
Lights and Camera: Intelligently Controlled Multi-channel
Pose Estimation System

Olena Borzenko1, Wei Xu1, Mark Obsniuk1, Arjun Chopra1
Piotr Jasiobedzki2, Michael Jenkin1, Yves Lespérance1

1Department of Computer Science and Engineering, York University, Toronto, Canada.
{olena, xuwei, mobsniuk, chopra, jenkin, lesperan}@cs.yorku.ca

2 MDA Space Missions, Brampton, Canada.

Abstract

Guiding the spacecraft docking process requires the

use of sensors that estimate the relative position of the
two vessels. This task is complicated by the widely
variable on-orbit illumination. To combat this,
controllable docking cameras are augmented by
computer-controlled illuminants. But how should these
illumination and capture parameters be controlled and
how should the images obtained under different
conditions be combined in order to estimate the
relative pose of the vessels? We address these issues in
the “Lights and Camera” system. Images captured
with the same camera and scene geometry but under
different lighting conditions are merged, and the
resulting edges are used to estimate the target’s pose.
A high level controller monitors the imaging process
and determines the set of images to capture and use for
pose estimation. This paper describes the “Lights and
Camera” system architecture and initial results of its
operation on mockups of space hardware.

1. Introduction

Rendezvous and docking are key requirements for
assembling, retrieving, refueling, and repairing
spacecraft, such as satellites, space shuttles, large space
platforms, and even space stations (see Figure 1).
Although spacecraft rendezvous and docking routinely
occurs with humans “in the loop”, more autonomous
operation is desired. Achieving “soft” docking with the
target (the uncontrollable part, such as a docking
platform) requires precise control of the relative
velocity of the chaser (the vehicle whose movement is
controlled). As a result, an essential requirement for
autonomous docking is adequate sensing of the relative

position and orientation between the docking
spacecraft.

Vision systems that support docking craft in space
are faced with the highly variable lighting conditions
associated with the outer space environment (see [10]).
To overcome unfavorable natural illumination, the
camera is often accompanied by one or more (typically
fixed) light sources that can be controlled, and the
camera itself has controllable image capture
parameters. The task of the human operator or software
agent is to manipulate the light conditions and camera
parameters to appropriately illuminate and capture
portions of the scene that are critical to the task at
hand.

To adequately capture the entire scene in one
acquisition is often impossible. What is possible,
however, is to capture images under different
illumination and camera conditions (see Figure 2) and
then to process these images together in a meaningful
way. During the final phases of space docking, the
spacecraft rate of approach is extremely low. As a
result the scene can be treated as being essentially
static over a small temporal window. Thus multiple
images with the same image geometry, but captured
under different lighting conditions are available in
order to localize the target precisely. For the multiple
images to enhance the information available over a
single image, not only must the different illumination
and image capture conditions be chosen in some
intelligent manner, but also an effective process is
required to merge information from these images.

Given that the spacecraft docking system can collect
multiple images of the scene with the same geometry,
how difficult is the task of determining the appropriate
set of images to use to localize the docking target?
Suppose that the system is capable of controlling three
illuminates each with eight possible illumination
settings, and that the image acquisition system has 15

possible capture setting (this describes our testbed
system, operational systems have even higher degrees
of freedom). Taking into account sets of images rather
than single images, the search space size for the task is
of size 28x8x8x15-1 = 27680-1>102311. An exhaustive
search of the space is impractical and there is clearly a
need for an intelligent parameter selection scheme that
accumulates and exploits knowledge about which
combinations of settings may be beneficial in the
current conditions. The development of such a system
is the primary goal of the research presented here.

This paper describes the “Lights and Camera”
control system that addresses the task of estimating
spacecraft pose with controllable illumination and
camera parameters. A knowledge-based intelligent
controller guides the image acquisition process and
selects light configurations. A multi-channel edge
detector robustly extracts edge features that are
statistically significant over the collection of images of
the target, and the final pose estimate is produced from
a line-based model-matching genetic algorithm.

The rest of the paper is organized as follows.
Section 2 discusses related work on knowledge-based
control of vision and robotics. Section 3 describes the
architecture of the “Lights and Camera” system and its
main image processing and control components.
Experimental results and a sample run of the system
are presented in Section 4. Section 5 concludes the
paper and outlines directions for future work.

2. Related work

A number of different approaches to adaptive and
knowledge driven operation of vision systems have
been proposed in the literature. Shekhar et al. [20]
package basic image processing algorithms into
multilayer “smart” modules that encapsulate

knowledge of how to run the associated algorithm,
evaluate its results, and tune its parameters. First,
vision tasks are decomposed into a hierarchical plan.
Rules expressing possible approaches, constraints,
parameter adjustment, and failure handling are then
used to complete the plan. Automatically solving a
specific problem entails the selection, ordering, and
deployment of vision modules, and the tuning of their
parameters on training images.

Robertson [17] uses the concept of procedural
reflection to allow monitoring and modification of the
computational state of an image processing filter. The
adaptive operation of the vision system, incorporating
the adaptable filters, is comparable to the control of a
closed-loop system.

Shanahan [18][19] describes an Event Calculus-
based active vision framework that incorporates
feedback and expectation, linking low-level sensing
and high-level reasoning. In this framework, an agent
generates hypotheses about possible explanations of
vision sensor data and selects an action – such as
tuning a vision parameter or manipulating a robotic
arm – that is expected to disambiguate among these
hypotheses.

Among recent work on knowledge-driven robotic
agents is the development of executive control systems
based on Intelligent Distributed Execution
Architecture, IDEA. The basic hypothesis of IDEA is
that a large control system, such as that for a rover [8]
or a rescue robot [4], can be structured as collection of
interacting agents, each with the same fundamental
structure, implemented for example in an agent
language such as the concurrent temporal version of
Golog [16].

The Intelligent Controller we use in the “Lights and
Camera” system is an extension of the controller
described in [1] and is implemented using the high-
level model-based agent programming language
IndiGolog [6][13], an extension of ConGolog [5] and
Golog [14]. In IndiGolog, the programmer provides a
declarative specification of the domain − actions and
their preconditions and effects on fluents, i.e. the

Figure 1. Spacecraft docking: a simulation

of the overall task (courtesy of
MacDonald, Dettwiler and Associates Ltd.,

www.mdacorporation.com).

Figure 2. Views of the Dexterous Handling
Target and Micro Fixture under various
illumination conditions. Pose estimates

computed from these images are used to
capture the fixture autonomously.

dynamic aspects of the state − and develops complex
control programs in terms of these. IndiGolog supports
both planning and high-level reactivity, in contrast to
classical planners on the one hand and purely reactive
architectures on the other. Agents written in IndiGolog
are capable of sensing the (changing) environment and
communicating with other agents or software modules,
as opposed to expert system shells. The IndiGolog
interpreter that we use in the project is implemented in
Quintus Prolog and SWI Prolog.

For the space docking application, the arguments in
favour of using IndiGolog are mainly related to
software engineering. For an agent to be able to reason
about the perceived world and the vision system, it
must keep track of all of the relevant aspects (states) of
the environment and of the vision modules.
Programming languages such as C, C++, or Java do
not require the designer to specify system states and
their dynamics explicitly. As a result, they are not
particularly suitable for the design of such intelligent
controllers. In contrast, IndiGolog provides a
transparent and scalable framework that encourages
declarative description of a domain and automatically
reasons about state updates. In addition, it supports the
agent’s ability to interact with other modules and sense
the environment.

3. The Lights and Camera system

The Lights and Camera system consists of the three
primary components: the Image Server, the Vision
Server, and the high-level Intelligent Controller (see
Figure 3). The Image Server operates a digital camera
and associated lights, providing control over
parameters such as light intensities, camera aperture,
shutter speed, and focal length. The Vision Server
encapsulates the image processing pipeline consisting
of multi-channel edge detection, edge linking, and
model matching for pose estimation. The Intelligent
Controller manages the image acquisition process.
(The individual stages are described in detail below.)

As long as the static scene assumption holds, the
following feedback loop operates. Following a request
from the Controller to capture a new image under a
specific set of light and camera parameters, the Vision
Server queries the Image Server for the corresponding
image. The new image is captured and added to the
existing collection of images taken under different
illumination conditions and camera parameters. The
Vision Server updates the composite edge map based
on the current image set and estimates the pose of the
target. The uncertainty of the current result, measured
using the RMS error in the model matching stage, is
then sent to the Controller, closing the feedback loop.

The Controller module then determines whether the
current image should be kept or discarded from the
image set and generates a new set of image capture
parameters for the next iteration. The Controller
terminates this process when the target’s pose estimate
error falls below a predefined threshold. At any time
during the operation, the system maintains its current
best estimate of the target’s position.

3.1. The vision server

This section describes the three components of the
vision processing pipeline; edge detection, edge
linking, and model-based pose estimation.

3.1.1. Multi-channel edge detection

The multi-channel edge detection algorithm [21] is
an extension of the single-channel Canny edge detector
[3] to operate on multiple input images (channels).
Figure 4 provides a sketch of the approach. Input
images are first processed in separate channels (one
image per channel) to obtain individual gradient maps.
In a local neighborhood centered at each pixel position,
the local gradient orientation samples (weighted by the
corresponding gradient magnitudes) are modeled as a
two-component mixture of Gaussian’s in which the
inliers (the normal gradient samples corresponding to
the local edge structure) are modeled by the main
Gaussian distribution and the outliers (gradients
corresponding to shadow edges and other random
noise) is modeled by the background Gaussian
distribution. A scheme based on Expectation
Maximization (EM) algorithm [7] is used to
decompose the mixture model, and to identify and

Intelligent
Controller

evaluation
metrics

next system
parameters

Image
DB

Image Server
Simulation

corresponding
image

lights and camera
parameters

Acquisition

Vision Server
Pose

Estimation
Edge

Detection
Edge

Linking

Intelligent
Controller

evaluation
metrics

next system
parameters

Image
DB

Image Server
Simulation

corresponding
image

lights and camera
parameters

Acquisition

Vision Server
Pose

Estimation
Edge

Detection
Edge

Linking

Figure 3. The Lights and Camera system
architecture.

separate the outliers from the inliers. The gradient of
the local edge structure is estimated from the
distribution of the inliers: its orientation is the mean of
the main Gaussian distribution, and its magnitude is
defined as the proportion of all the sample magnitudes
that are associated with the main distribution. A
composite gradient map corresponding to the
underlying edge structure is then constructed from the
merged local gradient estimates. This “edgel map” is
computed from the integrated gradient map using the
post-processing techniques of the Canny edge detector
[3].

3.1.2. Edge linking

An edge linking algorithm based on [12] is used to
link the multi-channel edgels and group them into edge
lists. A top-down polyline splitting algorithm [15] is
then used to recursively fit line segments to each edge
list. The algorithm takes as input the linked edgels. The
line segment that approximates the edge list and joins
the first and last edge points (x1,y1) and (x2,y2) is given
by x(y1-y2)+y(x2-x1)+y2x1-y1x2=0. The distance of each
edgel in the edge list from this line segment is

computed, and this is used to compute the normalized
maximum error e for the set of edgels: e=maxi|di|/D,
where D is the distance between the end points of the
line segment and di is the distance between the line
segments and the i-th edgel in the edge list. This error
is used to estimate the goodness of fit of the line
segment to the edgel list. If the maximum error
exceeds a pre-defined threshold value, a new vertex is
inserted at the point in the list that is farthest away
from the line, and the line segment is split into two
new segments. This algorithm is applied recursively to
each of these line segments, terminating when the
normalized maximum error for all edge points in the
list falls below a specified threshold value. After all
edge lists have been fitted with segments, the edge
linking module creates a list of edges that approximate
the original edgel map (Figure 5).

3.1.3. Pose estimation

A genetic algorithm [9] is used to handle the feature
correspondence and pose determination
simultaneously. The approach is similar to that
undertaken by Kawaguchi [11] in that line features are

Figure 4. Outline of the multi-channel edge detection algorithm.

used to match the model to the image. Here the 3D
model is back-projected into the view space using a
perspective projection. The fitness function
incorporates angle and line end-point distance
differences. Our approach determines the pose of an
object from partial line features taken from an image.

Each of the six pose parameters (Rx, Ry, Rz, Tx, Ty,
Tz) is encoded in 8 bits. The range of values for each
parameter is based upon an initial seed pose. The
rotation parameters are ±25 degree’s and translation
parameters are ±40 pixels. The initial population is
seeded from a random uniform distribution over the
entire solution set. For each generation, the fitness of
each element of the population is computed and this is
used to determine the members of the next generation.
The fitness function is the sum of two metrics; the
angle difference between model lines and image lines
squared and the distance of image line end points and
model lines squared. The best-fit image line is matched
to each model line.The top five percent of the
individuals are passed onto the next generation
unchanged. The remaining members of the next
generation are generated from the top 30 percent
elements of the current generation. Two individuals are
randomly chosen from the top 30 percent to create a
new individual. A crossover point is chosen and
material from the two parents is used to form this new
individual by choosing one portion from one parent
and the remainder from the second parent. One bit of
this individual is then mutated. If the resulting
individual is unique, then it is added to the population.
The genetic algorithm operates for a fixed number of
generations. The output from the algorithm is the
solution corresponding to the individual with the best
fitness.

The algorithm typically converges to a stable set of
values within 10 generations with a population size of

200 individuals. The computational cost increases with
the number of generations and larger population sizes.
A number of trials were conducted with varying
populations sizes and number of generations. The
value of 200 individuals was chosen as a compromise
between accuracy and speed. Figure 6 shows an input
polyline representation and the resulting model-
polyline match.

3.2. High-level Controller

To obtain a precise pose of the target, the high-level
controller manages the image acquisition process and
determines the set of input images for the multi-
channel vision processing pipeline. This optimization
task is complicated by the size of the search space and
the complexity of the effects that changes in system
parameters produce on the pose estimate.

The Intelligent Controller maintains qualitative
representations of system states, e.g. “low lighting
coming evenly from all the three light sources”, in
essence discretizing along the “light brightness” and
“light directionality” dimensions. These qualitative
representations permit reasoning about the similarity of
image acquisition states and, consequently, the
similarity of images taken under corresponding states.
Moreover, this allows human domain knowledge to be
expressed in a natural way and reduces the search
effort required for image capture settings. Based on the

(a)

(b)

Figure 5. (a) Multi-channel edge map of a
Hubble Space Telescope Latch. (b) Its

polyline approximation.

(a)

(b)

Figure 6. (a) Multi-channel polyline data for
a textured cube. (b) The resulting model

match data overlaid on (a).

described classification of images and system states,
the Controller employs a greedy heuristic search for
next system parameters, based on the likelihood of a
set of images to share common information (see [1][2]
for more details).

The high-level control procedure for image
acquisition and merging is as follows. At the first step
of the algorithm, the settings for the initial image are
picked randomly. The agent then iteratively chooses
light intensity settings for the next image acquisition,
seeking images that are expected to contribute
additional information with respect to the existing
image set and merit function.

If the merit function does not increase sufficiently
due to the newly added image, the image is marked to
be discarded, the parameters under which it was taken
are marked as unfavorable, and the search for a new
addition to the set is initiated. When searching for the
best additional image, the controller restricts its choice
to the images that are not similar either to the current
set of images or to the images discarded at earlier
steps. Augmenting the composite continues until a
maximum number of iterations have been performed or
the merit function reaches a predetermined level.

4. Sample run and experimental results

Figures 7 and 8 illustrate a sample run of the Lights
and Camera system for a cubical mockup target. The
initial image capture parameters are chosen randomly
and an initial estimate is calculated. At each iteration,
the Controller obtains a new image, evaluates the effect
of its addition on the quality of pose estimate, and thus
determines if this image should be included in the set
of images for future processing. In this example, after
six iterations the match error measure falls below the
preset threshold and the system outputs the final pose
of the target. Four images were combined to produce

this final estimate. Figure 8 shows the dynamics of the
size of the current image set maintained by the system
as well as the quality of match produced by the pose
estimation module for each of the image sets.

Running times excluding the image capture time
averaged 1480 seconds for the current control system.
Additional experimentation was carried out with the
same cubical target to compare the performance of our
heuristic control approach and basic control
approaches. The results in terms of average running
times over 5 runs are given in Figure 9. Here the
“simple” controller acquires and merges images under
randomly selected settings. The “greedy” controller
acquires and merges images in a similar fashion, then
evaluates system performance, and discards the last
image from the image set if the error does not decrease.
The “heuristic” controller performs a greedy search for
“not similar” settings and is the one described earlier in
the paper. The same error threshold was used for all
three controller types. As seen from Figure 9,
discarding images that do not provide an immediate
increase of the quality of match improves convergence,
as does using a heuristic search for image acquisition
settings.

5. Conclusions and future work

Complex vision tasks – such as automating
spacecraft docking – require solutions to a wide variety
of image processing problems, from camera calibration
to edge detection to high level system control. In the
Lights and Camera system, the high level knowledge-
based controller, implemented in the model-based
agent programming language IndiGolog, controls
image acquisition and multiple image processing in the
system in order to best estimate the relative pose of the
camera with respect to a modeled object.

(a) (b) (c) (d) (e) (f)

{a} {a, b} {a, b, c} {a, b, d} {a, b, e} {a, b, e, f}

Figure 7. The images acquired (top row) and the model matching result and edges
recovered (bottom row) during the six iterations of the sample run. Images (a), (b), (e)

and (f) were selected by the Controller for the final pose estimation.

The system has been tested on a number of targets
in a laboratory-based setting. In the future we plan to
test the system in a more realistic space simulation on
earth and to incorporate the pose estimates obtained by
the system within a complete docking control system.

Ongoing developments include a system
configuration that provides a line-by-line evaluation of
the performance of pose estimation stage. Based on
this detailed error metric, the high-level controller will
employ more precise, shape-dependent image
acquisition and processing strategies.

The process of computing pose from the set of
available input images is quite complex involving a
number of different phases from multi-channel edgel
detection, through edge linking and genetic algorithm-
based model matching. Each of these modules
incorporates tunable parameters. Planned future work
includes incorporating parameter tuning mechanisms
within the controller to provide intelligent selection
and control of the various parameters that are available.

References

[1] Borzenko, O., Lespérance, Y., Jenkin, M., Controlling

Camera and Lights for Intelligent Image Acquisition
and Merging, Proc. 2nd Canadian Conference on
Computer and Robot Vision, Victoria, BC, pp. 602-609,
2005.

[2] Borzenko, O., Knowledge-Based Control of Vision
Systems: Sample Controllers and Design Tools.
M.Sc. Thesis (in preparation), York University,
Toronto, 2005.

[3] Canny, J.F., A Computation Approach to Edge
Detection, IEEE PAMI, 8: 679–698, 1986.

[4] Carbone, A., Finzi, A., Orlandini, A., Pirri, F.,
Ugazio, G., Situation-Aware Rescue Robots, Proc. 2005
IEEE Workshop on Safety, Security and Rescue
Robotics, Kobe, Japan, pp. 182-188, 2005.

[5] De Giacomo, G., Lespérance, Y., and Levesque, H.J.,
ConGolog, a concurrent programming language based

on the situation calculus, Artificial Intelligence,
121: 109-169, 2000.

[6] De Giacomo, G., and Levesque, H., An incremental
interpreter for high-level programs with sensing. In
H. J. Levesque, and F. Pirri, (Eds.) Logical Foundations
for Cognitive Agents: Contributions in Honour of Ray
Reiter, Springer, Berlin, pp. 86-102, 1999.

[7] Dempster A.P., Laird N.M., Rubin D.B., Maximum
likelihood from incomplete data via the EM algorithm,
J. Roy. Sta. Soc., B39: 1-38, 1977.

[8] Finzi, A., Ingrand, F., Muscettola, N., Model-based
executive control through reactive planning for
autonomous rovers, Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems IROS
2004, vol. 1, pp. 879-884, 2004.

[9] Holland, J. H., Genetic algorithms and the optimal
allocation of trials, SIAM J. Comput., 2(2): 88–105,
1973.

[10] Inaba, N.; Oda, M., Autonomous satellite capture by a
space robot: world first on-orbit experiment on a
Japanese robot satellite ETS-VII, Proc. Int. Conf.
Robotics and Automation, Vol. 2, San Francisco, 2000,
pp. 1169-1174.

[11] Kawaguchi, T., Nagata, R., Sinozaki, T., Detection of
Target Models in 2D Images by Line-Based Matching
and a Genetic Algorithm, Proc. Int. Conf. Image
Processing, ICIP 99, pp. 710–714, 1999.

[12] Kovesi, P. D., MATLAB functions for computer vision
and image analysis. School of Computer Science &
Software Engineering. The University of Western
Australia.

[13] Lespérance, Y., Ng, H.-K., Integrating Planning into
Reactive High-Level Robot Programs, Proc. Second Int.
Cognitive Robotics Workshop, Berlin, pp. 49-54, 2000.

[14] Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F., and
Scherl, R. B., GOLOG: A Logic Programming
Language for Dynamic Domains, J. Logic Program.,
31: 59-84, 1997.

[15] Jain, R., Kasturi, R., Schnuck, B. G., Machine Vision,
McGraw-Hill, Inc., 1995.

25

30

35

40

45

1 2 3 4 5 6

Number of Iterations

U
n

ce
rt

ai
n

ty
 fo

r
P

o
se

 E
st

im
at

e,

p
ix

el
s

1 image

2 images

3 images 3 images

3 images

4 images
25

30

35

40

45

1 2 3 4 5 6

Number of Iterations

U
n

ce
rt

ai
n

ty
 fo

r
P

o
se

 E
st

im
at

e,

p
ix

el
s

1 image

2 images

3 images 3 images

3 images

4 images

Figure 8. Sample run of the “Lights and
Camera” system. For each iteration of the
control loop, the number of images used

in processing is given.

2471

1786

1479

0

500

1000

1500

2000

2500

3000

simple greedy heuristic

Controller Type

Ru
nn

in
g

Ti
m

e,
 s

Figure 9. Comparison of system running

times for basic controller types.

[16] Reiter, R., Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems,
MIT Press, 2001.

[17] Robertson, P, Brady, M., Adaptive Image Analysis for
Aerial Surveillance, IEEE Intelligent Systems, 30-36,
1999.

[18] Shanahan, M., A Logical Account of Perception
Incorporating Feedback and Expectation, Proc.
KR 2002, Toulouse, France, pp. 3-13, 2002.

[19] Shanahan, M., Randell, D., A Logic-Based Formulation
of Active Visual Perception, Proc. KR 2004, Whistler,
Canada, pp. 64-72, 2004.

[20] Shekhar, C., Moisan, S., Vincent, R., Burlina, P., and
Chellapa, R., Knowledge-based control of vision
systems, IVC, 17: 667-683, 1999.

[21] Xu, W., A Multi-channel Approach to Edge Detection,
M.Sc. Thesis. York University, Toronto, 2005.

