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Mozilla wants to know…
which URLs most often crash the browser? 
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Today: Non-private data collection
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We show: Mozilla can learn the most-often reported URLs, 
without learning which client reported which URL
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We show: Mozilla can learn the most-often reported URLs, 
without learning which client reported which URL
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The URLs that caused ≥1000 crashes are:
• nytimes.com/2020/03/27/dogs.html
• about.twitter.com/logo.png
• …
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Private heavy-hitters problem
In setting of local differential privacy: [Bassily, Smith 2015] [Qin, Yan, Yu, Khalil, Xiao, Ren 2016]
[Bassily, Nissim, Stemmer, Guha 2017] [Bun, Nelson, Stemmer 2019] …

Millions of clients
Each client holds an 𝑛-bit string
(e.g., 𝑛 ≈ 256)

Two data-collection servers
Should learn the set of strings

that ≥ 𝒕 clients hold
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Private heavy-hitters problem
In setting of local differential privacy: [Bassily, Smith 2015] [Qin, Yan, Yu, Khalil, Xiao, Ren 2016]
[Bassily, Nissim, Stemmer, Guha 2017] [Bun, Nelson, Stemmer 2019] …

Millions of clients
Each client holds an 𝑛-bit string
(e.g., 𝑛 ≈ 256)

Two data-collection servers
Should learn the set of strings

that ≥ 𝒕 clients hold

Privacy* against one 
malicious server, colluding 

with malicious clients
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Private heavy-hitters problem
In setting of local differential privacy: [Bassily, Smith 2015] [Qin, Yan, Yu, Khalil, Xiao, Ren 2016]
[Bassily, Nissim, Stemmer, Guha 2017] [Bun, Nelson, Stemmer 2019] …

Millions of clients
Each client holds an 𝑛-bit string
(e.g., 𝑛 ≈ 256)

Two data-collection servers
Should learn the set of strings

that ≥ 𝒕 clients hold

Privacy against one 
malicious server.

Correctness against 
malicious clients.
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Private heavy-hitters problem
In setting of local differential privacy: [Bassily, Smith 2015] [Qin, Yan, Yu, Khalil, Xiao, Ren 2016]
[Bassily, Nissim, Stemmer, Guha 2017] [Bun, Nelson, Stemmer 2019] …

Millions of clients
Each client holds an 𝑛-bit string
(e.g., 𝑛 ≈ 256)

Two data-collection servers
Should learn the set of strings

that ≥ 𝒕 clients hold

Minimal communication 
and computation costs

100s of submissions 
per second

Support 100s of 
submissions per second

(Using 100-1000x less bandwidth
than general-purpose MPC)



Applications

•Which URLs crash Firefox most often?
•Which phone apps consume the most battery life?
•Which passwords are most popular?
•Which programs consume the most CPU?
•Where do users of my app spent their time?
• …
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This talk

•The private heavy-hitters problem
•New tools

–Incremental distributed point functions
–Malicious-secure sketching

•Evaluation
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Private heavy hitters: A warm-up scheme

1. Client 𝑖 with string 𝑠! prepares a binary tree,
with 1s on the path to the 𝑠!-th leaf of the tree.
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Private heavy hitters: A warm-up scheme

2. Each client secret-shares the labels on the tree’s nodes
and sends one share to each of the servers.
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Private heavy hitters: A warm-up scheme

2. Each client secret-shares the node labels
and sends one share to each of the servers.
→ Single message from client to servers
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Private heavy hitters: A warm-up scheme

2. Each client secret-shares the node labels
and sends one share to each of the servers.
→ Single message from client to servers
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Private heavy hitters: A warm-up scheme

3. Servers sum up shares from each client to get “aggregate” shares.
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Private heavy hitters: A warm-up scheme

4. Servers publish shares to perform BFS search for heavy hitters. 
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Private heavy hitters: A warm-up scheme

4. Servers publish shares to perform BFS search for heavy hitters. 
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Private heavy hitters: A warm-up scheme

4. Servers use BFS with pruning to find all heavy hitters. 
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Private heavy hitters: A warm-up scheme

4. Servers use BFS with pruning to find all heavy hitters. 
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Private heavy hitters: A warm-up scheme

4. Servers use BFS with pruning to find all heavy hitters. 
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101Heavy hitter:
(string is path to heavy leaf)

Threshold 𝑡 = 3



Warm-up scheme: Properties

Correctness
Servers find exactly the set of heavy hitters (no error).

Privacy
If one server is honest, servers learn only the set of heavy “prefixes”

Are we done?
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Technical challenges
1. Each tree is exponentially large ⇒ Client cannot materialize it

Idea:  Incremental distributed point functions.
→ Succinct secret sharing of a tree with one non-zero path
→ Communication 𝑂(𝜆𝑛) instead of 𝑂(𝜆𝑛") [with normal DPF]

2. Client can send malformed secret shares ⇒ Data corruption
Idea:  Malicious-secure sketching.

→ Servers can test whether a secret-shared vector is
non-zero in a single coordinate.

→ No interaction with client, 𝑂 𝜆 comm b/w servers.
+ Extractable distributed point functions (see paper)
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Technical challenges
1. Each tree is exponentially large ⇒ Client cannot materialize it
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→ Succinct secret sharing of a tree with one non-zero path
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Contribution 1:

Incremental distributed point functions (DPFs)
Each client secret-shares the labels on a tree with one non-zero path 
and sends one share to each server. Communication ≈ 𝟐𝒏 L
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Contribution 1:

Incremental distributed point functions (DPFs)
With incremental DPFs, client only sends each server a short key

For a tree of depth 𝑛,
and security parameter 𝜆 ≈ 128,
the keys have size 𝑂(𝜆𝑛). J

Using standard DPFs would
give keys of size 𝑂(𝜆𝑛").
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Contribution 1:

Incremental distributed point functions (DPFs)
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Contribution 1:

Incremental distributed point functions (DPFs)

Construction
•Our incremental DPF builds on the DPF of BGI16
• Just requires symmetric-key operations (PRG/AES)
• The BGI16 DPF already uses a tree structure internally

– Our construction just exposes this structure explicitly
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Technical challenges
1. Each tree is exponentially large ⇒ Client cannot materialize it

Idea:  Incremental distributed point functions.
→ Succinct secret sharing of a tree with one non-zero path
→ Communication 𝑂(𝜆𝑛) instead of 𝑂(𝜆𝑛") [with normal DPF]

2. Client can send malformed secret shares ⇒ Data corruption
Idea:  Malicious-secure sketching.

→ Servers can test whether a secret-shared vector is
non-zero in a single coordinate.

→ No interaction with client, 𝑂 𝜆 comm b/w servers.
+ Extractable distributed point functions (see paper)
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Contribution 2:

Malicious-secure sketching
Client can send shares of garbage/random values
Servers cannot detect this!
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Contribution 2:

Malicious-secure sketching
Client can send shares of garbage/random values
Servers cannot detect this!
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Contribution 2:

Malicious-secure sketching
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Contribution 2:

Malicious-secure sketching
Honest clients send shares of a tree
that has a single “1” at each level
(Each client can only vote for one string)

Idea: The servers run a protocol
on each client’s key at each layer
to check that this invariant holds.
→ Protocol checks that servers

hold a secret sharing of a vector
of Hamming weight one.
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Contribution 2:

Malicious-secure sketching

Prior work allows testing whether shared vector has Hamming weight 1
– with security against semi-honest servers [BGI16]
– when servers can interact with the client [BBCGI19,ECZB19]
– with additional non-colluding servers [CBM15,APY20]

Our technique has none of these limitations.

Idea: 
• Convert semi-honest-secure scheme [BGI16] into malicious-secure one.
• To do so, we use “algebraic manipulation detection” codes [CDFP08]
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Technical challenges
1. Each tree is exponentially large ⇒ Client cannot materialize it

Idea:  Incremental distributed point functions.
→ Succinct secret sharing of a tree with one non-zero path
→ Communication 𝑂(𝜆𝑛) instead of 𝑂(𝜆𝑛") [with normal DPF]

2. Client can send malformed secret shares ⇒ Data corruption
Idea:  Malicious-secure sketching.

→ Servers can test whether a secret-shared vector is
non-zero in a single coordinate.

→ No interaction with client, 𝑂 𝜆 comm b/w servers.
+ Extractable distributed point functions (see paper)
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Implementation

104

Roughly 3,500 lines of Rust
– Our open-source implementation:

github.com/henrycg/heavyhitters
– Google’s C++ implementation of incremental DPF:

github.com/google/distributed_point_functions

Experimental setup
• Servers on opposite sides of U.S.

– Amazon EC2 us-east-1 (VA) and us-west-1 (CA)
• Simulated clients in us-east-1
• Each server is one c4.8xlarge (36 vCPU, 60 GiB RAM)



Incremental DPFs save computation

105

128 256 384 512
Client string length

0.00

0.05

0.10

0.15

C
lie

nt
tim

e
(s

ec
.)

Standard DPF

Incremental DPF
(this work)

Succinct sketches
[MDC15]



Incremental DPFs save communication
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Total cost is manageable for latency-tolerant applications
Searching for top-900 heavy hitters, 256-bit strings
(Strings sampled from Zipf distribution with parameter 1.03 and support 10k. Two c4-8xlarge communicating over WAN.)

Clients Computation Bandwidth

100k 13.8 mins 06.5 GB

200k 27.2 mins 13.1 GB

400k 53.8 mins 26.2 GB
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Completely parallelizable



With 400,000 clients, server-side computation
takes less than one hour over WAN.

Privacy against malicious server, correctness against malicious clients
→ MPC-style privacy guarantee (not local differential privacy)

New techniques
• More powerful distributed point functions: incremental & extractable (see paper)
• Tools for malicious security in systems using secret sharing
• Application to other private data-collection problems (see paper)

Paper: https://eprint.iacr.org/2021/017
Code: https://github.com/henrycg/heavyhitters

Lightweight Techniques for Private Heavy Hitters
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