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Abstract 

Cancer metabolism has been proposed to adapt the metabolic network from its tissue-of-origin. 

However, breast cancer is not a disease of a singular origin. There are multiple epithelial 

subpopulations that serve as the culprit cell-of-origin, giving rise to distinct breast cancer 

subtypes. Knowledge surrounding the metabolic identities of normal mammary epithelial cells 

(MEC) is limited. Proteomic profiling of primary FACS-purified human MECs revealed that 

each subpopulation possesses distinct metabolic networks. Luminal progenitors were enriched 

for electron transport chain subunits, had an enhanced capacity to undergo oxidative 

phosphorylation and were vulnerable to Complex I inhibition. Basal cells were more glycolytic, 

but their progenitor capacity was still dependent on mitochondrial activity. Targeting these 

pathways with inhibitors exposed lineage-restricted metabolic vulnerabilities. Furthermore, 

breast cancer subtypes demonstrated significant enrichment for the metabolic cluster of specific 

MEC. My work demonstrates that normal MEC have lineage-restricted metabolic identities, 

which can partly explain the metabolic heterogeneity observed in breast cancer.  



 

iii 

 

Acknowledgments 

In the past three years, I have met several incredible people who have taught me many invaluable 

lessons that helped me develop personally and as a scientist. I want to thank Dr. Rama Khokha 

for giving me the chance to join her lab. I’m grateful that she let me pursue whatever avenue of 

metabolism research I wanted. Looking back, I wish I realized earlier that it was a stupid plan to 

think I could answer all the unsolved questions in mammary metabolism. But I’m glad Rama let 

me try, since I was free to be curious and further mature as a scientist. I’m forever grateful that 

she let me volunteer at PMH and has continually supported my goals of becoming a clinician-

scientist. I also want to thank Dr. Sean Egan and Dr. Aaron Schimmer for providing me their 

guidance and insight, which has helped tremendously throughout my Master’s degree. 

I want to thank everyone in the Khokha Lab. Especially, Dr. Alison Casey for teaching me 

everything and being my mentor. I always appreciate you cheering me up whenever I messed up 

my experiments for the billionth time. In addition, I want to thank Pirashaanthy for making me 

more critical of scientific literature. Hyeyeon for putting up with all my terrible jokes, my dumb 

questions about Illustrator and coming with me to set up my flow experiments. My Master’s 

degree would not have been possible without the help of these three incredibly intelligent and 

talented individuals. Lastly, I need to thank Kazeera Aliar for her brilliant bioinformatics skills. 

Grad school would not have been a memorable experience without all the amazing friends that I 

have made. Thank you for all the laughs and listening to me marvel over the cell-of-origin and 

mitochondria. 

 

 



 

iv 

 

Table of Contents 

Acknowledgments........................................................................................................................... iii 

Table of Contents ............................................................................................................................ iv 

List of Tables ................................................................................................................................. vii 

List of Figures ................................................................................................................................viii 

Abbreviations ................................................................................................................................... x 

Chapter 1 : Background..................................................................................................................1 

1.1 Mammary Gland Biology ....................................................................................................1 

1.1.1 Mammary Epithelial Hierarchy ...............................................................................1 

1.1.2 Inherent properties of mammary epithelial cells ......................................................3 

1.1.3 Cell of origin for breast cancer ................................................................................5 

1.1.4 Influence of Normal on Tumorigenesis ...................................................................7 

1.1.5 Breast Cancer Subtypes ...........................................................................................8 

1.2 Basic Metabolism and Relevance to Cancer........................................................................9 

1.2.1 Glycolysis and Warburg Effect..............................................................................10 

1.2.2 Tricarboxylic Acid (TCA) Cycle and Cancer Initiation ........................................11 

1.2.3 Electron Transport Chain (ETC)............................................................................14 

1.2.4 Normal Mammary Epithelial Cell Metabolism .....................................................18 

1.2.5 Breast Cancer Metabolism .....................................................................................18 

1.2.6 Influence of normal on cancer metabolism............................................................19 

1.3 Thesis Outline ....................................................................................................................21 

1.3.1 Rationale and hypothesis .......................................................................................21 

1.3.2 Objectives...............................................................................................................21 

Chapter 2 ......................................................................................................................................22 

2 Methodology .............................................................................................................................22 



 

v 

 

2.1 Human mammary sample preparation, single cell preparation, and FACS.......................22 

2.2 Proteomics on FACS-purified human mammary subpopulations .....................................23 

2.3 Bioinformatics Analysis of human mammary subpopulation proteomes ..........................24 

2.3.1 Total Proteome Analyses .......................................................................................24 

2.3.2 Generating Metabolic Signatures...........................................................................25 

2.3.3 Pathway Analysis using Enrichr ............................................................................27 

2.3.4 Correlations to PAM50 Breast Cancer Subtypes ...................................................27 

2.4 Mouse Strains.....................................................................................................................28 

2.5 Mouse Mammary gland dissociation, single-cell preparation and FACS analysis ...........28 

2.6 Measuring Oxygen Consumption Rate ..............................................................................29 

2.7 Intracellular flow cytometry...............................................................................................30 

2.8 Transmission electron microscopy (TEM) ........................................................................30 

2.9 In vitro colony forming cell (CFC) assay ..........................................................................30 

2.10 Drug testing in vitro ...........................................................................................................31 

2.11 Statistical Analysis .............................................................................................................31 

Chapter 3 ......................................................................................................................................32 

3 Results .......................................................................................................................................32 

3.1 Proteomics reveals differential expression of metabolic prote ins .....................................33 

3.2 Mammary subsets have distinct metabolic preferences .....................................................36 

3.3 Mouse LP have enhanced capacity to undergo OXPHOS .................................................42 

3.4 Mitochondrial structure and function are MEC-specific ...................................................43 

3.5 BC progenitor activity is dependent upon mitochondrial activity .....................................45 

3.6 MEC demonstrate ETC complex specific vulnerabilities..................................................46 

3.7 BC are vulnerable to glycolytic inhibitors .........................................................................48 

3.8 Metabolic profiles of mammary progenitors are mirrored in breast cancer subtypes  .......49 

Chapter 4 ......................................................................................................................................53 



 

vi 

 

4 Conclusion................................................................................................................................53 

4.1 Discussion & Significance .................................................................................................53 

4.2 Future Directions................................................................................................................54 

4.3 Limitations .........................................................................................................................55 

References ......................................................................................................................................57 

Appendix 1 .....................................................................................................................................68 

 



 

vii 

 

List of Tables 

Table 2.1 – Summary of clinical covariates for the cohort of patients used in this study.  ........... 22 

Table 2.2 – Mature Luminal Metabolic Cluster............................................................................ 26 

Table 2.3 – Basal Metabolic Cluster ............................................................................................. 26 

Table 2.4 – Luminal Progenitor Metabolic Cluster ...................................................................... 27 

 



 

viii 

 

List of Figures 

Figure 1. 1 – Gross morphology and cellular composition of the human mammary gland.  .......... 2 

Figure 1. 2 – The mammary epithelial hierarchy and its relationship to putative cells-of-origin for 

breast cancers .................................................................................................................................. 6 

Figure 1. 3 - Schematic for Glycolysis and Tricarboxylic Acid (TCA) Cycle.  ............................ 13 

Figure 1. 4 – Overview of oxidative phosphorylation (OXPHOS) .............................................. 16 

Figure 2.1 - Gating strategy for FACS-purifying human mammary epithelial cells .................... 23 

Figure 2.2 - Gating strategy for FACS-purifying mouse mammary epithelial cells  .................... 29 

Figure 3.1 – Workflow summarizing tissue preparation, FACS-purification, and summary of our 

proteomics done on primary human mammary epithelial cells  .................................................... 33 

Figure 3.2 – Characterization of proteomic datasets of primary FACS-purified human mammary 

epithelial cells ............................................................................................................................... 34 

Figure 3.3 – Protein distribution plots demonstrate MEC are enriched for unique functional 

classes of proteins ......................................................................................................................... 35 

Figure 3.4 – Human MEC have lineage-restricted metabolic networks ....................................... 37 

Figure 3.5 – LP show enrichment for TCA Cycle and ETC proteins, whereas ML and BC are 

enriched more for glycolysis. ........................................................................................................ 38 

Figure 3.6 –Map of mammary epithelial cell metabolism ............................................................ 41 

Figure 3.7 – Luminal populations have an enhanced capacity to undergo oxygen consumption.  42 

Figure 3.8- Mitochondrial structure and function is mammary cell- type specific  ....................... 44 

Figure 3.9 – Mammary progenitor activity is dependent on mitochondrial activity .................... 45 



 

ix 

 

Figure 3.10 – Mammary progenitors display lineage-restricted vulnerabilities to OXPHOS 

inhibitors ....................................................................................................................................... 47 

Figure 3.11 – BC are more sensitive to glycolytic inhibitors ....................................................... 48 

Figure 3.12 – Breast cancer subtypes demonstrate selective activity of their respective cell-of-

origin’s metabolic cluster.............................................................................................................. 51 

Figure 3.13 – Copy-number alterations of potential cell-of-origin specific metabolic targets..... 52 

Figure 4.1 – Lactate crosstalk and progesterone induced autophagy ........................................... 68 

 

 



 

x 

 

Abbreviations

2-HG: 2-hydroxyglutarate 

3PG: 3-phosphoglycerate 

5mC: 5-methlycytosine  

A5: Atpenin A5 

AA: Antimycin A 

ADP: Adenosine diphosphate 

ATP: Adenosine triphosphate 

BC: Basal Cell 

CI: Complex I 

CII: Complex II 

CIII: Complex II 

CIV: Complex IV 

CoQ: Coenzyme Q10 

CS: Citrate Synthase 

CV: Complex V  

CytoC: Cytochrome C 

CYB5R1: Cytochrome B5 Reductase  1 

E: 17β-estradiol 

EGF: Epidermal Growth Factor 

EP: 17β-estradiol + progesterone 

EPHX1: Epoxide Hydrolase 1 

ER: Estrogen Receptor 

ESC: Embryonic Stem cell 

ETC: Electron Transport Chain 

F16BP: Fructose 1,6-bisphosphate 

F6P: Fructose 6-phosphate 

FACS: Fluorescent-Activated Cell Sorting 

FADH/FADH2 (oxidized/reduced): Flavin 

Adenine Dinucleotide 

FCCP: Carbonyl cyanide-p-

trifluoromethoxyphenylhydrazone 

FGF: Fibroblast Growth Factor 

FH: fumarate hydratase 

FMN: Flavin mononucleotide 

GALNT2: Polypeptide N-

Acetylgalactosaminyltransferase 2 

G3P: glycerol 3-phosphate 

G6P: Glucose-6-phosphate 

GADP: Glyceraldehyde 3-phosphate 

GDP: Guanosine diphosphate 

GTP: Guanosine triphosphate 

HER2: Human Epidermal Growth Factor 

Receptor 2 

HR: Hormone Receptor  

HSC: Hematopoietic Stem Cell 

IDH: Isocitrate dehydrogenase 

IF: Immunofluorescence  

IMM: Inner mitochondrial membrane 

ISC: Intestinal Stem cell 

K14: Keratin 14 (Basal) 

K18: Keratin 18 (Luminal) 

K5: Keratin 5 (Basal) 

K8: Keratin 8 (Luminal) 

KMO: Kynurenine 3-Monooxygenase 

LDH: Lactate Dehydrogenase 

LP: Luminal Progenitor 

LTR: LysoTracker Red 

MaSC: Mammary Stem Cell 

MEC: Mammary Epithelial Cell 



 

xi 

 

ML: Mature Luminal 

mROS: Mitochondrial Reactive Oxygen 

Species 

mtDNA: Mitochondrial Deoxy 

ribonucleotide  

MTG: MitoTracker Green 

MTR: MitoTracker Red 

NAD+/NADH (oxidized/reduced): 

Nicotinamide Adenine Dinucleotide 

NADP+/NADPH (oxidized/reduced): 

Nicotinamide Adenine Dinucleotide 

Phosphate 

NIT1: Nitrilase- like protein 1 

OL: Oligomycin 

OMM: Outer Mitochondrial Membrane 

OXPHOS: Oxidative Phosphorylation  

PEP: Phosphoenolpyruvate 

PFK: Phosphofructokinase  

PHGDH: Phosphoglycerate Dehydrogenase 

Pi: Inorganic Phosphate 

PK: Pyruvate Kinase 

PPP: Pentose Phosphate Pathway 

PR: Progesterone Receptor 

RISP: Rieske Iron-Sulfur Protein 

Rot: Rotenone 

SDH: Succinate Dehydrogenase 

TCA: Tricaboxylic 

TDLU: Terminal Ductal Lobular Unit 

TEB: Terminal End Bud 

TEM: Transmission Electron Microscopy 

TET: Ten-Eleven Translocation 

UPLC-MS: Ultra-high Pressure Liquid 

Chromatography/Mass Spectrometry 

αKG: α-Ketoglutarate 



 

1 

 

Chapter 1 : Background 

This chapter contains a modified figure and excerpts from a published review:   

Tharmapalan, P., Mahendralingam, M., Berman, H. K., & Khokha, R. (2019). Mammary stem 

cells and progenitors: targeting the roots of breast cancer for prevention. The EMBO Journal.  

1.1 Mammary Gland Biology 

The mammary gland’s essential function is to produce milk for newborn infants. The mammary 

gland has a unique developmental timeline. It sprouts and invades into the mammary fat pad 

during early embryogenesis, but then halts its growth till the onset of puberty1,2. Under the 

influence of estrogen, it undergoes ductal elongation and branching to fill the fat pad1,2. 

Repetitive cycles of fluctuating hormones, seen in key physiological events like the reproductive 

cycle and pregnancy, induce expansion and regression of the mammary gland3,4. The mammary 

gland forms a highly organized ductal tree5. In humans, radially branching ducts end in 

functional pyramidal lobules termed “terminal ductal lobulo-alveolar units” (TDLUs), which 

ultimately differentiate into milk-secreting acini during lactation. TDLUs are thought of as the 

site of origin for the majority of human breast cancers6,7 and contain proliferative stem and 

progenitor cells8. The mouse mammary ductal tree is similar with their own lobuloalveolar 

structures. Thus, making the mouse a suitable model to study breast biology that is applicable to 

its human counterpart5. 

 

1.1.1 Mammary Epithelial Hierarchy 

The bilayered mammary gland is composed of two epithelial lineages: basal and luminal1,2,9. 

Both mammary epithelial cells (MEC) function in unison in order to carry out the overall 

function of the breast. The inner layer facing the lumen is composed of luminal cells, which are 

responsible for secreting milk1,2,9. The outer layer consists of basal cells (BC), which are 

contractile1,2,9. The high regenerative potential of the mammary gland is owed to its diverse 

pools of stem and progenitor populations found within each lineage10. The luminal lineage is 

composed of two cell types: mature luminal (ML) and luminal progenitor (LP) cells11. Despite 

being highly responsive to hormones, reports suggest that only 30-50% of mammary epithelial 
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cells express the hormone receptors (HR), estrogen receptor (ER) or progesterone receptor 

(PR)11,12. Mature Luminal (ML) are the only HR+ cells in the gland11. This population responds 

to hormonal cues and relays potent paracrine effectors to the HR- stem/progenitor populations to 

cause them to proliferate13,14. The basal lineage is largely thought to be devoid of HR.  

 

 The list of cell surface markers used for fluorescent-activated cell sorting (FACS) have not 

substantially changed since 200610,15. Human BC can be delineated by EpCAM-CD49fhi, 

EpCAM+CD49flo for ML, and EpCAM+CD49fhi for LP after excluding lineage (Lin) positive 

(CD31+Ter119+CD45+) and dead cells (Figure 2.1). Gating of mouse MEC is similar, except 

 

Figure 1. 1 – Gross morphology and cellular composition of the human mammary gland. 

Schematic adapted from Tharmapalan et al. (2019)14 of the human breast highlighting a terminal ductal lobular units 

(TDLUs) and the organization of the specific cell types that make up the epithelial and stromal compartments of the 

mammary gland. The mammary epithelium is bi-layered, where Mature Luminal and Luminal Progenitor reside in the 

inner most layer, while Basal Cells form the outer layer. The Mammary Stem Cell is thought to reside in the basal 

layer. The epithelial compartment is separated from the stroma by the basement membrane . The stroma consists of 

non-epithelial cells such as adipocytes, fibroblast, macrophages, and endothelial cells. 
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there is little separation achieved between the two luminal populations when EpCAM and CD49f 

are used (Figure 2.2). CD49b and Sca1 are therefore used in the mouse to distinguish LP 

(CD49b+Sca1-) and ML (CD49b+Sca1+, CD49b-Sca1+ or CD49b-Sca1-)11. In addition to these 

FACS markers, there are defined markers for the mammary subpopulations that demonstrate 

bimodal expression in the gland6. Luminal cells express cytokeratin 8 (K8) and K18. The LPs 

can also be identified by KIT and ALDH expression11. In addition to expressing K5, K14, and 

αSMA, BC are known to express mesenchymal markers such vimentin16. 

 

Following orthotopic transplantation in vivo, only BC  possess the functional capacity to generate 

a full ductal tree, with the ability to both self-renew and contribute to all subsequent MEC 

lineages10,15. For this reason, it is believed that the mammary stem cell (MaSC) resides in the 

basal compartment. This has led to labeling of the EpCAM-CD49fhi population as “mammary 

stem cell-enriched,” even though this population also contains basal progenitors and 

differentiated basal cells16. To resolve this heterogeneity, several markers have been proposed to 

purify rare MaSC populations such as Lgr517–19, Procr20, Tspan821,  Bcl11b22 and Dll123. 

Although each marker enriches for refined populations with enhanced transplantation efficiency, 

an exclusive MaSC signature remains elusive.  

 

In addition, the organization of the mammary epithelial hierarchy is under constant scrutiny. 

There are two prevailing viewpoints. One is that there is a bipotent stem cell that gives rise to 

both luminal and basal lineages. The other side argues that each lineage has its own stem cell and 

thus is unipotent19. As of now, the most recent lineage tracing reports argue for a bipotent MaSC 

at the apex of the hierarchy20,24. Single cell RNA-sequencing (scRNA-seq) of primary human 

breast epithelial cells found a continuous lineage hierarchy that connected the basal lineage to 

two differentiated luminal branches25.  

1.1.2 Inherent properties of mammary epithelial cells 

Recent work has demonstrated that the mammary subpopulations are equipped with different 

systems to respond to cellular and genomic damage. 

Reactive oxygen species (ROS), such hydrogen peroxide (H2O2), superoxide (O2
o)  and hydroxyl 

anions, are by-products of cellular processes that consume oxygen26. They arise during normal 
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cellular activity but high levels can damage DNA, proteins, and lipids26. LP have higher levels of 

ROS and consume more oxygen, but are equipped with higher levels of the superoxide dismutase 

(SOD1-3) enzymes that catalyze O2
o to O2 and H2O2 and high levels of glutathione 

peroxidases27. Human BC had only glutathione-dependent mechanisms to handle ROS27. The 

limited antioxidant mechanisms present in BC was targeted by treating them with buthionine 

sulfoximine (BSO), an inhibitor of glutathione synthesis27. Indeed, LP were more resistant to 

BSO treatment than BC due to their additional glutathione-independent antioxidant 

mechanisms27. 

 

Cells undergoing active transcription require efficient DNA damage repair (DDR) capacity to 

prevent mutations and ensure genomic integrity. Molecular profiling indicates that LP have high 

levels of transcription with twice the number of hypomethylated regions and four times the total 

RNA content compared to BC28. R loops, three-stranded nucleic acid structures comprised of 

RNA:DNA hybrid plus a displaced DNA strand, are naturally occurring by-products of 

transcription and linked to increased replication stress and DNA damage29. LP had significantly 

more R loops compared to BC, especially at genes responsible for luminal fate determination30. 

Telomeres form at the distal ends of chromosomes, maintenance of which is necessary for 

adequate genomic stability. Despite having the shortest telomere lengths (<3kb), LP were the 

only subset to express human telomerase (hTERT) and expressed higher levels of DDR genes31. 

BC alternatively had a telomere length of 6-8 kb31. When transduced with a lentiviral vector 

expressing either Cyclin E or H-RAS G12V, two oncogenes that induce DNA-replication stress, 

MEC demonstrate divergent DNA damage response. Luminal subsets show extensive DNA 

damage and widespread repair activation (more γH2AX & 53BP1 foci), whereas BC saw little to 

none32.  

 

Collectively, these works demonstrate that the different mammary lineages are intrinsically 

unique in how they protect themselves from cellular and genomic stress. LP have a wealth of 

mechanisms to prevent ROS-associated damage and genomic insults from DNA damage which 

were not apparent in the BC. These protective mechanisms may underlie the suitability of these 

cells to undergo the strenuous route of tumorigenesis.  
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1.1.3 Cell of origin for breast cancer 

The “cell-of-origin” refers to the cell that acquires mutations leading to cancer33,34. However, not 

every cell in the human body can become malignant, only specific populations are suitable 

candidates for transformation. A large body of evidence suggests that stem/progenitor 

populations are the cell-of-origin for many cancer types33–35. This is most likely due to their 

replicative potential and long lifespan that enables them to accumulate mutations36. In fact, it has 

been proposed that variations in cancer risk among different tissues can be explained by the 

number of stem cell divisions that occurred in that tissue37,38. The study’s meta-analysis of 

relationships between stem cell divisions from different tissue types and the risk of 17 different 

cancer types across 69 countries supports the concept that lifetime risk of a particular cancer 

strongly correlates with the total number of divisions of normal self-renewing stem cells in that 

tissue38.  

 

This concept is especially relevant to the breast as this tissue contains many distinct progenitor 

populations each with the potential to  serve as putative cell(s)-of-origin for breast cancer9,14. 

Comparison of gene expression in normal mammary subpopulations and breast cancer subtypes 

have shed light on the diverse cellular origins of breast cancer. It is proposed that BC give rise to 

Claudin-low subtype, ML to Luminal A/B and LP transform to give rise to the highly aggressive 

Basal-like subtype tumours39,40. The importance of the cell-of-origin has also been demonstrated 

in mouse models with lineage-specific promoters. Mice with deletion of Brca1 and p53 only in 

cells of the luminal lineage develop mammary cancers that resemble human BRCA1 tumors 

histologically41. In fact, flow cytometry analysis of breast tissue from BRCA1 mutation carriers 

have demonstrated an expanded LP population39. It has also been shown that LP yield Basal-like 

breast cancers following oncogenic insults, irrespective of BRCA142,43. The importance of cell-

of-origin has also been shown using human MEC. Transformation of normal human CD10+ BC 

was able to generate Claudin-low breast cancer44. However, transformation of EPCAM+CD10- 

MEC yielded a mix of both ER positive and negative cancers. A recent study with 37 epithelial 

markers used to characterize >15,000 normal breast cells detected 11 differentiation states for 

luminal cells and 2 for BC6. All human breast tumors were similar to at least one of the 11 

luminal differentiation states. However, the triple negative breast cancers (TNBC) showed a 

mixed phenotype consisting of both luminal and BC markers6. This highlights the heterogeneous 
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nature of these mammary subpopulation and the need for more refined cell surface signatures to 

accurately identify the putative cell(s)-of-origin.  

 

Gene expression programs operating in normal mammary cells are hijacked in other aspects of 

tumorigenesis such as metastasis. Aggressive metastatic TNBC also show gene expression 

similarities to fetal (embryonic days 16 and 18) mouse MaSC, a stage in development with high 

stem cell capacity45,46. In addition, metastatic cells use distinct mammary cell programs that 

 

Figure 1. 2 – The mammary epithelial hierarchy and its relationship to putative cells-of-origin for 

breast cancers 

Figure adapted from Stingl & Visvader (2014)9. On the left is the mammary epithelial hierarchy, where the bipotent 

mammary stem cell (MaSC) sits at the apex and gives rise to basal and luminal lineages, which each contain ing 

progenitor and differentiated populations. On the right are the PAM50 subtypes of breast cancer. Based on gene 

expression correlations and mouse models  of breast cancer, the putative cell-of-origin for each of the subtypes is 

delineated by the dash line. 
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affect their metastatic patterns47. scRNA-Seq data on metastatic cells derived from TNBC PDXs 

revealed that advanced-stage metastatic cells have higher expression levels of luminal 

differentiation genes (CDH1, MUC1, CD24) and were similar to the primary tumor47. Whereas 

earlier-stage metastatic disease (low burden) were distinct from the primary and demonstrated 

higher expression of BC (LGR5, BMI1), pluripotency genes (OCT4 and SOX2) and epithelial-

to-mesenchymal transcription factors such as SNAI2 (SLUG)47. This work demonstrates that 

normal developmental programs found in MEC are co-opted by breast cancers and dictate their 

phenotype. 

1.1.4 Influence of Normal on Tumorigenesis 

Cancer has long been described as caricatures of normal tissue renewal33. This suggests that the 

tissue-of-origin dictates several key features of the tumorigenic process.  

 

Hoadley et al used molecular clustering to show that chromosome-arm-level aneuploidy, DNA 

hypermethylation, mRNA and miRNA and reverse-phase protein array data clustered on the 

basis of histology or tissue-of-origin48. Cancers retain characteristics of normal tissues despite 

acquiring countless mutations, which is suggestive of the fact that tumorigenesis co-opts normal 

regulatory networks. One example relates to how cancer cells retain epigenetic features from 

their tissue-of-origin. Epigenomic features can explain the rate of somatic mutation that differs 

across the genome. Polak et al. analyzed mutations from 173 cancer genomes derived from 8 

different tissue types and used 424 epigenetic features from more than 100 normal cell types49. 

This revealed that the density and distribution of somatic mutations across the genome of a 

particular cancer is strongly linked to chromatin marks specific to that cancer’s cell-of-origin49. 

For example, density of somatic mutations in liver cancer followed levels of H3K4me1 in 

normal hepatocytes but not H3K4me1 in melanocytes49. The opposite was also true where 

melanoma mutational density correlated with levels of H3K4me1 in melanocytes, not 

hepatocytes49. In addition, mechanisms of proliferation occur in a tissue-specific manner50. A 

gain-of-function screen on human mammary epithelial cells (HMEC) and human pancreatic 

nestin-expressing epithelial cells (HPNEs)50 revealed that 80-90% of proliferation genes were 

highly tissue-specific. These tissue-specific proliferation genes show much stronger enrichment 

with somatic copy number changes (SCNAs) and also provide a better prediction of whole 

chromosome-arm aneuploidy in their respective cancer than in cancers from different tissues50.  
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Collectively, the aforementioned examples demonstrate how several features of a tumor are 

partly determined by the normal tissue that the cancer is derived from. Therefore, the tissue/cell-

of-origin is simply not a vessel for mutations to accumulate within, but in actuality dictates the 

outcomes of such mutations. 

1.1.5 Breast Cancer Subtypes 

Breast cancer is a heterogeneous disease which makes matching patients with the best therapy a 

major challenge. Classical diagnostic markers used to stratify patients are ER, PR and human 

epidermal growth factor receptor 2 (HER2). However, molecular classification of breast cancers 

based on the Prediction Analysis of Microarray (PAM) 50 gene signature has led to the 

identification of patient groups with distinct transcriptional programs and clinical characteristics. 

The four “intrinsic” subtypes originally identified include Luminal A, Luminal B, Basal-like and 

HER2-enriched51,52 and later on, the Claudin-low subtype was added40.   

Each of the breast cancer subtypes have distinct mutational profiles and expression of diagnostic 

markers. Luminal A breast cancers are the most common and are largely HR+. Common 

mutations seen with this subtype are PIK3CA (49%), GATA3 (14%), MAP3K1 (14%) and TP53 

(12%)53. Luminal A have the lowest mutation rate, and have been described to have quiet 

genomes53. Luminal B tumours are similar to Luminal A, as they also express HR+ and share 

common mutations like TP53 (32%), PIK3CA (32%), GATA3 (15%) and MAP3K1 (5%)53. 

However, the distinguishing feature that separates the two is that Luminal B breast cancers 

express proliferation genes at a higher level53. The HER2-enriched subtype is defined by 

expression of genes within the HER2 amplicon. This subtype is quite heterogeneous, including a 

mix of HR+ and HR- tumours53. Common mutations include TP53 (84%) and PIK3CA (7%)53. 

TNBC refers to a broad range of tumours that do not express any HR. Basal-like and Claudin-

low tumours are TNBCs. Commonly mutated genes in Basal-like breast include TP53 (84%), 

PTEN (35%) and PIK3CA (7%)53. Of particular note, Basal-like breast cancers show elevated 

expression of DNA repair proteins, consistent with the highest mutation rate53. This cancer is 

commonly seen in BRCA1 mutation carriers. Claudin-low tumours show characteristically low 

expression of tight junction (claudin 3, 4, 7, cingulin, occludin) and cell-cell adhesion (E-

cadherin) proteins40,54. Transcriptionally, they show low levels of proliferation genes and high 

levels of mesenchymal markers40,54.  
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Breast cancer subtypes have unique intrinsic vulnerabilities as they are susceptible to specific 

anti-cancer therapies. Patients with Luminal A and B subtypes tend to receive endocrine 

therapies55, either tamoxifen or aromatase inhibitors56,57. ER+ breast cancers receiving endocrine 

therapies have a 50% lower chance of recurrence than ER+ patients not receiving endocrine 

therapy. However, despite being disease-free after 5 years of endocrine therapy, the risk of 

recurrence up to 20 years after diagnosis can range from 10 to 41% depending on characteristics 

of the original tumor such as grade and node status58. Paclitaxel seemed to benefit patients with a 

low PAM50 proliferation score, which is typically seen in the Luminal A subtype59. However, 

Luminal B tumours are vulnerable to a combination of docetaxel, doxorubicin and 

cyclophosphamide, which was not seen in Luminal A tumours60. Chemotherapy agents like 

taxanes, anthracyclines and alkylating agent are the first-line therapy for TNBC55. Basal-like 

tumors have demonstrated sensitivity to docetaxel compared to doxorubicin, which was not seen 

for the other subtypes61. Patients with HER2-enriched breast cancers have benefited from 

Trastuzumab55 and combination with lapatinib62. HER2 cancers co-expressing HR may also 

benefit from endocrine therapies56,62. Claudin-low has demonstrated intermediate response to 

anthracycline/taxane-based chemotherapy40. 

The above highlights the distinct transcriptional programs operating in each subtype and how 

this may underlie their unique susceptibility to specific anti-cancer regimens. However, risk of 

recurrence and poor long-term survival are common, thus highlighting a need for better targets 

for treatment.  

1.2 Basic Metabolism and Relevance to Cancer  

Metabolism involves either creating (anabolism) or breaking down (catabolism) macromolecules 

to the 4 building blocks of life (amino acids, nucleotides, sugars and lipids). The following 

section describes basic background and relevance to cancer of glycolysis, tricarboxylic acid 

(TCA) cycle and oxidative phosphorylation (OXPHOS). In addition, I briefly discuss the 

metabolic heterogeneity of breast cancer and determinants of cellular metabolism with a focus on 

the role of the cell-of-origin.  
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1.2.1 Glycolysis and Warburg Effect 

Glycolysis is the main metabolic pathway responsible for breaking down glucose. It entails a 

series of 10 catabolic reactions that yields a net production of 2 pyruvate, 2 ATP and 2 NADH 

(Figure 1.3). All the steps in glycolysis are reversible, which is necessary to allow for 

gluconeogenesis, except for 3 key phosphorylation events. Hexokinase is the first enzyme in 

glycolysis that phosphorylates Glucose to Glucose-6-phosphate (G6P)63,64. Phosphofructokinase 

(PFK) is the rate-limiting enzyme in glycolysis, which produces fructose 1,6-bisphosphate 

(F16BP) from fructose 6-phosphate (F6P)63,64. Lastly, pyruvate kinase (PK) phosphorylates 

phosphoenolpyruvate (PEP) to pyruvate, the last step of glycolysis63,64. All three irreversible 

steps are inhibited by ATP, demonstrating the necessary negative feedback inhibition to prevent 

excessive ATP production63,64. Pyruvate, the final product of glycolysis, can either enter 

mitochondria to participate in the Tricarboxylic Acid (TCA) Cycle or is converted into lactate by 

lactate dehydrogenase (LDH) and exported out of the cell63,64.  

The first studies to document the role of altered glucose metabolism in cancer were performed by 

Nobel Laureate Otto Warburg65,66. He saw that ascites cells consume glucose and produce large 

quantities of lactate regardless of oxygen levels. He postulated that mitochondria are 

dysfunctional in cancer cells and called this phenomenon the “Warburg Effect” or aerobic 

glycolysis. Although most cancer cells show high glycolytic flux, Warburg’s conclusions were 

not quite right67. Mitochondria are been demonstrated to be essential for tumorigenesis and 

glycolysis may play additional roles beyond ATP production in cancer68.  

Glycolysis generates a net production of 2 ATP via the last phosphorylation event by PK. 

However, cancer cells express PKM2, an isoform of pyruvate kinase with less activity69. 

Knockdown of PKM2 and overexpression of the PKM1 isoform halts tumor formation and also 

suppression of aerobic glycolysis70. Thus, cancers may not need ATP from glycolysis. In 

addition, recent work with radiolabeled 13C-lactate demonstrated that many of the carbons that 

make up TCA Cycle intermediates are derived from lactate, not glucose71,72. Cells actively 

import lactate and incorporate its carbons into the TCA cycle since the radiolabeled isotopes 

were infused intravenously71,72. These data argue that glycolysis and the TCA cycle may not be 

so connected in normal and cancer cells.   
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The prevailing notion about glycolysis in cancer is that its main function may be to contribute to 

macromolecule production73. Glycolysis is often referred to as “central carbon metabolism,” 

since several of the metabolites formed during glucose catabolism are shunted off to other 

essential metabolic pathways (Figure 1.3). For example, G6P and F6P can enter the oxidative 

and non-oxidative branches of the pentose phosphate pathway (PPP), respectively, which is 

necessary to make nucleotides73. In addition, F6P can enter the hexosamine biosynthetic pathway 

necessary to produce UDP-N-Acetylglucosamine, the precursor for glycosylation-related post-

translation modifications of proteins73. Glyceraldehyde 3-phosphate (GADP) can be converted to 

glycerol 3-phosphate, which then feeds into lipid synthesis73. Phosphoglycerate dehydrogenase 

(PHGDH) catalyzes the conversion of 3-phosphoglycerate (3PG) to 3-phosphohydroxypyruvate 

(3PHP), which is further modified to produce serine73. Glycolysis does more than generate 

pyruvate or ATP, it serves as an essential generator of precursors for other metabolic pathways. 

Several inhibitors of the critical steps in glycolysis have been identified and demonstrated 

promising anticancer activity74,75. However, many proved toxic due to adverse effects like 

hypoglycemia74. Glucose catabolism is an essential process for all cells and perhaps better 

therapeutic success will be obtained by targeting off-shoot pathways of glycolysis, rather than 

the main pathway. Although the function of glycolysis in cancer is constantly evolving, it still 

remains a defining feature of reprogrammed cellular metabolism76. 

1.2.2 Tricarboxylic Acid (TCA) Cycle and Cancer Initiation 

The TCA cycle functions to generate the electron carriers, NADH and FADH2. It begins with the 

incorporation of Acetyl-CoA into citrate, which is mediated by citrate synthase (CS). Due to the 

cyclic nature of this pathway, it can continuously generate electron carriers, but requires 

precursors to keep the cycle going (Figure 1.3). The TCA cycle accomplishes this by acting as a 

funnel receiving metabolites from several different mitochondrial metabolism pathways. For 

instance, Acetyl-CoA can be generated through the conversion of carnitines, breakdown of 

acetate via acyl-CoA synthetase short-chain family, member 1 (ACSS1), breakdown of branched 

chain amino acids and breakdown of fatty acids via β-oxidation (Figure 1.3).  

Mutations in TCA cycle enzymes that lead to cancer have been well documented. The most 

famous of these is isocitrate dehydrogenase (IDH). IDH1/2 mutations are common in 
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glioblastoma and acute myeloid leukemia77,78. Mutant IDH1 and 2 gain the ability to produce an 

“oncometabolite” 2-hydroxyglutarate (2-HG), instead of α-ketoglutarate (αKG)79–81. Loss-of-

function mutations in succinate dehydrogenase (SDH) and fumarate hydratase (FH) have been 

shown to predispose individuals to cancers82. Germline SDH mutations leads to paragangliomas 

and pheochromocytomas, whereas germline FH mutations lead to leiomyomas and renal cell 

cancer82. These mutations do not produce oncometabolites, but instead lead to a buildup of the 

reactant, succinate for SDH deficiency and Fumarate for FH deficiency. Mechanistically, 

succinate, fumarate and 2-HG all have similar effects on epigenetic machinery as they inhibit 

members of the α-KG-dependent dioxygenase family. These metabolites can inhibit the ten-

eleven translocation (TET) family of 5-methlycytosine (5mC) hydroxylases, which are 

responsible for DNA demethylation and the JmjC domain-containing histone demethylases 

(KDMs)80,81,83. Inhibition of these demethylases leads to an increase in methylation of CpG 

islands and also histones, which alters the epigenome in such a way as to block differentiation 

leading to acquisition of stem-like properties80,84. TCA Cycle intermediates play an essential role 

in cancer initiation and also demonstrates diverse functions beyond participating in their 

canonical metabolic pathway. In fact, these metabolites have documented pleotropic effects 

important for tumorigenesis. 2-HG inhibits collagen maturation by inhibiting prolyl hydroxylase 

domain-containing proteins (PHD), an α-KG-dependent enzyme, that is responsible for prolyl-

hydroxylation of collagen85. In addition, succinate and fumarate can inhibit homologous-

recombination86,87. This was exploited as a “metabolic” synthetic lethality, as cancer cells with 

SDH and FH mutations were more susceptible to poly(ADP)-ribose polymerase (PARP) 

inhibitors87.  
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Figure 1. 3 - Schematic for Glycolysis and Tricarboxylic Acid (TCA) Cycle. 

Schematic summarizes all the major reactions occurring in glycolysis and the Tricarboxylic Acid Cycle. In addition, 

offshoot pathways from glycolysis are listed in the teal textbox. Abbreviations include the oxidized/reduced forms 

of electron carriers include Nicotinamide adenine dinucleotide (NAD+/NADH), Nicotinamide adenine dinucleotide 

phosphate (NADP+/NADPH), Flavin adenine dinucleotide (FADH/FADH2). Other abbreviations: Adenosine 

triphosphate (ATP), Adenosine diphosphate (ADP), Guanosine triphosphate (GTP), Guan osine diphosphate (GDP), 

inorganic phosphate (Pi). 



 

14 

 

1.2.3 Electron Transport Chain (ETC)  

At the heart of mitochondria is the electron transport chain (ETC), which drives ATP production 

and has given this organelle its popularized function as “powerhouse of the cell.” The ETC is 

composed of 4 distinct multi-subunit complexes (CI-IV) (Figure1.4). The complexes are 

responsible for transferring electrons along the inner mitochondrial membrane (IMM) to the final 

electron acceptor oxygen63,64. Throughout this process, each complex, except CII, pump protons 

into the intermembrane space63,64. This creates a proton gradient that is essential to drive the 

unfavourable reaction of ATP production by ATP Synthase (also refereed as Complex V)63,64. 

The ETC and CV are located specifically within cristae, folding of the inner mitochondria 

membrane (IMM) that protrude into the mitochondrial matrix88. The structure of the 

mitochondria (surface area, shape and density of cristae) has been proposed to be a key 

determinant of ETC efficiency64,89. Each mitochondrial complex has a distinct structure and 

function (Figure 1.4)63,64. 

Complex I (CI), also known as NADH dehydrogenase, is the largest. As the name suggests, it is 

responsible for receiving electrons specifically from NADH63,64. It is a massive L-shaped 

structure composed of 45 subunits and is nearly one million Daltons in total63,64. Of the 45 

subunits, 39 are derived from the nuclear genome and 7 are derived from mitochondrial DNA63. 

A pair of electrons traversing through Complex I is said to pump 4 protons into the inner 

membrane space63,64. Mitochondrial reactive oxygen species (mROS) can be produced by CI in 

the mitochondrial matrix90,91. 

Complex II (CII) is succinate dehydrogenase (SDH), the same enzyme from the TCA Cycle. It 

specifically receives electrons from FADH2, but unlike the other complexes it does not pump out 

protons (Karp, 2009). This 125,000 Daltons complex in composed of 4 nuclear-encoded 

subunits63.  

Electrons that enter the ETC through CI (via NADH) or CII (via FADH2) are received by 

Coenzyme Q10 (CoQ), a hydrophobic molecule that shuttles electrons to Complex III (CIII)63,64. 

The electrons are then passed on to Cytochrome C (CytoC), which results in 4 protons being 

pumped into the IMS. CIII is a 11 subunit complex (with 10 nuclear encoded subunits, and 1 
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mitochondrial DNA derived subunit) that weights around 240,000 Daltons63. CIII is able to 

produce mROS in both the mitochondrial matrix and also the intermembrane space90,91. 

Complex IV (CIV), also known as cytochrome c oxidase, is the fourth complex of the ETC. This 

complex catalyzes the final step in the ETC, which involves transferring electron from reduced 

CytoC to molecular oxygen63. Each oxygen allows for translocation of 10 protons, 4 of which are 

used to make H2063. Structurally, CIV is a 13-subunit complex protein that weights around 

200,000 Daltons. CIV is made by 10 nuclear encoded genes and 3 mitochondrial DNA encoded 

subunits63.   

Complex V (CV) or ATP synthase is a multi-protein complex that drives ATP production in the 

mitochondria63,92. It is composed of 2 major subcomplexes, F1 and F0
63,92. The F1 portion is made 

of several subunits, 3α, 3β, 1δ, 1γ, 1ε63,92. Alternate α and β subunits form the F1 head portion, 

where each β subunit serves as a catalytic site for ATP synthesis63. The F0 subunit is embedded 

in the mitochondrial membrane and is composed of 1a, 2b and 10-14c subunits63,92. The F0 

subunit contains a channel through which protons flow from the intermembrane space into the 

mitochondrial matrix63,92
. This initiates a rotary motion of both subunits and drives ATP 

synthesis from ADP and inorganic phosphate92.  
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Targeting mitochondrial respiratory chain complexes with inhibitors has long been an active area 

of research due to strong role the ETC plays in multiple disease states, especially cancer93. 

Mechanistically, it has been presumed that inhibition of any ETC components will yield the 

same effect (decreased oxygen consumption and ATP production), since each complex 

collectively participates in OXPHOS. However, the differential metabolic, epigenetic and 

transcriptional alterations are specific to the complex being inhibited.  

Inhibition of each complex will lead to specific changes in metabolite concentrations. For 

example, since CI and CII oxidize NADH and FADH2, respectively, all enzymatic reactions 

occurring in the mitochondrial that utilize oxidized forms of these electron carriers, NAD+ and 

FADH, will be inhibited due to decreased reserves94. Acyl-CoA dehydrogenase and β-

 

Figure 1. 4 – Overview of oxidative phosphorylation (OXPHOS) 

Schematic summarizing individual functions of each of the complexes that collective ly participate in the electron 

transport chain (ETC). The movement of the electron is denoted by the dashed dark blue line. Each complex, except 

Complex II, pumps out 4 protons for every electron it receives. This generates a proton motor force that drives  the 

unfavorable reaction of ATP synthesis by Complex V. The dark red arrow show sites of mitochondrial reactive oxygen 

species production, which occur in the matrix by Complex I and III and in the intermembrane space from Complex III. 

The table summarizes the number of subunits (nuclear and mitochondrial encoded) and the total mass for each of the 

complexes. Abbreviations used: OMM, outer mitochondrial membrane; IMS, intermembrane space; IMM, inner 

mitochondrial membrane; CoQ, Coenzyme Q10; CytoC, cytochrome C. 
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hydroxyacyl-CoA dehydrogenase require FADH and NAD+, respectively, for fatty acid 

oxidation to occur. In addition, it was recently shown that the main proliferation defect due to 

ETC inhibition was caused by a redox imbalance (↑NADH/NAD+ ratio) that leads to reduced 

cytosolic aspartate synthesis95,96. This proliferation defect can be reversed by culturing cells in 

supra-physiological concentrations of pyruvate or aspartate, which restores levels of NAD+ 

levels and activity of the malate-aspartate shuttle95–97. Metabolomics on isolated mitochondria 

recently revealed unexpected complex-specific metabolite changes that occur upon ETC 

inhibition. For example, inhibition of CI using Piericidin led to Acetyl-CoA accumulation in the 

mitochondrial matrix94. This was most likely due to a high NADH/NAD+ ratio that prevents 

activation of CS, the enzyme which incorporates Acetyl-CoA into the TCA cycle. Inhibition of 

CI led to a >250-fold increase in the acetyl carnitine/carnitine ratio94. Inhibition of CIII 

alternatively led to high levels of choline, carbamoyl aspartate, and succinate and decreased 

levels of betaine94. Inhibition of CV via oligomycin lead to accumulation of α-KG and malate94. 

These mitochondrial specific metabolite changes were not seen when the same analysis was done 

on whole-cell lysates, thus the mechanisms and significance of these changes have yet to be 

determined.  

As epigenetic enzymes require a specific metabolite as a cofactor, the aforementioned complex-

specific changes should alter the epigenome with subsequent changes to transcriptional output of 

the cell. The lab of Dr. Navdeep Chandel knocked out the Rieske iron-sulfur protein (RISP), an 

essential subunit of CIII, in the fetal hematopoietic stem cell (fHSC)98, CD4+ T cells99 and 

also regulatory T (Treg) cells100. CIII deficient fHSC were able to proliferate and self-

renewal, but experienced a block in differentiation capacity and could not produce 

progenitors98. CIII deficient CD4+ T cells had compromised immune function as they had 

diminished IL-2 production and failed to undergo antigen-specific expansion of CD4+ and 

CD8+ T cells in response to a viral infection99. The same CIII knockout in Treg led to an 

inability of these cells to perform immunosuppressive functions100. These works collectively 

demonstrate that the same complex is linked to distinct cellular functions depending upon the 

cell type.  

In addition, each of the mitochondrial complexes may participate in specific functions within a 

single cell type. Treatment of regulatory T (Treg) cells with ETC inhibitors for 24 hours caused 
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complex-specific changes in metabolite accumulation and gene expression100. CI is important for 

their proliferation, however CII is responsible for IFNγ and cytokine production101. These studies 

demonstrate that each of the mitochondrial complexes are unique entities that are tied to specific 

functions within a single cell-type. 

1.2.4 Normal Mammary Epithelial Cell Metabolism 

There literature on metabolism in MECs is limited. As mentioned above, human LPs are 

endowed with a higher antioxidant capacity27. However, 6 weeks old mouse mammary LP had 

higher mROS and total ROS levels as compared to a MaSC-enriched population102. Instead of 

gating the entire basal population, they selectively analyzed the tip of the BC population with the 

highest CD49f and CD24 expression102, which has been proposed to be enriched for a MaSC 

population due to its high transplantation efficiency10. In addition, fetal MaSC (embryonic day 

16 and 18) have high transcript levels of glycolytic enzymes46. This is in accordance with other 

stem cell populations, where the hematopoietic and embryonic stem cells are highly 

glycolytic103. However, the metabolic identities of normal mammary subpopulations remain 

understudied.   

1.2.5 Breast Cancer Metabolism 

Steady-state metabolomics of different breast cancer subtypes has revealed striking metabolic 

heterogeneity between subtypes104–108. Metabolomes of Luminal A and B tumors consistently 

cluster separately from the more aggressive subtypes (Basal-like and HER2) in several 

reports104,105,107–109. Basal-like and HER2 tumours have higher abundance of glycolytic and TCA 

Cycle metabolites105,107,109. In addition, these highly aggressive breast cancers also demonstrate 

high abundance of PPP metabolites, indicating potential diversion of glycolytic metabolites to 

other biosynthetic pathways105,109. Despite finding no IDH mutations in their patient cohorts, 

Basal-like and ER- breast cancers have high abundance of 2-HG104,105,107,108. When compared to 

normal breast, 2-HG levels was elevated more than 20-fold in ER+ and 200-fold in ER- breast 

cancers107. Mechanistically, these tumours produce 2-HG from the high abundance levels of 

glutamine and glutamate, which can be converted to αKG, the substrate needed for this 

reaction104,108.  
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Even within a single breast cancer subtype, there has been reported large inter-tumor metabolic 

heterogeneity. One study found three distinct metabolome clusters for Luminal A tumours110.  

Clustering of ER- or TNBC metabolomes grouped largely based on ancestry (African-American 

of Western African ancestry or European-American ancestry)108. African-American women with 

ER- breast compared to European-Americans cancers tended to have higher MYC activation, 

which enhanced glutamine incorporation into 2-HG leading to hypermethylation and overall 

poorer prognosis compared to ER- breast cancers of European Americans108.  

1.2.6 Influence of normal on cancer metabolism 

As mentioned above, several aspects of the tumorigenic phenotype are linked to cell-of-origin 

(Section 1.14). In fact, the metabolism of cancer has been proposed to be more similar to the 

tissue it originated from.  

The simplest example comes from clustering 225 metabolites identified in 928 cell lines from the 

Cancer Cell Line Encyclopedia (CCLE), which clustered primarily based on lineage111. The 

hematopoietic cell lines had a distinct metabolome as compared to non-hematopoietic lines111. 

Computational analysis of metabolic gene expression data has also shown striking similarities of 

a cancer to its tissue-of-origin112,113.  However, the importance of the tissue-of-origin was made 

clear by observing metabolic changes that occur when the same mutational event exerted its 

effects in different tissues. MYC-induced liver tumors relied more upon glutamine catabolism, 

whereas MYC-induced lung tumors relied more on glutamine anabolism from glucose114. Thus, 

metabolic alterations and their connection to cancer gene mutations are largely dependent upon 

tissue-of-origin. In addition, Mayer et al. demonstrated that lung and pancreatic cancers, despite 

having the same initiating event (KrasG12D/+;Trp53flox/flox), have different dependencies for 

branched amino acids that reflects the metabolic preferences of the tissue-of-origin115. KRAS is 

well-known to induce macropinocytosis, a nutrient acquisition method where cells engulf 

extracellular sources of protein like albumin and break it down as a source of amino acids116. 

However, KRAS-induced macropinocytosis only occurred in pancreatic, not lung cancer115. 

Knockdown of BCAT, the enzyme responsible for the first step of branched-chain amino acid 

catabolism, was only a liability in lung and not pancreatic KrasG12D/+;Trp53flox/flox cancer115. This 

study shows the potential clinical success of targeting tissue-of-origin specific metabolic 

vulnerabilities. In fact, it was recently shown that successful targeting of NAD metabolism was 
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dependent upon the tissue-of-origin117. A cell can make NAD through one of many distinct 

pathways118. The “Preiss-Handler Pathway (PHP)” utilizes nicotinic acid to generate NAD, 

whereas the Salvage Pathway generates NAD by using nicotinamide as starting material118. 

Chowdhry et al demonstrated that if the tissue-of-origin had high levels of NAPRT, a key enzyme 

in the PHP pathway, then cancers derived from that tissue would exclusively rely on this branch 

of NAD synthesis and also have higher amplifications of PHP genes such as NAPRT or 

NADSYN1117. Tissues that had low expression of PHP genes relied more on the Salvage pathway 

in their cancer counter parts117. Inhibition of NAMPT, a key Salvage pathway enzyme, with FK-

866 was only a liability in non-PHP amplified cancers117.  

These works collectively suggest that cancer adapts the metabolic network of the tissue it 

originated from. In addition, targeting tissue-of-origin specific metabolic vulnerabilities may 

represent a viable treatment option. To date, there have been no studies demonstrating the 

influence of the cell-of-origin on cancer metabolism. 
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1.3 Thesis Outline 

1.3.1 Rationale and hypothesis 

Cancers are constrained by the metabolic network of their normal counterpart and use this as a 

backbone for aberrant proliferation. Thus, the metabolism of a particular cancer is more similar 

to its tissue-of-origin than to a cancer that arose from a different tissue113,119. This poses a 

challenge in the context of breast cancer, as there are multiple cell(s)-of-origin in the mammary 

gland, each with the unique potential to give rise to a specific breast cancer subtype9,14. To date, 

limited work has explored the metabolic identities of normal MEC.  In addition, we do not know 

if these metabolic programs are adapted by their respective breast cancer subtypes. By studying 

normal MEC metabolism, we can potentially uncover reasons behind at least some of the 

metabolic heterogeneity seen across PAM50 breast cancer subtypes. I hypothesize that normal 

MEC have lineage-restricted metabolic networks, which may be necessary for the structure and 

function of that cell type. In addition, I hypothesize that the metabolism of breast cancer 

subtypes may be more similar to their cell-of-origin.  

 

1.3.2 Objectives 

1) Determine if mammary subpopulations possess distinct metabolic networks 

2) Functionally evaluate the metabolic capacities and vulnerabilities of mammary 

subpopulations  

3) Delineate if breast cancer subtypes share similar metabolic gene expression to the cell-of-

origin.  
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Chapter 2  

2 Methodology 

2.1 Human mammary sample preparation, single cell preparation, 

and FACS 

Human mammary tissues, obtained from reduction mammoplasties, were acquired with patient 

consent and approval by the Institutional Research Ethics Board of the University of British 

Columbia (Vancouver, BC). Hormonal status (premenopausal, follicular and luteal) was 

determined by pathologist examining breast specimens at UBC (Ramakrishnan et al., 2002). All 

pertinent clinical information regarding our patient cohort can be found in Table 2.1. 

Reduction mammoplasty specimens were minced and enzymatically dissociated in DMEM:F12 

1:1 media with 15 mM HEPES plus 2% BSA, 1% Penicillin-Streptomycin, 5 g/ml insulin, 300 

U/ml Collagenase (Sigma, C9891) and 100 U/ml  Hyaluronidase (Sigma, H3506) shaking gently 

at 37°C, overnight or for 16-18 hours. Epithelial organoids were harvested spinning at 80g for 30 

seconds and viably cryopreserved, as described previously120. Human breast tissue organoids 

were thawed and dissociated into single cell suspensions as reported previously 121.  Briefly, 

organoids were triturated in 0.25% trypsin-EDTA (Stem Cell Technologies, 07901) followed by 

5 U/mL dispase (Stem Cell Technologies, 07913) and 50 g/ml DNase I (Sigma, D4513) as 

described above for mouse samples, but for 5 minutes each.  

Table 2.1 – Summary of clinical covariates for the cohort of patients used in this study. 

Patient Number Hormone Status Patient Age Patient Age Group 

06.16 Luteal 30 ≤30 

14.16 Post-Menopausal 59 51-60 

19.15 Follicular 33 31-40 

21.16 Luteal 28 ≤30 

31.12 Post-Menopausal 60 51-60 

38.14 Follicular 32 31-40 

45.14 Post-Menopausal 67 >60 

46.15 Follicular 39 31-40 

49.15 Post-Menopausal 61 >60 

55.15 Luteal 38 31-40 
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Cells were then washed in between steps with HBBS + 2% FBS and filtered using a 40 m cell 

strainer.  For FACS staining antibodies against CD45 (PECy7), CD31 (PECy7), EpCAM 

(APCCy7) and CD49f (FITC) were used. Lineage (Lin) positive cells were defined as 

CD31+CD45+. Human mammary cell subpopulations were defined as: basal (Lin-EpCAMlo-

medCD49fhi); and luminal progenitor (Lin-EpCAMhiCD49fmed); mature luminal (Lin-

EpCAMhiCD49flo). Dead cells were excluded following doublet exclusion using DAPI. An 

example is provided in Figure 2.1. 

2.2 Proteomics on FACS-purified human mammary 

subpopulations 

For ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) of human 

mammary subpopulations, 100,000 cells from each population were isolated sorted from each 

patient, as described122. After FACS purification, cells were washed in ice-cold PBS and 

pelleted. Pellets were then resuspended in 50% (vol/vol) 2, 2, 2-trifluoroethanol in PBS and 

disrupted into cellular lysates sequentially by repeated probe sonication, followed by six freeze-

thaw cycles. Proteins in cellular lysate were denatured by incubation at 60°C for 2 h, oxidized 

cysteines reduced using 5 mm dithiothreitol for 30 min at 60°C and alkylated through reaction 

with 25 mM iodoacetamide for 30 min at room temperature in the dark. Each sample was diluted 

five times using 100 mM ammonium bicarbonate, pH 8.0. Proteins in lysates were digested into 

peptides through addition of 5 µg of MS-grade trypsin (Promega). The digestion was performed 

overnight at 37°C and subsequently desalted using OMIX C18 pipette tips (Agilent). Peptides 

were semidried through vacuum centrifugation and resuspended in water with 0.1% formic acid. 

 

Figure 2.1 - Gating strategy for FACS-purifying human mammary epithelial cells 

Total cells from dissected human breast tissue are gated to exclude debris. Doublet, dead ce ll and Lineage (Lin+) 

exclusion ensures single, live and non-immune cells are analyzed, respectively. Abbreviations used: FSC, Forward 

Scatter; SSC, Side Scatter; A, Area; W, Width; DAPI, 4′,6-diamidino-2-phenylindole; AF488, Alexa Fluor 488; PE, 

Phycoerythrin; APC, Allophycocyanin  
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Subsequently, all samples were analyzed using an Easy-LC1000 (Thermo Fisher Scientific) 

coupled to a QExactive tandem mass spectrometer (Thermo Fisher Scientific). Peptides were 

separated on an ES803 (Thermo Fisher Scientific) nano-flow column heated to 50°C using a 4-h 

reverse-phase gradient. 

2.3 Bioinformatics Analysis of human mammary subpopulation 

proteomes 

Mass spectrometric data was analyzed using the MaxQuant quantitative proteomics software 

(version 1.5.3.8) and a Human UniProt sequences FASTA database. Carbamidomethylation of 

cysteine was specified as a fixed modification and oxidation of methionine was specified as a 

variable modification. Proteins were identified with a minimum of two unique peptides, the 

maximum false peptide discovery rate was specified as 1%, and “match between runs” was 

enabled. The distribution of intensity-based absolute quantification (iBAQ) values was adjusted 

to the distribution of label-free quantification (LFQ) values based on the median for each sample. 

This allowed for imputation of missing LFQ values with iBAQ values. Non-zero values were 

log2-transformed. The final list consisted of 6034 unique protein groups detected in at least one 

of the samples. Intensity values represent expression of proteins.  

 

Further data processing was performed using the R statistical environment (version 3.5.2) 123. For 

protein groups in which both LFQ and iBAQ values were missing, the 0 values were imputed 

with a random value between 1 and 1.5. Imputation was performed as a precautionary measure 

for further statistical analysis. For example, it ensured that constants did not occur when 

calculating standard deviation. One BC sample was excluded from the analysis as a technical 

error occurred with the instrument during its run. As four samples were run on a separate day, 

intensity values were then adjusted for sample batch effects using the ComBat method in the 

surrogate variable analysis “sva” R package (version 3.30.1)124,125.  

2.3.1 Total Proteome Analyses  

Non-imputed ComBat-modified iBAQ-adjusted LFQ values were used to discover uniquely 

expressed proteins in each cell type. Averages across samples in each cell type were taken, 

resulting in one mean expression value for each protein in each cell type (nBC = 9, nLP = 10, nML 
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= 10). Next, the values of zero for each cell type and associated proteins were excluded from the 

analysis. Number of protein expressed in each cell type were summarized in a triple Venn 

diagram, created using the “VennDiagram” R package (version 1.6.20)126. Mean expression 

values for each protein in each of the cell types were ranked according to descending log2 

median intensities and grouped into deciles. The protein with the highest intensity received a 

rank of 1 and thus, was placed in the first decile. Meanwhile, the protein with the lowest mean 

intensity received a rank of y and was placed in the tenth decile, where y represents the total 

number of proteins detected in a particular cell type. Pathway analysis via the “enrichR” R 

package (version 1.0) was conducted on the proteins in each decile127.  

 

Principal component analysis (PCA) was performed by calculating Euclidean distances of scaled 

expression values. PCA scores were plotted in a plane defined by the first two components (that 

is, PC1 and PC2) using the “ggbiplot” R package128. Ellipses were drawn around cell type 

clusters, where centroids were the barycentre of each cluster and the diameter represented the 

maximum variance.   

 

Heat maps depicted z-scores of protein expression values (x) computed using the formula: (x – 

mean(x))/standard_deviation(x). Divisive hierarchal clustering dendograms of Pearson distance 

matrices for samples and proteins were created using DIANA (DIvisive ANAlysis Clustering) 

method in the “cluster” R package (version 2.0.7-1)129. Heat maps were plotted using the 

“pheatmap” (version 1.0.12) and “RColorBrewer” (version 1.1-2) R packages130,131. 

2.3.2 Generating Metabolic Signatures 

A metabolic proteome was obtained by filtering the total proteome using a curated list of 2753 

genes that encompasses all known human metabolic enzymes and transporters132. Based on 

matching by gene symbols, 1020 proteins related to metabolism were found in the total proteome 

of 6034 proteins, including “PKM” which was not identified in the curated list. As multiple 

protein groups in the proteome shared the same gene symbols, duplicates were included in the 

analysis. Metabolic signatures were acquired by looking at proteins in which mean expression 

met the fold-change and statistical change cut-offs in each cell type compared to the other two 

cell types (nBC = 9, nLP = 10, nML = 10). The log2 fold-change (FC) cut-off was greater than 0 
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and the statistical significance cut-off was P < 0.05 in a one-way ANOVA and Tukey’s multiple 

comparisons test. For example, for a protein in the metabolic signature for BC, where x 

represents the intensity values for the protein and the subscripts represent the cell-type to which 

the values belong, the logical expression is:  

log2( BC) – log2( ML) > 0 & log2( BC) – log2( LP) & 

Tukey’s P-value BC- LP < 0.05 & Tukey’s P-value BC- LP < 0.05  

 

 
 
 

 

 
 
 

 
 

 

Table 2.2 – Mature Luminal Metabolic Cluster 

ABAT AHCY ATP13A1 EPHX1 GNMT IAH1 MAOA PGAM1 SIAE 

ABCD3 AKR1A1 BLVRA FAH GNS IDH1 MBOAT7 PGAM5 SLC1A4 

ABHD12 AKR7A2 BLVRB FASN GOT1 IMPAD1 MOCS1 PGD SLC44A1 

ACAA1 ALAD CLIC1 FBP1 GSS INPP4B MPI PGK1 SMPD3 

ACADS ALDH2 CLIC6 FUT8 GSTM2 INPP5J NAGK PGLS SORD 

ACADSB ALDH4A1 CMBL G6PD GSTM3 INPP5K NANS PGM2 SPR 

ACBD3 ALDOA CNDP2 GAA GSTP1 KMO NIT1 PHYHD1 SQRDL 

ACLY ALOX15B CP GALNT2 GSTZ1 LDHB NIT2 PIP4K2C STARD10 

ACO1 APEH CYB5A GCLC GUSB LSS NQO1 PKM STARD5 

ACOX3 ARSD CYB5R1 GFPT1 GYG1 LTA4H NSDHL POFUT1 TYMP 

ACSF2 ASAH1 DAK GLA HGD LYPLA1 NT5C PRODH UGDH 

ACSS3 ASL DDT GLCE HNMT LYPLA2 NUDT18 PTER  

AGA ASNA1 DEGS2 GLO1 HSD17B4 MAN2A1 NUDT5 PTGR2  

AGL ATIC DHRS7 GLUD1 HSD3B7 MAN2B1 P2RX4 SCP2  

 

Table 2.3 – Basal Metabolic Cluster 

ABCB1 ALDH3A1 ATP5G2 DPYSL3 IDH3A MAOB NPC1 PKM SLC27A6 

ACOX2 ALDH7A1 CBR1 GAPDH IDH3G MICAL3 PDE4D SARDH SLC2A1 

ADH5 ALDOC CKB GCLM ISYNA1 MME PDE6D SLC12A4 SLC3A2 

AKR1B1 ATP2B1 CRYM GNPDA1 ITPR1 MSRB3 PFKM SLC25A12 SRM 

ALDH1L2 ATP2B4 DPYSL2 HAAO LPCAT2 NNMT PGM1 SLC27A1 TF 
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2.3.3 Pathway Analysis using Enrichr 

Pathway analysis of metabolic clusters was conducted using Enrichr 

(https://amp.pharm.mssm.edu/Enrichr/). Enrichr is a comprehensive gene set enrichment tool 

that is available both as a web interface133 and an R package127. It queries a list of gene symbols 

and returns commonly annotated pathways by searching large gene set libraries. The gene set 

library selected for our analysis was Gene Ontology Biological Process (GOBP) 2018. For each 

cell-type signature, the top 10 GOBP terms enriched by gene sets were sorted by lowest to 

highest combined score (ln(p-value) *z-score), a metric used by Enrichr to find the best ranking 

terms compared to other methods. 

2.3.4 Correlations to PAM50 Breast Cancer Subtypes 

Gene expression for PAM50 and Claudin-low breast cancer subtypes and clinical annotations 

was completed in the METABRIC study134 and obtained from cBioPortal135,136. It provided gene 

expression profiles and classified breast cancer subtypes for 1980 patients. The gene expression 

Table 2.4 – Luminal Progenitor Metabolic Cluster 

ABCE1 ALDH9A1 ATP6V1G1 DBT HADH MTHFD1L NDUFS2 PDXK SLC2A4 

ABCF1 ASRGL1 ATP6V1H DDOST HADHA NDUFA10 NDUFS3 PHGDH SLC34A2 

ABHD11 ASS1 B3GNT3 DHODH HADHB NDUFA12 NDUFS4 PPA2 SLC41A3 

ACAA2 ATP1A1 BCAT2 DLAT HCCS NDUFA13 NDUFS5 PPAT SLC6A14 

ACAD8 ATP1B1 BPNT1 DLD HIBADH NDUFA2 NDUFS6 PPOX SOD2 

ACAD9 ATP5A1 CA3 DUT HIBCH NDUFA4 NDUFS7 PTGES2 SUCLA2 

ACADVL ATP5B CAD ECHDC1 HSD11B1 NDUFA5 NDUFS8 RDH14 SUCLG1 

ACAT1 ATP5C1 CHKA ECHDC3 IDH2 NDUFA7 NDUFV1 SDHA THNSL1 

ACO2 ATP5D CMAS ECHS1 INPP5D NDUFA8 NDUFV2 SDHB TMLHE 

ACSF3 ATP5F1 COQ5 FAHD2A ITPR2 NDUFA9 NDUFV3 SDHC TXNRD1 

ACSL1 ATP5H COQ9 FDFT1 ITPR3 NDUFAF2 NME2 SDR39U1 UGT8 

ACSS1 ATP5I COX4I1 FECH KCNN4 NDUFB10 NOS2 SFXN1 UQCRB 

ADSL ATP5J COX5A FH KCTD14 NDUFB4 NUDT19 SHMT1 UQCRC1 

AGK ATP5J2 COX5B FHIT MCCC1 NDUFB5 OAT SHMT2 UQCRC2 

AGPAT9 ATP5L COX6B1 FOLH1 MDH2 NDUFB6 OXCT1 SLC12A2 UQCRFS1 

AHCYL1 ATP5O COX7A2 GALK1 ME2 NDUFB7 OXSM SLC25A1 UQCRH 

AK2 ATP6V1A CPT2 GCDH MECR NDUFB8 PC SLC25A10 UQCRQ 

AKR1C3 ATP6V1B1 CS GMPS MT-ND4 NDUFB9 PDHA1 SLC25A13 VDAC1 

ALDH1A3 ATP6V1B2 CYC1 GPD1 MT-ND5 NDUFC2 PDHB SLC25A22 XDH 

ALDH1B1 ATP6V1E1 CYCS GPHN MTAP NDUFS1 PDHX SLC25A5  

https://amp.pharm.mssm.edu/Enrichr/
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profiles for the breast cancer subtypes (specifically, for Her2, Luminal A, Luminal B, Basal-like, 

and Claudin-low) were correlated to our metabolic signatures via single-sample Gene Set 

Expression Analysis (ssGSEA) using the “GSVA” R package (version 1.30.0). ssGSEA scores 

for each signature in the breast cancer subtypes were assessed for significance using a one-way 

ANOVA and Tukey’s multiple comparisons test137.  

2.4 Mouse Strains 

Virgin female FVB wild-type mice, 8-12 weeks of age were purchased either from The Jackson 

Laboratory or Charles River. Mice were ovariectomized bilaterally, then allowed one week to 

recover. A slow-release 0.14 mg 17-β estradiol plus 14 mg progesterone pellet (Innovative 

Research of America) was then placed subcutaneously near the thoracic mammary gland for 2 

weeks. This was done to obtain large quantities of viable mammary stem/progenitor cells for 

subsequent analysis, as previously reported122,138. All mice were cared for according to 

guidelines established by the Canadian Council for Animal Care under protocols approved by the 

Animal Care Committee of the Ontario Cancer Institute.   

2.5 Mouse Mammary gland dissociation, single-cell preparation 

and FACS analysis 

Harvested mammary glands were manually minced with scissors for 2 minutes, and then 

enzymatically dissociated using 750 U/ml collagenase, 250 U/ml hyaluronidase (Stem Cell 

Technologies, 07912) and diluted in DMEM:F12 for 1.5 hours. Samples were vortexed at the 1- 

and 1.5-hour mark. Red blood cells were lysed using an ammonium chloride solution (Stem Cell 

Technologies, 07850). Cells were then mixed in trypsin-EDTA (0.25%, Stem Cell Technologies, 

07901) that had been pre-warmed to 37°C using a P1000 pipette for 2 minutes. Cells were then 

washed in Hanks Balanced Salt Solution (HBSS) without calcium or magnesium plus 2% FBS 

and centrifuged. Cells were then similarly mixed in dispase 5 U/ml (Stem Cell Technologies, 

07913) plus 50 g/ml DNase I (Sigma, D4513) for 2 minutes, washed in HBBS + 2% FBS and 

filtered using a 40 m cell strainer to obtain single cells.  
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For FACS staining antibodies were against the following antigens were used: TER119 (PECy7 

or eFluor450), CD31 (PECy7 or eFluor450), CD45 (PECy7 or eFluor450), EpCAM (APCCy7), 

CD49f (FITC or PECy7), CD49b (PE) and Sca-1 (APC or Brilliant Violet 711). Lineage (Lin) 

positive cells were defined as Ter119+CD31+CD45+. Mouse mammary cell subpopulations were 

defined as: total basal (Lin-EpCAMlo-medCD49fhi); total luminal (Lin-EpCAMhiCD49flo); luminal 

progenitor (Lin-EpCAMhiCD49floCD49b+Sca-1-); and mature luminal (Lin-

EpCAMhiCD49floCD49b-/+Sca-1-/+). An example is given in Figure 2.2. High and low 

mitochondrial activity populations were defined as MitoTracker RedHiMitoTracker Greenhi and 

MitoTracker RedloMitoTracker Greenhi, respectively, and applied after gating for total luminal 

and basal. Dead cells were excluded following doublet exclusion using DAPI or Zombie UV 

Fixable Viability Kit (BioLegend) according to manufacturer’s instructions. Fluorophores are 

specifically mentioned in figures. Cell sorting was performed on a BD FACSAria™ II. 

2.6 Measuring Oxygen Consumption Rate 

Luminal progenitor, mature luminal and basal cell populations were FACS-purified from 

unstaged mice and 10,000 cells plated into each well of collagen pre-coated Seahorse plates. The 

cells were then grown in a 5% oxygen incubator for 6 days to reach at least 80-90% confluence. 

On the 7th days, cells were switched to DMEM:HAM’s F12 with no bicarbonate containing 5% 

FBS, insulin (Thermo Fisher, 12585014), EGF (STEMCELL Technologies; 78006.1), bFGF 

(STEMCELL Technologies), hydrocortisone (STEMCELL Technologies, 78003.1), and Rock 

inhibitor (Millipore, SCM075) under 5% oxygen conditions. The plate was allowed to equilibrate 

for 1 hour in the Seahorse incubator. Inhibitors used for the assay include Oligomycin (2 μM), 

 

Figure 2.2 - Gating strategy for FACS-purifying mouse mammary epithelial cells 

Total cells from dissected mouse mammary glands are gated to exclude debris. Doublet, dead cell and Lin+ 

exclusion ensures single, live and non-immune cells are analyzed, respectively. Abbreviations used: FSC, Forward 

Scatter; SSC, Side Scatter; A, Area; W, Width; H, Height; DAPI, 4′,6-diamidino-2-phenylindole; PE, Phycoerythrin; 

Cy7, Cyanine7; APC, Allophycocyanin; FITC, Fluorescein isothiocyanate; BV711, Brilliant Violet™ 711. 
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FCCP (1 μM, Sigma, C2920) and Antimycin A (1 μM). After the assay, cell viability was 

determined using CyQUANT nuclear dye (Thermo Fisher, C35007). Data was analyzed on the 

WAVE platform and normalized to number of live cells determined after the viability assay.  

2.7 Intracellular flow cytometry 

All intracellular dyes were used to stain cells prior to cell surface marker staining protocol. 

Staining for total mitochondria (50 nM MitoTracker Green FM, Thermo Fisher, M7514), 

mitochondrial activity (250 nM MitoTracker Red CMXRos, Thermo Fisher, M7513), 

mitochondrial ROS (5 μM MitoSOX, Thermo Fisher, M36008), and cytosolic ROS (5 μM 

CellROX Green, Thermo Fisher, C10492) was performed by incubating cells at 37°C for 20-30 

minutes following manufacturer’s instructions and directly analysed without fixing. Cell analysis 

was performed in BD Biosciences Fortessa. Median fluorescent intensity (MFI) refers to the 

fluorescence intensity of each event (on average) of the selected cell population, in the chosen 

fluorescence channel (PE Texas Red or FITC) and was determined using FlowJo, a flow 

cytometry analysis software.  

2.8 Transmission electron microscopy (TEM) 

Mammary epithelial cells were FACS-purified from 3 EP-treated ovariectomized 8-12 week-old 

mice. Cells were pooled together to get a greater yield and then pelleted for 5 mins at 4oC (at 

max speed). Supernatant was removed and the pellet fixed with 2% glutaraldehyde in 0.1M 

sodium cacodylate buffer pH 7.3 without disturbing the pellet. Samples were processed by the 

Nanoscale Biomedical Imaging Facility (SickKids, Toronto, ON). Images were acquired using 

the FEI Technai 20 transmission electron microscope. Scale bars are specific to images.  

2.9 In vitro colony forming cell (CFC) assay 

350 cells of specified FACS-purified populations were seeded together with 20,000 irradiated 

NIH 3T3 cells in a 6-well plate. Cells were cultured for 7 days in EpiCult-B mouse medium 

(Stem Cell Technologies, 05610) supplemented with 5% FBS, 10 ng/ml EGF, 20 ng/ml basic 

FGF, 4 μg/ml heparin, and 5 μM ROCK inhibitor (Millipore). Cells were allowed to adhere for 

24 hours, then either vehicle control (0.1% DMSO) or the indicated concentrations of inhibitors 

were added for the remaining six days. 
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2.10 Drug testing in vitro 

Vehicle or drugs were added such that the final concentration of DMSO did not exceed 0.1% 

(vol/vol). The following drugs were purchased from the companies in the brackets: 2-Deoxy-D-

glucose (Sigma; D8375), Dichloroacetate (Sigma; 347795), BAY-876 (Structural Genomics 

Consortium), rotenone (Sigma; R8875), tigecycline (CarboSynth, 220620-09-7), Antimycin A 

(Sigma, A8674), Oligomycin (Sigma, 75351), Atpenin A5 (Cayman Chemicals, 11898), UK-

5099 (Sigma, PZ0160), Galloflavin (Sigma; SML0776). Vehicle or drugs were added such that 

the final concentration of DMSO did not exceed 0.1% (v/v). 

2.11 Statistical Analysis 

All data is reported as mean ± SEM. Calculations were completed using GraphPad Prism 

software (v7.00). Comparisons were made using one-way ANOVA with Tukey’s multiple 

comparison test, two-way ANOVA with Sidak’s multiple comparison test, or a two-tailed 

student’s t-test. A two-way ANOVA was used whenever an experimental plan included a 

comparison between more than two groups followed by Bonferroni post-tests between groups of 

interest. Student t-tests were utilized wherever comparisons between only two groups were 

made. 
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Chapter 3  

3 Results 

The data in this chapter is in part contributed by the following: 

Davide Pellacani & Connie Eaves – Collecting and FACS-purifying the 10 human reduction 

mammoplasty samples into BC, LP and ML. 

Alison Casey, Vladimir Ignatchenko, Ankit Sinha & Thomas Kislinger – Responsible for 

running UPLC-MS with subsequent processing of the proteomic dataset. 

Luis Palomero, Mar Garcia Valero & Miquel Pujana – for providing the code, gene 

expression and copy-number data to perform the correlational analysis to breast cancer subtypes.  

Kazeera Aliar - for performing all the in-house bioinformatics and statistical testing using the 

human proteomics.  

Mina Alam – for providing her artistic touch on the metabolic map presented in Figure 3.6. 

Alison Casey, Hyeyeon Kim, Pirashaanthy Tharmapalan & Swami Narala - for helping with 

the FACS experiments and design of flow cytometry experiments. 
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3.1 Proteomics reveals differential expression of metabolic proteins 

To determine the metabolic network functioning within mammary subpopulations, we performed 

mass spectrometry-based shotgun proteomics on equivalent numbers of FACS-purified 

mammary subpopulations (BC, LP and ML) from 10 normal human breast samples (Figure 3.1). 

Our patient cohort represented diverse physiologies, covering a wide age range (28 to 67 years 

old) and hormone statuses (3 luteal, 3 follicular and 4 postmenopausal) (Table 2.1). There were 

6034 uniquely detected proteins, 5881 of which were detected in all three subpopulations (Figure 

3.2A). 

 

Expression of known markers for each mammary subpopulation was accurately captured by our 

proteomics data (Figure 3.2B), similar to before122. BC showed higher abundance for Vimentin 

and ITGA6 (Integrin α6, CD49f), LP had higher KIT and ALDH1A311, and ML demonstrated 

higher GATA3, FOXA1 and KRT8/18 (Cytokeratin 8/18)139. Principal component analysis 

(PCA) demonstrated that mammary subpopulations have distinct proteomes, where the first and 

second components explained 11.81% and 7.47% of the total variation, respectively (Figure 

3.2C). There is some minor segregation of post-menopausal samples away from premenopausal 

samples. However, the dominant clustering feature was cell type, not hormone status (Figure 

3.2C). We separated the total proteomes of each subpopulation into deciles based on median 

intensity (Figure 3.3A). Then we performed pathway analysis using Enrichr for each cell type to 

 

Figure 3.1 – Workflow summarizing tissue preparation, FACS-purification, and summary of our 

proteomics done on primary human mammary epithelial cells 

Reduction mammoplasty samples  (n=10) were enzymatically dissociated and processed to single cells, and the 

mentioned gating strategy was used to FACS-purify ~100,000 mature luminal (ML), luminal progenitor (LP) and 

basal cells (BC) from each patient sample. Fractionated populations were then prepared for ultra-high pressure 

liquid chromatography/mass spectrometry (UPLC-MS). Proteomics yielded 6034 total uniquely detected proteins, 

whose abundance was corrected for batch effects, and missing values were imputed prior to downstream analy ses. 

Of the total, 1020 were classified as metabolic proteins.  
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identify pathways that were enriched in each decile (Figure 3.3B). Common terms enriched in 

the top decile for BC and LP were those relating to translation such as “SRP-dependent protein 

targeting to the plasma membrane (PM).” However, there were several unique terms that 

appeared in top deciles of only one subpopulation. LPs were the only cell type to demonstrate 

enrichment for “respiratory electron transport chain,” which showed up in the second decile. In 

addition, the top decile of ML enriched for pathways relating to neutrophil activity such as 

“neutrophil activation” and “neutrophil degranulation.”  

 

 

 

Figure 3.2 – Characterization of proteomic datasets of primary FACS-purified human mammary 

epithelial cells  

A. Venn diagram summarizing the distribution of the 6034 uniquely detected proteins detected in the various 

subpopulations. The number in brackets are the total number of proteins detected in that cell type. Unique 

proteins that were only detected in one cell type are labelled. 

B. Heatmap show unsupervised hierarchical clustering and abundance of classical markers used to distinguish 

mammary epithelial cells.  

C. Principal component analysis (PCA) of total proteome from human BC, LP and ML. Dot colour represents a 

cell type, dot-shape represents hormone status (follicular, luteal or menopause) and ellipses represents 

clusters of sample types. 
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Figure 3.3 – Protein distribution plots demonstrate MEC are enriched for unique functional classes of 

proteins  

A. Distribution of proteins for each cell type was ranked from highest to lowest based on Log2 median intensity 

of protein expression and coloured-coded based on deciles. Samples with missing values were omitted when 

calculating the median. 

B. Pathway analysis using Enrichr was performed on each decile for each cell type. The top 2 GO Biological 

Processes per each decile are summarized with its associated adjusted p-value in brackets.  
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3.2 Mammary subsets have distinct metabolic preferences 

A metabolic network is defined as the core set of metabolic enzymes that is essential to support 

the structure and function of a cell119. To determine whether mammary epithelial cells were 

driven by distinct metabolic networks, we filtered total proteomes to look solely at metabolic 

proteins using a curated list of over 2753 annotated metabolic genes132. One sixth (1020/6034) of 

the total uniquely detected proteins were classified as those related to some metabolic function 

(Figure 3.1). Despite the heterogeneity within our patient cohort, unsupervised hierarchical 

clustering of 1020 metabolic proteins demonstrated clusters primarily based on cell type (Figure 

3.4A), similar to our total proteome analysis (Figure 3.2C). This suggests that each mammary 

cell type operates on a unique hardwired metabolic network. We saw that each of our cell types 

demonstrated unique abundance for metabolic proteins that were not seen in the other cell types. 

To identify metabolic proteins that were uniquely enriched in one cell type versus the other two, 

we performed a one-way ANOVA in conjunction with a Tukey’s test (P < 0.05). In this way, we 

defined the set of all significantly enriched metabolic proteins for a particular subpopulation as 

that cell type’s metabolic cluster. ML, BC and LP metabolic clusters were composed of 123, 45 

and 179 metabolic proteins, respectively (Table 2.2, 2.3 & 2.4).  

 

Next, we performed pathway analysis using Enrichr to determine if proteins in each metabolic 

cluster enriched for a particular pathway. The top 10 enriched GO Biological Processes for each 

subset are shown in Figure 3.4B. Glycolysis was the most prominent pathway to show up in BC 

and also pathways such as “regulation of cardiac conduction” which may underlie the contractile 

function of this cell type (Figure 3.4B). Our results are consistent with a previous report on high 

transcript levels of glycolytic enzymes in fetal MaSCs46. Though our input was limited to 

metabolic proteins, several neutrophil related pathways were enriched in the ML metabolic 

cluster (Figure 3.4B). ML also showed enrichment for pathways relating to glutamine and sugars 

such as hexose and fructose. The most prominent result from our pathway analysis was that the 

top 10 pathways for LP involved terms related to with OXPHOS (Figure 3.4B).  
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Figure 3.4 – Human MEC have lineage-restricted metabolic networks 

A. Heatmap showing unsupervised hierarchical clustering and enrichment of the 1020 metabolic pro teins detected in our 

proteomic dataset. Clinical variables such as Age and Hormone status are included above the heatmap. Each line found 

in the “Significant Hits” bar is a metabolic protein whose expression was found to be significantly enriched in only one 

cell type after a one-way ANOVA in conjunction with Tukey’s test (p<0.05). Enriched metabolic proteins are colour-

coded to the cell type they were enriched in, where LP is light blue, ML is dark blue, and BC is red. We define a 

“metabolic cluster” as the collective group of all enriched metabolic proteins specific for a cell type.    

B. Bar graphs summarizing the top 10 most significant GO Biological Processes according to Enrichr for each cell type’s 

metabolic cluster. Bars are colour-coded to their corresponding cell type, where LP is light blue, ML is dark blue, and 

BC is red. The “Hit/Total” metric is shown to demonstrate coverage of a pathway. “Hit” is the number of genes that 

were from our gene list that fell into that pathway and “Total” refers to the entire list of genes that have been annotated 

to participate in that pathway.  
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Figure 3.5 – LP show enrichment for TCA Cycle and ETC proteins, whereas ML and BC are 

enriched more for glycolysis. 

Schematic representation of glycolysis, TCA cycle and ETC. We highlighted proteins that were found in our mammary 

cell-type specific metabolic cluster. Proteins are coloured-coded to signify which metabolic cluster they were enriched 

in (LP, light blue; ML, dark blue; BC, red; not significant, black). Not all the reactions in Glycolysis are visualized.  

Only enzymes that were found in any of the metabolic clusters is included. 
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To gain a better understanding of this data, we colour-coded glycolysis, the TCA cycle and ETC 

subunits to signify which mammary cell-type specific metabolic cluster they were found in 

(Figure 3.5). LP demonstrated significant enrichment for the majority of ETC complex subunits 

as well as nearly all enzymes in the TCA cycle (Figure 3.5). Although glycolysis is presumed to 

be a major pathway that produces pyruvate, which subsequently enters the TCA cycle in the 

form of Acetyl-CoA, LP demonstrated no enrichment for any enzyme of this pathway. 

Conversely, glycolytic enzymes were enriched in BC (PFKM, ALDOC, GAPDH and PKM) and 

ML (FBP1, ALDOA and LDHB). LP show enrichment for enzymes in the TCA cycle, such as 

Malic Enzyme 2 (ME2), which produces pyruvate from malate, and Pyruvate carboxylase (PC), 

which makes oxaloacetate from pyruvate. Of particular note, mammary subpopulations 

demonstrated isoform-specific expression of IDH. Mitochondrial IDH3, which uses NADH as a 

cofactor, was higher in BC. LP were higher for IDH2, which is mitochondrial and uses NADPH 

as a cofactor77. Interestingly, the enzymes responsible for oxidation of citrate in the cytosol 

(ACO1, IDH1, ACLY) were more abundant in ML. The specific engagement of IDH isoforms 

suggests that each cell type has different levels of NAD(P)H and also different purposes for these 

enzymes. 

 

To determine if LP were able to generate TCA intermediates through non-glycolytic means, we 

mapped out other proteins found in any of the clusters using a recently published metabolic map 

as a template140 (Figure 3.6). Here, we were able to appreciate the numerous means by which LP 

cells are able to obtain mitochondrial Acetyl-CoA necessary for entry into the TCA Cycle. The 

LP metabolic cluster revealed strong enrichment for proteins involved in β-oxidation, which 

produces Acetyl-CoA from fatty acids. LP were the only cell type to demonstrate enrichment for 

enzymes involved in branched-chain amino acid catabolism, which entails modifying Isoleucine, 

Leucine and Valine into Acetyl-CoA (Figure 3.6). LP showed high expression of PHGDH, 

which is a key enzyme in serine biosynthesis. It was recently shown that serine produced by 

PHGDH gets converted to glutamine and contributes to almost 50% of the anaplerotic flux into 

the TCA Cycle132. This engagement in diverse metabolic pathways that break down different 

nutrients to enable continuation of the TCA Cycle highlights the importance of OXPHOS in LP. 

However, radiolabelled isotope tracing of specific nutrients is required to confidently conclude 

this. Altogether, proteomics demonstrated that each of the mammary lineages are uniquely 
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enriched for metabolic proteins that may be necessary for the structure and function of that cell.  

This ultimately suggests that mammary subpopulations possess lineage-restricted metabolic 

networks.  
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Figure 3.6 –Map of mammary epithelial cell metabolism 
Metabolic map is adapted from Lin et al (2019)140. Major metabolic pathways are grouped together in the large circle. 

Proteins are coloured-coded to denote which mammary cell-type specific cluster they demonstrate the highest expression 

level (Black = not significant or not detected, Light blue = LP, Dark blue = ML and red = Basal).  
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3.3 Mouse LP have enhanced capacity to undergo OXPHOS 

As LP have high abundance for proteins participating in the ETC and TCA Cycle, we next asked 

whether this cell type showed an enhanced capacity to undergo OXPHOS. To this end, we tested 

for differences in metabolic capacity of mouse mammary subpopulations using the Seahorse 

bioanalyzer (Figure 3.7). Specifically, we performed a mitochondrial stress test, which entails 

measuring oxygen consumption rate (OCR), a readout for mitochondrial respiration, while 

exposing cells to inhibitors (Oligomycin, Antimycin A) or enhancers (FCCP) of this process. At 

baseline respiration, BC demonstrated the lowest level of OCR compared to either luminal 

populations (Figure 3.7). Even with the addition of FCCP, which dramatically boosts OCR, BC 

showed OCR levels comparable to, or less than, baseline OCR in luminal populations. LP and 

ML demonstrated similar mitochondrial respiration profiles, except for maximal respiration, 

which was significantly higher in LP. Collectively, this suggest that mammary subpopulations 

have distinct capacities for mitochondrial respiration, with LP showing the highest propensity to 

do so. 

 

 

 

 

Figure 3.7 – Luminal populations have an enhanced capacity to undergo oxygen consumption. 

Oxygen consumption rate (OCR) of mouse mammary subpopulations at baseline, after exposure to Oligomycin (2 μM), 

FCCP (1 μM) and Antimycin A (1 μM). Mouse mammary subpopulations were FACS-purified then plated into a 

Seahorse plate and cultured for 6 days in DMEM with the cocktail of supplements used for the colony -forming cell 

(CFC) assay without a feeder layer. On the day of the experiment, media was changed into DMEM without bicarbonate 

and CFC cocktail of supplements. The right panel depicts the kinetic view of the data and the left is the quantification 

of the data. (n = 3 unstaged mice, 4 technical replicates per n). Data are mean ± SEM. * P≤0.05; ** P≤0.01; *** 

P≤0.001; ****P≤0.0001.   
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3.4 Mitochondrial structure and function are MEC-specific 

Drastic differences in mammary cells to undergo OXPHOS led us to ask whether mitochondria 

showed mammary cell-type specific morphologies by transmission electron microscopy (TEM) 

(Figure 3.8A). BC tended to have several small circular mitochondria with a glossy cristae. This 

is similar to the morphology of mitochondria in hematopoietic and embryonic stem cells141 

(Figure 3.8A). LP, in contrast, had long, tubular mitochondria with elaborate cristae (Figure 

3.8A). This structure is thought to be  efficient to support OXPHOS89, consistent with our data on 

OCR (Figure 3.7). Next, we used intracellular flow cytometry to further characterize the 

mitochondria (Figure 3.8B). MitoTracker Green (MTG; measures total level of mitochondria) 

and MitoTracker Red (MTR; measures mitochondrial activity) revealed no significant 

differences between cell types (Figure 3.8B). We next used MitoSOX to measure mitochondrial 

reactive oxygen species (mROS). Surprisingly, LP, cells with high mitochondrial respiration, 

demonstrated the least amount of mROS (Figure 3.8B). This is most likely attributable to high 

level expression of multiple antioxidant mechanisms in these cells27. In contrast, BC and ML 

showed equivalently high levels of high mROS. These ROS phenotypes should be specific to 

mitochondria, as CellROX, readout for total cellular ROS, showed no differences among MEC 

(Figure 3.8B). The high levels of mROS in BC was surprising and indicated that perhaps the 

function of mitochondria differ based on the mammary lineages. We filtered our lab’s previously 

generated dataset of mouse MEC proteomes122 for proteins found in MitoCarta, a curated list of 

mitochondrial proteins142. As unsupervised hierarchical clustering revealed groupings based on 

cell type, it suggests that the mitochondria operate in a mammary cell-type specific manner 

(Figure 3.8). Thus, normal mammary epithelial cells are built and equipped with different 

mitochondrial machinery that leads to mammary cell-type specific mitochondrial morphology 

and function.   
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Figure 3.8- Mitochondrial structure and function is mammary cell-type specific 

A. Representative transmission electron micrographs of FACS-purified mammary subpopulations zoomed in on 

mitochondria. Magnifications are specified in each image.  

B. Flow plots and quantification of median fluorescent intensity (MFI) for MitoTracker Red (mitochondrial 

activity), MitoTracker Green (total mitochondria), MitoSOX (mitochondrial ROS) and CellROX (total 

ROS). (n = 4 EP treated mice). Data are mean ± SEM. * P≤0.05; ** P≤0.01; *** P≤0.001; ****P≤0.0001.   

C. Heatmap demonstrating unsupervised hierarchical clustering and abundance of mitochondrial proteins in 

mouse mammary subpopulations. Mouse mammary proteomic dataset was obtained from 122 and list of 

mitochondrial proteins was obtained from MitoCarta142 
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3.5 BC progenitor activity is dependent upon mitochondrial 

activity 

Non-ATP generating functions of mitochondria, such as maintenance of progenitor activity143,144, 

have been identified. Mechanistically, the metabolites produced in the mitochondria alter the fate 

of stem cells due to alterations of the epigenome98,145,146. To test if mitochondrial activity was 

necessary for mammary progenitor activity, we plated equivalent numbers of luminal and basal 

cells with high or low mitochondrial activity in the colony-forming cell (CFC) assay (Figure 

3.9A). We denoted the MTGhiMTRhi as “High Mitochondrial Activity” and the MTGhiMTRlo 

population as “Low Mitochondrial Activity” (Figure 3.9A)147. Mammary cells with low activity 

formed fewer colonies as compared to total (Figure 3.9B). As we gated on Live cells (Figure 

2.2), these low mitochondrial activity cells are probably not pre-apoptotic. Indeed, this 

population most likely represents the differentiated cells143. To our surprise, “High Activity” 

basal cells showed high progenitor activity, as they formed more colonies compared to total 

 

Figure 3.9 – Mammary progenitor activity is dependent on mitochondrial activity 

A. Gating strategy used to sort mouse basal and luminal cells with high and low mitochondrial activity based 

on MitoTracker Green and MitoTracker Red 

B. Representative images and quantification of colonies formed from culturing total, high and low 

mitochondrial activity luminal and basal cells in the CFC assay. (n = 3 EP treated mice). Data are mean ± 

SEM. * P≤0.05; ** P≤0.01; *** P≤0.001; ****P≤0.0001.  



 

46 

 

basal (Figure 3.8B). Though mitochondria in these cells may not be participating in respiration, 

BC may require high mitochondrial activity for their progenitor activity. The underlying 

mechanism, whether due to ROS or a specific metabolite, has yet to be determined.  

3.6 MEC demonstrate ETC complex specific vulnerabilities  

We next asked if metabolic distinctions could manifest as sensitivity to various drug treatments. 

Using the colony forming cell (CFC) assay, which is used as a measure of progenitor activity122,  

we evaluated the effect of OXPHOS inhibitors on progenitor capacity within each population 

(Figure 3.10). To inhibit OXPHOS, we used complex-specific inhibitors such as Rotenone 

(Complex I), Atpenin A5 (Complex II), Antimycin A (Complex III) and Oligomycin (Complex 

V) (Figure 3. 10a). Inhibition of Complex I using rotenone was selective at decreasing the 

number of LP colonies, whereas BC was unaffected. Despite LP demonstrating enhanced 

OXPHOS and higher abundance of ETC subunits, BC were significantly more sensitive to 

inhibition of Complex II or III. Both cell types demonstrated equivalent sensitivity to Complex V 

inhibition. It was recently shown that inhibition of ETC leads to complex-specific differential 

metabolite accumulation and gene expression changes94,100,101. Our results suggest that mammary 

lineages may link different cellular processes to ETC complexes, where CI is necessary for LP 

progenitor capacity but not BC. Non-ETC specific inhibition of OXPHOS was achieved using 

Tigecycline (inhibits mitochondrial ribosomes) and UK5099 (inhibits mitochondrial pyruvate 

carrier) (Figure 3.10A). Tigecycline prevents the translation of proteins encoded by 

mitochondrial DNA (mtDNA). The mitochondria has its own genome, which is a 16.6 kilobase, 

double-stranded, circular and contains no introns148,149. It encodes 2 rRNAs, 22 t-RNAs and 13 

of the 90 proteins in the mitochondrial respiratory chain (Figure 1.4)148,149. Preventing translation 

of mitochondrial derived ETC subunits using Tigecycline completely abrogates the progenitor 

capacity of BC compared to LP. This data suggests that the mitochondrial respiratory chain in 

BC helps facilitate progenitor capacity. UK5099 is an inhibitor of the mitochondrial pyruvate 

carrier (MPC) and thus prevents entry of pyruvate into mitochondria. Both mammary 

subpopulations were relatively resistant to UK5099 treatment. This provides evidence for the 

previously mentioned claim that LP do not rely on cytosolic sources of pyruvate (Section 3.2, 

Figure 3.5 &3.6). 
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Figure 3.10 – Mammary progenitors display lineage-restricted vulnerabilities to OXPHOS inhibitors  

A. Summary of the OXPHOS inhibitors and their respective targets used in this study 

B. Workflow demonstrating the gating strategy used to FACS-purify luminal and basal cells for the 6-day CFC 

assay 

C. Quantification of counted colonies at various concentrations of the specified OXPHOS inhibitor. Each  dot 

represents a mouse. Basal and luminal colonies are colored red and blue, respectively. Number of biological 

replicates per drug is shown in brackets. Total counted colonies were normalized to their representative mouse 

control. Error bars represent SEM * P≤0.05; ** P≤0.01; *** P≤0.001; ****P≤0.0001. 

D. Photographs of representative luminal and basal colonies after the 6-day drug treatment.  
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3.7 BC are vulnerable to glycolytic inhibitors 

To further corroborate results from pathway analysis (Figure 3.4), we tested for glycolysis as a 

BC-specific metabolic vulnerability (Figure 3.11). To this end, inhibition of glycolysis at 

multiple levels was achieved using BAY-876 (Glucose transporter 1), 2-Deoxy-D-glucose 

(Hexokinase), Galloflavin (Lactate Dehydrogenase) and Dichloroacetate (Pyruvate 

dehydrogenase kinase) (Figure 3.11A). BCs were far more sensitive to all four glycolytic drugs 

than LP (Figure 3.11C, D). However, at higher doses, LP colonies were reduced. This is not 

surprising as glycolytic inhibitors show significant toxicity in the clinic and have been largely 

unsuccessful in clinical trials74. Our work demonstrates that mammary subpopulations possess 

lineage-restricted metabolic vulnerabilities to glycolytic and OXPHOS inhibition.  

 

Figure 3.11 – BC are more sensitive to glycolytic inhibitors  

A. Summary of the glycolysis inhibitors and their respective targets used in this study  

B. Workflow demonstrating the gating strategy used to FACS-purify luminal and basal cells for the 6-day CFC 

assay 

C. Photographs of representative luminal and basal colonies after the 6-day drug treatment. 

D. Quantification of counted colonies at various concentrations of the specified glycolysis inhibitor. Each dot 

represents a mouse. Basal and luminal colonies are colored red and blue, respectively. Number of biological 

replicates per drug is shown in brackets. Total counted colonies that were normalized to their representative 

mouse control. Error bars represent SEM * P≤0.05; ** P≤0.01; *** P≤0.001; ****P≤0.0001. 
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3.8 Metabolic profiles of mammary progenitors are mirrored in 

breast cancer subtypes 

Thus far, we observed that mammary subpopulations have lineage-restricted metabolic identities 

and vulnerabilities. We wanted to determine if any of the PAM50 breast cancer subtypes 

demonstrated significant enrichment of their cell-of-origin’s metabolic clusters (Figure 3.12A). 

To do this, we performed single sample gene set enrichment analysis (ssGSEA), an unsupervised 

and non-parametric method that calculates an enrichment score for a gene set across a collection 

of samples137. The enrichment score generated from this algorithm represents activity level of the 

gene set in every sample of a specified population relative to the other populations137. In our 

study, the gene sets are the mammary cell-type specific metabolic clusters and the populations 

are the breast cancer patients from the METABRIC database134. The BC metabolic cluster was 

most enriched in the highly mesenchymal Claudin-low subtype (Figure 3.12A). Luminal A and 

B subtypes showed significant enrichment for the ML metabolic cluster as compared to other 

subtypes (Figure 3.12A). The most significant correlation to the LP metabolic cluster was the 

highly aggressive Basal-like breast cancer (Figure 3.12A). These analyses suggests that breast 

cancer subtypes retain metabolic features of specific normal MEC populations. We performed 

similar analysis to the one published by the Visvader and Lindeman group39. Comparison of the 

genes that comprised our cell type specific metabolic cluster and their signatures showed very 

little overlap (Figure 3.12B). Their signatures were derived from performing a microarray on 

FACS-purified human mammary subpopulation and consisted of all upregulated genes in that 

subpopulation39. Our study employed the use of proteomics and our clusters were solely derived 

of significantly enriched metabolic proteins. The discrepancy between our gene lists highlights 

the potential of proteomics to capture important mammary gland biology that was not seen with 

microarray technology.  

 

Recent studies have demonstrated success in targeting metabolic vulnerabilities that are specific 

to the tissue-of-origin115,117 and also to chromosomal abnormalities150,151. We therefore looked 

for copy number alterations (CNA) in metabolic genes linked to specific mammary cell types 

using cBioportal135,136. These amplified metabolic genes could then represent potential cell-of-

origin specific metabolic vulnerabilities. Interrogation of the LP metabolic cluster revealed an 

already well-studied amplified metabolic gene, PHGDH. This enzyme plays an important role in 
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serine biosynthesis and is a selective vulnerability in ER- Basal-like breast cancer132,152, the 

breast cancer subtype LP supposedly give rise to. Strikingly, 5 metabolic proteins from the ML 

metabolic cluster (Epoxide hydrolase 1 (EPHX1), nitrilase 1 (NIT1), cytochrome b5 reductase 1 

(CYB5R1), polypeptide N-acetylgalactosaminyltransferase 2 (GALNT2) and kynurenine 3-

monooxygenase (KMO)), were encoded by genes that were highly amplified in ER+, PR+ and 

for the most part Luminal A & B breast cancers from the METABRIC cohort (Figure 3.13). All 

5 of these proteins do not participate in the same metabolic pathway but are all found on the q 

arm of chromosome 1. Whole-arm amplification of 1q together with 16q loss (+/-) is a hallmark 

chromosomal event in ER+ breast cancers53,134,153. The fact that we see proteins from our 

metabolic clusters being amplified at the gene level in the respective breast cancer subtypes 

suggests that these targets may represent actionable cell-of-origin specific metabolic 

vulnerabilities. This has already been proven successful with the PHGDH example, however 

further investigation is required to validate the ML-derived metabolic candidates. 
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Figure 3.12 – Breast cancer subtypes demonstrate selective activity of their respective cell-of-origin’s 

metabolic cluster  

A. Boxplots of single sample gene set enrichment analysis (ssGSEA) scores comparing the metabolic cluster of 

BC, ML and LP to the PAM50 subtypes of breast cancer (Luminal A, Luminal B, Claudin-low, Basal-like, 

HER-2) from the METABRIC cohort. Boxplots are organized left to right, from highest to least median score. 

Student’s t-test was performed to determine if medians were different between breast cancer subtypes and the 

p-values are written in the figure for the most significant subtype. 

B. Venn diagrams comparing our mammary cell-type specific metabolic clusters to the previously published 

mammary subpopulation signatures from Lim et al 2010. The genes that intersect are labelled. 
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Figure 3.13 – Copy-number alterations of potential cell-of-origin specific metabolic targets  

Using cBioportal, we interrogated the METABRIC cohort to determine if any of the genes in our cell-type specific 

metabolic clusters demonstrated copy-number alterations (CNA). CNA frequency is determined by dividing the 

number of altered cases by the total number of patients in that patient group . KMO, EPHX1, GALNT2, CYB5R1 

and NIT1 were proteins enriched in our Mature Luminal Metabolic Cluster and were also found to be commonly 

amplified in Luminal A/B, ER+ and PR+ breast cancers.  
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Chapter 4  

4 Conclusion 

This study is the first to demonstrate lineage-restricted metabolic identities in the mammary 

gland. We performed proteomic profiling of primary FACS-purified human mammary 

subpopulations, which revealed unique metabolic preferences for each cell type. We generated 

mammary cell-type specific metabolic clusters that represents the core set of metabolic proteins 

that may be necessary for the structure and function of that cell type. LP demonstrated enhanced 

OCR due to their enrichment for TCA Cycle and ETC proteins and optimal mitochondrial 

structure. Both lineages demonstrated vulnerability to specific ETC inhibitors, where BC were 

more sensitive to CII and III inhibition and LP were more sensitive to CI inhibition. BC and ML 

demonstrated higher abundance of glycolytic enzyme and were vulnerable to glycolytic 

inhibition. However, BC progenitor activity was dependent on mitochondrial activity, suggesting 

non-bioenergetics functions of mitochondria in BC. Finally, by comparing our mammary cell-

type specific metabolic clusters to the PAM50 subtypes of breast cancer, we demonstrate that the 

metabolism of breast cancer subtypes may be more similar to the putative cell-of-origin.  

4.1 Discussion & Significance 

Our work highlights a previously underappreciated metabolic heterogeneity present in the 

epithelial compartment of the breast. It would be interesting to know whether the lineage-driven 

metabolic programs are intrinsic to cell identity or a reflection of different adaptations to distinct 

mammary microenvironments. BC are in contact with the basement membrane, whereas luminal 

cells are exposed apically to the lumen. However, our measurements of mitochondrial respiration 

and drug sensitivity were performed ex vivo on purified populations. This suggests that these 

metabolic distinctions are hardwired, perhaps necessary to facilitate unique form and function, in 

each mammary cell type.  

 

The metabolic phenotype of a cancer cell is highly dependent upon integrating intrinsic and 

extrinsic cues. The importance of the tissue-of-origin has only just recently been determined. The 

tissue-of-origin ignores the epithelial heterogeneity present in tissues like the mammary gland. 

Arguably, cell lineage could be one of the most important determinants of cellular metabolism, 
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as all perturbations (mutational or microenvironmental) will disrupt a pre-existing metabolic 

network present in the cell-of-origin. Strong correlations between breast cancers subtypes and 

normal mammary subpopulations identified in this thesis do in fact suggest that breast cancers 

adapt the metabolic network of their cell-of-origin.  

 

Precision oncology has largely been guided by mutations to effectively treat patients. However, 

our work suggests that certain metabolic features of breast cancers can be explained partly by the 

cell-of-origin rather than by mutations or microenvironmental factors. Therefore, to target 

metabolic vulnerabilities of breast cancer, one needs to account for the complement of mutations 

in conjunction with the cell-of-origin to allow for successful subtype-specific treatments.  

4.2 Future Directions 

There are several unexplored and exciting topics that have yet to be answered, which can provide 

more insight into MEC metabolism and potentially breast cancer risk.  

 

As mentioned in the introduction (Section 1.2.5), clustering of metabolomes in ER- breast 

cancers can be based on ethnicity108. African American women are at a higher risk of developing 

Basal-like breast cancers. It is not known whether breast epithelial composition is different in 

these individuals than in those of European ancestry, or if there is a potential role of different 

diets. It would be interesting to determine the effects of different diets (ketogenic, high-fat or 

caloric restriction) on mammary subpopulations frequency and function.  

 

Several other extrinsic determinants of metabolism have yet to be studied in the context of the 

normal mammary gland. The mammary gland is a heterocellular organ that relies heavily on 

paracrine signaling between adjacent epithelial cells14. We interrogated our previous generated 

mouse proteomic dataset to look for nutrient receptor expression among subpopulations122 

(Appendix, Figure 4.1A). There was differential expression of the glucose transporters (GLUTs), 

where BC and ML have high GLUT1 expression and GLUT4 is exclusively found on BC. 

Conversely, LPs had low levels of GLUTs, but high expression of monocarboxylate transporter 1 

(MCT1), which are involved in lactate import. These results match data obtained from a 

microarray-based study published by our lab138 (Appendix, Figure 4.1B). The expression and 
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localization of MCT4 was validated by staining frozen tissue sections (Appendix, Figure 4.1C). 

We saw strikingly co-localization of MCT4 with K14, a basal marker. The close spatial location 

of these cells and inverse relationship of MCTs suggests potential lactate crosstalk across 

mammary epithelium. The lactate shuttle is ubiquitous throughout the human body, such as from 

Astrocytes to neurons154 and Paneth cells to intestinal stem cells155. Though each cell is built 

with a unique metabolic program, perhaps they work together to support each other’s metabolism 

in situ.  

 

In addition, hormones have long been known to have an effect on cellular metabolism156, but 

most of the research has focused on estrogen106. Progesterone is a potent inducer of proliferation 

for stem and progenitor populations during key physiological events like pregnancy and the 

luteal phase of the reproductive cycle4. Progesterone is able to induce proliferation of HR- 

progenitor populations by causing HR+ ML cells to release proliferative paracrine effectors like 

RANKL and WNT44,13. To accompany this massive expansion, metabolic reprogramming may 

be necessary as there needs to be new building blocks for growth. In fact, interrogation of our 

lab’s mouse proteomic dataset demonstrates that metabolic proteins cluster base on cell type, 

similar to our study (Appendix, Figure 4.1D). But within each cell type cluster, metabolic 

proteins cluster based on hormone treatment. However, to date there has been no documented 

metabolic effector linked to this progesterone-induced expansion. One important pathway that 

appears to be upregulated in response to progesterone treatment is the catabolic pathway known 

as autophagy. In response to progesterone, the number of lysosomes increases significantly in 

each cell type, as seen by TEM and LysoTracker (Appendix, Figure 4.1E&F).  

4.3 Limitations 

Metabolomics or radiolabelled isotope tracing is the gold-standard to determine if metabolic flux 

differs between distinct cell populations. However, in our hands, we were unable to detect any 

metabolites above the internal standards.  Metabolite detection involves rapid isolation of tissue. 

However, to obtain purified mammary subpopulations, mechanical and chemical dissociation 

steps involving a series of temperature changes, washes and sorting are required. This 7-hour 

protocol is the only way to obtain purified populations, which we find is not compatible for 
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subsequent detection of metabolites. Future work should involve development of a more rapid 

isolation technique to allow for analysis of metabolic flux in rare stem/progenitor populations.  
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Appendix 1 

 

Figure 4.1 – Lactate crosstalk and progesterone induced autophagy 

A. Protein express of MCT1, GLUT1 and GLUT4 from a mouse proteomic dataset.  

B. Gene expression of MCT1, MCT4, GLUT1, GLUT4 from a mouse microarray. Data is presented as Log2FC and 

accompanying q-value is also labelled 

C. Confocal images of frozen mammary tissue sections (MCT4 (Green), K14 (red) and DAPI (blue)) 

D. Unsupervised hierarchical clustering of all the detected metabolic proteins from a mouse proteomic dataset.  

E. Transmission electron microscopy images demonstrating accumulation of lysosomes in EP treated MEC 

F. Flow plots and quantification of median fluorescent intensity (MFI) of Lysotracker Red  


