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This short manual is a quick guide to the use of TI89 for Linear Algebra. We do this in two sections. In 
the first section, we will go over the editing of matrices and vectors. The second section will address the 
algebraic operations of Linear Algebra. To make the manual short and useful, we have assumed that the reader 
is familiar with the keyboard and the functions of the SECOND, ALPHA, DIAMOND GREEN keys as well 
as the use of CATALOG. The reader should also be familiar with the usages of the “cursor” keys to move form 
one option to another in a given menu. Note also that some menus have several submenus, which in turn may 
have many options.   
 

1. EDITING MATRICES AND VECTORS 
 
APPS 6:DATA/MATRIX Editor provides the format for editing matrix. To edit a new matrix, simply 

enter APPS 6 3 and then select 2:matrix for Type. In the box for variable, type in a name for your matrix. The 
next two boxes are to be filled with the dimension of the matrix. Note that you should use the cursor key to 
move from a box to another. At the end press ENTER. This way of editing a matrix has several advantages as 
you can see from the tool bars at the top of your screen. The figures below show these steps. The first figure 
shows the result of APPS 6 3, the second shows that we selected matrix for Type, we called our matrix a, and 
it is 3 by 3. The last figure show the entries which by default are all zeros. We can now start editing.   

     
 
Notice the top of the screen in the last figure has F1, F2, F3, F6, and F7 are highlighted. This means that 

you can press these keys and apply the options provided in them. For example, F1 9 allows you to resize the 
width of the columns. F6 has many commands you might want to explore.   

There is however a shorter way of editing a matrix. From the home screen, we can enter a matrix by using 
Define(which can be accessed by F4 1 or could be typed in). Use the square bracket [ ] to enclose the matrix. 
We enter the matrix by typing the first row and then the second and so on. Use commas to separate entries and 
semicolons to separate rows. Here is an example. 

Example 1: Enter the matrix  2 3 0
1 2 3

A
 

=  
 

Solution: Here is the input and output of the calculator.  

  
 

Example 2: Edit the vectors u  and  
1
2
3

 
 =  
  

[ ]1,  2,  3,  4v = −

Solution:   Note that u can be regarded as a 3 by 1 matrix while v is a 1 by 4. Here are the two vectors. 



   
 
 
2.  OPERATIONS ON MATRICES 
 
We begin with examples of matrix operations. 
 
Example 3: Consider the following matrices.  

1 2
1 0

A  
=  − 

    
9 1
0 3

B  
=  − 

1 2 3
0 2 1
2 0 3

C
− 

 =  
 − 

1 3 1
1 0 6
7 0 1
2 2 1

D

 
 − =
 
 
 

    
1 1 0 1
2 3 4 2
1 0 2 3

E
− 

 =  
  

1 2 3 2
1 3 0 2
1 3 2 0
0 1 4 3

F

 
 − =
 −
 
 

If possible, compute each of the following. 
 a)   b)  c)   d)  A B+ 3  -  4A B A B⋅ A C+
 e)    f)   g)   h)  D E⋅ E D⋅ E C⋅ 2D E F⋅ +
 i)   j)   TA B⋅

Solution:  

    

    
 

 

Example 4:     Find the inverse of the matrices ,  and C  
1 2
1 0

A  
=  − 

1 2 3
0 2 1
2 0 3

B
− 

 =  
 − 

1 2 3 2
1 3 0 2
1 3 0 2
0 1 4 3

 
 − =
 −
 
 

Solution: Enter the matrices and then from the HOME screen evaluate , and C .  ^ ( 1)A − ^ ( 1)B − ^ ( 1)−
Note that for C  the output is error: Singular matrix.  ^ ( 1)−
 
 Example 5:  Let B be as in Example 4. Find the 2-3 entry, the diagonal entries, first row, and second column 
of B.  



Solution:  Enter the matrix as b. For the j-k entry use b[j,k], for first row use b[1], and for the 
second column use b , where the T  in the exponent is for the transpose of b. [2]T

 
Example 6(Special Matrices)  (a) Generate a 2 by 3 random matrix.  b) Generate a 3 by 3 identity 
matrix. 
Solution.  a) Use MATH 4 E to display randMat( and then type 2,3) and evaluate.  For b) either type or 
use MATH 4 6  to display identity( and then type 3 and evaluate. 
 
 
 
3  SOLVING SYSTEMS OF LINEAR EQUATIONS 
 
Example 7 Solve the system of linear equations.  

  a) 
   b)   c)  

1
3

x y
x y
+ =
− =

3
2 3 4
3 6 5

x y z
x y z
x y z

+ + =
 + − =
 − + =

1
2

13 2
2 4

x y z
x y z
+ + =

 − + =

Soution:  From the home screen press MATH 4 5. This gives simult(. Next we enter the 
coefficients and the constant matrix as below.( Recall that we enter a matrix by typing the first row and then the 
second and so on. Use commas to separate entries and semicolons to separate rows.)     

      
Note that for c) we got an error message as we notice above. We might want to try the elementary row 
operations to solve this problem. To do this, we define the coefficient matrix as A and the constant matrix as B 
and then apply rref(augment(A,B)). The rref command can be accessed by Math 4 4 while augment can be 
obtained by MATH 4 7. 

   
We leave it to the reader to interpret this output. 
 

4. Vector Operations 
 

Example 8:Let u  and v . Find u , u , ||v|| and the unit vector in the direction of u. 
1
2
3

 
 =  
  

1
3
9

 
 =  
  

v⋅ v×

Solution:  Enter the vectors as in Example 2 above. Then MATH 4 L 3 will display dotP(. Now 
type u,v) and ENTER. The result is the dot product; in this case it is 34. Similarly MATH 4 L 2 u,v) ENTER  
will give the cross product. For the norm of v use  MATH 4 H 1 v) ENTER. Finally, to find the unit vector in 
the direction of u,we use MATH 4 L 1 u) ENTER. The first figure below shows the result of defining the 
vectors, the second shows the dot and the cross products and the last one shows the norm of v and the unit 
vector in the direction of u.    



    
 
 

5. Eigenvalues and Eigenvectors 
 
Example 9  Find the eigenvalues and eigenvectors for the following matrices 

2 3
1 2

A
− 

=  − 
     2 1

2 0
B  
=  − 

1 2 3
0 2 1
2 0 3

C
− 

 =  
 − 

1 2 3 2
1 3 0 2
1 3 2 0
0 1 4 3

D

 
 − =
 −
 
 

Solution: We use the define option to enter the matrices as a, b, c, and d, respectively. To find the 
eigenvalues of the matrix A, use Math 4 9 a ) ENTER or type eigvl(a) and ENTER. To find the eigenvectors 
of the matrix a use Math 4 A a ) ENTER or type eigvc(a). The figure below shows the eigenvalues and 
eigenvectors of the matrix A. 
   

  
 

Remark:  
1. The first number given by eigVl(a) is the first eigenvalue which in this case is -1 and second 

eigenvalue is 1. The first column of the eigVc(a) is an eigenvector corresponding to the first 
eigenvalue of a. Note that TI 89 is normalizing the vectors, that is the eigenvectors are unit 
vectors.  

2. For most purposes and easier notations, it is convenient to rewrite the eigenvectors with integer 
entries. This is usually possible. One possible method is to replace the smallest number in the 
columns by 1 and divide the other entries in that column by the smallest value you just replaced. 
Use the command eigVc(a)[j,k] to refer to the j-k entry of the matrix eigVc(a). It is clear that the 
entries in the first column are equal. Thus for an eigenvector corresponding to the eigenvalue -1, 
we may take . The second one may not be clear so we replace -.316228 by 1. Note then that -

.96683/-.316228 is 3.062. Thus it is highly recommended that you compute eigVc(a)[2,1]/ 
eigVc(a)[2,2]. We find that this is 3. Thus we may take as the second eigenvector.  

1
1
 
 
 

3
1
 
 
 

If we evaluating eigvl(b), we will get the message Non-real result. This means that the characteristic equation 
of the matrix B has complex roots. Note that we could use the command cSolve(det( b – x*identity(2))=0,x) 
ENTER, we get the complex eigenvalues, namely, or  as shown below.  1x i= + 1x = − i

 



 
 

6. Applications 
 
Example 10. Let v v  be the vertices of the complete graph on four vertices. Find the 
determinant and eigenvalues of the graph. 

1 2 3 4, , ,v v

 
Solution:  Note that the determinant and eigenvalues of a graph are the determinant and eigenvalues of the 
adjacency matrix. The adjacency matrix is defined as the matrix , where  ijA a =  

  { }1,   ,  is an edge of the graph 

0, otherwise
i j

ij

if v v
a

= 


For the complete graph on four vertices, the adjacency matrix is given by . We enter this 

matrix as a and evaluate det(a)  to get  as the determinant of the graph and evaluate eigvl(a) to get 
as the eigenvalues of the graph.  

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

A

 
 
=
 
 
 



3−
{3, 1, 1, 1}− − −
 
Example 11: Find the number of walks of length 3 from to .  1v 3v
Solution: Again we use the adjacency matrix as defined in example 10 above. The number of walks of 
length 3 from v to  is given by the (1,3) entry of the cube of the adjacency matrix A. As in example 10, we 

enter the adjacency matrix as a and evaluate to obtain the matrix . Thus the (1,3) entry is 

7. Hence there are 7 walks of length 3 from to v  in the complete graph on four vertices. We leave it to the 
reader to list the seven walks.    

1 3v

3a

1v

3

6 7 7 7
7 6 7 7
7 7 6 7
7 7 7 6

A

 
 
=
 
 
 



3

 
 


