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Abstract

A reflection in a real vector space equipped with a positive definite symmetric
bilinear form is any automorphism that sends some nonzero vector v to its negative and
pointwise fixes its orthogonal complement, and a finite reflection group is a discrete
group generated by such transformations. We note two important classes of groups
which occur as finite reflection groups: for a 2-dimensional vector space, we recover
precisely the finite dihedral groups as reflection groups, and permuting basis vectors in
an n-dimensional vector space gives a way of viewing a symmetric group as reflection
group.

A Coxeter group is a generalization of a finite reflection group, whose have rich
geometric and algebraic properties interact in surprising ways. Any finite rank Coxeter
group W acts faithfully on a finite dimensional real vector space V . To each group
is an associated symmetric bilinear form which it preserves, and the signature of the
bilinear form contains valuable information about W ; if it has type (n,1), we call such
a group Lorentzian, and there is a natural action of such a group on a hyperbolic space.
Inspired by a conjecture of Dyer in 2011, Hohlweg, Labbé and Ripoll have studied the
set of reflection vectors in Lorentzian Coxeter groups. We summarize their results here.
The reflection vectors form an infinite discrete subset of V , but if we projectivize, PV
contains limit points, which have the appearance of a fractal.
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Introduction

In this thesis, we aim to give an exposition of the nascent theory of limit roots. We
assume no prior knowledge of Coxeter groups, and introduce all relevant definitions
and concepts. We take detours along the way to explore properties of Coxeter groups
which may not be explicitly involved in questions about limit roots, but will at the
very least help the reader gain an appreciation for the wide-ranging and diverse theory
of Coxeter groups. The thesis is structured as follows. The first part of the paper is
simply background. We provide many definitions and results that will be necessary to
understand the main points of interest. In the second part, we define Coxeter groups
and study them in general. In the third part, we study the specific case of Lorentzian
Coxeter groups.

Part 1 of the paper begins with a short introduction to the basics of geometric
group theory to give the reader a sense of the connections between the group theory
and geometry. We build up to the Schwarz-Milnor Lemma, which tells us that for
every finitely generated group, there is an essentially unique geometric space it can
act on in a certain way. Moreover, it gives us a way to find this class of spaces. In
the next section, we then recall some linear algebraic facts and definitions that will be
useful throughout. In particular, we consider affine linear algebra and bilinear forms.
We prove that every isometry of a quadratic space is a product of reflections, and
that bilinear forms are determined by the signs of their “eigenvalues”. We then turn
our attention to hyperbolic geometry so that we can later consider group actions on
hyperbolic space. We construct a few models of hyperbolic geometry and deduce some
first properties.

After setting the stage in this way, we begin to study reflection groups in Part II.
We first focus on the finite case since it motivates the general definition, which may
seem rather obscure at first glance. In this section we first encounter root systems,
and we think about things very geometrically until we find the algebraic conditions
for a finite reflection group. This enables us to define Coxeter groups in general, and
then we do not waste much time describing a representation as a reflection group. We
show that this contains the previous theory as a special case, and then we uncover the
various properties that determine which type of space a given Coxeter group can act
on.

In Part III, upon identifying Lorentzian space as the most tractable class of Coxeter
groups which are not completely well-understood, we develop language in order to ask
the question that motivates the entire paper: how are the roots of a Lorentzian Coxeter
group distributed among our vector space? This problem has caught the attention of
a number of mathematicians recently; in the last five years, Dyer, Hohlweg, Ripoll,
Labbé, and Chen have studied this question.
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Part I

Geometric Preliminaries
The primary aim in Part I is to introduce the concepts and definitions which will be
used in the remainder of the paper. We prove the basic theorems that will be crucial
to understanding Coxeter groups, but nothing in this section lies within the domain of
Coxeter theory.

1 Geometric Group Theory

We begin with some basic geometric group theory. As mentioned, the connections
between geometry and group theory are the focus of this paper, so we take some time
to introduce some relevant concepts. Specifically, we introduce geometric group actions
and prove the Schwarz-Milnor lemma.

1.1 Group Actions

Group actions come up in a variety of settings; historically, groups were studied to
understand symmetries of objects, and not as objects themselves. Here, we define
some concepts for a group acting a metric space.

Definition 1.1 (Geometric Definitions). Let (X, d) be a metric space. The (open) ball
of radius r about x ∈ X is the set Br(x) = {y ∈ X | d(x, y) < r}. Its closure is the
closed ball of radius r about x ∈ X, and is equal to {y ∈ X | d(x, y) ≤ r}. For a subset
S of X, we can define the (open) ball of radius r about S to be Br(S) = ∪x∈SBr(x).
We say X is proper if for every x ∈ X and r ∈ R, the closed ball about x of radius r
is compact. A curve in X is a continuous map γ : [a, b] → X. A curve is a geodesic if
γ is an isometric embedding; that is, if d(x, y) = d(γ(x), γ(y)) for every x, y ∈ [a, b].
Finally, we say (X, d) is a geodesic metric space if for every pair x, y ∈ X, there is a
geodesic γ : [0, d(x, y)]→ X so that γ(0) = x and γ(d(x, y)) = y.

Example 1.2. A subset of Rn with the subspace metric is a geodesic metric space
if and only if it is convex. For example, X = R \ {0} is not, since there is no curve
γ : [0, 2] → X with γ(0) = −1 and γ(2) = 1. Some of the time, we can remedy this
by endowing a connected subset of Rn with the induced intrinsic metric, in which
d′(x, y) = inf{`(γ) | γ is a curve from x to y}, where `(γ) is the length of the curve.
However, this process does not turn Rn \{0} into a geodesic metric space, for example.

Definition 1.3 (Group Actions). A group action of a group G on a mathematical
structure X is a homomorphism φ from G to Aut(X), the group of structure-preserving
maps from X to itself. For example, if X is a topological space, Aut(X) consists of
homeomorphisms from X to X; if X is a vector space, Aut(X) consists of invertible
linear transformations from X to X (more commonly known as GL(X)). Writing
g.x for φ(g)(x), an action satisfies (i) 1G.x = x and (ii) g.(h.x) = (gh).x, and these
properties characterize group actions.
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Definition 1.4 (Quotients). Suppose a group G acts on a topological space X. We
can partition X into its G-orbits and denote by X/G the set of equivalence classes.
Let q : X → X/G by q(x) = [x], and topologize with the final topology from q. That
is, U ⊆ X/G is open if and only if q−1(U) is open in X.

Definition 1.5 (Geometric group action). Let (X, d) be a proper, geodesic metric
space and G a finitely generated group. We say the group G acts on the space X by
isometries if for every g ∈ G and x, y ∈ X, we have d(g.x, g.y) = d(x, y). We say a
group G acts cocompactly if X/G, the quotient space of X induced by the action, is
compact as a topological space. We call an action properly discontinuous if for every
compact set K ⊆ X, there are only finitely many g ∈ G so that gK ∩K 6= ∅ (so in
particular, the stabilizer of any point is finite).

If G acts on X by isometries, cocompactly, and properly discontinuously, we say G
acts on X geometrically.

Remark. In a sense, to demand that the action is cocompact guarantees that the space
is not too big for the group. Conversely, we ensure the group is not too large by asking
the action to be properly discontinuous. These two properties force geometric group
actions to balance out in a nice way.

It will also be useful to note that as long as X is a proper metric space (and G is a
finitely generated group?), the following condition is equivalent to proper discontinuity:
For every pair x, y ∈ X, there exists an r > 0 so that the set {g ∈ G | g.Br(x)∩Br(y) 6=
∅} contains finitely many group elements.

To see that our definition implies this, note that the closure of any open ball is
compact. For the other direction, choose a compact set K (maybe try to cover it with
open balls [how do I determine radii?], take finite subcover and hope that any pair
satisfies this condition... probably need finite generation)

Example 1.6 (A geometric action). Consider the action of Z on R by translation;
that is, n.x = n + x for n ∈ Z and x ∈ R. Indeed, we have |n.x − n.y| = |x − y|,
R/Z ∼= S1, and if Ux = B1/4(x) and Uy = B1/4(y), then |{n ∈ Z | n.Ux∩Uy 6= ∅}| ≤ 1.

1.2 Cayley Graph

For a finitely generated group G, we can build a graph with vertices in bijection with
the group elements and edges corresponding to a finite generating set. Then the group
G can act on this graph by left multiplication, and this action is geometric.

Definition 1.7 (Cayley Graph). If S is a finite generating set of a group G not
containing the identity and symmetric (S = S−1), we can build a graph called the
Cayley graph using group elements as vertices, and directing an edge from g to gs
whenever s ∈ S. That is, let Γ(G,S) = (G,E), where E = {(g, gs) | s ∈ S}. Then,
Γ(G,S) is a graph which is locally finite since S is finite, connected since S generates G,
simple since the identity is not in S, and undirected since S is symmetric.

Definition 1.8 (Metrizing Γ). We can turn Γ(G,S) into a metric space using the graph
distance. A path in a graph Γ = (V,E) is a function γ : {0, 1, . . . , n} → Γ so that
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(γ(i− 1), γ(i)) ∈ E for i = 1, . . . , n; n is the length of the path, and we say γ is a path
from γ(0) to γ(n). If the graph Γ is connected and undirected, we can set dS(x, y)
(or just d(x, y)) to be the minimal length of a path from x to y (a path exists since
the graph is connected). Since paths correspond to sequences of right multiplications,
this is finding elements of S so that xs1 . . . sk = y, or equivalently, finding minimal
length expressions for x−1y. This is a metric space since d(x, y) = 0 if and only if
x = y, d(x, y) = d(y, x) since Γ is undirected, and the triangle inequality is satisfied
since a path from x to y followed by a path from y to z is a path from x to z of length
d(x, y) + d(y, z), and so d(x, z) is bounded above by this number.

It is not hard to check that, by identifying each edge in the graph with an inter-
val [0, 1], Γ becomes a proper geodesic metric space (proper since Γ is locally finite,
geodesics exist because distances are defined in terms of paths).

We wonder if we can make G act geometrically on Γ; we try left multiplication
(recall the vertices are labeled by group elements). It is clear that d(x, y) = d(g.x, g.y)
for each g. It also happens that Γ/G ∼= S1, so this action is compact. And the only
g ∈ G for which g.B1/4(x) intersects B1/4(y) is g = yx−1, so indeed this is a geometric
action.

Surprisingly, we will see shortly this is pretty much the only type of geometric group
action to be found.

1.3 Quasi-isometries

In order to make the desired correspondence between groups and metric spaces, it
should be reasonably clear that we need a somewhat coarse identification of metric
spaces. For example, any finite group acts geometrically on a one point metric space.
This correspondence can only see the large-scale properties of either category, so we
will choose our equivalence relation acoordingly.

Definition 1.9 (Quasi-isometry). A function f : (X, dX) → (Y, dY ) is called a quasi-
isometry if there are constants A ≥ 1 and B,C ≥ 0 so that for every pair of points
x1, x2 in X, we have

1

A
dX(x1, x2)−B ≤ dY (f(x1), f(x2)) ≤ AdX(x1, x2) +B,

and for every point y ∈ Y , there is a point x ∈ X so that dY (f(x), y) ≤ C.

In light of Definition 1.1, the final condition can be restated as BC(f(X)) = Y .

Remark. It is equivalent to define quasi-isometries using four constants A1, A2 ≥ 1 and
B1, B2 ≥ 0 and requiring 1

A1
dX(x1, x2)−B1 ≤ dY (f(x1), f(x2)) ≤ A2dX(x1, x2) +B2.

Of course, any map satisfying the first definition satisfies the second, and to show the
second implies the first, just take A = max{A1, A2} and B = max{B1, B2}.

Metric spaces X and Y are quasi-isometric if there exists a quasi-isometry between
them; this choice of language makes it sound like a symmetric relation.
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Proposition 1.10 (Equivalence relation). Quasi-isometry is an equivalence relation.

Proof. Of course the identity map is a quasi-isometry from a space to itself. If f : X →
Y is a quasi-isometry, we look for a function g : Y → X which is a quasi-isometry. Given
y ∈ Y , choose an x ∈ X so that dY (f(x), y) ≤ C, and set g(y) = x. Verifying that g is a
quasi-isometry is straightforward, as is verifying that a composition of quasi-isometries
is again a quasi-isometry. [MAYBE STILL GIVE EXPLICIT PROOFS]

At this point, the reader should contemplate what equivalence classes look like
here. In turns out that any bounded metric space is quasi-isometric to a point, Rn is
quasi-isometric to Zn, and X is quasi-isometric to X × [0, 1]. It is a somewhat coarse
equivalence relation, but it turns out to be exactly what we need.

Example 1.11 (Infinite generating set). Returning to our previous example, the Cay-
ley graph of Z with respect to S = {±1} is isometric (hence quasi-isometric) to R.
However, the Cayley graph of Z with respect to the generating set S = Z tells a dif-
ferent tale; although the action of Z on Γ(Z,Z) is geometric, this Cayley graph is not
quasi-isometric to R; dZ(0, n) = 1 for every n, but d{±1}(0, n) = n. A bounding con-
stant would have to be larger than every natural number, so there is no quasi-isometry.
Here we see that the demand that our metric space be proper is in fact necessary; this
was not a valid action because the closed unit ball at 0 in Γ(Z,Z) is actually the entire
graph, which is not compact. The Cayley graph for (G,S) is proper if and only if S is
finite; not requiring S to be finite may give a different quasi-isometry class.

1.4 Schwarz-Milnor lemma

The following fact was observed by Efremovich in 1953, by Albert Schwarz in 1955,
and John Milnor in 1968. [Give more history]

Theorem 1.12 (Schwarz-Milnor lemma). Suppose G (with symmetric generating set
S) acts geometrically on a proper geodesic space (X, dX). Then, for every x ∈ X, the
map fx : Γ(G,S) → X defined by fx(g) = g.x is a quasi-isometry.

We postpone the proof to the end of the section, since we will need a bit of prepa-
ration.

Lemma 1.13 (Diameter). If (X, dX) is a compact metric space, there is an R so that
dX(x, y) ≤ R for every x, y ∈ X. The infimum of such R is called the diameter of X,
denoted diam(X).

Proof. Let z ∈ X. Since X is compact, the open cover ∪r>0Br(z) has a finite subcover.
Since these sets form a chain, we can choose r0 to be the maximum r in the finite
subcover, and deduce that Br0(z) = X. Now notice that R = 2r0 ≥ dX(x, z) +
dX(z, y) ≥ dX(x, y) for every x, y ∈ X.

Remark. Since the function dX(x, y) is continuous, we actually have Bdiam(X)(x) = X
for every x ∈ X. Moreover, if R > diam(X), we have BR(x) = X.
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Lemma 1.14 (Cayley graphs). If S and S′ are finite symmetric generating sets of a
group G not containing the identity, Γ(G,S) and Γ(G,S′) are quasi-isometric.

Proof. It suffices to find A ≥ 1 so that dS(g, h) ≤ AdS′(g, h). We take

A = max{dS(1G, s
′) | s′ ∈ S′}.

Note that dS′(g, h) is equivalent to finding the minimal length of a path from the g
to h in elements of S′. Since each s′ can be replaced by a path in elements of S of
length at most A, we obtain dS(g, h) ≤ AdS′(g, h). Symmetrically, we can find A′ so
that dS′(g, h) ≤ A′dS(g, h).

This tells us that we may choose a generating set as late in the game as we want
when we only care about quasi-isometry classes.

Theorem 1.15 (Schwarz-Milnor lemma). Suppose a finitely generated group G acts
geometrically on a proper geodesic space (X, dX). Then for every x ∈ X and symmetric
generating set S not containing 1G, the map fx : Γ(G,S) → X defined by fx(g) = g.x is
a quasi-isometry.

Proof. Since the action of G on both Γ(G,S) and X is by isometries, it suffices to check
that the quasi-isometry inequalities hold when one of g, h in d(g, h) is the identity. We
aim to find A ∈ [0, 1], B ≥ 0, C ≥ 1 so that AdS(1, g) − B ≤ dX(x, g.x) ≤ CdS(1, g),
and r > 0 so that Br(fx(Γ)) = X.

Let x ∈ X. Since G acts on X cocompactly, the metric space X/G is compact.
Using Lemma 1.13, choose r > diam(X/G). Let K = Br(x) and choose S = {1 6=
g ∈ G | gK ∩ K = ∅} (by proper discontinuity, this is finite; let B = |S|). Note if
y ∈ gK ∩K, then so is g−1y, so S is symmetric. We wish to show that S generates G.

We chose r large enough so that the G-translates of K cover X (for example, note
the image of K in X/G is the whole space, so its preimage in the quotient map is all of
X). So let g ∈ G, and we will show that we can write g = s1 . . . sk for some elements
in S. [NEED THIS FOR THE NEXT PART]

Let C = max{dX(x, s.x) | s ∈ S}. Then dX(x, s.x) ≤ CdS(1, g) = C for each s ∈ S,
and so the triangle inequality yields

dX(x, g.x) = dX(x, s1 . . . sk.x) ≤
k∑
i=1

dX(s1 . . . si−1.x, s1 . . . si.x)

=
k∑
i=1

dX(x, si.x) ≤ Ck = CdS(1, g).

Now let g, h ∈ G. Then dX(fx(g), fx(h)) = dX(g.x, h.x) = dX(x, g−1h.x)
Let q : X → X/G be the quotient map, and q(x) = x0. The definition of the

quotient map tells us that G.x = q−1(x0). We calculate that

X = q−1(X/G) = q−1 (BC(x0)) =
⋃

y∈q−1(x0)

BC(y) = BC(q−1(x0)) = BC(G.x)
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As a corollary, we see that any two spaces which G can act on must be quasi-
isometric. We conclude that all we really need to do is look at a Cayley graph. This
incredible correspondence between geometry and group theory is a true gem.

2 Linear Algebra

In this section, we will define many of the geometric objects that will be of interest to
us. We talk about affine linear algebra, bilinear forms, and reflections.

Definition 2.1 (Operations on subsets of a vector space). Let ∆ = {v1, . . . , vm} be a
finite subset of a vector space V . We call the set of linear combinations of ∆ the span
of ∆, the set of nonnegative combinations of ∆ the cone of ∆. The affine subspace
determined by ∆ is the set of linear combinations of ∆ with coefficient sum 1, and the
convex hull of ∆ is the intersection of the cone and the affine subspace determined by
∆. In symbols, we have

span(∆)
def
= {α1v1 + · · ·+ αmvm | αi ∈ R},

cone(∆)
def
= {α1v1 + · · ·+ αmvm | αi ≥ 0},

aff(∆)
def
=

{
α1v1 + · · ·+ αmvm

∣∣∣∣∣
n∑
i=1

αi = 1

}
, and finally,

conv(∆)
def
=

{
α1v1 + · · ·+ αmvm

∣∣∣∣∣
n∑
i=1

αi = 1, αi ≥ 0

}
.
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If A and B are (not necessarily finite) subsets of V , their sum is

A+B
def
= {a+ b | a ∈ A, b ∈ B}.

In a classic case of abuse of notation, if A = {a} we might write a + B to denote

{a}+B. If Φ ⊆ V , the negative of Φ is −Φ
def
= {−v | v ∈ Φ}.

2.1 Affine Linear Algebra

We work in the setting of a finite dimensional real vector space V . We will reserve an
unspecified use of the word “subspace” to denote a linear subspace, and will always say
affine subspace when we mean to refer to a subspace that does not necessarily contain
the origin.

Proposition 2.2. Let A be a nonempty affine subspace of a vector space V (that is,
A is the affine span of some subset of V ). Then for any a ∈ A, the set W = −a + A
is a linear subspace of V .

Proof. Consider a linear combination w =
∑k

i=1 ci(vi−a) of vectors in −a+A. Observe

that w+a =
∑k

i=1 civi+
∑k

i=1(−ci)a+1 ·a, and so we have expressed w+a as an affine
combination of elements of A (since the sum of the coefficients is 1). Thus, w+ a ∈ A,
and w ∈ −a+A.

Moreover, this property characterizes affine subspaces.

Proposition 2.3. Any translate of a linear subspace is an affine subspace.

Proof. To see this, take a vector a and a linear subspace W , and note that an affine
combination in a+W is a vector of the form

∑k
i=1 ci(a+wi) = a+(

∑k
i=1 ciwi) ∈ a+W ,

since
∑k

i=1 ci = 1.

We call −a+ A the linear subspace directing A, and define the dimension of A to
be dim(−a+A). We’ll say dim(∅) = −1 as a convention.

We also see that anm-dimensional affine subspace contained in anotherm-dimensional
affine subspace implies equality.

Proposition 2.4. The intersection of affine subspaces is again an affine subspace.

Proof. Let V be a vector space, and A1, A2 affine subspaces. If A1 ∩ A2 = ∅, we are
done. Otherwise, pick a ∈ A1 ∩ A2, so that A1 = a + W1 and A2 = a + W2 for some
linear subspaces W1,W2. Then, A1∩A2 = (a+W1)∩ (a+W2) = a+W1∩W2, showing
that A1∩A2 is an affine subspace, with dimension at most min{dim(A1), dim(A2)}.

Theorem 2.5 (Proper subspaces are small). If A1, . . . , An are proper affine subspaces
of V , then

⋃n
i=1Ai 6= V .
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Proof. If V is the zero vector space, the only proper affine subspace is the empty set,
so the result holds. Suppose dim(V ) ≥ 1.

Let Uj =
⋃j
i=1Ai, and let Wi be the linear subspace directing Ai for each i. We

may assume that An 6⊆ Un−1, so there exists some v ∈ An \ Un−1. Let u ∈ V \Wn,
and consider the affine line L = {v + tu | t ∈ k}. Since L contains v, L 6⊆ Ai for
1 ≤ i ≤ n − 1. Since we choose u 6∈ Wn = −v + An, we also have v + u 6∈ An, so L is
not contained in An.

Now, dim(L ∩ Ai) < 1, and hence |L ∩ Ai| ≤ 1. It follows that |L ∩ Un| ≤ n < |R|,
so Un 6= V , as desired.

Remark. A more abstract approach to affine spaces is possible. Let V be a vector space,
and A a set together with a transitive and free group action of V on A, in which the
action of v ∈ V on a ∈ A is denoted v+a. Here, transitive and free mean that for every
a, a′ ∈ A, there exists (transitive) a unique (free) vector v so that v+ a = a′. Then we
call A together with the group action an affine space. Both of these approaches serve
to create an analog of a vector space in which we no longer have an origin.

2.2 Bilinear Forms

We shall now acquaint ourselves with bilinear forms, working up to two main results.
The first one will be a crucial fact we use many times, while the second will not be
explicitly useful to us, but it will help motivate further work.

It is worth mentioning that diagonalizing a bilinear form is a different process
from diagonalizing an endomorphism. Although both of these may be represented as
matrices relative a chosen basis, an endomorphism is a map V → V and a bilinear
form is V × V → R, when V is a real vector space. This distinction turns out to be
quite consequential.

Definition 2.6 (Bilinear Forms). A bilinear form on a real vector space V is a function
B : V ×V → R which is linear in each coordinate, so that for each v ∈ V , the functions

Bv(w)
def
= B(v, w) and Bv(w)

def
= B(w, v) are linear transformations V → R. A bilinear

form is said to be symmetric if Bv = Bv for every v ∈ V (equivalently, B(v, w) =
B(w, v) for every v, w ∈ V ). We will only consider symmetric bilinear forms.

Associated to any bilinear form B is a quadratic form q : V → R, which is defined by

q(v)
def
= B(v, v). We say a bilinear form B is positive-semidefinite if q(v) = B(v, v) ≥ 0

for all v ∈ V . We say the bilinear form B is positive-definite if it is positive semi-
definite and B(v, v) = 0 if and only if v = 0. A symmetric positive-definite bilinear
form is also called an inner product.

Let B be a (symmetric, but we will stop saying this now) bilinear form on a real
vector space V , and v a vector in V . Then v⊥, the (B-) orthogonal complement of
v, is the kernel of Bv, or v⊥ = {w ∈ V | B(v, w) = 0}, and the positive half space
determined by v is

Half(v)
def
= {w ∈ V | B(v, w) > 0}.

The radical of a bilinear form B on a real vector space V , denoted by V ⊥, is the
set of vectors orthogonal to every other vector;
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The general linear group of V, denoted GL(V ), is the group of invertible linear
transformations from V to V , with the group operation of course being composition.
The B-orthogonal group is the group of automorphisms which preserve the form:

OB(V )
def
= {T ∈ GL(V ) | B(v, w) = B(T (v), T (w)) for every v, w ∈ V } .

Definition 2.7 (Similarity). When we wish to express an endomorphism T : V → V
of a finite dimensional vector space as a matrix A, we must first select an ordered
basis B = {v1, . . . , vn}, and then we can set entry Ai,j = ((T (vj))B)i. In this setting,
any automorphism S of V sets up a correspondence of B with another ordered basis
C = {w1, . . . , wn}, from which we may observe that T ◦ S(x) = S(y) for T (x) = y,
and hence S−1 ◦ T ◦ S(x) = y. So the new matrix is obtained via conjugation by the
invertible ‘matrix representing S. Consequently, we call A,B similar if there is an
invertible matrix S so that A = S−1BS.

Definition 2.8 (Congruence). The situation is different in the setting of bilinear forms
B : V × V → R. Instead, choosing a basis B = {v1, . . . , vn} allows us to construct a
matrix A so that Ai,j = B(vi, vj), and consequently B(u,w) = utAw, thinking of u and
w now being written as column vectors in the coordinates of B. Now we observe that
an automorphism S (with matrix T ) changes (S(u))tA(S(w)) = ut(T tAT )w, and so a
change of basis amounts to multiplying on the left by the transpose of the invertible
matrix on the right. We call such pairs of matrices A and T tAT congruent.

Definition 2.9 (Bv). For a given bilinear form, each v ∈ V gives rise to a linear
functional Bv : V → R defined by Bv(w) = B(v, w). When B(v, v) 6= 0, this linear
functional is nonzero, is hence onto, and therefore ker(Bv) is codimension one, by the
rank-nullity theorem.

Lemma 2.10. If B : V × V → R is a nonzero bilinear form, there is a vector v ∈ V
so that B(v, v) 6= 0.

Proof. As B is not zero, there are vectors v and w so that B(v, w) 6= 0. We are done if
either B(v, v) 6= 0 or if B(w,w) 6= 0. If not, B(v +w, v +w) = 2B(v, w) 6= 0, so v +w
qualifies.

It turns out that any symmetric bilinear form on a real vector space can be diago-
nalized. This allows us to define the signature of a bilinear form.

Theorem 2.11 (Sylvester’s Law of Inertia). Let B : V ×V → R be a symmetric bilinear
form. Then there exists a basis {v1, . . . , vn} for V so that the matrix of B is given byIp −Iq

0

.

Proof. We induct on n = dim(V ). If n = 1, B is always diagonal. Suppose the result
holds for any n-dimensional vector space, and suppose dim(V ) = n+ 1.

Note that if B is identically zero, it is already of this form. Suppose B is not
identically zero, so we can apply Lemma 2.10 to obtain v ∈ V with B(v, v) 6= 0. Now
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ker(Bv) = {w ∈ V | B(v, w) = 0} is n-dimensional, and there exists a basis v1, . . . , vn
of ker(Bv) for which B|v⊥×v⊥ is diagonal. Observe that B is diagonal also with respect
to {v1, . . . , vn, v}.

Finally, having diagonalized, we can now modify our basis so that the final state-
ment holds. First, reorder this basis so that B(vi, vi) is positive for 1 ≤ i ≤ p, negative
for p+ 1 ≤ i ≤ p+ q, and 0 thereafter. Then set wi = vi/

√
|B(vi, vi)| for 1 ≤ i ≤ p+ q,

and observe that B(wi, wj) =


1 if 1 ≤ i = j ≤ p
−1 if p+ 1 ≤ i = j ≤ p+ q

0 otherwise

.

Remark. Consequently, we may define the signature or type of B to be (p, q, r) where
p+ q + r = n. We suppress r when it is zero.

2.3 Cartan-Dieudonné Theorem

The Cartan-Dieudonné theorem guarantees an expression of any transformation in
OB(V ) in terms of a composition of at most dim(V ) reflections. Our main interest is
that such an expression of any length exists, but we will prove the strong version.

Theorem 2.12 (Cartan-Dieudonné). Let B be a bilinear form on an n-dimensional
space V over R. If f ∈ OB(V ), then there exist B-reflections s1, . . . , sk ∈ OB(V ), with
k ≤ n, so that s1 . . . sk = f .

Proof. We proceed by induction on n = dim(V ). The only B-isometries if n = 1 are
f(v) = v and f(v) = −v. The n = 2 case was done above [NOT ABOVE ANYMORE,
MAYBE JUST PROVE HERE AND REFER TO LATER]). Suppose the result is true
for each dimension up to n. If f is the identity, it is the composition of 0 reflections.
Otherwise, take some v ∈ V so that f(v) 6= v; if f(v) = αv, then α = −1, and so
svf restricts to an isometry on v⊥, so svf admits an expression svf = s1 . . . sk, where
k ≤ n−1, hence f = s1 . . . sksv. Otherwise, H = span{v, f(v)} is 2-dimensional, so f |H
is a product of at most 2 reflections, and f |H⊥ is a product of at most dim(H⊥) = n−2
reflections.
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3 Hyperbolic Geometry

If V is (n + 1)-dimensional and B is a bilinear form on V of type (n, 1), we can
impose an interesting geometry on a carefully chosen subset of V . By Sylvester’s Law
of Inertia (Theorem 2.11), according to some basis (e1, . . . , en+1) of V , and writing
v =

∑
viei, we have

B(v, w) = v1w1 + · · ·+ vnwn − vn+1wn+1.

Letting q(v) = B(v, v), we considerHn = q−1({−1})∩Un+1, where Un+1 = {(x1, . . . , xn+1) ∈
V | xn+1 > 0} is the upper-half space. Since q is a polynomial and hence differentiable
map, and −1 is a regular value, this is a submanifold of V . In fact, we can even put a
Riemannian metric on Hn in the following way. [Fill this in]

Definition 3.1 (Projective Ball Model). Let B1 be the unit n-ball at height 1; that
is, B1 = {x ∈ Rn+1 |

∑n
i=1 x

2
i < 1, xn+1 = 1}. Define p : B1 → Hn by setting

{p(x)} = Rx∩Hn, so p(x1, . . . , xn, 1) = (x1, . . . , xn, 1)/
√

1−
∑n

i=1 x
2
i . Define a metric

on B1 so that dp(x, y) = dH(p(x), p(y)), and let Hnp = (B1, dp), the projective ball model
of hyperbolic space.

As we will prove in Section 3.1, the hyperplanes in the projective ball model can
be viewed as intersections of linear subspaces of Rn+1 with Hnp .
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Definition 3.2 (Conformal Ball Model). Let B0 be the unit n-ball at the origin;
that is, B0 = {x ∈ Rn+1 |

∑n
i=1 x

2
i < 1, xn+1 = 0}. Define c : Hn → B0 by setting

c(x1, . . . , xn+1) = (x1, . . . , xn, 0)/(1 + xn+1), and define dc(x, y) = dH(c−1(x), c−1(y)).
Let Hn

c = (B0, dc), the conformal ball model of hyperbolic space. This can be viewed
as the projection of the hyperboloid onto B0 from −e1 = (0, . . . , 0,−1).

o
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3.1 Hyperbolic Isometries

Definition 3.3 (Lorentz space). Suppose V is an (n + 1)-dimensional real vector
space with a bilinear form B of type (n, 1). Such a space with a bilinear form is
called a Lorentz space. As before, we can choose a basis {e1, . . . , en+1} for which
q(v) = v2

1 + · · ·+ v2
n − v2

n+1; we’ll call any such basis a Lorentz basis. With respect to
this specific basis, we call a vector positive if vn+1 > 0 and negative if vn+1 < 0. We call
Q = q−1(0) the light cone, and a vector in Q is called light-like. A vector is space-like
if it lies in Q+ = {v ∈ V | q(v) > 0} and time-like if it lies in Q− = {v ∈ V | q(v) < 0}.
These sets are also called the exterior and interior of the light cone, respectively.
We call a subspace of V space-like if every nonzero vector is space-like, time-like if it
contains a time-like vector, and light-like otherwise.

Proposition 3.4. For any v 6= 0, v⊥ = {w ∈ V | B(v, w) = 0} is a codimension 1
linear subspace. If v is space-like, v⊥ is time-like.

Proof. Note that the linear functional Bv is nonzero, so its kernel is codimension 1.

Definition 3.5 (Lorentz transformations). When V is a Lorentz space with bilinear
form B, we call an element of OB(V ) a Lorentz transformation. It is a straightforward
calculation to see that such a transformation must take a Lorentz basis to a Lorentz
basis, and that this characterizes such linear maps. We call a Lorentz transformation
positive if it takes some positive time-like vector to a positive time-like vector (by
continuity, this implies that every positive time-like vector is sent to a positive time-
like vector).

3.2 Reflections in Hyperbolic Space

It turns out that reflections in projective model are intersections of hyperplanes, and
in the conformal model are intersections of spheres. [RATCLIFFE]
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3.3 Hyperbolic Trigonometry

Define functions sinh : R → R and cosh : R → R by sinh(x) = ex−e−x
2 and cosh(x) =

ex+e−x

2 . Observe that sinh is odd, increasing, and surjective, while cosh is even, in-
creasing for x ≥ 0, and cosh(R) = [1,∞). [What do I need to say for this?]
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Part II

Coxeter Groups
In Part II, we introduce the reader to Coxeter groups. We will begin with root systems
and reflections [WHAT ELSE]

4 Finite Reflection Groups

Before considering the general case of an arbitrary Coxeter group, let us first explore
what is meant by a finite reflection group. This will allow us to motivate the definition
of a Coxeter group, and we will ultimately use geometric notions considered here to
understand Coxeter groups. We will try to prove things in a general enough way that
we can carry the facts to the Coxeter group case.

4.1 From Geometry to Algebra

Definition 4.1 (Reflections). Let V be a finite dimensional vector space over R to-
gether with an inner product 〈·, ·〉; that is, a positive-definite symmetric bilinear form.
A linear map that sends some nonzero vector α to its negative and fixes its orthogonal
complement α⊥ = {λ ∈ V | 〈α, λ〉 = 0} is called a reflection of V in α . In terms of a

formula, this is the linear map sα : V → V such that sα(λ) = λ − 2 〈α,λ〉〈α,α〉α. Note that

if k ∈ R∗, we have skα = sα, so the formula is simplified if we choose 〈α, α〉 = 1.

A finite subgroup of GL(V ) is called a finite reflection group if it admits a generating
set consisting of reflections. This requires in particular that the order of a product of
any two reflections is finite.

Proposition 4.2 (Dihedral groups). If α, β are unit vectors in a vector space V , the
subgroup of GL(V ) generated by the reflections {sα, sβ} is a (possibly infinite) dihedral
group.

Proof. If α = ±β, then sαsβ(v) = v for any v. Otherwise, α and β are linearly inde-
pendent, so let H = span{α, β} be the plane spanned by them, and H⊥ its orthogonal
complement. Then if v ∈ H⊥, sαsβ(v) = sα(v) = v. If instead v ∈ H, then v = aα+bβ,

and sαsβ(aα+ bβ) =
[
(2a〈α, β〉+ 1

2a)2 + (b− 4a3+1
4a2

)
]
α+ (b− 2a〈α, β〉)β. [FIX THIS

PROOF]
sαsβ(β) = sα(−β) = 2〈α, β〉α− β
sαsβ(α) = sα(α − 2〈α, β〉β) = −α − 2〈α, β〉sα(β) = −α − 2〈α, β〉(β − 2〈α, β〉α) =

(4〈α, β〉2− 1)α− 2〈α, β〉β. These equations don’t seem to do much. Maybe just argue
informally. Not sure how to just use geometry.

In other words, the product of any two reflections amounts to a rotation of a plane in
a reflection group; to demand this group be finite requires the rotation angle is of finite
order. Since specifying a finite reflection group amounts to specifying a generating set,
any finite reflection group may be specified by a finite set of vectors.
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Lemma 4.3 (Reflections are orthogonal). Reflections are elements of the orthogonal
group of a vector space V ; thus a finite reflection group is a subgroup of O(V ).

Proof. First, for formula lovers. Suppose without loss of generality that α is a unit
vector.

〈sα(v), sα(w)〉 = 〈v − 2〈v, α〉α,w − 2〈w,α〉α〉
= 〈v, w〉 − 〈2〈v, α〉α,w〉 − 〈v, 2〈w,α〉α〉+ 〈2〈v, α〉α, 2〈w,α〉α〉

Now just observe that

〈2〈v, α〉α, 2〈w,α〉α〉 = 4〈v, α〉〈w,α〉 = 〈2〈v, α〉α,w〉+ 〈v, 2〈w,α〉α〉.

Alternately, we extend {α} to an orthonormal basis with respect to the inner prod-
uct and note that

sα =

(
−1

Idim(V )−1

)
satisfies strα = s−1

α .

Proposition 4.4 (Closure). Let W be a finite reflection group. Suppose sα ∈ W , for
some vector α, and w ∈W . Then the reflection in the vector w(α) is also in the group
W .

Proof. To see this, we calculate that the w-conjugate wsαw
−1 is nothing more than

swα. Indeed, wsαw
−1(wα) = wsα(α) = w(−α) = −wα, so it sends w(α) to its negative.

Now if 〈λ,w(α)〉 = 0, then by Lemma 4.3 we also have that 〈w−1λ,w−1w(α)〉 = 0.
So sα(w−1λ) = w−1λ, and thus (wsαw

−1)(λ) = w(sα(w−1λ)) = w(w−1λ) = λ, as
required.

4.2 Root Systems

Following the work in the previous sections, we look at particular collections of reflect-
ing vectors. We will examine here three types of sets of reflecting vectors and a way to
pass between the three types. We’ll then discuss how this leads to a group presenta-
tion of reflection groups, perhaps a bit informally. At this point, we’ll feel sufficiently
motivated to define Coxeter groups.

Definition 4.5 (Root systems). A finite subset Φ ⊆ V is called a root system when
for each α ∈ Φ,

(i) Rα ∩ Φ = {α,−α},
(ii) sα(Φ) = Φ.
The first condition reflects the fact that sα = skα for any k ∈ R∗ (cf. Definition 4.1),

and the second is motivated by the fact that reflecting roots are closed under the group
action (cf. Proposition 4.4).

There are two types of subsets of any root system which are of interest. Since
the definition requires that Φ counts every reflection exactly twice, it is reasonable to
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take a canonical choice of vector for each reflection. Any vector v in V which is not
orthogonal to any vector in Φ (see Theorem 2.5) determines a set Φ+ = Φ ∩ Half(v)
which we call a positive root system, and clearly Φ is the disjoint union of Φ+ and −Φ+.

We call ∆ ⊆ Φ a simple root system if ∆ is a basis for span(Φ) and Φ+ ⊆ cone(∆)
for some choice of Φ+. We say a root system Φ is essential if it spans the vector space.

Proposition 4.6 (Simple systems). Let Φ be a root system with a specified positive root
system Φ+. Then there is a linearly independent subset ∆ ⊆ Φ so that each positive
root is a nonnegative linear combination of elements of ∆.

Proof. Fix a positive root system Φ+ in a root system Φ, and let ∆ be the intersection
of all subsets X of Φ for which we can write every element of Φ+ as a nonnegative
linear combination of elements of X. Taking X = Φ+ allows us to do so, so ∆ ⊆ Φ+.
If there is some distinct pair of vectors α, β ∈ ∆ with 〈α, β〉 > 0, then neither sα(β)
nor −sα(β) can lie in cone(α, β). This forces 〈α, β〉 ≤ 0 for every distinct pair of roots.

β

α

sα(β)

−sα(β)

α⊥

However, this condition on the inner product forces ∆ to be a basis for span(Φ);
indeed, if we had a dependence relation

∑
aiαi = 0 with the αi ∈ ∆ we could move the

vectors with negative coefficients to the other side to obtain a vector v which possesses
two distinct expressions in terms of positive linear combinations of ∆. Since our bilinear
form is positive definite, we have 0 ≤ 〈v, v〉, and by the condition on distinct elements
of ∆, we have 〈v, v〉 ≤ 0. So indeed ∆ is linearly independent.

Remark. In the proof, we notice that the angle between any two roots in a simple
system is obtuse.

Theorem 4.7 (Correspondence). Let W be a finite reflection group associated to a root
system Φ. Every positive system contains a unique simple system, and each simple
system is contained in a unique positive system. Moreover, any two positive (hence
simple) systems are conjugate.

Proof. Let ∆ be a simple system in a root system Φ, and note that
∑

α∈∆ α is a vector
which is not orthogonal to any vector in Φ. This gives a way to choose a positive root
system containing ∆. We constructed a simple system within a positive root system
in the previous proposition, and noted it was unique.

For the next part, fix two positive systems Φ+
1 and Φ+

2 ; we want to show that there
is a w ∈ W with wΦ+

1 = Φ+
2 . We first note that if α is a simple root of Φ+

1 , then
sα(Φ+

1 ) sends α to −α, but otherwise permutes the elements of Φ+
1 .
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Theorem 4.8 (Generated by simple system). Proof.
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4.3 A Presentation

In this section, we convince the reader that we can write down a presentation for a
given finite reflection group. To prove this rigorously requires too much development
which would need to be repeated in the next section, so we rely on geometric intuition,
and we’ll get a more formal and complete (but less memorable) proof as a byproduct
of our more general work in Section 5.

Let W be a finite reflection group on a vector space V with a simple system ∆.
First we define the (open) simplicial cone C to be the intersection of the positive half
spaces determined by ∆; so C =

⋂
α∈∆ Half(α).

“Drop ball into cone, draw edges from center to hyperplanes.” By reflecting the
ball around the hyperplanes, we obtain the 1-skeleton of a polytope, all of whose edges
are length 1. Any subset of S corresponds to a unique face of the polytope containing
the center of the ball. Taking a two-element subset determines a 2 dimensional face,
and reading around the edge labels gives a word (sisj)

mij

It is clear that all relations in the presentation hold; we need to show that these
generate all of the relations in the group W . Suppose we have a relation s1 . . . sr = 1.

A2

α1

α2

α⊥2

α⊥1

s1

s2

C

s1

s2

s1

s2

s1

s2
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A3 H3

5

5 Coxeter Groups

We have demonstrated that a class of interesting groups possesses a certain presen-
tation. After building up this theory, we run this process in reverse; we began with
geometric considerations and made a deduction about its algebraic properties. Now
we weaken the algebraic conditions and see what we can get geometrically.

5.1 Defining Coxeter Groups: From Algebra to Geometry

Definition 5.1 (Coxeter systems). We say that a group W together with a generating
set S = {s1, . . . , sn} is a Coxeter system if

W = 〈s1, . . . , sn | (sisj)mi,j 〉,

(i) mi,j ∈ N∪∞, where mi,j =∞ means that we impose no relation on the product

(ii) mi,i = 1

(iii) for i 6= j, mi,j = mj,i ≥ 2.

We call n = |S| the rank of the Coxeter system.

To emphasize how this generalizes finite reflection groups, this definition allows for
groups with similar presentations but don’t necessarily come from the same geometric
process. We will see shortly that we can recover geometric information.

23



This is a case where the presentation gives exactly what one would expect. In
general, a group presentation can be misleading, but in this situation, we have the
desirable properties that si = sj implies i = j, and that the order of sisj is precisely
mi,j . One can see that the map which sends each generator in S to 1 in Z/2Z has each
relation in the kernel and hence extends to a homomorphism onto Z/2Z, allowing us
to conclude that the generators are order 2. The other properties are a consequence of
the representation of W we will construct in Section 5.4.

Definition 5.2 (Graphs and matrices). Given a Coxeter system (W,S), we define the
Coxeter matrix to be the n × n matrix M with Mij = mi,j . We define the Coxeter
diagram to be a graph on vertices s1, . . . , sn, with an edge labeled mi,j between si and
sj if and only if mi,j ≥ 3. If we do not label an edge, implicitly it is labeled with a 3.
It is clear that these two objects have all of the information of the Coxeter system, so
we can in fact define a Coxeter system by either of these means.

Define also the Schlafli matrix Ci,j = −2 cos(π/mi,j). A symmetric matrix cor-
responds quite directly to a bilinear form, as described in Section ??. Because the
Dynkin diagram and matrix encode identical information, we will use adjectives typi-
cally reserved for bilinear forms to describe the graph and vice versa; for example, we
might say that a graph is positive definite.

5.2 Combinatorics

There is a fascinating combinatorial theory of Coxeter Groups. We outline the neces-
sary facts here, but a book by Björner and Brenti illuminates this theory in full.

There is a natural grading of elements of a Coxeter group by word length. There
are three ways to organize this into a partial order, which we discuss in Section 10.
Each of these partial orders has an interesting geometric interpretation. Two of them
will come into play throughout the paper.

Definition 5.3 (Words in Coxeter groups). Given a set S, let S∗ denote the free
monoid generated by S (relevant language: S∗ consists of words in the alphabet S).
We also embed Sn ↪→ S∗ so that S∗ ∼=

⋃
n∈N S

n, which provides us with a notion of word
length in S∗. Now if (W,S) is a Coxeter system, then since each element of S has order
2 in W and is hence self-inverse, every element of W is in fact a word in the alphabet
S; in other words, there is a surjection ε : S∗ →W given by ε(s1s2 . . . sr) = s1s2 . . . sr.
Define ` : W → N so that `(w) is the minimal length of a word in S∗ having image
w under ε (since ε is surjective, this is a nonempty subset of N and hence possesses a
least element). In general, there will be many different words of length `(w) in S∗ that
map to w; we call any such word reduced. Beware that we will frequently conflate an
element in S∗ with its image under ε.

Let R = {wsw−1 | w ∈ W, s ∈ S}. We call R the set of reflections in W . We
analogously have a map εR : R∗ →W satisfying ε(r1 . . . rk) = r1 . . . rk; define `R : W →
N to be the minimal length word in R∗ having image w under εR. The sets S and R
have a similar relationship to that of a simple and positive root system.
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5.3 The Standard Representation

5.4 The Geometric Representation

We now aim to recover a geometric interpretation of our generalized class of groups,
which in the case of a finite Coxeter group coincides with our definition of finite reflec-
tion groups.

Definition 5.4 (Bilinear form). Let (W, {s1, . . . , sn}) be a Coxeter system. Take V
a real vector space with basis {α1, . . . , αn}. Impose a geometry on V by constructing
a bilinear form B(αi, αj) = − cos(π/mi,j), interpreting − cos(π/∞) = −1. Later, we
will allow for any value less than −1. Observe that, in particular, B(αi, αi) = 1 for
each of the basis vectors.

Any vector v defines a linear functional Bv : V → R so that Bv(w) = B(v, w). The
radical of B is the subspace B⊥ = {v ∈ V | Bv(w) = 0 ∀w ∈ V }. When this is trivial,
we say B is nondegenerate.

When v is not in the radical of B (that is, there is some w for which B(v, w) 6= 0),
Bv is not the zero linear functional, so it is a surjection onto R and by the rank-
nullity theorem, its kernel is a codimension one subspace of V . Accordingly, define the
hyperplane determined by v to be Hv = ker(Bv).

Definition 5.5 (Orthogonal group). Define the B-orthogonal group OB(V ) = {T ∈
GL(V ) | B(T (v), T (w)) = B(v, w) ∀v, w ∈ V }. Define a reflection in α with respect

to B to be the linear map σα(v) = v − 2B(α,v)
B(α,α)α, and observe that σα fixes v ∈ Hα =

ker(Bα) and σα(α) = −α. A quick calculation shows that σα ∈ OB(V ) for every α,
and so the group generated by {σα | α ∈ Φ} is actually a subgroup of OB(V ).

Indeed, write v = v0 + v1 and w = w0 + w1 with v0, w0 ∈ Rα and v1, w1 ∈ Hα.
Then

B(σα(v), σα(w)) = B(σα(v0 + v1), σα(w0 + w1))

= B(−v0 + v1,−w0 + w1) = B(−v0,−w0) +B(v1, w1) = B(v, w).

Proposition 5.6. We set σ(si) = σαi. Then the order of σ(sisj) in OB(V ) is mi,j.
Thus σ is a faithful representation of W in OB(V ).

Proof.

The properties of this bilinear form unsurprisingly have geometric consequences.
When it is positive definite, we obtain an action that in some sense (the sense of
Section 1.1) is best viewed on a sphere, say the unit ball {v ∈ V | B(v, v) = 1} of
V . If we are merely positive semidefinite, the group has a natural action on an n− k-
dimensional Euclidean affine space, where k denotes the dimension of the radical of B.
We can view the action on a hyperbolic space if the form has type (n− 1, 1).

As it turns out, requiring − cos(π/∞) = −1 is a bit more restrictive than we’d
like. When we study subgroups in Section 7.1, we will allow any value satisfying
− cos(π/∞) ≤ −1.
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Definition 5.7 (More Geometric Objects). We are interested in a number of subsets
of our vector space V constructed in the previous section. First of all, since ∆ is a
basis for our vector space, we can define a linear functional φ : V → R by mapping
each basis vector to 1, so that φ(v) is the sum of the coordinates of v in ∆. The set
V0 = φ−1(0) is a hyperplane in V , and V1 = φ−1(1) is an affine hyperplane in V . Let
ˆ : V \ V0 → V1 by v̂ = v

φ(v) .

We will want to think about Φ̂, but we need to ensure Φ ∩ V0 = ∅. Since Φ ⊆
cone(∆) ∪ − cone(∆), we merely need to confirm that conv(∆) ∩ V0 = ∅.

Definition 5.8 (Length function). Suppose G is a group which is generated by a set
S, and let w ∈ G. Define `(w) = min{k ≥ 0 | s1 . . . sk = w for some si ∈ S}. We call
any expression for w of length `(w) a reduced expression. Obviously, if s1 . . . sk is an
expression for w, then `(w) ≤ k. We’ll use this fact below.

Proposition 5.9 (Technical lemma for length function). Take w,w′ ∈ W . We have
`(w) = `(w−1), and `(w)− `(w′) ≤ `(ww′) ≤ `(w) + `(w′).

Proof. Indeed, let s1 . . . sk be a reduced expression for w. Then sk . . . s1 is an expression
for w−1. So `(w−1) ≤ `(w). Applying this argument to w−1 yields `(w) = `((w−1)−1) ≤
`(w−1), so the result follows.

Now let s1, . . . sk be a reduced expression for w and sk+1 . . . sk+q a reduced expres-
sion for w′. Then `(ww′) ≤ k + q = `(w) + `(w′).

Finally, `(w) = `(ww′(w′)−1) ≤ `(ww′) + `((w′)−1) = `(ww′) + `(w′), and so `(w)−
`(w′) ≤ `(ww′). We used both of the previous parts in this calculation.

Corollary. If w ∈W and s ∈ S, then `(ws) = `(w)± 1.

Proof. By the second part of Proposition 5.9, it suffices to show that `(ws) 6= `(w).
(We need to use the alternating stuff or something about orientation).

We will now introduce a geometric interpretation of the length function; it will
require some work to show this new function is equivalent to the combinatorial length,
but having both descriptions will allow us to relate the geometry to the algebra very
smoothly.

Definition 5.10 (Geometric length). Let (W,S) be a Coxeter system, with R =
W−1SW , the set of reflections. Define a function n : W → N by

5.5 Deletion and Exchange

We can carry our definitions of reduced words in a group G with generating set S to
a more general setting. We then

6
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Proposition 5.11 (Deletion Property). Given an unreduced expression w = s1 . . . sk,
there exist 1 ≤ i < j ≤ k so that w = s1 . . . ŝi . . . ŝj . . . sk.

Proof.

Proposition 5.12 (Exchange Property). Take a reduced expression w = s1s2 . . . sk
and s ∈ S. Then `(sw) ≤ `(w) implies that sw has an expression s1 . . . ŝi . . . sk, for
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some 1 ≤ i ≤ k, whereˆdenotes a removed letter.

Proof.

Amazingly, these properties turn out to characterize Coxeter groups in the following
sense.

Proposition 5.13 (Equivalence). Whenever W is a group generated by a set S of
involutions, (W,S) is a Coxeter system if and only if (W,S) satisfies the Deletion
Property if and only if (W,S) satisfies the Exchange Property.

Proof.

Theorem 5.14 (Deletion and Exchange Conditions). Proof.

Given a finite reflection group W on a Euclidean n-space V , let R denote the set of
elements of W which are reflections. Each reflection is of the form sα for some α ∈ V ;
if for each element in R we pick such an α and its negative, the union of all such will
give us a root system Φ (we arranged for the first property to hold by selecting two
vectors for each reflection, and the fact that the second property holds is a consequence
of Proposition 4.4). From this, we can select a positive root system and hence a simple
system ∆ = {α1, . . . , αn}. To simplify notation, let si = sαi .

Theorem 5.15 (A presentation). With the above notation, we have

W = 〈s1, . . . , sn | (sisj)m(i,j)〉, (1)

for some positive integers m(i, j) ≥ 2 for i 6= j, and each m(i, i) = 1.

Proof. To prove this, we suppose si1 . . . sim is the identity, and [follow Humphreys]

We now introduce handy orthographic devices which, perhaps surprisingly, contain
some important mathematical information. We can encode the information of a finite
reflection group by means of either a graph or a matrix.

Definition 5.16 (Graphs and matrices). Given a finite reflection group W , we can
select a presentation as in Equation (1). We build a labeled graph Γ = (S,E) with
vertices corresponding to generators, and an edge between si, sj if and only if mi,j > 2,
and labeled with this number. Such a graph contains precisely the same information
as the presentation. Observe that vertices that are not connected with an edge are
exactly those that commute.
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5.6 Parabolic Subgroups

Let (W,S) be a Coxeter system. We can ask what happens when we look at a subset
I of a simple system S. Let WI be the group generated by the corresponding simple
reflections. If we 1

(WI , I) is again a Coxeter system.
if graph not connected we have W ∼= WI ×WJ

s3

s1 s2
5

Consider the geometric representation (V,B) of the Coxeter group W associated to
the graph above. The parabolic subgroup W{s1,s2} has as the longest word s1s2s1s2s1;

this corresponds to a root s1s2(α1) = 1+
√

5
2 (α1 + α2) which we will call β. Then we

have B(α3, β) = 1+
√

5
2 (B(α3, α1)+B(α3, α2)) = −1+

√
5

2 � −1. However, if we consider
the geometric representation (V ′, B′) coming from W{sβ ,s3}, we get B′(α3, β) = −1.
Thus we have shown that the geometric representation as we have defined it does not
restrict to arbitrary reflection subgroups. As we alluded to before, we now have a
motivation to allow for − cos(π/∞) < −1.

6 A Four-fold Split

The type of the bilinear form corresponding to a given Coxeter group is a very conse-
quential datum. When we have a positive definite form, the corresponding group turns
out to be finite; in fact, it is also true that every finite Coxeter group is positive defi-
nite. In this case, the representation acts by linear isometries of V , so we can actually
restrict this action to a geometric action on SV , the unit sphere. For this reason, finite
Coxeter groups are also called spherical.

When the form is positive semi-definite but not positive definite, we can restrict the
action of W to an affine subspace of V in which W contains a translation, and so we
have a geometric action on a Euclidean space; we call such Coxeter groups Euclidean.

Both of these types are well-studied and even classified. The remaining Coxeter
groups are the wild ones, and the main objects of interest for us. We have a bit more
control when the form has type (n− 1, 1), but this is not always the case.

6.1 Finite Reflection Groups: Classification

It is not too difficult to classify the Coxeter groups which are finite, and we would be
remiss if we did not include this feat first achieved by –. This classification is very
closely related to many other classifications in mathematics. The first attempts were
– and –, but had these mistakes.

Lemma 6.1. The Coxeter graph of an irreducible finite reflection group is connected
and acyclic, and every subgraph corresponds to a finite reflection group.
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Proof. Section 5.6 tells us it suffices to classify the case where the graph is connected,
because otherwise the group is simply a direct product of the connected components.

Second, we also get to suppose the graph is acyclic; so we are actually just looking
at labeled trees. Let us see why this is. [Suppose s1, . . . , sk form a cycle, show the
group must be infinite.]

The third condition also follows from Section 5.6

Theorem 6.2 (Classification of finite reflection groups). The diagrams listed in Fig-
ure 6.1 exhaust the irreducible finite reflection groups.

Proof. [THIS NEEDS CLEANING UP] We show that these are the only possibilities,
and leave the verification that these are indeed finite reflection groups to the reader.
We rely on the fact that to have a subgraph corresponding to an infinite subgroup
implies the group is not finite. The graph theoretic properties will be crucial. So
suppose we have a tree. There is a unique rank 1 Coxeter group. If the rank is 2, we
can put any natural number m as a label to obtain the diagram of type I2(m), and
this gives a dihedral group.

Now suppose Γ has at least 3 vertices and, for now, suppose we have no labels.
Considerations on degrees will exhaust the possibilities.

Case 1: The degree of each vertex is at most 2. These are just the graphs of type
An, each of which is a finite reflection group.

Case 2: The degree of some vertex is at least 4. In this case, we can this vertex
together with four of its neighbors to see that we contain a subgraph of type D̃4.

Case 3: Every vertex has degree at most 3.
Subcase i: More than one vertex has degree 3. Suppose x, y have degree 3. Then,

since Γ is connected, there is a path from x to y. But this means we have a subgraph
of type D̃n, where n+?? is the length of the path.

Subcase ii: We have a unique vertex of degree 3, having legs of length p ≤ q ≤ r.
If p = 2, then we contain a graph of type Ẽ6 since 2 ≤ q ≤ r. So p must be 1; if q = 3,
then we contain a graph of type Ẽ7. If q = 2 and r = 5, we contain a graph of type
Ẽ8, so we must have r = 2, r = 3, or r = 4, corresponding to the cases E6, E7, and
E8, respectively. If q = 1, then any value of r gives us a graph of type Dr+3.[What is
a leg (find a good way to define these)]

This classifies the unlabeled connected Coxeter diagrams. So suppose we have two
edges labeled; this gives a subgraph of type C̃n, by decreasing these labels to 4 and
removing edges not forming a path between these edges. So there’s a single labeled
edge. If there’s a vertex of degree 3, we contain a graph of type B̃n, so in fact we have
a path with a single labeled edge.

If our label is at least 6, we contain a graph of type G̃2, since we have at least three
vertices. So suppose our label is 5; if our graph is type H3 or H4, it is finite. Any
other graph with a label of 5 either contains 5 in an edge which is not on the end, so
we contain a graph of type Z4, or has at least 5 vertices, which contains the graph of
type Z5.
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An

4Bn/Cn

Dn

m
I2(m)

5H3

5H4

4F4

E6

E7

E8

Figure 1: The positive definite graphs

If our label is 4 and it is on the end of the path, we have type Bn/Cn. So suppose
the labeled edge is not on the end; then we either have type F4 or contain F̃4.

The following are used in the classification.

∞
Ã1

Ãn
4 4

B̃2 = C̃2

B̃n
4

4 4
C̃n

D̃n

Ẽ6

Ẽ7

Ẽ8

4
F̃4

6
G̃2

The following two Coxeter diagrams were also used in the calculation but are not
affine; in fact, they have type (3, 1) and (4, 1), respectively.

5Z4
5Z5

6.2 Affine Reflection Groups

In the case that B is semi-definite but not positive definite, we can view the represen-
tation of W as a geometric action on an affine Euclidean space. Suppose also that W
is irreducible.
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Let A be the matrix for B with respect to the basis {αs}s∈S . Since W is irreducible,
the graph is connected.

We have concluded that V ⊥ is spanned by some vector λ in conv({αs}s∈S)
It may help the reader to focus on the following example. Consider the Cox-

eter group of type Ã2 with Coxeter diagram as in Figure 6.2. The Schläfli matrix is 1 −1/2 −1/2
−1/2 1 −1/2
−1/2 −1/2 1

, which has eigenvalues (0, 3/2, 3/2).

(The simple roots are linearly independent, but the geometry is such that their 3
hyperplanes intersect in a common line (λ, λ, λ). What this means is that in the dual
space, the linear functionals lie on a plane, and we get a tiling of equilateral triangles.
However, in the original space, the generating reflections fix a cylinder. We get roots
decorating the cylinder )

6.3 Geometric group actions in Coxeter Groups

Recall in Section 1.1 we established a correspondence between groups and metric
spaces. We use this correspondence to restrict our view of the representation con-
structed in Section 5.4 to a more appropriate domain.

Example 6.3. We examine the case of the Coxeter group of type I2(m) (which is the
dihedral group D2m). As this is a finite group, it can actually act geometrically on a
one-point space. Our quasi-isometry condition was a bit too coarse to keep track of
finite information. However, the fact that a one-point space is not quasi-isometric to R2,
we know we can restrict to some smaller space. Indeed, if we restrict to the unit circle,
we have a geometric action. This is not a coincidence but actually the general case for
finite Coxeter groups; we restrict to the unit sphere SV = {v ∈ V | B(v, v) = 1}.
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Example 6.4. We examine the case of the Coxeter group of type Ã2. The Schläfli

matrix is

 1 −1/2 −1/2
−1/2 1 −1/2
−1/2 −1/2 1

. Diagonalizing this matrix using the basis ?? yields1 0 0
0 1 0
0 0 0

 [Acts geometrically on affine hyperplane]

Example 6.5. Hyperbolic
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Part III

Lorentzian Coxeter Systems

7 Lorentzian Coxeter Systems

There is some dissonance in the literature as to what a hyperbolic Coxeter group is.
For example, [DESCRIBE ALL DIFFERENT DEFNS OF HYPERBOLIC, EXPLAIN
WHO MADE WHICH ONES ETC]

To circumvent this problem, we introduce a different word, and say that a Coxeter
group is Lorentzian when the associated bilinear form is of type (n − 1, 1). Note this
is a more general notion than Humphreys’ hyperbolic; indeed, we do not require that
B(v, v) < 0 for v ∈ C.

When we have a vector space V together with a bilinear form B on V , we will call
the pair (V,B) a quadratic space.

Remark. Usually, the term “quadratic space” refers to a vector space together with a
quadratic form. However, specifying a quadratic form Q on a real vector space uniquely
specifies a symmetric bilinear form by the formula B(v, w) = 1

2(Q(v+w)−Q(v)−Q(w)).
Moreover, every symmetric bilinear form arises in this way from some quadratic form.

To each v ∈ V with B(v, v) 6= 0, we can define sv : V → V by sv(w) = w−2B(v,w)
B(v,v) v,

which we call the B-reflection associated with v. Observe that sv ∈ OB(V ); indeed,

B(sv(u), sv(w)) = B(u−2B(v,u)
B(v,v)v, w−2B(v,w)

B(v,v) v) = B(u,w)−2
(
B(B(v,u)

B(v,v)v, w) +B(u, B(v,w)
B(v,v) v)

)
+

4B(B(v,u)
B(v,v)v,

B(v,w)
B(v,v) v) = B(u,w).

So let S = {sα | α ∈ ∆}, and then W = 〈S〉 the subgroup of OB(V ) generated by
S. Finally, let Φ = W (∆) be the W -orbit of the simple system, and then (W,S) is a
Coxeter system, and (Φ,∆) is said to be a based root system in (V,B).

Note that (Φ,∆) together with (V,B) actually determines (W,S), so we can define
a Lorentzian Coxeter system by a based root system in a quadratic space.

7.1 Subgroups and the Generalized Geometric Represen-
tation

The parabolic subgroups are the easiest to manage. Given a Coxeter system (W,S),
we can consider subsets I of S, and examine the subgroup WI of W generated by I.
It turns out that (WI , I) is a Coxeter system. The situation is less predictable when
we take merely a subset of R = {w−1sw | s ∈ S,w ∈W}, as we’ll see shortly.

8 Limit Roots

Of course, in the case of an infinite Coxeter group, the associated root system is also
infinite. In our setting, the root system is a discrete subset of V , but we can consider

35



directional limits.

Definition 8.1 (Depth of a root). Let (Φ,∆) be a based root system in a quadratic
space (V,B), with the corresponding Coxeter system (W,S). If ρ is a positive root,
then we define the depth of ρ to be dp(ρ) = 1 + min{`(w) | w(ρ) ∈ ∆}. So depth 1
roots are the simple roots, depth 2 roots are the positive roots which can be obtained
as a simple reflection of a simple root, and so on. We set Φ+

n to be the positive roots
of depth n.

8.1 Roots Diverge

In this section, we show that any bounded set contains only finitely many roots, and
hence that the root system is a discrete set.

8.2 Projecting the Roots

Although there is no hope of finding a limit root

Definition 8.2 (Affine hyperplane). Suppose (Φ,∆) is a based root system in a
quadratic space (V,B), and let ϕ : V → R be the linear functional so that ϕ(α) = 1 for
each α ∈ ∆ (so really what ϕ does is add up the coordinates of α in the basis ∆). The
kernel of ϕ is a hyperplane in V which does not intersect any simple root in ∆. As we
will shortly describe, the main object of interest will be the affine subspace determined

by ∆, which we can view as V1
def
= ϕ−1({1}) = aff(∆). While all simple roots lie in V1,

the other positive roots need not. However, these roots are (by their very definition)
positive linear combinations of elements of ∆, and so for ρ ∈ Φ+, we have ϕ(ρ) > 0.

So we can consider the projection of ρ onto V1 defined by ρ̂
def
= ρ

ϕ(ρ) .

Proposition 8.3. If (Φ,∆) is a based root system in a quadratic space (V,B), then
the set Φ̂ of normalized roots lies within conv(∆).

Proof. We notice that when ρ is a positive root, ρ̂ has positive coefficients as well. This
just says that ρ̂ ∈ cone(∆), and so in fact ρ̂ is in cone(∆) ∩ aff(∆) = conv(∆).

Corollary. The set of limit roots is empty if and only if B is positive-definite.

8.3 Random Walks in Hyperbolic Space

The following picture should give some intuition to the assertion that “random walks
in hyperbolic space diverge”. We will not explicitly need this fact, but it will help
motivate the next section.
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Interpret this picture as follows: a path in the upper half plane model of hyperbolic
space is “twice as likely” to move down than up.

8.4 Infinite Reduced Words

Let (W,S) be a Coxeter system. Call a sequence f : N → S reduced if every initial
segment is a reduced word in W . For example, in Ã1, the sequence s1s2s1s2s1 . . . is
reduced. In a finite Coxeter group, there are no infinite reduced words.

OUTLINE: Show that the limit roots are contained in the light cone. The limit set
of the orbit of any point is the same as the set of limit roots.

9 Examples

We consider examples of Lorentzian Coxeter systems, and aim to calculate their limit
roots.
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9.1 Kn+1

First, we consider Kn+1, the complete graph on n + 1 vertices. For n ≥ 3, this graph
corresponds to a Lorentzian Coxeter system. The Schlafli matrix associated with this

graph is aij =

{
1 if i = j

−1/2 if i 6= j
. In fact, the eigenvalues will be 3

2 with multiplicity n,

and 1− n
2 with multiplicity 1. Indeed, the vector ~1 consisting of all ones is visibly an

eigenvector with eigenvalue 1− n
2 , and any permutation of the vector (1,−1, 0, . . . , 0)

is an eigenvector with eigenvalue 3
2 . Any permutation of (1, 1, 1, 0, . . . , 0) will lie on the

light cone.

9.2 (p,q,r)

Second, we look at (p, q, r) graphs. Let Γ be the graph formed by taking paths of
length p, q, and r, and identifying an endpoint of each so that Γ is a tree. Thus, Dn is
a (2, 2, n − 2) graph. Note that a (p, q, r) graph has rank p + q + r − 2, and that the
ordering of p, q, and r is irrelevant so we may as well take p ≤ q ≤ r. Such a graph
corresponds to a Lorentzian Coxeter system precisely when 1

p + 1
q + 1

r < 1.
To see this, we construct a representation of the Coxeter group corresponding to a

(p, q, r) graph.  b1 . . . bp+1

a c1 . . . . . . cq+1

d1 . . . . . . . . . dr+1


Let λ =

9.3 Ẽ8

Although Ẽ8 may be viewed as a (2, 3, 6) graph, we may more efficiently represent it in
R9,1 using the following vectors. This is in hyperbolic space, but the span of the roots
is affine.
{±(1 | 1306)} ∪ {(0 | 11(−1)107)}
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Part IV

Combinatorics

10 Combinatorial Generalizations

We return our attention to the combinatorial aspects of Coxeter groups.

Definition 10.1 (Reflection length). As before, let R be the set {wsw−1 | w ∈W, s ∈
S} of reflections in W . We define εR : R∗ → W and `R : W → N analogously to ε and
`, so that `R(w) is the minimal length of a word in R∗ having image w under εR.

Definition 10.2 (Partial orders). For each of the following orders, we define the
covering relations /, and take the transitive closure to obtain a partial ordering < on
W . The Bruhat order turns out to be the most important, followed by the weak order.

Weak order We say u /R w if `(u) ≤ `(w) and u−1w ∈ S. Say u /L w if instead
wu−1 ∈ S.

Bruhat order We say u / w if `(u) ≤ `(w) and u−1w ∈ R.
Absolute order We say u /A w if `R(u) ≤ `R(w) and u−1w ∈ R.

Proposition 10.3 (Symmetric orders). The Bruhat and absolute order are left-right
symmetric.

Proof.

Definition 10.4. Upon considering these three orders at once, it seems natural to
define a fourth order, in which the covering relations are u /′ w if `R(u) ≤ `R(w) and
u−1w ∈ S. This order is fairly unstudied. We explore properties of <′ below.

Proposition 10.5 (Disconnected). The Hasse diagram of <′ is disconnected if [What??]

Appendices
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