
Line, Surface and Volume

Integrals
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Line integrals

∫

C

φdr,
∫

C

a · dr,
∫

C

a× dr (1)

(φ is a scalar field and a is a vector field)

We divide the path C joining the points A and B

into N small line elements ∆rp, p = 1, . . . , N . If

(xp, yp, zp) is any point on the line element ∆rp,

then the second type of line integral in Eq. (1) is

defined as

∫

C

a · dr = lim
N→∞

N∑
p=1

a(xp, yp, zp) · rp

where it is assumed that all |∆rp| → 0 as N →∞.
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Evaluating line integrals

The first type of line integral in Eq. (1) can be

written as
∫

C

φdr = i
∫

C

φ(x, y, z) dx + j
∫

C

φ(x, y, z) dy

+k
∫

C

φ(x, y, z) dz

The three integrals on the RHS are ordinary scalar

integrals.

The second and third line integrals in Eq. (1) can

also be reduced to a set of scalar integrals by

writing the vector field a in terms of its Cartesian

components as a = axi + ayj + azk. Thus,
∫

C

a · dr =
∫

C

(axi + ayj + azk) · (dxi + dyj + dzk)

=
∫

C

(axdx + aydy + azdz)

=
∫

C

axdx +
∫

C

aydy +
∫

C

azdz

3



Some useful properties about line integrals:

1. Reversing the path of integration changes the

sign of the integral. That is,

∫ B

A

a · dr = −
∫ A

B

a · dr

2. If the path of integration is subdivided into

smaller segments, then the sum of the separate

line integrals along each segment is equal to the

line integral along the whole path. That is,

∫ B

A

a · dr =
∫ P

A

a · dr +
∫ B

P

a · dr
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Example

Evaluate the line integral I =
∫

C
a · dr, where

a = (x + y)i + (y − x)j, along each of the paths in

the xy-plane shown in the figure below, namely,

1. the parabola y2 = x from (1, 1) to (4, 2),

2. the curve x = 2u2 + u + 1, y = 1 + u2 from

(1, 1) to (4, 2),

3. the line y = 1 from (1, 1) to (4, 1), followed by

the line y = x from (4, 1) to (4, 2).

FIG. 1: Different possible paths between points (1, 1)

and (4, 2).
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Answer

Since each of the path lies entirely in the xy-plane,

we have dr = dx i + dy j. Therefore,

I =
∫

C

a · dr =
∫

C

[(x + y)dx + (y − x)dy]. (2)

We now evaluate the line integral along each path.

Case (i). Along the parabola y2 = x we have

2y dy = dx. Substituting for x in Eq. (2) and using

just the limits on y, we obtain

I =
∫ (4,2)

(1,1)

[(x + y)dx + (y − x)dy]

=
∫ 2

1

[(y2 + y)2y + (y − y2)]dy = 11
1
3
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Case (ii). The second path is given in terms of

parameter u. We could eliminate u between two

equations to obtain a relationship between x and y

directly, and proceed as above, but it us usually

quicker to write the line integral in terms of

parameter u. Along the curve x = 2u2 + u + 1,

y = 1 + u2, we have dx = (4u + 1) du and

dy = 2u du. Substituting for x and y in Eq. (2) and

writing the correct limits on u, we obtain

I =
∫ (4,2)

(1,1)

[(x + y)dx + (y − x)dy]

=
∫ 1

0

[(3u2 + u + 2)(4u + 1)− (u2 + u)2u]du

= 10
2
3
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Case (iii). For the third path the line integral must

be evaluated along the two line segments separately

and the results added together. First, along the line

y = 1, we have dy = 0. Substituting this into

Eq. (2) and using just the limits on x for this

segment, we obtain

∫ (4,1)

(1,1)

[(x + y)dx + (y − x)dy] =
∫ 4

1

(x + 1)dx

= 10
1
2

Along the line x = 4, we have dx = 0. Substituting

this into Eq. (2) and using just the limits on y, we

obtain
∫ (4,2)

(4,1)

[(x + y)dx + (y − x)dy] =
∫ 2

1

(y − 4)dy

= −2
1
2

Therefore, the value of the line integral along the

whole path is 10 1
2 − 2 1

2 = 8.
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Connectivity of regions

FIG. 2: (a) A simply connected region; (b) a doubly

connected region; (c) a triply connected region.

A plane region R is simply connected if any closed

curve within R can be continuously shrunk to a

point without leaving the region. If, however, the

region R contains a hole then there exits simple

closed curves that cannot be shrunk to a point

without leaving R. Such a region is doubly

connected. Similarly, a region with n− 1 holes is

said to be n-fold connected, or multiply connected.
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Green’s theorem in a plane

Suppose the functions P (x, y), Q(x, y) and their

partial derivatives are single-valued, finite and

continuous inside and on the boundary C of some

simply connected region R in the xy-plane. Green’s

theorem in a plane then states that
∮

C

(P dx + Qdy) =
∫ ∫

R

(
∂Q

∂x
− ∂P

∂y

)
dx dy (3)

To prove this, let us consider the simply connected

region R below.

FIG. 3: A simply connected region R bounded by the

curve C.
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Let y = y1(x) and y = y2(x) be the equations of the

curves STU and SV U respectively. We then write

∫ ∫

R

∂P

∂y
=

∫ b

a

dx

∫ y2(x)

y1(x)

dy
∂P

∂y

=
∫ b

a

dx [P (x, y)]y=y2(x)
y=y1(x)

=
∫ b

a

[P (x, y2(x))− P (x, y1(x))] dx

= −
∫ b

a

P (x, y1(x))dx−
∫ b

a

P (x, y2(x))dx

= −
∮

C

P dx
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If we now let x = x1(y) and x = x2(y) be the

equations of the curves TSV and TUV respectively,

we can similarly show that

∫ ∫

R

∂Q

∂x
dx dy =

∫ d

c

dy

∫ x2(y)

x1(y)

dx
∂Q

∂x

=
∫ d

c

dy [Q(x, y)]x=x2(y)
x=x1(y)

=
∫ d

c

[Q(x2(y), y)−Q(x1(y), y)] dy

=
∫ d

c

Q(x1, y)dy +
∫ d

c

Q(x2, y)dy

=
∮

C

Qdy

Subtracting these two results gives Green’s theorem

in a plane.
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Example

Show that the area of a region R enclosed by a

simple closed curve C is given by

A = 1
2

∮
C

(x dy − y dx) =
∮

C
x dy = − ∮

C
y dx.

Hence, calculate the area of the ellipse x = a cos φ,

y = b sinφ.

Answer

In Green’s theorem, put P = −y and Q = x. Then
∮

C

(x dy−y dx) =
∫ ∫

R

(1+1)dx dy = 2
∫ ∫

R

dx dy = 2A

Therefore, the area of the region is

A = 1
2

∮
C

(xdy − ydx).

Alternatively, we could put P = 0 and Q = x and

obtain A =
∮

C
xdy, or put P = −y and Q = 0,

which gives A = − ∮
C

ydx.
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The area of the ellipse x = a cos φ, y = b sin φ is

given by

A =
1
2

∮

C

(xdy − ydx)

=
1
2

∫ 2π

0

ab(cos2 φ + sin2 φ) dφ

=
ab

2

∫ 2π

0

dφ = πab.
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Conservative fields and potentials

For line integrals of the form
∫

C
a · dr, there exists a

class of vector fields for which the line integral

between two points is independent of the path

taken. Such vector fields are called conservative.

A vector field a that has continuous partial

derivatives in a simply connected region R is

conservative if, and only if, any of the following is

true.

1. The integral
∫ B

A
a · dr, where A and B lie in the

region R, is independent of the path from A to

B. Hence the integral
∮

C
a · dr around any

closed loop in R is zero.

2. There exits a single-valued function φ of

position such that a = ∇φ.

3. ∇× a = 0

4. a · dr is an exact differential.
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If the line integral from A to B is independent of

the path taken between the points, then its value

must be a function only of the positions of A and

B. We write
∫ B

A

a · dr = φ(B)− φ(A) (4)

which defines a single-valued scalar function of

position φ. If the points A and B are separated by

an infinitesimal displacement dr, then Eq. (4)

becomes

a · dr = dφ

which requires a · dr to be an exact differential. But

dφ = ∇φ · dr, so

(a−∇φ) · dr = 0.

Since dr is arbitrary, a = ∇φ, which implies

∇× a = 0.
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Example

Evaluate the line integral I =
∫ B

A
a · dr, where

a = (xy2 + z)i + (x2y + 2)j + xk, A is the point

(c, c, h) and B is the point (2c, c/2, h), along the

different paths

1. C1, given by x = cu, y = c/u, z = h, and

2. C2, given by 2y = 3c− x, z = h.

Show that the vector field a is in fact conservative,

and find φ such that a = ∇φ.
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Answer

Expanding out the integrand, we have

I =
∫ (2c,c/2,h)

(c,c,h)

[
(xy2 + z)dx + (x2y + 2)dy + xdz

]

(5)

(i). Along C1, we have dx = cdu, dy = −(c/u2) du,

and on substituting in Eq. (5) and finding the limits

on u, we obtain

I =
∫ 2

1

c

(
h− 2

u2

)
du = c(h− 1)

(ii) Along C2, we have 2dy = −dx, dz = 0, and on

substituting in Eq. (5) and using the limits on x, we

obtain

I =
∫ 2c

c

(
1
2
x3 − 9

4
cx2 +

9
4
c2x + h− 1

)
dx = c(h−1).

Hence the line integral has the same value along

both paths. Taking the curl of a, we have

∇× a = (0− 0)i + (1− 1)j + (2xy − 2xy)k = 0.

a is a conservative field.
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Thus, we can write a = ∇φ. Therefore, φ must

satisfy
∂φ

∂x
= xy2 + z

which implies that φ = 1
2x2y2 + zx + f(y, z) for

some function f . Secondly, we require

∂φ

∂y
= x2y +

∂f

∂y
= x2y + 2

which implies f = 2y + g(z). Finally, since

∂φ

∂z
= x +

∂g

∂z
= x

we have g = constant = k. So we have constructed

the function φ = 1
2x2y2 + zx + 2y + k.
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Surface integrals

Examples,
∫

S

φdS,

∫

S

φdS,

∫

S

a · dS,

∫

S

a× dS

S may be either open or close. The integrals, in

general, are double integrals.

The vector differential dS represents a vector area

element of the surface S, and may be written as

dS = n̂ dS, where n̂ is a unit normal to the surface

at the position of the element.

FIG. 4: (a) A closed surface and (b) an open surface. In

each case a normal to the surface is shown: dS = n̂ dS.
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The formal definition of a surface integral: We

divide the surface S into N elements of area ∆Sp,

p = 1, . . . , N , each with a unit normal n̂p. If

(xp, yp, zp) is any point in ∆Sp, then

∫

S

a · dS = lim
N→∞

N∑
p=1

a(xp, yp, zp) · n̂p∆Sp

where it is required that all ∆Sp → 0 as N →∞.
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Evaluating surface integrals

FIG. 5: A surface S (or part thereof) projected onto a

region R in the xy-plane; dS is the surface element at a

point P .

The surface S is projected onto a region R of the

xy-plane, so that an element of surface area dS at

point P projects onto the area element dA. We see

that dA = | cosα|dS, where α is the angle between

the unit vector k in the z-direction and the unit

normal n̂ to the surface at P .
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So, at any given point of S, we have simply

dS =
dA

| cosα| =
dA

|n̂ · k| .

Now, if the surface S is given by the equation

f(x, y, z) = 0, then the unit normal at any point of

the surface is simply given by n̂ = ∇f/|∇f |
evaluated at that point. The scalar element of

surface area then becomes

dS =
dA

|n̂ · k| =
|∇f | dA

∇f · k =
|∇f | dA

∂f/∂z
(6)

where |∇f | and ∂f/∂z are evaluated on the surface

S. We can therefore express any surface integral

over S as a double integral over the region R in the

xy-plane.
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Example

Evaluate the surface integral I =
∫

S
a · dS, where

a = xi and S is the surface of the hemisphere

x2 + y2 + z2 = a2 with z ≥ 0.

Answer

FIG. 6: The surface of the hemisphere

x2 + y2 + z2 = a2, z ≥ 0.

In this case dS may be easily expressed in spherical

polar coordinates as dS = a2 sin θ dθ dφ, and the

unit normal to the surface at any point is simply r̂.
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On the surface of the hemisphere, we have

x = a sin θ cosφ and so

a · dS = x(i · r̂) dS

= (a sin θ cos φ)(sin θ cos φ)(a2 sin θ dθ dφ)

Therefore inserting the correct limits on θ and φ, we

have

I =
∫

S

a · dS

= a3

∫ π/2

0

dθ sin3 θ

∫ 2π

0

dφ cos2 φ

=
2πa3

3
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We could, however, follow the general prescription

above and project the hemisphere S onto the region

R in the xy-plane, which is a circle of radius a

centered at the origin. writing the equation of the

surface of the hemisphere as

f(x, y) = x2 + y2 + z2 − a2 = 0 and using Eq. (6),

we have

I =
∫

S

a · dS =
∫

S

x(i · r̂) dS

=
∫

R

x(i · r̂) |∇f | dA

∂f/∂z
.

Now ∇f = 2xi + 2yj + 2zk = 2r, so on the surface

S we have |∇f | = 2|r| = 2a. On S, we also have

∂f/∂z = 2z = 2
√

a2 − x2 − y2 and i · r̂ = x/a.
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Therefore, the integral becomes

I =
∫ ∫

R

x2

√
a2 − x2 − y2

dx dy.

Although this integral may be evaluated directly, it

is quicker to transform to plane polar coordinates:

I =
∫ ∫

R′

ρ2 cos2 φ√
a2 − ρ2

ρ dρ dφ

=
∫ 2π

0

cos2 φdφ

∫ a

0

ρ3 dρ√
a2 − ρ2

Making the substitution ρ = a sin u, we finally

obtain

I =
∫ 2π

0

cos2 φdφ

∫ π/2

0

a3 sin3 u du

=
2πa3

3
.
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Vector areas of surfaces

The vector area of a surface S is defined as

S =
∫

S

dS

Example

Find the vector area of the surface of the

hemisphere x2 + y2 + z2 = a2 with z ≥ 0.
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Answer

dS = a2 sin θ dθ dφ r̂ in spherical polar coordinates.

The vector area is

S =
∫ ∫

S

a2 sin θ r̂ dθ dφ

Since r̂ varies over the surface S, it also must be

integrated. On S we have

r̂ = sin θ cos φ i + sin θ sin φ j + cos θ k

so

S = i

(
a2

∫ 2π

0

cosφdφ

∫ π/2

0

sin2 θ dθ

)

+j

(
a2

∫ 2π

0

sin φdφ

∫ π/2

0

sin2 θ dθ

)

+k

(
a2

∫ 2π

0

dφ

∫ π/2

0

sin θ cos θ dθ

)

= 0 + 0 + πa2k

= πa2k.

Projected area of the hemisphere onto the xy-plane.
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Volume integrals

Examples: ∫

V

φdV,

∫

V

a dV

Volumes of three-dimensional regions

The volume of a three-dimensional region V is

simplpy V =
∫

V
dV . We shall now express it in

terms of a surface integral over S.

FIG. 7: A general volume V containing the origin and

bounded by the closed surface S.
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Let us suppose that the origin O is contained within

the V . Then the volume of the small shaded cone is

dV = 1
3r · dS. The total volume of the region is

then given by

V =
1
3

∮

S

r · dS

This expression is still valid even when O is not

contained in V .
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Example

Find the volume enclosed between a sphere of radius

a centered on the origin, and a circular cone of half

angle α with its vertex at the origin.

Answer

Now dS = a2 sin θ dθ dφ r̂. Taking the axis of the

cone to lie along the z-axis (from which θ is

measured) the required volume is given by

V =
1
3

∮

S

r · dS

=
1
3

∫ 2π

0

dφ

∫ α

0

a2 sin θ r · r̂ dθ

=
1
3

∫ 2π

0

dφ

∫ α

0

a3 sin θ dθ

=
2πa3

3
(1− cos α).
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Integral forms for grad, div and curl

At any point P , we have

∇φ = lim
V→0

(
1
V

∮

S

φdS
)

(7)

∇ · a = lim
V→0

(
1
V

∮

S

a · dS
)

(8)

∇× a = lim
V→0

(
1
V

∮

S

dS× a
)

(9)

(∇× a) · n̂ = lim
A→0

(
1
A

∮

C

da · dr
)

(10)

where V is a small volume enclosing P and S is its

bounding surface. C is a plane contour area A

enclosing the point P and n̂ is the unit normal to

the enclosed planar area.
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Divergence theorem and related theorems

Imagine a volume V , in which a vector field a is

continuous and differentiable, to be divided up into

a large number of small volumes Vi. Using Eq. (8),

we have for each small volume,

(∇ · a)Vi ≈
∮

Si

a · dS,

where Si is the surface of the small volume Vi.

Summing over i, contributions from surface

elements interior to S cancel, since each surface

element appears in two terms with opposite signs.

Only contributions from surface elements which are

also parts of S survive. If each Vi is allowed to tend

to zero, we obtain the divergence theorem
∫

V

∇ · a dV =
∮

S

a · dS (11)

If we set a = r, we obtain
∫

V

∇ · r dV =
∫

V

3 dV = 3V =
∮

S

r · dS
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Example

Evaluate the surface integral I =
∫

S
a · dS, where

a = (y − x)i + x2zj + (z + x2)k, and S is the open

surface of the hemisphere x2 + y2 + z2 = a2, z ≥ 0.

Answer

Let us consider a closed surface S′ = S + S1, where

S1 is the circular area in the xy-plane given by

x2 + y2 ≤ a2, z = 0; S′ then encloses a

hemispherical volume V . By the divergence

theorem, we have
∫

V

∇ · a dV =
∮

S′
a · dS =

∫

S

a · dS +
∫

S1

a · dS

Now ∇ · a = −1 + 0 + 1 = 0, so we can write
∫

S

a · dS = −
∫

S1

a · dS

The surface element on S1 is dS = −k dx dy.
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On S1, we also have a = (y − x)i + x2k, so that

I = −
∫

S1

a · dS =
∫ ∫

R

x2 dx dy,

where R is the circular region in the xy-plane given

by x2 + y2 ≤ a2. Transforming to plane polar

coordinates, we have

I =
∫ ∫

R′
ρ2 cos2 φρ dρ dφ

=
∫ 2π

0

cos2 φdφ

∫ a

0

ρ3 dρ

=
πa4

4
.
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Green’s theorem

Consider two scalar functions φ and ψ that are

continuous and differentiable in some volume V

bounded by a surface S. Applying the divergence

theorem to the vector field φ∇ψ, we obtain
∮

S

φ∇ψ · dS =
∫

V

∇ · (φ∇ψ) dV

=
∫

V

[
φ∇2ψ + (∇φ) · (∇ψ)

]
dV

(12)

Reversing the roles of φ and ψ in Eq. (12) and

subtracting the two equations gives
∮

S

(φ∇ψ−ψ∇φ)·dS =
∫

V

(φ∇2ψ−ψ∇2φ) dV (13)

Equation (12) is usually known as Green’s first

theorem and (13) as his second.
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Other related integral theorems

If φ is a scalar field and b is a vector field and both

satisfy the differentiability conditions in some

volume V bounded by a closed surface S, then
∫

V

∇φdV =
∮

S

φdS (14)
∫

V

∇× b dV =
∮

S

dS× b (15)

Proof of Eq. (14)

In Eq. (11), let a = φc, where c is a constant

vector. We then have∫

V

∇ · (φc) dV =
∮

S

φc · dS

Expanding out the integrand on the LHS, we have

∇ · (φc) = φ∇ · c + c · ∇φ = c · ∇φ.

Also, φc · dS = c · φdS, so we obtain

c ·
∫

V

∇φdV = c ·
∮

S

φdS.

Since c is arbitrary, we obtain the stated result.
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Example

For a compressible fluid with time-varying

position-dependent density ρ(r, t) and velocity field

v(r, t), in which fluid is neither being created nor

destroyed, show that

∂ρ

∂t
+∇ · (ρv) = 0

Answer

For an arbitrary volume in the fluid, conservation of

mass says that the rate of increase or decrease of

the mass M in the volume must equal the net rate

at which fluid is entering or leaving the volume, i.e.

dM

dt
= −

∮

S

ρv · dS,

where S is the surface bounding V . But the mass of

fluid in V is M =
∫

V
ρ dV , so we have

d

dt

∫

V

ρ dV +
∮

S

ρv · dS = 0
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Using the divergence theorem, we have
∫

V

∂ρ

∂t
dV +

∫

V

∇·(ρv) dV =
∫

V

[
∂ρ

∂t
+∇ · (ρv)

]
dV = 0

Since the volume V is arbitrary, the integrand must

be identically zero, so

∂ρ

∂t
+∇ · (ρv) = 0
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Stokes’ theorem and related theorems

Following the same lines as for the derivation of the

divergence theorem, we can divide the surface S

into many small areas Si with boundaries Ci and

with unit normals n̂i. Using Eq. (10), we have for

each small area

(∇× a) · n̂iSi ≈
∮

Ci

a · dr

Summing over i we find that on the RHS all parts of

all interior boundaries that are not part of C are

included twice, being traversed in opposite

directions on each occasion and thus contributing

nothing. Only contributions from line elements that

are also parts of C survive. If each Si is allowed to

tend to zero, we obtain Stokes’ theorem,
∫

S

(∇× a) · dS =
∮

C

a · dS (16)
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Example

Given the vector field a = yi− xj + zk, verify

Stokes’ theorem for the hemispherical surface

x2 + y2 + z2 = a2, z ≥ 0.

Answer

Let us evaluate the surface integral
∫

S

(∇× a) · dS,

over the hemisphere. Since ∇× a = −2k and the

surface element is dS = a2 sin θ dθ dφ r̂, we have

∫

S

(∇× a) · dS =
∫ 2π

0

dφ

∫ π/2

0

dθ(−2a2 sin θ)r̂ · k

= −2a2

∫ 2π

0

dφ

∫ π/2

0

sin θ
(z

a

)
dθ

= −2a2

∫ 2π

0

dφ

∫ π/2

0

sin θ cos θ dθ

= −2πa2.
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The line integral around the perimeter curve C (a

circle x2 + y2 = a2 in the xy-plane) is given by
∮

C

a · dr =
∮

C

(yi− xj + zk) · (dxi + dyj + dzk)

=
∮

C

(y dx− x dy)

Using plane polar coordinates, on C we have

x = a cosφ, y = a sin φ so that dx = −a sin φdφ,

dy = a cosφ dφ, and the line integral becomes

∮

C

(y dx− x dy) = −a2

∫ 2π

0

(cos2 φ + sin2 φ) dφ

= −a2

∫ 2π

0

dφ = −2πa2

Since the surface and line integrals have the same

value, we have verified Stokes’ theorem.
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Related integral theorems

∫

S

dS×∇φ =
∮

C

φ dr (17)
∫

S

(dS×∇)× b =
∮

C

dr× b (18)

Proof of Eq. (17)

In Stokes’ theorem, Eq. (16), let a = φc, where c is

a constant vector. We then have
∫

S

[∇× (φc)] · dS =
∮

C

φc · dr (19)

Expanding out the integrand on the LHS, we have

∇× (φc) = ∇φ× c + φ∇× c = ∇φ× c.

so that

[∇× (φc)] · dS = (∇φ× c) · dS = c · (dS×∇φ).
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Substituting this into Eq. (19), and taking c out of

both integrals, we find

c ·
∫

S

dS×∇φ = c ·
∮

C

φdr

Since c is an arbitrary constant vector, we therefore

obtain the stated result.
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