols for 

propagating tomato seedlings intended for grafting or for direct transplanting into 

greenhouses or field production.  

Materials and Methods 

Plant material and growing conditions. Cultivars with different functional roles 

(i.e., rootstock or production seedlings intended for grafting or grow-out on own roots) and 

differing fruit size/shape were selected. Seeds of rootstock ‘Maxifort’ (S. lycopersicum × 

S. habrochaites, De Ruiter Seeds, Bergshenhoek, The Netherlands) and production 

cultivars ‘Komeett’ (De Ruiter Seeds; truss-type), ‘Success’ (De Ruiter Seeds; truss-type), 

‘Felicity’ (Hazera Seeds, Haifa, Israel; cherry-type), ‘Sheva Sheva’ (Hazera Seeds; roma-

type), and ‘Liberty’ (Hazera Seeds; beefsteak-type) were grown for 3 weeks from 

germination in a glass-glazed greenhouse in West Lafayette, IN (lat. 40° N, long. 86° W). 
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Seeds were sown into 17-cell seedling trays of Agrifoam soil-less plugs (5 × 2.5 cm; 

SteadyGROWpro; Syndicate Sales, Kokomo, IN) during the first week of each month in 

2012. Once cotyledons had expanded fully (≈7 days from sowing), eight seedlings of each 

cultivar were selected for uniformity and placed randomly in each of five lighting 

treatments. Within each treatment, seedlings were randomly rotated daily to minimize 

location effects within the experimental area. Seedlings were irrigated as necessary with 

acidified water supplemented with a combination of two water-soluble fertilizers (3:1 

mixture of 15N-2.2P-12.5K and 21N-2.2P-16.6K, respectively; The Scotts Co., 

Marysville, OH) to provide the following (in mg·L‒1): 200 N-NO3, 26 P, 163 K, 50 Ca, 20 

Mg, and micronutrients. Average ambient day (from 0500 to 2100 HR) and night (from 

2100 to 0500 HR) air temperature of the greenhouse were set at 27 and 15 °C, respectively. 

Air temperature and solar DLI were monitored using fine wire thermocouples (Type K, 

0.1-mm diameter) and a quantum sensor (190 SB; LI-COR Biosciences, Lincoln, NE), 

respectively, interfaced to a datalogger (CR1000; Campbell Scientific, Logan, UT). Three 

thermocouples were used (one for each light source) and placed directly under a leaf (near-

canopy air temperature) at the center of a given treatment. DLI data were collected at mid-

plant height in the center of a treatment without SL. Measurements were made every 10 s 

and data were recorded at 10-min intervals.  

Lighting treatments. Five lighting treatments were evaluated in the greenhouse: 

natural solar light only (control); natural + SL from a 100-W HPS lamp (Ceramalux, Philips 

Lighting Company, Somerset, NJ) emitting 13%, 49%, and 38% broadband blue, green 

(500-600 nm), and red light, respectively; or natural + SL from LEDs using either 80% red 
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+ 20% blue (80R-20B); 95% red + 5% blue (95R-5B); or 100% red (100R-0B). The red 

and blue LEDs used in the arrays had 627-nm and 450-nm peak wavelengths, respectively 

(as specified by the manufacturer). The spectral distribution of sunlight (at solar noon), for 

HPS lamps, and for the LED arrays are shown in Fig. 1. All SL treatments provided an 

average DLI of 5.1 mol·m‒2·d‒1 (23-h photoperiod from 0000 to 2300 HR; 61 ± 2 µmol·m‒

2·s‒1) at mid-plant height [measured with a spectroradiometer (EPP-2000; StellarNet Inc., 

Tampa, FL)]. Light pollution from one treatment to another along the bench was minimized 

by allowing sufficient separation distance between treatments, delimited by ≤2 µmol·m‒

2·s‒1 from adjacent arrays. Scans of direct sunlight were recorded monthly at solar noon 

inside the greenhouse (not under SL) with a spectroradiometer. These measurements were 

collected on clear-sky and overcast days to calculate the average percentage of solar blue, 

green, and red light representative of each month.   

LED source. Overhead LED arrays (Orbital Technologies Corporation, Madison, 

WI) were designed specifically for greenhouse transplant propagation.  Each 1.2 m × 1.3 

m array consisted of eight aluminum bars with alternating red and blue LEDs.  Each red 

and blue bar had 28 or 24 LEDs, respectively, along their 1.2-m length.  Arrays were air-

cooled via hollow aluminum mounts and fans that drew greenhouse air into the center of 

each bar and exhausted waste heat from both ends. The 1.2-cm-wide bars were spaced 16-

cm apart and oriented east to west. The sunlight-shading factor from the LED arrays and 

the HPS lamps was <10% at the bench surface.  

Plant measurements. Growth parameters were measured 14 d after SL treatment 

initiation.  Hypocotyl diameter was measured immediately below the cotyledons using an 
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electronic digital caliper (DigiMax; Wiha, Schonach, Germany). Hypocotyl length and 

epicotyl length were measured using a ruler. Seedling shoots were then cut at the plug 

surface and leaf number (for leaves ˃ 1 cm in length) and total leaf area were recorded. Leaf 

area was measured using a leaf area meter (LI-3000A; LI-COR Biosciences). Shoot dry 

weight was measured after drying samples in a forced-air oven at 77 °C for 72 h.  

Data analysis. The relationship between each response variable and the monthly 

average solar DLI (DLIave) was modeled with the GLIMMIX procedure of SAS (version 

9.2; SAS Institute, Cary, NC) using a generalized linear mixed model with a Gaussian 

distribution and an identity link function. Analysis of the data was conducted using DLIave, 

treatment, cultivar, DLIave × cultivar, and treatment × cultivar as fixed factors, and DLIave 

× treatment and DLIave × treatment × cultivar as random factors to account for the split-

plot structure of our experimental design (treatment was the whole plot factor and cultivar 

was the subplot factor). The treatment and cultivar main effect estimates describe the 

intercepts associated with the regression lines. The interaction effect estimates describe 

differences in slopes. All pairwise comparisons were completed using Tukey’s honestly 

significant difference (HSD) test with a significance level of α = 0.05. The appropriateness 

of these models were checked by examining the normality and constant variance of the 

residuals. Data collected in Feb. and May were excluded from this analysis because of lack 

of replication for some cultivars. The data from June were also not included in the analysis.  

An explanation for June’s exclusion can be found in the “Results and Discussion” section.  
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Results and Discussion 

Environmental conditions. Solar DLI and near-canopy air temperature measured 

inside the greenhouse during the experimental period are shown in Fig. 2. DLIave in Jun. 

was more than double the DLIave measured in Jul. (month within the analysis with the 

second highest DLIave; 29.3 vs. 13.3 mol·m‒2·d‒1, respectively) (Fig. 2A). Thus, data in 

Jun. were excluded from the statistical model as we chose not to draw inference in the large 

range of DLIave between Jun. and Jul. Nonetheless, the general growth responses recorded 

in Jun. indicate that somewhere between the range of DLIave from Jun. and Jul., seedling 

growth was saturated (data not shown). From the data used in the analysis, the average 

contribution of SL to total DLI ranged from 28% in Jul. to 79% in Dec. Similarly, the 

highest and lowest 24-h average near-canopy air temperatures were recorded in Jul. (26.5 

°C) and Dec. (21.4 °C), respectively (Fig. 2B). The lack of differences among near-canopy 

air temperatures recorded under our three light sources (sunlight, HPS, and LEDs) suggests 

that temperature effects from SL were most likely negligible. However, the large month-

to-month variability in air temperature (falling outside of set points) implies that any 

changes in plant growth measured during the different months were partly due to the effect 

of sunlight’s short-wave radiation on greenhouse air temperature. Fig. 3 shows the average 

percentage of midday solar blue, green, and red light representative of each month and 

indicates that the relative percentages of broadband light quality from sunlight were 

relatively uniform across months ranging from 25% to 33% blue, 35% to 38% green, and 

30% to 39% red light. Interestingly, although light intensity was lower in overcast 
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compared clear-sky days, the relative percentages of broadband light quality at midday 

were nearly constant within months (data not shown).  

Light quality effects on plant growth and morphology. We found a linear 

relationship between seedling growth and DLIave for all treatments measured in our study 

(Fig. 4). Test of fixed effects in statistical models indicated significant treatment 

differences (Table 1). Based on the mean associated with a regression line at the midpoint 

DLIave, we found that except for hypocotyl length, all SL treatments increased growth and 

development in tomato seedlings compared to control (Table 2). Seedlings grown under 

HPS, 95R-5B, or 80R-20B had similar growth but resulted in 18% thicker hypocotyls, up 

to 55% larger leaves, and up to 50% more shoot dry weight than to those grown under 

100R-0B SL. Leaf number per seedling was instead greatest for those grown under 95R-

5B (4.7 leaves) but was not different among HPS, 95R-5B, or 80R-20B SL.  

To date, limited research has evaluated LEDs as SL sources for vegetable transplant 

production. Studies conducted in desert climates (i.e., Tucson, AZ) have shown that SL 

with red light only is sufficient to increase tomato or cucumber seedling growth (shoot dry 

weight, leaf count, or leaf area) relative to seedlings grown without SL (Hernández and 

Kubota, 2012; Hernández and Kubota, 2014a; Hernández and Kubota, 2014b). Our study 

indicated that, in general, 100R-0B was the least beneficial of the SL treatments for 

increasing seedling growth relative to unsupplemented controls (Table 2). The underlying 

cause of differences between our findings and those of Hernández and Kubota (2012; 

2014a; 2014b) may be associated with differences in solar DLI during the experimental 

periods. Cope and Bugbee (2013) suggested that constant-high PPFs can partially 
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substitute for low percentages of blue in the light spectrum. Therefore, different red:blue 

photon flux ratios from SL may not strongly affect vegetable-seedling growth in non-

cloudy, high-insolation-rate environments that allow for relatively constant DLI 

backgrounds. However, in the present study, solar DLI fluctuated by up to 13.1 mol·m‒2·d‒

1 within an experimental period (Fig. 2). With high day-to-day fluctuations of solar DLI 

(leading to both high- and low-DLI environments), plant responses to spectral differences 

from SL were observed. 

Our findings support studies showing enhanced morphological development of 

vegetable seedlings grown under sole-source lighting using a combination of red and blue 

light compared to monochromatic red light alone (Brown et al., 1995; Hogewoning et al., 

2010b; Kim et al., 2005; Nanya et al., 2012; van Ieperen et al., 2012). A possible 

explanation for the similarities between our results and those of others using LEDs as sole-

source lighting may be associated with the 23-h photoperiod used in the present study. 

When SL was extended past the natural photoperiod from sunlight, it was perceived by 

seedlings as sole-source lighting. Therefore, the growth responses measured in our study 

are most likely the result of an interaction between supplemental and sole-source light-

quality plant responses.  

It has been shown that during early vegetative growth, tomato seedlings respond 

positively to increases in total DLI by either increasing the PPF at leaf level (Bleasdale, 

1973; Bruggink, 1987; McAvoy and Janes, 1990) or by extending the photoperiod (up to 

24-h of light) (Calvert, 1959; Demers et al. 1998; Omura et al., 2001; Sysoeva et al., 2012). 

Because the average intensity of SL was a limiting factor in our study, we used a 23-h 
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photoperiod to maximize the DLI delivered from SL aiming to approach a target total DLI 

of 16 mol·m‒2·d‒1. Although physiological injuries (chlorosis or necrosis) caused by long 

photoperiods (≥16 h) have been reported for vegetative, mature, and reproductive tomato 

plants (Arthur et al., 1936; Cushman and Tibbitts, 1998; Demers et al., 1998; Dorais et al., 

1996; Globig et al., 1997; Withrow and Withrow, 1949), fewer studies have shown such 

effects on juvenile tomato seedlings (Hillman, 1956).  Moreover, it has been proposed that, 

when long photoperiods have no negative effect on plant growth, then prolonged lighting 

at lower intensities is a better approach to supplement sunlight than are higher light 

intensities of shorter duration (Hurd and Thornly, 1974; Moe, 1997). Furthermore, diurnal 

temperature fluctuations ≥8 °C between day and night air temperatures prevent chlorosis 

in species otherwise adversely affected by long photoperiods per se (Cao and Tibbitts, 

1992; Demers and Gosselin, 2002; Hillman, 1956; Matsuda et al., 2012; Matsuda et al., 

2014; Murage and Masuda, 1997; Ohyama et al., 2005a; Ohyama et al., 2005b; Omura et 

al., 2001; Tibbitts et al., 1990). In our study, damage to early vegetative growth was further 

prevented (no visual damage was observed) by combining a long SL photoperiod (used to 

maximize DLI) with a 16/8-h day/night thermoperiod of pronounced temperature 

differential (>10 °C).  

Hypocotyls of seedlings grown without SL elongated up to 1 cm more than those 

grown under SL (Table 2). Further, the 100R-0B SL treatment produced the second longest 

hypocotyls (2.3 cm). In contrast, epicotyl length was unaffected by SL treatment, but 

epicotyls of seedlings grown without SL were at least 1.8 cm shorter than those of seedlings 

grown under SL. Hypocotyl elongation of tomato seedlings is known to respond to 

photomorphogenic cues (Ballaré et al., 1995; Blom et al., 1995; Kasperbauer and Peaslee, 
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1973; Volmaro et al., 1998) and reflects the sub-terranean growth of seedlings in nature 

before they break crust during the germination process, whereas epicotyls, which support 

active photosynthetic leaves, are affected by both photomorphogenic and photosynthetic 

cues. Thus, the general decrease in hypocotyl elongation and increase in epicotyl length in 

response to SL could be attributed to the perception of antagonistic signals received by 

different photoreceptors present in hypocotyl and epicotyl tissues.  

Some variability in hypocotyl length between seedlings grown under SL treatments 

and those without SL could have been the result of different end-of-day (EOD) light quality 

sensed by phytochrome photoreceptors, which are known to affect hypocotyl elongation 

(Blom et al., 1995; Kasperbauer and Peaslee, 1973). Seedlings grown under SL received a 

significant percentage of EOD-red light caused by LED or HPS emission spectra at and 

beyond sunset (Fig. 1). Although SL-grown plants experienced natural day length, it was 

overlaid with low-level supplemental DLI and, thus, SL reduced the natural EOD-far-red 

light effect from sunlight. In contrast, controls received only sunlight and, consequently, 

far-red-enriched EOD light. A high red:far-red EOD spectrum is known to produce short, 

compact transplants (Chia and Kubota, 2010; Decoteau and Friend, 1991; Lund et al., 

2007) and, thus, may explain the general trend for the shorter hypocotyls of SL-grown 

seedlings.  

Our study also showed that 80R-20B SL produced more compact hypocotyls 

compared to those of seedlings grown under 100R-0B (2.0 vs. 2.3 cm, respectively) (Table 

2). Several growth-chamber studies using sole-source LED lighting have reported blue-

light-mediated inhibition of hypocotyl elongation for tomato (Nanya et al., 2012), pepper, 
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(Brown et al., 1995), cucumber (Shinkle and Jones, 1988), sunflower (Helianthus annuus) 

(Cosgrove and Green, 1981), pea (Kigel and Cosgrove, 1991), and lettuce (Dougher and 

Bugbee, 2001; Hoenecke et al., 1992), which likely are mediated by the blue-light 

photoreceptors cryptochrome and/or phototropin (Ballaré et al., 1995; Volmaro et al., 

1998).  In contrast, it has been noted that 100% red or 100% blue SL in the greenhouse 

caused similar hypocotyl elongation of tomato seedlings, but 100% blue SL caused taller, 

thinner hypocotyls for cucumber seedlings compared to 100% red (Hernández, 2013). Our 

findings suggest that increasing proportions of blue in SL can reduce hypocotyl elongation 

in tomato. Longer hypocotyls typically are desired for rootstock cultivars because they 

allow for ease of grafting and decrease the risk of scion exposure to soil/substrate surfaces. 

However, hypocotyl elongation is not a desired characteristic for non-grafted production 

seedlings, as it may lead to weak transplants (Jones, 2008). 

Although not statistically significant, for five of the six growth parameters 

measured in our study, 95R-5B tended to promote more growth than did 80R-20B SL (Fig. 

4; Table 2). This indicates that there likely is a threshold above which blue light increases 

tomato seedling development before it starts acting antagonistically towards growth. 

Numerous studies have shown that increasing blue light can reduce stem length and leaf 

area and increase leaf mass area for different crop species (Cope and Bugbee, 2013; 

Hogewoning et al., 2010a; Hogewoning et al., 2010b; Li and Kubota, 2009; Trowborst et 

al., 2010). However, the extent to which blue-light affects plant growth and development 

is not yet fully understood. Research by Dougher and Bugbee (2001) and Cope and Bugbee 

(2013) has sought to determine whether certain growth parameters are better predicted by 

either absolute (µmol·m‒2·s‒1 of blue photons) or relative (percentage of total PPF) blue 
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light. From their findings, it is apparent that blue light responses are species-dependent, 

and that growth inhibition by blue light could depend on the total intensity of light and/or 

the relative distribution of light quality. Further research evaluating different red:blue 

photon flux ratios to identify specific thresholds to optimize growth for different cultivars 

and species of greenhouse-grown vegetable seedlings would be of interest.  

Cultivar main effects. Of particular interest to growers are the species- and cultivar-

specific responses to LED SL. Studies have shown that some plant responses to greenhouse 

SL are species- and cultivar-specific (Gunnlaugsson and Adalsteinsson, 2006; Hernández, 

2013; Hernández and Kubota, 2014a; Hogewoning et al., 2012). Yet, the lack of treatment 

× cultivar interaction found in our study suggests that, although genetic variation was 

apparent among cultivars, their response to a given SL treatment was similar (Table 1).  

All cultivars showed a linear relationship between seedling growth and DLIave (data 

not shown). Based on the mean associated with a regression line at the midpoint DLIave, 

we found that hypocotyl diameter for ‘Komeett’ and ‘Success’ was 12% thicker than for 

‘Felicity’ and ‘Sheva Sheva’ but similar to ‘Liberty’ and ‘Maxifort’ (Table 3). ‘Komeett’ 

produced the longest hypocotyls whereas hypocotyl length for ‘Felicity’ was 0.4 cm shorter 

than that for ‘Liberty’ or ‘Sheva Sheva’. Epicotyls of ‘Success’ and ‘Felicity’ were 15% 

and 20% shorter than those of ‘Maxifort’, respectively. ‘Maxifort’ also produced more and 

larger leaves than any other cultivar, and its shoot dry weight was 25% higher than that of 

‘Felicity’. However, occurrence of intumescence was observed in ‘Maxifort’ leaves 

throughout the experiment, most likely due to a lack of ultraviolet-B radiation in the 

greenhouse (Craver et al., 2014). 
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The greater growth (epicotyl length, leaf count, leaf area, and shoot dry weight) 

measured for ‘Maxifort’ relative to the other production cultivars can be attributed to its 

vigorous growth pattern (De Ruiter Seeds, unpublished data). Nonetheless, because 

‘Maxifort’ is a rootstock cultivar strictly used for grafting, leaf-growth responses are 

considered less important than those for stem morphology, especially hypocotyl length and 

diameter. In contrast, leaf growth and development are critical growth responses for 

production cultivars, as they set precedence for the development of active photosynthetic 

leaves. We found that all production cultivars had similar leaf-growth responses. 

Conclusion 

For all tomato cultivars evaluated, a combination of red and blue wavebands in SL 

has potential to increase seedling growth compared to blue-deficient SL treatments in 

overcast, variable-DLI climates. As indicated by studies evaluating effects of narrow-

spectrum lighting on plant growth and development, as well as testing of LED technologies 

for greenhouse operations, LEDs are a promising SL technology for propagating 

greenhouse crops. Nonetheless, significant opportunities remain to optimize spectral-

quality effects on plant growth and development. Considerable genetic variability across 

species (and sometimes cultivars) exists for plant responses to different red:blue photon 

flux ratios, as well as to other wavelengths that may alter seedling morphology. In addition, 

studies of targeted lighting, changing spectral composition throughout crop life cycles, and 

photomorphogenic optimization of leaf-light interactions are areas for further inquiry to 

fully leverage the benefits of LEDs as SL sources.  
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Table 1. Significance level for the test of fixed effects in linear mixed models evaluating 

several growth parameters measured for tomato seedlings propagated in a glass-glazed 

greenhouse in West Lafayette, IN under different lighting treatments. z,y 

Fixed effect 

Hypocotyl 

diameter  

Hypocotyl 

length 

Epicotyl 

length  

Leaf 

No. 

Leaf 

area  

Shoot dry 

weight  

Probability > Fx 

DLIw NS *** *** * *** ** 

Treatment *** *** *** *** *** *** 

Cultivarv *** ** *** *** *** ** 

DLI × Cultivar NS NS NS NS NS NS 

Treatment × Cultivar NS NS NS NS NS NS 
zThe treatments evaluated were natural solar light only (control); natural + supplemental 

lighting (SL) from a high-pressure sodium lamp; or natural + SL from light-emitting diodes 

using either 80% red + 20% blue; 95% red + 5% blue; or 100% red light.  
yThe experiment was conducted every month in 2012. Data from Feb., May, and Jun. was 

not included in the model. 
xP values from F tests. 
wDLI = daily light integral. 
vThe cultivars evaluated were ‘Maxifort’, ‘Komeett’, ‘Success’, ‘Felicity’, ‘Sheva Sheva’, 

and ‘Liberty’. 

***, **, *, NS indicate statistical significance at the 0.001, 0.01, and 0.05 P ≤ level and 

not significant, respectively
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Table 2. Least squares means for several growth parameters measured for tomato seedlings propagated in a glass-glazed 

greenhouse in West Lafayette, IN under different lighting treatments.z,y,x 

Treatment 
Hypocotyl diameter 

(mm) 

Hypocotyl length 

(cm) 

Epicotyl length 

(cm) 
Leaf No. 

Leaf area 

(cm2) 

Shoot dry weight 

(g) 

Control 1.6 cw 3.0 a 3.1 b 2.7 c 21.4 c 0.06 c 

HPS 2.8 a 2.1 bc 5.4 a 4.3 b 59.4 a 0.18 a 

100% R - 0% B 2.3 b 2.3 b 4.9 a 4.2 b 41.0 b 0.12 b 

95% R - 5% B 2.8 a 2.1 bc 5.6 a 4.7 a 63.4 a 0.17 a 

80% R - 20% B 2.8 a 2.0 c 5.0 a 4.3 b 58.1 a 0.16 a 
zThe treatments evaluated were natural solar light only (control); natural + supplemental light [SL; 5.1 mol·m‒2·d‒1 (23-h photoperiod 

from 0000 to 2300 HR; 61 ± 2 µmol·m‒2·s‒1)] from a high-pressure sodium (HPS) lamp, or natural + SL from light-emitting diodes 

using different red (R) and blue (B) percentages.  

yThe experiment was conducted once every month in 2012. Data from Feb., May, and Jun. were not included in the statistical model. 
xData represent a pooled average for cultivars ‘Maxifort’, ‘Komeett’, ‘Success’, ‘Felicity’, ‘Sheva Sheva’, and ‘Liberty’. 
wMeans within columns followed by the same letter are not different based Tukey’s honestly significant difference test at P ≤ 0.05. 

  

7
0
 



71 

 

 

Table 3. Least squares means for several growth parameters measured on different cultivars of tomato seedlings propagated in a 

glass-glazed greenhouse in West Lafayette, IN.z,y 

Cultivar 

Hypocotyl diameter 

(mm) 

Hypocotyl length 

(cm) 

Epicotyl length 

(cm) 
Leaf No. 

Leaf area 

(cm2) 

Shoot dry weight 

(g) 

‘Maxifort’ 2.5 abx 2.2 bc 5.4 a 4.7 a 62.5 a 0.15 a 

‘Felicity’ 2.3 b 2.0 c 4.6 b 4.1 b 43.1 b 0.12 b 

‘Komeett’ 2.6 a 2.7 a 4.9 ab 3.7 c 43.3 b 0.14 ab 

‘Liberty’ 2.5 ab 2.4 b 4.9 ab 3.9 bc 48.4 b 0.13 ab 

‘Sheva Sheva’ 2.3 b 2.4 b 4.8 ab 3.9 bc 45.2 b 0.13 ab 

‘Success’ 2.6 a 2.2 bc 4.3 b 3.7 c 49.5 b 0.14 ab 
zThe experiment was conducted once every month in 2012. Data represent a pooled average for all months except Feb., May, and 

Jun. 
yData represent a pooled average for seedlings grown under natural solar light only (control); natural + supplemental light (SL) from 

a high-pressure sodium lamp, and natural + SL from light-emitting diodes using different red and blue percentages. 
xMeans within columns followed by the same letter are not different based Tukey’s honestly significant difference test at P ≤ 0.05. 
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Figure 1. Spectral distribution of sunlight (at solar noon), high-pressure sodium (HPS) 

lamps, or arrays with blue and red-light-emitting diodes (LED). 
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Figure 2. Daily light integral (DLI) (A) and near-canopy air temperature (± SD) (B) 

measured inside a glass-glazed greenhouse in West Lafayette, IN during the experimental 

dates in 2012. DLI data were collected at mid-plant height under no supplemental lighting. 

Temperature data represent the average 24-h near-canopy air temperature measured under 

each light source: HPS = High-pressure sodium lamps; LEDs = arrays of light-emitting 

diodes (R = red light; B = blue light); control = sunlight. 
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Figure 3. Percentage of broadband blue (400-500 nm), green (500-600 nm), and red (600-

700 nm) light calculated from the photosynthetic photon flux measured at solar noon inside 

a glass-glazed greenhouse in West Lafayette, IN in 2012. Spectral scans were collected 

during the experimental period at bench height. Data represent an average of at least two 

scans per month on clear-sky and overcast days. 
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Figure 4. Effect solar daily light integral (DLI) on several growth parameters measured for 

tomato seedlings propagated in a glass-glazed greenhouse in West Lafayette, IN under 

different lighting treatments. The treatments evaluated were natural solar light only 

(control); natural + supplemental light [SL; 5.1 mol·m‒2·d‒1 (23-h photoperiod from 0000 

to 2300 HR; 61 ± 2 µmol·m‒2·s‒1)] from a high-pressure sodium (HPS) lamp, or natural 

+ SL from light-emitting diodes using different red (R) and blue (B) percentages. Each data 

point represents the average of 48 seedlings with all measurements taken 14 days after 

treatment initiation.
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CHAPTER 3. GREENHOUSE-GROWN TOMATOES AS AFFECTED BY 

DIFFERENT SUPPLEMENTAL LIGHTING SOURCES AND POSITIONS WITHIN 

THE CANOPY: PLANT GROWTH, FRUIT YIELD, AND ENERGY CONSUMPTION 

Published: Gómez, C. and C.A. Mitchell. 2014. Acta Hort. 1037:855‒862. 

Gómez, C., R.C. Morrow, C.M. Bourget, G.D. Massa, and C.A. Mitchell. 2013. 

HortTechnology 23:93‒98. 

 

Summary 

Overhead (OH) high-pressure sodium (HPS) lamps are the present preferred type 

of supplemental lighting (SL) for greenhouse vegetable production because their high-

intensity capability allows them to deliver significant supplemental photosynthetically 

active radiation (PAR). Furthermore, OH-HPS lamps currently are the most economically 

viable mass-produced light source available for greenhouse SL that provide adequate PAR. 

Light-emitting diodes (LEDs) are a promising SL technology for greenhouse crop 

production because they offer an opportunity to improve energy efficiency for greenhouse 

lighting. We conducted four experiments in a glass-glazed greenhouse during 2012 and 

2013. The objective was to quantify growth and yield of winter-to-summer [increasing 

natural daily light integral (DLI)] and summer-to-winter (decreasing natural DLI) high-

wire tomato (Solanum lycopersicum L.) production in a temperate climate (lat. 40° N, long. 

86° W) with and without (control) SL. We evaluated two different SL positions + sources 
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[OH-HPS vs. intracanopy (ICL; lighting from within the canopy)-LED] and compared 

those to a control for several production and energy-consumption parameters. Even though 

minor improvements were made between experiments, general productivity and yield 

trends remained consistent. Neither the number nor total mass of fruit were different 

between OH-HPS and ICL-LED treatments, and generally, both SL treatments yielded 

more fruit and had more fruit mass than did controls. The electrical conversion efficiency 

of ICL-LED energy into fruit biomass was higher than that of OH-HPS, and energy savings 

ranged from 28% to 50% for ICL-LED relative to OH-HPS SL. These results suggest that, 

with ongoing, anticipated energy-efficiency improvements, as well as ever-improving 

light-distribution architectures, LEDs could become the dominant future SL technology for 

greenhouse crop production, eventually replacing OH-HPS.  Significant opportunities 

remain to optimize spectral-quality effects on plant growth and development. Extensive 

trials are needed to establish economically viable ‘best practices’ for how to use LED 

lighting in greenhouse production and to further promote its wide-spread adoption.  

Introduction 

Tomato is considered a high-light-requiring crop, and an average daily light integral 

(DLI) of 20-35 mol·m‒2·d‒1 is generally recommended for optimal growth and production 

(Dorais, 2003; Faust, 2001; Jones, 2008; Moe et al., 2006; Spaargaren, 2001). However, in 

a temperate, seasonally light-limited climate, sunlight rarely provides adequate DLI within 

greenhouses to sustain year-round tomato production. Traditionally, greenhouse crop 

production has relied on the use of overhead (OH) high-pressure sodium (HPS) lamps for 

supplemental lighting (SL) because they are the most widely used and currently the most 
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economically viable mass-produced electric-light source available for SL. Furthermore, 

HPS lamps are up to 30% efficient at converting electricity into useful light, and the 

remaining ‘waste’ thermal energy can be used to increase ambient greenhouse and plant 

temperature to offset winter heating costs (Tiwari, 2003). However, alternative SL sources 

are being evaluated to reduce production costs by decreasing electrical energy consumption 

while maintaining yield and quality. Light-emitting diodes (LEDs) can be used to improve 

energy efficiency in greenhouse SL because their relative coolness (low radiant heat 

output) allows them to be operated in close proximity to plant tissue, thereby increasing 

available irradiance at leaf level while using less input power than HPS lamps.  

Overhead vs. Interlighting/intracanopy lighting (ICL) 

Overhead lighting tends to favor upper leaf layers by maximizing light interception 

incident at the top of the foliar canopy. This results in unequal light distribution where the 

middle and lower leaf canopies are shaded and, thus, light limited (Frantz et al., 2000). 

Some of the first attempts to evaluate LEDs as SL sources for greenhouse-vegetable 

production focused on their relative coolness, which allows for greater flexibility in lamp 

placement and resulting light distribution. This is especially beneficial for high-wire-

cropping systems such as greenhouse tomato, cucumber (Cucumis sativus L.), sweet 

pepper (Capsicum annuum L.), and eggplant (Solanum melongena L.), where plants are 

trained vertically along support wires, thereby creating conditions conducive to shading of 

middle and lower leaves by upper leaves, and potentially row-to-row shading, depending 

on lamp-mounting pattern and row direction. For such high-wire crops, shaded leaves 

within a canopy could potentially benefit from ICL or interlighting. For the purpose of this 
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chapter, we will use the terms ‘ICL’ and ‘interlighting’ interchangeably, referring to the 

strategy of lighting along the side or within the foliar canopy. 

Intracanopy lighting helps increase the efficiency of irradiation by allowing direct 

light into the inner canopy of crop stands. It has been reported that ICL can serve as a sole 

source of irradiation in growth chambers for crops like cowpea (Vigna unguiculata (L.) 

Walp.) (Frantz et al., 2000; Massa et al., 2005) and soybean (Glycine max L.) (Stasiak et 

al., 1998) and as SL for field-grown soybean (Johnston et al., 1969). Several studies have 

evaluated interlighting for greenhouse production of cut-back roses (Rosa spp.) (Carpenter 

and Rodrigues, 1971), tomatoes, (Grimstad, 1987; Gunnlaugsson and Adalsteinsson, 2006; 

Lu et al., 2012a; Rodriguez and Lambeth, 1975), sweet pepper (Grodzinski et al., 1999; 

Hovi-Pekkanen et al., 2006), and cucumber (Heuvelink et al., 2006; Hovi et al., 2004; 

Hovi-Pekkanen and Tahvonen, 2008). However, all of these greenhouse studies used either 

fluorescent, microwave-powered, or HPS lamps. More recently, studies have evaluated 

partial (hybrid = OH + ICL) or total LED interlighting on yield of high-wire greenhouse-

grown cucumber (Hao et al., 2012; Trouwborst et al., 2010), tomato (Deram et al., 2014; 

Dueck et al., 2012; Lu et al., 2012b), and sweet pepper (Jokinen et al., 2012).  

Our research approach to promote profitable, quality, local greenhouse-tomato 

production in temperate climates considers reducing production costs by decreasing energy 

consumption for SL. Replacing HPS lamps with high-intensity LEDs could potentially 

reduce electrical costs by providing photosynthetic photon flux (PPF) at lower canopy 

level using less input power and energy. Nevertheless, being an emergent lighting 

technology, extensive trials evaluating LEDs are required to determine economic 

feasibility, lamp placement within foliar canopies, and appropriate spectral quality for 
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optimum crop productivity. In order to address crucial aspects to further develop LED 

technology for greenhouse-tomato production, four consecutive experiments evaluating 

growth, yield, and energy consumption from winter-to-summer (increasing natural DLI; 

Expt. 1 and 3) or summer-to-winter (decreasing natural DLI; Expt. 2 and 4) were conducted 

in a temperate, seasonal climate. The experiments aimed to evaluate crop responses to SL 

using two different lighting positions + light sources (OH-HPS vs. ICL-LED). 

Materials and Methods 

Expt.1 

Plant materials and growing conditions. Tomato rootstock ‘Maxifort’ (Solanum 

lycopersicum × S. habrochaites; De Ruiter Seeds, Columbus, OH) and scions ‘Komeett’ 

(De Ruiter Seeds) and ‘Success’ (De Ruiter Seeds) were sown into 17-cell seedling trays 

of Agrifoam soil-less plugs (5 × 2.5 cm; SteadyGROWpro; Syndicate Sales, Kokomo, IN) 

on 27 Dec. 2011 and placed in a glass-glazed greenhouse in West Lafayette, IN (lat. 40° 

N, long. 86° W; USDA hardiness zone 5b) oriented east-to-west, with 3.7-m gutter height 

and 6.7-m peak height. The greenhouse has a floor area of 111 m2, is equipped with pad-

and-fan evaporative cooling system and radiant hot water pipe heating. 

Once the cotyledons had expanded fully, SL of an average of 60 μmol·m‒2·s‒1 from 

a 100-W HPS lamp (Ceramalux, Philips Lighting Company, Somerset, NJ) was provided 

daily for 18 h. All seedlings were irrigated as necessary with acidified water supplemented 

with a combination of two water-soluble fertilizers (3:1 mixture of 15N-2.2P-12.5K and 

21N-2.2P-16.6K, respectively; The Scotts Co., Marysville, OH) to provide the following 

(in mg·L‒1): 200 N-NO3, 26 P, 163 K, 50 Ca, 20 Mg, and micronutrients. Scions cut from 



81 

 

 
 
 

seedlings were grafted onto rootstocks on 11 Jan. 2012 and allowed to heal. On 25 Jan. 

2012, grafted seedlings were randomly selected for each lighting treatment and 

transplanted into rooting blocks (4 × 4 × 2.5 cm; SteadyGROWpro; Syndicate Sales), 

which were then placed into wetted coir slabs (90 × 15 × 8 cm; Coco Agro Ltd., Veyangoda, 

Sri Lanka). Slabs were placed on top of custom-made steel gutters (9.8 m × 25 cm; 

FormFlex Horticultural Systems, Ontario, Canada).  Following transplant, plants were 

pinched at the axillary bud to induce double-heading at a density of 2.3 stems/m2 in the 

production system.  Plants were irrigated daily throughout the 5-month experiment with a 

commercial complete fertilizer mix (4.5N-14P-34K; CropKing, Lodi, OH) providing a 

30% leaching fraction (LF). Irrigation frequency was adjusted as necessary depending on 

the LF.  Water was treated with 93% sulfuric acid (Brenntag, Reading, PA) at 0.08 mL·L-

1 to reduce alkalinity to 100 mL·L‒1 and a pH range of 6.0 to 6.2. Electrical conductivity 

(EC) and pH of the influx and efflux were measured daily with a hand-held EC and pH 

meter (Hanna Instruments, Woonsocket, RI) to ensure values were maintained within 

recommended ranges (2.5-3.5 dS·m-1 and 5.8-6.3 for EC and pH, respectively) (Jones, 

2008). Average ambient day and night temperatures of the greenhouse were set at 27 °C 

and 18 °C, respectively. 

Lighting treatments. The greenhouse floor area was divided into six half-row 

sections (3.7 × 4.9 m) of different treatments running in an east-to-west direction (Figure 

5). Each section was separated by one layer of 6-mil (0.15 mm)-thick black polyethylene 

plastic between two layers of white plastic (curtains) hanging from the upper frame of the 

greenhouse structure (≈3.6 m from the top to the floor). The plastic curtains were used to 
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prevent light pollution between treatments and hung parallel to the rows. Short sections of 

plastic curtain hung perpendicular at the halfway point of each row separating different 

lighting treatments. Each half-row section was one replicate of a treatment lighting eight 

double-headed, grafted treatment plants (four ‘Komeett'/‘Maxifort’ and four 

‘Success’/‘Maxifort’) and one non-grafted, double-headed non-treatment plant at each 

section border (guard plant). 

The SL treatments were started on 28 Jan. 2012. Supplemental lighting was kept at 

an average DLI of 9 mol·m‒2·d‒1 from either 1000-W OH-HPS lamps (Lumalux/ECO; 

Osram Sylvania Ltd., Danvers, MA) or ICL-LED towers (Orbital Technologies 

Corporation, Madison, WI) programmed to mix 95% red (627 nm peak wavelength) and 

5% blue (450 nm peak wavelength) light (Figure 6). Each 2.5-m-tall LED tower supported 

three rectangular, vertically movable 0.60 × 0.12 m LED zones that were separately 

controlled (Figure 7). Each rectangular LED zone has opposite lighting panels for 

irradiation in both directions within a row, each containing four red and one blue, dimmable 

LED strips with 12 LEDs mounted vertically within each strip. Towers were air-cooled via 

hollow internal tubes and fans that drew greenhouse air into the center of each tower and 

exhausted heat either above the canopy (during the cooling season) or below the canopy 

(during the heating season). A control treatment also was included for which no SL was 

provided.  

Before starting the experiment, a light map was developed (after sunset) at three 

heights in the greenhouse to determine the maximum PPF for each lamp type. The 

measured heights corresponded to the center of each vertical LED panel in a tower. 

Measurements were taken in the space where a plant would be. Because of differences in 
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light distribution and direction from the lamps, a global PPF was used to represent the PPF 

around a given point. Global PPFs were determined by calculating the sum of four 

measurements taken from rotating the sensor four times at 90° (the base point directly 

facing the lamp) and dividing by two (Frantz et al., 1998). The output of supplemental PPF 

was calibrated to be equivalent for both SL-treatments using a line quantum meter (MQ-

303; Apogee Instruments, Inc., Logan, UT) calibrated against a spectroradiometer (EPP-

2000; StellarNet Inc., Tampa, FL). 

Kilowatt-hours (kWh) of energy consumed were monitored using a built-in 

datalogger in every LED tower, and an energy monitor (e2 classic 2.0; Efergy U.S.A., 

Miami, FL) was used for groups of four HPS lamps. Removal of lower leaves and plant 

leaning and lowering was conducted as needed. Fruits were pruned to four per cluster (to 

maintain fruit grade/size uniformity) and were harvested weekly when the last fruit within 

a cluster was at maturation stage 6, based on the USDA Visual Aid TM-L-1 tomato color 

standards. Fruit fresh weight (FW) and fruit number were recorded immediately following 

harvest. Number of flowers (at anthesis) and fruit number per plant were recorded weekly 

(from week 9 through 13) for all plants. Upon experiment termination (28 Jun. 2012), 

number of nodes per plant was recorded. 

Expt. 2 

Seeds of ‘Komeett’ and ‘Success’ were sown on 20 Jun. 2012. Plants were grown 

under conditions identical to Expt. 1 with the following exceptions: (1) Ambient day and 

night greenhouse temperature set points were kept at 25 °C and 15 °C, respectively. (2) 

Plants were grown as side-by-side non-grafted, single-headed seedlings rather than as 

grafted, double-headed plants. (3) 1000 W-HPS lamps were replaced with 600-W HPS 
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(HS2000; P.L. Lights, Beamsville, Ontario, Canada) lamps. (4) SL photoperiod was 

modified monthly to complement seasonal changes in solar DLI aiming for a target total 

DLI of 25 mol·m‒2·d‒1. Average DLI values (at plant height) from SL were 8.8, 10.0, 13.8, 

16.5, and 16.5 mol·m‒2·d‒1 for Aug., Sept., Oct., Nov., and Dec., respectively (after 

Korczynski et al., 2002; assuming 50% solar light transmission into the greenhouse). (5) 

Movable rather than stationary curtains were used to minimize solar blockage during the 

daytime (withdrawn when lamps were off). (6) Due to high solar DLI and ambient 

temperature at the beginning of the experiment, SL treatments were initiated on 16 Aug. 

and, thus, used only during the last 4 months of the experiment. The experiment was 

terminated 15 Dec, 2012. 

Expt. 3 

Seeds of ‘Komeett’ and ‘Rebelski’ (De Ruiter Seeds) were sown on 27 Dec. 2013. 

Plants were grown under conditions identical to Expt. 2 with the following exceptions: (1) 

Rockwool slabs (100 × 15 × 7.5 cm; Grodan Vital, Roermond, The Netherlands) were used 

instead of coconut coir. (2) Eight 100 W incandescent (INC) bulbs (Ace Soft White; Ace 

Hardware Corp., Oak Brook, IL) were used in the control treatment during the first 90 days 

of the experiment. This was done to support photoperiodic control within the treatment, 

not as a means to provide SL. (3) SL treatments were initiated on 28 Jan. and provided an 

average DLI (at plant height) of 10.8, 13.0, 8.8, 3.8, and 3.8 mol·m‒2·d‒1 for Feb., Mar., 

Apr., May, and Jun., respectively. (4) No record was kept for weekly plant growth. The 

experiment was terminated 24 Jun., 2013. 
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Expt. 4 

Seeds of ‘Komeett’ were sown on 19 Jun. 2013. Plants were grown under 

conditions identical to Expt. 3 with the following exceptions: (1) Rockwool slabs were 

replaced with coconut coir slabs (100 × 15 × 10 cm; Riococo 200, Ceyhinz Link 

International Inc., Dallas/Fort Worth Metroplex of Texas, TX). (2) No INC bulbs were 

used in control treatments. (3) SL treatments were initiated on 14 Aug. and provided an 

average DLI (at plant height) of 8.8, 10.0, 13.8, 18.8, and 18.8 mol·m‒2·d‒1 for Aug., Sept., 

Oct., Nov., and Dec., respectively. The experiment was terminated 16 Dec., 2013. 

Experimental design and statistical analysis. For each experiment, data were 

analyzed as a randomized complete block design and were subject to analysis of variance 

(ANOVA) and the general lineal model procedure of SAS (version 9.2; SAS Institute, 

Cary, NC). For Expt. 1-3, the tomato cultivars responded similarly to the lighting 

treatments, so data were pooled and averaged across cultivars. 

Results 

Solar DLI measured inside our greenhouse in 2012 indicated that at 40° N latitude 

and 86° W longitude, SL was required for most of the year to achieve a target DLI of 25 

mol·m‒2·d‒1, with low-solar DLI months requiring more SL than high-solar DLI months 

(Figure 8). The complete record of solar DLI measured inside the experimental greenhouse 

in 2013 was partly compromised due to a short circuit in the datalogger. However, from 

records of a plastic polyhouse in close proximity, as well as periodic measurements 

recorded in our specific greenhouse zone, we know that solar DLI in 2013 was higher than 
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that in 2012, suggesting a lower SL requirement for optimal plant growth in 2013 compared 

to 2012. 

Crop responses. Supplemental lighting induced early fruit production compared to 

unsupplemented controls during Expt. 1 (24 d earlier for OH-HPS and 22 d earlier for ICL-

LED) (Table 4), allowing for a longer harvest period. However, no treatment differences 

were observed for harvest duration during Expt. 2, 3, and 4. Fruit number and total fruit 

FW increased in response to SL during Expt. 1, 2, and 4. Moreover, except for cluster 

weight in Expt. 2 and node number in Expt. 3, there were no differences between the two 

SL treatments for any of the harvest parameters measured across experiments. 

Interestingly, there were no significant differences in fruit yield (fruit number or fruit FW) 

between controls and either SL treatments in Expt. 3.  

Seasonal variations also were apparent for weekly plant growth. In Expt. 1, both 

SL treatments promoted flower and fruit formation equally relative to the control (Figure 

9). However, except for week 12, Expt. 2 indicated no differences in flower or fruit number 

among treatments. Nonetheless, the trend observed for fruit number in Expt. 2, as well as 

the significant differences in overall yield, suggest that as solar DLI declined seasonally, 

SL supported normal fruit set relative to unsupplemented controls. Also, in Expt. 1, leaves 

of plants grown under no SL were significantly longer than those grown under ICL-LED 

and OH-HPS (Figure 10). However, differences among treatments for leaf length were only 

apparent after week 11 during Expt. 2, corresponding with the seasonal decline of solar 

DLI. 

Energy consumption. Figure 11 illustrates the energy used by both SL treatments 

during each experimental period; the different trends among Expt. 1 and Expt. 2-4 reflect 
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the different approaches to provide SL: Expt. 1 had a constant SL DLI of 9 mol·m‒2·d‒1, 

whereas Expt. 2-4 had variable month-to-month SL DLI. The high energy consumed by 

the OH-HPS treatment during the first ≈50 days of treatment during Expt. 1 and Expt. 2 

was due to longer photoperiods required to achieve target DLI at the top of the short crop 

stand. Once plants grew and reached the top height of our measured light map (≈2.2 m 

above the floor), the average photoperiod was kept constant to achieve target DLI. In 

general for Expt. 2 and Expt. 4, kWh per day of energy consumed from OH-HPS lamps 

increased as solar DLI decreased. Nonetheless, kWh per day for the ICL-LED treatment 

declined close to the experiment termination, even if solar DLI was low. This is explained 

by the ability to turn off the bottom panels of the ICL-LED towers as plants were defoliated 

and fruit clusters harvested from the bottom up, thereby saving additional energy by not 

lighting where photosynthetic tissue was no longer present. For all experiments, average 

energy consumption by the OH-HPS treatment was significantly higher than that by the 

ICL-LED treatment. The differences in energy consumption between Expt. 1 vs. Expt. 2-4 

from OH-HPS were due, in part, to the different lamp wattage used to conduct the 

experiments (1000 W vs. 600 W OH-HPS lamps, respectively). 

The ICL-LED SL technology resulted in energy savings relative to OH-HPS 

lighting across seasons (Table 5). Average daily energy consumption for the OH-HPS 

treatment (2 reps × 4 lamps) during Expt. 1-4 were 129, 86, 70, and 95 kWh per day, 

respectively; which were significantly higher than the average 31, 39, 19, and 25 kWh per 

day consumed by the ICL-LED treatment (2 reps × 4 towers). The electrical conversion 

efficiency of ICL-LED energy into fruit biomass was higher than that of OH-HPS, and 

energy savings ranged from 55% to 76% for ICL-LED relative to OH-HPS SL. An 
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alternative approach to compare energy efficiency between the two SL treatments was 

based on calculating the theoretical energy consumption for the OH-HPS treatment. 

Following guidelines from a greenhouse engineering manual (Aldrich and Bartok, 1994), 

we calculated the electric energy usage for commercial greenhouse-tomato production 

using OH-HPS lighting; we then downscaled the results to correspond to our experimental 

area (Table 6). According to this comparison, electric savings from ICL-LED SL 

technology ranged from 9% to 45% in Expt. 1-4.  

Discussion 

A photon is a photon. While it is widely accepted that any wavelength of light 

within the photosynthetically active radiation spectrum (PAR; 400-700 nm) contributes to 

photosynthesis and crop productivity (McCree, 1972), the relative quantum efficiency 

curve, which weights the quantum yield (moles of carbon fixed per moles of photons 

absorbed) for each wavelength of light, indicates that broadband blue (400 to 500 nm) and 

red (600 to 700 nm) light are the most efficient wavelengths for driving photosynthesis and 

potentially promoting plant growth (Inada, 1976; McCree, 1972). Thus, as an approach to 

capitalize from their high relative quantum efficiency, most research using LEDs for SL 

have used blue and red LEDs. However, other studies have shown that for SL, light 

intensity (PPF) has a much larger effect on plant growth and productivity than light quality 

(Cope et al., 2014; Johkan et al., 2012). Therefore, optimal plant growth can be achieved 

with any wavelength of light within PAR if an adequate PPF is provided or optimal DLI is 

achieved (Dueck et al., 2007; McAvoy and Janes, 1990).  
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In our study, the similarities in overall plant growth and yield between the two SL 

treatments found within experiments could be the result of plants growing under the same 

PPF across the vertical plane of the high-wire crop stand. Plants under SL grew under an 

average PPF of 240, 229, 179, and 144 μmol·m‒2·s‒1 during Expt. 1, 2, 3, and 4, 

respectively, in addition to the natural DLI received from sunlight. These average SL 

intensities were dictated by the PPF measured (after sunset) from the OH-HPS treatment 

at three heights (bottom, middle, and top) within the vertical plane of the experimental area; 

the ICL-LED treatment was set to correspond to the PPF delivered from OH-HPS SL. 

Potentially, by increasing SL PPF at the middle- and bottom-height of a high-wire crop 

stand, or by maintaining a constant PPF along the vertical plane, crop productivity would 

increase by not having that dramatic decrease in PPF from the top to the bottom of the 

canopy. Future experiments should compare different light intensities along the vertical 

plane of a high-wire crop to determine if selectively lighting different portions of the 

vertical crop stand affects plant growth and productivity. 

Can high-solar DLI trump SL for greenhouse tomato production? Due to high solar 

DLI and ambient temperature at the beginning of both summer-to-winter experiments, SL 

treatments were used only during the last 4 months of each experiment. The similarities 

among treatments for harvest duration in Expt. 2 and 4 are likely due to flowering being 

already induced by the time SL started and thus, fruit harvest was not delayed from the 

lack of SL (Table 4).  

The unexpected outcome for Expt. 3, where control treatments resulted in similar 

yields to supplemented treatments, could be attributed to one or a combination of the 

following:  
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1) An atypical high solar DLI during late winter in 2013 compared to 2012: In Expt. 

3, more days were recorded when solar DLI was above our target PPF (25 mol·m‒2·d‒1) 

than in Expt. 1 (Figure 8). Thus, the similarities among all treatments in Expt. 3 could be 

explained by the high solar DLI, which most likely contributed to most of the light energy 

required for optimal plant production. Additionally, because it is widely accepted that 

growth benefits from SL in greenhouse tomato production are greatest during low-ambient 

DLI (Dorais and Gosselin, 2002), the highest increase in fruit yield from SL during Expt. 

1 compared to Expt. 3 could be the result of the lower solar DLI during the late winter in 

2012. 

2) Addition of far-red (700 to 770 nm) light: Although the contribution to total DLI 

from INC photoperiodic lighting was minor (<0.5 mol·m‒2·d‒1), there was a noticeable 

increase in stem elongation (visual observation) for control treatments compared to 

previous-year controls. This observation is most likely a response to the far-red component 

of INC supplementation, which affects the phytochrome photoreceptor, known to mediate 

morphological and physiological plant responses (Briggs and Olney, 2001). The ratio of 

phytochrome in the physiologically active far-red-absorbing state (Pfr) to total 

phytochrome [Pfr + phytochrome in the inactive red-absorbing state (Pr)] influences the 

magnitude of the shade-avoidance response in sun-plants, like tomato, and has been shown 

to affect stem elongation (Kasperbauer, 1987; Thomas and Vince-Prue, 1997). Longer 

stems could potentially minimize mutual shading within high-wire crop stands as they 

would allow for light to penetrate deeper into the foliar canopy and prevent shading of 

lower leaves by upper leaves.  
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Because of this outcome, INC supplementation was not provided to control 

treatments during the subsequent summer-to-winter experiment of 2013 (Expt. 4). 

However, further research should explore the effects of photomorphogenic responses to 

far-red light in high-wire tomato production, as well as interactions between 

photomorphogenic- and photosynthetic-dependent reactions affecting plant growth. This 

is especially important because photoreceptors and physiological plant responses are 

greatly responsive to both light intensity and quality (Blom et al., 1995; Franklin, 2005).   

3) Control plants behaving as shade-adapted plants during the early phase of the 

winter-to-summer experiments: Figure 9 showed that for Expt. 1, leaves developing under 

no SL expanded more than those under either SL treatment. Moreover, although not 

measured for Expt. 3, there was a noticeable increase in leaf expansion for control 

treatments compared to previous-year controls (visual observation). Shade- and light-

adapted plants have morphological and biochemical differences associated with specific 

functions, among which thinner, larger leaves are characteristic of shade-adapted plants, as 

it allows for better light capture and absorption (Ehleringer and Sandquist, 2010). Control 

plants grown during our winter-to-summer experiments most likely adapted to the sub-

optimal light intensities and developed as shade plants. 

If the combination of supplemental far-red light and a shade-plant-type of 

adaptation (due to the lack of SL) can induce plant photomorphogenic responses that 

positively affect fruit yield (i.e., increased stem length to prevent mutual shading of lower 

leaves by upper leaves or increased leaf area to capture more light), far-red 

supplementation using LEDs could potentially be an effective way to promote plant growth 

and fruit yield using less input power than supplemental photosynthetic lighting. Then 
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again, it might be that results from Expt. 3 are just a response to the unusually high solar 

DLI measured in the late winter of 2013.  

Think of ICL as precision lighting. Improvements in production efficiency using 

ICL as sole-source lighting are supported by Frantz et al. (1998), who reported that cowpea 

grown with ICL yielded 50% of the edible biomass of plants grown under OH lighting 

while consuming only 10% as much electrical energy. Massa et al. (2005) also reported 

higher electrical-use efficiency and inner-canopy leaf retention for intracanopy-grown 

cowpea compared to OH-lighted plants grown in a growth chamber. Although we found 

no increase in yield using ICL SL, our results showed significant energy savings without 

compromising fruit yield. The energy savings in our study can be accounted for by the 

ICL-LED towers consuming less input power than OH-HPS lamps. Furthermore, the 

ability to provide focused lighting with LEDs allowed for additional energy savings when 

we selectively switched the panels on/off, depending on presence of photosynthetic leaf 

tissue. With OH lighting, lamps are traditionally mounted at a fixed height that maximizes 

light distribution and uniformity at a given height within the greenhouse. However, when 

plants are young and widely spaced, energy is wasted when OH photons fall on empty 

space; when foliar canopies close, then photons coming from above are excluded from the 

inner canopy and mutual shading can occur. Using OH-HPS lighting, upper-canopy photon 

capture efficiency can be maximized for mature crops grown in large greenhouses with 

narrow aisles, yet focused lighting with ICL can increase canopy capture rates to near 100% 

(Nelson and Bugbee, 2014). Nonetheless, focused radiation also makes it challenging for 

ICL to create uniform light distribution in large open areas. In greenhouses, SL selection 

should primarily be based on the cost to deliver photons to the plant canopy surface and on 
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potential benefits from increasing productivity or affecting plant growth and/or 

morphology. 

Do we need hybrid lighting? Most research using ICL as SL has evaluated ICL as 

hybrid lighting. Fewer studies have used ICL lighting alone per se (Deram et al., 2014; 

Grimstad, 1987; Jokinen et al., 2012; Lu et al., 2012a; Lu et al., 2012b). Hybrid lighting 

has been shown to positively affect plant growth when compared to OH SL by improving 

light-use efficiency within greenhouse crops (yield per electric energy consumption of 

lighting), increasing fruit yield (size, weight, and/or number) and percentage of first-class 

fruit, and extending post‐harvest shelf life, among others (Gunnlaugsson and 

Adalsteinsson; 2006; Hovi et al., 2004; Hovi-Pekkanen et al., 2006; Hovi-Pekkanen and 

Tahvonen, 2008; Pettersen et al., 2010).  However, most studies reporting increases in crop 

yield with hybrid lighting have used HPS lamps mounted OH and within the canopy (as 

with ICL). In contrast, other studies comparing hybrid SL with OH-HPS lamps + ICL-

fluorescent or -LED lamps to OH-HPS lighting have shown either negative (Heuvelink et 

al., 2006), minimal (Hao et al., 2012) or no significant increase in fruit yield from hybrid 

lighting (Deram et al., 2014; Dueck et al., 2012; Trouwborst et al., 2010). It is likely that 

the increase in fruit yield when using 100% HPS-hybrid lighting is, in part, the result of 

the additional thermal energy irradiated by ICL-HPS, which could have accelerated fruit 

maturation and, thus, reduced time to harvest. Nonetheless, using high-wattage HPS lamps 

for ICL is not feasible for commercial applications because the separation distance required 

to prevent tissue scorching from the heat load of HPS lamps would reduce plant density 

and, consequently, decrease total yield. Conversely, if ICL does not irradiate much heat, as 
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in the case of LED lamps, or, to a lesser extent, fluorescent tubes, hybrid lighting may not 

increase yield for greenhouse-grown crops.  

Our study showed that when using ICL-LED SL with high-output, actively heat 

sinked LEDs, hybrid lighting is not required to maintain yields similar to those obtained 

with OH-HPS lighting. This conclusion is in agreement with Deram et al. (2014), who 

compared different light intensities and red-to-blue ratios from ICL-LED vs. hybrid 

lighting [ICL-LED:OH-HPS (1:1)] vs. OH-HPS lighting for greenhouse tomato 

production. They reported a significant increase in fruit yield and vegetative biomass 

production with ICL-LED compared to OH-HPS or hybrid lighting but found that 

marketable fruit production (fruits ≥ 90 g) was only increased when plants were grown 

under hybrid lighting.  

Comparing energy savings. We used two approaches to compare energy savings 

between the two SL treatments: 1) calculating the electric cost per plant using data recorded 

in our experiments (Table 5); and 2) comparing the theoretical energy consumption by OH-

HPS to data recorded for the ICL-LED treatments (Table 6). Both comparisons showed 

energy savings from ICL-LED SL technology compared to OH-HPS SL. Nonetheless, the 

second approach is considered a more legitimate comparison because it takes into account 

the lamp density required to achieve desired light intensities for optimal greenhouse 

production. It also considers an ideal fixture spacing to optimize uniform light distribution 

within the production area. Moreover, calculations are based on the specific photon 

emission rate (µmol·m‒2·s‒1·lamp‒1) for the OH-HPS lamps that were used in our 

experiments. However, some consideration regarding the different lamp types is needed 
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when comparing both systems: the ICL-LED towers are research-grade prototypes 

specifically designed for ‘proof of concept’ studies, not for commercial applications, and 

were built with relatively inefficient fans, controllers, and power supplies (M. Bourget, 

personal communication, 2013). Additionally, features like dimming capability and self-

monitoring of energy consumption may not be required for commercial prototypes. In 

contrast, the OH-HPS lamps used in our study are commercially available and their fixtures 

(lamp, luminaire, and ballast) are designed to be energy efficient and cost-effective. Based 

on our second approach to compare energy savings between the two SL treatments (after 

Aldrich and Bartok, 1994), between 9% and 45% of the energy consumed by OH-HPS was 

saved with ICL-LED SL in Expt. 1-4 (Table 6). However, if the inefficiencies inherent 

with the ICL-LED towers are not considered, and results are based solely on the kWh of 

electricity consumed by the LEDs for the duration of the experiments, electric savings from 

the ICL-LEDs relative to the theoretical energy consumed by OH-HPS lighting ranged 

from 31% up to 67% in Expt. 1-4.  

A bright future for greenhouse SL. Electric savings from LED SL technologies are 

expected to increase in the near future, as improvements in power supplies and luminous 

efficiencies in conjunction with decreasing operating costs of LEDs are occurring rapidly. 

Haitz and Tsao (2011) projected that the luminous flux per lamps for LEDs would increase 

20x in a decade. Thus, LED SL remains to be a promising technology for which advances 

in innovative designs to improve light distribution and energy efficiency will occur. 

Nonetheless, improvements in other lighting technologies for plant growth are also 

occurring rapidly. As of 2014, HPS fixtures with electronic ballasts and double-ended 
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lamps are 1.7x more efficient than commonly used mogul-base HPS fixtures, like the ones 

used in our study (Nelson and Bugbee, 2014). Furthermore, efficiency improvements for 

OH lighting are being made by optimizing luminaire architectures to maximize light 

distribution under a specific growing area. For high-wire crops, OH lighting with additional 

green light also could be of particular interest, as green light penetrates deeper into the 

foliar canopy than other wavelengths and thus, overhead lighting could potentially support 

the photosynthetic activity of lower leaves (Kim et al., 2004; Lu et al., 2012b). Other SL 

alternatives that promise to increase yields or reduce production costs in commercial 

greenhouses include, but are not limited to, induction lighting, sulfur lamps, and plasma 

lamps, among others. However, as with LEDs, research evaluating these technologies is 

needed to help discover any opportunities and/or limitations associated with them. 

Of particular interest to growers is the species- and cultivar-specific response of 

plants to LED SL. Although the tomato cultivars evaluated in our study responded similarly 

to the lighting treatments, other studies have shown that some plant responses to 

greenhouse SL are species- and cultivar-specific (Gunnlaugsson and Adalsteinsson; 2006; 

Hernández, 2013). Thus, it is likely that not all plants will respond the same to LED SL. 

Further research evaluating growth and productivity for several commercially-relevant 

greenhouse-vegetable cultivars grown under LED SL is needed. Furthermore, research 

should evaluate different hues and color ratios to determine if supplemental light quality 

can optimize production or promote improvements in fruit quality and/or plant 

morphology. This is especially important for LED SL because there seem to be seasonally 

changing plant sensitivities to SL spectrum in the presence of a changing solar background 

(see Chapter 2 for more information). Moreover, the optimal light spectrum for plant 
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growth and development likely changes with plant age and could result in the need for 

specific crop life-cycle spectral requirements within a species or cultivar (Cope and 

Bugbee, 2013). 

Today. Currently, the most efficient HPS and LED fixtures have equal efficiencies, 

but the initial capital cost per photon delivered from LED fixtures is five to ten times higher 

than that for HPS (Nelson and Bugbee, 2014). Moreover, most commercially available 

LED fixtures tend to have limited spectral choices, fixed-color ratios, low output 

intensities, and are not specifically designed to maximize light-distribution within 

greenhouses. Additionally, commercial LED fixtures tend to be passively heat sinked (no 

active heat dissipation; conductive and convective heat is exchanged with the surrounding 

air), which limits the density of LEDs that can be used per fixture and thus, reduce the 

maximum light intensity from a given fixture. Manufacturers need to improve existing 

LED SL technologies to offer products with improved reliability and lower capital costs. 

Conclusions 

Although our results suggest that the ICL-LED technology supports similar yields 

compared to conventional OH-HPS lighting but at lower electrical costs, the use of ICL-

LED technology needs further development. Our experiments establish proof of concept 

that LEDs can be used successfully for SL in greenhouse tomato production. However, 

further research needs to be conducted evaluating different light-distribution architectures, 

lamp densities, and spectral composition. Further research will determine wavelength 

efficacies at different stages of crop development to achieve optimal productivity. Results 

of this technology comparison and experiment, in addition to furthering scientific and 
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practical understanding of the impact of LED lighting on plant growth and development 

for tomato, also demonstrate that ICL-LED SL is a viable alternative to OH-HPS. 

Additional research is needed to demonstrate the applicability of this technology to produce 

other greenhouse crops.  
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Table 4. Harvest and growth parameters per plant for tomatoes grown in a greenhouse under one of three lighting treatments during 

two winter-to-summer (Expt. 1 and 3) and two summer-to-winter (Expt. 2 and 4) production cycles in 2012 and 2013.z 

Treatmentsy 
Harvest period 

(d) 
Nodes (No.) 

Fruit harvested 

(No.) 

Cluster 

weight (g) 

Total fruit FW 

(g)x 

Expt. 1      

OH-HPS 68 aw 46 a 97 a 537 a 14159 a 

ICL-LED 66 a 45 a 94 a 542 a 13406 a 

Control 44 b 35 b 67 b 496 b 9067 b 

      

Exp. 2      

OH-HPS 76 a 49 ab 125 a 523 b 14281 a 

ICL-LED 75 a 51 a 136 a 556 a 15236 a 

Control 77 a 48 b 96 b 366 c 9361 b 

      

Expt. 3      

OH-HPS 57 a 53 a 105 a 691 a 17182 a 

ICL-LED 57 a 50 b 106 a 663 a 16593 a 

Control 52 a 49 b 97 a 629 b 14965 a 

      

Exp. 4      

OH-HPS 84 a - 133 a 572 a 15855 a 

ICL-LED 83 a - 132 a 573 a 15835 a 

Control 81 a  - 106 b 472 b 11723 b 
zPlants were two-headed in Expt. 1. For all other experiments, values represent results for two side-by-side plants. Data were 

pooled and averaged across two cultivars in Expts. 1-3. 
yOH-HPS= overhead high-pressure sodium; ICL-LED = intracanopy light-emitting diodes. 
xFW = fresh weight.  
wMeans within Expt. and within columns followed by the same letter are not significantly different based on the least significant 

difference test (P ≤ 0.05). 

1
0
5
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Table 5. Electrical energy consumption, operating cost (in US dollars), and yield parameters for tomatoes grown for 5 months in a 

greenhouse under one of three lighting treatments.z 

Crop parameters 
Winter-to-summer   Summer-to-winter 

Control OH-HPS ICL-LED   Control OH-HPS ICL-LED 

2012        

Total energy consumption (kWh) - 19578 4697  - 10062 4542 

Energy consumption per plant (kWh) - 1224 294  - 629 284 

Total fruit FW per plant  (g)y 9067.10 14159.30 13406.00  9361 142801 152356 

Energy consumption per fruit FW (kWh/g) - 0.09 0.02  - 0.004 0.002 

Cost of electricity ($/kWh) - 0.05 0.05  - 0.05 0.05 

Cost of electricity ($/g of fruit) - 0.004 0.001  - 0.0002 0.0001 

Average fruit weight (g) 136.00 144.90 142.04  102 121 121 

Lighting cost ($/fruit)  - 0.63 0.16  - 0.03 0.01 

Lighting cost ($/plant)  61.18 14.68   31.44 14.19 

        

2013  

Total energy consumption (kWh) - 10307 2832  - 11553 4179 

Energy consumption per plant (kWh) - 644 177  - 722 261 

Total fruit FW per plant  (g) 14965 17182 16593  11723 15855 15835 

Energy consumption per fruit FW (kWh/g) - 0.04 0.01  - 0.05 0.02 

Cost of electricity ($/kWh) - 0.05 0.05  - 0.05 0.05 

Cost of electricity ($/g of fruit) - 0.002 0.001  - 0.002 0.001 

Average fruit weight (g) 154 163 157  120 131 133 

Lighting cost ($/fruit)  - 0.31 0.08  - 0.30 0.11 

Lighting cost ($/plant)   32.2 8.9     36.1 13.1 
zOH-HPS= overhead high-pressure sodium; ICL-LED = intracanopy light-emitting diodes; yFW = fresh weight. 1g = 0.0353 oz. 
vAverage electrical energy cost for the state of Indiana during 2012. 
tMeans within columns followed by the same letter are not significantly different based on the least significant difference test (P 

≤ 0.05).  1
0
6
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Table 6. Comparison of electrical energy consumption between overhead high-pressure sodium (OH-HPS) lamps and intracanopy 

light-emitting diode (ICL-LED) towers for the production of high-wire tomatoes grown in a greenhouse during two winter-to-

summer (Expt. 1 and 3) and two summer-to-winter (Expt. 2 and 4) growing seasons in 2012 and 2013.  

Code Parameters affecting energy consumption 
Experiment 

1 2 3 4 

 Energy consumed by OH-HPS     

A Fixture power draw (W)z 1100 660 660 660 

B Target photosynthetic photon flux  at crop height (µmol·m‒2·s‒1) 309 279 266 255 

C Commercial surface area (bay area; m2) 1125 1125 1125 1125 

D Photon emission rate (µmol·m‒2·s‒1·lamp‒1)y 1925 1045 1045 1045 

 Fixture efficiency (A/D; µmol·m‒2·s‒1·W) 1.8 1.6 1.6 1.6 

E Fixtures needed per bay area (B×C/D; no.) 181 300 286 275 

 Fixture density (E/C; no. fixtures·m‒2) 0.16 0.27 0.25 0.24 

F Input power density (E×A/C; W·m‒2) 177 176 168 161 

G Experimental growing area (m2) 18 18 18 18 

H Input power density for experimental area (F×G; W·m‒2 of experimental area) 3178 3172 3024 2899 

I Hours of fixture operation (no.) 1628 2013 1711 1799 

J Theoretical energy use (H×I/1000; kWh·experimental area·experiment duration)x 5173 6385 5174 5215 

 Energy consumed by ICL-LEDsw     

 Hours of fixture operation (no.) 1628 2013 1711 1799 

K Total energy consumed (throughout experiment) 4685 4574 2835 4179 

L Energy consumed by fans and controller (kWh)v 1095 1354 1151 1210 

M Energy consumed by LEDs (K-L; kWh) 3591 3220 1684 2969 

N ICL-LED electric savings compared to OH-HPS ([100-(K×100)/J]; %) 9 28 45 20 

O 

ICL-LED electric savings compared to OH-HPS w/o fans and controllers ([100-

(M×100)/J]; %) 31 50 67 43 

1
0
7
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zIncludes power draw by the light bulb wattage + additional 10% from the ballast. 
yObtained from the manufacturer. 
xCalculated after Aldrich and Bartok (1994), Greenhouse Engineering, NRAES-33. 
wTotal power draw by one ICL-LED at full power = 1240 W, out of which 567 W are drawn by the LEDs and 673 W by the power 

supply, controller, and fans required to run the system. 
vPower drawn by power supply, controller, and fans (673 W) × hours of fixture operation/1000. 

1
0
8
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Figure 5. Schematic representation of the experimental greenhouse showing six half-row 

sections of different lighting treatments running in an east-to-west direction. Each section 

was separated by a white plastic curtain (bold black lines) hanging from the upper frame 

of the greenhouse structure and running the entire length of the rows. Short sections of 

plastic curtain hung perpendicular at the halfway point of each row separating different 

lighting treatments. Each half-row section represents one replicate of a treatment lighting 

eight double-headed, grafted treatment plants (four ‘Komeett'/‘Maxifort’ and four 

‘Success’/‘Maxifort’) and one non-grafted, double-headed non-treatment plant at each 

section border (guard plant). The lighting treatments included A) four 1000-W high-

pressure sodium lamps emitting yellow light from above, B) four Intracanopy LED towers 

emitting purple light in both directions along the row, and C) control treatments receiving 

no supplemental lighting. 
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Figure 6. Schematic representation of an intracanopy light-emitting diode (LED) tower 

indicating row-straddling supports, three vertically movable LED panels on each side 

within a row, and room at the top of the mount to move all three LED panels up by one 

panel equivalent.  Power supply, individual panel switches, and dimming controls for each 

color of LED are located on the lower right. 
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Figure 7. (A) Two intracanopy light-emitting diode (LED) towers providing two-way SL 

with two tomato plants growing between towers. Note that the upper panel was switched 

off because most of the plants had not yet reached the height of the panel. (B) Side view 

of a half-row section with plants growing in the LED treatment. 

  

A B 
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Figure 8. Daily light integral (DLI) inside a glass-glazed greenhouse or a polyhouse in 

West Lafayette, IN (40° N. latitude). The dotted line represents the threshold of solar DLI 

below which supplemental lighting is required for optimal tomato production.
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Figure 9. Seasonal variation (Expt. 1 = winter-to-summer; Expt. 2 = summer-to-winter) in 

weekly counts of flower and fruit number for tomato. Plants were grown in a greenhouse under 

one of three lighting treatments. The treatments were overhead-high-pressure sodium (OH-

HPS) lamps vs. intracanopy LED (ICL-LED) towers vs. no supplemental lighting (control). 

Values represent the mean ± SE (n = 8) for one two-headed plant in Expt. 1 and two single-

headed plants in Expt. 2. 
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Figure 10. Seasonal variation (Expt. 1 = winter-to-summer; Expt. 2 = summer-to-winter) 

in leaf length of the last fully expanded leaf for tomato plants grown in a greenhouse under 

one of three lighting treatments. The treatments were overhead-high-pressure sodium (OH-

HPS) lamps vs. intracanopy LED (ICL-LED) towers vs. no supplemental lighting (control). 

Values represent the mean ± SE (n = 8) for one two-headed plant in Expt. 1 and two single-

headed plants in Expt. 2. 
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Figure 11. Daily energy consumed from overhead high-pressure sodium (OH-HPS) lamps 

or intracanopy light-emitting diode (ICL-LED) towers for the production of high-wire 

tomatoes grown in a greenhouse during two winter-to-summer (Expt. 1 and 3) and two 

summer-to-winter (Expt. 2 and 4) growing seasons in 2012 and 2013. DAT = days after 

transplanting. 
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CHAPTER 4. COMPARISON OF LIGHT-EMITTING DIODES AND HIGH-

PRESSURE SODIUM LAMPS FOR GREENHOUSE SUPPLEMENTAL LIGHTING: 

PHYSIOLOGICAL RESPONSES OF AN INDETERMINATE HIGH-WIRE TOMATO 

CANOPY 

 

Summary 

Intensive year-round local production of greenhouse-grown vegetables requires the 

use of supplemental lighting (SL) to offset seasonally limited solar radiation. Intracanopy 

light-emitting diode (ICL-LED) towers were compared to overhead high-pressure sodium 

lamps (OH-HPS) or a hybrid treatment (ICL-LEDs + OH-HPS) as alternative SL sources 

for high-wire greenhouse tomato (Solanum lycopersicum L.) production. A control 

treatment also was included for which no SL was provided. Plants were grown from winter-

to-summer in a glass-glazed greenhouse located in a mid-northern climate (40°N. latitude, 

West Lafayette, IN, USA). Several crop physiological responses were measured, and fruit 

production and energy consumption were quantified for plants grown under the different 

treatments. Among the physiological parameters evaluated, CO2 assimilation measured 

under ambient environmental conditions (A), photosynthetic quantum yield (θ), maximum 

gross CO2 assimilation (Amax) and the light-saturation point of photosynthesis proved to be 

good indicators of how ICL improves light absorption within a high-wire tomato canopy 
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by diminishing the top-to-bottom decline in photosynthetic activity typically measured 

with OH lighting only (SL or solar). Although SL generally increased yield relative to 

control, no yield differences were recorded among SL treatments, indicating that higher 

source activity does not necessarily always lead to yield increases. Based on the lower 

energy consumption measured for ICL-LED, and, to a lesser extent, for hybrid SL, 

compared to OH-HPS, replacing OH-HPS lamps with ICL-LED or hybrid SL has great 

potential for energy savings during high-wire greenhouse tomato production.  

Introduction 

Year-round production of greenhouse-grown tomatoes in temperate climates 

typically requires supplemental lighting (SL) for optimal fruit yield and quality. High-

pressure sodium (HPS) lamps are the preferred type of greenhouse SL because their high-

intensity capability allows them to deliver adequate supplemental photosynthetically active 

radiation (PAR; 400 to 700 nm) to crops. Traditionally, HPS lamps are mounted overhead 

(OH) at a fixed height that minimizes excess heat load on crops but maximizes light 

distribution and uniformity at a given height within the greenhouse. Although the wide-

angle beam distribution of OH lighting can maximize upper-canopy photon capture 

efficiency for mature crops (Nelson and Bugbee, 2014), when plants are young and widely 

spaced, energy is wasted when OH photons fall on empty spaces within the production 

area. Then, when foliar canopies close, photons coming from above are excluded from the 

inner canopy and mutual shading occurs, leading to a decline in leaf photosynthesis, 

premature senescence, and leaf abscission (Frantz et al., 2000).  
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Unlike HPS lamps, the relative coolness to the touch of the photon-emitting surface 

from light-emitting diodes (LEDs) allows them to operate in close proximity to plant tissue, 

thereby increasing available PAR at leaf level without overheating or scorching plants. 

Flexibility of lamp placement and resulting light distribution within crop stands could 

benefit high-wire cropping systems (i.e., tomato, cucumber, sweet pepper, and eggplant) 

within which plants are trained vertically below horizontal support wires, thereby creating 

conditions conducive to shading of middle and lower-canopy leaves by upper leaves, and 

potentially row-to-row shading. Intracanopy lighting (ICL) or interlighting, which refers 

to the strategy of lighting along the side or within the foliar canopy, could help prevent 

mutual shading for such high-wire crops. For this chapter, we use the terms ‘ICL’ and 

‘interlighting’ interchangeably. 

It has been reported that ICL in a sole-source-lighting mode can delay leaf 

senescence for cowpea (Vigna unguiculata (L.) Walp.) (Frantz et al., 2000; Massa et al., 

2005) and soybean (Glycine max L.) (Stasiak et al., 1998) by maintaining irradiance in the 

understory of the foliar canopy. Other studies have shown that hybrid SL (OH + ICL) 

increased crop photosynthesis in high-wire greenhouse production of tomatoes (Dueck et 

al., 2012; Trouwborst et al., 2010), cucumber (Cucumis sativus) (Pettersen et al., 2010; 

Trouwborst et al., 2011), and for field-grown soybean (Johnston et al., 1969) by increasing 

the photosynthetic activity of middle- and lower-canopy leaves. Moreover, hybrid SL has 

been shown to increase the light-use efficiency (LUE) within high-wire greenhouse-grown 

crops by increasing light absorption (ICL reduces losses associated with SL reflection and 

transmission) within the canopy and by delivering a more homogenous vertical light 

distribution to plants (Trouwborst, 2011). 
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Most research using ICL as SL has evaluated ICL as part of hybrid lighting (Dueck 

et al., 2012; Gunnlaugsson and Adalsteinsson; 2006; Hao et al., 2012; Heuvelink et al., 

2006; Hovi et al., 2004; Hovi-Pekkanen et al., 2006; Hovi-Pekkanen and Tahvonen, 2008; 

Pettersen et al., 2010; Trouwborst et al., 2010). Fewer studies have used ICL alone per se 

(Deram et al., 2014; Grimstad, 1987; Jokinen et al., 2012; Lu et al., 2012a; Lu et al., 2012b). 

Moreover, a direct comparison of physiological responses to ICL from LEDs vs. OH-HPS 

SL has not been reported for high-wire tomato. Our objective was to compare crop 

physiological responses to different SL sources and positions [ICL-LED vs. OH-HPS vs. 

hybrid lighting (ICL-LED + OH-HPS)] within an indeterminate high-wire tomato canopy 

and to quantify fruit production and energy consumption for plants grown under the 

different lighting treatments. 

Materials and Methods 

Plant materials and growing conditions. Seeds of tomato ‘Komeett’ (De Ruiter 

Seeds, Columbus, OH) were sown into 17-cell seedling trays of Agrifoam soil-less plugs 

(5 × 2.5 cm; SteadyGROWpro; Syndicate Sales, Kokomo, IN) on 16 Dec. 2013 and placed 

in a glass-glazed greenhouse in West Lafayette, IN (lat. 40°N, long. 86°W; USDA 

hardiness zone 5b) oriented east-to-west, with 3.7-m gutter height and 6.7-m peak height. 

The greenhouse has a floor area of 111 m2, is equipped with pad-and-fan evaporative 

cooling system and radiant hot water pipe heating. Once the cotyledons had expanded fully, 

SL of 100 μmol·m‒2·s‒1 from an OH-HPS lamp was provided for 14 h daily. All seedlings 

were fertigated as necessary with acidified water supplemented with a combination of two 

water-soluble fertilizers (3:1 mixture of 15N-2.2P-12.5K and 21N-2.2P-16.6K, 
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respectively; The Scotts Co., Marysville, OH) to provide the following (in mg·L‒1): 200 

N-NO3, 26 P, 163 K, 50 Ca, 20 Mg, and micronutrients. On 9 Jan. 2014, seedlings were 

randomly selected for each lighting treatment and transplanted into rooting blocks (4 × 4 × 

2.5 cm; SteadyGROWpro; Syndicate Sales), which were then placed into wetted coconut 

coir slabs (100 × 15 × 10 cm; Riococo 200, Ceyhinz Link International Inc., Dallas/Fort 

Worth Metroplex of Texas, TX). Slabs were placed on top of custom-made steel gutters 

(9.8 m × 25 cm; FormFlex Horticultural Systems, Ontario, Canada). The stem density was 

initially 3.3 stems/m2 but reduced to 2.2 stems/m2 at 5 weeks after transplanting.  Plants 

were irrigated with a commercial complete fertilizer mix (4.5N-14P-34K; CropKing, Lodi, 

OH) providing a daily leaching fraction (LF) of 30%. Irrigation frequency was adjusted as 

necessary depending on the LF. Electrical conductivity (EC) and pH of the influx and 

efflux were measured daily with a hand-held EC and pH meter (Hanna Instruments, 

Woonsocket, RI) to ensure that values were maintained within recommended ranges (2.5-

3.5 dS·m-1 and 5.8-6.3 for EC and pH, respectively) (Jones, Jr., 2008). Average ambient 

day and night temperatures of the greenhouse were set at 25 °C and 15 °C, respectively.  

Lighting treatments. The greenhouse floor area was divided into three rows 

separated by movable double layers of 6-mil (0.15 mm)-thick white polyethylene plastic 

(curtains) parallel to the rows from the upper frame of the greenhouse structure (≈3.6 m 

from the top to the floor). The plastic curtains were used to prevent light pollution between 

treatments and were withdrawn when lamps were off. Each row was comprised of four 

sections (1.8 × 2.4 m) of different treatments running in an east-to-west direction separated 

by short sections of plastic curtains hung perpendicular within each row. Each section was 
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one replicate of a treatment lighting eight single-headed plants (two side-by-side plants per 

block).  

The SL lighting treatments were started on 31 Jan. 2014 and provided an average 

DLI (at plant height) of 9.5, 13.0, 8.8, 3.8, and 3.8 mol·m‒2·d‒1 for Feb., Mar., Apr., May, 

and Jun., respectively. Three SL treatments were evaluated: 600-W OH-HPS lamps 

(HS2000; P.L. Lights, Beamsville, Ontario, Canada), ICL-LED towers [2.5-m-tall, with 

three 0.60 × 0.12 m LED zones irradiating both directions within a row; each panel had 

four red and one blue (627 and 450-nm peak wavelength, respectively), dimmable LED 

strips with 12 LEDs mounted vertically within each strip; actively air-cooled; Orbital 

Technologies Corporation, Madison, WI], or hybrid lighting using two LED interlighting 

modules [2.5-m long, with one horizontal strip of 160 red and 40 blue LEDs (alternating; 

660 and 450-nm peak wavelength, respectively) irradiating both directions within two side-

by-side plants; passively air-cooled; GreenPower LED interlighting module dr/b, Philips, 

Eindhoven, The Netherlands] (60 cm between interlights) + 400 W OH-HPS lamps 

(LU400ECO; Sylvania, Toronto, Ontario, Canada). Both LED lamp types provided a mix 

of 93% red and 7% blue. A control treatment also was included for which no SL was 

provided. 

Before starting the experiment, a light map was developed (after sunset) at three 

heights in the greenhouse to determine the maximum photosynthetic photon flux (PPF) for 

each SL treatment (no plants present). Light intensity was measured using a spherical 

quantum sensor (LI-250A; LI-COR Biosciences) calibrated against a spectroradiometer 

(EPP-2000; StellarNet Inc., Tampa, FL). The output of supplemental DLI was set to be 

equivalent for all SL treatments. Nonetheless, although ICL-LED was set to provide the 
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same light intensity along the vertical plane of the crop stand as OH-HPS (282, 180, and 

118 μmol·m‒2·s‒1 for the top, middle, and lower canopy), hybrid SL delivered more light 

to the mid-portion of the canopy (188 μmol·m‒2·s‒1; 154 + 34 μmol·m‒2·s‒1 from the 

interlights + OH-HPS, respectively), than the bottom (24 μmol·m‒2·s‒1), and to a lesser 

extent, the upper canopy (71 μmol·m‒2·s‒1). In addition, the average PPF from hybrid SL 

(197 μmol·m‒2·s‒1; 154 + 43 μmol·m‒2·s‒1 from the interlights + OH-HPS, respectively) 

was higher than that from the two other SL treatments (193 μmol·m‒2·s‒1) and thus, a 

different photoperiod had to be used in order to achieve the same supplemental DLI.  

Air temperature and solar DLI were monitored using shielded temperature probes 

(107-L) and quantum sensors (190 SB; LI-COR Biosciences, Lincoln, NE), respectively, 

interfaced to a datalogger (CR1000; Campbell Scientific, Logan, UT). Shielded 

temperature probes were placed at mid-canopy height in the center of each treatment 

replication. Quantum sensors monitored solar DLI at three heights within the greenhouse: 

1) mid-canopy height in control treatments; 2) directly above top-canopy height in control 

treatments; and 3) top of the greenhouse rafters. Measurements were made every 10 s and 

data were recorded at 10-min intervals. Average day and night air temperature and average 

solar DLI for the experimental period are reported in Figures 1 and 2, respectively. 

Data collection. Kilowatt-hours (kWh) of energy consumed were monitored using 

a built-in datalogger and energy monitors (e2 classic 2.0; Efergy U.S.A., Miami, FL) for 

each ICL-LED tower and the OH-HPS/hybrid lighting treatments, respectively. Removal 

of lower leaves and plant leaning and lowering were conducted as needed. Fruits were 

pruned to five per cluster (to maintain fruit grade/size uniformity), and clusters were 
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harvested weekly when the last fruit within a cluster was at maturation stage 6, based on 

the USDA Visual Aid TM-L-1 tomato-color standards. Fruit fresh weight (FW) and fruit 

number (FN) were recorded immediately following harvest. Upon experiment termination 

(16 Jun. 2014), node number per plant was recorded. 

The maximum photosystem II (PSII) efficiency (Fv/Fm) was estimated by 

measuring chlorophyll fluorescence using a portable pulse-modulated chlorophyll 

fluorometer (OS-30p; Opti-Sciences, Inc. Hudson, NH). Four plants per treatment 

replication were selected, and leaves to be measured were tagged, aiming to reduce leaf-

to-leaf variability among measurements recorded from leaf initiation (newest leaf ≥ 16 cm; 

L1) to pruning. Data were collected for the adaxial epidermis of the largest leaflet (typically 

the middle leaflet) within an inner-canopy and an outer-canopy leaf. Fluorescence 

measurements were collected once weekly for 6 weeks. Data were recorded at night (˃30 

min SL was turned off) to ensure dark adaptation. Tissue temperature was recorded with a 

hand-held infrared thermometer (Agry-Therm II; Everest Interscience, Tucson, AZ) 

(emissivity = 0.97); measurements were recorded on four random dates (forecasted for 

clear-skies) between 8:00 AM and 10:00 AM. Temperature data were recorded for the 

apical meristem (shoot tip), newest fully expanded leaf (8th leaf below L1), and oldest leaf 

(approx. 18th leaf below L1).  

Gas exchange measurements were performed using a portable infra-red gas 

analyzer system (CIRAS-3, PP Systems, Amesbury, MA) fitted to a 4.5-cm2 leaf chamber 

with built-in LED light sources (475, 528, 625, and 425-650-nm peak wavelengths for the 

blue, green, red, and white LEDs, respectively). Three leaf layers (LL) were selected for 
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measurements: newest fully expanded leaf (LL1) (approx. 8th leaf below L1), 13th leaf 

below L1 (LL2), and the oldest leaf (LL3) (approx. 18th leaf below L1). Net photosynthesis 

(NP) was measured using PPFs of 1000 and 200 µmol·m‒2·s‒1 in order to determine light-

saturated (Asat) and light-limited (Alim) rates of photosynthesis, respectively. Two weeks 

prior to collecting NP measurements, spectral scans for each treatment at each LL were 

collected on two clear-sky days (SL + sunlight) (Figure 14). Spectral percentages for broad-

band (BB) blue (400 to 500 nm), green (500 to 600 nm), and red (600 to 700 nm) light 

(BGR) were determined and averaged across LLs for each lighting treatment. The light 

unit in the cuvette was programed to correspond to a treatment-specific spectrum:  OH-

HPS = 24%, 39%, and 37% BGR, respectively; ICL-LED = 28%, 24%, and 48% BGR, 

respectively; hybrid = 31%, 32%, and 37% BGR, respectively; solar (control) = 33%, 34%, 

and 33% BGR, respectively. In order to reveal differences when taking photosynthesis 

measurements under a treatment-specific vs. a common spectrum across samples, Asat and 

Alim were measured first, using a treatment-specific spectrum followed by measurements 

under solar spectrum. The reference CO2 concentration, leaf temperature, relative humidity 

(RH), and flow rate inside the chamber were 400 µmol·mol–1, 25 °C, approx. 60%, and 

400 mL·min–1, respectively. For each LL within a given treatment, six leaves from different 

plants were randomly selected; NP was measured on the largest leaflet within a leaf. 

Measurements were conducted between 0800 and 1500 HR from 5 to 9 Apr. 2014; during 

this period, average solar DLI directly above plant canopy was 10.3 mol·m‒2·d‒1. 

Survey photosynthesis (A), stomatal conductance (gs), transpiration (E), and leaf 

temperature were measured on overcast and clear-sky days to compare physiological 

responses under contrasting solar light intensities. As for NP, six leaves at each LL from 
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different plants within a treatment were randomly selected and measured on the largest 

leaflet within a leaf. Measurements were conducted under ambient greenhouse temperature 

and RH; reference CO2 concentration and flow rate inside the chamber were 400 

µmol·mol–1 and 400 mL·min–1, respectively. Data were collected between 0800 and 1200 

HR (while SL was in use) on 15-17 (overcast) and 19-22 (clear-sky) Apr. 2014; during this 

period, average solar DLI directly above plant canopy was 6.5 and 17.8 mol·m‒2·d‒1 for 

overcast and clear-sky days, respectively.  

Following NP and survey measurements, photosynthetic light-response curves 

(LRC) were measured under seven different PPF levels (1000, 800, 500, 350, 200, 75, and 

0 µmol·m‒2·s‒1). The light unit in the cuvette was programed to provide 33%, 34%, and 

33% BGR. The reference CO2 concentration, leaf temperature, RH, and flow rate inside 

the chamber were 400±5 µmol·mol–1, 26 °C, 60%, and 400 mL·min–1, respectively. Data 

were fitted to the following model equation: 

𝐴net = −𝑅𝑑 +  
θ × 𝑃𝑃𝐹 + 𝐴max − √(θ × 𝑃𝑃𝐹 + 𝐴max)2 − 4θ × 𝑃𝑃𝐹 × 𝑘 × 𝐴max

2𝑘
 

Where Anet is the net CO2 assimilation rate, Rd is dark respiration, θ is the quantum-

use efficiency, PPF is the incident irradiance, Amax is the maximum gross CO2 assimilation 

(light-saturated net CO2 assimilation + Rd), and k is the curvature factor describing the 

convexity of the curve (ranging from 0 to 1). Light-compensation point (LCP) and light-

saturation point (LSP) were calculated as the PPF-associated photosynthetic rates when 

Anet = 0 and Anet = Amax × 0.90, respectively (Jurik et al., 1988). 



126 

 

 
 

Experimental design and statistical analysis. Harvest and growth parameters were 

analyzed according to a randomized complete block (RCB) design.  For all physiological 

responses [gas exchange (except data for LRCs), fluorescence, and tissue temperature], 

data were analyzed as an RCB design with four lighting treatments × three LLs as factorial 

levels. A non-rectangular hyperbola was used to fit the LRC data using the non-linear 

fitting procedure of SAS (version 9.2; SAS Institute, Cary, NC). All results were subjected 

to analysis of variance and the general lineal model procedure of SAS.  

Results 

Fruit yield, plant growth, and energy consumption. Supplemental lighting 

increased total fruit production regardless of the light source or lighting position within the 

canopy by at least 33% compared to unsupplemented controls (Table 7). However, plants 

under ICL-LED produced clusters similar in FW to those of plants grown without SL (570 

vs. 490 g, respectively). Conversely, clusters of plants grown under OH-HPS or hybrid SL 

were 27% or 29% larger than those developed under control, respectively. Although the 

increase in fruit number from SL ranged from 16% up to 23%, the number of fruits per 

plant produced under hybrid SL was not statistically different from that of plants grown 

without SL (108 vs. 93 fruits). A significantly higher number of nodes was recorded for 

plants grown under OH-HPS compared to those with ICL-LED or without SL. Harvest 

duration was not different among treatments and ranged from 50 to 58 days.  

Daily electrical energy consumption is shown in Figure 15. The average energy 

consumed during the experiment was 33, 22, and 13 kWh/d for the OH-HPS, hybrid, and 

ICL-LED SL treatments, respectively, and they were all significantly different from one 
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another. Only 38% of the total energy consumed by the hybrid SL treatment was used by 

the LED interlights; the remaining 62% of energy was consumed by the OH-HPS lamps. 

Tissue temperature and chlorophyll fluorescence. On 26 Feb. 2014, the tissue 

temperature was significantly lower for the shoot tip and the newest fully expanded leaf of 

plants grown without SL compared to those grown with SL (Table 8). Nevertheless, for the 

rest of the measured dates, although tissue temperature differed up to 1.5 °C among 

treatments, data were not significantly different for any of the plant parts measured. There 

was no effect of lighting treatment on the efficiency of PSII as estimated by Fv/Fm (Figure 

16), indicating no stress symptoms from initial leaf development until leaf-pruning. 

Net photosynthesis. No significant differences occurred when NP was measured 

using a treatment-specific- or under-solar spectrum (data not shown). Thus, data for Asat 

and Alim under different spectra were pooled within treatments. In general, the light-

saturated and light-limited rates of photosynthesis were higher for plants grown under SL 

compared to those grown without SL, regardless of the treatment used (Table 9). However, 

for LL3, Asat was not significantly different for leaves of plants grown under OH-HPS or 

those grown without SL (11.0 vs. 8.6 µmol CO2·m
‒2·s‒1). For all treatments, Asat and Alim 

generally declined from the top (LL1) to the bottom (LL3) of the canopy.  

Survey gas exchange measurements. Overall, A, gs, and leaf temperature were 

higher in clear-sky than in overcast days, regardless of the treatment or leaf layer, indicating 

higher photosynthetic activity under high solar irradiance (Table 10).  
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Clear-sky days: A was 80% or 58% higher for plants grown with hybrid or ICL-

LED SL, respectively, compared to those grown under control. While OH-HPS resulted in 

the same A as that of either LED-containing treatments, it was also statistically similar to 

that of plants grown without SL (14.3 vs. 9.9 µmol CO2·m
‒2·s‒1, respectively). Across 

treatments, A decreased from the top (21.0 µmol CO2·m
‒2·s‒1) to the bottom of the canopy 

by 31% and 62% for LL2 and LL3, respectively. 

Stomatal conductance was 40% higher for leaves of plants grown under OH-HPS 

compared to those grown without SL (Table 10). Also, gs decreased by 24% and 50% from 

that of LL1 (749 mmol·m‒2·s‒1) to LL2 and LL3, respectively. There were no significant 

differences in E or leaf temperature among treatments or LLs. However, the average leaf 

temperature across LLs was 1.2 °C warmer under OH-HPS than for the control, which, 

although not statistically significant, may be of biological relevance.  

Overcast days: With few exceptions, A was highest for leaves in LL1 measured 

under OH-HPS SL (Table 10). However, only for OH-HPS did A significantly decrease 

from the top (LL1) to the bottom (LL3) of the canopy. Moreover, A measured across 

treatments was generally similar within LLs. Stomatal conductance and leaf temperature 

did not differ significantly among treatments or LLs. For all treatments, E decreased in 

proportion to canopy depth.  

Photosynthetic LRCs. Based on the shape of the LRCs, upper leaves had a similar 

photosynthetic capacity regardless of treatment (Figure 17). However, for LL2, leaves 

grown without SL had the lowest maximum Anet level. A clear treatment differentiation of 

the LRCs is shown for LL3. The estimated parameters from photosynthetic LRCs are 
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shown in Table 11. Across treatments, Rd was higher in LL2 than LL3, but equal to that 

measured for LL1. The photosynthetic θ was similar across LLs for plants grown under 

ICL-LED or hybrid SL, demonstrating that the proportion of absorbed light used in 

photosynthesis remains constant along the vertical plane of the high-wire crop with ICL 

SL. In contrast, θ was lower in LL3 compared to the upper canopy for plants grown under 

OH-HPS or without SL. Across LLs, the k of the LRC was slightly but significantly higher 

for leaves grown without SL compared to those developed under hybrid SL, indicating a 

more abrupt transition from light limitation to light saturation when plants are grown 

without SL. With ICL-LED or hybrid SL, Amax was not different among LLs and ranged 

from 28 to 24 or 32 to 24 µmol CO2·m
‒2·s‒1, respectively, suggesting that the 

photosynthetic capacity of leaves was similar across LLs. Similarly, Amax for LL1 and LL2 

were not different within treatments, but were 48% or 60% lower in LL3 compared to LL1 

for leaves grown under OH-HPS or without SL, respectively. 

The calculated LCP of photosynthesis was not different across treatments or LLs 

(Table 12). In contrast, the LSP for plants grown under OH-HPS or without SL decreased 

significantly in the lower canopy (LL3) compared to LL1, whereas plants grown with 

hybrid or ICL-LED SL maintained equivalent LSP across LLs that ranged from 1338 to 

943 µmol·m‒2·s‒1. 

Discussion 

SL increases fruit production. Results from this study reinforce the findings 

presented in Chapter 3, which indicate that SL generally increases fruit yield (size, weight, 

and/or number) under light-limiting conditions, compared to unsupplemented controls, 
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regardless of the treatment used. It is well stablished that SL is needed to maintain or 

increase fruit production in light-limited environments, especially for high-light-requiring 

crops, such as tomato (Blacquiere and Spaargen, 2003; Dueck et al., 2007; Gajc-Wolska et 

al., 2013). Moreover, if no other factors are limiting, optimal plant growth can be achieved 

with adequate PPF or optimal DLI. In our study, supplemental DLI was kept constant 

across treatments, which probably accounts for some of the similarities in plant growth and 

yield measured among SL treatments. It is likely that the ICL-LED or hybrid treatments 

did not increase fruit yield relative to OH-HPS because they did not provide more light. 

Although hybrid lighting has been shown to improve light-use efficiency within 

greenhouse crops (yield per unit of electric energy consumption of lighting), increase fruit 

yield and percentage of first-class fruit, and extend the post‐harvest shelf life of produce 

compared to OH SL (Gunnlaugsson and Adalsteinsson; 2006; Hovi et al., 2004; Hovi-

Pekkanen et al., 2006; Hovi-Pekkanen and Tahvonen, 2008; Pettersen et al., 2010), most 

studies reporting increases in crop yield with hybrid lighting have used HPS lamps 

mounted OH and within the canopy (as with ICL). In contrast, studies comparing hybrid 

SL using OH-HPS lamps + ICL-fluorescent or -LED lamps to OH-HPS lighting alone have 

shown either negative (Heuvelink et al., 2006), minimal (Hao et al., 2012), or no significant 

increase in fruit yield from hybrid lighting (Deram et al., 2014; Dueck et al., 2012; 

Trouwborst et al., 2010). It is likely that increases in fruit yield when using 100% HPS-

hybrid lighting are, in part, the result of the additional thermal energy irradiated by ICL-

HPS, which could accelerate fruit-maturation rate and, thus, reduce time to harvest. 

Conversely, if ICL does not irradiate much heat, as in the case of the LED lamps used in 

our study, hybrid lighting may not increase yield of greenhouse-grown crops. 
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Tissue temperature. Although continuous measurements of tissue temperature 

allow for a better understanding of radiant-energy effects on plant growth and 

development, surface-temperature measurements of specific plant parts served as a 

baseline to quantify changes in tissue temperature caused by SL. In general, tissue 

temperature was not significantly different among treatments, but did show slight variances 

of up to 1.5 °C. These variations in tissue temperature, although not statistically significant, 

may still have an effect on plant growth, as higher temperatures increase sink strength of 

the fruits and are known to accelerate developmental processes.  

Some studies have suggested that temperature, light, and their interaction are 

among the most critical environmental parameters affecting tomato growth and 

development (Adams et al., 2001; Uzun, 2006). Thus, sub- or supra-optimal temperatures 

have great potential to affect several developmental processes in tomato. Bonan (2008) 

stated that at 90% RH, leaf temperature can be up to 2 °C higher than ambient air 

temperature, whereas at 55% RH, leaf temperature is similar to ambient. During our study, 

the average daytime RH was 52% and the maximum ambient daytime temperature 

measured at mid-canopy height ranged from 27.9 to 29.3°C across treatments. The 

moderate RH during the experiment, in addition to the maximum ambient temperatures 

being <30-32 °C [upper threshold temperature for optimal tomato growth and quality 

(Dumas et al., 2003; Jones 2008)], indicate that tissue temperature was not a limiting factor 

for plant growth. Moreover, the minor changes in tissue temperature among treatments 

suggest that growth and physiological responses could not be attributed entirely to tissue-

temperature differences resulting from SL.  
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The resulting thermal energy created from absorption of direct sunlight also may 

play a significant role in canopy-tissue temperature. Others have shown that with OH sole-

source lighting, air and tissue temperature can be cooler in the understory of a plant canopy 

compared to the top (Frantz et al., 2000; Kitaya et al., 1998). Although in our study, OH 

SL did not affect tissue temperature, the shoot tip was generally warmer than leaves lower 

in the canopy. The similarities in tissue temperature among treatments, coupled with 

differences in temperature between the top and bottom of the canopy, suggest that direct 

radiation from OH solar light to the upper canopy rather than SL was responsible for 

changes in tissue temperature within the canopy. 

Chlorophyll fluorescence. Chlorophyll fluorescence was used to determine whether 

onset of leaf senescence was associated with plant responses to changing light conditions 

in the growth environment (i.e. self or mutual shading) (Barreiro et al., 1992; Brouwer et 

al., 2012). Researchers have shown that a negative carbon balance occurs when high-light-

acclimated leaves are exposed to low-light conditions, turning leaves from photosynthethic 

sources to sinks and triggering premature leaf senescence (Boonman et al. 2006; 

Veierskov, 1987). Frantz et al. (2000) reported a premature decline in single-leaf 

fluorescence measurements from OH-lighted- compared to ICL-lighted-cowpea in a 

growth chamber. The authors attributed their results to changes over time in: 1) spectral 

energy distribution caused by preferential absorption of specific wavelengths in the upper 

canopy (and subsequent filtered irradiance in the understory); and 2) decline in light 

intensity when additional leaf layers form on top of the upper canopy (acclimated to direct 

light). It is likely that in our study, plants gown under OH-HPS lamps or without SL 
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experienced similar changes over time in the radiation environment as those previously 

described. However, our findings showed no evidence of premature leaf senescence for 

any of the treatments evaluated. It is possible that even with SL, greenhouse-grown plants 

are acclimated to changes in irradiance due to the ever-changing distribution of solar light, 

from which plant canopies are irradiated from all angles, depending on the time of day and 

leaf positions within the canopy. In addition, the spectra, intensity, and directionality of 

solar light changes constantly in the greenhouse. Conversely, plants grown in controlled 

environments tend not to experience such sudden environmental changes. Therefore, it is 

likely that some physiological responses (i.e., leaf senescence) of greenhouse crops are not 

affected by different SL sources or positions within the canopy to the same extent as they 

are in controlled environments with sole-source lighting because greenhouse-grown plants 

have grown adapted to changes in irradiances. 

Moreover, weekly removal of lower leaves is a common practice for commercial 

tomato production in greenhouses, especially after harvest begins (Hogewoning et al., 

2007). Thus, it is likely that leaf senescence does not occur during the life cycle of a tomato 

leaf as grown in commercial greenhouses (approx. 8-10 weeks). However, if leaves were 

to be kept on the plant longer, visual and measurable signs of leaf senescence caused by 

changes in the radiation environment from OH lighting (supplemental or solar) would 

likely occur in lower, older leaves. 

Net Photosynthesis. Wang et al. (2014) described light intensity and distribution as 

a fundamental factor affecting photoassimilate translocation in greenhouse-grown crops. 

Nishizawa et al. (2009) reported that for tomato, the percentage of carbon exported from 
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source leaves is not affected by light intensity. However, the amount of carbon translocated 

per unit leaf area depends on the carbon pool, which is contingent on light intensity, leaf 

photosynthetic capacity, and/or leaf anatomy (Grodzinski et al., 1999). In our study, hybrid 

lighting allowed lower leaves to maintain a higher photosynthetic capacity than that 

measured for plants grown with OH lighting (solar or HPS-SL), presumably by increasing 

light absorption and distribution within the mid- and lower-canopy. More leaves with 

positive net photosynthetic rates result in higher net canopy assimilation, which has been 

widely correlated with the light-intensity profile within the canopy, and can sometimes 

improve crop productivity (Frantz et al., 2000; Gonzalez-Real et al., 2007; Ninemets, 2007; 

Stasiak et al., 1998). Li et al. (2014) saw similar effects on tomatoes grown in a greenhouse 

covered with diffuse glass. They reported that a more uniform vertical-light distribution 

from solar light dispersion increased calculated crop photosynthesis by up to 7%. 

Moreover, the top-to-bottom decline in NP measured for plants grown under OH-HPS or 

without SL is in agreement with studies reporting lower photosynthetic rates in the lower 

canopy of tobacco (Nicotiana tabacum L.) (Boonman et al., 2006) or high-wire tomato (Xu 

et al., 1997) grown under OH-HPS SL. 

The underlying cause for the higher Asat;LL3 in hybrid SL compared to ICL-LED, 

and the similarities in Asat;LL3 between ICL-LED and OH-HPS (Table 9) may be associated 

with one or a combination of the following: 

1) Long-term developmental effects caused by different PPFs along the vertical 

plane of the crop stand: Although ICL-LED or hybrid SL increased light absorption within 

the canopy relative to OH lighting (SL or solar), the vertical light distribution between ICL-

LED and hybrid SL were different. Hybrid SL delivered more light to the mid portion of 
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the canopy than the upper or lower canopy. Conversely, for comparative analysis, the ICL-

LED treatment provided the same supplemental PPF along the vertical plane as did OH-

HPS SL (without plant tissue present). Any long-term effects caused by differences in 

vertical light distribution between hybrid vs. ICL-LED could account for differences in Asat 

in the lower canopy. 

2) Spectral differences among treatments: As described by others, green light can 

penetrate deeper into the canopy than red and blue, and thus, can drive photosynthesis more 

efficiently when used to supplement the broad solar spectrum (Kim et al., 2004; Lu et al., 

2012; Terashima et al., 2009). Moreover, depending on species, the relative quantum 

efficiency (RQE) of absorbed BB green light can be comparable with that of red (RQE of 

red is 5%-30% more efficient than green), and higher than that of blue (RQE of green can 

be up to 20% higher than blue) (Inada, 1976; McCree, 1972). McCree (1972) found that 

for chamber-grown tomato, the RQE of BB green light was 18% more efficient than that 

of BB blue light. Therefore, a higher percentage of green relative to blue light could 

potentially enhance net carbon assimilation in tomato, especially when applied from above.  

In our study, plants grown under OH-HPS lamps received more BB green (39%) than BB 

blue light (24%) within the PAR spectrum, whereas plants grown with ICL-LED light 

received similar percentages of BB green and blue light (24% and 28% from PAR, 

respectively). Although plants grown with ICL-LED had higher light absorption (and 

potentially, an improved light distribution) compared to OH-HPS SL, the higher percentage 

of BB green light in OH-HPS could have promoted plant photosynthesis by penetrating 

deeper in the canopy and therefore, may explain the similarities in Asat and Alim found 

between the two SL treatments. 
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3) Solar blocking from SL infrastructure: Although ICL aims to reduce mutual 

shading by increasing the total amount of light delivered to the lower portion of the canopy, 

depending on time of day and size of the fixture, ICL fixtures can potentially block solar 

light from reaching the crop. It is likely that the shading factor from ICL-LED vertical 

towers (<10% measured at solar noon) reduced the total light intensity received by the 

plants during mornings and afternoons and further affected their Asat and Alim responses. 

Survey gas exchange. Gas exchange at the single-leaf level can be measured using 

imposed environmental conditions typically selected to correspond with set-point 

environmental parameters for plant growth. However, response measurements at imposed 

conditions do not provide enough information to understand the in-situ physiological 

performance of plants, especially when grown in semi-controlled environments like 

greenhouses, with frequent fluctuations of light, temperature, and RH. On the other hand, 

survey measurements at ambient conditions portray real-time physiological activity and 

can further explain plant responses to lighting treatments.  

Similar to NP under light-saturating and light-limited irradiances, A, gs, and leaf 

temperature were higher during clear-sky than overcast days. Hao and Papadopoulos 

(1999) saw similar effects for cucumber plants grown under different greenhouse-covering 

materials (glass vs. acrylic vs. double inflated polyethylene film) with or without SL. 

Nonetheless, we found that the magnitude of the response for E was not different under 

contrasting solar light intensities. The rate of E can be a function of temperature, RH, CO2 

concentration, light intensity, and water availability, among others. Therefore, the fact that 

E was not different under contrasting solar light intensities suggests that other 



137 

 

 
 

environmental parameters may have contrasting effects on E. Because changes in leaf E 

can affect nutrient uptake, leaf water potential, and tissue-temperature regulation, the fact 

that higher irradiances did not increase leaf E could be of particular interest for nutrient 

and water-conservation strategies (Holbrook, 2010). None of the parameters measured for 

survey gas exchange showed a SL treatment response. It is likely that the similar responses 

of survey gas exchange measured across SL treatments are due to some of the long-term 

physiological effects previously described in the NP discussion.  

Depending on prevailing environmental conditions, stomates are one factor that 

regulate gas exchange in and out of leaves by responding to signals that control water loss 

and CO2 uptake. Several environmental parameters are known to affect stomatal 

conductance, including but not limited to light quality and intensity, RH, CO2 levels, and 

ambient temperature (Ehleringer and Sandquist, 2010). Studies indicate that light signaling 

plays a key role in controlling stomatal movement by coordinating light-energy conversion, 

membrane ion transport, and metabolic activity in guard cells (O’Carrigan et al., 2014). 

Furthermore, blue light is known to stimulate stomatal opening (Lee et al., 2007; 

Voskresenskaya and Polyakov, 1975; Zeiger, 2010), whereas short exposure to green light 

can reverse blue- light-induced stomatal responses (Farquhar and Sharkey, 1982; Frechilla 

et al., 2000). In our study, each SL treatment affected light quality within the foliar canopy 

differently, either by providing a lamp-specific emission spectrum or by possibly 

modifying canopy architecture and/or the degree of canopy closure and, thus, changing the 

spectral energy distribution in the lower canopy. However, because some days solar light 

contributed a large percentage of the total DLI received by plants (from 47% up to 81% 

during the course of the experiment; as calculated from the monthly average of solar DLI 
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measured above canopy height), the lack of differences in gs among SL treatments could 

suggest that spectral responses for gs may be saturated at high irradiances from broad 

spectrum (such as in the case of sunlight). 

Higher gs promotes CO2 diffusion into the leaf and in some cases correlates well 

with net photosynthesis. Although A and gs were affected by lighting treatment during 

clear-sky days, the different trends in response to the treatments, in addition to the lack of 

gs response during overcast conditions, may indicate that CO2 diffusion through stomata 

was not responsible for the changes in A measured in our study. Instead, given that 

supplemental DLI was constant when survey gas exchange data were collected, the distinct 

reduction for most responses from clear-sky days compared to overcast conditions suggests 

that gas exchange measurements were largely affected by solar radiation (and most likely 

by the inherent changes in ambient temperature), and, to a lesser extent, by SL. Because gs 

is known to increase at higher ambient temperatures (Ehleringer and Sandquist; 2010), the 

significant LL effect occurring on clear-sky days may indicate a correlation of gs with 

changes in ambient air temperature within the canopy. In our study, daytime ambient 

greenhouse air temperature measured at mid-canopy height (LL2) was ~1 °C warmer under 

OH-HPS or hybrid SL compared to ICL-LED or no SL (Figure 12). However, no 

significant SL treatment differences were found for any of the survey gas exchange 

parameters evaluated. The similarities of survey gas exchange responses among SL 

treatments may suggest that thermal radiation from direct sunlight, rather than from the 

long-wave thermal radiation commonly given off by OH-HPS lamps, affected the LL 

treatment differences recorded under ambient environmental conditions.  
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Light-response curves. LRCs and their estimated parameters further explain how 

properties of the photosynthetic apparatus change as a function of available light. The 

negative portion of a LRC, known as Rd, is often referred to as ‘negative CO2 assimilation’ 

because rather than being fixed, CO2 is given off by the plant. Typically, OH SL results in 

a gradual top-to-bottom canopy decline in Rd, most likely as an acclimation response to 

light-limited conditions, reducing metabolic activity in the lower canopy and ultimately 

leading to the reallocation of photoassimilates from lower leaves to growing organs 

(Pettersen et al., 2010). In contrast, hybrid lighting has been reported to increase respiration 

rates in lower leaves of greenhouse-grown cucumber (Trouwborst et al., 2010; Pettersen et 

al., 2010). Trouwborst et al. (2011) proposed that higher Rd of lower leaves grown under 

hybrid SL using LEDs can be correlated to higher Amax due to either a photosynthetic 

‘overcapacity’ that most likely increases the photosynthate availability for Rd, leading to a 

higher leaf mass per area (LMA), or in response to the percentage of blue light, as more 

blue increases LMA and Amax (Hogewoning et al., 2010). Similarly, McDonald (2003) 

stated that leaves acclimated to high-light environments have greater Rd in order to sustain 

the metabolic requirements associated with increased organelle activity from higher 

photosynthetic capacity (i.e. Amax and LSP). Nevertheless, higher Rd could lead to a 

decrease in net canopy assimilation, and potentially affect plant productivity. In our study, 

Rd was unaffected by lighting treatment but did show that, across treatments, LL2 had 

higher respiration rates than LL3. Similarly, Li et al. (2014) evaluated hazing as an 

approach to increase light-absorption uniformity within a tomato canopy, and found that 

diffusion had a significant effect on Rd across canopy layers, but did not affect any of the 

estimated parameters from the LRCs, including Rd.  
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The photosynthetic θ represents the slope of the linear portion of a LRC and is 

typically defined as the increase in photosynthesis per unit increase of light absorbed. 

Researchers have shown that θ does not differ between leaves from sun- or shade-adapted 

plants having the same photosynthetic pathway (Björkman and Demmig, 1987; Boardman, 

1977). Because plants grown under SL vs. without SL can be expected to behave similarly 

as sun vs. shade-adapted plants, we anticipated similar θ across treatments and LLs. 

However, we found that θ was lowest in LL3 when plants were grown under OH-HPS or 

without SL. Hogewoning et al. (2012) reported that, depending on the acclimation to light-

limited or light-saturated environments, light quality has different effects on leaf θ. Thus, 

we attribute much of the variation in θ to the differences in spectral distribution among 

treatments and to the light-limited conditions in the lower canopy of the OH-HPS and 

control treatments. 

The convexity of the LRC (k) is a qualitative measurement of the photochemical 

efficiency of leaves. Ögren (1993) reported that k is determined by the position of the 

inflection point between the light-limited electron transport rate and the CO2-limited 

carboxylation capacity of Rubisco. We found that across LLs, k was higher for leaves 

grown without SL compared to that with hybrid SL. Higher k indicates a more abrupt 

transition from light limitation to light saturation and tends to be representative of low-

light- adapted leaves (Leverenz; 1987; Ögren, 1993).  

In our study, the LRCs show that Amax remained constant along the vertical plane 

of the crop stand when plants were grown with ICL-LED or hybrid SL. Others have shown 

that hybrid SL can maintain higher Amax in lower leaves of high-wire crops (Dueck et al., 

2012; Pettersen et al., 2010; Trouwborst et al., 2010; Trouwborst et al., 2011). Pettersen et 
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al. (2010) reported that plants grown with hybrid SL experience fewer changes in light 

intensity and quality over time compared to plants grown with OH SL, therefore, hybrid 

SL can reduce the top-to-bottom decline in Amax. Moreover, Trouwborst (2011) concluded 

that ICL can increase crop photosynthesis either by increasing light absorption within the 

canopy or by providing a more homogenous vertical light distribution to plants. Our results 

further support the conclusion that ICL can improve the radiation environment for high-

wire crop production compared to OH SL by increasing the overall light absorption from 

interior leaves and improving light distribution within the canopy. 

Light compensation is the light level at which CO2 uptake balances CO2 release, 

and indicates the point at which further increases in irradiance promote net photosynthesis. 

Light saturation is the point where irradiance no longer increases photosynthesis, indicating 

that factors other than light (e.g., rubisco activity, CO2 concentration, or the metabolism of 

triose phosphates) have become limiting (Ehleringer and Sandquist, 2010). With traditional 

OH lighting, middle and lower leaves within a crop foliar canopy may at times be below 

the LCP of photosynthesis due to mutual shading, while the upper canopy may approach 

light saturation from incident direct light. It is well known that both LCP and LSP for high-

light-adapted leaves are higher than those for plants acclimated to low light, indicative of 

their capacity to convert more absorbed light energy into photosynthetic products 

(Ehleringer and Sandquist, 2010; Gu et al., 2008). Therefore, a higher LSP in the lower 

leaves of plants grown with ICL-LED or hybrid SL compared to those grown under OH 

lighting (SL or solar) is not surprising, considering that ICL increases light absorption and 

improves the vertical light distribution within the canopy.  
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Conclusions 

Based on our results, A, θ, Amax, and LSP are good indicators of how ICL improves 

light absorption within a high-wire tomato canopy by diminishing the top-to-bottom 

decline in photosynthetic activity generally found with OH lighting (SL or solar). Although 

we found a general increase in lower-leaf photosynthetic capacity from using ICL-LED or 

hybrid SL, compared to OH-HPS or no SL, no yield differences were recorded among the 

SL treatments. A possible limitation to yield increases with ICL is the preferential 

partitioning of photoassimilates to non-harvested, vegetative plant parts (i.e., stems, leaves, 

roots). Trouwborst et al. (2010) compared total plant production of greenhouse-grown 

cucumber using hybrid SL (ICL-LED + OH-HPS) vs. OH-HPS lamps and found that LMA 

and dry mass allocation to leaves were significantly higher under hybrid SL. Furthermore, 

the authors concluded that, although most photosynthetic parameters were significantly 

increased in the lower canopy, hybrid SL did not increase total biomass or fruit production 

relative to OH-HPS SL. Another alternative that may explain the similarities in overall 

plant growth, yield, and physiological responses measured in our study is that all SL 

treatments provided the same supplemental DLI. Therefore, similar yield increases relative 

to control are not necessarily surprising.  

Our results further support the conclusion that higher source activity does not 

always lead to yield increases. However, as shown in this study, replacing OH-HPS lamps 

with ICL or hybrid SL using LEDs has great potential for energy savings. Given that OH-

LED SL has not yet been proven to increase or maintain similar yields relative to OH-HPS 

(Deram et al., 2014; Dueck et al., 2012; Gajc-Wolska et al., 2013), ICL or hybrid SL with 
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LEDs can be considered a promising SL alternative for high-wire greenhouse vegetable 

production. Further research needs to evaluate different light-distribution architectures, 

lamp densities, spectral composition, and wavelength efficacies at different stages of crop 

development to achieve optimal productivity and ultimately enable the use of ICL with 

LEDs for greenhouse vegetable production. 
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Table 7. Yield and growth parameters for tomatoes grown in a greenhouse under one of 

four lighting treatments during a winter-to-summer production cycle in 2014.z 

Treatmentsy 
Total fruit  

FW (g)x 

Cluster  

weight (g) 

Fruit harvested 

(No.) 

Nodes 

(No.) 

Harvest  

period (d) 

OH-HPS 15521 aw 622 a 114 a 58 a 58 a 

ICL-LED 14268 a 570 ab 114 a 54 bc 55 a 

Hybrid 14864 a 633 a 108 ab 56 ab 52 a 

Control 10753 b 490 b 93 b 51 c 50 a 
zValues represent results for two side-by-side plants.  
ySolar + supplemental lighting from overhead high-pressure sodium (OH-HPS) lamps; 

intracanopy light-emitting diodes (ICL-LED); hybrid lighting (OH-HPS + ICL-LED); or 

unsupplemented controls. 
xFW = fresh weight.  
wMeans within columns followed by the same letter are not different based on the least 

significant difference test (P ≤ 0.05). 
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Table 8. Surface tissue temperature of tomatoes grown in a greenhouse under one of four 

lighting treatments during a winter-to-summer production cycle in 2014.z 

Treatmenty Temperature (°C)x 

2/26w 4/1 4/30 5/21 

Apex (shoot tip)     

OH-HPS 19.1 av 23.9 ab 27.4 a 26.4 a 

ICL-LED 19.3 a 23.2 ab 26.5 a 26.4 a 

Hybrid 18.8 a 24.1 a 26.7 a 26.5 a 

Control 17.4 b 24.0 ab 26.3 a 26.1 a 

FEL     

OH-HPS 16.9 a 23.3 a 24.3 a 25.4 a 

ICL-LED 16.6 a 23.4 a 24.5 a 26.0 a 

Hybrid 16.6 a 23.2 a 23.2 a 24.5 a 

Control 15.6 b 23.4 a 23.5 a 24.8 a 

Oldest leaf     

OH-HPS - 22.7 ab 22.1 a 23.3 a 

ICL-LED - 23.3 a 23.0 a 23.7 a 

Hybrid - 22.6 ab 22.2 a 23.4 a 

Control - 22.2 a 22.9 a 23.4 a 
zData were recorded for the apical meristem, newest fully expanded leaf (FEL); 8th leaf 

below newest leaf ≥ 16 cm;(L1), and/or oldest leaf (approx. 18th leaf below L1) using a 

hand-held infrared thermometer.  
ySolar + supplemental lighting from overhead high-pressure sodium (OH-HPS) lamps; 

intracanopy light-emitting diodes (ICL-LED); hybrid lighting (OH-HPS + ICL-LED); or 

unsupplemented controls. 
xAll temperature measurements had a standard error of ± 0.1 °C. 
wMeasurements were recorded on four random dates (forecasted for clear-skies) between 

8:00 AM and 10:00 AM. 
vFor each plant part, means within columns followed by the same letter are not different 

based on the least significant difference test (P ≤ 0.05). 
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Table 9. Light-saturated (Asat) and light-limited (Alim) photosynthesis for individual tomato 

leaves from plants grown in a greenhouse under one of four lighting treatments.z 

Treatmenty Asat (µmol·m‒2·s‒1)   Alim (µmol·m‒2·s‒1) 

LL1 LL2 LL3      LL1 LL2 LL3 

OH-HPS 26.6 aw 17.3 b 11.0 de  7.0 av  

7.7 au 6.9 b 6.2 c 
ICL-LED 24.4 a 18.4 b 12.9 d  7.0 a  

Hybrid 26.2 a 20.0 b 16.6 bc  7.5 a  

Control 18.9 b 12.3 cde 8.6 e  6.2 b  

          

Treatment  ***   *** 

Leaf layer (LL)x  ***   *** 

Treatment × LL   ***     NS 
zAsat and Alim were measured using a photosynthetic photon flux of 1000 or 200 µmol·m‒

2·s‒1, respectively. 
ySolar + supplemental lighting from overhead high-pressure sodium (OH-HPS) lamps; 

intracanopy light-emitting diodes (ICL-LED); hybrid lighting (OH-HPS + ICL-LED); or 

unsupplemented controls. 
xTop (LL1), middle (LL2), and bottom (LL3) leaves. 
wMeans followed by the same letter are not different based on the least significant 

difference test (P ≤ 0.05). 
vMeans within columns followed by the same letter are not different based on the least 

significant difference test (P ≤ 0.05). 
uMeans within rows followed by the same letter are not different based on the least 

significant difference test (P ≤ 0.05). 
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Table 10. Photosynthesis (A), stomatal conductance (gS), transpiration (E), and leaf temperature (LT) measured at ambient 

environmental conditions for individual tomato leaves from plants grown in a greenhouse under one of four lighting treatments.z 

Treatmenty   A (µmol·m‒2·s‒1)   gs (mmol· m‒2·s‒1)   E (mmol·m‒2·s‒1) LT 

(°C)      LL1 LL2 LL3     LL1 LL2 LL3   LL1 LL2 LL3 

Clear-sky                

OH-HPS  14.3 abw 
 

21.0 au     14.4 b     7.9 c 

 

 768.4 a 

748.5 a 571.3 ab 375.8 b 

  5.3  28.0 

ICL-LED  15.6 a  493.8 ab   4.2  27.3 

Hybrid  17.9 a  558.8 ab   4.5  27.5 

Control  9.9 b  469.7 b   3.9  26.8 

                

Treatment  ***  **   NS  NS 

Leaf layer (LL)x  ***  ***   NS  NS 

Treatment × LL  NS  NS   NS  NS 

                

Overcast                

OH-HPS  8.0 av 4.2 abcd 0.5 de  294.3  

4.6 a 3.5 ab 3.1 b 

26.4 

26.4 

26.5 

26.1 

ICL-LED  5.3 abc 3.7 bcde 1.9 cde  269.9  

Hybrid  5.2 abc 2.9 bcde 2.2 cde  354.8  

Control  1.5 cde 1.8 cde 0.2 e  232.4  

                

Treatment  ***  NS   NS  NS 

LL  ***  NS   *  NS 

Treatment × LL   *   NS     NS   NS 
zData were collected between 0800 and 1200 HR on Apr. 15-17 and Apr. 19-22, 2014; during this period, the average solar daily 

light integral directly above plant canopy was 6.5 and 17.8 mol·m‒2·d‒1 for overcast and clear-sky days, respectively.  
ySolar + supplemental lighting from overhead high-pressure sodium (OH-HPS) lamps; intracanopy light-emitting diodes (ICL-LED); 

hybrid lighting (OH-HPS + ICL-LED); or unsupplemented controls. 
xTop (LL1), middle (LL2), or bottom (LL3) leaves. 

wMeans within column followed by the same letter are not different based on the least significant difference test (P ≤ 0.05). 
vMeans followed by the same letter are not different based on the least significant difference test (P ≤ 0.05). 
uMeans within row followed by the same letter are not different based on the least significant difference test (P ≤ 0.05). 

  1
5
5
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Table 11. Photosynthetic parameters estimated from light-response curves measured in three leaf layers (LL) from tomato plants 

grown in a greenhouse under one of four lighting treatments.z 

Treatment 

(T)y 

  

Dark respiration 

(µmol·m‒2·s‒1) 

  Quantum use efficiency  
  Convexity 

(k) 

  Amax  

 (mol CO2 ·mol photon‒1)  (µmol·m‒2·s‒1)x 

LL1 LL2 LL3   LL1 LL2 LL3     LL1 LL2 LL3 

OH-HPS  

0.7 abw 1.2 a 0.6 b 

 0.048 av 0.048 a 0.039 c  0.935 abu  30.0 ab 27.4 abc 15.6 de 

ICL-LED   0.046 ab 0.050 a 0.045 ab  0.928 ab  26.5 abc 28.3 abc 23.7 abcd 

Hybrid  0.049 a 0.048 a 0.043 ab  0.915 b  31.7 a 29.8 ab 23.5 abcd 

Control  0.045 ab 0.043 ab 0.032 c  0.950 a  27.4 abc 19.9 cde 10.9 e 

              

T NS  ***  *  *** 

LL *  ***  NS  *** 

T × LL NS   *   NS   * 
zTop (LL1), middle (LL2), or bottom (LL3) leaves. 

ySolar + supplemental lighting from overhead high-pressure sodium (OH-HPS) lamps; intracanopy light-emitting diodes (ICL-LED); 

hybrid lighting (OH-HPS + ICL-LED); or unsupplemented controls. 
xAmax = maximum gross CO2 assimilation. 
wMeans within row followed by the same letter are not different based on the least significant difference test (P ≤ 0.05). 
vMeans followed by the same letter are not different based on the least significant difference test (P ≤ 0.05). 
uMeans within column followed by the same letter are not different based on the least significant difference test (P ≤ 0.05). 

1
5
6
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Table 12. Light compensation point (LCP) and light saturation point (LSP) calculated from 

light-response curves measured for individual tomato leaves from plants grown in a 

greenhouse under one of four lighting treatments.z 

Treatmenty LCP 

(µmol·m‒2·s‒1) 

LSP (µmol·m‒2·s‒1) 

LL1 LL2 LL3 

OH-HPS 25.9 1185.4 abw 974.1 abcd 641.3 de 

ICL-LED 23.7 1001.5 abc 1337.7 a 1131.2 ab 

Hybrid 26.2 1260.3 ab 1273.8 ab 943.4 bcd 

Control 18.0 952.7 bcd 722.5 cde 517.8 e 

     

Treatment NS *** 

Leaf layer (LL)x NS ** 

Treatment × LL NS * 
zLCP and LSP were calculated as the photosynthetic photon flux associated when CO2 

assimilation = 0 and CO2 assimilation = maximum gross CO2 assimilation × 0.90, 

respectively. 
ySolar + supplemental lighting from overhead high-pressure sodium (OH-HPS) lamps; 

intracanopy light-emitting diodes (ICL-LED); hybrid lighting (OH-HPS + ICL-LED); or 

unsupplemented controls. 
xTop (LL1), middle (LL2), and bottom (LL3) leaves. 
wMeans followed by the same letter are not different based on the least significant 

difference test (P ≤ 0.05). 

  



158 

 

 
 

 
Figure 12. Ambient day and night greenhouse-air temperatures under one of four lighting 

treatments: solar + supplemental lighting from overhead high-pressure sodium (OH-HPS) 

lamps; intracanopy light-emitting diodes (ICL-LED); hybrid lighting (OH-HPS + ICL-

LED); or unsupplemented controls. Measurements were made every 10 s and a datalogger 

recorded means at 10-min intervals throughout the duration of the experiment.  
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Figure 13. Solar daily light integral (DLI) inside a glass-glazed greenhouse in West 

Lafayette, IN (40° N. latitude). The dotted line represents the threshold of solar DLI below 

which supplemental lighting was required for optimal tomato production.  
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Figure 14. Treatment-specific spectra [solar + supplemental lighting (SL)] averaged across 

three leaf layer within a high-wire tomato canopy. The treatments evaluated were: overhead 

high-pressure sodium (OH-HPS) lamps; intracanopy light-emitting diodes (ICL-LED); 

hybrid SL (OH-HPS + ICL-LED); or unsupplemented controls. Measurements were 

collected inside a glass-glazed greenhouse on two clear-sky days using a 

spectroradiometer. 
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Figure 15. Daily energy consumption from three supplemental lighting treatments 

[overhead high-pressure sodium (OH-HPS; 600 W) lamps, intracanopy light-emitting 

diode (ICL-LED) towers, or hybrid (400 W OH-HPS + 2 tier- LED interlights)] used for 

the production of greenhouse-grown tomatoes during a winter-to-summer production cycle 

in 2014. Values represent the total energy consumed from 3 reps × 2 lamps/towers. DAT 

= days after transplanting.  
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Figure 16. Maximum photosystem II efficiency (Fv/Fm) of tomato leaves from plants 

grown in a greenhouse under one of four lighting treatments: solar + supplemental lighting 

from overhead high-pressure sodium (OH-HPS) lamps; intracanopy light-emitting diodes 

(ICL-LED); hybrid lighting (OH-HPS + ICL-LED); or unsupplemented controls. Data 

represents means ± SE (n = 24). 
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Figure 17. Photosynthetic light-response curves for top (A), middle (B) and bottom (C) 

leaves from tomato plants grown in a greenhouse under one of four lighting treatments: 

unsupplemented controls; solar + supplemental lighting from overhead high-pressure 

sodium (OH-HPS) lamps; intracanopy light-emitting diodes (ICL-LED); or hybrid lighting 

(OH-HPS + ICL-LED). 
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CHAPTER 5: SUMMARIZING CONCLUSIONS AND SUGGESTIONS FOR 

FUTURE WORK 

 

Introduction 

The objective of this research was to evaluate light-emitting diodes (LEDs) as 

alternative supplemental lighting (SL) sources for greenhouse tomato (Solanum 

lycopersicum L.) propagation and production. Tomato was selected as a model crop based 

on its high-light requirement: an average daily light integral (DLI) ≥16 mol·m‒2·d‒1 is 

considered optimal for tomato-seedling production (Fan et al., 2013; Moe et al., 2006), 

whereas 20-35 mol·m‒2·d‒1 are generally recommended for maximizing yields (Dorais, 

2003; Faust, 2001; Jones, 2008; Moe et al., 2006; Spaargaren, 2001). The studies herein 

compared overhead (OH) high-pressure sodium (HPS) lamps (industry standard) to LED 

SL, and establish proof of concept that LEDs can be used effectively for greenhouse SL. 

This chapter summarizes how results from these system comparisons contribute to 

furthering scientific and practical understanding of the impact of LED lighting on plant 

growth and development. The chapter concludes with some questions raised from our work 

and comments on what I consider are important matters that could be further explored with 

LED SL. 
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Seasonal Growth-Responses to Different Spectra of SL (Chapter 2) 

In Chapter 2 we compared seasonal growth responses to three red:blue ratios of 

LED SL vs. HPS lamps vs. unsupplemented controls for the propagation of six tomato 

cultivars. Our general findings suggests that spectral effects on tomato-seedling growth 

from different SL treatments are season-specific and most likely depend on ambient solar 

DLI and seasonal fluctuations in greenhouse air temperature. In general, we found that for 

all cultivars evaluated, a combination of red and blue wavebands in SL increased growth 

and productivity of tomato seedlings during winter and summer (lowest- and highest-solar 

DLI, respectively), whereas fewer SL treatment effects were observed during the 

transitional-solar DLI spring and fall periods. Therefore, adding blue light to SL has the 

potential to increase overall seedling growth compared to blue-deficient SL treatments in 

overcast, variable-DLI climates.  Based on the results from chapter 2, we recommend that 

LED systems for commercial applications include variable wavelength and dimming 

capabilities that can offer propagators the ability to select light spectra for maximizing 

transplant growth during different seasons. 

Intracanopy Lighting with LEDs (Chapter 3) 

Intracanopy lighting (ICL) refers to the strategy of lighting along the side or within 

the foliar canopy. In Chapter 3 we compared SL from OH-HPS lamps vs. ICL using LEDs 

(ICL-LED) for high-wire greenhouse tomato production. The objective of the study was to 

quantify plant growth, yield, and energy consumption using different SL sources and 

positions within the canopy. We found that the ICL-LED technology supports similar 

growth and yield compared to OH-HPS but at lower electrical costs (from SL only). 
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Therefore, we concluded that ICL-LED is a viable alternative to OH-HPS SL. With 

ongoing, anticipated energy-efficiency improvements, as well as ever-improving light-

distribution architectures, LEDs have the potential to become a dominant SL technology 

for greenhouse crop production.  

Physiological Responses of High-Wire Greenhouse-Grown Tomato to ICL (Chapter 4) 

Chapter 4 was, to some extent, a continuation of the studies reported in Chapter 3. 

The objective of the study was to compare crop physiological responses to different SL 

sources and positions [ICL-LED vs. OH-HPS vs. hybrid lighting (ICL-LED + OH-HPS)] 

within an indeterminate high-wire tomato canopy. We also quantified fruit production and 

energy consumption for plants grown under the different lighting treatments. Our results 

provide some insight into how ICL modifies the vertical light distribution and light 

absorption within a high-wire tomato canopy relative to OH SL. We found that CO2 

assimilation measured under ambient environmental conditions (A), photosynthetic 

quantum yield (θ), maximum gross CO2 assimilation (Amax) and the light-saturation point 

of photosynthesis were good indicators of how ICL diminishes the top-to-bottom decline 

in photosynthetic activity typically observed with OH SL. However, we did not find any 

yield differences among SL treatments, indicating that higher source activity does not 

necessarily lead to yield increases. Based on the lower energy consumption measured for 

ICL-LED, and, to a lesser extent, for hybrid SL, compared to OH-HPS, we concluded that 

replacing OH-HPS lamps with ICL-LED or hybrid SL has great potential for energy 

savings during high-wire greenhouse tomato production. However, our results showed that 
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higher canopy photosynthesis does not lead to higher yields, most likely due to a 

redistribution of photoassimilate partitioning to non-harvested, vegetative plant parts. 

Questions Raised and Suggestions for Future Studies 

 Would homogeneous light distribution from SL increase fruit production and/or 

affect plant physiological responses? 

For comparative analysis, our studies were conducted in such a way that ICL-LED 

SL provided similar vertical light intensities as OH-HPS, that is, plants growing in both  

treatments experienced a decline in photosynthetic photon flux (PPF) with increasing 

vertical distance from to top to the bottom of the canopy (in the absence of plants). 

However, in some aspects, this approach defeats the purpose of delivering more 

homogeneous light distribution within the canopy, which is one of the main advantages of 

ICL (another being increasing light absorption within the canopy). An experiment could 

be conducted comparing a treatment with a decline in top-to-bottom PPF vs. a constant 

vertical PPF (keeping the average of total SL DLI the same). It is possible that by 

maintaining a homogenous light intensity along the canopy, yield increases may occur 

and/or physiological metrics would respond differently. 

 Would changing the light spectrum according to a plant’s physiological age affect 

plant growth and productivity? 

As suggested by Cope and Bugbee (2013), it is likely that the optimal light spectrum 

for plant growth and development changes with plant age. An experiment could evaluate 

spectral effects of LED SL [by comparing different red:blue ratios (or additional 
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wavelengths)] during different plant-growth stages (vegetative vs. reproductive). If 

possible, tomato plants would be propagated under a set of different light-quality 

treatments and grown into a reproductive phase (harvest 1-3 clusters per plant) with either 

the same or additional light-quality treatments. Alternatively, an experiment could be 

conducted using the ICL-LED towers where the different panels within a tower (upper, 

middle, and bottom) would provide different spectra in such a way that the new growth 

(upper canopy) would receive a different red:blue ratio than older leaves (from the mid- 

and/or lower canopy). Evaluating physiological, developmental, and production metrics 

could help determine if plant growth can be further optimized with changes in light quality 

from SL. 

 Can start-of-day selective lighting serve as an energy-savings strategy? 

Daily photosynthetic induction occurs gradually after leaves have been in darkness 

for a certain period of time and then transferred to a saturating light level (Lambers et al., 

2008). At this point, the photosynthetic rate increases progressively over a period of up to 

one hour to a new steady-state rate, with stomatal conductance increasing more or less in 

parallel. Additionally, there is evidence that blue light has a major role in stimulating 

stomatal opening in plants (Zeiger, 2010). Thus, we hypothesize that plants could start their 

photosynthetic induction process using less light than that required for photosynthetic 

purposes. An experiment could test different levels of blue light only vs. red + blue during 

the first hour of the targeted photoperiod. Survey leaf gas exchange measurements would 

help find the light level/spectra that induces early photosynthetic induction in plants. Also, 

photosynthetic measurements could indicate when plants coming out of darkness are ready 
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to resume a significant level of photosynthesis. This experiment could potentially show 

whether start-of-day selective lighting can lead to extra energy savings (by not ‘wasting’ 

SL when plants are not ready for it) or not. 

 Where should we focus the SL when growing high-wire greenhouse-grown 

tomatoes? Will only lighting the mature leaves be enough to support clusters with 

developing fruits? 

To address this question in terms of long-term fruit yield, an experiment could 

compare treatments that provide different light distribution within the canopy: using only 

the middle panel of an ICL-LED tower (see Chapter 3 for full description) vs. all three 

panels energized vs. only top two panels vs. only bottom two. The output of supplemental 

light intensity should be equivalent for all treatments. 

 What are the best criteria for leaf pruning? 

This question can be addressed through leaf gas exchange measurements, which 

will help determine when leaves can or should be defoliated. Different photosynthetic 

metrics might indicate which leaves are photosynthetically competent and when. Also, net 

photosynthesis could help determine when young leaves are no longer sinks and when 

mature leaves become sinks again as they become older. To do this, the same leaf should 

be measured during different stages of development. However, this raises the question, 

even if lower leaves are photosynthetically competent, are they still needed (especially if 

fruit clusters near them already have been harvested)? This could be done as a side-study 

in an experiment comparing OH-HPS vs. ICL-LED. 
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Appendix A. Average day and night greenhouse-air temperature. Measurements were at 

the mid-point of the greenhouse every 10 s and a datalogger recorded means at 3-hour 

intervals.
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Appendix B. Average greenhouse-relative humidity. Measurements were at the mid-point 

of the greenhouse every 10 s and a datalogger recorded means at 3-hour intervals.
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