
Lightweight Techniques
for Private Heavy Hitters

Dan Boneh
Stanford

Elette Boyle
IDC Herzliya

Henry Corrigan-Gibbs
MIT CSAIL

Niv Gilboa
Ben-Gurion
University

Yuval Ishai
Technion

IEEE Security & Privacy 2021

Mozilla wants to know…
which URLs most often crash the browser?

42

…

stanford.edu/images/logo.png

google.com/search?q=prostate+cancer

nytimes.com/index.html

nytimes.com/index.html

Today: Non-private data collection

43

…

stanford.edu/images/logo.png

google.com/search?q=prostate+cancer

nytimes.com/index.html

nytimes.com/index.html

…

We show: Mozilla can learn the most-often reported URLs,
without learning which client reported which URL

44

…

stanford.edu/images/logo.png

google.com/search?q=prostate+cancer

nytimes.com/index.html

nytimes.com/index.html

…

We show: Mozilla can learn the most-often reported URLs,
without learning which client reported which URL

45

…

stanford.edu/images/logo.png

google.com/search?q=prostate+cancer

nytimes.com/index.html

nytimes.com/index.html

…

The URLs that caused ≥1000 crashes are:
• nytimes.com/2020/03/27/dogs.html
• about.twitter.com/logo.png
• …

46

…

Private heavy-hitters problem
In setting of local differential privacy: [Bassily, Smith 2015] [Qin, Yan, Yu, Khalil, Xiao, Ren 2016]
[Bassily, Nissim, Stemmer, Guha 2017] [Bun, Nelson, Stemmer 2019] …

Millions of clients
Each client holds an 𝑛-bit string
(e.g., 𝑛 ≈ 256)

Two data-collection servers
Should learn the set of strings

that ≥ 𝒕 clients hold

47

…

Private heavy-hitters problem
In setting of local differential privacy: [Bassily, Smith 2015] [Qin, Yan, Yu, Khalil, Xiao, Ren 2016]
[Bassily, Nissim, Stemmer, Guha 2017] [Bun, Nelson, Stemmer 2019] …

Millions of clients
Each client holds an 𝑛-bit string
(e.g., 𝑛 ≈ 256)

Two data-collection servers
Should learn the set of strings

that ≥ 𝒕 clients hold

Privacy* against one
malicious server, colluding

with malicious clients

48

…

Private heavy-hitters problem
In setting of local differential privacy: [Bassily, Smith 2015] [Qin, Yan, Yu, Khalil, Xiao, Ren 2016]
[Bassily, Nissim, Stemmer, Guha 2017] [Bun, Nelson, Stemmer 2019] …

Millions of clients
Each client holds an 𝑛-bit string
(e.g., 𝑛 ≈ 256)

Two data-collection servers
Should learn the set of strings

that ≥ 𝒕 clients hold

Privacy against one
malicious server.

Correctness against
malicious clients.

49

…

Private heavy-hitters problem
In setting of local differential privacy: [Bassily, Smith 2015] [Qin, Yan, Yu, Khalil, Xiao, Ren 2016]
[Bassily, Nissim, Stemmer, Guha 2017] [Bun, Nelson, Stemmer 2019] …

Millions of clients
Each client holds an 𝑛-bit string
(e.g., 𝑛 ≈ 256)

Two data-collection servers
Should learn the set of strings

that ≥ 𝒕 clients hold

Minimal communication
and computation costs

100s of submissions
per second

Support 100s of
submissions per second

(Using 100-1000x less bandwidth
than general-purpose MPC)

Applications

•Which URLs crash Firefox most often?
•Which phone apps consume the most battery life?
•Which passwords are most popular?
•Which programs consume the most CPU?
•Where do users of my app spent their time?
• …

50

This talk

•The private heavy-hitters problem
•New tools

–Incremental distributed point functions
–Malicious-secure sketching

•Evaluation

51

This talk

•The private heavy-hitters problem
•New tools

–Incremental distributed point functions
–Malicious-secure sketching

•Evaluation

52

Private heavy hitters: A warm-up scheme

1. Client 𝑖 with string 𝑠! prepares a binary tree,
with 1s on the path to the 𝑠!-th leaf of the tree.

53

0

0 0

1

0 1 0 0 0 0

0 0

1 0
1

Client 𝑖 String s! = 011

Private heavy hitters: A warm-up scheme

2. Each client secret-shares the labels on the tree’s nodes
and sends one share to each of the servers.

54

0

0 0

1

0 1 0 0 0 0

0 0

1 0
1

Client 𝑖

0

1 8

1

2 4 7 5 2 9

6 8

2 7
3

-1
-2

+=
-7

-8-600

-1 -8 -2 -3 -7 -5 -2 -9

Private heavy hitters: A warm-up scheme

2. Each client secret-shares the node labels
and sends one share to each of the servers.
→ Single message from client to servers

55Client 𝑖

Private heavy hitters: A warm-up scheme

2. Each client secret-shares the node labels
and sends one share to each of the servers.
→ Single message from client to servers

56

Private heavy hitters: A warm-up scheme

2. Each client secret-shares the node labels
and sends one share to each of the servers.
→ Single message from client to servers

57

Private heavy hitters: A warm-up scheme

2. Each client secret-shares the node labels
and sends one share to each of the servers.
→ Single message from client to servers

58

Private heavy hitters: A warm-up scheme

2. Each client secret-shares the node labels
and sends one share to each of the servers.
→ Single message from client to servers

59

…

Private heavy hitters: A warm-up scheme

3. Servers sum up shares from each client to get “aggregate” shares.

60

…

3

1 8

1

2 4 7 5 2 9

6 8

2 7
9

0
-3

-3

-8-21-3

-1 -8 -1 -3 -7 -1 -2 -9

Private heavy hitters: A warm-up scheme

4. Servers publish shares to perform BFS search for heavy hitters.

61

…

3

1 8

1

2 4 7 5 2 9

6 8

2 7
9

0
-3

-3

-8-21-3

-1 -8 -1 -3 -7 -1 -2 -9

6

Threshold 𝑡 = 3

Private heavy hitters: A warm-up scheme

4. Servers publish shares to perform BFS search for heavy hitters.

62

…

3

1 8

1

2 4 7 5 2 9

6 8

2 7
9

0
-3

-3

-8-21-3

-1 -8 -1 -3 -7 -1 -2 -9

6

Threshold 𝑡 = 3

Private heavy hitters: A warm-up scheme

4. Servers publish shares to perform BFS search for heavy hitters.

63

…

3

1 8

1

2 4 7 5 2 9

6 8

2 7
9

0
-3

-3

-8-21-3

-1 -8 -1 -3 -7 -1 -2 -9

6

Threshold 𝑡 = 3

Private heavy hitters: A warm-up scheme

4. Servers use BFS with pruning to find all heavy hitters.

64

…

3

1 8

1

2 4 7 5 2 9

6 8

2 7
9

0
-3

-3

-8-21-3

-1 -8 -1 -3 -7 -1 -2 -9

6
2 4

Threshold 𝑡 = 3

Private heavy hitters: A warm-up scheme

4. Servers use BFS with pruning to find all heavy hitters.

65

…

3

1 8

1

2 4 7 5 2 9

6 8

2 7
9

0
-3

-3

-8-21-3

-1 -8 -1 -3 -7 -1 -2 -9

6
2 4

4 0

Threshold 𝑡 = 3

Private heavy hitters: A warm-up scheme

4. Servers use BFS with pruning to find all heavy hitters.

66

…

3

1 8

1

2 4 7 5 2 9

6 8

2 7
9

0
-3

-3

-8-21-3

-1 -8 -1 -3 -7 -1 -2 -9

6
2 4

4 0

40

101Heavy hitter:
(string is path to heavy leaf)

Threshold 𝑡 = 3

Warm-up scheme: Properties

Correctness
Servers find exactly the set of heavy hitters (no error).

Privacy
If one server is honest, servers learn only the set of heavy “prefixes”

Are we done?

67

Technical challenges
1. Each tree is exponentially large ⇒ Client cannot materialize it

Idea: Incremental distributed point functions.
→ Succinct secret sharing of a tree with one non-zero path
→ Communication 𝑂(𝜆𝑛) instead of 𝑂(𝜆𝑛") [with normal DPF]

2. Client can send malformed secret shares ⇒ Data corruption
Idea: Malicious-secure sketching.

→ Servers can test whether a secret-shared vector is
non-zero in a single coordinate.

→ No interaction with client, 𝑂 𝜆 comm b/w servers.
+ Extractable distributed point functions (see paper)

68

Technical challenges
1. Each tree is exponentially large ⇒ Client cannot materialize it

Idea: Incremental distributed point functions.
→ Succinct secret sharing of a tree with one non-zero path
→ Communication 𝑂(𝜆𝑛) instead of 𝑂(𝜆𝑛") [with normal DPF]

2. Client can send malformed secret shares ⇒ Data corruption
Idea: Malicious-secure sketching.

→ Servers can test whether a secret-shared vector is
non-zero in a single coordinate.

→ No interaction with client, 𝑂 𝜆 comm b/w servers.
+ Extractable distributed point functions (see paper)

69

e.g., when strings are
URLs, locations, passwords

Technical challenges
1. Each tree is exponentially large ⇒ Client cannot materialize it

Idea: Incremental distributed point functions.
→ Succinct secret sharing of a tree with one non-zero path
→ Communication 𝑂(𝜆𝑛) instead of 𝑂(𝜆𝑛") [with normal DPF]

2. Client can send malformed secret shares ⇒ Data corruption
Idea: Malicious-secure sketching.

→ Servers can test whether a secret-shared vector is
non-zero in a single coordinate.

→ No interaction with client, 𝑂 𝜆 comm b/w servers.
+ Extractable distributed point functions (see paper)

70

Contribution 1:

Incremental distributed point functions (DPFs)
Each client secret-shares the labels on a tree with one non-zero path
and sends one share to each server. Communication ≈ 𝟐𝒏 L

71

0

0 0

1

0 1 0 0 0 0

0 0

1 0
1

Client

0

1 8

1

2 4 7 5 2 9

6 8

2 7
3

-1
-2

+=
-7

-8-600

-1 -8 -2 -3 -7 -5 -2 -9011String 𝑖 = ∈ 0,1 "

Contribution 1:

Incremental distributed point functions (DPFs)
With incremental DPFs, client only sends each server a short key

For a tree of depth 𝑛,
and security parameter 𝜆 ≈ 128,
the keys have size 𝑂(𝜆𝑛). J

Using standard DPFs would
give keys of size 𝑂(𝜆𝑛").

72Client 𝑖 011String 𝑖 =

KeyGen

∈ 0,1 "

Contribution 1:

Incremental distributed point functions (DPFs)
With incremental DPFs, client only sends each server a short key

For a tree of depth 𝑛,
and security parameter 𝜆 ≈ 128,
the keys have size 𝑂(𝜆𝑛). J

Using standard DPFs would
give keys of size 𝑂(𝜆𝑛").

73Client 𝑖 011String 𝑖 =

KeyGen

∈ 0,1 "

Contribution 1:

Incremental distributed point functions (DPFs)
With incremental DPFs, client only sends each server a short key

For a tree of depth 𝑛,
and security parameter 𝜆 ≈ 128,
the keys have size 𝑂(𝜆𝑛). J

Using standard DPFs would
give keys of size 𝑂(𝜆𝑛").

74Client 𝑖 011String 𝑖 =

KeyGen

∈ 0,1 "

Contribution 1:

Incremental distributed point functions (DPFs)

75Client 𝑖

3

1 8

1

2 4 7 5 2 9

6 8

2 7
9

0
-3

-3

-8-21-3

-1 -8 -1 -3 -7 -1 -2 -9

The servers expand the key into shares of a tree, one node at a time

Evaluating the keys on a
path takes 𝑂(𝑛) AES ops.

Standard DPFs would
require 𝑂(𝑛") AES ops.

Contribution 1:

Incremental distributed point functions (DPFs)

76Client 𝑖

3

1 8

1

2 4 7 5 2 9

6 8

2 7
9

0
-3

-3

-8-21-3

-1 -8 -1 -3 -7 -1 -2 -9

The servers expand the key into shares of a tree, one node at a time

Evaluating the keys on a
path takes 𝑂(𝑛) AES ops.

Standard DPFs would
require 𝑂(𝑛") AES ops.

Contribution 1:

Incremental distributed point functions (DPFs)

77Client 𝑖

3

1 8

1

2 4 7 5 2 9

6 8

2 7
9

0
-3

-3

-8-21-3

-1 -8 -1 -3 -7 -1 -2 -9

The servers expand the key into shares of a tree, one node at a time

Evaluating the keys on a
path takes 𝑂(𝑛) AES ops.

Standard DPFs would
require 𝑂(𝑛") AES ops.

Contribution 1:

Incremental distributed point functions (DPFs)

78Client 𝑖

3

1 8

1

2 4 7 5 2 9

6 8

2 7
9

0
-3

-3

-8-21-3

-1 -8 -1 -3 -7 -1 -2 -9

The servers expand the key into shares of a tree, one node at a time

Evaluating the keys on a
path takes 𝑂(𝑛) AES ops.

Standard DPFs would
require 𝑂(𝑛") AES ops.

Contribution 1:

Incremental distributed point functions (DPFs)

79Client 𝑖

3

1 8

1

2 4 7 5 2 9

6 8

2 7
9

0
-3

-3

-8-21-3

-1 -8 -1 -3 -7 -1 -2 -9

The servers expand the key into shares of a tree, one node at a time

Evaluating the keys on a
path takes 𝑂(𝑛) AES ops.

Standard DPFs would
require 𝑂(𝑛") AES ops.

Contribution 1:

Incremental distributed point functions (DPFs)

80Client 𝑖

3

1 8

1

2 4 7 5 2 9

6 8

2 7
9

0
-3

-3

-8-21-3

-1 -8 -1 -3 -7 -1 -2 -9

The servers expand the key into shares of a tree, one node at a time

Evaluating the keys on a
path takes 𝑂(𝑛) AES ops.

Standard DPFs would
require 𝑂(𝑛") AES ops.

Contribution 1:

Incremental distributed point functions (DPFs)

81Client 𝑖

3

1 8

1

2 4 7 5 2 9

6 8

2 7
9

0
-3

-3

-8-21-3

-1 -8 -1 -3 -7 -1 -2 -9

The servers expand the key into shares of a tree, one node at a time

Evaluating the keys on a
path takes 𝑂(𝑛) AES ops.

Standard DPFs would
require 𝑂(𝑛") AES ops.

Contribution 1:

Incremental distributed point functions (DPFs)

82Client 𝑖

3

1 8

1

2 4 7 5 2 9

6 8

2 7
9

0
-3

-3

-8-21-3

-1 -8 -1 -3 -7 -1 -2 -9

The servers expand the key into shares of a tree, one node at a time

Evaluating the keys on a
path takes 𝑂(𝑛) AES ops.

Standard DPFs would
require 𝑂(𝑛") AES ops.

Contribution 1:

Incremental distributed point functions (DPFs)

83Client 𝑖

3

1 8

1

2 4 7 5 2 9

6 8

2 7
9

0
-3

-3

-8-21-3

-1 -8 -1 -3 -7 -1 -2 -9

The servers expand the key into shares of a tree, one node at a time

Evaluating the keys on a
path takes 𝑂(𝑛) AES ops.

Standard DPFs would
require 𝑂(𝑛") AES ops.

Contribution 1:

Incremental distributed point functions (DPFs)

84Client 𝑖

3

1 8

1

2 4 7 5 2 9

6 8

2 7
9

0
-3

-3

-8-21-3

-1 -8 -1 -3 -7 -1 -2 -9

The servers expand the key into shares of a tree, one node at a time

Evaluating the keys on a
path takes 𝑂(𝑛) AES ops.

Standard DPFs would
require 𝑂(𝑛") AES ops.

Contribution 1:

Incremental distributed point functions (DPFs)

85Client 𝑖

3

1 8

1

2 4 7 5 2 9

6 8

2 7
9

0
-3

-3

-8-21-3

-1 -8 -1 -3 -7 -1 -2 -9

The servers expand the key into shares of a tree, one node at a time

Evaluating the keys on a
path takes 𝑂(𝑛) AES ops.

Standard DPFs would
require 𝑂(𝑛") AES ops.

Contribution 1:

Incremental distributed point functions (DPFs)

Construction
•Our incremental DPF builds on the DPF of BGI16
• Just requires symmetric-key operations (PRG/AES)
• The BGI16 DPF already uses a tree structure internally

– Our construction just exposes this structure explicitly

86

Technical challenges
1. Each tree is exponentially large ⇒ Client cannot materialize it

Idea: Incremental distributed point functions.
→ Succinct secret sharing of a tree with one non-zero path
→ Communication 𝑂(𝜆𝑛) instead of 𝑂(𝜆𝑛") [with normal DPF]

2. Client can send malformed secret shares ⇒ Data corruption
Idea: Malicious-secure sketching.

→ Servers can test whether a secret-shared vector is
non-zero in a single coordinate.

→ No interaction with client, 𝑂 𝜆 comm b/w servers.
+ Extractable distributed point functions (see paper)

87

Contribution 2:

Malicious-secure sketching
Client can send shares of garbage/random values
Servers cannot detect this!

88

0

0 0

1

0 1 0 0 0 0

0 0

1 0
1

Client 𝑖

0

1 8

1

2 4 7 5 2 9

6 8

2 7
3

-1
-2

+=
-7

-8-600

-1 -8 -2 -3 -7 -5 -2 -9011String 𝑖 =

Contribution 2:

Malicious-secure sketching
Client can send shares of garbage/random values
Servers cannot detect this!

89

5

1 8

1

9 1 6 2 6 4

9 5

1 1
3

Evil client 𝒊

6

1 6

1

2 4 7 5 2 9

7 8

2 7
3

-1
0

+=
-6

-320-1

0 2 7 -3 -1 1 4 -5

Contribution 2:

Malicious-secure sketching

90

0

0 0

1

0 1 0 0 0 0

0 0

1 0
1

=

Honest clients send shares of a tree
that has a single “1” at each level
(Each client can only vote for one string)

0

1 8

1

2 4 7 5 2 9

6 8

2 7
3

-1
-2

+
-7

-8-600

-1 -8 -2 -3 -7 -5 -2 -9

Contribution 2:

Malicious-secure sketching
Honest clients send shares of a tree
that has a single “1” at each level
(Each client can only vote for one string)

Idea: The servers run a protocol
on each client’s key at each layer
to check that this invariant holds.
→ Protocol checks that servers

hold a secret sharing of a vector
of Hamming weight one.

91

0

1 8

1

2 4 7 5 2 9

6 8

2 7
3

-1
-2

+
-7

-8-600

-1 -8 -2 -3 -7 -5 -2 -9

Contribution 2:

Malicious-secure sketching
Honest clients send shares of a tree
that has a single “1” at each level
(Each client can only vote for one string)

Idea: The servers run a protocol
on each client’s key at each layer
to check that this invariant holds.
→ Protocol checks that servers

hold a secret sharing of a vector
of Hamming weight one.

92

0

1 8

1

2 4 7 5 2 9

6 8

2 7
3

-1
-2

+
-7

-8-600

-1 -8 -2 -3 -7 -5 -2 -9

Contribution 2:

Malicious-secure sketching
Honest clients send shares of a tree
that has a single “1” at each level
(Each client can only vote for one string)

Idea: The servers run a protocol
on each client’s key at each layer
to check that this invariant holds.
→ Protocol checks that servers

hold a secret sharing of a vector
of Hamming weight one.

93

0

1 8

1

2 4 7 5 2 9

6 8

2 7
3

-1
-2

+
-7

-8-600

-1 -8 -2 -3 -7 -5 -2 -9

Contribution 2:

Malicious-secure sketching
Honest clients send shares of a tree
that has a single “1” at each level
(Each client can only vote for one string)

Idea: The servers run a protocol
on each client’s key at each layer
to check that this invariant holds.
→ Protocol checks that servers

hold a secret sharing of a vector
of Hamming weight one.

94

0

1 8

1

2 4 7 5 2 9

6 8

2 7
3

-1
-2

+
-7

-8-600

-1 -8 -2 -3 -7 -5 -2 -9

Contribution 2:

Malicious-secure sketching
Honest clients send shares of a tree
that has a single “1” at each level
(Each client can only vote for one string)

Idea: The servers run a protocol
on each client’s key at each layer
to check that this invariant holds.
→ Protocol checks that servers

hold a secret sharing of a vector
of Hamming weight one.

95

0

1 8

1

2 4 7 5 2 9

6 8

2 7
3

-1
-2

+
-7

-8-600

-1 -8 -2 -3 -7 -5 -2 -9

Contribution 2:

Malicious-secure sketching
Honest clients send shares of a tree
that has a single “1” at each level
(Each client can only vote for one string)

Idea: The servers run a protocol
on each client’s key at each layer
to check that this invariant holds.
→ Protocol checks that servers

hold a secret sharing of a vector
of Hamming weight one.

96

0

1 8

1

2 4 7 5 2 9

6 8

2 7
3

-1
-2

+
-7

-8-600

-1 -8 -2 -3 -7 -5 -2 -9

Contribution 2:

Malicious-secure sketching
Honest clients send shares of a tree
that has a single “1” at each level
(Each client can only vote for one string)

Idea: The servers run a protocol
on each client’s key at each layer
to check that this invariant holds.
→ Protocol checks that servers

hold a secret sharing of a vector
of Hamming weight one.

97

0

1 8

1

2 4 7 5 2 9

6 8

2 7
3

-1
-2

+
-7

-8-600

-1 -8 -2 -3 -7 -5 -2 -9

Contribution 2:

Malicious-secure sketching
Honest clients send shares of a tree
that has a single “1” at each level
(Each client can only vote for one string)

Idea: The servers run a protocol
on each client’s key at each layer
to check that this invariant holds.
→ Protocol checks that servers

hold a secret sharing of a vector
of Hamming weight one.

98

0

1 8

1

2 4 7 5 2 9

6 8

2 7
3

-1
-2

+
-7

-8-600

-1 -8 -2 -3 -7 -5 -2 -9

Contribution 2:

Malicious-secure sketching
Honest clients send shares of a tree
that has a single “1” at each level
(Each client can only vote for one string)

Idea: The servers run a protocol
on each client’s key at each layer
to check that this invariant holds.
→ Protocol checks that servers

hold a secret sharing of a vector
of Hamming weight one.

99

0

1 8

1

2 4 7 5 2 9

6 8

2 7
3

-1
-2

+
-7

-8-600

-1 -8 -2 -3 -7 -5 -2 -9

Contribution 2:

Malicious-secure sketching

Prior work allows testing whether shared vector has Hamming weight 1
– with security against semi-honest servers [BGI16]
– when servers can interact with the client [BBCGI19,ECZB19]
– with additional non-colluding servers [CBM15,APY20]

Our technique has none of these limitations.

Idea:
• Convert semi-honest-secure scheme [BGI16] into malicious-secure one.
• To do so, we use “algebraic manipulation detection” codes [CDFP08]

100

Technical challenges
1. Each tree is exponentially large ⇒ Client cannot materialize it

Idea: Incremental distributed point functions.
→ Succinct secret sharing of a tree with one non-zero path
→ Communication 𝑂(𝜆𝑛) instead of 𝑂(𝜆𝑛") [with normal DPF]

2. Client can send malformed secret shares ⇒ Data corruption
Idea: Malicious-secure sketching.

→ Servers can test whether a secret-shared vector is
non-zero in a single coordinate.

→ No interaction with client, 𝑂 𝜆 comm b/w servers.
+ Extractable distributed point functions (see paper)

101

This talk

•The private heavy-hitters problem
•New tools

–Incremental distributed point functions
–Malicious-secure sketching

•Evaluation

102

This talk

•The private heavy-hitters problem
•New tools

–Incremental distributed point functions
–Malicious-secure sketching

•Evaluation

103

Implementation

104

Roughly 3,500 lines of Rust
– Our open-source implementation:

github.com/henrycg/heavyhitters
– Google’s C++ implementation of incremental DPF:

github.com/google/distributed_point_functions

Experimental setup
• Servers on opposite sides of U.S.

– Amazon EC2 us-east-1 (VA) and us-west-1 (CA)
• Simulated clients in us-east-1
• Each server is one c4.8xlarge (36 vCPU, 60 GiB RAM)

Incremental DPFs save computation

105

128 256 384 512
Client string length

0.00

0.05

0.10

0.15

C
lie

nt
tim

e
(s

ec
.)

Standard DPF

Incremental DPF
(this work)

Succinct sketches
[MDC15]

Incremental DPFs save communication

128 256 384 512
Client string length

0B

2MiB

4MiB

6MiB

8MiB

10MiB

C
om

m
un

ic
at

io
n

co
st

(p
er

cl
ie

nt
)

106

Standard DPF

Incremental DPF
(this work)

Total cost is manageable for latency-tolerant applications
Searching for top-900 heavy hitters, 256-bit strings
(Strings sampled from Zipf distribution with parameter 1.03 and support 10k. Two c4-8xlarge communicating over WAN.)

Clients Computation Bandwidth

100k 13.8 mins 06.5 GB

200k 27.2 mins 13.1 GB

400k 53.8 mins 26.2 GB

107

Completely parallelizable

With 400,000 clients, server-side computation
takes less than one hour over WAN.

Privacy against malicious server, correctness against malicious clients
→ MPC-style privacy guarantee (not local differential privacy)

New techniques
• More powerful distributed point functions: incremental & extractable (see paper)
• Tools for malicious security in systems using secret sharing
• Application to other private data-collection problems (see paper)

Paper: https://eprint.iacr.org/2021/017
Code: https://github.com/henrycg/heavyhitters

Lightweight Techniques for Private Heavy Hitters

109

