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1. Introduction

Markov chains are named after Russian mathematician Andrei Markov and provide a way

of dealing with a sequence of events based on the probabilities dictating the motion of a

population among various states (Fraleigh 105). Consider a situation where a population

can cxist in two oc mocc states. A Ma7hain is a sccies of discccte time inte,vais ove,
which a population distribution at a given time (t = n; n = 0,1,2, ... ) can be calculated

based on the the distribution at an earlier time (t = n-l) and the probabilities governing the

population changes. More specifically, a future distribution depends only on the most recent

previous distribution. In any Markov process there are two necessary conditions (Fraleigh

105):

1. The total population remains fixed

2. The population of a given state can never become negative

If it is known how a population will redistribute itself after a given time interval, the

initial and final populations can be related using the tools of linear algebra. A matrix T,

called a tcansit~atrix, descdbes the pwbabilistie motion of a popnlation between vac
ious states. The individual elements of the matrix reflect the probability that a population

moves to a certain state. The two conditions stated above require that in the transition

matrix each column sums to 1 (that is, the total population is unchanging) and there are no

negative entries (logically, populations are positive quantities).

2. Theory

The transition matrix T is comprised of clements, denoted tij, relating the motion of a

population from state j to state i.
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(1)

population moves from state 3 to state 2.

For example, the 3 x 3 matrix above represents transition probabilities between 3 different

states. A given clement, t23 for example, describes the likelihood that a~ of the

IYl1m~

Having a means to describe the changes in a population distribution, it is also necessary

to describe the overall system. The proportions of the population in its various states is

given by a column vector

p=

PI

P2

Pn

/
(2)

An element Pi of such a vector, known as a population distribution vector, provides the

e transition matrix, the sum of the entries in p must add to 1 and be nonnegative.

Application of a transition matrix to a population vector provides the population dis-

tribution at a later time. If the transition matrix remains valid over n time intervals, the

population distribution at time n is given by Tnp. This is simple to demonstrate.
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A regular transition matrix is one which, when the original matrix T is raised to some

power m, the result Tm has no zero entries. A Markov chain governed by such a matrix is

called a regular chain (Fraleigh 107). For such a matrix, the populations will eventually

approach a steady-state. This means that further application of the transition matrix will

produce no noticeable population changes. This is not to say that the population is stagnant;

rather that it is in a state of dynamic equilibrium such that the net movement into and out

of a given state is zero.

Ts = s (3)

The vector s in Equation 3 is known as a steady-state vector. Rearranging the equation

yields

Ts - s = 0

Ts - Is = 0

(T - 1)s = 0

The last line is just a homogeneous linear equation which can be solved easily by a row

reduction on the augmented matrix [T - 110]. /

Another property of regular transition matrices is that as m ---t 00

In words, as T is raised to higher and higher powers, the column vectors of Tm approach the

steady-state vector s (Fraleigh 108). For a matrix Q comprised of the steady-state vector as
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its column vectors (Anton 614):

82 82
Qx

X2

82

= (1)8 = 8 (5)

This result is precisely what we would expect, since multiplication by Q is equivalent to

m applications of T to the original vector x. Note that in the last line of Equation 5, we

rely on the requirement that the sum of the entries of a population distribution vector is 1.

Therefore, for a steady-state transition matrix (Q = Tffi as m -> 00), an arbitrary population

distribution vector x is taken to the steady-state vector 8.

Let us re-examine Equation 3. Clearly this is an eigenvalue equation of the form Ax = AX

with A = 1. As such, a regular transition matrix T is shown to have eigenvector 8 with

0genValUe A = 1. Remarkably, it can be shown that any transition matrix obeying conditions

1 and 2 must have A = 1 as an eigenvalue.

To prove this, we begin with an n x n transition matrix whose characteristic polynomial

det(T - AI) can be shown in matrix form
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(6)

Recall condition 1 for a transition matrix: the sum of the entries of a column vector is

1. Subtraction of the eigenvalue>. = 1 exactly once from each column (as is done above

in Equation 6) results in a new sum of zero for the elements of each column vector. Next,

perform row operations by adding each row (2 through n) to the first row (Williams):

(7)

For clarity, the (-1) is repeated in each of the row 1 elements, but this simply reflects

that T - (1)1 results in each diagonal element tii having 1 subtracted from it. The Row-

Addition property of determinants guarantees that the above row operations will not alter

the determinant of the matrix (Fraleigh 258). Since the summations of elements in each

column are required to add to 1, and 1 is also being subtracted from each sum, the first row

entry of each column is equal to zero. Furthermore, because the determinant of a matrix can

b7lculated by expansion by minors on any column or row of the matrix, we are free to~hoose expansion across the top row, which clearly results in a determinant of zero (Fraleigh

254). As such, >.= 1 is a solution to the eigenvalue equation and is therefore an eigenvalue

of any transition matrix T.
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3. Applications

Markov chains can be used to model situations in many fields, including biology, chemistry,

economics, and physics (Lay 288). As an example of Markov chain application, consider

voting behavior. A population of voters are distributed between the Democratic (D), Re-

publican (R), and Independent (I) parties. Each election, the voting population p = [D, R, I]

obeys the redistribution shown in Figure 1.

~~fDemocratic
vote

.20

.10

.80--,
Republican

vote

Figure 1: Voter shift between two elections (Lay 290).

For example, in an upcoming election, of those that voted Republican in the previous election,

80% will remain Republican, 10% will vote Democrat, and the remaining 10% will vote

Independent.

The transition matrix describing this tendency of voter shift is given as

PartyDRI

D

.70.10.30

T=

R.20.80.30I

(8)

I

.10.10.40
J

The column labels indicate the initial party of a portion of the voting population, while the

row labels indicate the final party. For example in column R, row I we see that 10% of those
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(9)

who previously voted Republican will vote Independent (in agreement with Figure 1).

In the 2004 presidential election, the voters were distributed according to the distribution

vector (CNN.com)

A8

PI = 1.51

.01
L

If the transition matrix in Equation 12 dictates the changes between two primary elections,

we can expect the outcome of the 2008 election as follows:

.70 .10 .30

P2 = TPI = 1.20 .80 .30

.10 .10 AO

A8

.51

.1

.390

.507

.103

(10)

fvlore explicitly, 70% of the original Democrats (48%) remain Democrat, 10% of the 51%

Republican population will vote Democrat, and 30% of the 1% Libertarian population also

vote Democrat:

.70(.48) + .10(.51) + .30(.01) = .336 + .051 + .003 = .390 (11)

The same goes for the shift of votes to the Republican and Libertarian parties (Lay 291).

If this voter behavior is valid for a long time, we can predict the outcome of a given

election by applying the transition matrix the appropriate number of times to the initial

distribution vector. Particularly, it can be shown that since the transition matrix here is

obviously regular (T1 has no zero entries), a steady-state solution is expected. Using the

row-reduction method mentioned above to solve the system [T - liD], we can solve for the

st:rate vector.
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-.30 .10 .30 0 -3 1 3 0 1 0 -9/4 0

[T - 110] = I .20 -.20 .30 0 2 -2 3 0 o 1 -15/4 0

.10 .10 -.60 0 1 1 -6 0 o 0 o o

The eigenvector of this system corresponding to eigenvalue A = 1 therefore, has compo-

nents Xl = 9/4, X2 = 15/4, X3 = free. In order to transform this into a valid population

vector (with the sum of the entries equal to 1), the entries are summed and then each is

divided by the result.

9/28 1 1.32

s = 115/281 ~ 1.54

1/7 1 1.14

The vector s therefore demonstrates that the voting population will eventually settle into a

state in which 54% of the votes will be cast for the Republican candidate (Lay 295).

Further insight into steady-state solutions can be gathered by considering Markov chains

from a dynamical systems perspective. Consider an example of the population distribution

of residents between a city and its suburbs. The transition matrix T for this system describes

the movement of citizens between the city and the suburbs.

CitySuburb

cu, [95

.03

]
T-

(12)

Suburb .05

.97

In words, the transition matrix demonstrates that each year, 97% of the city-dwellers remain

in the city while 5% migrate to the suburbs. Likewise, 97% of the suburbanites remain while

3% move into the city.
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Next, we perform eigenvalue and eigenvector analysis by solving the characteristic poly-

nomial det(T - )..I) = O. This yields an equation of the form )..2 - 1.92)" + .92 = O. Solving

with the quadratic formula, )..1 = 1 and )..2 = 0.92. By substituting each of these eigenvalues

into the homogenous linear system (T - )..I)x = 0, the eigenvectors are calculated.

(13)

Any arbitrary population distribution vector p can be written in terms of VI and V2'

(14)

We use a Markov chain to solve for later population distributions, and write the results in

terms of the eigenvectors:

Observing the pattern, we see that in general,

As n -t 00, the second term disappears, and Pn approaches a steady-state vector s = CIVI

(Lay 316). Of course, this vector corresponds to the eigenvalue).. = 1, which is indicative of

a steady-state solution.
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4. Conclusion

Application of linear algebra and matrix methods to Markov chains provides an efficient

means of monitoring the progress of a dynamical system over discrete time intervals. Such

systems exist in many fields. One main assumption of Markov chains, that only the imme-

diate history affects the next outcome, does not account for all variables observed in the

real world. Voting behavior is a case in point - it is unlikely that the voting population will

approach a steady state. Nevertheless, the model affords us with good insight and perhaps

/serves as a helpful starting point from which more complicated and inclusive models can be
developed.
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