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1. Introduction

A simple graph G = (V, E) is a threshold graph if there exists a function w : V →
[0, ∞) and a real number t ≥ 0 called the threshold such that for every X ⊂ V , X is 
an independent set if and only if 

∑
v∈X w(v) ≤ t. Threshold graphs were independently 

introduced in [5] and [10]; for a comprehensive survey of threshold graphs see [17]. Thresh-
old graphs have applications in resource allocation problems where the weight w(v) is 
the amount of resources used by vertex v and thus X is an admissible subset of vertices 
if the total amount of resources required by X is no more than the allowable threshold 
t.

In this paper, we are interested in the eigenvalues of the (0, 1)-adjacency matrix A(G)
of a threshold graph G. To the best of the authors’ knowledge, the first study on the 
spectral properties of threshold graphs was focused on a specific threshold graph called 
the anti-regular graph [18]. In [18], several recurrence relations were obtained for the 
characteristic polynomial of the unique n-vertex connected anti-regular graph An, and 
moreover it was shown that An has simple eigenvalues. Specifically, An has �n

2 � negative 
and �n

2 � positive eigenvalues; when n is odd An has a zero eigenvalue and when n is even 
An has −1 as an eigenvalue. Subsequently in [19], it was proved that the eigenvalues of 
An other than −1 or 0 are main eigenvalues; recall that λ is a main eigenvalue of G if 
the eigenspace associated to λ is not orthogonal to the all ones vector (see [6]). In [3], 
the inertia of a general threshold graph was computed from the binary string uniquely 
associated to a threshold graph and moreover the inverse of the adjacency matrix of 
some threshold graphs were computed. In [11], an algorithm is presented that constructs 
a diagonal matrix congruent to A(G) + xI; using the algorithm one can determine the 
number of eigenvalues of G in any given interval. Moreover, in [11] the authors determine 
the threshold graph with smallest negative eigenvalue and show that all eigenvalues of a 
threshold graph are simple except possibly −1 and/or 0. In [12], the authors present an 
O(n2) algorithm for computing the characteristic polynomial of an n-vertex threshold 
graph and an improved algorithm running in almost linear time was constructed in [7]. 
In [13], it is proved that no threshold graph has an eigenvalue in the interval (−1, 0)
and a study of noncospectral equienergetic threshold graphs was undertaken. In [2], the 
authors investigate the normalized adjacency eigenvalues and energy of threshold graphs 
and they obtain results that parallel the known results for the adjacency eigenvalues. In 
[1], a nearly complete characterization of the eigenvalues of anti-regular graphs is given. 
Specifically, it is proved that no anti-regular graph has an eigenvalue in the interval 
Ω = [−1−

√
2

2 , −1+
√

2
2 ] other than −1 or 0, and moreover, the eigenvalues of An come 

in negative-positive pairs in the sense that the vertical line x = −1
2 is an approximate 

line of symmetry of the paired eigenvalues. Furthermore, the set of all eigenvalues of all 
anti-regular graphs An is dense in (−∞, −1−

√
2

2 ] ∪{−1} ∪ [−1+
√

2
2 , ∞) when n is even and 

dense in (−∞, −1−
√

2
2 ] ∪ {0} ∪ [−1+

√
2

2 , ∞) when n is odd. It was conjectured in [1] that 
Ω is also an eigenvalue-free interval (except −1 and/or 0) for all threshold graphs. It 
was also conjectured that among all threshold graphs on n vertices, An has the smallest 
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positive eigenvalue and the largest eigenvalue less than −1. In [15], the authors use the 
quotient graph associated to the degree partition (which is an equitable partition [8]) of 
a threshold graph to derive the known results on the inertia of a threshold graph and 
determine which threshold graphs have distinct eigenvalues. Finally, in [14] the authors 
derive an explicit expression for the characteristic polynomial of a threshold graph and 
use it to find the determinant of A(G) and prove that no two non-isomorphic graphs 
are cospectral. Recently in [9], a proof of the Ω-conjecture was given using eigenvalue 
interlacing.

In this paper, we provide a more refined result on the conjecture in [1] regarding the 
Ω interval, give partial results for the second conjecture and identify the critical cases 
where a more refined method is needed. Perhaps more importantly, in this paper we 
demonstrate the distinguished role played by the anti-regular graph within the class 
of threshold graphs. Specifically, we exploit the observation that every threshold graph 
contains a maximal anti-regular graph as an induced subgraph and conversely every 
threshold graph is an induced subgraph of a minimal anti-regular graph. Using this 
observation we are able to give a new straightforward proof for the inertia of any threshold 
graph and obtain our main results regarding the conjectures in [1]. We also provide 
estimates for the maximum and minimum eigenvalue of a general threshold graph using 
easy to analyze induced threshold subgraphs contained in any threshold graph.

2. Preliminaries

Let G = (V, E) be a simple graph with (0, 1)-adjacency matrix A = A(G). Whenever 
we refer to the eigenvalues, eigenvectors, inertia, etc. of G we mean those of A. If n is 
the order of G, we denote the eigenvalues of G by λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G) and 
we let μ−(G) denote the largest eigenvalue of G less than −1 (when such an eigenvalue 
exists) and μ+(G) the smallest positive eigenvalue of G. The inertia of A is the triple 
i(A) = (i−(A), i0(A), i+(A)) where i−(A) is the number of negative, i+(A) is the number 
of positive, and i0(A) is the number of zero eigenvalues of A. The following well-known 
eigenvalue interlacing theorem will be used throughout the paper.

Theorem 2.1 (Eigenvalue interlacing). Let G be an n-vertex graph and let H be an 
m-vertex induced subgraph of G. Then for i ∈ {1, . . . , m} we have

λi(G) ≤ λi(H) ≤ λn−m+i(G).

Threshold graphs have several equivalent characterizations [17]; the most illuminating 
is a recursive process, using the union and join graph operations, that can be encoded 
with a binary string. Given a binary string b = b1b2 · · · bn with b1 = 0, we let G1 =
({v1}, ∅) and then recursively define for j = 2, . . . , n a graph Gj obtained from Gj−1 by 
adding a new vertex vj and making vj a dominating vertex if bj = 1, or leaving vj as an 
isolated vertex if bj = 0. After the nth step the resulting graph G = G(b) is a threshold 
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Fig. 1. Global structure of a threshold graph with binary string b = 0s11t1 · · · 0sk1tk ; each vertex in Ui is 
adjacent to Vi ∪ · · · ∪ Vk, and V1 ∪ · · · ∪ Vk is a clique and U1 ∪ · · · ∪ Uk is an independent set.

graph; G is clearly connected if and only if bn = 1. We refer to the resulting labeled
vertex set V (G) = {v1, v2, . . . , vn} as the canonical labeling of G.

Let G be a connected threshold graph with binary string b = b1b2 · · · bn and canoni-
cally labeled vertex set V (G). The string b can be written as b = 0s11t1 . . . 0sk1tk where 
0si is short-hand for si ≥ 1 consecutive zeros and 1ti is short-hand for ti ≥ 1 consecutive 
ones. Since n =

∑k
i=1(si + ti), it holds that 1 ≤ k ≤ �n

2 �. We can partition the vertex 
set as V (G) = U1 ∪ V1 ∪ · · · ∪ Uk ∪ Vk where the set Ui consists of the ith group of 
consecutive isolated vertices in the construction of G and thus |Ui| = si, and similarly, 
Vi consists of the ith group of dominating vertices in the construction of G and thus 
|Vi| = ti. If s1 ≥ 2 then {U1, V1, . . . , Uk, Vk} is the degree partition of G while if s1 = 1
then the degree partition is {U1∪V1, U2, V2, . . . , Uk, Vk}. In any case, each subset Ui is an 
independent set and each subset Vi is a clique. Fig. 1 illustrates the degree partition of 
a threshold graph; a line between Ui and Vj indicates that all vertices in Ui are adjacent 
to all vertices in Vj , and the dashed rectangle indicates that V1 ∪ · · · ∪ Vk is a clique.

The connected anti-regular graph on n vertices, denoted by An, is the unique con-
nected graph whose degree sequence contains (n −1) distinct entries [4]. The graph An is 
a threshold graph with binary string b = 0101 · · · 01 when n is even and b = 00101 · · · 01
when n is odd. It was proved in [18] (see also [1]) that An has simple eigenvalues and 
moreover has inertia i(A2k) = (k, 0, k) if n = 2k is even and i(A2k+1) = (k, 1, k) if 
n = 2k + 1 is odd, and therefore λk+1(A2k+1) = 0. Moreover, it is known that A2k+1
does not contain −1 as an eigenvalue and it is easy to prove that A2k has eigenvalue 
λk(A2k) = −1. Therefore,

μ−(A2k) = λk−1(A2k)

μ+(A2k) = λk+1(A2k),

and
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μ−(A2k+1) = λk(A2k+1)

μ+(A2k+1) = λk+2(A2k+1).

The following was proved in [1].

Lemma 2.1 (Parity principle). The sequences {μ−(A2k)}∞k=2 and {μ−(A2k+1)}∞k=1
are strictly increasing and both converge to −1−

√
2

2 . Similarly, {μ+(A2k)}∞k=2 and 

{μ+(A2k+1)}∞k=1 are strictly decreasing sequences and both converge to −1+
√

2
2 .

It is important to note that Lemma 2.1 does not say that {μ−(An)}∞n=3 is strictly 
increasing nor that {μ+(An)}∞n=3 is strictly decreasing. In fact, the opposite is true 
depending on whether n is even or odd. To see this, we first note that An is an induced 
subgraph of An+1 (see Section 3). Hence, by eigenvalue interlacing it holds that

μ−(A2k) = λk−1(A2k) ≤ λk(A2k+1) = μ−(A2k+1)

while on the other hand

μ−(A2k+2) = λk(A2k+2) ≤ λk(A2k+1) = μ−(A2k+1).

Similarly,

μ+(A2k) = λk+1(A2k) ≤ λk+2(A2k+1) = μ+(A2k+1)

while on the other hand

μ+(A2k+2) = λk+2(A2k+2) ≤ λk+2(A2k+1) = μ+(A2k+1).

We summarize with the following.

Proposition 2.1. If n ≥ 3 is odd, then

μ−(An+1) ≤ μ−(An)

μ+(An+1) ≤ μ+(An).

We note that Proposition 2.1 implies that if n ≥ 4 is even, then

μ−(An) ≤ μ−(An+1)

μ+(An) ≤ μ+(An+1).
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3. Subgraphs in threshold graphs

It is straightforward to show that any induced subgraph of a threshold graph is again 
a threshold graph. In fact, suppose that b′ = b′1b

′
2 · · · b′m is a substring of the string 

b = b1b2 · · · bn with b1 = b′1 = 0, that is, there exist positive integers n2 < · · · < nm

such that b′j = bnj
for j = 2, . . . , m, with n2 ≥ 2. Then the threshold graph G(b′) is 

isomorphic to the subgraph of G(b) induced by the vertices {v1, vn2 , . . . , vnm
}, where as 

usual G(b) has a canonically labeled vertex set. We summarize this observation with the 
following.

Proposition 3.1. Let b′ = b′1b
′
2 · · · b′m be a substring of b = b1b2 · · · bn with b1 = b′1 = 0. 

Then G(b′) is isomorphic to an induced subgraph of G(b). Conversely, every induced 
subgraph of G(b) is of the form G(b′).

In [16], R. Merris proved that anti-regular graphs are universal for trees, that is, every 
tree on n vertices is isomorphic to a subgraph of An. We show that a similar universality 
property of the anti-regular graph holds for the class of threshold graphs.

Theorem 3.1 (Smallest anti-regular supergraph). Every connected threshold graph on n ≥
2 vertices is isomorphic to an induced subgraph of the anti-regular graph A2n−2. In fact, 
let G be a connected threshold graph with binary string b = 0s11t1 · · · 0sk1tk and with 
n =

∑k
i=1(si + ti) vertices. Let N = 2(n − k) if s1 = 1 and let N = 2(n − k) − 1 if 

s1 ≥ 2. Then G is an induced subgraph of the anti-regular graph AN . Moreover, AN is 
the smallest anti-regular graph containing G as an induced subgraph.

Proof. The shortest alternating string b = b1b2 · · · bN = 0101 · · · 01 that contains b =
0s11t1 · · · 0sk1tk as a substring can be obtained by inserting (ti − 1) zeros in between 
the consecutive ti ones and inserting (si − 1) ones in between the consecutive si zeros 
appearing in b, for i = 1, . . . , k. Therefore,

N = n +
k∑

i=1
(si − 1) +

k∑
i=1

(ti − 1) = 2n− 2k.

Since the range of k is 1 ≤ k ≤ �n2 �, we have N ≤ 2n − 2. Hence, G is an induced 
subgraph of AN and thus also of A2n−2. If s1 = 1, then we obtain exactly N = 2(n − k)
but if s1 ≥ 2, then we may embed G in the smaller anti-regular graph A2(n−k)−1. �

Conversely, we may be interested in the largest anti-regular graph contained in a 
threshold graph.

Theorem 3.2 (Largest anti-regular subgraph). Let G be a connected threshold graph with 
binary string b = 0s11t1 · · · 0sk1tk . Let m = 2k if s1 = 1 and let m = 2k + 1 if s1 ≥ 2. 
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Then Am is an induced subgraph of G. In either case, Am is the largest anti-regular 
graph contained in G as an induced subgraph.

Proof. If s1 = 1, then b̃ = 0101 . . . 01 ∈ {0, 1}2k is the longest alternating substring of b
and thus A2k is isomorphic to an induced subgraph of G. If s1 ≥ 2, then A2k is also an 
induced subgraph of G, however the longer binary string b̃ = 00101 · · · 01 ∈ {0, 1}2k+1 is 
also a substring of b and thus A2k+1 is isomorphic to an induced subgraph of G. �

We note that part of Theorem 3.2 is stated as Corollary 4.4 in [19].

Remark 3.1. The anti-regular graph Am in Theorem 3.2 is the underlying graph of the 
quotient graph of G associated to the degree partition of G.

4. Applications in the spectral analysis of threshold graphs

In this section we show how the Parity Principle and Theorems 3.1-3.2 can be used in 
the spectral analysis of general threshold graphs. For a matrix A we denote the algebraic 
multiplicity of an eigenvalue λ of A by mλ(A).

For any vertex u in G, let N(u) denote the vertices adjacent to u. We say that vi
and vj are duplicate vertices if N(vi) = N(vj) and co-duplicate vertices if vi and vj are 
adjacent and N(vi)\{vj} = N(vj)\{vi}. It is straightforward to show that if vi and vj are 
duplicate or co-duplicate vertices, then λ = 0 or λ = −1, respectively, is an eigenvalue 
of G with eigenvector x ∈ Rn such that xi = −xj and all other entries of x are zero. It 
follows that if X ⊂ V (G) is a subset of mutually duplicate or co-duplicate vertices, then 
m0(G) or m−1(G), respectively, is at least |X| − 1. Thus, given a connected threshold 
graph G with binary string b = 0s11t1 · · · 0sk1tk , it holds that m−1(G) ≥

∑k
i=1(ti − 1)

and m0(G) ≥
∑k

i=1(si − 1) if s1 ≥ 2, while m−1(G) ≥ t1 +
∑k

i=2(ti − 1) and m0(G) ≥∑k
i=2(si − 1) if s1 = 1. For these reasons, for a threshold graph G with eigenvalue λ, we 

say that λ is a non-trivial eigenvalue if λ /∈ {−1, 0}.

Theorem 4.1 (Anti-regular interlacing). Let G be a connected threshold graph with binary 
string b = 0s11t1 · · · 0sk1tk . Let s =

∑k
i=1 si and let t =

∑k
i=1 ti, and let n = s + t = |G|.

(i) If s1 ≥ 2, then

λi(G) ≤ λi(A2k+1) < −1, for i = 1, . . . , k

and

0 < λk+1+i(A2k+1) ≤ λn−k+i(G), for i = 1, . . . , k.

Consequently, m−1(G) = t −k and m0(G) = s −k, and G has k non-trivial negative 
and k non-trivial positive eigenvalues.
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(ii) If s1 = 1, then

λi(G) ≤ λi(A2k) < −1, for i = 1, . . . , k − 1

and

0 < λk+i(A2k) ≤ λn−k+i(G), for i = 1, . . . , k.

Consequently, m−1(G) = t −k+1 and m0(G) = s −k, and G has (k−1) non-trivial 
negative and k non-trivial positive eigenvalues.

In either case, G has inertia i(G) = (t, s − k, k).

Proof. The proof is a consequence of Theorem 3.2, the eigenvalue interlacing theorem, 
and the remarks preceding the theorem statement. For instance, if s1 ≥ 2, then The-
orem 3.2 implies that A2k+1 is an induced subgraph of G. Then the inequalities in (i) 
hold by the interlacing theorem. Now, since m−1(G) ≥ t − k and m0(G) ≥ s − k, then 
the inequalities in (i) imply that in fact m−1(G) = t − k and m0(G) = s − k, and thus 
G has k non-trivial negative and k non-trivial positive eigenvalues. The case s1 = 1 is 
similar and is omitted. �

Recall that μ−(G) denotes the largest eigenvalue of G less than −1 and μ+(G) de-
notes the smallest positive eigenvalue of G. A direct consequence of Theorem 4.1 is the 
following.

Corollary 4.1. Let G be a connected threshold graph with binary string b = 0s11t1 · · ·
0sk1tk .

(i) If s1 ≥ 2, then G does not contain non-trivial eigenvalues in the interval

[μ−(A2k+1), μ+(A2k+1)].

(ii) If s1 = 1, then G does not contain non-trivial eigenvalues in the interval

[μ−(A2k), μ+(A2k)].

In [1] it is proved that Ω = [−1−
√

2
2 , −1+

√
2

2 ] does not contain non-trivial eigenvalues of 
any anti-regular graph An for n ≥ 2, that is, Ω � [μ−(An), μ+(An)]. We may therefore 
conclude the following.

Corollary 4.2. The interval Ω = [−1−
√

2
2 , −1+

√
2

2 ] does not contain any non-trivial eigen-
values of any threshold graph.
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Using a similar eigenvalue interlacing technique and an induction argument, Corol-
lary 4.2 was first proved by E. Ghorbani [9]. It is clear, however, that Corollary 4.1 gives 
a more refined estimate for an eigenvalue-free interval for any given threshold graph G
in terms of the largest anti-regular subgraph of G.

Remark 4.1. Corollary 4.2 can also be proved using Theorem 3.1 and the corresponding 
analog of Theorem 4.1.

The following conjecture was made in [1].

Conjecture 4.1. For each n, the anti-regular graph An has the smallest positive eigenvalue 
and has the largest negative eigenvalue less than −1 among all threshold graphs on n
vertices.

As a final application of Theorem 3.2, we are able to prove that Conjecture 4.1 is true 
for all threshold graphs on n vertices except for n − 2 critical cases where the interlacing 
method fails; roughly speaking, the critical graphs are almost anti-regular.

Theorem 4.2. Assume that n ≥ 2 is even.

(i) Then μ+(An) ≤ μ+(G) for every threshold graph G on n vertices.
(ii) Then μ−(G) ≤ μ−(An) for every threshold graph G on n vertices with binary string 

b = 0s11t1 · · · 0sk1tk with s1 = 1.
(iii) Then μ−(G) ≤ μ−(An) for every threshold graph G on n vertices with binary string 

b = 0s11t1 · · · 0sk1tk with s1 ≥ 2 and 2k + 2 < n.

Proof. (i) Assume that G has binary string b = 0s11t1 · · · 0sk1tk and thus 2k ≤ n. Then 
Theorem 4.1 implies that μ+(G) = λn−k+1(G). Now A2k is an induced subgraph of G
and thus by interlacing we have

μ+(A2k) = λk+1(A2k) ≤ λn−2k+(k+1)(G) = μ+(G).

Since n ≥ 2k, then by the Parity Principle (Lemma 2.1) we have μ+(An) ≤ μ+(A2k)
and thus μ+(An) ≤ μ+(G) as claimed.

(ii) Now suppose that s1 = 1, and therefore μ−(G) = λk−1(G). Since A2k is a subgraph 
of G, then by interlacing we have

μ−(G) = λk−1(G) ≤ λk−1(A2k) = μ−(A2k) ≤ μ−(An)

where the last inequality holds by the Parity Principle since n is even.
(iii) If s1 ≥ 2, then μ−(G) = λk(G). The proof is by strong induction. The case 

n = 2 is trivial. Assume that the claim holds for all threshold graphs with less than n
vertices. Since 2k + 2 < n, there exists a threshold subgraph G̃ of G with binary string 
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b̃ = 0s̃11t̃1 · · · 0s̃k1t̃k with s̃1 ≥ 2 and |G̃| = 2k+2. Thus μ−(G̃) = λk(G̃) and by induction 
μ−(G̃) ≤ μ−(A2k+2). Then by interlacing and the induction hypothesis we have

μ−(G) = λk(G) ≤ λk(G̃) ≤ μ−(A2k+2).

Since n is even, then the Parity Principle implies that μ−(A2k+2) ≤ μ−(An) and thus 
μ−(G) ≤ μ−(An). �

The threshold graphs for which the method of proof in Theorem 4.2(iii) fails to apply 
have binary string b = 0s11t1 · · · 0sk1tk such that s1 ≥ 2 and n = 2k + 2. It follows that 
either s1 = 2 and exactly one of s2, . . . , sk, t1, . . . , tk is also equal to two and all others 
are one, or s1 = 3 and all other si = ti = 1. Hence, there are only 2k = n − 2 threshold 
graphs not covered by Theorem 4.2(iii). Note that these graphs are almost anti-regular 
and contain A2k+1 as an induced subgraph. For instance, if n = 8 the graphs are

02120101, 02102101, 02101201, 02101021, 02101012, 0310101.

Since μ−(A2k+2) ≤ μ−(A2k+1) (Proposition 2.1) the method of proof in Theorem 4.2(iii) 
will not yield μ−(G) ≤ μ−(An) for these critical graphs G. We now treat the case n odd.

Theorem 4.3. Assume n ≥ 3 is odd.

(i) Then μ−(G) ≤ μ−(An) for all threshold graphs G on n vertices.
(ii) Then μ+(G) ≤ μ+(An) for all threshold graphs G on n vertices with binary string 

b = 0s11t1 · · · 0sk1tk with s1 ≥ 2.
(iii) Then μ+(G) ≤ μ+(An) for all threshold graphs G on n vertices with binary string 

b = 0s11t1 · · · 0sk1tk with s1 = 1 and 2k + 1 < n.

Proof. (i) Let G have binary string b = 0s11t1 · · · 0sk1tk . Suppose that s1 = 1 and thus 
μ−(G) = λk−1(G). Since A2k is an induced subgraph of G then by interlacing

λk−1(G) ≤ λk−1(A2k) = μ−(A2k) ≤ μ−(An)

where the last inequality follows since from even to odd the negative eigenvalue increases 
(Proposition 2.1). If on the other hand s2 ≥ 2, then μ−(G) = λk(G). In this case, A2k+1
is an induced subgraph of G and μ−(A2k+1) = λk(A2k+1). Then

λk(G) ≤ λk(A2k+1) ≤ μ−(An)

since n is odd and thus μ−(G) ≤ μ−(An).
(ii) Suppose that s1 ≥ 2. Then A2k+1 is a subgraph of G. Now μ+(G) = λn−k+1(G)

and μ+(A2k+1) = λk+2(A2k+1). Therefore by interlacing
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μ+(An) ≤ μ+(A2k+1) = λk+2(A2k+1) ≤ λn−(2k+1)+k+2(G) = λn−k+1(G) = μ+(G)

where the first inequality follows since n is odd.
(iii) Suppose that s1 = 1. The proof is by strong induction. The case n = 3 is trivial. 

Hence, assume that the claim holds for all threshold graphs with an odd number of 
vertices less than n. Let G be an arbitrary threshold graph on n vertices with string 
b = 0s11t1 · · · 0sk1tk with s1 = 1 and 2k + 1 < n. Let G̃ be any threshold subgraph 
of G of order 2k + 1 and with binary string b̃ = 0s̃11t̃1 · · · 0s̃k1t̃k with s̃1 = 1. Then 
μ+(G̃) = λk+2(G̃) and by interlacing

μ+(G̃) = λk+2(G̃) ≤ λn−(2k+1)+k+2(G) = λn−k+1(G) = μ+(G).

Now since 2k + 1 < n, by induction μ+(A2k+1) ≤ μ+(G̃) and thus μ+(A2k+1) ≤ μ+(G). 
Since n is odd then by the Parity Principle we have μ+(An) ≤ μ+(A2k+1) and thus 
μ+(An) ≤ μ+(G) as desired. �

In the case that n is odd, the critical threshold graphs not covered by Theorem 4.3(iii) 
have binary string b = 0s11t1 · · · 0sk1tk with s1 = 1 and 2k+ 1 = n, and thus only one of 
s2, . . . , sk, t1, . . . , tk equals two and all others equal one. There are only 2k − 1 = n − 2
such threshold graphs.

5. Threshold eigenvalue estimates

In this section, we exploit the subgraph structure of threshold graphs to give eigenvalue 
estimates for the non-trivial eigenvalues and the maximum/minimum eigenvalues.

Let G be a threshold graph with binary string b = 0s11t1 · · · 0sk1tk . Let s = min si, 
let t = min ti, let σ = max si, and let τ = max ti. Let b′ = 0s1t · · · 0s1t and let b′′ =
0σ1τ · · · 0σ1τ where in b′ the string 0s1t is repeated k times and similarly for b′′. Let 
n′ = k(s + t) = |G′| and let n′′ = k(σ + τ) = |G′′|. Then G′ is an induced subgraph of G
and G is an induced subgraph of G′′.

Example 5.1. If b = 031204160513, then b′ = 031203120312 and b′′ = 051605160516. The 
graphs G, G′, and G′′ are illustrated in Fig. 2.

A direct application of the eigenvalue interlacing theorem proves the following.

Theorem 5.1. With the above notation it holds that

λi(G′′) ≤ λi(G) ≤ λi(G′), i = 1, . . . , k

and

λn′−j(G′) ≤ λn−j(G) ≤ λn′′−j(G′′), j = 0, . . . , k − 1.
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Fig. 2. Graphs from Example 5.2.

We note that threshold graphs with binary sequence of the form b = 0s1t · · · 0s1t, that 
is, the independent sets Ui all have the same number of vertices and similarly for the 
cliques Vi, share similar spectral properties as anti-regular graphs.

We end the paper with an estimate of the largest λmax(G) and smallest λmin(G)
eigenvalues of a general threshold graph G.

Theorem 5.2. Let G be a threshold graph with binary string b = 0s11t1 . . . 0sk1tk and let 
σi =

∑i
j=1 sj and let τi =

∑k
j=i tj for each i ∈ {1, 2, . . . , k}. Then

max
1≤i≤k

{
(τi − 1) +

√
(τi − 1)2 + 4τiσi

2

}
≤ λmax(G)

and

λmin(G) ≤ min
1≤i≤k

{
(τi − 1) −

√
(τi − 1)2 + 4τiσi

2

}
.

Proof. By construction, the threshold graph with binary string 0σi1τi , which we denote 
by Gi, is an induced subgraph of G. Using the quotient graph associated to the degree 
partition of Gi (see for instance [11]), the only non-trivial eigenvalues of Gi are

λmin(Gi) =
(τi − 1) −

√
(τi − 1)2 + 4τiσi

2 < −1

and

λmax(Gi) =
(τi − 1) +

√
(τi − 1)2 + 4τiσi

2 > 0.

The claim now holds by eigenvalue interlacing. �
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We note that it was proved in [11] that among all threshold graphs on n vertices, the 
minimum eigenvalue is minimized by the graph 0s1t where t = �n

3 � and s = n − t.

Example 5.2. Let G be the threshold graph with binary string b = 0s11t1 · · · 0s51t5 where 
s = (2, 2, 3, 6, 3) and t = (6, 9, 1, 2, 4). Below we tabulate λmin(Gi) and λmax(Gi) up to 
five decimal places for i = 1, 2, . . . , 5 and indicate the minimum and maximum.

λmin(Gi) λmax(Gi)
−1.91974 22.91974
−3.46586 18.46586
−4.61577 10.61577
−6.67878 11.67878
−6.63941 9.63941

Using numerical software we found that λmin(G) ≈ −7.95182 and λmax(G) ≈ 24.59001.

6. Conclusion

In this paper we demonstrated the important role played by the anti-regular graph in 
the spectral analysis of threshold graphs. The widely studied class of cographs contain 
the threshold graphs as a special case. It would be interesting to know if within the class 
of cographs there is a distinguished graph (or more) that can be used to analyze the 
spectral properties of cographs.
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