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1. Introduction

Description of a sex linked inheritance with algebras involves overcoming the obsta-
cle of asymmetry in the genetic inheritance rules. Inheritance which is not sex linked 
is symmetrical with respect to the sexes of the organisms [5], while sex linked in-
heritance is not (see [4,6]). The main problem for a given algebra of a sex linked 
population is to carefully examine how the basic algebraic model must be altered 
in order to compensate for this lack of symmetry in the genetic inheritance system. 
In [2], Etherington began the study of this kind of algebras with the simplest possible 
case.

Now the methods of mathematical genetics have become probability theory, stochas-
tic processes, nonlinear differential and difference equations and non-associative al-
gebras. The book [5] describes some mathematical methods of studying algebras of 
genetics. This book mainly considers a free population, which means random mat-
ing in the population. Evolution of a free population can be given by a dynamical 
system generated by a quadratic stochastic operator (QSO) and by an evolution al-
gebra of a free population. In [5] an evolution algebra associated to the free popula-
tion was introduced and, using this non-associative algebra, many results are obtained 
in explicit form, e.g., the explicit description of stationary quadratic operators, and 
the explicit solutions of a nonlinear evolutionary equation in the absence of selec-
tion, as well as general theorems on convergence to equilibrium in the presence of 
selection. In [3] some recently obtained results and also several open problems re-
lated to the theory of QSOs are discussed. See also [5] for more detailed theory of 
QSOs.

Recently in [4] an evolution algebra B was introduced identifying the coefficients of 
inheritance of a bisexual population as the structure constants of the algebra. The basic 
properties of the algebra are studied. Moreover a detailed analysis of a special case of 
the evolution algebra (of bisexual population in which type “1” of females and males 
have preference) was given. Since the structural constants of the algebra B are given by 
two cubic matrices, the study of this algebra is difficult. To avoid such difficulties we 
have to consider an algebra of bisexual population with a simplified form of matrices 
of structural constants. In this paper we consider a such simplified model of bisexual 
population and study corresponding evolution algebra.

The paper is organized as follows. In Section 2 we define our algebra as an evolution 
algebra which corresponds to a bisexual population with a set of females partitioned into 
finitely many different types and the males having only one type. Then we study basic 
properties (associativity, non-associativity, commutativity, power-associativity, nilpo-
tency, unitality, etc.) of the algebra. Section 3 is devoted to subalgebras, absolute 
nilpotent elements and idempotent elements of the algebra. In Section 4 the set of all 
operators of left (right) multiplications is described. In Section 5, under some condi-
tions, it is proved that the corresponding algebra is centroidal. The last section gives a 
classification of 2-dimensional and some 3-dimensional algebras.
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2. Definition and basic properties of the EACP

We consider the set H (the set of “hen”) and r (a “rooster”).

Definition 2.1. Let (C, ·) be an algebra over a field K of characteristic �= 2. If C = H⊕Kr

admits a multiplication given by

xr = rx = ϕ(x) + μ(x)r, ∀x ∈ H,

xy = 0, rr = 0, ∀x, y ∈ H, (2.1)

where ϕ ∈ EndK(H) and μ ∈ H∗, is a linear map then this algebra is called an evolution 
algebra of a “chicken” population (EACP).

Remark 2.2. If H is finite-dimensional and {h1, . . . , hn} is a basis of H and {h1, . . . , hn, r}
the basis of C, then taking ϕ1 = 1

2ϕ, μ1 = 1
2μ, we have hir = rhi = 1

2 (
∑n

j=1 aijhj + bir). 
We call the basis {h1, . . . , hn, r} a natural basis.

Moreover, if

n∑
j=1

aij = 1; bi = 1 for all i = 1, 2, . . . , n (2.2)

then the corresponding C is a particular case of an evolution algebra of a bisexual popu-
lation, B, introduced in [4]. The study of the algebra B is difficult, since it is determined 
by two cubic matrices. While, in the case finite-dimensional, the algebra C is simpler, 
since it is defined by a rectangular n × (n + 1)-matrix

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
...

...
...

an1 an2 . . . ann bn

⎞
⎟⎟⎟⎠ .

We recall the following definitions: If a, b and c denote arbitrary elements of an algebra 
then

Associative: (ab)c = a(bc).
Commutative: ab = ba.
Anticommutative: ab = −ba.
Jacobi identity: (ab)c + (bc)a + (ca)b = 0.
Jordan identity: (ab)a2 = a(ba2).
Alternative: (aa)b = a(ab) and (ba)a = b(aa).
Flexible: a(ba) = (ab)a.
Power-associative: For each element a the subalgebra generated by a is associative, 

that is anam = am+n, for all nonnegative integers n, m.
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Fourth power-associative: Each element a satisfies the identity a2a2 = a4. It is known 
that if the characteristic of K satisfies charK �= 2, 3, 5 and the algebra is flexible (particu-
larly commutative), then being fourth power-associative implies being power-associative 
(see [1]).

It is known that these properties are related by

• associative implies alternative implies power-associative;
• associative implies Jordan identity implies power-associative;
• each of the associative, commutative, anticommutative properties, Jordan identity, 

and Jacobi identity individually imply flexible.

For a field with characteristic not two, being both commutative and anticommutative 
implies the algebra is just {0}.

By [4, Theorem 4.1] we have

(1) Algebra C is not associative, in general.
(2) Algebra C is commutative, flexible.
(3) C is not power-associative, in general.

Now we shall give conditions under which C will be associative and fourth power-
associative.

Theorem 2.3. C alternative implies C3 = {0}.

Proof. C alternative implies that for all x ∈ H, we have (xr)r = xr2 = 0 and x(xr) =
x2r = 0. Thus,

0 =
(
ϕ(x) + μ(x)r

)
r = ϕ(x)r = ϕ2(x) + μ

(
ϕ(x)

)
r,

and

0 = x
(
ϕ(x) + μ(x)r

)
= μ(x)xr = μ(x)

(
ϕ(x) + μ(x)r

)
= μ(x)ϕ(x) + μ(x)2r.

Therefore, ϕ2(x) = 0 and μ(x) = 0, ∀x ∈ H.
Let a = x + αr, b = y + βr, c = z + γr elements in C. Since μ = 0 we have that 

ab = (x + αr)(y + βr) = βxr + αyr = βϕ(x) + αϕ(y).
Therefore, using that μ = 0 and ϕ2 = 0, we get

(ab)c =
(
βϕ(x) + αϕ(y)

)
(z + γr) = βγϕ(x)r + αγϕ(y)r = βγϕ2(x) + αγϕ2(y) = 0,

and so C3 = {0}. �
Corollary 2.4. C alternative if and only if C is associative if and only if μ = 0 and ϕ2 = 0. 
Moreover, C satisfies Jacobi and Jordan identities.
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We note that the conditions (2.2) and of Corollary 2.4 cannot be satisfied simultane-
ously, so the corresponding algebra B of a bisexual population is not associative.

Example 2.5. For n = 2, the following matrix
(
a11 a12 0
a21 −a11 0

)
,

satisfies the conditions of Corollary 2.4, for any a11, a12, a21 with a2
11 = −a12a21.

Theorem 2.6. C is fourth power-associative if and only if μ = 0 and ϕ3 = 0, that is, ϕ is 
a nilpotent operator.

Proof. Let a = x + αr be an element in C. Then

a2 = 2αxr = 2α
(
ϕ(x) + μ(x)r

)
,

a2a2 =
(
2α

(
ϕ(x) + μ(x)r

))2 = 4α2(2μ(x)
)
ϕ(x)r = 8α2μ(x)

(
ϕ2(x) + μ

(
ϕ(x)

)
r
)
.

On the other hand,

a3 = a2a = 2α
(
ϕ(x) + μ(x)r

)
(x + αr) = 2α

(
αϕ(x)r + μ(x)xr

)
= 2α

[
αϕ2(x) + αμ

(
ϕ(x)

)
r + μ(x)ϕ(x) + μ(x)2r

]
= 2α

[
αϕ2(x) + μ(x)ϕ(x) +

(
αμ

(
ϕ(x)

)
+ μ(x)2

)
r
]
,

and

a4 = a3a = 2α
[
αϕ2(x) + μ(x)ϕ(x) +

(
αμ

(
ϕ(x)

)
+ μ(x)2

)
r
]
(x + αr)

= 2α
[
α2ϕ2(x)r + αμ(x)ϕ(x)r +

(
αμ

(
ϕ(x)

)
+ μ(x)2

)
xr

]
= 2α

[
α2(ϕ3(x) + μ

(
ϕ2(x)

)
r
)

+ αμ(x)
(
ϕ2(x) + μ

(
ϕ(x)

)
r
)

+ αμ
(
ϕ(x)

)(
ϕ(x) + μ(x)r

)
+ μ(x)2

(
ϕ(x) + μ(x)r

)]
= 2α

[
α2ϕ3(x) + αμ(x)ϕ2(x) + αμ

(
ϕ(x)

)
ϕ(x) + μ(x)2ϕ(x)

+
(
α2μ

(
ϕ2(x)

)
+ 2αμ(x)μ

(
ϕ(x)

)
+ μ(x)3

)
r
]
.

Therefore, since char(K) �= 2, we get a2a2 = a4 for all a ∈ C if and only if

4αμ(x)
(
ϕ2(x) + μ

(
ϕ(x)

)
r
)

= α2ϕ3(x) + αμ(x)ϕ2(x) + αμ
(
ϕ(x)

)
ϕ(x) + μ(x)2ϕ(x)

+
(
α2μ

(
ϕ2(x)

)
+ 2αμ(x)μ

(
ϕ(x)

)
+ μ(x)3

)
r,

for all x ∈ H, α ∈ K. Thus, μ(x)3 = 0 and μ(x) = 0. So, ϕ3(x) = 0, that is ϕ3 = 0 and 
Theorem 2.6 follows. �
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Example 2.7. The EACP of dimension 4 given by the matrix

⎛
⎝ 0 0 1 0

0 0 0 0
0 1 0 0

⎞
⎠ ,

is fourth power-associative (μ = 0 and ϕ3 = 0) but not associative, since it does not 
satisfy ϕ2 = 0. Moreover, if charK �= 2, 3, 5, then the algebra is power-associative.

Definition 2.8. An element x of an algebra A is called nil if there exists n(x) ∈ N such 
that (· · · ((x · x) · x) · · ·x︸ ︷︷ ︸

n(x)

) = 0. The algebra A is called nil if every element of the algebra 

is nil.

For k ≥ 1, we introduce the following sequences:

A(1) = A, A(k+1) = A(k)A(k);

A〈1〉 = A, A〈k+1〉 = A〈k〉A;

A1 = A, Ak =
k−1∑
i=1

AiAk−i.

Definition 2.9. An algebra A is called

(i) solvable if there exists n ∈ N such that A(n) = 0 and the minimal such number is 
called index of solvability;

(ii) right nilpotent if there exists n ∈ N such that A〈n〉 = 0 and the minimal such 
number is called index of right nilpotency;

(iii) nilpotent if there exists n ∈ N such that An = 0 and the minimal such number is 
called index of nilpotency.

We note that for an EACP, notions as nil, nilpotent and right nilpotent algebras are 
equivalent. However, the indexes of nility, right nilpotency and nilpotency do not coincide 
in general.

From Theorem 2.3 it follows

Corollary 2.10. C alternative implies that C is nilpotent with nilindex 3.

Remark 2.11. μ = 0 implies that C is solvable. In fact, if μ = 0 and a = x + αr ∈ C then 
a2 = 2αϕ(x). Therefore C(2) = ϕ(H) ⊂ H and C(2)C(2) ⊂ H2 = 0. So, C is solvable.

Proposition 2.12. Let C be a non alternative algebra. If C is fourth power-associative then 
C is nilpotent with nilindex 4.
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Proof. It is enough to prove that C is right nilpotent. From Theorem 2.6, C is fourth 
power-associative if and only if μ = 0 and ϕ3 = 0. Since μ = 0 we have

C〈2〉 = ϕ(H),

C〈3〉 = C〈2〉C = ϕ(H)C = ϕ(H)r = ϕ2(H),

C〈4〉 = C〈3〉C = ϕ2(H)C = ϕ2(H)r = ϕ3(H) = 0,

since ϕ3 = 0. �
Corollary 2.13. Let C be a non alternative algebra. Then C is a Jordan algebra if and 
only if C power-associative algebra.

Proof. It is known that a Jordan algebra is power-associative. Conversely, let C power-
associative then C is fourth power-associative and Proposition 2.12 implies C4 = 0 and 
C satisfies the Jordan identity. �

Recall that an algebra is unital or unitary if it has an element a with ab = b = ba for 
all b in the algebra.

Proposition 2.14. The algebra C is not unital.

Proof. Assume a = x + αr is a unity element. We then have ar = r which gives ϕ(x) +
μ(x)r = r, so ϕ(x) = 0. From ax = x we get αxr = x. Since ϕ(x) = 0, we obtain 
αμ(x)r = x, which is a contradiction. This completes the proof. �

An algebra A is a division algebra if for every a, b ∈ A with a �= 0 the equations 
ax = b and xa = b are solvable in A.

Proposition 2.15. If C is finite-dimensional, then the algebra C is not a division algebra.

Proof. Since C is finite-dimensional we will use Remark 2.2 to have the multiplication 
hir = rhi = 1

2 (
∑n

j=1 aijhj + bir). Since C is a commutative algebra we shall check 
only ax = b. For coordinates of any a =

∑n
i=1 αihi + αr, b =

∑n
i=1 βihi + βr, x =∑n

i=1 χihi + χr, the equation ax = b has the following form
(

n∑
i=1

aijαi

)
χ + α

n∑
i=1

aijχi = 2βj ,

(
n∑

i=1
biαi

)
χ + α

n∑
i=1

biχi = 2β, j = 1, . . . , n.

So this is a linear system with n +1 unknowns χ1, . . . , χn, χ. This system can be written 
as My = B where yT = (χ1, . . . , χn, χ), B = 2(β1, . . . , βn, β) and
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M =

⎛
⎜⎜⎜⎜⎜⎝

αa11 αa21 . . . αan1
∑n

i=1 ai1αi

αa12 αa22 . . . αan2
∑n

i=1 ai2αi

...
...

...
...

...
αa1n αa2n . . . αann

∑n
i=1 ainαi

αb1 αb2 . . . αbn
∑n

i=1 biαi

⎞
⎟⎟⎟⎟⎟⎠ .

By the very known Kronecker–Capelli theorem the system of linear equations My = B

has a solution if and only if the rank of the matrix M is equal to the rank of its augmented 
matrix (M|B). Since the last column of the matrix M is a linear combination of the other 
columns of the matrix, we have rankM ≤ n. Moreover, since the dimension of the algebra 
C is n + 1 we can choose b, i.e., the vector B such that rank(M|B) = 1 + rankM. Then 
for such b the equation ax = b is not solvable. This completes the proof. �
3. Evolution subalgebras, absolute nilpotent elements and idempotents elements of C

By analogues of [7, Definition 4, p. 23] we give the following

Definition 3.1. Let C be an EACP, and C1 be a subspace of C.
If C1 = H1 ⊕ Kr, H1 ⊆ H, ϕ1 = ϕ|H1 and μ1 = μ|H1 , with multiplication table 

like (2.1), then we call C1 an evolution subalgebra of the chicken population (CP) C.

The following proposition gives some evolution subalgebras of a CP.

Proposition 3.2. Let C be a finite-dimensional EACP with basis {h1, . . . , hn, r} and matrix

M =

⎛
⎜⎜⎜⎝

a11 0 0 . . . 0 b1
a21 a22 0 . . . 0 b2
...

...
...

...
...

...
an1 an2 an3 . . . ann bn

⎞
⎟⎟⎟⎠ .

Then for each m, 1 ≤ m ≤ n, the algebra Cm = 〈h1, . . . , hm, r〉 ⊂ C is an evolution 
subalgebra of a CP.

Proof. Recall that since C is finite-dimensional we will use Remark 2.2 to have the 
multiplication hir = rhi = 1

2 (
∑n

j=1 aijhj +bir). For a given M it is easy to see that Cm is 
closed under multiplication. The chosen subset of the natural basis of C satisfies (2.1). �

The following is an example of a subalgebra of C, which is not an evolution subalgebra 
of a CP.

Example 3.3. Let C be a finite-dimensional EACP with basis {h1, h2, h3, r} and multi-
plication defined by hir = hi + r, i = 1, 2, 3. Take u1 = h1 + r, u2 = h2 + r. Then
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(au1 + bu2)(cu1 + du2) = acu2
1 + (ad + bc)u1u2 + bdu2

2

= (2ac + ad + bc)u1 + (2bd + ad + bc)u2.

Hence, F = 〈u1, u2〉 is a subalgebra of C, but it is not an evolution subalgebra of the 
CP C. Indeed, assume {v1, v2} is a basis of F . Then v1 = au1+bu2 and v2 = cu1+du2 for 
some a, b, c, d ∈ K such that D = ad −bc �= 0. We have v2

1 = (2a2+2ab)u1+(2b2+2ab)u2

and v2
2 = (2c2 + 2cd)u1 + (2d2 + 2cd)u2. We must have v2

1 = v2
2 = 0, i.e.,

a2 + ab = 0, b2 + ab = 0, c2 + cd = 0, d2 + cd = 0.

From this we get a = −b and c = −d. Then D = 0, which is a contradiction. If a = 0
then b = 0 (resp. c = 0 then d = 0), we reach the same contradiction. Hence v2

1 �= 0 and 
v2
2 �= 0, and consequently F is not an evolution subalgebra of the CP C.

If we write x[k] for the power (· · · (x2)2 · · ·) (k times) with x[0] = x then the trajectory 
with initial x is given by k times iteration of the operator V , i.e., V k(x) = x[k]. This 
algebraic interpretation of the trajectory is useful to connect powers of an element of 
the algebra and with the dynamical system generated by the evolution operator V . For 
example, zeros of V , i.e., V (x) = 0, correspond to absolute nilpotent elements of C and 
fixed points of V , i.e., V (x) = x, correspond to idempotent elements of C.

The following proposition describes the nonzero absolute nilpotent elements (a2 = 0) 
of C.

Proposition 3.4. a = x + αr is a nonzero absolute nilpotent element of C if and only if 
α = 0 or (ϕ(x) = 0 and μ(x) = 0).

Proof. Let a = x + αr be a nonzero absolute nilpotent element of C. Then α �= 0 or 
x �= 0. Therefore, a2 = (x + αr)2 = 2αxr = 2α(ϕ(x) + μ(x)r). Then a2 = 0 ⇐⇒
2α(ϕ(x) + μ(x)r) = 0 ⇐⇒ α = 0 or (ϕ(x) = 0 and μ(x) = 0). �

Now we shall describe idempotent elements of C, these are solutions to a2 = a.

Proposition 3.5. e = x + αr is a nonzero idempotent of C if and only if α �= 0, μ(x) = 1
2

and x is an eigenvector of ϕ with eigenvalue 1
2α .

Proof. Let e = x + αr be a nonzero idempotent of C. Then α �= 0 or x �= 0. Therefore, 
e2 = e ⇐⇒ 2αϕ(x) + 2αμ(x)r = x + αr ⇐⇒ 2αϕ(x) = x and 2αμ(x) = α ⇐⇒ ϕ(x) =
1
2αx and μ(x) = 1

2 and proposition follows. �
Remark 3.6. Let x be an element of H such that ϕ(x) = λx (for some λ �= 0) and 
μ(x) �= 0, then e = 1

2μ(x)x + 1
2λr is a nonzero idempotent of C.
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4. The enveloping algebra of an EACP

For a given algebra A with ground field K, we recall that multiplication by elements 
of A on the left or on the right give rise to left and right K-linear transformations of 
A given by La(x) = ax and Ra(x) = xa. The enveloping algebra, denoted by E(A), of 
a non-associative algebra A is the subalgebra of the full algebra of K-endomorphisms 
of A which is generated by the left and right multiplication maps of A. This enveloping 
algebra is necessarily associative, even though A may be non-associative. In a sense this 
makes the enveloping algebra “the smallest associative algebra containing A”.

Since an EACP, C, is a commutative algebra the right and left operators coincide, so 
we use only La.

Theorem 4.1. Let C be a finite-dimensional EACP with a natural basis {h1, . . . , hn, r}. 
If Ker(ϕ) ∩ Ker(μ) = 0 and H � Ker(ϕ) (or H � Ker(μ)) then {L1, . . . , Ln, Lr} (where 
Li = Lhi

) spans a linear space, denoted by span(L, C), which is the set of all operators 
of left multiplication. The vector space span(L, C) and C have the same dimension.

Proof. If we prove that La is an injection for every a ∈ C, the linear space that is spanned 
by all operators of left multiplication can be spanned by the set {Li, i = 1, . . . , n, r}. This 
set is a basis for span(L, C).

Therefore, we will prove that La is an injection for every a ∈ C. Let La = Lc then 
La(b) = Lc(b) for all b ∈ C. Since a, b, c are elements in C we have a = x +αr, b = y+βr, 
c = z + γr. We have for all b ∈ C,

La(b) = Lc(b) ⇐⇒ ab = cb ⇐⇒ βxr + αyr = βzr + γyr.

If β = 0, then αyr = γyr or α(ϕ(y) +μ(y)r) = γ(ϕ(y) +μ(y)r). SinceH � Ker(ϕ) (or 
H � Ker(μ)) we have that α = γ.

If β �= 0, y = 0, then βxr = βzr implies that xr = zr, that is ϕ(x) + μ(x)r =
ϕ(z) + μ(z)r. Therefore ϕ(x) = ϕ(z) and μ(x) = μ(z) and x − z ∈ Ker(ϕ) ∩Ker(μ) = 0. 
Thus, x = z and a = c. So La is an injection. �
Proposition 4.2. For any b = y + βr ∈ C and any h, h1, h2, . . . , hm ∈ H the following 
hold

Lhm
◦ Lhm−1 ◦ . . . ◦ Lh1(b) =

(
m−1∏
j=1

μ(hj)
)
Lhm

(b), (4.1)

Lr ◦ Lh(b) = Lϕ(h)(b), (4.2)

Lh ◦ Lr(b) = μ(y)Lh(r). (4.3)

Proof. Recall that for any h ∈ H, rh = hr = ϕ(h) + μ(h)r.
(1) To prove (4.1) we use mathematical induction over m. For m = 2 we have
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(Lh2 ◦ Lh1)(b) = Lh2

(
h1(y + βr)

)
= Lh2(βh1r) = Lh2

(
βϕ(h1) + βμ(h1)r

)
= h2

(
βϕ(h1) + βμ(h1)r

)
= βμ(h1)h2r = μ(h1)Lh2(b).

Assume now that the formula (4.1) is true for m, we shall prove it for m + 1:

Lhm+1 ◦ Lhm
◦ . . . ◦ Lh1(b) = Lhm+1 ◦

(
m−1∏
j=1

μ(hj)Lhm
(b)

)

=
m−1∏
j=1

μ(hj)Lhm+1 ◦ Lhm
(b) =

(
m∏
j=1

μ(hj)
)
Lhm+1(b).

(2) Proof of (4.2):

Lr ◦ Lh(b) = Lr

(
h(y + βr)

)
= Lr(βhr) = r

(
βϕ(h) + βμ(h)r

)
= βϕ(h)r = Lϕ(h)(b).

(3) Proof of (4.3):

Lh ◦ Lr(b) = h
(
r(y + βr)

)
= h(ry) = h

(
ϕ(y) + μ(y)r

)
= hϕ(y) + h

(
μ(y)r

)
= μ(y)hr = μ(y)Lh(r). �

5. The centroid of an EACP

We recall (see [7]) that the centroid of an algebra A, Γ (A), is the set of all linear 
transformations T ∈ Hom(A, A) that commute with all left and right multiplication 
operators

TLx = LxT, TRy = RyT, for all x, y ∈ A.

An algebra A over a field K is centroidal if Γ (A) ∼= K.

Theorem 5.1. Let C be a finite-dimensional EACP and {h1, . . . , hn, r} be a natural basis 
of C. If μ is an injection then C is centroidal.

Proof. Let T ∈ Γ (C), then TLa(c) = LaT (c) for all a, c ∈ C. We will prove that there 
exists λ ∈ K, such that T (r) = λr and T (hi) = λhi for all hi, i = 1, . . . , n.

Assume that T (r) = y + βr, T (hi) = zi + γir with y, zi ∈ H, β, γi ∈ K.
We have that

0 = TLr(r) = Lr

(
T (r)

)
⇐⇒ 0 = r

(
T (r)

)
⇐⇒ 0 = ry = ϕ(y) + μ(y)r.

This implies that ϕ(y) = 0 and μ(y) = 0. Since Ker(μ) = 0, we get y = 0 and

T (r) = βr. (5.1)
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On the other hand we have

LrT (hi) = TLr(hi)

⇐⇒ rT (hi) = T (rhi)

⇐⇒ rzi = T
(
ϕ(hi) + μ(hi)r

)
⇐⇒ ϕ(zi) + μ(zi)r = T

(
ϕ(hi)

)
+ T

(
μ(hi)r

)
⇐⇒ ϕ(zi) + μ(zi)r = T

(
ϕ(hi)

)
+ μ(hi)T (r)

⇐⇒ ϕ(zi) + μ(zi)r = T
(
ϕ(hi)

)
+ μ(hi)βr

⇐⇒ ϕ(zi) = T
(
ϕ(hi)

)
and μ(zi) = μ(hi)β

⇐⇒ ϕ(zi) = T
(
ϕ(hi)

)
and zi − βhi ∈ Ker(μ) = {0}.

zi = βhi. (5.2)

Finally,

Lhi
T (hi) = TLhi

(hi)

⇐⇒ hiT (hi) = 0 ⇐⇒ hi(βhi + γir) = 0

⇐⇒ γihir = 0 ⇐⇒ γiϕ(hi) + γiμ(hi)r = 0

⇐⇒ γiϕ(hi) = 0 and γiμ(hi) = 0 ⇐⇒ γiϕ(hi) = 0 and μ(γihi) = 0.

This implies that γihi ∈ Ker(μ) = {0}. Then

γi = 0. (5.3)

Using Eqs. (5.1), (5.2) and (5.3), we get

T (hi) = βhi, T (r) = βr,

where β is a scalar in the ground field K. That is, T is a scalar multiplication. Conse-
quently, Γ (C) ∼= K and C is centroidal. �
6. Classification of 2 and 3-dimensional EACP

Let C be a 2-dimensional EACP and {h, r} be a basis of this algebra.
It is evident that if dim C2 = 0 then C is an abelian algebra, i.e., an algebra with all 

products equal to zero.

Proposition 6.1. Any 2-dimensional, non-trivial EACP C is isomorphic to one of the 
following pairwise non isomorphic algebras:



360 A. Labra et al. / Linear Algebra and its Applications 457 (2014) 348–362
C1: rh = hr = h, h2 = r2 = 0,
C2: rh = hr = 1

2(h + r), h2 = r2 = 0.

Proof. For an EACP C we have

rh = hr = 1
2(ah + br), h2 = r2 = 0.

Case: a �= 0, b = 0. By change of basis h′ = h and r′ = 2
ar we get the algebra C1.

Case: a = 0, b �= 0. Take h′ = r and r′ = 2
bh then we get the algebra C1.

Case: a �= 0, b �= 0. The change h′ = 1
ar, and r′ = 1

bh implies the algebra C2.
Since C2

1C2
1 = 0 and C2

2C2
2 �= 0, the algebras C1 and C2 are not isomorphic. �

We note that the algebra C2 is known as the sex differentiation algebra [6].
Let now C be a 3-dimensional EACP and {h1, h2, r} be a basis of this algebra.

Theorem 6.2. Any 3-dimensional EACP C with dim(C2) = 1 is isomorphic to one of the 
following pairwise non isomorphic algebras:

C1: h1r = r;
C2: h1r = h2;
C3: h1r = h1 + r.

In each algebra we take rhi = hir, i = 1, 2 and all omitted products are zero.

Proof. For a 3-dimensional EACP C we have

h1r = rh1 = 1
2(ah1 + bh2 + Ar), h2r = rh2 = 1

2(ch1 + dh2 + Br),

h2
1 = h2

2 = h1h2 = r2 = 0.

First we note that non-zero coefficients of h1r can be taken 1. Indeed, if abA �= 0
then the change of basis h′

1 = 2
Ah1, h′

2 = 2b
aAh2, r′ = 2

ar makes all coefficients of h1r

equal 1. In case some a, b, A is equal 0 then one can choose a suitable change of basis 
to make non-zero coefficients equal to 1. Therefore we have three parametric families: 
h2r = rh2 = 1

2 (ch1 + dh2 + Br) with one of the following conditions

(i) h1r = rh1 = r,
(ii) h1r = rh1 = h2,
(iii) h1r = rh1 = h1 + r,
(iv) h1r = rh1 = h2 + r,
(v) h1r = rh1 = h1 + h2 + r,
(vi) h1r = rh1 = h1,
(vii) h1r = rh1 = h1 + h2.
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If dim(C2) = 1, then h2r is proportional to h1r. From above-mentioned (i)–(vii) it 
follows the following cases for h1r and h2r.

Case (i): In this case h1r = r and h2r = cr for some c ∈ K. If c = 0 we get the 
algebra C1. If c �= 0 then by the change

h′
1 = h1, h′

2 = −h1 + 1
c
h2, r′ = r,

we again obtain the algebra C1.
Case (ii): In this case h1r = h2 and h2r = ch2 for some c ∈ K. If c = 0 we get the 

algebra C2. If c �= 0 then by the change

h′
1 = 1

c
r, h′

2 = ch1 − h2, r′ = h2,

we get the algebra C1.
Case (iii): In this case we have h1r = h1 + r and h2r = c(h1 + r) for some c ∈ K. If 

c = 0 we get the algebra C3. If c �= 0 then by the change

h′
1 = h1, h′

2 = 1
c
h2 − h1, r′ = r,

we get the algebra C3.
Case (iv): We have h1r = h2 + r and h2r = c(h2 + r) for some c ∈ K. If c = 0 then 

by the change

h′
1 = h1, h′

2 = h2, r′ = h2 + r,

we get the algebra C1. If c �= 0 then by the change

h′
1 = 1

c
h2, h′

2 = 1
c
h2 − h1, r′ = 1

c
r,

we get the algebra C3.
Case (v): We have h1r = h1 + h2 + r and h2r = c(h1 + h2 + r) for some c ∈ K. If 

c �= −1 then by the change

h′
1 = 1

1 + c
(h1 + h2), h′

2 = 1
1 + c

(−ch1 + h2), r′ = 1
1 + c

r,

we get the algebra C3. If c = −1 then by the change

h′
1 = h1, h′

2 = h1 + h2, r′ = h1 + h2 + r,

we get the algebra C1.
Case (vi): We have h1r = h1 and h2r = ch1 for some c ∈ K. In this case by the 

change
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h′
1 = r, h′

2 = ch1 − h2, r′ = h1,

we get the algebra C1.
Case (vii): In this case h1r = h1 + h2 and h2r = c(h1 + h2) for some c ∈ K. In the 

case c = −1, by making the change

h′
1 = r

2 , h′
2 = h1 + h2, r′ = h1 − h2,

we get the algebra C2. For c �= −1, by taking the change

h′
1 = r

1 + c
, h′

2 = h2 − ch1, r′ = h1 + h2,

we get the algebra C1.
The obtained algebras are pairwise non-isomorphic. This may be checked by compar-

ison of the algebraic properties listed in the following table.

C2
i C2

i = 0 Nilpotent
C1 Yes No
C2 Yes Yes
C3 No No �
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