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Abstract—The joint cyber and physical attacks propose new
threats to many cyber-physical systems including smart grids.
Due to the critical interdependency of power grids on the cyber
components, modern power grids exhibit new vulnerabilities to
cyber and physical attacks. In this paper, a joint cyber-physical
attack is considered in which an adversary damages some lines
physically (physical attack) and prevents the information flow
from the attacked zone to the control center to tamper the
observability of the grid and mask the physical failure (cyber
attack). The goal of the presented work is to evaluate if the PMU
data available from outside of the attacked zone can be used to
estimate the state of the components in the attacked zone and
how various scenarios of attacks will affect the state estimation.
In this regard, a linear Minimum Mean Square Error (MMSE)
estimation is applied to simulated PMU data. The MMSE is
further extended to an iterative process with feedback to improve
the performance of estimation. In this paper, the state estimation
to recover the status of the components after the joint cyber
physical attack is a data-driven approach and does not use system
models. The IEEE 118 test case is used to show scenarios that
the state of the lines can be estimated with minimum error as
well as the lines that are difficult to estimate their state and thus
may require more protection.

Index Terms—Line Outages, PMU Data, Cyber-Physical At-
tack, State Estimation, Smart Grid Security.

I. INTRODUCTION

Modern power grids are becoming more and more equipped
with cyber elements for sensing, monitoring, communica-
tion, computation, and control, which make them exemplary
complex cyber-physical systems. Due to such increased de-
pendency on cyber components, these systems exhibit new
vulnerabilities to cyber threats. When cyber attacks occur
jointly with physical attacks or failures in the power grid, they
could have even more serious impacts and cause large-scale
blackouts with severe societal and economic consequences
[1]. In the case of physical attacks or failures, the system’s
stability can be maintained if the Supervisory Control and Data
Acquisition (SCADA) receives precise information about the
status of the components and take proper action accordingly.
If however, the flow of information is obstructed by a cyber
attack, the status of the components will be unobservable to
the SCADA, which prevents the control center from taking
necessary and appropriate actions in a timely manner. Figure
1 presents the historical timeline of reported cyber-physical
attacks, which is a clear indication of ever-increasing threats
and concerns on cyber-physical systems security, such as the
smart grid security.

1982, Energy
Siberian pipeline

1994, Water
Salt River Project

1997, Transport
Worcester Airport

1999, Energy
Bellingham Pipeline

2001, Water
Maroochy, SCADA

2001, Transport
Port of Houston Dos

2002, Transport
CSX Washington DC

2002, Energy
Davis-Besse

2005, Transport
Railcorp Sydney

2006, Water
Harrisburg water filtering Plant

2006, Transport
L.A. Traffic Engineers Strikes

2006, Water
2006, Health
2007, Transport
2008, Energy
2008, Transport
2009, Energy
2009, Energy
2009, Health
2009, Health
2009, Defense
2010, Energy
2010, Water
2010, Transport
2011, Water
2011, Defense
2011, Defense
2012, Energy
2012, Transport

2012, Energy
2012, Defense
2013, Defense
2015, Transport
2015, Energy

2016, Defense

2016, Business
2016, Business
2017, Energy
2017, Business Qatar news agency hacked

Widespread electricity cuts across Istanbul, Turkey
The operation Ghoul in UAE
Shamoon 2, Saudi
Police data licked, Turkey
Ukrainian Power grid attack
UAE, attacks on Energy companies
Attack on Istanbul Airport passport control system
Saudi Arabian Defense Ministry System
Syrian Ministry of Foreign Affairs
RasGas Attack, Qatar
Maritime transport sector, Egypt
Aramco, RasGas
US drone captured, Iran
Drone keylogging
Illinois Water Plant
Web-based immobilization
South Houston water treatment
San Bruno pipeline
Drone video feed interception, Iraq
Arlington clinic HVAC
Worm on MRIs
En. Fut. Holdings
STUXNET
Lodz Trams
Hatch Nuclear Plant
Alaska ATC
Epilepsy website
Sacramento River

2015, Energy

Notable real-world incident

Fig. 1: Historical time-line of reported cyber-physical attacks
on various infrastructures (energy infrastrcture is indicated by
red) [7,16].

On the other hand, cyber components provide invaluable
opportunities for a more secure and reliable operation of smart
grids. For instance, the immense volume of energy data col-
lected by various sensors, such as Phasor Measurement Units
(PMUs), provide new opportunities for detecting, estimating
and predicting various events in the system using big data
analytics techniques. In this paper, we consider a scenario
of joint cyber and physical attack on the smart grid and
discuss how a data-driven method based on PMU data can
help in recovering the status information of the components.
Similar to the work in [1-3], we consider the scenario in which
an attacker conducts a physical attack on the power system
by disconnecting few transmission lines and simultaneously
launches a cyber attack on the communication system and
prevents the flow of information from the region around the



physically attacked area or other regions of the system to the
control center. This joint cyber attack leads to unobservability
on a portion of the power system, which has experienced
line outages. The goal of the presented work is to use the
PMU data from outside the attacked zone (observable parts of
the system) to estimate the state of the lines in the attacked
zone using a data-driven technique. The availability of large
volumes of PMU data in future smart grids and limitations
of the traditional power system state estimation due to depen-
dency on accurate power system models, make the data-driven
approaches more appealing than before as a complement to the
traditional state estimation or separately. In this work, we have
specifically used a linear minimum mean square error (MMSE)
estimator for recovering the status information of components
in the attacked zone. We have evaluated various scenarios
and observed that recovering the status information of certain
power components are more difficult than others and thus, we
have proposed an extension to the linear MMSE estimator by
adding iterative feedback to the estimator, which has improved
the estimation performance. We have evaluated these data-
driven estimation methods on various scenarios of joint-cyber
attacks on the IEEE 118 test bus system including scattered
and localized attacks. The results show that the data-driven
approaches can be promising approaches for state estimation,
particularly during cyber-physical attacks.

II. RELATED WORKS

Security of the cyber physical systems (CPSs) including
smart grids has been the focus of many researches. Studying
and mitigation the effects of joint cyber and physical attacks
in CPSs are categories of such researches that have gained
lots of attention recently [1]-[5]. For instance, Sultan et. al
in [1]-[3] exploited a joint graph-based and power analysis
approach for state estimation and line failure detection. In
[4], the authors considered coordinated cyber physical attacks
that can lead to line outages. In the latter work, the goal is
to identify the most damaging and undetectable line outages
using power system analysis and an optimization framework.
In [5], an in-depth review of the smart grid security from a CPS
perspective is presented and prominent cyber physical attack
schemes with significant impact on the smart grid operation
and corresponding defense solutions have also been discussed.

Other than the power-based and graph-based analyses of the
security threats, many researchers have used PMU data for
detecting the line outage in power grids in case of failures
or attacks. For instance, in [6] the authors use PMU data
along with the topology information to detect line outages.
State estimation of power system using PMU data have also
been extensively studied [8-12]. For instance, in [9] a two-
step hybrid state estimation combining both conventional WLS
method and linear estimation that utilizes PMU measurements.
In [12], a real-time fault detection and faulted line identifi-
cation functionality is proposed based on computing parallel
synchrophasor-based state estimators.

In addition to new techniques based on graph and PMU
data analyses, power system security has been extensively

studied using traditional state estimation methods [13-15] in
which accurate knowledge of the system model is required.
The work in [13] provides a survey discussing the state of
the art in electric power system state estimation. A review
of power system dynamic state estimation techniques using
conventional methods have also discussed in [14,15]. Although
many powerful techniques has been developed in state estima-
tion for power systems, availability of large volume of data and
data analytics techniques can provide new opportunities to help
with state estimation in special situations, for example, when
the system model is not available or accurate (such as in the
cases of joint cyber attacks). The presented work in the current
paper, is focused on a data-driven approach for state estimation
using PMU data for transmission line state estimation and fault
detection during joint cyber physical attacks.

III. SYSTEM AND ATTACK MODEL

A. Power System Model

We consider a power transmission system with a set of buses
(including generation, transmission and substation buses) de-
noted by N and a set of transmission lines denoted by L.
We also assume that the system is fully equipped with PMUs,
which although may not be realistic based on current real-
world systems, it will allow us to evaluate the proposed
methodology for the case of complete information on the
system. Similar study can be performed with limited number
of PMUs as the future work. Moreover, we assume that the
real and reactive power flow through transmission lines and
phase angels of the components are being sampled by PMUs
and sent to the control center (SCADA). Finally, we assume
that the loads at substations vary in time and cause change in
the flow distribution.

B. Attack Model

In this paper, we consider joint cyber and physical attacks
and thus the attack definition has two parts. Specifically, to
model the cyber attack, we assume that the attacker randomly
selects a subset Ac of transmission lines (i.e., Ac ∈ L) and
masks the flow of information from them to the control center.
We call the set Ac the cyber attack zone or attack zone for
short. Further, to model the physical attack, we assume that
a subset Ap of lines from the attack zone (i.e., Ap ∈ Ac)
experiences physical attack or failure.

Further, we consider two scenarios for the attack zone:
(1) Randomly scattered attacks, where the set Ac of transmis-
sion lines is geographically scattered on the system. Figure 2-a
depicts one example of a scattered attack on the IEEE 118 test
case topology.

(2) Localized attacks, where the set Ac of transmission lines
are all adjacent to each other (i.e., have physical connection in
the topology of the system). Figure 2-b represents an example
of a localized attack scenario on IEEE 118 test case.

IV. ESTIMATING THE STATE OF COMPONENTS

After a joint cyber and physical attack occurs in the system,
we use the collected PMU dataset and apply a ”Minimum
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Fig. 2: Example of a) scattered attack scenario, and b) a
localized attack scenario. The red marked branches have
experienced cyber attack and became unobservable and the red
dashed lines indicate branches, which are physically attacked.

Mean Square Error Estimator” to estimate the status of
the branches in the unobservable portion of the grid. We
specifically use a linear MMSE estimation model, where the
unobservable portion of the grid is the estimation target and
is denoted by Y. The size of vector Y is equal to |Ac|,
where |.| represents the cardinality of the set. The elements
Yis of Y represent the power flow through the unobservable
transmission lines in the attack zone. In this work, we use the
real power flow through the lines to identify the physically
attacked/failed lines. The rest of the information outside the
attacked zone provided by the PMUs are considered as the
estimation features X, where the size of vector X is given by
(|L| − |Ac|) ∗ f and f is the number of feature parameters to
be used. Specifically, in this work we consider three possible
feature parameters including real and reactive power flow and
the phase angel. We can use a single feature parameter or a
combination of them as well as certain lines or all the lines
as a part of our estimation features.

The linear MMSE model suggests that our estimation of Y
is related to features through Ŷ = AX+B, where matrix A
and vector B can be characterized based on the data such
that estimation error is minimized. Specifically, the matrix
A = RXYR−1

X , where the matrix RXY and RX are the cross-
correlation and auto-correlation matrices and B = Ȳ −AX̄,
where X̄ and Ȳ are the mean of the variables X and Y.

An important observation based on our simulations is that
when a subset of the grid branches changes their status (fail
or the change the power flow), not all other lines will be
effected equally due to such changes. For example in Figure
2-b, changes inside the red portion of the grid (e.g., failure in
the attack zone) does not equally affect the other branches
outside the attack zone. Figure 3 shows a heatmap of the
real power flow changes in all transmission lines due to the
changes in the status of components inside the attack zone.
This result is obtained based on 250 different scenarios with
multiple combinations of failed transmission lines inside the
attack zone. Based on this observation we can conclude that
to determine the status of the unobservable components, one
does not need data on all other branches outside this zone.
Thus we can introduced a feature selection mechanism based
on such analyses, which will allow selecting feature with most
information to ease the computational complexity.

Fig. 3: Effect on all other branches due to changes in red
marked zone (Figure 2-b.) for different combination of changes
inside the zone.

A. Iterative MMSE with feedback

As we will show in Section V, when multiple lines becomes
unobservable, it gets more difficult to estimate the status
of the line with an acceptable confidence level. To improve
the performance of the estimation, we can use a feedback
mechanism in the linear MMSE to use the components that
are easier to estimate the states as features for the rest of
the components. Note that this requires a pre-assessment of
estimation capabilities for various components of the system,
which can be a cumbersome task. In this subsection, we as-
sume such information is available and has been pre-evaluated
for the components and thus the focus is on the concept of
the feedback MMSE.

In this approach, we assume that if the status of a subset of
unobservable branches can be estimated with 90% confidence
level (this level can be adjusted) then this subset will be used
in the next iteration of the estimation as additional estimation
feature (as a part of vector X). This means that the estimated
components’s states with a predefined confidence level will no
longer be a part of the attack zone and thus the attack zone
shrinks to a small size, which we again we assume that we
know the estimation capability for the components inside the
new attack zone. This feedback process can continue until the
status of the whole unobservable portion is estimated.

An example of this process applied to attack zone
[B21, B22, B23, B36, B37, B38, B39, B54, B178] is as fol-
lowing. In the first step, the estimator predicted a subset of
the branches [B36, B37, B38, B54] with ≥ 90% confidence
level. In the next step, the status of the latter components
used as additional features in the linear MMSE, which helped
in estimating the status of three more components including
[B21, B22, B23] and the process continues until the status of
all except one component ([B178]) has been identified with
≥ 90% confidence level.

V. CASE STUDY AND RESULTS

In this paper, the IEEE 118 bus system has been selected
for our study. We have simulated a large PMU dataset in both
normal and also under various physical attack scenarios using
our IEEE 118 simulations in MATPOWER [17]. In addition



to various physical attack scenarios, we have considered load
variations at different substations in time. The load variations
on the buses are performed by adding/subtracting a random
percentage of the original load at the bus (with a uniform
distribution) to its load. To simulate a PMU dataset, the real
and reactive power and the phase angel of all the branches
have been recorded. We use this dataset to identify (train) our
linear MMSE parameters A and B as discussed in Section IV.

A. Randomly scattered attacks

To evaluate the performance of our trained estimator under
the scattered attack scenarios, we create randomly scattered
attacked zones (where the lines under cyber attack are ge-
ographically distant). We specifically create attack zones of
size one to seven (while larger attack zones are possible but
we assume that attackers have limited resources and the size
of the attack zones are relatively small compare to the size
of the grid.) We represent the attack zones with size i by Fi,
representing the unobservable components under cyber attack.
In each of the randomly generated attack zones, there might
be any number (≤ i) of physically failed lines. For each size
of attack zone, we have generated 250 random attack zones.
The average estimation error for each size of attack zone is
presented in Figure 4-a when different features are used in
the estimation. We observe that the estimation error increases
with block size and combined features gives the best estimate
for the power flow status of branches.
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Fig. 4: Average estimation error using different features a)
randomly scattered attack, b) localized attack.
B. Localized attacks

To evaluate the performance of our trained estimator under
the localized attack scenarios, we generate attack zones with
topologically adjacent lines under cyber attack. We call these
attack zones, windows and consider sizes of one to seven for
the attack zone. In this case, we represent the attack zones with
size i by Wi. Similar to the scattered attacks, we generated
250 random scenarios of localized attacks for each window
size. The average estimation error for the localized attacks is
shown in Figure 4-b when different features are used in the
estimation. From the results, we observe that the estimation
error increase with the attack size and the combined features
give the best estimate for the power flow of the branches.

To evaluate the performance of the estimator in detecting the
failed or physically attacked components in the attack zone,
we have evaluated the average detection rate for both scattered

and localized scenarios, where the failure is identified when
the power flow through the line is estimated to be below
certain threshold. The results are shown in Figure 5. From
the results, we observe that the detection rate is lower for
localized attacks (dashed lines) than the scattered attacks (solid
lines). This is because when a transmission line is affected by
a physical attack or failure, usually the adjacent lines will bear
the most impact and thus the most information to help with the
estimation. In the localized attack scenarios, since information
from a portion of the locally adjacent lines are unavailable
(due to cyber attack), estimating the state of components in
the attack zone is more difficult.

Note that one of the key observations that we obtained from
our estimation results is that the estimation performance is
different for various transmission lines. The results in Figures
4 and 5 show the average performance, while Figure 7 shows
the average performance of estimation for the individual lines
in an attack zone Fij & Wij (j is the position of the branch
in block/window).
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using different features.
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Fig. 6: Average estimation error for a) randomly scattered
attack (F7), b) localized attack (W7) using different features.

C. Iterative Estimator with Feedback

The results in Figure 7, suggests that due to the power
system attributes and topological location of the lines, it is



easier to recover the lost information on the state of some lines.
Identifying such components using similar studies can help in
the iterative estimator with feedback discussed in Section IV.
In this section, we are presenting two examples of attack zones
with such components that can help improving the estimation
on the rest of the components in the attack zone. Although
the results for the iterative estimator with feedback are very
dependent on the attack zone and the pre-existing information
on our estimation capability for lines, these examples show
how the approach can help the recovery with such information
in an iterative process. In these examples, we use the estimator
to find the status of the lines that we know they can be
estimated with 90% confidence rate. We will the update the
attack zone size and use the estimated states in the previous
step as new features for estimation. The iterative process will
go on until all components are estimated with 90% confidence
rate or we cannot improve the estimation confidence for the
remaining components. The steps of the process for a scattered
and localized attack are presented in Table 1. In addition,
feature selection using maximum variance in the data (as
shown in Figure 3) is also applied to eliminate the unnecessary
PMU data for the lines that were not impacted by the changes
in the state of the attack zone to ease the computational
complexity.
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W7 - [B21, B22, 
B23, B36, B39, 

B40, B42] 

(B21, 0%), (B22, 0%), (B23, 0%), (B36, 100%), (B39, 0%), (B40, 0%), (B42, 0%) 

W6 – [B45, B47, 
B48, B49, B50, 

B51] 

(B45, 25%), (B47, 0%), (B48, 0%), (B49, 0%), (B50, 0%), (B51, 100%) 
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W7 - [B21, B22, 
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(B21, 100%), (B22, 0%), 
(B23, 100%), (B39, 0%), 

(B40, 0%), (B42, 0%) 

(B22, 100%), 
(B39, 74%), (B40, 
87%), (B42, 49%) 

(B39, 100%), 
(B40, 87%), 
(B42, 54%) 
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Table 1: Examples from localized attack and a scattered attack scenario with and 

without the iterative estimation with feedback. The data pairs shown in each 

column represent the line number and their detection rate. Bold-underlined 

values show the components with low detection rate in each iteration. 

VI. CONCLUSION AND FUTURE WORK

In this paper, a joint cyber and physical attack on smart grids
is considered, which results in unobservablity of a portion of
the grid while causing transmission lines failures. We used a
data-driven approach to estimate the state of the unobservable
portion of the grid under cyber attack from the PMU data
available outside the attack area. Specifically, a linear MMSE
approach was used and was trained based on the simulated
PMU data. We also proposed the idea of iterative estimation
with feedback to improve the estimation performance. Further,
we considered two different types of attack scenarios including
localized and scattered attacks and showed that estimating the
state of components in a scattered attack is easier compared
to localized attacks. This work shows the importance and the

power of data and data analytics methods in addressing joint
cyber and physical attacks on smart grids.

ACKNOWLEDGEMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 1761471. Also, this
work is partially supported by the Defense Threat Reduction
Agencys Basic Research Program under grant No. HDTRA1-
13-1-0020.

REFERENCES

[1] S. Soltan and G. Zussman, ”Power grid state estimation after a cyber-
physical attack under the AC power flow model,” 2017 IEEE Power and
Energy Society General Meeting, Chicago, IL, 2017, pp. 1-5.

[2] S. Soltan, M. Yannakakis and G. Zussman, ”Power Grid State Estimation
Following a Joint Cyber and Physical Attack,” in IEEE2 Transactions
on Control of Network Systems, vol. 5, no. 1, pp. 499-512, March 2018.

[3] S. Soltan, A. Loh and G. Zussman, ”Analyzing and Quantifying the
Effect of k-line Failures in Power Grids,” in IEEE Transactions on
Control of Network Systems, vol. 5, no. 3, pp. 1424-1433, June 2017.

[4] Z. Li, M. Shahidehpour, A. Alabdulwahab and A. Abusorrah, ”Bilevel
Model for Analyzing Coordinated Cyber-Physical Attacks on Power
Systems,” in IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2260-
2272, Sept. 2016.

[5] H. He and J. Yan, ”Cyber-physical attacks and defences in the smart grid:
a survey,” in IET Cyber-Physical Systems: Theory & Applications, vol.
1, no. 1, pp. 13-27, 12 2016.

[6] J. E. Tate and T. J. Overbye, ”Line Outage Detection Using Phasor
Angle Measurements,” in IEEE Transactions on Power Systems, vol.
23, no. 4, pp. 1644-1652, Nov. 2008.

[7] George Loukas, ”Cyber-physical attacks: A History of Cyber-Physical
Security Incidents”, Butterworth-Heinemann, vol. 1, ch. 2, Pages 21-57,
June 2015, ISBN 9780128012901.

[8] H. Zhao, ”A New State Estimation Model of Utilizing PMU Measure-
ments,” 2006 International Conference on Power System Technology,
Chongqing, 2006, pp. 1-5.

[9] J. James and Bindu S., ”Hybrid State Estimation including PMU mea-
surements,” 2015 International Conference on Control Communication
and Computing India(ICCC),Trivandrum, 2015, pp. 309-313.

[10] I. Kolosok, E. Korkina and E. Buchinsky, ”The test equation method
for linear state estimation based on PMU data,” 2014 Power Systems
Computation Conference, Wroclaw, 2014, pp. 1-7.

[11] S. Hou, Z. Xu, H. Lv, Z. Jiang and W. Lingyi, ”Research into Harmonic
State Estimation in Power System Based on PMU and SVD,” 2006
International Conference on Power System Technology, Chongqing,
2006, pp. 1-6.

[12] M. Pignati, L. Zanni, P. Romano, R. Cherkaoui and M. Paolone,
”Fault Detection and Faulted Line Identification in Active Distribution
Networks Using Synchrophasors-Based Real-Time State Estimation,” in
IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 381-392, Feb.
2017.

[13] A. Monticelli, ”Electric power system state estimation,” in Proceedings
of the IEEE, vol. 88, no. 2, pp. 262-282, Feb. 2000.

[14] N. R. Shivakumar and A. Jain, ”A Review of Power System Dynamic
State Estimation Techniques,” 2008 Joint International Conference on
Power System Technology and IEEE Power India Conference, New
Delhi, 2008, pp. 1-6.

[15] M. R. Karamta and J. G. Jamnani, ”A review of power system state
estimation: Techniques, state-of-the-art and inclusion of FACTS con-
trollers,” 2016 International Conference on Electrical Power and Energy
Systems (ICEPES), Bhopal, 2016, pp. 533-538.

[16] Mohammed Nasser Al-Mhiqani, Rabiah Ahmad, Warusia Yassin,
Aslinda Hassan, Zaheera Zainal Abidin, Nabeel Salih Ali and Karrar
Hameed Abdulkareem, ”Cyber-Security Incidents: A Review Cases in
Cyber-Physical Systems”, International Journal of Advanced Computer
Science and Applications(IJACSA), vol. 9, no. 1, 2018.

[17] R. D. Zimmerman, C. E. Murillo-Snchez, and R. J. Thomas, ”MAT-
POWER: Steady-State Operations, Planning and Analysis Tools for
Power Systems Research and Education,” Power Systems, IEEE Trans-
actions on, vol. 26, no. 1, pp. 12-19, Feb. 2011.


