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Preface

This is a textbook for a two-semester course on Linear Algebra. Although the pre-
requisites for this book are a semester of multivariable calculus, in reality everything
is developed from scratch and mathematical maturity is the real prerequisite. Tradi-
tionally linear algebra is the first course in the math curriculum where students are
asked to understand proofs, and this book emphasizes this point: it gives the back-
ground to help students understand proofs and gives full proofs for all the theorems
in the book.

Why write a textbook for a two semester course? First semester textbooks tend
to focus exclusively on matrices and matrix manipulation, while second semester
textbooks tend to dismiss matrices as inferior tools. This segregation of matrix tech-
niques on one hand, and linear transformations of the other tends to obscure the
intimate relationship between the two.

Students can enjoy the book without understanding all the proofs, as many nu-
merically examples illustrate all the concepts.

As is the case for most elementary textbooks on linear algebra, we only study
finite dimensional vector spaces and restrict the scalars to real or complex numbers.
We emphasize complex numbers and hermitian matrices, since the complex case is
essential in understanding the real case. However, whenever possible, rather than
writing one proof for the hermitian case that also works for the real symmetric
case, they are treated in separate sections, so the student who is mainly interested
in the real case, and knows little about complex numbers, can read on, skipping the
sections devoted to the complex case.

We spend more time that usual in studying systems of linear equations without
using the matrix technology. This allows for flexibility that one loses when using
matrices. We take advantage of this work to study families of linear inequalities,
which is useful for the optional chapter on convexity and optimization at the end of
the book.

In the second chapter, we study matrices and Gaussian elimination in the usual
way, while comparing with elimination in systems of equations from the first chap-
ter. We also spend more time than usual on matrix multiplication: the rest of the
book shows how essential it is to understanding linear algebra.
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Then we study vector spaces and linear maps. We give the classical definition
of the rank of a matrix: the largest size of a non-singular square submatrix, as well
as the standard ones. We also prove other classic results on matrices that are often
omitted in recent textbooks. We give a complete change of basis presentation in
Chapter 5.

In a portion of the book that can be omitted on first reading, we study duality
and general bilinear forms. Then we study inner-product spaces: vector spaces with
a positive definite scalar (or hermitian) product), in the usual way. We introduce the
inner product late, because it is an additional piece of structure on a vector space.
We replace it by duality in the early arguments where it can be used.

Next we study linear operators on inner product space, a linear operator being a
linear transformation from a vector space to itself, we study important special linear
operators: symmetric, hermitian, orthogonal and unitary operatrps, dealing with the
real and the complex operators separately Finally we define normal operators.

Then with the goal of classifying linear operators we develop the important no-
tion of polynomials of matrices. The elementary theory of polynomials in one vari-
able, that most students will have already seen, is reviewed in an appendix. This
leads us to the minimal polynomial of a linear operator, which allows us to establish
the Jordan normal form in both the complex and real case.

Only then do we turn to determinants. This book shows how much of the elemen-
tary theory can be done without determinants, just using the rank and other similar
tools. Our presentation of determinants is built on permutations, and our definition
is the Leibnitz formula in terms of permutations. We then establish all the familiar
theorems on determinants, but go a little further: we study the adjugate matrix and
prove the classic Cauchy-Binet theorem.

Next we study the characteristic polynomial of a linear operator, and prove the
Cayley-Hamilton theorem. We establish the classic meaning of all the coefficients
of the characteristic polynomial, not just the determinant and the trace.

We conclude with the Spectral Theorem, the most important theorem of linear
algebra. We have a few things to say about the importance of the computations of
eigenvalues and eigenvectors. We derive all the classic tests for positive definite and
positive semidefinite matrices.

Next there is an optional chapter on polytopes, polyhedra and convexity, a natural
outgrowth of our study of inequalities in the first chapter. This only involves real
linear algebra.

Finally, there is a chapter on the usefulness of linear algebra in the study of
difference equations and linear ordinary differential equations. This only uses real
linear algebra.

There are three appendices. the first is the summary of the notation used in the
boof; the second gives some mathematical background that occasionally proves use-
ful, especially the review of complex numbers. The last appendix on polynomials is
very important if you have not seen the material in it before. Extensive use of it is
made in the study of the minimal polynomial.

Leitfaden
There are several pathways through the book.
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1. Many readers with have seen the material of the first three sections of Chapter
1; Chapters 2, 3, 4 and 5 form the core of the book and should be read care-
fully by everyone. I especially recommend a careful reading of the material on
matrix multiplication in Chapter 2, since many of the arguments later on depend
essentially on a good knowledge of it.

2. Chapter 6 on duality, and Chapter 7 on bilinear forms form an independent sec-
tion that can be skipped in a one semester course.

3. Chapter 8 studies what we call inner-product spaces: either real vector spaces
with a positive definite scalar product or complex vector spaces with a positive
definite hermitian product. This begins our study of vector spaces equipped with
a new bit of structure: an inner product. Chapter 9 studies operators on an in-
ner product space. First it shows how to write all of them, and then it studies
those that have a special structure with respect to the inner product. As already
mentioned, the material for real vector spaces is presented independently for the
reader who wants to focus on real vector spaces. These two chapter are essential.

4. In Chapter 9, we go back to the study of vector spaces without an inner prod-
uct. The goal is to understand all operators, so in fact logically this could come
before the material on operators on inner product spaces. After an introduction
of the goals of the chapter, the theory of polynomials of matrices is developed.
My goal is to convince the reader that there is nothing difficult here. The key
result is the existence of the minimal polynomial of an operator. Then we can
prove the primary decomposition and the Jordan canonical form, which allow us
to decompose any linear operator into smaller building blocks that are easy to
analyze.

5. Finally we approach the second main objective of linear algebra: the study of
the eigenvalues and eigenvectors of a linear operator. This is done in three steps.
First the determinant in Chapter 11, then the characteristic polynomial in Chapter
12, and finally the spectral theorem in Chapter 13. In the chapter concerning the
spectral theorem we use the results on inner products and special operators of
chapters 8 and 9 for the first time. It is essential to get to this material in a one
semester course, which may require skipping items 2 and 4. Some applications
show the importance of eigenvector computation.

6. Chapter 13 covers the method of least squares, one of the most important appli-
cations of linear algebra. This is optional for a one-semester course.

7. Chapter 14, another optional chapter considers first an obvious generalization of
linear algebra: affine geometry. This is useful in developing the theory of iinear
inequalities. From there is an a small step to get to the beautiful theory of convex-
ity, with an emphasis on the complex bodies that come from linear inequalities:
polyhedra and polytopes. This is ideal for the second semester of a linear algebra
course, or for a one-semester course that only studies real linear algebra.

8. Finally the material on systems of differential equations forms a good applica-
tions for students who are familiar with multivariable calculus.

9. There are three appendices: first a catalog of the notation system used, then a brief
review of some mathematics, including complex numbers, and what is most im-
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portant for us, the roots of polynomials with real or complex coefficients. Finally
the last appendix carefully reviews polynomials in one variable.

Recommended Books
Like generations of writers of linear algebra textbooks before me, I must disclaim

any originality in the establishment of the results of this book, most of which are at
least a century old. Here is a list of texts that I have found very helpful in writing
this book and that I recommend.

• On the matrix side, I recommend three books:
Gantmacher’s classic two volume text [8], very thorough and perhaps somewhat
hard to read;
Franklin’s concise and clear book [6].
Denis Serre’s beautiful book [24], very concise and elegant.
Horn and Johnson’s encyclopedic treatment of of matrices [13], which also shows
how matrices and analysis can be interwoven.

• On the linear algebra side an excellent example of an older textbook is Minsky.
More recently there is [12] - very complete.

• The classic textbook on the abstract side is Halmos’s book [10]. For those who
want to go even further in seeing how linear algebra is the first step in studying
“abstract algebra”, Michael Artin’s text [1] is recommended, since he uses linear
algebra as the first building block to abstract algebra.

• Linear algebra is very useful in studying advanced geometry. An excellent book
that quite unusually combines the linear algebra with the geometry is Shafare-
vich. Even more advanced is Manin’s book.

• There are two good self-described “second semester” linear algebra texts: Serge
Lang’s book [15] which suffers from its separation from his more elementary text
that develops the matrix techniques, and then Sheldon Axler’s beautifully written
book [2].

• Finally there are books that focus on the computational side. It is because linear
algebra algorithms can be implemented on computers is a central reason that lin-
ear algebra has come to occupy a central position in the mathematics curriculum.
We do not do much of that in this book. The classic text is Golub-Van Loan [9].
There are books completely devoted to the computation of eigenvectors.

Comments, corrections, and other suggestions for improving these notes are wel-
come. Please email them to me at hcp3@columbia.edu.

HENRY C. PINKHAM
New York, NY

Draft of July 10, 2015
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Chapter 1
Linear Equations

Abstract We define linear equations, both homogeneous and inhomogeneous, and
describe what is certainly the oldest problem in linear algebra: finding the solutions
of a system of linear equations. In the case of three or fewer variables we explain
how elimination leads to the determinant - which we do not define in the general
case. We do all this without introducing matrix notation. The sections 1.5 and 1.6
are optional. The chapter concludes with a short section about the history of the
solution of linear equations

1.1 Linear Equations

The first problem of linear algebra is to solve a system of m linear equations in n
unknowns x1, x2, . . . , xn. It was recognized early on that the case n = m should be
considered first. We will see why shortly.

Many readers may already familiar with linear equations. Still, since it is central
to our concerns, here is the definition.

Definition 1.1.1. A system of equations is linear if it can be written

a11x1 +a12x2 + · · ·+a1nxn = b1, (1.1)
a21x1 +a22x2 + · · ·+a2nxn = b2,

...
am1x1 +am2x2 + · · ·+amnxn = bm.

The coefficients a11, . . . , amn are numbers, as are b1, . . . , bm on the right hand side.
The coefficients ai j have a double index: the first one, i, designates the equation; the
second one, j, designates the variable it is the coefficient. The coefficients bi form
the constant term of each equation and therefore have only one index designating the

1
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equation. Thus a23 is the coefficient of the third unknown x3 in the second equation,
and b3 is the constant term of the third equation. The unknowns are x1, x2, . . . , xn.

Definition 1.1.2. In this book, the coefficients ai j of the x j and the constants bi are
either real or complex numbers. For uniformity they are called scalars.

Using summations, we can write (1.1) as

n

∑
j=1

ai jx j = bi, 1≤ i≤ m.

We will often use S to denote this system of linear equations. We will usually asso-
ciate the running index i with the number of equations (usually m), and the running
index j with the number of variables (usually n), as done above.

When we need to give the expression in the i-th equation of our system S a name,
we call it fi. So

fi = ai1x1 +ai2x2 + · · ·+ainxn−bi. (1.2)

Note that the constant bi has been moved to the left-hand side of the equation, so
that the right-hand side is always 0. Setting the expression fi to 0 turns it into the
i-th equation.

Definition 1.1.3. An equation is a linear combination of the equations in S if it can
be written

c1 f1 + c2 f2 + · · ·+ cm fm = 0

for some scalars c1, . . . , cm.

Example 1.1.4. Take the 3×3 system

x1 −x2 +2x3 = 1
3x1 −2x2 −2x3 = 4
−x1 +5x2 = −1

Then 3x1 + 2x2 = 4 is a linear combination of the equations in this system. Indeed
c1 = 1, c2 = 1 and c3 = 1. This raises an interesting question: how do you find the ci
systematically? Set up the equations you need to solve: first the coefficients of each
xi must be the coefficients of the proposed linear combination, so you must solve

c1 +3c2 −c3 = 3
−c1 −2c2 +5x3 = 2
2c1 −2c2 = 0

The last step is to deal with the constant terms: we need c1 + 4c2− c3 = 4. This is
a system of 4 linear equations in 3 unknowns, precisely the kind of system we will
solve later in this chapter.

Definition 1.1.5. To solve the system S given by (1.1) means finding all the n-tuples
of scalars (x̄1, x̄2, . . . , x̄n) that satisfy the system when the constants x̄ j are substituted
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for the unknowns x j, 1 ≤ j ≤ n. We write Z(S) for the set of all solutions of the
system S: the letter Z stands for ‘zeroes’.

Thus Z(S) is the set of n-tuples x̄ = (x̄1, . . . , x̄n) where for all i, fi(x̄) = 0. This
means that Z(S) is the intersection

Z(S) = Z( f1 = 0)∩Z( f2 = 0)∩·· ·∩Z( fm = 0).

This just says that Z(S) consists of the n-tuples that are simultaneously solutions to
the first through the last equations.

When we have to evaluate the unknowns at more than one point we will also
use upper indices to indicate constant values: for example x(1)1 and x(2)1 denote two
different values for the unknown x1.

In Example 1.1.4 it is easy to check that x̄1 = 22/17, x̄2 = 1/17, and x̄3 =−2/17
is a solution to the system: in fact the only solution, as we shall see shortly.

Definition 1.1.6. If all the right hand constants bi, 1≤ i≤m, are equal to 0, then the
system is homogeneous. Otherwise it is inhomogeneous. If you set all the constants
b j in an inhomogeneous system 1.1.1 to zero, you get the homogeneous system
associated to the inhomogeneous one.

So the homogeneous system associated to Example 1.1.4 is

x1 −x2 +2x3 = 0
3x1 −2x2 −2x3 = 0
−x1 +5x2 = 0

The reason an inhomogeneous system and its associated homogeneous system
are always considered together is:

Theorem 1.1.7. If (x(1)1 ,x(1)2 , . . . ,x(1)n ) and (x(2)1 ,x(2)2 , . . . ,x(2)n ) are solutions of the
inhomogeneous system 1.1, then their difference

(x(1)1 − x(2)1 ,x(1)2 − x(2)2 , . . . ,x(1)n − x(2)n )

is a solution of the associated homogeneous system.

Proof. Just subtract the corresponding equations. The details are left to you as an
exercise. ut

Here is another example of three equations in three variables.

Example 1.1.8.
2x1 −x2 +x3 = 1
−2x1 −2x2 +3x3 = 4

5x2 −x3 = −1

The corresponding homogeneous system of equations is
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2x1 −x2 +x3 = 0
−2x1 −2x2 +3x3 = 0

5x2 −x3 = 0

We will find the solutions later.

We are not interested in the system of equations S for itself, but only in its solu-
tions Z(S). The three fundamental questions are:

1. Does the system S have any solutions at all, or is the set of solutions empty? If it
is empty we write Z(S) = /0.

2. If there is a solution, is it unique? This means Z(S) is a single element.
3. If there is more than one solution, what does the set of all solutions look like?

We can already answer the first question when the system is homogenous, since

x1 = x2 = · · ·= xn = 0 (1.3)

is clearly a solution., as we established in Theorem 1.1.7. So a homogeneous system
always has the solution (1.3), called the trivial solution.

On the other hand, it is easy to produce an inhomogeneous system without solu-
tions. The simplest example is perhaps

x1 = 0 (1.4)
x1 = 1.

Here n = 1 and m = 2. Similarly

2x1− x2 = 1 (1.5)
2x1− x2 = 2.

The solutions of the first equation of (1.5) are just the points of a line in the plane;
the solutions of the second equation are the points of a distinct parallel line. Since
the lines do not intersect, there is no solution to the system.

This can also be proved algebraically. If scalar values (x̄1, x̄2) satisfy both equa-
tions, they they satisfy the difference of the two equations. But that says that 0=−1,
a contradiction.

Definition 1.1.9. A system of linear equations S that does not have any solutions is
inconsistent. Thus Z(S) = /0. A system with at least one solution is consistent.

Corollary 1.1.10. A consistent inhomogeneous system has exactly one solution if
and only if the corresponding homogeneous solution has only one solution, which
must be the trivial solution.

Proof. This is an immediate consequence of Theorem 1.1.7 and the existence of the
trivial solution for homogeneous systems of equations. ut
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Notice that the homogenous system associated to (1.5) is simply 2x1− x2 = 0,
so that it has an infinite number of solutions of the form (x̄1,2x̄1), even though the
inhomogeneous system of equation has no solutions at all.

We now make an important definition concerning systems of linear equations.

Definition 1.1.11. Two systems of linear equations in the same variables are equiv-
alent, if their set of solutions is the same.

Given a system of linear equations, our goal is to transform it into an equivalent
system that is easier to solve. Here is a useful tool.

Proposition 1.1.12. If the equations in a linear system S1 are all linear combina-
tions of the equations in a linear system S, the Z(S) ⊂ Z(S1). Therefore if all the
equations in S are also linear combinations of those in S1, the two systems are
equivalent: Z(S1) = Z(S).

The proof is left to you.

1.2 Geometry Interpretation

When the scalars are the real numbers R, and the number of variables is at most
three, then it is important to interpret the linear equations geometrically. Here are
some simple but useful remarks. Work out the easy case of only one variable on
your own.

Example 1.2.1. Suppose you have two variables x1 and x2, so we are working in the
plane.

First assume the system just consists of one linear equation a1x1 + a2x2 = b. If
both a1 and a2 are 0, then we are left with the equation 0 = b, which is inconsistent
unless b = 0. So the set of solutions X(S) is either empty or the entire plane R2.
When at least one of a1 and a2 is not zero, the set of solutions is a line a1x1+a2x2 =
b, as you know. Thus we have an infinite number of solutions. If b = 0 the line goes
through the origin.

What if there are two equations? The only interesting case occurs when each
equation has at least one non-zero coefficient: then the solutions to each equation
form a line. So the solutions to the system is just the intersection of two lines. What
could happen? There are three cases: either the lines have different slopes so they
intersect in a point. If they have the same slope, then they are either parallel and
distinct, in which case there are no solutions, or they are the same line, in which
case there is a line of solutions.

If there are three equations or more, then “usually” the set of solutions is empty,
since usually the intersection of three lines in the plane is empty

Example 1.2.2. Finally the case n = 3. We are working in space. If there is only
one equation a1x1 +a2x2 +a3x3 = b, then unless all the coefficients ai are zero, the
solutions form a plane in space.
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If there are two equations, the set of solutions is the intersection of two planes in
space. What can happen? In general they intersect in a line, which goes through the
origin if the equations are homogeneous. But the planes could be parallel: what does
that mean in terms of the coefficients? In that case there are no solutions unless the
planes are the same plane. Check that two planes in R3 cannot intersect in a point.

Finally assume there are three equations. The set of solutions to each equation is
a plane, so we are studying the intersection of three planes in space. If all goes well,
we get the intersection of a plane and a line. You should convince yourself that this
is usually a point, but in “degenerate” cases you could get a line or even a plane. Or
as usual the intersection could be empty. But you cannot get more complicated sets,
such an two lines, or two points.

If there are more than three equations, then “usually” the intersection is empty.

Our goal is to give a precise meaning to “usually” and “degenerate”, and to an-
alyze the set of solutions in higher dimensions in a systematic way, without using
geometric intuition.

Exercise 1.2.3. Write down explicit numerical examples to illustrate all possible
cases. For example two lines in the plane that intersect in a point: just take x1 = 0
and x2 = 0 for the two equations.

1.3 Elimination

The key to understanding the solutions of a system of linear equations S, which we
always write as (1.1), is a process called Gaussian elimination. It is an algorithm
that does two things:

• if the system S is not homogeneous, it determines whether it is consistent or not.
This step is unnecessary for a homogeneous system which we already know is
consistent.

• if the system is consistent, it determines all the solutions.

This is the most important algorithm of linear algebra. We will study it more al-
gebraically when we have developed matrix technology in Chapter 2. Here we use
some geometric ideas. For simplicity we only consider the case of real scalars, but
the result goes through for complex scalars without change.

The key notion is that of the projection map from Rn to Rn−1 obtained by omit-
ting one of the coordinates. Any one of the coordinates could be omitted, but without
loss of generality we may assume it is the last one. When n = 3 the projection maps
(x1,x2,x3) to (x1,x2). The image of the map is clearly all R2, and the inverse image1

of any given point (a1,a2) is (a1,a2,x) for any x ∈ R.
More generally the projection maps (x1, . . . ,xn−1,xn) to (x1, . . . ,xn−1), and the

inverse image of any point is again R. We will need to consider the case n = 1, the

1 See §B.1 if you need to review this notion.
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projection R1 to R0, so we need to define R0: it is a single element, written 0. If
you compose a projection pn : Rn → Rn−1 with a projection pn−1 : Rn−1 → Rn−2

to get pn−1 ◦ pn you get a new projection from Rn to Rn−2, which omits two of the
coordinates. More generally we can omit any number r of the coordinates and get
a projection, which we can view as the composition of r projections that just omit
one coordinate each. This is what we will do.

Assume we have a system S of m equations in n variables.
First we handle the trivial case: all the ai j = 0. Therefore the left–hand side of

all the equations is 0, so they take the form 0 = b j. If any one of the b j is nonzero
the system is obviously inconsistent, and if all the b j are equal to 0, then the sys-
tem imposes no conditions, so the set of solutions is Rn. Our goal is to repeat an
elimination step, which is described next, until we reach the trivial case.

So assume that there is a variable that occurs with non-zero coefficient in at least
one of the equations. By renumbering the variables, we may assume the variable is
xn. This is the variable to be eliminated. We call it the pivot variable for this elimi-
nation step. By renumbering the equations we may assume that in fm the coefficient
amn of xn is nonzero. Divide fm by amn. Of course they may be several equations in
which the pivot variable has a non-zero coefficient: just pick one. Clearly the new
system is equivalent to the old one: for instance use Proposition 1.1.12. We con-
tinue to call the new system S, in other words we assume the coefficient of the pivot
variable in fm is 1.

Now replace S by the new system S1 given by

g1(x1, . . . ,xn−1) = f1(x1, . . . ,xn) −c1 fm(x1, . . . ,xn)
g2(x1, . . . ,xn−1) = f2(x1, . . . ,xn) −c2 fm(x1, . . . ,xn)

...
gm−1(x1, . . . ,xn−1) = fm−1(x1, . . . ,xn) −cm−1 fm(x1, . . . ,xn)

fm((x1, . . . ,xn−1,xn) = 0

where ci is the coefficient of the pivot variable in fi. By Proposition 1.1.12 again,
the two systems are equivalent: they have the same solutions. In particular Z(S) = /0
if and only if Z(S1) = /0. By construction, in all gi the variable xn appears with
coefficient 0: we say these equations do not contain xn. The collection of all the gi is
called the set of residual2 equations. On the other hand the equation fm = 0 contains
xn, the pivot variable. The process of replacing S by the equivalent S1 process is
called eliminating xn, because xn has been eliminated from the residual equations.
Underlying this is the projection map pn : Rn→ Rn−1 omitting the last coordinate.
The linear system S lies in Rn, while the residual equations of S1 lie in Rn−1.

Example 1.3.1. Let’s apply this technique to the system S:

2x1 −2x2 +3x3 = 4
4x2 −x3 = −1

x1 −x2 +x3 = 1

2 This is not standard terminology.
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Then f3 = x1−x2+x3−1, so by subtracting 3 times f3 from the first listed equation,
and adding it to the second, we get the system S1

−x1 +x2 = 1
x1 +3x2 = 0
x1 −x2 +x3 = 1

It is easy to see by hand, or by repeating the process that there is only one solution
to S1: x1 =−3/4, x2 = 1/4. Putting these values into f3 gives x3 =−x1 + x2 +1 =
3/4+1/4+1 = 2, and therefore S has the unique solution (−3/4,1/4,2).

Exercise 1.3.2. Apply this technique to Example 1.1.8. Here again m = n.

The process of elimination consists in repeating the elimination step describe
above as long as it is possible. The elimination step is only applied to the last col-
lection of residual equations, which does not include any of the variables that have
already been eliminated. So after each elimination step the number of variables in
the residual equations decreases by one, since the pivot variables are all distinct.
After k eliminations steps we are dealing with a projection p : Rn→Rn−k. The pro-
cess terminates when there are no more candidates for a pivot variable left in the
residual equations. Note that when there is only one residual equation left with a
variable with a non-zero coefficient, that variable a pivot variable so we can do one
more elimination, after which the set of residual equations is empty.

We will see in Chapter 4, the number of eliminations steps does not depend on
the order in which the pivot variables are chosen. Therefore we get an important
invariant of the system of equations, called the rank of the system. We will not use
that fact here. Start with a system S of m linear equations in n unknowns. Eliminate
one variable at a time: each time the set of solutions gets projected in a one-to-one
manner to the next lower dimension. After each elimination step, the number of
variables decreases exactly by one, while the number of equations decreases by at
least one. The elimination process terminates when

1. either the set of residual equations is non-empty, and they are all of the form
0 = b, because there are no more candidates for a pivot variable. As we have
already noted, in this case the system of equations could be inconsistent.

2. or the set of residual equations is empty. Then the system is consistent.

In both cases the variables that have not been eliminated are called the free variables.
When the system is consistent, the set of solutions is in bijection with Rr.

Thus we get two of the main theorems of linear equations.

Theorem 1.3.3. A system of n linear equations in m variables, m < n, is either in-
consistent or has an infinite number of solutions.

Proof. The first statement follows from repeatedly applying Proposition 1.1.12.
Next assume the system is consistent. In each projection there is one pivot variable,
and they are all distinct. So after at most m elimination steps, the process terminates,
because we run out of equations. Assume the actual number of steps is l ≤ m. Then
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we have at most m− l residual equations that do not contain any of the l pivot vari-
ables. Then by the hypothesis m < n, we have n− l > 0 free variables Therefore the
set of solutions is in bijection with Rn−p. ut

So this restricts the possibilities for the set of solutions of a system of linear
equations: if it is finite, then it is just one point.

We record a special case of the theorem:

Corollary 1.3.4. If there are k free variables left when elimination terminates, the
set of solutions is either empty or in bijection with Rk.

It is also worth recording the

Corollary 1.3.5. The system S is inconsistent if and only if there is a linear combi-
nation of its equations that reduces to 0 = b 6= 0.

At the end of the elimination process, we get a convenient representation of a
system of equations equivalent to any system S:

Theorem 1.3.6. Repeat the elimination process on the system of linear equations S
until it terminates. The system S is equivalent to a system with r equations

fi(x1,x2, . . . ,xn) = xi + ci,i+1xi+1 · · ·+ cinxn−bi = 0 , 1≤ i≤ r. (1.6)

for suitable scalars ci, j, j≤ i and bi. The xi, 1≤ i≤ r are the pivot variables, given in
the order they are eliminated and r is the total number of elimination steps needed.

This results is simply a translation of what we have already done, with a differ-
ence numbering of the pivots.

Example 1.3.7. Assume we are in R3, and that the system S has three equations, and
that we can eliminate x3. Then we get a new system S1 with two residual equation
in x1 and x2 only, and a single equation that can be written, after dividing by the
coefficient of 3 as x3 = a1x1 +a2x2−b for suitable real constants a1, a′2 and b.

Consider the zeroes of the two residual equations in the plane with coordinates x1
and x2. We have the intersection of two lines, therefore a point, in general. However
the intersection could be a line or empty, as we have already seen. Assume the
intersecion is a point. Now consider the zeroes of the residual equation in R3: for
each solution p of S1 in the x1x2 plane we get the whole vertical line above p in
R3, where the third coordinate is any real number. Then the remaining equation
x3 = a1x1 +a2x2−b picks out a unique point on this line which is a solution of the
original equation.

Thus geometrically we have done the following. To find the zeroes of S in R3

we project them to R2. then the remaining equation, from which x3 has not been
eliminated picks out a unique point in above the locus of projection.
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1.4 Examples of Elimination

Example 1.4.1. If S is the system

2x1 = 1 so f1 = 2x1−1,
x2 = 2 so f2 = x2−2,
x3 =−1 so f3 = x3 +1,

then it is clear consistent and the three equations are already the equations f (0)1 = 0,
f (1)2 = 0, and f (2)3 = 0, so r = 3. Of course this example is so simple we did not need
elimination.

The slightly more complicated example

2x1 + x2− x3 = 1
x2 + x3 = 2

x3 =−1

is solved the same way: no actual elimination occurs.

Example 1.4.2. Now we apply this process to Example 1.1.8, another inhomoge-
neous case.

2x1− x2 +3x3 = 1
4x1−2x2− x3 =−5

10x1−5x2−6x3 =−16

We eliminate x1 using the first equation. Our system gets replaced by the system
S(1), omitting the first equation of zeroes:

−7x3 =−7
−21x3 =−21

We eliminate x3 to get S(2), where all the coefficients are zero. So the original
system is consistent, r = 2, and our new system of equivalent equations is:

2x1− x2 +3x3 = 1
x3 = 1

Since there is only one unknown in the last equation, we can solve for it, getting
x3 = 1. Substituting this value in the first equation, we get

2x1− x2 =−2 (1.7)

which we recognize as the equation of a line in the plane. Thus there are an infinite
number of solutions: for each value of x2 we can find a solution
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x1 =
x2−2

2
.

A particular solution is given by (−1,0,1). Now let us consider the homogeneous
equation corresponding to 1.7. :

2x1− x2 +3x3 = 0
−7x3 = 0

Thus x3 = 0 and x2 = 2x1 is the most general solution of the homogeneous equation.
By Theorem 1.1.7, any solution to the inhomogeneous equation can be written

(−1,0,1)+(x1,2x1,0).

You should check that this is what we found above.

Exercise 1.4.3. Show that the following system has a unique solution:

x1− x2 +3x3 = 1
2x1− x2− x3 =−5

−2x1 + x2−2x3 =−2

Since numerical computation is error-prone you should substitute the values you
find into the original equations to confirm that you have not made a mistake.

Finally, you should check that the only solution to the corresponding homoge-
neous equation is (0,0,0), so that Theorem 1.1.7 is again verified.

Example 1.4.4. Next we treat the general case of two equations in two variables. We
use the usual notation

a11x1 +a12x2 = b1

a21x1 +a22x2 = b2

for the system S.
1. If all four coefficients ai j are zero, we are already in Case 1.
Otherwise we may assume that a11 6= 0 by interchanging the variables x1 and

x2, or the order of the equations if necessary. Then f (0)1 is just the first equation
a11x1 +a12x2−b1 = 0, and the new system S(1) is

0x1 +0x2 = 0 (1.8)

(a22−
a21

a11
a12)x2 = b2− a21

a11
b1

Examine carefully how the coefficients of the second equation are formed. The
expressions become cleaner if we multiply it by the non-zero quantity a11. We get
for the second equation:
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f (1)2 = (a11a22−a12a21)x2−a11b2−b1a21 = a(1)22 x2−b(1)2 = 0, (1.9)

using our usual notation.
2. If the coefficient of x2 is zero, then we are in Case 1. In the original variables

this coefficient is
a11a22−a12a21 = 0. (1.10)

If this happens, then if the right hand side is also 0, then the system is consis-
tent. If the right hand side is not 0, then we have a contradiction and the system is
inconsistent, as in Example 1.5. In both cases the analysis is over.

3. The last case to consider is the case where the coefficient of x2 in (1.9) is non-
zero. Then we are still in Case 2, so we do elimination again to get S(2) which is
just the trivial matrix.

Our general theorem says that the original system is equivalent to that formed
by the two equations f (0)1 = 0 and f (1)2 = 0. From the second equation we get the
unique solution

x2 =
a11b2−b1a21

a11a22−a12a21

so substituting this value into the first equation, we get

a11x1 +a12
a11b2−b1a21

a11a22−a12a21
= b1 = b1

a11a22−a12a21

a11a22−a12a21

or

a11x1 =
−a12a11b2−a12b1a21 +b1a11a22−b1a12a21

a11a22−a12a21
=
−a12a11b2 +b1a11a22

a11a22−a12a21

which simplifies, since a11 6= 0, to the unique solution

x1 =
b1a22−a12b2

a11a22−a12a21
.

So the system has a unique solution. Notice that the expression of x1 can be
obtained from that for x2 simply by interchanging the indices 1 and 2 everywhere.

Notice the key role played by the coefficient of x2 in (1.9). This is called the
determinant of the system, and is written∣∣∣∣a11 a12

a21 a22

∣∣∣∣ (1.11)

Similarly the numerators in the expressions for x1 and x2 are written∣∣∣∣b1 a12
b2 a22

∣∣∣∣ and
∣∣∣∣a11 b1
a21 b2

∣∣∣∣
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respectively. Notice how they arise from the determinant by replacing the appropri-
ate ‘column’ of the determinant by the right hand side of the equation. You have
probably seen these expressions for a previous mathematics class.

When the coefficients are the real numbers, our analysis has a geometric inter-
pretation in the plane with coordinates x1 and x2 . We only deal with the case the
equations are consistent. If all the coefficients are all zero, then the set of solutions
is the entire plane. Otherwise, if the coefficients of one equation are all zero, we are
just left with the other equation: the set of solutions is then a line. Otherwise, the
locus where each one of the equations is satisfied in a line: call them L1 and L2. The
locus where both are satisfied in the intersection of the two lines: what can that be?

1. The two lines could be the same: L1 = L2. Then the intersection is just this line,
so the system has an infinite number of solutions.

2. The two lines could be distinct and parallel: then the intersection is empty. So the
system is inconsistent.

3. If the two lines are not parallel, they meet in a point, giving a unique solution.

Exercise 1.4.5. How does the determinant change when two equations are inter-
changed?

Example 1.4.6. Finally we treat the general case of three equations in three vari-
ables. We first eliminate x2 as in the two variable case, getting a system with only
two variables, in addition to the equation in which x1 can be solved in terms of x2
and x3. We write the two new equations as

a(1)22 x2 +a(1)23 x3 = b(1)2

a(1)32 x2 +a(1)33 x3 = b(1)3 .

where the coefficients a(1)22 , a(1)23 , b(1)2 , a(1)32 , a(1)33 , b(1)3 can be written in terms of the
original coefficients.

From the 2× 2 case, we already know we can continue eliminating variables if
and only if one of the four quantities a(1)i j is different from 0. Otherwise the left-
hand sides of the two remaining equations are 0. Then if one of the right-hand sides
is different from 0, there is no solution; if both right-hand sides are 0, we are in fact
dealing with only one equation. the solutions of which form a plane in three-space.

If one of the four quantities a(1)i j is different from 0, by changing the numbering
of the variables and the order of the equations, we may assume without loss of
generality that a(1)22 6= 0. The final step is to eliminate the variable x2 from the last
equation, by adding to it a suitable multiple of the second equation. The last equation
becomes (

a(1)33 −a(1)32
a(1)23

a(1)22

)
x3 = b(1)3 −a(1)32

b(1)2

a(1)22

. (1.12)

To finish the analysis, we need to determine when the coefficient of x3 is non-zero.
Since we already know that a(1)22 6= 0, we can multiply (1.12) by that quantity, getting
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a(1)22 a(1)33 −a(1)32 a(1)23

)
x3 = a(1)22 b(1)3 −a(1)32 b(1)2 . (1.13)

Not surprisingly, this is precisely parallel to (1.9). Now we substitute in the origi-
nal coefficients and multiply by a suitable power of a11 6= 0. Then we get for the
coefficient of x3, up to a non-zero constant:(

a11a22−a21a12
)(

a33− a31
a11

a13
)
−
(
a11a23−a21a13

)(
a32− a31

a11
a12
)

= a11a22a33−a13a22a31−a12a21a33

−a11a23a32 +a12a23a31 +a13a21a32. (1.14)

It is called the determinant of the system: it was so named by Gauss in 1806. Gauss
formalized this elimination process, which is now called Gaussian elimination. In
the classic literature the determinant is always written∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ (1.15)

If it is non-zero, then the last equation gives a unique solution for x3, the second
equation a unique solution for x2 and the first equation a unique expression for x1.
If the system is homogeneous, the only solution is (0,0,0).

Exercise 1.4.7. In Example 1.4.3, determine the coefficients a(1)i j obtained after one
elimination, and then the coefficients obtained after the second elimination. In par-
ticular you should compute the determinant, which is 3.

Exercise 1.4.8. From the way we computed the unique solution in Example 1.4.6,
it may seem that several conditions need to be satisfied. First we need to to find a
ai j that is non-zero. Then we need to find a a(1)kl that is non-zero, where k 6= i and
l 6= j. Finally we need that the determinant (1.14) be non-zero. Show that if either
of the first two conditions fails, then the determinant is zero. Thus the vanishing of
the determinant by itself tells us if there is a unique solution to the system. So far we
only have this for a 3×3 system, but, as we will see later, the result is true generally.

Exercise 1.4.9. Work out the right hand side of equation (1.13) exactly as we did
for the coefficient of x3 in (1.14).

Remark 1.4.10. What is the difference between doing the computation of the so-
lution as in Example 1.4.3 and in Example 1.4.6? The first difference is that the
method in Example 1.4.6 applies to any set of coefficients, and tells us exactly when
the method fails. It does this by treating the coefficients as variables. This is a major
advantage.

On the other hand, treating the coefficients as variables makes the computation
more difficult. In fact, when there are a large number of variables, which often hap-
pens in applications, the general method is not feasible. The difference, in modern
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computer terminology is that in Example 1.4.3 we are doing a numerical computa-
tion, while in Example 1.4.6 we are doing a computer algebra computation, which
explodes as the number of variables becomes large.

Remark 1.4.11. The determinant is a function of the coefficients. If one randomly
chooses values for the coefficients, the probability that the determinant vanishes is
zero. Why?

Thus a non-zero determinant is the expected case. In fact, in the theory of equa-
tions, it was well known, from the earliest times that every time one imposes an
equation on n variables, the degrees of freedom of the variables should go down by
one. Thus the key case is the case of n equations, where there should be 0 degrees
of freedom, meaning a finite number of solutions. As we already see that for the
examples above, this is not always true, even in the case of linear equations.

The classic expression for the solution of a system of n equations in n variables
was given by Cramer in 1750. We will return to it when we study determinants in
Chapter 11.

1.5 Consequences of Linear Systems

We now record the following interesting corollary of elimination. This section is not
used later in the book.

A consequence of the linear system S to be any linear equation :

g(x) = d1x1 + · · ·+dnxn− e = 0 (1.16)

that vanishes on the zeroes Z(S). This definition is uninteresting when Z(S) = /0,
since any linear equation is then a consequence of S. So we will only use the defini-
tion when S is consistent.

Corollary 1.5.1. Any consequence of a consistent system S can be written as a lin-
ear combination of the equations in S.

Proof. It is enough to show that the consequence (1.16) is a linear combination of
the fi given in (1.6), since these are linear combinations of the equations in S. Here
is how we do this. We first replace g by

g(1) = g−d1 f (0)1 .

Because both g and f (0)1 vanish on Z(S), so does their difference g(1). By construc-
tion g(1) does not contain the first pivot. Continuing in this way we can successively
eliminate all the pivot variables until we get a g(r) that contains none of the pivot
variables. It too is a consequent of S, so it vanishes of Z(S). If g(r) contains any
variables (which must be free variables) then it fails to vanish somewhere in the
projected set of solutions. This is impossible since by elimination the inverse image
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of any point in the projection of Z(S) is non-empty. So g(r) contains no variable, so
it is of the form 0= b. Since we assume the system S is consistent, b is 0, which says
precisely that the equation g we started with is a linear combination of the equations
in S. ut

1.6 Diagonally Dominant Systems

This section is not used later in the book. It is a source of examples of n× n ho-
mogenous systems whose only solution is the trivial one.

Suppose we have a homogeneous system of n equations in n variables, which we
write in the usual way as

a11x1 +a12x2 + · · ·+a1nxn = 0, (1.17)
a21x1 +a22x2 + · · ·+a2nxn = 0,

...
an1x1 +an2x2 + · · ·+annxn = 0

where the ai j can be real or complex.
Assume that the system is diagonally dominant. This means that for each equa-

tion fi in the system

|aii|>
n

∑
j=1, j 6=i

|ars|, for 1≤ i ≤ n. (1.18)

Thus the absolute value of the ‘diagonal coefficient’ aii is greater than the sum of
the absolute values of the other coefficients in the same equation. Then

Theorem 1.6.1. The only solution to a diagonally dominant system is the trivial
solution x j = 0, 1≤ j ≤ n.

Proof. We prove this by contradiction. Assume there is a non-trivial solution
x j = c j, for constants c j. Some |ck| is greatest among the |c j|, 1 ≤ j ≤ n. Since
the solution is non-trivial, |ck|> 0. Because the c j form a solution, all equations, in
particular the k-th equation vanishes:

akkck =−
n

∑
j=1, j 6=k

ak jc j,

so that

|akk||ck| ≤
n

∑
j=1, j 6=k

|ak j||c j|.

By choice of k, |ck| ≥ |c j| for all j, so
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|akk||ck| ≤
n

∑
j=1, j 6=k

|ak j||ck|.

Divide by |ck|> 0 to get

|akk| ≤
n

∑
j=1, j 6=k

|ak j|.

This contradicts the hypothesis that the system is diagonally dominant. ut

So we have a way of producing n×n homogeneous systems that only have the trivial
solution. The proof works (just by relabeling the variables) as long as there is one
coefficient in each equation that satisfies the equivalent of (1.18), as long as that
coefficient is that of a different variable in each equation.

Example 1.6.2. Consider the homogeneous n× n system with aii = ±n and all the
other terms ai j = ±1, i 6= j. This system is diagonally dominant, as you should
check

Exercise 1.6.3. Write down some numerically explicit diagonally dominant 3× 3
systems, especially where the diagonal coefficients are negative.

Exercise 1.6.4. Now take a diagonally dominant system with real coefficients. As-
sume that that all the diagonal terms are positive. Then do Gaussian elimination.
Show that at each step the new system obtained is diagonally, so Gaussian elimina-
tion can continue without changing the order of the equations. Thus the system only
has the trivial solution.

Exercise 1.6.5. Do Gaussian elimination on any example of diagonally dominant
matrices you found in Exercise 1.6.3 that satisfies the hypotheses of Exercise 1.6.4.

1.7 History

Example 1.7.1. Babylonians already knew how to solve this problem: see Neuge-
bauer [20], p. 181-183, in two variables at least. Here is a typical example. A field
of area a is to be planted with two different grains, one where the yield per unit area
is g1, the other where the yield is g2. The goal is to have a certain total yield b of
both grains, and the question is how much surface area x1 to plant in the first grain,
and how much x2 to plant in the second grain. If the area of the field is a, then we
have the two inhomogeneous linear equations

x1 + x2 = a;
g1x1 +g2x2 = b.

Here is the Babylonian method of solution. If you plant half the surface area in grain
1, and the rest in grain 2, you get a difference from the desired yield of
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b− (
a
2

g1 +
a
2

g2)

= g1x1 +g2x2−
x1 + x2

2
(g1 +g2)

= g1x1 +g2x2−
1
2
(g1x1 +g2x2 +g1x2 +g2x1)

=
1
2
(g1x1 +g2x2−g1x2−g2x1)

=
1
2
(g1−g2)(x1− x2)

This allows us to solve for (x1− x2)/2 on the right hand side:

x1− x2

2
= b− (

a
2
)

g1 +g2

g1−g2

Since the first equation gives us x1+x2
2 = a

2 , by adding and subtracting we can find
x1 and x2.

This is actually more than just a linear algebra problem, in that we insist that the
solutions x̄1 and x̄2 be non-negative. Therefore xi ≤ a. We may assume that g1 ≥ g2.
Then we must have g1a≥ b and g2a≤ b. The numerical case that is actually treated
is (in suitable units) a = 30, b = 18.2, g1 = 20 and g2 = 15.

However, if we forget about this positivity requirement, the only case where we
will not get a unique solution is when g1 = g2, which makes perfect sense. If the
yields of the two grains are the same, it obviously does not matter how much we
plant of one or the other. If g1 = g2 then we only get a solution if a = b/g1.

A shorter account of Babylonian Mathematics, in English, is given by Neuge-
bauer in [19]. A more recent account in given in Robson [22]

Example 1.7.2. Chinese linear algebra is very well presented in Roger Hart’s book
[11].

Example 1.7.3. In a letter to De L’Hospital in 1693 Leibnitz indexed the coefficients
of linear equations in the way we do above: the first index gives the equation the
coefficient belongs to, and the second the ‘letter’ it belongs to. Then he shows how
to eliminate the letters. His fundamental example is the inhomogeneous system of
n+1 equations in n variables, which is our notation would be written:

a10 +a11x1 +a12x2 + · · ·+a1nxn = 0
a20 +a21x1 +a22x2 + · · ·+a2nxn = 0

...
an+1,0 +an+1,1x1 +an+1,2x2 + · · ·+an+1,nxn = 0

from which he concludes that the system has a solution if and only if the determinant
of the square matrix of all the (ai j), 1 ≤ i ≤ n+ 1, 0 ≤ j ≤ n. Leibnitz’s letter was
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only published in 1850, so his work did not have an effect on he development of
linear algebra.

Instead, it is the 1750 work of Cramer that became famous because of its solu-
tion to (1.19), but where there are as many equations as variables. This rule is still
referred to today in linear algebra books as Cramer’s rule.

For more details on the early history of the solution of linear equations, see [18],
Volume 1.

Example 1.7.4. We have seen that elimination from linear equations is rather easy.
If we allow, instead of just equalities, a mixture of equalities and inequalities, the
problem becomes more interesting. It was first considered by Fourier in 1826. We
will consider this situation in Chapter 15. For comprehensive details also consult
the first chapter of [27].





Chapter 2
Matrices

Abstract Matrices are the fundamental tool for computing in linear algebra. They
are defined and studied in this chapter. After defining matrices themselves, our first
task is to define the three fundamental matrix operations. The only difficult one is
matrix multiplication. Then we focus on square matrices, the most interesting case
we cause we can multiply two square matrices of the same size, and consider which
ones have an inverse, a fundamental concept in linear algebra. In the two sections
§2.4 and §2.9 on submatrices and block decomposition of matrices, we write matri-
ces and parts of matrices in new ways. This will be useful later in the course. Then
in a fundamental section we write systems of linear equations in terms of matrices,
and we redo Gaussian elimination, studied in the first chapter, in the language of
matrices. Using the same operations as in the first chapter, we put the matrix of
coefficients in row echelon form, and then in reduced row echelon form, which is
ideal for solving systems of linear equations. We see how this corresponds to row
operations, that can be implemented by left multiplication of the matrix of coeffi-
cients by elementary matrices, which are very simple square matrices. Noting that
elementary matrices are invertible, we show that any invertible matrix is a product
of elementary matrices.

2.1 Matrices

The term matrix was proposed by Sylvester in his 1850 article [29] in the Philo-
sophical Magazine. See Muir [18], Volume 2, p. 51. It is surprising to realize that
matrices were only conceptualized as independent entities a hundred years after the
theory of the solution of linear equations was understood.

A matrix of size m× n is a collection of mn scalars indexed in the following
particular way:

ai j,1≤ i≤ m,1≤ j ≤ n.

These scalars are called the entries of the matrix.

21
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We will write our matrices using capital roman letters, and their entries by the
same lower case roman letter, with a double index. So for example, if A is a m× n
matrix, we write A = (ai j), where 1≤ i≤ m and 1≤ j ≤ n. We also write matrices
out as rectangular arrays: 

a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 (2.1)

which allows us to talk about the rows and the columns of a matrix. We write the
i-th row of the matrix A as ai and the j-th column as a j.

So the 2×3 matrix

A =

(
1 2 4
−1 3 5

)
has two rows and three columns, and

a2 =
(
−1 3 5

)
and a3 =

(
4
5

)
Definition 2.1.1. A matrix of size n× 1 is called a column vector of length n, or
a n-column vector. A matrix of size 1×m is called a row vector of length m, or a
m-row vector. Column vectors are written

x =


x1
x2
...

xn


but in the body of the text we will often write column vectors as a row vector, but
with brackets: x =

[
x1 . . . xn

]
. If we just say vector, we always mean a column

vector.

Definition 2.1.2. We can define two simple operations on m×n matrices A and B.

1. First addition: A+B =C where C = (ci j) is the m×n matrix with ci j = ai j +bi j
for all i, j. Thus the corresponding entries are added.

2. Then multiplication by a scalar c: cA = (cai j), so each entry of the matrix A is
multiplied by the scalar c.

Definition 2.1.3. We can combine these two operations to form a linear combina-
tion of m× n matrices A1, . . . , Ak, using scalars c1, . . . , ck: This is just the m× n
matrix

A = c1A1 + · · ·+ ckAk.

This is the same concept as for systems of linear equations: see Definition 1.1.3.

Exercise 2.1.4. Determine the entry ai j of the matrix A in terms of c1, . . . , ck and
the entry in position (i, j) of the matrices A1, . . . , Ak.
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Definition 2.1.5. Here are some special and important matrices to which we give
names. First note that the diagonal of a square matrix A is the set of entries with
equal indices: aii. The remaining elements are the off-diagonal terms.

• The m×n whose entries are all zero is written 0, or 0m×n if it is important to keep
track of its size. The remaining definitions concern square matrices.

• The square matrix A is diagonal if all its off-diagonal terms are 0.
• The identity matrix I is the diagonal matrix with all diagonal terms equal to 1. If

its size n needs to be recalled we write In. We usually write the entries of I as ei j.
So eii = 1 for all i, and ei j = 0 if i 6= j.

• A is upper-triangular if all the terms below the diagonal are zero. In other words
ai j = 0 when i > j. Correspondingly A is lower triangular if ai j = 0 when i < j.

Here are some examples in the 3×3 case.

03×3 =

0 0 0
0 0 0
0 0 0

 and I3 =

1 0 0
0 1 0
0 0 1

 (2.2)

The matrix

A =

1 2 3
0 −2 0
0 0 5

 (2.3)

is upper triangular and

B =

1 0 0
2 −2 0
3 0 5

 (2.4)

is lower triangular.

Definition 2.1.6. The transpose of a m× n matrix A = (ai j) is the n×m matrix
B = (bi j) such that bi j = a ji. The transpose of A is written At . Thus the rows of A
are the columns of St , and the columns of A are the rows of At . Obviously (At)t = A.
A square matrix that is equal to its transpose is called symmetric.

A row vector is the transpose of a column vector, and will usually be written xt

to make it explicit that we are dealing with a row vector.
The transpose of an upper triangular matrix is lower triangular. See the matrices

A and B above..

Example 2.1.7. The transpose of the matrix

A =

(
1 2 4
−1 3 5

)
is At =

1 −1
2 3
4 5

 .

The matrix
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2 3 −1
4 −1 −2


is symmetric.

Now assume our matrix has complex entries. Then using complex conjugation
(reviewed in Section B.5) we get the important:

Definition 2.1.8. The conjugate of the complex m×n matrix A = (ai j) is A = (ai j).
The conjugate transpose of A is the n×m matrix B= (bi j) such that bi j = a ji. The

conjugate transpose of A is written A∗. A square matrix that is equal to its conjugate
transpose is called hermitian. This is the most important kind of complex matrix. If
A is real, its conjugate transpose is the same as its transpose, and to be hermitian is
to be symmetric.

Example 2.1.9. The conjugate transpose of the square matrix

A =

(
1 2+ i
−1 3− i

)
is A∗ =

(
1 −1

2− i 3+ i

)
.

The matrix (
1 2− i

2+ i 3

)
is hermitian.

Problem 2.1.10. Show that for any square matrix A, the matrix A+At is symmetric.

Problem 2.1.11. For any two matrices A and B of the same size, show that

(A+B)t = At +Bt .

Problem 2.1.12. Show that for any square matrix A, the matrix A+A∗ is hermitian.
Show that the diagonal elements of a hermitian matrix are real.

2.2 Matrix Multiplication

The fundamental matrix operation is multiplication of a m×n matrix A with a col-
umn vector x of length n to yield a column vector of length m.. Here is the all-
important formula:


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn




x1
x2
...

xn

=


a11x1 +a12x2 + · · ·+a1nxn
a21x1 +a22x2 + · · ·+a2nxn

...
am1x1 +am2x2 + · · ·+amnxn

 (2.5)
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If we replace the column vector on the right hand side by b, then we have recre-
ated (1.1.1) using matrix notation: Ax = b.

Note the important special case where A is a row vector:

Definition 2.2.1.

(
a1 a2 . . . an

)


x1
x2
...

xn

= a1x1 +a2x2 + · · ·+anxn.

Calling the row vector a and the column vector x, we get ax.

Later in this book we will also call this the inner product, or scalar product of the
two vectors a and x, written 〈a,x〉. See Chapter 8.

Example here.

Exercise 2.2.2. If A is any m×n matrix, show that ImA = A and AIn = A.

Definition 2.2.3. The product C = AB of a m× n matrix A multiplied on the right
by a n× r matrix B is the m× r matrix C = (cik), where

cik = ai1b1k +ai2b2k + · · ·+ainbnk.

Using summation notation, we have

cik =
n

∑
j=1

ai jb jk.

Note that as often in such cases we are summing over the repeated index j.

Remark 2.2.4. We can only form the product AB of a m×n matrix A by a r×s matrix
B if n = r. In that case the product is a m× s matrix. This of course still works when
B is a column vector of length n, the special case where s = 1, in which C = AB is a
column vector of length m.

Remark 2.2.5. In terms of the rows ai of A and the columns bk of B, matrix multi-
plication can be written using the notation of Definition 2.2.1 as:

AB =


a1b1 a1b2 . . . a1br
a2b1 a2b2 . . . a2br

...
...

. . .
...

amb1 amb2 . . . ambr

 (2.6)

which we can write more compactly as cik = aibk, 1≤ i≤ m, 1≤ k ≤ r,

Exercise 2.2.6. Work out the matrix multiplication of a row vector A, namely a 1×n
matrix, by a n× r matrix B.
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Observe from (2.6) that the k-th column ck of C only depends on k-th column bk
of B, while the i-th row ci of C only depends on the i-th row ai of A. In fact:

Proposition 2.2.7. If AB =C, then Abk = ck, 1≤ k ≤ r, and aiB = ci, 1≤ i≤ m.
This can be reformulated:

ck = b1ka1 + · · ·+bnkan =
n

∑
j=1

b jka j (2.7)

and

ci = ai1b1 + · · ·+ainbn =
n

∑
j=1

ai jb j, (2.8)

showing that the columns ck of C are linear combinations of the columns a j of A,
and the rows ci of C are linear combinations of the rows b j of B.

Proof. The first two equalities are the special cases of (2.6) when B has only one
column and A has only one row.

For the reformulation,

ck =


c1k
c2k
. . .
cmk

=


a11b1k +a12b2k + · · ·+a1nbnk
a21b1k +a22b2k + · · ·+a2nbnk

. . .
am1b1k +am2b2k + · · ·+amnbnk



=


a11b1k
a21b1k
. . .

am1b1k

+


a12b2k
a22b2k
. . .

am2b2k

+ · · ·+


a1nbnk
a2nbnk
. . .

amnbnk



= b1k


a11
a21
. . .
am1

+b2k


a12
a22
. . .
am2

+ · · ·+bnk


a1n
a2n
. . .
amn

= b1ka1 + · · ·+bnkan.

The second reformulation is proved the same way, so the proof is left to you. ut

Exercise 2.2.8. Prove the second reformulation.

Exercise 2.2.9. For any m×n matrix A, compute the product A0, where 0 is the zero
matrix of size n× r. Also compute 0A, where 0 is the zero matrix of size s×m.

Theorem 2.2.10. Let A be a m× n matrix, B a n× r matrix, and C a r× s matrix.
Then

A(BC) = (AB)C.

Thus matrix multiplication is associative.

Proof. We first write down the (i,k)-th element of the matrix AB:
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ai1b1k +ai2b2k + · · ·+ainbnk =
n

∑
j=1

ai jb jk

Using this, we form the (i, l)-th element of the matrix (AB)C:

r

∑
k=1

( n

∑
j=1

ai jb jk
)
ckl =

r

∑
k=1

( n

∑
j=1

ai jb jkckl
)
. (2.9)

If instead we write down the ( j, l)-th element of the matrix CD:

b j1c1l +b j2c2l + · · ·+b jrcrl =
r

∑
k=1

b jkckl

we can form the (i, l)-th element of the matrix A(BC):

n

∑
j=1

ai j
( r

∑
k=1

b jkckl
)
=

n

∑
j=1

( r

∑
k=1

ai jb jkckl
)
. (2.10)

We need to convince ourselves that the sums in (2.9) and (2.10) are the same. This
is true because we are summing the same terms over the same variables: we have
changed the order of summation, but in finite sums that makes no difference. ut

Example 2.2.11. When all the matrices are 2× 2, for the triple product D we get,
both ways

d11 = a11b11c11 +a11b12c21 +a12b21c11 +a12b22c21

d12 = a11b11c12 +a11b12c22 +a12b21c12 +a12b22c22

d21 = a21b11c11 +a21b12c21 +a22b21c11 +a22b22c21

d22 = a21b11c12 +a21b12c22 +a22b21c12 +a22b22c22

Notice the beautiful pattern.

Exercise 2.2.12. In the two cases below, compute (AB)C and A(BC) and note they
are equal.

1. A 2×2, B 2×2, C 2×2 with numeric values.
2. A 2×3, B 3×2, C 2×2 with numeric values.

Theorem 2.2.13. Let A and B be m×n matrices, and let C and D be n× r matrices,
and let c ∈ F be a scalar. Then

A(C+D) = AC+AD and (A+B)C = AC+BC.

So matrix multiplication distributes over matrix addition, whenever the two opera-
tions are possible. Furthermore

(cA)(D) = c(AD) and A(cD) = c(AD).

Proof. By Definition 2.2.3, the element of A(C+D) in position (i,k) is
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A(C+D)ik = ai1(c1k +d1k)+ai2(c2k +d2k)+ · · ·+ain(cnk +dnk)

= ai1c1k +ai2c2k + · · ·+aincnk +ai1d1k +ai2d2k + · · ·+aindnk

= (AC)ik +(AD)ik

The other parts of the proof can be done the same way. Instead, we prove (cA)(D) =
c(AD) by noting that the i-th row of cA is cai, so by Definition 2.2.1 the (i,k)-th entry
of (cA)(D) is

(cai)dk = c(aidk).

This is c times the (i,k)-th entry of AD, as required. ut

Exercise 2.2.14. Prove (A+B)C = AC +BC by writing the (i,k)-th entry of each
side in terms of the appropriate rows of A and B and columns of C.

Proposition 2.2.15. If A is a m×n matrix, and B a n×r matrices, then (AB)t =BtAt .

So the transpose of a product is the product of the transposes, but in the reverse
order. Note that At is a n×m matrix, and Bt a r× n matrix, so the product BtAt

is possible. The proof is easy and left to you. Write C = AB, and D = BtAt , and
compare the (i,k)-th entry of C with the (k, i)-th entry of D.

Exercise 2.2.16. If A is a m×n matrix, B a n×r matrices, and C a r×s matrix, then
(ABC)t =CtBtAt .

Exercise 2.2.17. For complex matrices, show that AB = AB. Then show that for the
conjugate transposes, (AB)∗ = B∗A∗.

Definition 2.2.18 (Matrix Multiplication Algorithm). Here are the details for the
computation of the product matrix C = AB, done in place, with the entries cik first
being initiatized to 0 and then being updated:

for i = 1 : m,
for k = 1 : r,

for j = 1 : n,
cik = ai jb jk + cik

end
end

end

The first two loops just tell you which entry you are working with; with the inner
loop producing the sum of products. in the formula.

2.3 Square Matrices

A square matrix is a matrix with the same number of rows as columns. Instead of
saying a ‘n×n matrix’, we will sometimes say a ‘square matrix of size n’. The extra
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feature that arises when dealing with two square matrices A and B of the same size it
that we can form both products AB and BA. As a special case we can raise a square
matrix A to any power, which we write An. In fact we can take polynomials in the
square matrix A:

An + cn−1An−1 + · · ·+ c1A+ c0I.

Because matrix multiplication is associative and the matrices A and the identity
matrix I commute (AI = IA = A), polynomials in matrices behave like ordinary
polynomials. We will use this intensively later in this book.

Remark 2.3.1. Matrix multiplication is not necessarily commutative. If A and B are
two square matrices of the same size n, so that AB and BA are both square matrices
of size n, it is not necessarily the case that AB = BA. Proposition 2.2.7 shows how
to construct examples systematically.

Give examples here.

Exercise 2.3.2. Let A and B be square matrices that commute: AB = BA. Using The-
orem 2.2.13, show that

(A+B)3 = A3 +3A2B+3AB2 +B3 and (A+B)(A−B) = A2−B2.

This shows that we can do algebra with squares matrices as with numbers, taking
account, of course, that matrix multiplication is not generally commutative.

One key feature of multiplication of numbers is that there is a neutral element
for multiplication, usually denoted 1. There also is a neutral element for matrix
multiplication, the identity matrix I.

Continuing the analogy with multiplication of numbers, we may ask if every
square matrix other than 0 has an inverse. What does that mean?

Definition 2.3.3. A square matrix A has an inverse if there exists a square matrix B,
called the inverse of A, of the same size as A such that

AB = I = BA. (2.11)

The equation AB = I says that B is a right inverse of A, and BA = I says that B is a
left inverse of A.

So we require that A have a left inverse and a right inverse, and that they be the same.
It is reasonable to require both, since matrix multiplication is not commutative. It is
easy to show that we do not need all this.

Theorem 2.3.4. If A has an inverse, then its inverse B is unique. If A has a left
inverse B and a right inverse C, then they are equal and the inverse of A.

Proof. Assume there is another matrix C satisfying (2.11) when C replaces B. Then

C =CI =C(AB) = (CA)B = IB = B. (2.12)

This proves the first statement. The proof only uses that C is a left inverse and B a
right inverse, so we get the last statement. ut
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Definition 2.3.5. If A has an inverse, it is said to be invertible or nonsingular. The
unique inverse is written A−1. A matrix that is not invertible is singular.

Obviously (A−1)−1 = A.

Exercise 2.3.6. Show by direct computation that the inverse of the upper triangular
matrix 

1 1 . . . 1 1
0 1 . . . 1 1
...

...
. . .

...
0 0 . . . 1 1
0 0 . . . 0 1

 is


1 −1 . . . 0 0
0 1 −1 . . . 0
...

...
. . . . . .

...

0 0
. . . 1 −1

0 0 . . . 0 1


Proposition 2.3.7. Any product of invertible matrices A and B is invertible, and
(AB)−1 = B−1A−1.

Proof. Indeed just compute, using the associativity of matrix multiplication:

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

and
(AB)(B−1A−1) = A(BB−1)A−1 = A−1IA = A−1A = I.

ut

Proposition 2.3.8. If a matrix A is invertible, its transpose At is too.

Proof. This is easy. Let B be the inverse of A, so AB = I = BA. Take transposes
using Proposition 2.2.15 to get BtAt = I = AtBt , so C = At is invertible. ut

Exercise 2.3.9. Show that the inverse of the transpose is the transpose of the in-
verse: (At)−1 = (A−1)t . Hint: take the transpose of the identity AA−1 = I and use
the uniqueness of the inverse.

Exercise 2.3.10. If a complex matrix A is invertible its conjugate A is invertible. Its
conjugate transpose A∗ is also invertible, with inverse (A−1)∗.

One of the main questions of linear algebra is: which square matrices are invert-
ible? Clearly not the zero matrix, since its product with any matrix is again the zero
matrix. However there are many other square matrices that are non invertible. An
important goal of this course is to develop criteria telling us when a matrix is invert-
ible. In particular we will associate to every square matrix of size n a number r ≤ n
, called its rank, and prove that the matrix is invertible if and only if r = n. The rank
of any matrix (not just square matrices) is defined in §5.6. Later we will show that
a square matrix is invertible if and only if its determinant is non–zero: Corollary
11.3.13.

For triangular matrices we can give an criterion for invertibility. Later in this
chapter we will give a less computational proof of the same statement, so you can
skip the second half of the proof.
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Proposition 2.3.11. A diagonal matrix A is invertible if and only if all its diagonal
entries are non-zero. Its inverse B is diagonal with diagonal elements bii =

1
aii

.
An upper–triangular matrix A is invertible if and only if all its diagonal elements

are non-zero. Its inverse B is also upper-triangular, with diagonal elements bii =
1

aii
.

Similarly for lower–triangular matrices.

Proof. The first assertion is of course special case of the second one, but it is worth
giving the one–line proof: just multiply A by the matrix B given by the statement of
the proposition, and note that the product is the identity matrix.

Now assume A is upper–triangular, so ai j = 0 when i > j. We will attempt to
solve for its inverse B, and determine under which conditions on A and B this can
be done. Assume B is the inverse of the upper–triangular A. Then last row of AB,
which is supposed to be

[
0 . . .0 1

]
is[

annbn1 annbn2 . . . annbnn
]

showing ann 6= 0 and bnn = 1/ann since the last entry must be 1. Then bn j = 0 for all
the others. Using these values, we see that the first n− 1 entries of the next-to-last
row are [

an−1,n−1bn−1,1 an−1,n−1bn−1,2 . . . an−1,n−1bn−1,n−1
]

So in the same way, we see that an−1,n−1 6= 0 and bn−1,n−1 = 1/an−1,n−1 and there-
fore bn−1, j = 0 for j = 1, . . . ,n− 2. Furthermore bn−1,n−1 = 1

an−1,n−1
. Continuing

this argument by decreasing the row index, we see that all the diagonal entries of
A are non-zero, and B is also upper-triangular with non-zero elements bii =

1
aii

on
the diagonal. This shows that an upper–triangular matrix is only invertible if all its
diagonal elements are non–zero, and it computes the diagonal entries

Now prove the converse: assume A is upper–triangular with non–zero diagonal
terms. Then we prove it it has a right inverse B. We have already shown that B is
upper-triangular with diagonal terms bii =

1
aii

. Next we solve for the terms bi,i+1.
Take the product of the i-th row of A with the i+1-th column of B, we, get, for the
(i, i+1)-th entry of the product, which must be 0:

aiibi,i+1 +ai,i+1b1+1,i+1 = 0

We already know b1+1,i+1, and aii is non–zero, so we can solve for all elements
bi,i+1, 1≤ i≤ n−1. This allows us to compute all the terms on the super diagonal.
Continue in this way: next we solve for the elements bi,i+2 in terms of the b j j and
b j, j+1. in other words, by induction on j− i we compute bi j, i < j, by evaluating the
i j term of the product AB, which must by 0:

aiibi j +ai,i+1b1+1, j + · · ·+ai, j−1b j−1, j +ai jb j j = 0

Thus bi, j can be solved in terms of bk, j with j−k < j− i. Thus A has a right inverse.
By repeating the argument on CA, we see that A has a left inverse. So by Theorem
2.3.4, it is invertible.
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For the lower-triangular case just reduce to the upper-triangular case by taking
transposes. ut

Example 2.3.12. Consider the n×n matrix

A =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
...

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0


with

ai j =

{
1, if j = i+1;
0, otherwise.

A is not invertible, as we know. Furthermore, it satisfies An = 0, but An−1 6= 0. Work
out the multiplication and determine what all the Ak are.

A matrix A for which a power Ak is the 0 matrix is nilpotent. Being nilpotent im-
plies A is singular. Indeed, suppose by contradiction that A is invertible with inverse
B, so

AB = I.

Let k be the smallest integer such that Ak = 0 Multiply the equation by the matrix
Ak−1 on the left, giving This gives AkB = Ak−1, an impossibility since the left hand
side is 0 and the right hand side is not.

How do you decide if a general square matrix A is invertible? Use Gaussian
elimination, as described in §2.5 to transform A into a upper triangular matrix B.
Then show that A is invertible if and only if B is: this is Proposition 2.8.8. Then
apply Proposition 2.3.11 to B

2.4 Submatrices

This short section only contains definitions. Given a m× n matrix A, it is useful to
refer to submatrices of A.

In this chapter we will only need very special cases of submatrices: first we may
remove the first k rows of A. Therefore we are left with a (m−r)×n matrix B where
bi j = ai+k, j. We might remove the first l columns, getting the matrix m× (n− l)
matrix C with ci j = ai, j+l . Of course we could also do both simultaneously, to get a
matrix D with di j = ai+k, j+l . These are the submatrices we will need immediately.

For later purposes we need notation for the general case. No need to read this
until you need it. Pick first a certain number k of rows of A: those with indices i1,
i2, . . . , ik. Then pick first a certain number l of rows of A: those with indices j1,
j2, . . . , jl . For short call I the collection of indices of rows, and J the collection of
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indices of columns. Then we can form a k× l submatrix of A, indexed by the rows
and columns:

AI
J = A(i1, . . . , ik; ji, . . . , jl) =

ai1 j1 . . . ai1 jl
...

. . .
...

aik j1 . . . aik jl

 (2.13)

A principal submatrix arises from picking the same rows as columns. Our nota-
tion is

AI = A(i1, . . . , ik) =

ai1i1 . . . ai1ik
...

. . .
...

aiki1 . . . aikik

 (2.14)

The leading principal submatrix of size k is A(1,2, . . . ,k): pick the first k rows
and the first k columns of A.

Principal submatrices are by definition square, while more general submatrices
are only square if k = l.

Example 2.4.1. Assume A is the matrix1 2 3
4 5 6
7 8 9

 .

Then the notation A(1,2;2,3) means to take the first two rows of A, and the second
and third columns.

A(1,2;2,3) =
(

2 3
5 6

)
, while A(1,2) =

(
1 2
4 5

)
is the leading principal submatrix of size 2 of A.

More numerical examples here.

2.5 Gaussian Elimination in Matrix Notation

We now redo elimination on systems of linear equations, studied in §1.3, using ma-
trix notation and operations. Equation (1.1) can be written Ax = b, where A is the
m× n matrix (ai j), x is the column vector of n unknowns, and b is the m-column
vector of constants. Recall that we call this system of equations S, and its set of
solutions Z(S).

The key point is that the operations on linear equations used to derive Theorem
1.3.3 and others can be formulated in terms of matrix operations on A and b. We will
work with two different matrices: either the m× n matrix A, called the coefficient
matrix or the matrix m× (n+1) whose first n columns form the coefficient matrix
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A, and whose last column is b. It is called the augmented matrix and usually written(
A | b

)
.

Example 2.5.1 (Special Case). We start with the simplest, but most important case:
the matrix A is invertible matrix, and therefore square. So the system S has the same
number of variables as of equations. Then, multiplying both sides of the equation
by the inverse A−1 of A, we get the unique solution x = A−1b of the system. So
Z(S) is a point. In particular the system is consistent. To get the solution we need to
compute A−1. We will learn one way of doing this in §2.6.

The goal of Gaussian elimination in the general case is to replace the augmented
m× (n+1) matrix

(
A | b

)
by a simpler matrix

(
C | d

)
of the same size, where the

systems Ax = b and Cx = d are equivalent, meaning they have the same solutions.
The i-th equation of the system Ax = b can be written aix = bi, where ai is the i-th
row of A.

If we multiply the i-th equation by the non-zero scalar c, the i-th row ai of A is
replaced by cai, bi is replaced by cbi, so the solutions Z(S) do not change. We are
using the operation of multiplication of a matrix (in this case a row vector) by a
scalar, see Definition 2.1.2.

If we interchange two equations, say the first and the second equations, then we
interchange the first and second row of

(
A | b

)
. This also does not change Z(S).

Finally, if we add to the second equation, a multiple c of the first equation, then
we replace the second row of A by a2+ca1, and leave the other rows unchanged. We
replace the second element b2 of b by b2 + cb1. Here we are using the operation of
matrix addition (in the case of row vectors) in addition to multiplication by a scalar:
again see Definition 2.1.2.

Motivated by these operations, we make the following definition. We only write it
down for a matrix A that can stand for either the coefficient matrix or the augmented
matrix.

Definition 2.5.2. Given a m×n matrix A, if we perform one of the following three
rows operations on A, the new m×n matrix A′ is row equivalent to A:

1. Multiply a row of A by a non-zero constant;
2. Interchange two rows of A;
3. Add to a row of A a multiple of a different row.

More generally if A can be transformed into A′ by a finite sequence of row opera-
tions, A′ is row equivalent to A.

You should now use the matrix in Example 1.4.3 to repeat the operations we did
on the system of equations.

Theorem 2.5.3. Row equivalence is an equivalence relation on m×n matrices.

Proof. We must check the three properties of Definition B.2.1.
First A is row equivalent to itself: use, for example, the trivial row interchange.
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Next we need to show that if A is row equivalent to A′, then A′ is equivalent to
A. The key is to realize that each one of the three row operations has an inverse
operation that undoes it. So it you multiply the i-th row of A by c 6= 0 to get A′, then
by multiplying the i-th row of A′ by 1/c you get A back. The reader should find the
inverse for the other two operations.

Finally we need to show that if A is row equivalent to B and B to C, then A is
row equivalent to C. This is clear: just use the row operations that transform A to B
followed by the row operations that transform B to C. ut

Exercise 2.5.4. Fill in the details of the proof.

The beauty of having an equivalence relation is that m×n matrices are partitioned
into equivalence classes: see Definition B.2.3 and Proposition B.2.4. This allows us
to search for the most convenient matrix in each equivalence class: this is what we
do next.

Here is a convenient form for A.

Definition 2.5.5. The m×n matrix A is in row echelon form if

1. All the rows of A that consist entirely of zeroes are below any row of A that has
a non-zero entry;

2. If row ai has its first non-zero entry in position j, then row ai+1 has its first non-
zero entry in position > j. In other words if ji denotes the column index of the
first non-zero entry ai j of ai, then j1 < j2 < · · · < jm, where we only take into
account rows with a non-zero entry.

Example 2.5.6. The matrices1 2 3
0 4 0
0 0 1

 ,

0 2 3
0 0 2
0 0 0

 , and

−1 2 3
0 −2 2
0 0 0


are in row echelon form, while1 2 3

0 4 0
0 2 1

 ,

0 2 3
0 0 0
0 0 1

 , and

0 0 3
0 0 2
0 0 1


are not. In each matrix the first non-zero element of each row is marked in bold.

Remark 2.5.7. For A to be in row–echelon form is a generalization of being upper–
triangular: it implies that the first non-zero entry ai j of row ai in a position j ≥ i.
Thus if A is in row echelon form, ai j = 0 for all j < i. If A is square, it means that A
is upper–triangular.

Exercise 2.5.8. Check that the matrix of coefficients of the left hand side of the
system of equations produced by elimination in §1.3 is in row–echelon form.

The central theorem, which mimics Theorem 1.3.6 in the language of matrices,
is:
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Theorem 2.5.9. Any matrix A can be put in row–echelon form by using only row
operations.

Proof. Consider the columns of the m×n matrix A moving from left to right, there-
fore starting with column a1.

1. If column a1 is the zero–vector, move to column 2. If a2 is still the zero–vector,
keep moving right until you get to the first l such that al is not the zero–vector. If
there is no such l then the matrix A is the zero matrix, and we are done.

2. Otherwise pick any row ak with ak,l 6= 0. If k = 1, do nothing. Otherwise inter-
change rows 1 and k. Continue to call the new matrix A.

3. Then subtract from each ak, k> 1, the appropriate multiple of a1 so that the (1,k)-
th entry of the new matrix, still called A, is zero. Therefore A’s first l−1 columns
are zero, and its l-th column is zero except for entry a1,l , which is definitely
non–zero. This entry is called the first pivot.

Now repeat this operation to the (m− 1)× (n− l) submatrix A1 of A consisting
of the last m− 1 rows and the last n− l columns. Notice that the first pivot, which
is entry a1,l , is not in A1, so its position will not change in the repetitions, Keep
repeating the procedure, say r times, until the new matrix Ar is the 0 matrix. Then
you have r pivots, one in each of the first r rows. If ai, ji is the i-th pivot, then by
construction ji < ji+1, for all i. Each pivot is the first non–zero entry in its row. The
columns that contain pivots are called the pivot columns, and the remaining ones
are called the free variables. ut

Make sure you can relate this construction with that in Example 1.4.6.

Exercise 2.5.10. Reduce the matrices in Example 2.5.6 that are not already in row
echelon form to row echelon form.

Now we get to the central result concerning systems of linear equations, an easy
corollary of Theorem 2.5.9.

Theorem 2.5.11. Let Ax = b be a system of m equations in n variables. Do row
operations on the augmented matrix

(
A | b

)
to put it in row echelon form, Then the

new system Cx = d is equivalent to the original system, so by definition it has the
same solutions as the original system. ut

Many examples here.
The number rA could conceivably depends on what choices of pivot are made

to put A in row echelon form. We will see in §5.6 that this is not the case: rA only
depends on A, and is called the row rank of A. This number is the same number as
the r from Theorem 1.3.6.

Example 2.5.12. If you happen to be able to write A = LU , the product of an invert-
ible lower-triangular matrix L by an invertible upper-triangular matrix U , then A is
invertible and the unique solution can be easily found.

With these hypotheses, it is equivalent to first solve Ly = b, which since L is
invertible gives us a unique y= L−1b, and then solving Ux= y. Since U is invertible,
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this gives a unique x, and by multiply the last equation on the left by L, we get
LUx = Ly, which is the equation we wanted to solve.

Why is this better than just knowing that A is invertible? It is almost trivial to
solve the system Ux= y, when y is known. Indeed the last row is unnxn = yn, so since
unn 6= 0 by assumption, xn =

yn
unn

. The previous equation is un−1,n−1xn−1+un−1,nxn =
yn−1, which allows to to solve for the only unknown xn−1, because un−1,n−1 6= 0.
Continuing in this way we can solve for all the xi, in a small number of steps. This
simple process is called back substitution. Similarly we can easily solve Ly = b,
by an analogous process of forward substitution. Unfortunately it is not always
possible to write an invertible matrix in LU form.

Remark 2.5.13. This is why it may not be possible to write a square matrix as LU ,
as in Example 2.5.1: because we allow row interchanges in Gaussian elimination,
this may prevent it. We will see in §11.2 how to analyze this problem by analyzing
the row interchanges.

2.6 Reduced Row–Echelon Form

Suppose the m× n coefficient matrix A is in row–echelon form. We now simplify
it even further using row operations, to put it in reduced row echelon form. In the
older literature this is called Hermite form. In the current literature it is called RREF
form. The row operations needed to get from row–echelon form to RREF form are
known as back substitution. This is is a generalization of what we did in Example
2.5.1.

As before, let r be the number of rows with a non–zero element in them, and for
these rows let ji be the smallest column index of a non-zero element in the i-th row.
Thus i ji, 1 ≤ i ≤ r are the coordinates of the i-pivot. Because A is in row–echelon
form, the ji increase strictly with i. Example here.

Then do the following elementary row operations.

• For i = r down to 1, multiply the i–th row of A by 1/ai, ji .

– For k = i−1 down to k = 1, subtract ak,i j times the i-th row from the k-th row.

At each step you update the matrix A. Here is what is happening. First you make the
last pivot take the value 1. Then you subtract a suitable multiple of this pivot row
from all the rows above it to make the terms above the pivot 0. Then you repeat this
on the next-to-last pivot. Notice that because of the previous operations, this does
not affect the 0s already produced.

After these operations are complete each pivot column has a 1 for a pivot and a
0 in all other entries. No improvements is made to the free columns.

After this process the matrix is in reduced row echelon form.

Definition 2.6.1. A m×n matrix A in reduced row–echelon form if has two different
kinds of columns.
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1. For i= 1 to r, column veca ji has a 1 is position (i, ji) and zeroes every where else.
Furthermore ji < ji+1, for i < r. They are called the pivot, or bound columns.

2. For any column al , with ji < l < ji+1, then akl = 0 for k > i. These are the free
columns. There are n− r of them.

Therefore the rows ai with i≤ r have their first non–zero element in position ji. The
other rows are 0.

Need examples here.

Remark 2.6.2. When we studied elimination in systems of linear equations in Chap-
ter 1, we arranged by changing the order of the variables to have all the bound
columns on the left, and the rows with all coefficients zero at the bottom.

Example 2.6.3. In the following matrices, a, b, c, d, e, f denote arbitrary scalars.
The matrices

A =

1 a 0 0
0 0 1 0
0 0 0 1

 and B =

1 a 0 c
0 0 1 b
0 0 0 0


are in reduced row echelon form. Columns 1, 3 and 4 of A are bound. Columns 1
and 3 of B are bound. The matrices

C =

1 a 0 0 b
0 0 1 0 c
0 0 0 1 d

 and D =

1 0 0 a b
0 1 0 c d
0 0 1 e f


are also in reduced row echelon form. Columns 2 and 5 of C are free; columns 4 and
5 of D are free.

Exercise 2.6.4. Put the matrices of Example 2.5.6 into RREF form.

2.7 Solving Linear Systems of Equations

Next we record the following elementary consequence of matrix multiplication. Do
not forget Example 2.5.1.

Theorem 2.7.1. Consider the system of m equations in n variables, written in matrix
notation as Ax = b. As always A is the m×n matrix (ai j), x is the n column vector
with coordinates x j and b is the m column vector with coordinates bi.

1. This system can be written as the vector equation

x1a1 + x2a2 + · · ·+ xnan = b (2.15)

where a j is the j-th column of A.
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2. It can also be written as the system of m matrix products

aix = bi , 1≤ j ≤ n, (2.16)

where a j is the j-th row of A.

Recall that when b is not the zero vector, the inhomogeneous system may be
inconsistent: no solutions at all. In §1.3 we showed how elimination allows us to
determine effectively when this is the case.

Suppose we take a linear combination of the rows of Ax= b. A moment’s thought
we tell you that this amounts to multiplying the system on the left by the row vector
yt of length m: then

ytAx = ytb. (2.17)

This is a single equation that is the sum of y1 times the first equation, y2 times the
second equation, . . . , up to ym times the last equation. It can also be written

y1a1 + · · ·+ ymam = y1b1 + · · ·+ ymbm.

So it is a linear combinations of the rows of the system of equations, if the system
has a solution, the equation (2.17) must have a solution. In fact we have:

Theorem 2.7.2. The equation Ax = b has a solution x if and only if there is no
vector y in Fm with

ytA = 0 and ytb 6= 0.

Proof. Assume there is a solution x. Then just multiply the system Ax = b on the
left by the row vector yt . We get

yt(Ax) = ytb.

Since this is a linear combinations of the rows of the system, it must have a solution
in x. By the associativity of matrix multiplication, the left hand side can be written
(ytA)x. Thus for any y such that ytA = 0, we must have ytb = 0, since otherwise we
get the absurd equation 0 = ytb 6= 0.

To prove the converse, we must use row reduction. Rather than doing it again,
refer to Corollary 1.3.5. It is a good exercise to rewrite the proof in matrix notation.

ut

This proves the result because Theorem 2.5.11 tells us that we only need to con-
sider systems Ax = b where the matrix A is in reduced row echelon form, since the
original system will have the same solutions as the one where A is in row reduced
echelon form, and the corresponding row operations have been made on b. Let us
make that assumption, and see what we can deduce.

First we assume our original system is homogeneous, so b = 0 after any row
operation. We may throw out all the bottom rows of the system of the form 0 = 0.
The number of equations, which we still call m, may therefore be smaller than the
number of equations we started out with.
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Since A is in RREF form, in the i-th equation, the variable with non-zero coeffi-
cient of smallest index is x ji , where the indices ji are strictly increasing in i, and thus
all distinct. These variables are called the pivot variables or the bound variables, and
they give the bound columns of Definition 2.6.1. These are the same pivot variables
as defined in Chapter 1. The remaining n−m variables are called the free variables,
and they give the free columns. We can use each one of the m equations to write
each x ji in terms of the free variables, which can take on arbitrary values. Thus we
can solve the homogeneous system. If m = n the system has a unique solution: the
trivial solution. If m < n, then the n−m free variables can take on arbitrary values,
so the solution is not unique. We will not pursue this here: see Proposition 5.7.2.

Examples of homogeneous systems here. Mention that there many be several
ways of choosing the bound variables.

Now we assume the system is inhomogeneous. Theorem 2.7.2 gives a criterion
for the existence of a solution. So assume that the system has at least one solution.

Row reduction may create equations where both the left hand side and the right
hand side are 0. Those we can just discard. Thus the number of rows in the system
may decrease after row reduction.

Prove in matrix notation the very first theorem of the previous chapter:

Exercise 2.7.3. If x1 and x2 are distinct solutions of an inhomogeneous system, then
x1−x2 is a solution to the corresponding homogeneous equation.

Examples of inhomogeneous systems here. How to do this in practice.

2.8 Elementary Matrices

It is a remarkable fact that the three types of elementary row operations of Defini-
tion 2.5.2 can be achieved by left multiplication of the matrix A by suitable square
matrices, which we call elementary matrices.

We introduce the three types of elementary matrices, and show they are invert-
ible. We first define the matrix Irs to be the square matrix with a irs = 1, and zeroes
everywhere else. So for example in the 3×3 case

I23 =

0 0 0
0 0 1
0 0 0


Now we define the elementary matrices.

Definition 2.8.1. Elementary matrices E are square matrices, say m×m. There are
three types of elementary matrices.

1.
Er(c) := I +(c−1)Irr.

Er(c) is diagonal with a 1 for all diagonal elements except the r-th, where it has
c.
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2.
Trs,r 6= s,

is the matrix that has

• a 1 in all the diagonal entries except those with index (r,r) and index (s,s);
• a 1 in the two entries with indices (r,s) and (s,r);
• a 0 in all other entries.

3. The matrix
Ers(c) := I + cIrs,r 6= s.

Proposition 2.8.2. Here is how the elementary matrices E transform the matrix A
by left multiplication: EA.

1.
Er(c) := I +(c−1)Irr

multiplies the r-th row of A by c.
2. Trs interchanges row r of A with row s and leaves the rest of A unchanged.
3. Ers(c) := I + cIrs,r 6= s, adds c times the s-th row of A to the r-th row of A.

Proof. This is a simple exercise in matrix multiplication, left to you.

Example 2.8.3. Here are some 3×3 examples of elementary matrices, acting on the
3×4 matrix

A =

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

 .

1. Since

E1(c) =

c 0 0
0 1 0
0 0 1

 ,

matrix multiplication gives

E1(c)A =

ca11 ca12 ca13 ca14
a21 a22 a23a24
a31 a23 a33a34

 .

2. Since

T23 =

1 0 0
0 0 1
0 1 0


we get

T23A =

a11 a12 a13 a14
a31 a32 a33 a34
a21 a22 a23 a24

 .
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3. Since

E13(c) =

1 0 c
0 1 0
0 0 1


we get

E13(c)A =

a11 + ca31 a12 + ca32 a13 + ca33 a14 + ca34
a21 a22 a23 a24
a31 a32 a33 a34

 .

Here is an essential feature of elementary matrices.

Theorem 2.8.4. All elementary matrices are invertible.

Proof. The proof is an simple computation in each case: For each type of elementary
matrix E we write down an inverse, namely a matrix F such that EF = I = FE.

For Ei(c) the inverse is Ei(1/c). Ti j is its own inverse. Finally the inverse of Ei j(c)
is Ei j(−c). ut

Remark 2.8.5. The matrices Ei(c) and Ti j are symmetric, while the transpose of
Ei j(c) is E ji(c).

We stated when two m×n matrices are row equivalent in 2.5.2. Now we prove

Theorem 2.8.6. Two m×n matrices A and C are row equivalent if there is a product
of elementary matrices E such that C =EA. Then the system of linear equations with
augmented matrix

(
A | b

)
is transformed to

(
EA | Eb

)
.

Proof. This is clear, since any row operation can be achieved by multiplication by
an elementary matrix. ut

Here is an important generalization. Again assume the coefficient matrix of a
linear system is the m× n matrix A. Instead of taking an augmented matrix with
only one column b, take one with l columns. Call it B. Thus B is a m× l matrix.
Because we only do row operations, the different columns do not interact with each
other, so we can do row operations on each of the systems where the coefficient
matrix is A, and the right-hand side is bi, 1 ≤ i ≤ l, the columns of B. We write
this augmented matrix as

(
A | B

)
. This allows us to solve l systems with the same

coefficient matrix simultaneously.

Corollary 2.8.7. If left multiplication by product of elementary matrices E puts A
is row-echelon form then the augmented matrix is

(
EA | EB

)
. The same holds if E

puts A in RREF form.

This is a convenient way of solving several systems of linear equations with the
same left-hand side simultaneously.

From now on we consider the important case where the coefficient matrix A is
square.
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Proposition 2.8.8. If A is a square matrix, and if B is row equivalent to A, then A
has an inverse if and only if B has an inverse.

Proof. Any product of elementary matrices E is invertible by Theorem 2.8.4. If A is
invertible, then by Proposition 2.3.7 B = EA is invertible, with inverse A−1E−1. By
the same argument, if B is invertible, so is A = E−1B. ut

Remark 2.8.9. So being invertible or not is a property of the equivalence class. An
interesting question is: how many equivalence classes contain invertible matrices.
This can be easily established by looking at reduced row–echelon form.

Exercise 2.8.10. Using RREF form, list all the equivalence classes of n×n matrices.

Theorem 2.8.11. The square matrix A is either row–equivalent to the identity matrix
I, and therefore invertible, or it is row–equivalent to a matrix with bottom row the
zero vector, and not invertible.

Proof. By Theorem 2.5.9 A is row–equivalent to a A′ in row–echelon form. By Re-
mark 2.5.7, A′ is upper-triangular, so the only possible non-zero entry in the bottom
row is a′nn. If a′nn 6= 0, then since A′ is row reduced, all the previous diagonal ele-
ments are non-zero.

Under this hypothesis, if we put A in reduced row-echelon form, we may make
all the diagonal elements 1, all the terms above the diagonal 0, so we get the identity
matrix. Therefore A is row equivalent to I.

If a′nn = 0, we are in the second case. ut

Proposition 2.8.12. Let A be a square matrix with one row equal to the zero vector.
Then A is not invertible.

Proof. Assume the i-th row of A is the zero vector. Multiply the matrix A by the
column vector ei, which has a 0 in all entries except the i-th where is has a 1. Then
matrix multiplication shows that Av = 0. Assume A has an inverse B. Then by the
associativity of matrix multiplication v = (BA)v = B(Av) = B0 = 0, a contradiction.

ut

Finally, we get to a key result of this section: we only need to assume that A has
an inverse on one side, for it to have an inverse.

Theorem 2.8.13. Let A be a square matrix which has a right inverse B, meaning
that AB = I. Then A is invertible and B is its inverse.

Similarly, if A has a left inverse B, meaning that BA = I, the same conclusion
holds.

Proof. Suppose first that AB = I. Perform row reduction on A. By Theorem 2.8.11,
there are elementary matrices E1, E2, . . . , Ek so that the matrix C = Ek . . .E1A is in
reduced row–echelon form. Write E = Ek . . .E1.

Then multiply by B on the right and use associativity:

CB = (EA)B = (E)(AB) = E.
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This is invertible, because elementary matrices are invertible. Therefore all the rows
of CB are non-zero by Proposition 2.8.12. Now if the i-th row of C were 0, then
matrix multiplication shows that the i-th row of CB is 0. This is impossible since CB
is invertible. So C is invertible. Since A is row-equivalent to C, it is invertible.

To do the direction BA = I, just interchange the role of A and B to find that B is
invertible. But then A = B−1 is invertible. ut

Now we can establish a good method for computing the inverse of a square ma-
trix. This is a special case of Corollary 2.8.7.

Theorem 2.8.14. Let A be an invertible n×n matrix and I the identity matrix of size
n. Then the product E of elementary matrices that reduce A to the identity matrix is
the inverse of A.

Proof. Since EA = I, A−1 = E. ut

Here is how one usually sets up the computation. Do row-reduction on the aug-
mented matrix

(
A | I

)
until you have reached the identity matrix by row-reduction.

Since A is invertible, by Theorem 2.8.11, A row-reduces to the identity, so the row
reduction by E on

(
A | I

)
gives

(
EA | E

)
. Therefore the inverse of A appears on the

right-hand side of the augmented matrix when the left-hand side reaches int identity
matrix.

Examples of this process here.

Exercise 2.8.15. Let A be a square matrix.

1. If A2 = 0, then I−A is invertible, with inverse I +A;
2. More generally, if An = 0 for some positive integer n, then I−A is invertible;
3. More generally, if A satisfies an equation

cnAn + cn−1An−1 + · · ·+ c1A = I

where the ci are scalars, then A is invertible. Hint: just factor the left hand side.
4. What is the inverse of I +A, where A is the matrix of Example 2.3.12?

Exercise 2.8.16. Find all 2×2 matrices such that A2 = 0.

Exercise 2.8.17. Let

A =

(
cosθ −sinθ

sinθ cosθ

)
1. determine A2, A3, . . . , An using the trigonometric addition formulas and induc-

tion.
2. Let A act on (x,y) ∈ R2 by matrix multiplication:(

x
y

)
7→
(

cosθ −sinθ

sinθ cosθ

)(
x
y

)
=

(
xcosθ − ysinθ

xsinθ + ycosθ

)
What happens to R2?
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3. Does this explain your result in the first part of this exercise?

Exercise 2.8.18. The trace trA of a square matrix A of size n is defined as the sum
or the diagonal terms of A:

trA = a11 +a22 + · · ·+ann.

1. Show trAt = trA.
2. Show trA = trA and trA∗ = trA.
3. If B is a second square matrix of the same size, show tr(A+B) = trA+ trB.
4. Prove that tr(AB) = tr(BA).
5. If C is a third square matrix of the same size, show that tr(ABC) = tr(CAB) =

tr(BCA). Give an example where tr(ABC) 6= tr(ACB).
6. If B is invertible, then tr(B−1AB) = trA.

Remark 2.8.19. The first five chapters of Artin’s book [1] form a nice introduction to
linear algebra at a slightly higher level than here, with some group theory thrown in
too. The main difference is that Artin allows his base field to be any field, including
a finite field, while we only allow R and C.

Exercise 2.8.20. Reduce the matrices in Example 2.5.6 either to a matrix with bot-
tom row zero or to the identity matrix using left multiplication by elementary ma-
trices.

For example, the first matrix 1 2 3
0 4 0
0 0 1


backsubstitutes to 1 2 3

0 1 0
0 0 1

 , then

1 2 0
0 1 0
0 0 1

 , then

1 0 0
0 1 0
0 0 1

 .

2.9 Block Decomposition of Matrices

A good reference for this easy material is the classic [9]. As the authors say, facility
with block matrix notation is crucial for matrix computation, which is why we study
it here.

It is often convenient to think of a matrix as being made up of a grid of smaller
submatrices. Here is the general procedure. There is nothing difficult except for the
notation.

Definition 2.9.1. Let A be a m×n matrix. Write m as the sum of positive numbers
m1, . . . , ms and n as the sum of positive integers n1, . . . , nt .

Then we can write
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A =


A11 A12 . . . A1t

A21 A22 . . . A2t

...
...

. . .
...

As1 As2 . . . Ast


where Ai j is the mi× n j submatrix of A in the appropriate position. So there are st
submatrices. By definition all blocks in a given column share the same columns of
A, while all blocks in a given row share the same rows of A.

This is known as partitioning, or decomposing, the matrix into blocks.

Example 2.9.2. The 3×4 matrix

M =

a11 a12 b13 b14
a21 a22 b23 b24
c31 c32 d33 d34


can be partitioned into the blocks

M =

(
A B
C D

)
where A and B are 2×2 matrices, and C and D are 1×2 matrices. So in this example
s = t = 2, and m1 = n1 = n2 = 2 while m2 = 1.

Matrix multiplication behaves nicely with respect to block decomposition. So if
some of the blocks are repeated or are simple (for example the identity matrix or
the zero matrix) block multiplication can speed up the computation of the matrix
product. Here is the main theorem of this section.

Theorem 2.9.3. Let A be a m×n matrix block decomposed according to Definition
2.9.1. Let B be a n× p matrix block decomposed along its rows exactly as A is along
its columns, and where p = p1 + · · ·+ pu is the block decomposition of its columns,
so

B =


B11 B12 . . . B1u

B21 B22 . . . B2u

...
...

. . .
...

Bt1 Bs2 . . . Btu

 .

Thus B jk is a n j× pk submatrix of B. Then AB = C, where the m× p matrix C can
be blocked decomposed as

C =


C11 C12 . . .C1u

C21 C22 . . .C2t

...
...

. . .
...

Cs1 Cs2 . . .Csu


where Cik is a mi× p j matrix such that
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Cik = Ai1B1k +Ai2B2k + · · ·+AitBtk =
t

∑
j=1

Ai jB jk (2.18)

Note that (2.18) is Definition 2.2.3 with blocks replacing numbers.

Proof. The details of the proof are left to the reader. First notice that the matrices on
the right hand side of (2.18) are of the appropriate size to be multiplied and added..
Finally just check that for each entry of the matrix Cik you have all the terms of the
appropriate entry of C: all that is needed is Definition 2.2.3. ut

An important special case occurs when the matrices A and B are square, meaning
that m = n = p, and when the diagonal blocks are also square, implying that s = t,
and mi = ni, 1≤ i≤ n. In this case, Aii is an ni×ni matrix.

Example 2.9.4. Let A be an m×n matrix and let B be an n× p matrix. Let C be the
product matrix AB of size m× p. We block decompose A with

m = m1 +m2;
n = n,

so there is no decomposition into columns. We block decompose B with

n = n,

p = p1 + p2,

so there is no decomposition into rows. So

A =

(
A11

A21

)
, B =

(
B11 B12

)
(2.19)

Then C can be partitioned according to the partition of the rows of A and the
columns of B so that

C =

(
C11 C12

C21 C22

)
(2.20)

with Ci j = Ai1B1 j.

Example 2.9.5. If A and B are decomposed in the other direction, with the common
index n written as n1 + n2 for both matrices, and no decomposition of the other
indices m and p, then we can write the matrix product as

(
A11 A12

)(B11

B21

)
= A11B11 +A12B21

You should check that the matrix multiplications and the matrix addition on the right
hand side are well defined.

Exercise 2.9.6. Let
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A =

 1 −2
−3 2
−1 3

 and B =

(
1 −2 1
−3 2 0

)

Break A into two blocks

A11 =

(
1 −2
−3 2

)
, A21 =

(
−1 3

)
Now break B into two blocks so that the decomposition of the column size (3 =
2+1) of A agrees with that of the row size (3 = 2+1) of B.

B11 =

(
1 −2
−3 2

)
, B12 =

(
1
0

)
.

This allows block multiplication. Check that the formula of Example 2.9.4 applies
by computing the matrix product two ways.

Definition 2.9.7. Assume that the matrix A is square of size n and that its diagonal
blocks Aii are square of sizes n1, n2, . . . , ns with n = n1 +n2 + · · ·+ns.

• Then A is block diagonal if Ai j, i 6= j, is the zero matrix:

A =


A11 0 . . . 0
0 A22 . . . 0
...

...
. . .

...
0 0 . . . Ass

 (2.21)

• A is block upper triangular if Ai j, i > j, is the zero matrix:

A =


A11 A12 . . . A1s

0 A22 . . . A2s

...
...

. . .
...

0 0 . . . Ass

 (2.22)

In the same way we can define block lower triangular.

Proposition 2.9.8. Assume A and B are square matrices of size n, and and that
blocks are of size n1, n2, . . . , ns with n = n1 +n2 + · · ·+ns.

• If they are both block diagonal, their product C = AB is also block diagonal, with
Cii = AiiBii. Furthermore

Ak =


(A11)k 0 . . . 0

0 (A22)k . . . 0
...

...
. . .

...
0 0 . . . (Ass)k

 (2.23)
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• If A and B are both block upper triangular, then so it their product.

Proof. We prove Proposition 2.9.8 using the main theorem. The diagonal case is
trivial, so let’s just consider the upper triangular case. If C = AB we must show that
Cik = 0 when i > k. By hypothesis Ait = 0 when i > t and Btk = 0 when t > k. By
(2.18) this means that the only non-zero terms in the sum are those with i ≤ t ≤ k.
Since i > k, there are no such terms. ut

Example 2.9.9. A special case that will be important to us in the one where A and B
are both square of size n = r+ s and decomposed as(

A11 A12

A21 A22

)
and

(
B11 B12

B21 B22

)
.

where A11 and B11 are r× r matrices,
A12 and B12 are r× s matrices,
A21 and B21 are s× r matrices,
A22 and B22 are s× s matrices. Then

AB =

(
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)
If A and B are both block upper triangular, meaning that A21 and B21 are both the
zero matrix, then their product AB is also block upper triangular. It is easier to check
in this special case that the formula is correct.

Exercise 2.9.10. Let A be a 4× 2 matrix and B be a 2× 4 matrix, written in block
form as in (2.19), where all the blocks are 2×2. Further assume that

A11 = A21 =

(
1 1
−1 −2

)
, and B11 = B12 =

(
2 1
−1 −1

)
;

Write out the matrices A and B, compute the product AB directly, and then compute
it by block multiplication.

Exercise 2.9.11. If you have the block decomposition of a matrix A, write a decom-
position for its transpose AT .

2.10 Column Operations

This short section will only be used in $ 7.5 and can be skipped. There is noth-
ing special about row operations. We can also perform column operations. Because
(EA)t = AtEt , the matrix Et , when multiplying At on the right, performs column
operations on At . For simplicity we only write the result when A is symmetric. This
is the only case we will need later. Then by analogy with Proposition 2.8.2 we have
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Proposition 2.10.1. Here is how the elementary matrices E transform the matrix A
by right multiplication: AE.

1. Er(c) multiplies the r-th column of A by c.
2. Trs interchanges columns r of A with column s and leaves the rest of A unchanged.
3. Ers(c),r 6= s, adds c times the r-th column of A to the s-th column of A.

Proof. This is also a simple exercise in matrix multiplication, left to you. Note the
reversal of the roles of r and s in the third item. This is because the transpose of
Ers(c) is Esr(c).



Chapter 3
Vector Spaces

Abstract The reader is presumably familiar with the definition of a vector in a space
of dimension n: an ordered n-tuple of numbers. These n-tuples can be added, simply
by adding corresponding entries, and can be multiplied by a number by multiplying
each entry of the vector by that number: this last operation is called scalar mul-
tiplication. In this chapter we formalize these notions. First we look carefully at
what properties of numbers we need to make the operations, say, of the last chapter.
Because we allow different kinds of numbers (in this book only real and complex
numbers) we refer to the numbers as scalars. Then we make the first fundamental
definition of the book: that of a vector space. We simply axiomatize the rules of
vector addition and scalar multiplication given above. Then we define a basis of a
vector space, and define a finite dimensional vector space as a vector space that ad-
mits a basis with a finite number of elements. One of the most important and subtle
theorems of linear algebra then tells us that all bases of a given vector space have
the same number of elements. That number is called the dimension of the space. An
easy corollary, using a basis, that a finite dimension vector space is in bijection with
the set of ordered n tuples of scalars, so we recover the definition you know, but at
the cost of choosing a basis. The chapter continues with one important method of
deriving new vector spaces from old ones: direct sums.

3.1 Scalars

The coefficients of linear equations, and the entries of matrices are called scalars. In
this book they will either be real numbers or complex numbers. It is worth writing
down the properties of the scalars that we will use: they form a field, that we denote
F . This means that they satisfy the following properties.

• Any two elements a and b of F can be added: a+b ∈ F and multiplied: ab ∈ F .
Both operations are commutative, meaning that a+b = b+a and ab = ba. They
are also associative: (a+b)+ c = a+(b+ c) and (ab)c = a(bc).

51
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• The element 0 is the neutral element for addition, so that for every a∈ F , a+0 =
0. Every a ∈ F has an additive inverse −a, so that a+(−a) = 0.

• The element 1 6= 0 is the neutral element for multiplication: for every a ∈ F ,
1a = a. Every element a ∈ F other than 0 has a multiplicative inverse a−1 such
that aa−1 = 1.

To establish these properties for complex numbers consult Section B.5.
Each one of our two fields of choice, the real numbers and the complex numbers,

have an important property that we now recall.
The real numbers are ordered. This means that any two real numbers a and b can

be compared: we either have a < b, a = b or a > b. The complex numbers do not
share this property.

The complex numbers are algebraically closed: every polynomial f (t) with com-
plex coefficients has a complex root, meaning that there is a complex number c such
that f (c) = 0.

3.2 Vector Spaces

Now we can make the first of the two key definitions of this course: that of a vector
space V over the field F . The elements of a vector space are called vectors, naturally.

Definition 3.2.1. A vector space is a set equipped with two operations:

1. Scalar multiplication, which associates to a scalar a ∈ F and a v ∈V an element
written av ∈V .

2. Addition, which associates to elements v and w in V the element v+w in V .

These operations satisfy the following eight properties:

VS 1 Addition is associative, meaning that for any u, v and w in V ,

(u+v)+w = u+(v+w).

VS 2 There is a neutral element for addition, denoted 0, so that

0+v = v+0 = v.

VS 3 There is an additive inverse for any element v ∈V , written −v, satisfying

v+(−v) = 0.

VS 4 Addition is commutative, so that for all u and v in V ,

u+v = v+u.

VS 5 Scalar multiplication distributes over vector addition: if a is a scalar, then

a(u+v) = au+av.
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VS 6 Scalar multiplication distributes over scalar addition: if a and b are scalars,
then

(a+b)v = av+bv.

VS 7 Multiplication of scalars and scalar multiplication are associative: If a and
b are two scalars, then

(ab)v = a(bv).

VS 8 Normalization: if 1 denotes as usual the multiplicative neutral element of F ,

1v = v.

The first four properties only concern vector addition in V : as we will learn later,
the first three say that V is a group for addition, and the fourth that this group is
commutative. The remaining four properties describe the interaction between vector
addition and scalar multiplication.

Example 3.2.2. We start with a trivial example. Over every field, there is a vector
space consisting just of the element 0. We could write it R0 or C0, and we call it the
trivial vector space.

Example 3.2.3. The most important examples are the real vector space Rn of ordered
n-tuples of real numbers, and the complex vector space Cn of ordered n-tuples of
complex numbers. Here n is any positive integer. We write a vector in each one of
these spaces as v = (v1,v2, . . . ,vn), where each v1 is a scalar. Scalar multiplication
of a vector v with the scalar a is

av = (av1,av2, . . . ,avn)

while addition of vectors is

v+w = (v1 +w1,v2 +w2, . . . ,vn +wn).

The neutral element for addition is clearly

0 = (0,0, . . . ,0).

In particular R1 = R is a vector space over the reals, and C1 = C is a vector space
over the complex numbers.

Example 3.2.4. A special case of this example is the space of all m× n matrices.
Similarly the set of all symmetric matrices is a vector space.

Example 3.2.5. The set of solutions of a homogeneous system of equations Ax = 0
is a vector space.

Example 3.2.6. The space of polynomials F [t] is a vector space over F . By the defi-
nitions of §C.1 addition is just addition of coefficients of the same degree: if

g(t) = bntn +bn−1tn−1 + · · ·+b1t +b0
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is a second polynomial, then (assuming n > m)

f (t)+g(t) = bntn + . . .(am +bm)tm + · · ·+(a0 +b0).

Scalar multiplication is

c f (t) = camtm + cam−1tm−1 + · · ·+ ca1t + ca0

The next example is more abstract, but quite important.

Example 3.2.7. Let V be the set of all maps on any set S into a vector space W . Then
we may add two such maps f and g in V by defining the sum map f +g by

( f +g)(s) = f (s)+g(s), for all s ∈ S.

In this equation the + on the left hand side is the definition of addition in V in terms
of the right hand side, where the + is simply addition in W .

Similarly we define a scalar multiplication by letting a f , a∈ F be the map whose
value at s ∈ S is

(a f )(s) = a
(

f (s)
)
.

The multiplication a f on the left hand side is the definition of scalar multiplication
in V in terms of the right hand side, where the multiplication is scalar multiplication
in W of a by f (s). The neutral element 0 of V is the map that takes every s∈ S to the
neutral element of W . We then need to check the remaining properties of a vector
space: for example the inverse of the map f is the map g such that g(s) = − f (s)
This makes V into a vector space, since all the other properties follow from the fact
they are true in W .

Example 3.2.8. The complex numbers form a vector space over the real numbers.
Indeed, any complex number can be written a + bi, where a and b are real: for
more details see Chapter 1. The two operations that give the complex numbers the
structure of a real vector space are

• scalar multiplication is multiplication of a complex number by a real number c:

c(a+bi) = ca+ cbi.

• vector addition is just the addition of two complex numbers:

(a+bi)+(c+di) = (a+ c)+(b+d)i.

These operations are exactly those of R2. Note that we do not need the full strength
of the multiplication of two complex numbers.

On the other hand, R is not a vector space over C.

Next we prove the important cancelation rule for vector addition. Note that in-
stead of writing u+(−v) we write u−v. Thus v−v = 0.
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Theorem 3.2.9. If u , v and w are elements of a vector space V , and if

u+v = w+v,

then u = w.

Proof. We give all the details of the proof: add to each side of the equation the
additive inverse −v of v, which exists by VS 3. Then we have

(u+v)−v = (w+v)−v.

Next we use associativity (VS 1) to get

u+(v−v) = w+(v−v).

Finally we use VS 2 to get the conclusion. ut

Corollary 3.2.10. The additive identity is unique. The additive inverse is unique.

Proof. Assume there were two additive identities 0 and 0′. But then for any v ∈V ,

v+0 = v = v+0′

so after cancelation 0 = 0′. The same proof works for the additive inverse. ut

Proposition 3.2.11. We now deduce some additional properties of the operations of
vector spaces.

• For all v ∈V , 0v = 0. Indeed, 0v+1v = v by VS 6, and v = 0+v by VS 2. Now
finish by using VS 8 and then cancelation.

• (−1)v = −v. In other words, multiplying a vector by the number −1 gives its
additive inverse. Thus we must show

v+(−1)v = 0.

Since v = (1)v by VS 8, v+(−1)v = (1− 1)v by VS 6 and so we are done by
what we just proved.

In the exercises below, V is a F-vector space.

Exercise 3.2.12. Show that a0 = 0 for all a ∈ F .

Exercise 3.2.13. If a 6= 0, then if av = 0, v = 0.

3.3 Subspaces

A subspace W of a vector space V is a subset that is a vector space in its own right,
using the operations of V . To check that W is a subspace, we must show that it is
closed under the operations of V . In other words,
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Definition 3.3.1. A subset W of the vector space V is a subspace of W if

1. For all v and w in W , v+w is in W ;
2. For all scalars a ∈ F and all w ∈W , then aw is in W .

This implies that 0 is in W , since 0 = 0w, for any w ∈W .
Note that the trivial vector space (Example 3.2.2) is a subspace of any vector

space. The space V is a subspace of itself. We call both of the subspaces the trivial
subspaces of V .

Example 3.3.2. Check that the following subsets are actually subspaces.

• The subset of all triples in R3 where the last entry is 0: (v1,v2,0).
• The subset of all n-tuples in Rn where the last entry is 0: (v1, . . . ,vn−1,0).

Example 3.3.3. In the vector space of polynomials in t over F , consider the subset
Pk of polynomials of degree at most k, for any integer k. Show Pk is a subspace of the
vector space of polynomials over F . Explain why the polynomials of degree exactly
n do not form a subspace.

Example 3.3.4. As before let V be the set of functions on a set S. Consider the subset
Vs of functions in V that vanish at a fixed point s ∈ S. Show Vs is a subspace.

The key example for us is

Example 3.3.5. If A is a m×n matrix with coefficients in F , then the set of solutions
of the homogeneous system of equations Ax = 0 is a subspace NA of Fn.

Show that if the system is not homogenous, then the set of solutions is not a
subspace.

See Theorem 4.2.2 for a restatement of this result: NA will be called the nullspace
of the linear map associated to A.

Definition 3.3.6. If V is a vector space, and v1, . . . , vr a collection of r elements of
V , then any expression

a1v1 +a2v2 + · · ·+arvr, where all ai ∈ F,

is called a linear combination of v1, . . . , vr.

Proposition 3.3.7. Given a collection v1, . . . , vr of elements in V , the set of all linear
combinations of these vectors is a subspace of V , called the subspace generated by
the elements v1, . . . , vr.

Proof. The only difficulty is understanding what needs to be proved. Let W be the
space of all linear combinations. Thus if v and w are in W , we have

v = a1v1 +a2v2 + · · ·+arvr

w = b1v1 +b2v2 + · · ·+brvr
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so that
v+w = (a1 +b1)v1 +(a2 +b2)v2 + · · ·+(ar +br)vr

which is a linear combination, so in W . The other property is even easier to prove.
ut

Two important ways of producing new subspaces are by intersection and by sums
of subspaces. If U and W are subspaces of a vector space V we let U ∩W be their
intersection. This is a purely set-theoretic construction. On the other hand, let

U +W = {u+w | ∀u ∈U,∀w ∈W}

be their sum. This depends on having addition in V .

Proposition 3.3.8. If U and W are both subspaces of the vector space V , then U∩W
is a subspace of V .

Proof. This is elementary set theory. If u is in U ∩W , then u is both in U and in W .
Since U is a subspace, cu is in U for every scalar c; since V is a subspace, cu is in
W for every scalar c. So cu is in U ∩W .

If u and v are in U ∩W , then u is both in U and in W , and v is both in U and in
W . So u+ v in in U , because U is a subspace, and it is also in W , because W is a
subspace. Thus u+v is in U ∩W . ut

Proposition 3.3.9. If U and W are both subspaces of the vector space V , then U+W
is a subspace of V .

Proof. Take two elements u1 +w1 and u2 +w2 in U +W . We must show that their
sum is in U +W . This is clear because

(u1 +w1)+(u2 +w2) = (u1 +u2)+(w1 +w2) ∈U +W.

Notice how we have used the associativity and commutativity of addition. The sec-
ond property is even easier to prove, and left to you. ut

Exercise 3.3.10. If U is the subspace generated by u1, . . . ,ur and W is the subspace
generated by w1, . . . ,ws, then U +W is the subspace generated by

u1, . . . ,ur,w1, . . . ,ws.

Examples in R3.
It is important not to confuse affine subspaces with linear subspaces.

Example 3.3.11. In R2 with coordinates x1 and x2, let L be the line with equation:

a1x1 +a2x2 = b.

Assume that a1 and a2 are not both 0. Then if b 6= 0, L is not a linear subspace of
R2, since 0 is not a point of L.
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3.4 Bases

Before getting to the definition of a basis, we need two preliminary definitions.

Definition 3.4.1. V is again a vector space over F , and v1, . . . , vr elements of V .
Then v1, . . . , vr are linearly dependent if there are elements a1,a2, . . . ,ar in F , such
that

a1v1 +a2v1 + · · ·+arvr = 0 , where not all the ai = 0. (3.1)

Such an equation is called an equation of linear dependence. The key requirement
is that the ai cannot all be 0. Otherwise we could set all the ai to be zero, and all sets
of vectors would be linearly dependent.

If no equation of linear dependence exists, then the elements v1, . . . , vr are lin-
early independent.

Example 3.4.2. If one of the vi is the zero vector, then the collection of vectors is
linearly dependent, since for any scalar a, a0 = 0. See Exercise 3.2.12. On the other
hand, if v is not the zero vector, the set consisting just of v is linearly independent
by Exercise 3.2.13.

Example 3.4.3. In F3, let i=(1,0,0), j=(0,1,0) and k=(0,0,1). Prove these three
vectors are linearly independent.

Example 3.4.4. Without difficulty we can generalize the previous example to Fn.
For each i between 1 and n, let ei be the i-th coordinate vector in Fn, meaning that
it has a 1 in the i-th position, and a 0 everywhere else. So for example:

e1 = (1,0, . . . ,0),e2 = (0,1,0, . . . ,0), . . . ,en = (0, . . . ,0,1).

Then the vectors e1, e2, . . . , en are linearly independent.

Proof. Assume we have an equation of linear dependence:

a1e1 +a2e2 + · · ·+aren = 0

This can be written:
(a1,a2, . . . ,an) = (0,0, . . . ,0)

so all the ai must be 0. Therefore our equation was not an equation of linear depen-
dence. Contradiction. ut

Here is a typical use of linear independence:

Theorem 3.4.5. Let V be a vector space, and v1, . . . , vr a collection of linearly
independent elements in V . Suppose that the following two linear combinations of
the vi are the same vector:

a1v1 +a2v2 + · · ·+arvr = b1v1 +b2v2 + · · ·+brvr

for scalars ai and bi, 1 ≤ i ≤ r. Then ai = bi for all i, so that they are in fact the
same linear combination.
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Proof. The equation yields:

(a1−b1)v1 +(a2−b2)v1 + · · ·+(ar−br)vr = 0.

Linear independence of the vi then says that all the coefficients are equal to zero,
which is the desired result. ut

Here is the second preliminary definition.

Definition 3.4.6. The vector space V is generated by v1, . . . , vr if every element in
V can be written as a linear combination of the vi. We also say that the vi span V .

Example 3.4.7. The vectors ei, 1≤ i≤ n of Example 3.4.4 span Fn. However if you
omit any one of them, the new collection does not span: why?

We can now make the fundamental definition of this section.

Definition 3.4.8. A basis of a vector space V is a set of linearly independent vectors
that span V . If V has a basis with a finite number of elements, it is finite-dimensional.

Notice that we have defined what it means for a vector space to be finite dimen-
sional without defining its dimension: that we will do in the next section.

A word of warning: zero-dimensional vector spaces do not have a basis. This
means that zero-dimensional spaces have to be handled specially. Since they are
trivial spaces (they only have one element: 0) this is not too much of a problem.
We will usually be concerned with finite dimensional vector spaces, but we want a
definition that applies to infinite dimensional vector spaces.

Example 3.4.9. The vectors ei, 1≤ i≤ n of Fn in Example 3.4.4 form a basis. Indeed
we have already seen that they are linearly independent, and that they obviously
span. This basis is called the standard, or the natural basis of Fn.

Example 3.4.10. The vectors 1, t, t2, . . . , tn, . . . form an infinite basis for the polyno-
mial ring F [t]. It is clear that they generate. Let us show they are linearly indepen-
dent. This is always shown by contradiction: suppose there is an equation of linear
dependence between a finite number of the basis element. This would imply that
there is a polynomial of degree m:

f (t) = amtm +am−1tm−1 + · · ·+a1t +a0

that is identically equal to the zero polynomial. This cannot be.

Exercise 3.4.11. This is a continuation of Example 3.2.7. We now require that S be
a finite set, and let V be the vector space of functions from S to R. For any s ∈ S, let
is be the function that takes the value 1 on s, and 0 on all the other points of S. Show
that the is, s ∈ S form a basis for V . So V is a finite dimensional vector space. For an
arbitrary subset T of S, let

iT = ∑
s∈T

is,
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so iT is an element of V . Then

iT (s) =

{
1, if s ∈ T ;
0, otherwise.

which is why iT is called the indicator function of T . Note that we have already
written iT as a linear combination of the basis elements: where?

Definition 3.4.12. By Theorem 3.4.5, any v in the finite dimensional vector space V
can be written uniquely as

v = a1v1 +a2v1 + · · ·+arvr

with respect to the basis v1, . . . , vr. The ai are called the coordinates of v with
respect to the basis.

In Fr we write vectors as ordered r-tuples of F : (a1,a2, . . . ,ar). Using the stan-
dard basis of Fr given in Example 3.4.9, we see that the ai are the coordinates with
respect to the standard basis, justifying the terminology in Chapter 2.

Example 3.4.13. This yields one of the most important maps of linear algebra:
the mapping CB : V → Fr that associates to any vector v ∈ V with basis B =
{v1, . . . ,vr}, the r-tuple of coordinates (a1,a2, . . . ,ar) of v. We will have more to
say about this mapping later. In particular we will show that it is a linear map (Ex-
ample 4.1.9) and that it is injective and surjective. The injectivity follows from the
uniqueness of the coordinates proved in Theorem 3.4.5, and the subjectivity then
follows from the Rank-Nullity Theorem of Chapter 4.

Proposition 3.4.14. Let v1, . . . , vr be a maximal subset of linearly independent ele-
ments in V , meaning that they are linearly independent, and that any element w ∈V
is linearly dependent on them. Then v1, . . . , vr is a basis of V .

Proof. Since the v1, . . . , vr are linearly independent, to show they form a basis we
only have to show they generate V . Assume they do not. Then there is an element
w ∈V that cannot be written as a linear combination of the vi. By the hypothesis of
maximality, we know that there is an equation of linear dependence:

a1v1 + · · ·+arvr +bw = 0.

Because w is not a linear combination of the vi, we must have b = 0. Then, because
the vi are linearly independent, all the ai must be 0. Thus there is no equation of
linear dependence, and we have the desired contradiction. ut

Along the same lines we have:

Theorem 3.4.15. Let V be a vector space of positive dimension. Assume that it is
spanned by {v1, . . . ,vn}. Then a suitable subset of these elements forms a basis of
V .
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Proof. If these is no equation of linear dependence between v1, . . . , vn, they form a
basis, so we are done. Otherwise there is an equation of linear dependence

a1v1 + · · ·+anvn = 0.

Since not all the coefficients are equal to 0, we may assume that an 6= 0. Then we
may solve for vn in terms of the other generators. This shows that {v1, . . . ,vn−1}
stills spans V . Continue eliminating generators on at a time in this way until there
no longer is an equation of linear dependence. The remaining vectors form a basis.

ut

The assumption that V is positive dimensional is there only to exclude the trivial
case V = (0), in which case V does not have a basis. We will sometimes omit any
mention of this case.

It is traditional to refer to this theorem by saying that one can extract a basis of
any vector space from any set of generators.

3.5 Dimension

The key result of this section is that all bases of a finite dimensional vector space
have the same number of elements, called its dimension. This is proved by the
Steinitz exchange theorem:

Theorem 3.5.1. Let V be a vector space. Assume that it is spanned by {v1, . . . ,vn},
and that {w1, . . . ,wr} is a linearly independent set of vectors in V . Then r ≤ n.

Proof. Let V be the set {v1, . . . ,vn}. Since the collection of vectors

W = {w1, . . . ,wr}

is linearly independent, w1 is non-zero, so we can write

w1 = a1v1 + . . .anvn

where not all the scalars ai are 0. By changing the numbering of the variables, we
may assume a1 6= 0. Dividing by a1 and solving for v1 in terms of

V1 = {w1,v2, . . . ,vn},

we see that V1 generates V . The set W2 = {w2, . . . ,wr} is linearly independent so
we repeat the argument: w2 is non-zero, so we can write

w2 = b1w1 + c2v2 + . . .cnvn.

At least one of the ci, 2 ≤ i ≤ n must be non-zero because w1 and w2 are linearly
independent. By renumbering we may assume it is c2. Thus we can solve for v2 in
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terms of
V2 = {w1,w2,v3, . . . ,vn}.

Thus V2 generates V .
Assume by contradiction that n < r. Continuing as above, replacing one element

of V by an element of W , we see that

Vn = {w1,w2, . . . ,wn}

spans. But then wn+1 can be written as a linear combination of the elements of Vn,
which contradicts the linear independence of W , and we get the desired contradic-
tion. ut

Corollary 3.5.2. Any two bases of a finite dimensional vector space have the same
number of elements.

Proof. Call the bases {v1, . . . ,vn} and {w1, . . . ,wm}. Since the vectors in both sets
are linearly independent and span, we can apply the theorem in both directions:
n≤ m and m≤ n, so we are done. ut

Definition 3.5.3. The dimension of a finite-dimensional vector space V is the num-
ber of elements in one (and therefore any) basis, assuming V has a basis. To the
trivial vector space 0 we assign the dimension 0.

Example 3.5.4. The dimension of Fn is n. By convention this holds even for n = 0.

Exercise 3.5.5. Establish the dimensions of the following vector spaces by exhibit-
ing a basis.

1. The dimension of the vector space of m×n matrices is mn.
2. The dimension of the space of diagonal matrices of size n is n.
3. The dimension of the space of upper-triangular matrices of size n is n(n+1)

2 .
4. The dimension of the space of symmetric matrices of size n is n(n+1)

2 .
5. The dimension of the space of skew-symmetric matrices of size n is n(n−1)

2 . A
skew-symmetric matrix is a square matrix such that ai j =−a ji for all i and j.

Exercise 3.5.6. Show that any square matrix can be written as the sum of a symmet-
ric matrix and a skew-symmetric matrix.

Corollary 3.5.7. Let V be a vector space of dimension n. Suppose that v1, . . . , vn
are linearly independent elements in V . Then they form a basis.

Proof. By Proposition 3.4.14, if they do not form a basis, then we can find an ele-
ment vn+1 ∈V such that v1, . . . , vn+1 are linearly independent. This contradicts the
Steinitz Exchange Theorem 3.5.1 above. ut

Corollary 3.5.8. If V is a vector space of dimension n, and W a subspace of V of
dimension n, then V =W.
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Proof. By the previous corollary, a basis for W , namely a set of n linearly indepen-
dent elements of V , is a basis for V . ut

Corollary 3.5.9. Let V be an n dimensional vector space, and W a subspace of V
that is not 0 dimensional. Then W has a basis with at most n elements.

Proof. Since W has positive dimension, we can pick a non-zero vector w1 in W . This
gives a linearly independent set. If it does not span W , we may find a w2 linearly
independent from w1, etc... ut

Corollary 3.5.10. Let v1, . . . , vr be r linearly independent vectors in the n-dimensional
vectors space V . Then n− r elements vr+1, . . . , vn can be added to that v1, . . . , vn
forms a basis of V . We say any linearly independent subset of V can be completed
to a basis.

Proof. If r = n we already have a basis by Corollary 3.5.8. Otherwise, by Corollary
3.5.9, r < n. So by Definition of the dimension, we can find a vr+1 that is linearly
independent of the first r vectors. Then repeat the argument to the r+ 1 vectors if
r+1 < n until you get to n vectors. Then we have a basis. ut

Other examples:

3.6 Products and Direct Sums

We discuss two ways of producing new vectors spaces from old ones. We are given
two vector spaces U and W , both over the same field F . Considering U and W as
sets, we can form the cartesian product U×W : see §B.1.

Theorem 3.6.1. U×W is a vector space, with the obvious operations:

1. Addition is component-wise

(u1,w1)+(u2,w2) = (u1 +u2,w1 +w2)

2. Scalar multiplication is
c(u,w) = (cu,cw)

The proof is an exercise for you.

Theorem 3.6.2. If the dimension of U is m, and the dimension of W is n, then the
dimension of U×W is m+n.

Proof. We prove this by exhibiting a basis of U ×W , given a basis u1, . . . um of
U and a basis w1, . . . wn of W . It consists in the elements (u1,0), . . . (um,0) and
(0,w1), . . . (0,wm).

As always we need to show these are linearly independent and span.
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Assume they are not linearly independent. Then there is an equation of linear
dependence:

a1(u1,0)+ · · ·+am(um,0)+b1(0,w1)+ · · ·+bn(0,wn) = (0,0)

Considering only the first coordinate, we get

a1u1 + · · ·+amum = 0

which by linear independence of the ui says that all the ai are zero. doing the same
thing for the second coordinate, we see that all the b j are zero, so this is not an
equation of linear dependence and we are done.

It is left to you to show that they span. ut

Example 3.6.3. R2 is the product of R by R, and Rn is the product of Rk by Rm for
any positive integers k, m and n such that k+m = n.

Definition 3.6.4. The subspace of U ×U of elements (u,u), for all u ∈U is called
the diagonal. It has the same dimension as U .

Next assume we have a vector space V and two subspaces U and W of V .

Definition 3.6.5. We say that V is the direct sum of U and W if any element v ∈ V
can be written uniquely as u+w, for u ∈U and w ∈W . We then write V =U⊕W .

This definition does not require that U or V be finite dimensional. If they both
are, we have:

Exercise 3.6.6. Check that if V = U ⊕W , then dimU + dimW = dimV . Indeed,
U ∩V must reduce to (0).

We generalize this result in Theorem 4.2.11.

Problem 3.6.7. For vector spaces U and W , form the cartesian product V =U×W .
Then let U1 be the subspace of V formed by all elements (u,0), for u ∈U . Let W1
be the subspace of V formed by all elements (0,w), for w ∈W .

Then show that V =U1⊕W1.



Chapter 4
Linear Maps

Abstract We now get to the second key definition of linear algebra: that of a linear
map between vector spaces. These are the ‘allowable maps’ of linear algebra. The
most important linear map, and, as we will see in Chapter 5, essentially the only
example, is given by matrix multiplication: see Example 4.1.10. To a linear map we
can associate two interesting new vector spaces: the nullspace and the range, defined
in §4.2. Then we prove our first major theorem: the Rank-Nullity Theorem 4.2.8.
Then we show that the composition of two linear maps, when it is defined, is linear.
After studying the algebra of linear maps, we study invertible linear maps L : U→V .
They establish a bijection between the vector spaces U and V , and preserve the
structure of vector space, as we show in §4.5.1: we say U and V are isomorphic. By
the Rank-Nullity theorem, two vector spaces are isomorphic if and only if they have
the same dimension.

4.1 Linear Maps

Definition 4.1.1. Let U and V be vector spaces over the field F . Then a linear map
is a map L that satisfies the following two properties:

LM 1 L(u+v) = L(u)+L(v) for all u,v ∈U . The addition on the left hand side
of this equation is in U , while the addition on the right hand side in in V .

LM 2 L(au) = aL(u) for all u ∈U and all a ∈ F . The scalar multiplication on the
left is in U , and on the right is in V .

Exercise 4.1.2. Prove that the property L(0) = 0 follows from the definition. This is
sometimes included in the definition of a linear map, but is not needed.

Exercise 4.1.3. Prove that L(−u) =−L(u).

First let’s get two trivial examples of linear maps out of the way.

Example 4.1.4. If L takes every element of the vector space V to 0, then L is linear.
It is called the zero map.

65
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Example 4.1.5. The map L : V → V such that L(v) = v is linear. It is called the
identity map.

Remark 4.1.6. Note that a linear map can be defined for infinite dimensional vectors
spaces U and V . This is, in fact, one of the reasons for making the definition

Now for a more interesting example.

Definition 4.1.7 (Projection). Let V be a vector space that is written as the direct
sum of subspaces U and W : V = U ⊕W . See §3.6. So any v ∈ V can be written
uniquely as v = u+w, u ∈U and w ∈W . Then u is called the component of v in U ,
and w is called the component of v in W . The linear map P1 such that P1(v) = u, its
component u in U , is called the projection from V to U along W . Similarly we have
a linear map P2 : V →W , sending v to w, the projection from V to W along U . If V
is finite dimensional, then dimV = dimU +dimW .

Let’s show that P1 is a linear map. For any scalar c, cv = cu+cw, where cu∈U and
cw ∈W since they are subspaces. For the same reason, if v′ = u′+w′, with u′ ∈U
and w′ ∈W , then

v+v′ = u+w+u′+w′ = u+u′+w+w′

so that v+v′ is mapped to u+u′ ∈U .
We could think of this map as a linear map from V to U , but via the inclusion

U ⊂V it is a map from V to V , and that will be our point of view.
In the same way, P2 is a linear map from V to V . We define the sum of the maps

P1 and P2 as
(P1 +P2)(v) = P1(v)+P2(v).

This is the identity map: (P1 +P2)(v) = u+w = v.
Need two pictures here : in R2 with two different bases as shown, one the stan-

dard perpendicular basis, the other skew, show the two projections.

Example 4.1.8. The linear map Fn→ Fn, that sets to zero any set of n−m coordi-
nates in a projection. For example F4 → F4 sending (x1,x2,x3,x4) 7→ (x1,0,x3,0)
or the different projection sending (x1,x2,x3,x4) 7→ (0,x2,0,x4).

When the subspace U is either the zero dimensional subspace or the full space
V , P1 is the zero map or the identity map, respectively.

For more about projections, see §4.6 .

Example 4.1.9 (Coordinate Map). For any vector space V with basis B= {v1, . . . ,vn},
there is a linear map V →Fn associating to v= a1v1+ · · ·+anvn in V its coordinates
(a1, . . . ,an) in the basis. We write

[v]B =

a1
...

an


This linear map will be useful in §5.3. To establish the linearity we must show
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• [cv]B = c[v]B.
• [v+w]B = [v]B+[w]B.

To do this, just write v, cv and w in coordinates.

The following key example gives the link between linear maps and matrices in
the finite dimensional case.

Example 4.1.10 (Matrix to Linear Map). For any m× n matrix A with coefficients
in F , we get a linear map LA : Fn→ Fm that associates to the n- column vector v the
matrix product Av.

The linearity follows from Theorem 2.2.13 on matrix multiplication that estab-
lishes:

A(B+C) = AB+AC and A(cB) = c(AB)

for matrices of the appropriate sizes. Let B and C be the n-column vectors u and v
to get linearity. Then

LA(u+v) = A(u+v) = Au+Av = LA(u)+LA(v)

as required. The second verification is left to the reader.

Theorem 4.1.11. The set V of all linear maps from a vector space U to a vector
space W is itself a vector space, denoted L (U,W ).

Proof. This is closely related to Example 3.2.7, that we rewrite in part. The vector
space structure on V , and the neutral element are defined as in Example 3.2.7. The
inverse of a linear transformation L in V is the map M such that M(u) =−L(u). You
need to check that M is in V , namely that it is a linear transformation. This follows
because L is a linear transformation:

M(u+v) =−L(u+v) =−L(u)−L(v) = M(u)+M(v)

and
M(cu) =−L(cu) =−cL(u) = cM(u)

as required. The other parts follow as in Example 3.2.7, and are left to you. ut

We will use the following theorem many times to build linear maps.

Theorem 4.1.12. Let V be a F-vector space of dimension n, and W a F-vector space
of some dimension. Let {v1, . . . ,vn} be a basis for V , and {w1, . . . ,wn} any collec-
tion of n elements of W. There there is a unique linear map L : V →W such that
L(vi) = wi, 1≤ i≤ n.

Proof. Since any v ∈V can be written uniquely as

v = a1v1 + · · ·+anvn , for suitable ai ∈ F

we define
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L(v) = a1w1 + · · ·+anwn.

Thus we have a uniquely defined map L. We need to show that L is linear. First we
pick a second element v′ ∈V written

v′ = b1v1 + · · ·+bnvn

and show that
L(v+v′) = L(v)+L(v′).

Indeed

L(v+v′) = (a1 +b1)w1 + · · ·+(an +bn)wn = L(v)+L(v′).

Then for any c ∈ F ,

L(cv) = L(ca1v1 + · · ·+ canvn) = ca1w1 + · · ·+ canwn = cL(v),

which concludes the proof. ut

Exercise 4.1.13. Let L be a linear map between a vector space V of dimension n and
a vector space W of some dimension. Let {v1, . . . ,vn} be any collection of elements
of V , and {w1, . . . ,wn} a linearly independent set of n elements of W . Assume that
L(v j) = w j, 1≤ j ≤ n. Prove that the {v1, . . . ,vn} are linearly independent.

Hint: See the proof of the Rank-Nullity Theorem 4.2.8 below.

4.2 The Nullspace and the Range of a Linear Map

In this section we define the two most important subspaces associated to a linear
map L : U →V . They can be defined even when U and V are infinite dimensional.

Definition 4.2.1. The nullspace of L is the subset of u ∈U such that L(u) = 0. The
nullspace is called the kernel in some books, but we will always use nullspace.

Theorem 4.2.2. The nullspace NL of L is a subspace of U.

Proof. We must show that if u and v are in the nullspace, then u+v and au are in
the nullspace, for any a ∈ F . By definition of a linear map

L(u+v) = L(u)+L(v) = 0

so u+v is in the nullspace as required. Similarly

L(au) = aL(u) = 0

so we are done. ut

We already stated a special case of this result in Example 3.3.5:
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Example 4.2.3. If L is the linear map of Example 4.1.10 for the m×n matrix A:

L(u) = Au,

then the nullspace of L is the set of solutions of the homogeneous system of equa-
tions Ax = 0.

Since the nullspace is a subspace of U , it has a dimension, called the nullity of L.

Remark 4.2.4. If the nullity of L is 0, then L is injective.

Proof. Indeed, if L(u1) = L(u2), then by linearity L(u1− u2) = 0. This says that
u1−u2 is in NL, and since the nullity is 0, it must be 0, so u1 = u2. ut

More examples here.
Now we turn to the second subspace: as before L : U →V is a linear map.

Definition 4.2.5. The range RL of L is the set of v ∈ V such that there is a u ∈U
with L(u) = v.

Theorem 4.2.6. The range of L is a subspace of V .

Proof. The proof proceeds in exactly the same way as for the nullspace. Assume
that v1 and v2 are in the range, so that there are elements u1 and u2 in U with
L(ui) = vi. Then by linearity,

L(u1 +u2) = L(u1)+L(u2) = v1 +v2

so that v1 +v2 is in the range, as required. The second part is left to you. ut

Definition 4.2.7. The rank of L is the dimension of the range of L.

Examples here.
We now get to one of the most important theorems in linear algebra.

Theorem 4.2.8 (The Rank-Nullity Theorem). If L : U → V is a linear map be-
tween finite dimensional vector spaces, if n is the nullity of L, r its rank, and d is the
dimension of U, then

n+ r = d.

Proof. Pick a basis v1, . . . vr of the range of L. By definition of the range, we may
find elements u1, . . . ur in U such that L(ui) = vi. Then the ui are linearly indepen-
dent (in U). Indeed, suppose not. Then there is an equation of linear dependence:

a1u1 +a2u2 + · · ·+arur = 0.

Apply L. This gives

a1L(u1)+a2L(u2)+ · · ·+arL(ur) = a1v1 +a2v2 + · · ·+arvr = 0,

an impossibility since the vi are linearly independent.
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Now let w1, . . . wn be a basis of the nullspace. We claim that the ui and the w j
form a basis of U .

To prove this, we first prove these vectors span U . Take an arbitrary u ∈U . Then
L(u) can be written in terms of the basis of the range:

L(u) = a1v1 +a2v2 + · · ·+arvr

for suitable scalars ai. Then we see that

L(u−a1u1−·· ·−arur) = 0.

Thus u−a1u1−·· ·−arur is an element of the nullspace, so it can be written

u−a1u1−·· ·−arur = b1w1 + · · ·+brwn.

This shows that the ui and the w j span. To show that they form a basis, assume
by contradiction that they satisfy an equation of linear dependence:

a1u1 + · · ·+arur +b1w1 + · · ·+bnwn = 0. (4.1)

Apply L to get
a1L(u1)+ · · ·+arL(ur) = 0

since the remaining vectors are in the nullspace. Since the v j = L(u j) are linearly
independent, this forces all the ai to be zero. Then (4.1) becomes

b1w1 + · · ·+brwn = 0,

which implies all the b j are 0 since the w j are linearly independent. Thus all the
coefficients of (4.1) are zero, so it is not an equation of linear dependence.

Thus a basis for U has r+n elements, and we are done. ut
Corollary 4.2.9. Let L : U → V be a linear map between finite dimensional vector
spaces of the same dimension d. Then if the nullspace has dimension 0, or if the
range is V , then L is bijective.

Proof. We need to show that L is both injective and surjective.
First assume the nullspace of L has dimension 0. Then L is injective by Remark

4.2.4. By the Rank-Nullity Theorem, the range of L has dimension d, so by Corol-
lary 3.5.8 it is all of V , so the map is surjective.

Next assume the range of L is V . Then L is surjective. The nullspace of L has
dimension 0, so it is also injective. ut
Example 4.2.10. Let V be a vector space that is written as the direct sum of sub-
spaces U and W , so that dimV = dimU +dimW . See §3.6. Then in Definition 4.1.7
we defined the projection P of V to U along W . By construction the range of P is U
and the nullspace is W , as you should check.

As a corollary of the rank-nullity theorem, we get the following important for-
mula.
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Theorem 4.2.11. Let U and W be subspaces of a finite dimensional vector space V .
Then

dimU +dimW −dimU ∩W = dim(U +W ).

Proof. First recall that in §3.3 we defined the subspaces U +W and U ∩W of V . In
§3.6 we also defined the direct sum U ⊕W of two vector spaces. We build a linear
map

L : U⊕W →V

by
L((u,w)) = u−w.

You should first convince yourself that this is a linear map. Then notice that its
nullspace is U ∩W . Its range is U +W . In Exercise 3.6.6 we established that
dimU⊕W = dimU+dimW , so the theorem is a direct corollary of the Rank-Nullity
Theorem. ut

Next we prove a proposition that will be useful later.

Proposition 4.2.12. Let L : V →W be a linear transformation with nullspace N of
dimension ν , and U a subspace of V of dimension u. The dimension of V is n and
the rank of L is r. Then

dim(L(U)) = dimU−dim(U ∩N).

Thus the dimension of L(U) is at least min(0,u−ν) and at most min(n,u+ν)−ν .

Proof. We restrict the linear transformation L to U . The nullspace of the restriction
is clearly U ∩N, so the equality just expresses the Rank-Nullity Theorem for the re-
striction. For the inequalities we use Theorem 4.2.11 applied to U and the nullspace
N of L inside of V . The range of U will be as small as possible if U contains N, or
at least as much of it as it can. That gives the first inequality. The range of U will
be as large as possible by making the intersection of U and N as small as possible.
That gives the second inequality.

Let’s apply this result to some low dimensional examples. You may assume that
F is the real numbers.

Example 4.2.13. Suppose that V is 3-dimensional. So the ambient space is ordinary
space. Suppose that U and W are both surfaces: i.e. they have dimension two. So
dimU + dimW = 4. Now U +W is a subspace of a three dimensional space, so it
has dimension at most three. On the other hand it has dimension at least 2: why? If
U +W has dimension 3, then by the theorem U and W intersect in a line: through
the origin, since the intersection is a subspace. If U +W has dimension 2, then U
and W must be the same subspace of V : why?

Example 4.2.14. Suppose that V is 4-dimensional. Suppose that U and W are both
surfaces: i.e. they have dimension two. So dimU +dimW = 4. Now U +W is a sub-
space of a 4 dimensional space, so this time there is no restriction on its dimension.
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Again it has dimension at least 2. If U +W has dimension 4, then by the theorem
U and W only intersect at the origin. If U +W has dimension 3, they intersect in a
line through the origin. If U +W has dimension 2, then U and W must be the same
subspace of V .

Example 4.2.15. The space Mn of square matrices of size n is a vector space of
dimension n. As we noticed in Exercise 3.5.5 if has dimension n2, while the sub-
space U of symmetric matrices has dimension n(n+1)

2 and the subspace V of skew-
symmetric matrices has dimension n(n−1)

2 . Convince yourself that U ∩V = (0), so
that every square matrix can be written uniquely as the sum of a symmetric matrix
and a skew-symmetric matrix.

4.3 Composition of Linear Maps

Theorem 4.3.1. If L is a linear map from U to V , and M a linear map from V to W,
then the composition M ◦L is a linear map from U to W.

Proof. As always, we must show two things. u and v are arbitrary elements in U ,
and c is an arbitrary scalar.

(M ◦L)(u+v) = (M ◦L)(u)+(M ◦L)(v) and (M ◦L)(cu) = c(M ◦L)(u).

Since L is linear,
L(u+v) = L(u)+L(v).

By linearity of M

M(L(u)+L(v)) = M(L(u))+M(L(v)).

By the definition of composition of maps this is (M ◦L)(u))+ (M ◦L)(v)), so we
are done. The second equality is even easier:

(M ◦L)(cu) = M(L(cu)) = M(cL(u)) = cM(L(u)) = c(M ◦L)(c)

where we first use the linearity of L and then that of M ut

We have shown in Theorem 4.1.11 that the linear maps from U to V form a vector
space, which we denote L (U,V ). We can now work out the interaction between the
vector space operations and composition.

Theorem 4.3.2. Let U, V and W be vectors spaces. Let L1 and L2 be linear maps
from U to V , and M1 and M2 linear maps from V to W.

1. Then following two equations are satisfied:

M1 ◦ (L1 +L2) = M1 ◦L1 +M1 ◦L2 and (M1 +M2)◦L1 = M1 ◦L1 +M2 ◦L1.
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The addition on the right hand side of these equations is that in L (U,W ), while
that on the left hand side is in L (U,V ) for the first equation and L (V,W ) for
the second.

2. If c is a scalar,
M1 ◦ (cL1) = (cM1)◦L1 = c(M1 ◦L1).

Proof. The idea of the proof is simple: to prove that two linear maps are equal, we
simply show that they give the same value when applied to an arbitrary element of
the domain vector space. So let u be an arbitrary element of U . then to establish the
first equation we need to show:

(M1 ◦ (L1 +L2))(u) = M1 ◦L1(u)+M1 ◦L2(u)

Use the associativity of composition to write the left hand side as M1((L1 +L2)(u),
then the meaning of addition in L (U,W ) to get M1(L1(u)+L2(u)), then the linear-
ity of M1 to get M1(L1(u))+M1(L2(u)). This is the desired result.

The other results are proved the same way. ut

Now that we know that M ◦L is a linear transformation, what can be said about
its rank and its nullity in the finite dimensional case? First some notation. Let n be
the dimension of U , m the dimension of V and l the dimension of W .

Definition 4.3.3. We have five important subspaces associated to the composition
of linear maps M ◦L, where L : U →V and M : V →W .

1. In U , we have the nullspace NL of L;
2. In V we have the range RL of L, the nullspace NM of M and their intersection

RL∩NM;
3. In W we have the range RM of M.

The composition M ◦L factors through RL, so, denoting by M|RL the restriction
of M to the subspace RL, we get:

RM◦L = RM|RL

which yields, by the Rank-Nullity Theorem applied to M|RL :

dim(RM◦L) = dim(RL)−dim(RL∩NM). (4.2)

Therefore by the Rank-Nullity Theorem applied to M ◦L and also to L we get

dim(NM◦L) = n−dim(RL)+dim(RL∩NM)

= dim(NL)+dim(RL∩NM). (4.3)

Exercise 4.3.4. Convince yourself that both results make sense by drawing a picture
in a low dimensional case, with different values for the dimensions of RL, NM , and
RL∩NM .
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Numerical examples here.
We have the following classic theorems relating the ranks of linear maps and

their compositions.
First an easy result.

Theorem 4.3.5. Let L and M be linear maps from U to V with ranges of dimension
r(L) and r(M). Let r(L+M) be the dimension of the range of L+M. Then

r(L+M)≤ r(L)+ r(M)

Proof. The range of L+M is spanned by the ranges of L and M, but these two
spaces could well intersect non-trivially, giving the inequality. ut

Exercise 4.3.6. With the notation of the theorem, show r(L−M)≥ |r(L)− r(M)|.
Hint: replace L by L−M in the theorem.

Examples and exercises here.
Now for the main theorem:
Given linear maps L : U →V and M : V →W , where n is the dimension of U , m

the dimension of V and l the dimension of W .

Theorem 4.3.7 (Sylvester’s Law of Nullity). Given linear maps L : U → V and
M : V →W, where n be the dimension of U, m the dimension of V and l the dimen-
sion of W, then

1. the nullity ν satisfies:

ν(L)≤ ν(M)≤ ν(L)+ν(M).

2. the rank r satisfies:

r(L)+ r(M)−n≤ r(M ◦L)≤min(r(L),r(M)).

Proof. The inequalities concerning nullities are a direct consequence of (4.3), which
also tells us when the extreme cases are realized.

Next we establish the right hand inequality for the rank, which is probably the
most useful of the four inequalities. The range of M ◦L is contained in the range of
M, so r(M ◦L)≤ r(M). On the other hand the nullspace of M ◦L contains that of L
as you see by applying both sides to an arbitrary element of L. So ν(M ◦L)≥ ν(L).
By (4.2) we get r(M ◦L)≤ r(L), so we are done.

Finally we get the left hand inequality for the rank: the left side can be written

r(L)+ r(M)−n = r(L)−ν(M)

by the Rank-Nullity Theorem, so the inequality follows immediately the inequality
r(M ◦L)≤ r(L) that we have already used. ut

Corollary 4.3.8. If L and M are linear maps from U to U, a vector space of dimen-
sion n, and one of them has rank n, then the rank of the other is the rank of M ◦L.
In particular, if L has rank n then the rank of L−1ML is the same as that of M.
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Proof. The first statement follows immediately from the formula for the ranks. For
the second statement we need to know that if L has rank n, then its inverse map
L−1 is a linear transformation. This will be established in Theorem 4.5.1. Then just
apply the first part twice.

We will see the importance of the last statement in Theorems 5.5.1 and 5.5.4.

Exercise 4.3.9 (Frobenius’s Inequality). If L, M and N are linear transformations
that can be composed in the order N ◦M ◦L, then show

r(N ◦M)+ r(N ◦A)≤ r(M)+ r(N ◦M ◦L).

Hint: Just use the inequalities of Sylvester’s Law of Nullity.

Exercise 4.3.10. L is a linear map from U to V , and M a linear map from V to W .

1. If L and M are both injective, then so is M ◦L.
2. If L and M are both surjective, then so is M ◦L.

4.4 Linear Operators

Composition of linear maps is even more interesting in the special case where V and
W are the same vector space as U .

Definition 4.4.1. A linear map from a vector space to itself is called a linear opera-
tor.

We can form the power of the linear operator L : U →U with itself any number
of times by composition. We write L2 for L◦L, L3 for L◦L◦L, Lr = L◦L◦ · · · ◦L, r
times, for any positive integer r. We also set L0 to be the identity operator.

Exercise 4.4.2. Why is Ln ◦Lm = L(n+m) for all non-negative integers n and m?

A word of warning: if L and M are two linear operators on U it is not always the
case that L ◦M = M ◦L. In fact an important part of what we will do later in this
course is to determine when the two operators can be interchanged. For simplicity,
when dealing with linear operators we often write LM for L◦M.

Thus any polynomial in L:

anLn +an−1Ln−1 +a1L1 +a0L0 , ai ∈ F

is an operator. Here n is a positive integer. We sometimes omit the L0 when writing
the polynomial, or write I for L0.

Example 4.4.3. Two operators M and N that are polynomials in the operator L com-
mute: MN = NM.
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We will exploit the idea of taking polynomials of operators systematically in
Chapter 10.

Exercise 4.4.4. Assume L2− I = 0. where 0 is the operator that sends everything to
zero. Then let

M =
1
2
(L+ I) and N =

1
2
(−L+ I).

Show that M+N = I, M2 = M, N2 = N and MN = NM = 0 simply by doing algebra
in polynomials in L.

Exercise 4.4.5. Let L and M be linear operators on U . Assume they commute: LM =
ML. Then, for example

(L+M)2 = L2 +2LM+M2 and (L+M)((L−M) = L2−M2.

4.5 Invertible Linear Maps

Our first goal is to show that if a linear map L from a vector space U to a vector
space V has an inverse M, then M is itself a linear map. Recall that M is the inverse
of L if M ◦L is the identity map on U , and L◦M is the identity map on V .

First note that the dimensions of U and V must be equal, by the Rank-Nullity
Theorem. Indeed L must be both injective and surjective. If dimU > dimV then L
cannot be injective, and if dimU < dimV , then L cannot be surjective.

Theorem 4.5.1. If L is a linear map from U to V that has an inverse M, then M is a
linear map from V to U

Proof. As always, we must show that M(v1 + v2) = M(v1)+M(v2) for all v1 and
v2 in V , and that M(cv1) = cM(v1) for all scalars c.

Because L is invertible, there is a unique u1 ∈ U such that L(u1) = v1, and
a unique u2 ∈ U such that L(u2) = v2. Applying M to both equations gives
M(L(u1)) = M(v1), so since M ◦ L = I, we get u1 = M(v1) and of course u2 =
M(v2). So

M(v1 +v2) = M(L(u1)+L(u2)) = M(L(u1 +u2)) = u1 +u2 = M(v1)+M(v2)

by the linearity of L. ut

Exercise 4.5.2. Provide the second part of the proof of Theorem 4.5.1 by showing
that M(cv1) = cM(v1) for all scalars c.

Definition 4.5.3. A linear map L between two vector spaces U and V that is bijective
(therefore both injective and surjective) is called an isomorphism. The vector spaces
are then said to be isomorphic.

The previous theorem says that the inverse of L is also a linear map, and therefore
also an isomorphism.
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Theorem 4.5.4. Two vector spaces of the same dimension are isomorphic. Vector
spaces of different dimensions are not isomorphic.

Proof. First assume that V and W have the same dimension n. Let {v1, . . . ,vn} be
a basis for V , and {w1, . . . ,wn} a basis for W . By Theorem 4.1.12, we can build a
linear map L from V to W sending vi to wi. Because the wi are linearly independent,
L is injective; because the wi span W , L is surjective, so the first statement is proved.

The converse follows from the Rank-Nullity Theorem, as already noted. ut

As usual, in our proof we have not handled the trivial special case of vector
spaces of dimension 0, which is left to the reader.

Exercise 4.5.5. Let L : U→U be a linear operator such that Lr = 0 for some positive
r. Then show that L− I is invertible by computing its inverse using the algebra of
linear operators.

Exercise 4.5.6. Let L : U →U be a linear operator such that

anLn +an−1Ln−1 +a1L1 +a0I = 0

where both an and a0 are different from 0. Then show that L is invertible by display-
ing its inverse. As we will see in §10.3 we can alway find a polynomial in L that
vanishes on L, and L is invertible is and only if its constant term is non-zero. The
polynomial of smallest degree on which it vanishes is called the minimal polyno-
mial. We study it in §10.3.

4.6 Projections

Projections are very important examples of linear operators. They are defined in
Definition 4.1.7. They play a central role in the rest of this book. For one example
see the proof of Theorem 10.5.1.

Before considering projections, let’s look at a bigger class of linear operators.
First recall that the Rank-Nullity Theorem says that for any subspace U of V on
which the restriction of the operator L is injective, and if W is the nullspace of L,
then W ⊕U =V . But it does not say that W +L(U) =V . If this happens to be true,
then we say that the range and the nullspace span V . We have the following result.

Lemma 4.6.1. Consider a linear operator L on V whose range and nullspace span
V . Then the range of any power Lk of L is the range of L, and the nullspace of Lk is
the nullspace of L

Proof. Let v be in the nullspace of L2. This means that Lv is in the nullspace of
L. But by the rank-nullity theorem and the hypothesis, the range and the nullspace
of L have only 0 in common. Thus Lv = 0, so the nullspace of L and of L2 are
identical. Clearly the range of L2 is contained in the range of L, but by the rank-
nullity theorem and the first part of the proof, they have the same dimension, so they
too are the same. We can continue in this way for any power of k. ut
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This is an extreme case of Definition 4.3.3 applied to L composed with L, as you
should verify.

Now we turn to projections, which satisfy the hypothesis of the lemma.

Theorem 4.6.2. Let P : V → V be the projection to the subspace U along the sub-
space W, where V =U⊕W, U is the range of P and W its nullspace. Then

P2 = P.

Furthermore any linear operator satisfying this equation is a projection to its range
along its nullspace.

Proof. First assume P is the projection to U along W . To any v ∈ V , which can be
written uniquely as u+w, u ∈U , w ∈W , Pv = u by definition. For any u ∈U , this
unique representation is u+0. So P2v = Pu = u = Pv as required.

For the converse, just assume we have a linear operator P on V with P2 = P.
Obviously you can write any v ∈V as

v = Pv+(v−Pv). (4.4)

By definition Pv is in the range of P, while v−Pv is in the nullspace of P, since

P(v−Pv) = Pv−P2v = Pv−Pv = 0

by hypothesis. This shows that any v can be written as the sum of an element of the
nullspace and the range of P. So dimV ≤ dimNL +dimRL. By the rank-nullity the-
orem we have equality, so V is the direct sum of the range U of P and the nullspace
W of P. Thus (4.4) applied to an element in the range of P shows P is the identity
map on U , since v−Pv is then 0. ut

We can generalize this:

Corollary 4.6.3. Assume that the vector space V is the direct sum of k subspaces
U1, . . . , Uk. Then for every i we can define the projection Pi : V →V of V to Ui along
∑ j 6=i U j. Then

1. Pi ◦Pi = Pi;
2. Pi ◦Pj = 0, when i 6= j;
3. P1 + · · ·+Pk = I.

Conversely if P1, . . . , Pk are a family of linear operators on V such that the three
conditions above are met, then letting Ui = Pi(V ), V is the direct sum of the Ui.

Proof. First the direct statement. Any v ∈V can be written uniquely as

v = u1 + · · ·+uk, ui ∈Ui.

Then Pi(v) = ui. The conclusions either follow from the theorem or are obvious.
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For the converse, pick any v ∈V . By hypothesis 3 it can be written

v = P1(v)+ · · ·+Pk(v).

To show that the sum is direct, we must show this representation as a sum of ele-
ments from the Ui is unique. Write one such representation as

v = ui + · · ·+uk (4.5)

with ui ∈Ui. So there is a collection of wi ∈V such that

ui = Pi(wi) (4.6)

since Ui is the range of Pi. Then

ui = Pi(wi) by (4.6)
= Pi ◦Pi(wi) by hypothesis 1

= ∑
j

Pi ◦Pj(w j) by hypothesis 2

= ∑
j

Pi(u j)) by (4.6)

= Pi(∑
j

u j) by linearity

= Pi(v) by (4.5)

which shows that the u j are uniquely determined. ut

Graph here: 3 dimensional, with projections to the skew coordinate axes.

Example 4.6.4. First a simple example of a linear map L from V to itself where
the nullspace and the range do not span the entire space, unlike the situation for
projections. V is two-dimensional with basis u and v. The linear operator L operates
by L(u) = 0 and L(v) = u. Notice that L2 is the identity map.

Next assume V is three-dimensional, with basis u, v, w. The operator L acts by
L(u) = 0, L(v) = w, L(w) = v. Then the nullspace and the range of L span V , and
yet the operator is not a projection.





Chapter 5
Representing Linear Maps by Matrices

Abstract In the second chapter of this book, we saw how matrices are used to
represent systems of linear equations. In this chapter we see how they are used
to represent linear maps between finite dimensional vector spaces. The important
computation in the proof of Theorem 5.1.1: (5.3) shows that any linear map is given
by matrix multiplication. We first do this for vector spaces with given bases, namely
Fn and Fm, using their standard bases, and then in §5.3 we repeat the construction
for general vector spaces, showing explicitly how the construction depends on the
choice of bases. As part of our construction, we show that the set of linear maps
between a vector space of dimension n and one of dimension m is itself a vector
space in a natural way, and it has dimension mn. Next we discuss an equivalence
relation on linear maps (§5.4) and then a much more important equivalence relation
called similarity on linear operators in §5.5. Then we define the row rank and the
column rank of a matrix, in terms of the rank of a linear map. We prove the important
theorem that the row rank and the column rank are equal. We also give the classical
definition of the rank of a matrix as the size of its biggest invertible submatrix. Next
we apply the notion of rank to the matrix of coefficients to reformulate the theory of
linear equations already studied in Chapter 2. After a section describing the relation
between real and complex linear maps, we conclude with an example: nilpotent
operators and their matrices.

5.1 The Matrix of a Linear Map

We start with a linear transformation L : V →W , where V and W are vector spaces
of dimension n and m respectively. Assume V and W are equipped respectively with
bases

B= {e1, . . . ,en} and C= {f1, . . . , fm}.

To every linear map L : V →W with these bases, we associate a unique m×
n matrix A, as follows. The j-th coordinate vector e j is mapped by L to a linear

81
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combination of the basis vectors of W , that we write

L(e j) = a1 jf1 +a2 jf2 + · · ·+am jfm (5.1)

for each j, 1 ≤ j ≤ n. This defines the scalars ai j, 1 ≤ i ≤ m and 1 ≤ j ≤ n. We let
A be the m×n matrix with entries (ai j). The matrix A is uniquely determined by L
and the two bases.

Theorem 4.1.12 of Chapter 4 shows that to specify a linear map uniquely we only
need to know what it does on a basis. So given a linear map L : V →W , use the basis
B of V . An arbitrary vector x in V can be written uniquely as

x = x1e1 + x2e2 + · · ·+ xnen. (5.2)

By the linearity of L, the image of (5.2) under L is

L(x) = x1L(e1)+ x2L(e2)+ · · ·+ xnL(en).

Now we use (5.1) to get:

L(x) = x1L(e1)+ x2L(e2)+ · · ·+ xnL(en)

= x1(a11f1 +a21f2 + · · ·+am1fm)+ x2(a12f1 +a22f2 + · · ·+am2fm)

+ · · ·+ xn(a1nf1 +a2nf2 + · · ·+amnfm)

= (x1a11 + x2a12 + · · ·+ xna1n)f1 +(x1a21 + x2a22 + · · ·+ xna2n)f2

+ · · ·+(x1am1 + x2am2 + · · ·+ xnamn)fm

= y1f1 + y2f2 + · · ·+ ymfm, (5.3)

where we have defined:

yi = ai1x1 +ai2x2 + · · ·+ainxn. (5.4)

Since A is the m×n matrix with entries (ai j), (5.4) is the matrix product of the i-th
row of A with the column vector x:

yi = aix, 1≤ i≤ m.

So the computation (5.3) establishes the important:

Theorem 5.1.1. Let L be the linear map from V to W defined by (5.1). Then L maps
the vector x with coordinates (x1,x2, . . . ,xn) in the B basis to the vector y with
coordinates (y1,y2, . . . ,ym) in the C basis, where

y = Ax.

Definition 5.1.2. If V is a vector space of dimension n with basis B and W is a
vector space of dimension m with basis C, 1≤ i≤m, and L a linear map between V
and W defined by (5.1), then the m×n matrix A is the matrix associated to L.
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5.2 The Linear Map of a Matrix

Conversely, given a m× n matrix A with coefficients in F , we showed in Example
4.1.10 how to build a linear map L : Fn→ Fm using A: just map the n-tuple v ∈ Fn

to the matrix product Av, where v is a column vector. We call this linear map LA
when we need to make the dependence on A explicit, and we call it the linear map
associated to A. Since we can write

Av = v1a1 + v2a2 + · · ·+ vnan,

where ai is the i-th column of A, LA takes the i-th coordinate vector of Fn to the
vector ai. This is the inverse of the map constructed in Theorem 5.1.1.

Recall that Mm,n is the vector space of all m×n matrices (see Chapter 3, Exam-
ple 3.2.4) and L (Fn,Fm) is the vector space of linear maps from Fn to Fm: see
Theorem 4.1.11 of Chapter 4. We know that Mm,n has dimension mn.

Above we have constructed a bijection:

F : Mm,n→L (Fn,Fm). (5.5)

Even more is true.

Theorem 5.2.1. The map F : Mm,n→L (Fn,Fm) of (5.5) is a linear map of vector
spaces.

Proof. Let A and B be two m× n matrices, and c a scalar. We need to show two
things. They both follow from Theorem 2.2.13.

1. F (cA) = cF (A).
Applying the definition of F , this gives LcA = cLA, which is clear, since (cA)v =
c(Av) for all v ∈ Fn.

2. F (A+B) = F (A)+F (B).
Again applying the definition of F , this gives LA+B = LA+LB. This follows from
(A+B)v = Av+Bv.

ut

Therefore F is a bijective linear map, so by Definition 4.5.3 is an isomorphism.
So the dimension of L (Fn,Fm) is that of Mmn:

Theorem 5.2.2. The dimension of L (Fn,Fm) is mn.

Theorem 5.2.3. If L is the linear map from Fn to Fm with associated matrix A, and
M the linear map from Fm to Fs with matrix B, then the matrix associated to the
composite linear map M ◦L is the matrix product BA.

We first check that the matrix sizes work out. A has size m×n, and B has size s×m.
Thus the product BA can be formed, and has size s×n, the appropriate size for the
matrix associated to a linear map from Fn to Fs.
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Proof. We do this without computation. Let x be an n-vector. Then

(M ◦L)(x) = M(L(x)) = B(Ax) = (BA)x. (5.6)

We use the associativity of composition of maps (Theorem B.1.5) in the second step,
and the associativity of matrix multiplication in the fourth step (Theorem 2.2.10). In
the third step we use Theorem 5.1.1 applied first to L to get M(L(x)) = M(Ax), and
then to M evaluated at y = Ax to get M(y) = By = BAx. ut

5.3 Change of Basis

In the previous sections we only consider linear maps from Fn to Fm, or, which
amounts to the same thing, we assumed that the domain V and the target W were
equipped with bases, which allow us to identity them with Fn and Fm respectively.
In this section we reword the results of §5.1 in a new notation that gives the flexibility
to change bases.

First we develop the notation. Let L be a linear map between V and W of dimen-
sion n, with bases, respectively B= {v1, . . . ,vn} and C= {w1, . . . ,wm}. Using the
notation of Example 4.1.9, we write the vector of coordinates of v in the basis B
of V as [v]B, and the vector of coordinates of w ∈W in the C basis as [w]C. Then
Theorem 5.1.1 says that the matrix A associated to L in these basis satisfies

[w]C = A[v]B.

To emphasize the dependence of A on the two bases, we write A = [L]BC . In the
notation [L]BC , the basis B of the domain is written as the superscript, while the
basis C of the target space is written as the subscript.

Remark 5.3.1. There is no generally accepted notation for the n×m matrix [L]BC
associated to a linear transformation. The notation we use here is adapted from [12],
Chapter 3.4. See in particular Theorem 11.

In our new notation Theorem 5.1.1 says

[L(v]C = [L]BC [v]B (5.7)

where

[L]BC =

 | . . . |
[L(v1)]C . . . [L(vn)]C
| . . . |


meaning that the i-th column of [L]BC is [L(vi)]C.

Example 5.3.2. For the identity map I on a vector space V with basis B, we get the
identity matrix I:

[I]BB = I. (5.8)
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We record the following important special case of our computation (5.7).

Corollary 5.3.3 (Change of Basis). Let V be an n-dimensional vector space with
two bases B= {v1, . . . ,vn} and C= {w1, . . . ,wn}. Then

[v]C = [I]BC [v]B . (5.9)

Proof. In the computation above let W be the same space as V , let L be the identity
map. Therefore B and C are two bases of V . ut

The matrix [I]BC is the change of basis matrix from the B basis to the C basis. Its j-
th column is formed by the coefficients of vi expressed in the C basis, namely [vi]C.
The matrix [I]BC is invertible with inverse [I]CB as we see by exchanging the roles of
the two bases. For more details see Corollary 5.3.7.

Example 5.3.4. A linear map is often given by equations such as (5.3). For example
consider the linear map L from a 2-dimensional space to a 3-dimensional space that
maps the bases as follows:

L(v1) = 3w1 +2w2 +w3

L(v2) =−w1 +4w2 +5w3

The matrix A = [L]BC is 3 −1
2 4
1 5


so that the vector x1v1 + x2v2 gets mapped to the vector with coordinates:3 −1

2 4
1 5

(x1
x2

)
=

 3x1− x2
2x1 +4x2
x1 +5x2


as required.

We now rephrase Theorem 5.2.1 in this new notation .

Theorem 5.3.5. Let V be a vector space of dimension n with basis B and W a vector
space of dimension m with basis C. Let L and M be linear maps from V to W. Then

[L+M]BC = [L]BC +[M]BC

and
[cL]BC = c [L]BC .

So [•]BC : L (V,W )→ M(m,n) is a linear map from the vector space of all linear
maps L (V,W ) to m×n matrices. Furthermore it is an isomorphism.
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Next we turn to the multiplicative properties of the associated matrix. Here is the
key result, which rephrases Theorem 5.2.3. It will allow us to write down the most
general change of basis formula.

Theorem 5.3.6. Let V , W and U be vector spaces of dimensions n, m and r. Let B,
C, D be bases for V , W, U respectively. Let

L : V →W and M : W →U

be linear maps. Then
[M]CD [L]BC = [M ◦L]BD , (5.10)

where the left hand side is the matrix product of a matrix of size r×m by a matrix
of size m×n.

Warning: the theorem only applies when the basis C of the vector space W in
the middle is the same for both associated matrices.

Proof. We identity V , W and U with Fm, Fn and Fr respectively, once and for all,
using the given bases, and we take the associated matrices in these bases. Then we
write down (5.6) in our new notation. This is (5.10). ut

Corollary 5.3.7. Let V be a vector space and B and C two bases. Denote by I both
the identity linear transformation and the identity matrix. Then

[I]BC [I]CB = I = [I]CB [I]BC .

In particular [I]BC is invertible.

Proof. Just let V =U =W , L = M = I, and D =B in the theorem. Use (5.8), and
we are done. ut

Example 5.3.8. Return to the original setup of a linear map L : V → W , where
dimV = n with basis B and dimW = m with basis C. Let In be the identity linear
transformation on V , which now has a second basis D = {z1, . . . ,zn}. We consider
In as a linear transformation from V with the basis D to V with the basis B.

Then by Theorem 5.3.6,

[L]DC = [L◦ In]
D
C = [L]BC [In]

D
B .

This says explicitly how the matrix representing L changes when you change the
basis of the domain: you multiply on the right by the change of basis matrix in the
domain. Thus we multiply a m×n matrix on the right by a n×n matrix.

Exercise 5.3.9. In the same way, give W a second basis E = {u1, . . . ,um}, and let
Im be the identity linear transformation on W . Then show that

[L]BE = [Im]
C
E [L]BC
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Finally, using the notation and the conclusion of Example 5.3.8 and Exercise
5.3.9, we get:

Theorem 5.3.10.
[L]DE = [Im]

C
E [L]BC [In]

D
B

Notice that the right hand side is the product of a m×m matrix by a m× n matrix
and a n×n matrix, which makes sense. By Corollary 5.3.7 the two change of basis
matrices are invertible.

Numerical examples here.
In Theorem 5.5.1 we handle the most important case, where T is a linear trans-

formation V →V .

5.4 Equivalent Linear Maps

Suppose that L : V →W is a linear map of a n dimensional vector space V to a m
dimensional vector space W . We allow ourselves to make an arbitrary change of
basis in V , and an independent change of basis in W in order to simplify the matrix
A of L in these bases. By Theorem 5.3.10 and Corollary 5.3.7 we see that we are
allowed to multiply A by an arbitrary invertible n× n matrix D on the right and an
arbitrary invertible m×m matrix C on the left. This section shows how to get the
maximum simplification without computation, using the ideas in the proof of the
Rank-Nullity Theorem.

If the rank of L is r, we can find linearly independent elements v1,v2, . . . ,vr
whose images under L are linearly independent elements wi = L(vi) that form a
basis for the image of L. Then we can find elements vr+1, . . . ,vn in the nullspace
of L so that v1,v2, . . . ,vn is a basis of V . Finally complete the wi to a basis of W
arbitrarily. It is clear that with this choice of bases, the matrix of L has r ones along
the diagonal, and zeroes everywhere else. So we have proved:

Theorem 5.4.1. There is a basis B= {v1, . . . ,vn} of V and a basis E= {w1, . . . ,wm}
of W so that

[L]BE =



1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 1 0 . . . 0
0 0 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . 0


=

(
Ir 0r,n−r

0m−r,r 0m−r,n−r

)
(5.11)

where on the right we have written the block decomposition of the matrix into one
identity matrix and three 0 matrices.
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Definition 5.4.2. Given two m× n matrices A and B, we say that A is row-column
equivalent to B if there are invertible matrices C of size m and D of size n such that
B =CAD. We write A≈ B if this is the case.

Theorem 5.4.3. Row-column equivalence (≈) is an equivalence relation on m× n
matrices.

Theorem 5.4.4. Two m× n matrices are row-column equivalent if and only if they
are the matrices associated to the same linear operator L in different bases for the
domain and the codomain.

Proof. Theorem 5.4.1 can be reformulated to say that any two m× n matrices as-
sociated to the same linear operator L in different bases for the domain and the
codomain are row-column equivalent. On the other hand, any invertible matrix is a
change of basis matrix, which gives the other inclusion. ut

This shows that there are very few equivalence classes for row-column equiva-
lence: they are characterized by the matrices (5.11), and therefore by the rank of
the matrix. Note that we did not use the Rank-Nullity Theorem in the proof. How-
ever, the proof of Theorem 5.4.1 is essentially equivalent to that of the Rank-Nullity
Theorem, so not much is gained.

Remark 5.4.5. There is a more interesting equivalence relation on m× n matrices
that we will study later, once we give both spaces inner products, and have defined
the notion of an orthogonal matrix (over R) and unitary matrix (over C). Here we
will just deal with the real case. Then for any m×n matrix A, there is an orthogonal
m×m matrix U and an orthogonal n× n matrix W so that B = UAW is a m× n
matrix whose only non zero elements are σi = bii, which can be arranged in weakly
decreasing order:

σ1 ≥ σ2 ≥ ·· · ≥ σp ≥ 0

where p = min{m,n}. This is called the Singular Value Decomposition of A, or
SVD, since the σi are called the singular values. We will study it in 13.10 In partic-
ular we will show that the singular values partition m×n matrices into equivalence
classes.

A similar, even more interesting decomposition holds for complex matrices.

For a good example of this material see Example 6.4.8 about the map for a vector
space to its dual.

5.5 Equivalent Linear Operators

We now restrict to the case where L is a linear operator, a map from a vector space
V to itself. In this case we require that the same basis be used on the domain and the
range of L. In particular, if B is a basis of V , we only consider associated matrices
[L]BB.
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Given another basis D of V we want to compare [L]BB and [L]DD. This is a special
case of Theorem 5.3.10:

Theorem 5.5.1. Let L : V →V be a linear operator, and let B and D be bases of V .
Then there is an invertible matrix N such that

[L]DD = N−1 [L]BB N

Proof. Indeed take N = [In]
D
B, which has inverse [In]

B
D by Corollary 5.3.7. Then the

right hand side is
[In]

B
D [L]BB [In]

D
B = [L]DD

by Theorem 5.3.10, ut

Now we introduce some new terminology that will help us compare square ma-
trices:

Definition 5.5.2. Given two n×n matrices A and B, we say that A is similar to B if
there is an invertible n×n matrix N such that B = N−1AN. We write A ∼ B if this is
the case.

Theorem 5.5.3. Similarity (∼) is an equivalence relation on n×n matrices.

Proof. By the definition of equivalence relation - see Chapter 1 - we need to estab-
lish the following three points:

1. A ∼ A: Use the identity matrix for N.
2. if A ∼ B, then B ∼ A: If A ∼ B, there is an invertible N such that B = N−1AN.

Then, multiplying both sides of the equation on the right by N−1 and on the left
by N, and letting D = N−1, we see that A = D−1BD, so B is similar to A.

3. if A ∼ B and B ∼ D, then A ∼ D: The hypotheses mean that there are invertible
matrices C1 and C2 such that B=C−1

1 AC1 and D=C−1
2 BC2, so, substituting from

the first equation into the second, we get

D =C−1
2 C−1

1 AC1C2 = (C1C2)
−1A(C1C2),

so A is similar to D using the matrix C1C2.
ut

Since similarity is an equivalence relation on n× n matrices, it partitions these
matrices into equivalence classes.

Theorem 5.5.1 says is that two matrices that represent the same linear operator
F : V →V in different bases of V are similar. We have an easy converse:

Theorem 5.5.4. Assume that two n×n matrices A and B are similar, so B=N−1AN,
for an invertible matrix N. Then they represent the same linear operator L.

Proof. Choose an n dimensional vector space V , a basis B= {v1, . . . ,vn} for V . Let
L be the linear map represented by A in the B basis, so that B = [L]BB. Construct a
second basis D= {w1, . . . ,wn} of V :
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w j = n1 jv1 +n2 jv2 + · · ·+nn jvn, (5.12)

using the entries of the matrix N = (ni j). This is possible because the matrix N is
invertible, so we do get a basis. Then by definition N = [In]

D
B.

Then by Corollary 5.3.7

B = [In]
B
D [L]BB [In]

D
B = N−1AN

as required. ut

Any n× n matrix A can be viewed as the matrix [L]BB of a linear operator L in
the basis B of the n-dimensional vector space V . Matrices in the same similarity
class correspond to the same linear operator L, but expressed in different bases. One
of the goals of the remainder of this course is to determine the common features
of the matrices in a given similarity class. For example we will show that similar
matrices have the same characteristic polynomial: see Chapter 12. We will also see
that two matrices that have the same characteristic polynomial need not be similar:
see Theorem 12.7.2. The simplest example is given by the matrices(

α 0
0 α

)
and

(
α 1
0 α

)
for any complex number α .

Since our main goal is to study linear transformations L, not matrices, which
are computational tools for understanding linear transformations, we will want to
choose a basis in which the matrix of L is as simple as possible.

Exercise 5.5.5. Show that row equivalence (see Theorem 2.5.3) is an equivalence
relation on n×m matrices.

We will study an equivalence relation on symmetric matrices called congruence
in Definition 7.1.10.

5.6 The Rank of a Matrix

Recall that the rank of a linear transformation is the dimension of its range. We can
now define the rank of a matrix. First we define the column rank and the row rank,
and then we show they are equal: this is the rank of the matrix.

Definition 5.6.1. Let A be a m×n matrix.

1. The columns a j, 1≤ j ≤ n generate a subspace CA in Fm, whose dimension c is
the column rank of A.

2. Correspondingly, the rows ai, 1 ≤ i ≤ m, of A generate a subspace RA in Fn,
whose dimension r is called the row rank of A.
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The dimension c of CA is at most m, since it is a subspace of Fm, and at most n,
since it is generated by n elements. Similarly, the dimension r of RA is at most n,
since it is a subspace of Fn, and at most m, since it is generated by m elements.

Theorem 5.6.2. If LA is the linear map associated to A, then the rank of LA is the
column rank of A.

Proof. Since any vector in Fn can be written a1e1 + a2e2 + · · ·+ anen for suitable
scalars a j and the standard unit coordinates vectors in Fn, any vector in the range
can be written

a1L(e1)+a2L(e2)+ · · ·+anL(en).

On the other hand, matrix multiplication tells us that L(e j) is the j-th column of A.
So the range of LA is spanned by the columns of A, so the rank of LA is the column
rank of A. ut

Examples here.

Theorem 5.6.3. Let A be an n×n matrix. Then A is an invertible matrix if and only
if the linear map LA is invertible.

Proof. By definition A is invertible if and only if there is a n×n matrix B such that
AB = BA = I. Then Theorem 5.2.3 says that LA ◦LB = I and LB ◦LA = I, which says
that LA and LB are inverse linear maps. ut

Corollary 5.6.4. Let A be an n×n matrix with columns a1, . . . , an. Then A is invert-
ible if and only if its columns are linearly independent.

Proof. The key point is that

LA(x) = Ax = x1a1 + · · ·+ xnan.

So if the ai are not linearly independent, we can find an element x in the nullspace
of LA, a contradiction. Conversely if the ai are linearly independent, then the range
of LA has dimension n, so it is surjective and therefore an isomorphism by Corollary
4.2.9, for example. ut

We can rework the proof of the corollary slightly. In Theorem 5.6.2 we show that
the column rank of A is the rank of LA. By the Rank-Nullity Theorem we know that
if LA is a linear map between vector spaces of size n, then it is invertible if and only
if its rank is n. Then A is invertible by Theorem 5.6.3. So the corollary also follows
from Theorem 5.6.2.

Theorem 5.6.5. The row rank and the column rank of any matrix A are equal. We
call this simply the rank of A.

Proof. We can extract a basis of RA from the rows ai of A by Proposition 3.4.14.
So by reordering the rows of the equations, we may assume that the first r rows
of A form a basis of RA. We only do this for convenience of notation only, as we
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show in the exercise below. Let R be the r× n matrix formed by these rows. Then
by definition of a basis, any row ai of A can be written as a linear combination of
the first r rows:

ai = bi1a1 +bi2a2 + · · ·+birar, 1≤ i≤ m. (5.13)

Let B = (bi j) the m× r matrix formed by the scalars in (5.13). Note that for i = 1
to r we have bii = 1 and all the other entries in the first r rows are zero. Then as we
noted in Proposition 2.2.7, (5.13) can be expressed by the matrix product: A = BR.
The rows of A are linear combinations of the rows of R. On the other hand the same
product says that the columns of A are linear combinations of the columns of B.
Since B has r columns, the column rank of A is at most r, so c≤ r.

Now we just repeat the argument on the transpose At of A. Thus r ≤ c, since the
column rank of At is the row rank of A, etc. The two inequalities together give the
conclusion. ut

We can also get this result as a corollary of Theorem 5.4.4. Here is the proof.

Proof. The row and column ranks are obvious equal for the matrix in (5.11). On the
other hand both the row rank and the column rank of a matrix A are properties of
the linear transformation LA. Indeed, the row rank is the dimension of the domain
minus the dimension of the kernel of LA, while the column rank is the dimension
of the image of LA. Since the bases of the domain and image of L can be chosen
so that the matrix of L is these basis is the one in (5.11), the result is true for any
matrix. ut

Exercise 5.6.6. Here is the equivalent of (5.13) if a collection of rows numbered j1,
j2, . . . , jr form a basis for the row space of A. Then 5.13 becomes

ai = bi j1a j1 +bi j2a j2 + · · ·+bi jr a
jr , 1≤ i≤ m. (5.14)

Let R be the r×n matrix whose i-th row, 1≤ i≤ r is a ji . Let C be the m× r matrix
whose i-th column, 1≤ i≤ r is the ji-th column of the matrix B defined by the (bi jk)
in (5.14). Then A =CR. Now conclude as before.

Exercise 5.6.7. Write down an m×n matrix, with m > n which has several different
collections of n rows that are linearly independent.

This exercise is important because it shows that even though it is convenient
to give preference to the rows and columns with smaller indices, as we did in the
proof of Theorem 5.6.5, with a little bit of extra indexing work it is possible to
understand the situation without resorting to this preference. Row reduction is a key
example where preference is given to the first row and first column of a matrix. The
notation for submatrices of a matrix in (2.13) is a good example of the extra indexing
work required. This indexing work can be represented by matrix multiplication by
elementary matrices.

Exercise 5.6.8. Write down an 4× 2 matrix (ai j) whose bottom two rows are lin-
early independent. Find a product of elementary matrix that makes those rows the
two top rows. What happens to the columns of the original matrix?
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5.7 More on Linear Equations

Using the notion of rank of a matrix, we can revisit systems of linear equations and
improve our results from §2.7. We first examine the homogeneous system Ax = 0,
where A is as always a m× n matrix. The solutions of this system are simply the
nullspace of the linear transformation LA generated by the matrix A according to
Example 4.1.10.

As noted in Theorem 2.7.1, the homogeneous system Ax = 0 can be written

x1a1 + x2a2 + · · ·+ xnan = 0,

where the columns a j of A are vectors in Fm. So a nontrivial (i.e., a non-zero)
solution (x1, . . . ,xn) gives an equation of linear dependence between the vectors
a j in Fm. This leads us to:

Theorem 5.7.1. If A is a m×n matrix and NA ⊂ Fn the subspace of solutions to the
equation Ax = 0, then:

1. If n > m, NA is positive dimensional, so there are nontrivial solutions.
2. If m = n, then NA is zero dimensional (so the only solution is 0) if and only if the

columns a j form a basis of Fm, so that A has rank n and is nonsingular.

Proof. By dimension considerations, if n > m a nontrivial solution always exists:
since Fm has dimension m, for n > m a collection of n vectors cannot be linearly
independent.

The second part just expresses the fact that m vectors in a m-dimensional space
form a basis if and only if they are linearly independent. ut

Now suppose that A has been row reduced. Discard the rows of the row reduced
matrix that consist entirely of zeroes to get a r× n matrix R. By Theorem 2.5.11,
the solutions of the system Ax = 0 are the same as those of the system Rx = 0. If
there are no equations, the entire domain of A are solutions, so the dimension of the
space of solutions is n. The next result is important and easy to remember: because
the rows of R are linearly independent each equation in R imposes an independent
condition of the solutions, making the dimension of the space of solutions go down
by 1. So using Definition 2.6.1 we have n− r free variables corresponding to the
free columns. The following proposition finishes the proof.

Proposition 5.7.2. We get a n− r dimensional space of solutions to the system of
equations Rx = 0 with basis v j, 1 ≤ j ≤ n− r, obtained by letting the j-th free
variable entry in v j take the value 1, letting all the other free variable entries in v j

take the value 0, and solving for the bound variables.

Proof. It is clear that the solutions v j are linearly independent: imitate the proof in
Example 3.4.4. So the only difficulty is showing that they span. Take any solution w.
By subtracting from it an appropriate linear combination of the solutions v j, we get
a solution where all the free variable entries are 0. Then looking at the last equation
and working up, we see that all the bound variables are 0, so we are done. ut
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Corollary 5.7.3. The space of solutions of Ax = 0 has dimension n− r.

This is just the Rank-Nullity Theorem.
In particular, no matter which method we use to row reduce, we will end up with

the same number r of non-zero rows, since r is the dimension of the row space of A.

Definition 5.7.4. The augmented matrix associated to the system is the m× (n+1)
matrix C whose first n columns are those of A, and whose last column is b.

Theorem 5.7.5. The system has a solution if and only if the rank of C is the same as
that of A.

The proof is left to you. Just phrase Theorem 2.7.2 in terms of rank. Note also that
when the system is homogeneous, the rank of C is clearly that of A.

Next we look at the inhomogeneous equation

Ax = b

where A be a m× n matrix, and b a m-column vector. We started studying this
equation in §2.7

Theorem 2.7.2 says that the inhomogeneous equation Ax= b can be solved if and
only if any equation of linear dependence satisfied by all the rows, namely ytA = 0,
implies the same linear relation between the right hand terms: ytb = 0.

Example 5.7.6. Now a 3×3 example. We want to solve the system:

x1− x2 = b1

x2− x3 = b2

x3− x1 = b3

So

A =

 1 −1 0
0 1 −1
−1 0 1

 .

Now A has rank 2, so up to a scalar, there is only one non-zero vector y such that
ytA = 0. To find y add the three equations. We get

0 = b1 +b2 +b3.

This says that the scalar product of (1,1,1) with b is 0. So by the theorem the system
has a solution for all b such that b1 +b2 +b3 = 0.

Let’s work it out. Write b3 =−b1−b2. Then the third equation is a linear com-
bination of the first two, so can be omitted. It is sufficient to solve the system:

x1− x2 = b1

x2− x3 = b2
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x3 can be arbitrary, and then x2 = x3 +b2 and

x1 = x2 +b1 = x3 +b1 +b2

so the system can be solved for any choice of x3.

Remark 5.7.7. Here is what happens when one does Gaussian elimination on the
inhomogeneous system, using the augmented matrix 5.7.4. Reduce the coefficient
matrix A to row echelon form C, getting an equivalent system

Cx = d

The matrix C may have rows of zeroes - necessarily the last rows. Assume it has p
rows of zeroes. Then for the new system to have a solution, the last p components
of d must be 0. The rank of C is m− p: just imitate the proof of Proposition 5.7.2.
This can be at most n, since the row rank is the column rank. Then by the Rank-
Nullity Theorem, any vector vecd whose last p components are 0 is in the image
of C, and in that case the system has a solution. The matrix C has m− p columns
of index µ(i), 1 ≤ i ≤ m− p, where µ(i) is a strictly increasing function of i, such
that the entry ci,µ(i) is the first non-zero coordinate of row Ci of C. The remaining
columns correspond to the free variables xi. Thus there are n− (m− p) of them. For
any choice of the free variables the system admits a unique solution in the remaining
(m− p) variables.

Example 5.7.8. Now we redo Example 5.7.6 via Gaussian elimination to illustrate
the remark above. Here n = m = 3. The augmented matrix is 1 −1 0 b1

0 1 −1 b2
−1 0 1 b3

 .

We reduce A to row echelon form C:1 −1 0 b1
0 1 −1 b2
0 0 0 b1 +b2 +b3

 .

so p = 1. µ(1) = 1, µ(2) = 2, so x3 is the only free variable. The only condition on
b is that b1 +b2 +b3 = 0.

5.8 Real and Complex Linear Maps

In Example 3.2.8, we noticed that C can be considered as a two dimensional vector
space over R, with the basis 1 and i. More generally Cn can be considered as the
real vector space R2n. Indeed, if e1, . . . , en is a basis for Cn, then e1, ie1, . . . , en, ien
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is a basis for the space as a real vector space. So we have: if V is a complex vector
space of dimension n, considered as a R-vector space it has dimension 2n.

Now we want to consider linear transformations. We start with the simplest case:
a C-linear transformation from C to C. It is, of course just given by multiplication
by a complex number a+ ib, where a and b are real. We can think of this as a R-
linear map from R2 to R2: what is its matrix? Since it sends the complex number
x+ iy to

(a+ ib)(x+ iy) = ax−by+ ibx+ iay,

in terms of the basis {1, i} of C as a R vector space, the linear map LR is(
x
y

)
7−→

(
a −b
b a

)(
x
y

)
(5.15)

which gives us the 2× 2 matrix representing multiplication by a+ ib as a R-linear
map.

Exercise 5.8.1. Show that if a+ ib 6= 0, the map LR has trivial nullspace by studying
the 2×2 system of linear equations you get. Why is this obvious given that the map
comes from multiplication by a complex number?

We could of course do the same thing for any C-linear map from Cn to Cm with
a m× n matrix A of complex numbers, getting a R linear map from R2n to R2m

which is left to you to write down in the obvious bases. This process could be called
decomplexifying a complex linear map.

Now we want to go the other way around. We start with a R-linear map L rep-
resented by the real m× n matrix A. Because real numbers are contained in the
complex numbers, we can view A as representing a C-linear transformation from
Cn to Cm. We call this map LC, the complexification of L. Any vector in Cn can be
written as a+ ib. Then LC(a+ ib) = L(a)+ iL(b), as is easily checked since the
matrix representing L is real.

Given a R-linear map from Rn to Rm, which is just given by multiplication by
a m× n real matrix A, we get a C-linear map from Cn to Cm again just given by
multiplication by A. We can now decomplexify the complexification. In the special
case m = n = 1, by (5.15) applied when b = 0, the decomplexified 2× 2 matrix of
LC in the usual basis is just the diagonal matrix aI2.

We will use complexification in later chapter, sometimes without mention, be-
cause it is generally easier to study linear transformations over C than over R, pri-
marily because the field C is algebraically closed, meaning that every polynomial
factors as a product of linear polynomials.

For that reason it is useful to determine that complexification is uniquely defined.
In other words, given a real m×n matrix A, these is a unique m×n complex matrix B
such that for a+ ib as above, Ba = Aa. This forces B to be real, and then uniqueness
follows from the uniqueness of the matrix representing a linear transformation.
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In §9.2 we will study Hermitian matrices: square complex matrices A of size n:
they are the matrices such that a ji = ai j for all i and j. Here we use them as an
example of the interaction between real and complex structures on vector spaces.

We study the equations defining Hermitian matrices H inside the complex vector
space Mn(C) of all square complex matrices. First the diagonal elements of matrices
in H are real. More generally the equations defining H in Mn(C) are not linear over
C, but only linear over R. So we can ask for the real dimensions of Mn(C) and its
R-subspace H..

Theorem 5.8.2. Mn(C) has real dimension 2n2, and H has real dimension n2.

Proof. The result for Mn(C) is easy. If we write every entry of the n× n complex
matrix A as ai j = ri j + ici j with both ri j and ci j real, we can use the ri j and ci j as a
basis for Mn(C).

For H we get one real linear condition imposed on each diagonal term: ci j = 0.
For each term below the diagonal we get two conditions: ri j = r ji and ci j = −c ji.
Since all these conditions are independent, the R-dimension dimR of H is

dimR H = 2n2−n−n(n−1) = n2.

ut

The folllowing decomposition of a complex matrix into Hermitian parts will be
useful later on.

Theorem 5.8.3. Any square complex matrix can be written uniquely as A = B+ iC,
where both B and C are Hermitian.

Proof. To start, note that the dimensions are correct. Then note that we can get any
complex number on the diagonal. Off the diagonal we simply need to solve the
equations for the i j and ji term separately. If write ai j = a′i j + ia′′i j, bi j = b′i j + ib′′i j
and ci j = c′i j + ic′′i j then:

b′i j− c′′i j = a′i j;

b′′i j + c′i j = a′′i j;

b′i j + c′′i j = a′ji;

−b′′i j + c′i j = a′′ji.

For each i j we get a system of 4 linear inhomogenous equations in the 4 real vari-
ables b′i j, b′′i j, c′i j, c′′i j with constants (a′i j,a

′′
i j,a
′
ji,a
′′
ji). In matrix notation we have:

1 0 0 −1
0 1 1 0
1 0 0 1
0 −1 1 0




b′i j
b′′i j
c′i j
c′′i j

=


a′i j
a′′i j
a′ji
a′′ji


This can by easily solved by Gaussian elimination, so there is a unique solution. ut
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Exercise 5.8.4. A matrix is skew-Hermitian if a ji = −ai j for all i and j. Show that
the real dimension of the skew-Hermitian matrices is again n2, and that we can write
any complex matrix uniquely as a Hermitian matrix plus a skew-Hermitian matrix.

Hint: you can either just imitate the previous proof, or derive the result by just
considering what king of matrix iA is, if A is Hermitian.

5.9 Nilpotent Operators

Recall that a linear map from a vector space to itself is called a linear operator:
Definition 4.4.1.

In this section we study special operators that can be completely analyzed with-
out too much difficulty. They give interesting examples of matrices representing
operators. First some definitions.

Let L : V → V be any linear operator. Let v ∈ V be a non-zero vector. Let p be
the smallest integer such that the vectors {v,Lv,L2v, . . . ,Lpv} are linearly depen-
dent. For dimension reasons 1 ≤ p < dimV . The minimality of p implies that the
coefficient of Lpv in the equation of linear dependence is non–zero. So we may write

Lpv = a0v+a1Lv+ · · ·+Lp−1v

Under these hypotheses we say that v is a cyclic vector of period p.

Lemma 5.9.1. The vectors {v,Lv,L2v, . . . ,Lp−1v} form a basis of a subspace W of
V of dimension p, invariant under L. W is a cyclic subspace for L. Then W has a
cyclic vector for L.

The only statement left to prove is the invariance under L: if w is in W , then Lw is
in W .

Proof. Write w in terms of the given basis:

w = bp−1Lp−1v+ · · ·+b1Lv+b0v

with coefficients bi. Apply the operator L to the equation. Then

Lw = bp−1Lpv+ · · ·+b1L2v+b0Lv.

Write out Lpv using (5.9) to see that Lw is in W , which proves the invariance. ut

In the basis of W given above, the matrix of L is
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A =



0 0 0 . . . 0 0 a0
1 0 0 . . . 0 0 a1
0 1 0 . . . 0 0 a2

0 0 1
. . . 0 0 a3

...
...

. . . . . . . . .
...

...
0 0 0 . . . 1 0 ap−2
0 0 0 . . . 0 1 ap−1


(5.16)

as you can easy see, by interpreting the columns of this matrix as the coefficients of
Lz, for the appropriate z. In §10.4 we will see that this matrix is called the companion
matrix of the polynomial a0 +a1t + · · ·+ t p−1.

In this section we are only interested in the special case where all the ai are zero.

Definition 5.9.2. Let L : V → V be any linear operator. Let v be a non-zero vector
such that there is a non-negative integer p such that Lp(v) = 0 and L(p−1)(v) 6= 0.

Proposition 5.9.3. Under these hypotheses v has period p for L.

Thus the vectors v, Lv, L2v, . . . , L(p−1)v are linearly independent, so they span a
subspace W of dimension p. The operator L restricts to an operator on W .

Proof. We need to show that the p vectors given above are linearly independent. If
not, there is an equation of linear dependence:

a0v+a1Lv+a2L2v+ · · ·+ap−1L(p−1)v = 0

Apply L(p−1) to this equation to get a0L(p−1)v = 0. This forces a0 = 0. Then apply
Lp−2 to get a1 = 0. Continuing in this way, all the ai must be 0 so there is no equation
of linear dependence. ut

This result is most useful in the context of nilpotent operators, already mentioned
in Example 2.3.12.

Definition 5.9.4 (Nilpotent Operators). Let L be a non-zero linear operator such
that there is a power of L that is the zero–operator. Such an L is nilpotent. Let p be
the smallest integer such that Lp = 0, but L(p−1) 6= 0. This r is the index of nullity of
L.

If L is nilpotent, then every non-zero vector in V has a finite period. Furthermore
there is a vector v with period the index of nullity of L.

What else can we say about nilpotent operators? Pick a vector v of maximum
period p, which is the index of nullity of L. If p is the dimension of V , then the
vectors v, Lv, L2v, . . . , L(p−1)v form a basis for V , which is a cyclic space for L. The
matrix of L in this basis is the p× p matrix:
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Np =


0 0 . . . 0 0
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 1 0

 (5.17)

with ones on the subdiagonal (the entries (i+1, i), and zeroes everywhere else. Not
surprisingly this is the matrix (5.16) with all the ai set to 0. We call this matrix the
standard nilpotent matrix of size p.

We continue this analysis to give a similar description of all nilpotent operators.

Theorem 5.9.5. Let L : V →V be a nilpotent operator on the vector space V of di-
mension n. Then V =⊕Vi, where Vi is a pi-dimensional L-invariant cyclic subspace
of size pi, so that if Li is the restriction of L to Vi, then there is a vector vi ∈ Vi so
that a basis for Vi is

{vi,Livi,L2
i vi, . . . ,L

pi−1
i vi}, (5.18)

and the pi× pi matrix Ai for Li in this basis is the standard nilpotent block Npi .

Therefore in that basis for each of the terms in the direct sum, you get a lower
triangular matrix with all terms zero except some of the terms on the subdiagonal.
For example you get, if the first nilpotent block is 3×3, and the second 2×2

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0

 . (5.19)

Therefore the matrix of L in these bases is block diagonal with matrices Npi along
the diagonal.

Exercise 5.9.6. What is the index of nullity of L in terms of the block sizes p1, . . . ,
pk?

Proof (Theorem). We will prove this by induction on the dimension n of V . The
result is trivial for n= 1. L has a non-trivial nullspace: just take any element w whose
period is m− 1, where m is the nullity of L. Then v = Lm−1w is in the nullspace.
Therefore by the Rank-Nullity Theorem, the dimension of the image W = LV is at
most n−1. L acts on W : since any element w ∈W can be written w = Lv, v ∈V , let
Lw= L2v. In particular L is nilpotent on W with index of nullity m−1. By induction
we can write W as a direct sum of L-invariant subspaces Wi, 1≤ i≤ k, each of which
is cyclic, generated by a wi of period pi−1, for some pi ≥ 2. Let vi ∈V be a vector
such that wi = Lvi. Then the subspace Vi ⊂V generated by

{vi,Lvi, . . . ,Lpivi}

is cyclic of dimension pi +1, and vi has period pi +1.
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Next we show that the subspace V0 of V generated by V1, V2, . . .Vk is a direct sum
of these subspaces. This is the main step of the proof. How do we show this? We
have to show that any element u ∈V0 can be written uniquely as a sum of elements
from the Vi. By subtracting one representation from another, it is enough to show
that if

0 = u1 +u2 + · · ·+uk, for ui ∈Vi

then for all i, ui = 0. Apply L to this equation to get

0 = Lu1 +Lu2 + · · ·+Luk.

Since this sum in W is direct, each term must be in the nullspace of L, so the equation
reduces to

0 = c1Lp1v1 + c2Lp2v2 + · · ·+ ckLpk vk,

which can be written

0 = c1Lp1−1w1 + c2Lp2−1w2 + · · ·+ ckLpk−1wk.

By using the fact that W is a direct sum, each one of the terms must be 0. Since we
know that the period of wi is p1− 1, this can only happen if all the ci are 0. This
shows that the sum is direct in V0.

To finish the proof we deal with the case where V0 is not all of V . Complete the
basis of V0 to a basis of V . All these new basis elements have period one, since
they do not contribute to W . For each basis element, we get an additional direct sum
component of dimension 1. ut

Thus we have found a simple matrix representing any nilpotent transformation.
This is an important step in establishing the Jordan Canonical Form in §10.6.

5.10 The Rank via Submatrices

Here is another way of defining the rank of a m× n matrix, using the notion of a
square submatrix of A defined in §2.4. This is actually the classic definition of the
rank. This material will not be used in the rest of the book.

Theorem 2.8.11 tells us that

Theorem 5.10.1. The rank of any matrix A is the maximum over square submatrices
B of A of the rank of B. It is also the size of the biggest nonsingular submatrix of A.

Recall that nonsingular means invertible, which implies square.

Proof. We first show that the rank of any square submatrix of A is at most the rank
r of A. Suppose not. Then we can find s > r columns of the submatrix that are lin-
early independent. Then the corresponding columns of A are linearly independent,
a contradiction.
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To conclude the proof, we need to find a square submatrix of A of rank r. We
essentially have done this in proving that row rank is column rank. Fix r linearly
independent rows of A. The matrix formed by these rows has rank r. Therefore it
has r linearly independent columns. The square submatrix formed by these r rows
and r columns clearly has rank r. It is therefore nonsingular. ut

Here is a useful theorem concerning the rank.

Theorem 5.10.2. Assume that the matrix A has a square submatrix B of size r and
of rank r. Let C be any square submatrix of size r+1 of A containing B. Assume any
such C has rank r. Then A has rank r.

Proof. As before we may assume that the submatrix B is in the upper left hand
corner of A. This is simply for convenience of notation. We consider the square
submatrix of A of size r+1 that can be written in block matrix form as

Bpq =

(
B dq
gp apq

)
for r < p,q ≤ n. dq is the column vector [a1q, . . . ,arq] and gp is the row vector
(ap1, . . . ,apr). Because B has maximum rank r, any r-vector, in particular gp, can be
written as a linear combination of the rows of B. Thus there are constants c1, . . . , cr
such that

c1b1 + · · ·+ crbr = gp.

Let ct be the r-row vector with entries (c1,c2, . . . ,cr). We multiply Bpq on the left
by the invertible matrix E also written in block form, with the blocks of the same
size as those of Bpq:

E =

(
Ir×r 0r×1
−ct 1

)
Using Example 2.9.9, by block multiplication we get

EBpq =

(
B−0r×1ct Ir×rdq +0r×1apq
−ctB+gp −ctdq +apq

)
=

(
B dq

01r −ctdq +apq

)
Now ctdq is the matrix product of the row vector ct by the column vector q, so it is
a number, as required. Since E is invertible, EBpq has the same rank as Bpq. This is
only true if −ctdq + apq = 0. Since this is true for any q between r+ 1 and n, this
implies that the p-th row of A is the linear combination

ap = c1a1 + c2a2 + · · ·+ crar

of the first r rows of A.
We can argue in the same way for every row as of A, r < s ≤ n, which implies

that A has rank r. ut

Exercise 5.10.3. Show that the proof involves checking the rank of (n− r)2 subma-
trices of A of size (r+1).
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Example 5.10.4. Consider Example 2.4.1, namely the matrix1 2 3
7 8 9
4 5 6

 .

The submatrix of size 2 formed by the first two rows and the first two columns is(
1 2
7 8

)
The two rows are not proportional, so this submatrix has rank 2. So the rows (1,2)
and (7,8) form a basis for F2, so we can write the first two entries of the third row
of A as a linear combination of them. Indeed

(4,5) =
1
2
(1,2)+

1
2
(7,8).

So subtracting half of the first row and half of the second row from the third row,
we get the matrix 1 2 3

0 0 0
7 8 9

 .

This matrix obviously has rank 2, confirming the theorem.

A 4×4 example with rank 2 needed here.

Now we can repeat this for a symmetric matrix. We prove an interesting variant
of Theorem 5.10.1. Recall that we say that a square matrix of size n is non-singular
if its rank r is equal to n, and is singular otherwise.

Theorem 5.10.5. If a symmetric matrix has rank r, it has a non-singular principal
submatrix of size r. In other words, the rank of a symmetric matrix is the maximum
size of a non-singular principal submatrix of A.

So to compute the rank of a symmetric matrix one only needs to look at the
principal submatrices: see (2.14). This result can be false for matrices that are not
symmetric. For example the matrix (

0 1
1 0

)
has rank 1, but its principal submatrices all have rank 0. On the other hand a sym-
metric matrix of rank r could well have a submatrix that is not principal of rank r.
For example (

−1 1
1 −1

)
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Theorem 5.10.5 is a corollary of the following theorem, which is an improvement
of Theorem 5.10.2. This theorem is useful because of the special role that principal
submatrices play in the theory of symmetric bilinear forms.

Theorem 5.10.6. Assume that the symmetric matrix A has a non-singular principal
submatrix B of size r. Assume that every principal submatrix C of A containing B,
of size r+1 or r+2, is singular. Then A has rank r.

Remark 5.10.7. So we only have to check principal submatrices containing B: all
the ones of size r+1 and r+2. So this means checking

n− r+
(

n− r
2

)
=

(n− r+1)(n− r)
2

submatrices, while in Theorem 5.10.2, for a square matrix of size n and rank r you
must check (n−r)2 submatrices. So the saving is roughly a factor of 2, and is exactly
what the symmetry of the matrix leads you to expect.

Proof. We first look at principal submatrices of size r+1, proceeding exactly as in
the proof of Theorem 5.10.2. So we assume B is in the upper left hand corner of A,
for convenience. We consider the principal submatrix of A of size r+1 that can be
written in block matrix form as

Bpp =

(
B dp
dt

p app

)
for r < p≤ n. dp is the column vector [a1p, . . . ,arp]. Because B has maximum rank
r, any r-vector, in particular dt

p, can be written as a linear combination of the rows
of B. Thus there are constants c1, . . . , cr such that

c1b1 + · · ·+ crbr = dt
p.

Let E be the invertible square matrix of size r+1, write in the same block form as
B:

E =

(
Ir×r 0r×1
−ct 1

)
and form

EBppEt =

(
B 0r×1

01×r −ctdp +app

)
Now we can assume that A is congruent to a matrix(

B 0r×s
0s×r D

)
where s = n− r and D is a symmetric matrix with zeroes along the diagonal.

Now out hypothesis concerning principal submatrices of size r+2 containing B
says that any submatrix
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B 0r×2

02×r Dpq

)
(5.20)

has rank less than r+2, where Dpq is the matrix(
0 apq

aqp 0

)
where p 6= q. Of course by symmetry apq = aqp. The only way this can have rank
less than r+2 is if apq = 0

Doing this for any choice r < p < q≤ n shows that A is congruent to the matrix(
B 0r×s

0s×r 0s×s

)
which obviously has rank r, so we are done. ut

To finish the proof of Theorem 5.10.5, assume that the symmetric matrix A has a
non-singular principal submatrix B of size r, and none of larger size. We show that
all the submatrices of A containing B of size r+ 1 are singular by using Theorem
5.10.6, and then conclude by Theorem 5.10.2. Thus we need to show that all the
submatrices Bpq are singular, using the notation of Theorem 5.10.2. Bpq is a subma-
trix of the submatrix of size r + 2 where we adjoin to B the rows and columns of
index p and q. The proof of Theorem 5.10.6 shows not only that this submatrix is
singular, but that is only has rank r: see (5.20) and what follows. Then its submatrix
Bpq can have rank at most r, and we are done. ut





Chapter 6
Duality

Abstract The chapter studies on linear functionals and duality. In an introductory
section we develop the terminology and notation of bilinear forms, which provide a
useful interpretation of functionals and duality. This material will be used in the fur-
ther discussion of bilinear forms in Chapter 7. These two chapters are independent
from the rest of the book. They give a different point of view and are a generalization
of material covered in Chapter 8.

6.1 The Dual Space

The field F is an F-vector space of dimension 1, so we make the following defini-
tion.

Definition 6.1.1. A linear functional on a F-vector space V is a linear map from V
to F .

Assume V has dimension n. We have the linear functional 0 that is identically 0.
Any other linear functional takes on non-zero values, so that by the Rank-Nullity
Theorem its rank is 1 and its nullity is n−1.

Example 6.1.2. The most important example of a linear functional is definite inte-
gration. Fix a closed interval I = [a,b] of real numbers, and let the vector space be
the set V of continuous functions on I. This is indeed a vector space as you should
check, but it is infinite dimensional. Then the map

f (x) 7→
∫ b

a
f (x)dx

is a linear functional on V . Determine what properties of integration you need to
establish this. In §6.2 we will apply this to a finite-dimensional subspace of V .

Example 6.1.3. The trace of a square matrix of size n, already defined in Exercise
2.8.18:

107
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tr(A) = a11 +a22 + · · ·+ann

is a linear functional on the vector space Mnn of such matrices. Prove this.

A special case of Theorem 4.1.11 says that the set of linear functionals on V
is a F-vector space. We call it V ∗ rather than the more cumbersome L (V,F). By
Theorem 5.2.2 the dimension of V ∗ is n. V ∗ is called the dual space of V .

We construct a basis for V ∗ using a basis B= {v1, . . . ,vn} of V .

Definition 6.1.4. For each i, 1 ≤ i ≤ n, let fi be the unique linear functional such
that

fi(v j) = 0 if i 6= j, and fi(vi) = 1. (6.1)

The linear functional fi is dual to the basis element vi. These n functionals are also
called the coordinate functions in the basis B.

The condition expressed in (6.1) comes up so often that we will write it using the
Kronecker delta (Definition B.1.6): fi(v j) = δi j. The existence and uniqueness of
the fi follows immediately from Theorem 4.1.12 applied to V and F as the space we
are mapping to.

Example 6.1.5. When V is Fn, we can use as basis the standard unit coordinates
vectors ei of Example 3.4.4, in which case the dual linear functional fi take the
vector (x1,x2, . . . ,xn) to its i-th coordinate xi.

Definition 6.1.6. The linear map DB : V →V ∗ is defined by DB(vi) = fi, 1≤ i≤ n.

By Theorem 4.1.12 again this is enough to define a linear map. We write DB,
because if the basis changes, the map changes. For example assume V is one-
dimensional. Let v be a basis of V and f its dual, so that f(v) = 1. Then the functional
f/k is the dual of kv for any scalar k. Compare the linear mapping Dv : v 7→ f to the
map Dkv : kv 7→ f/k. Since Dkv(v) = f/k2, they are the same if and only if k2 = 1.
We will generalize this computation in Example 6.4.8.

Theorem 6.1.7. The fi, 1 ≤ i ≤ n, form a basis B∗ of V ∗, called the dual basis of
the basis B of V .

Proof. First we show they are linearly independent. If there were an equation of
linear dependence, we would have

c1f1 + c2f2 + · · ·+ cnfn = 0,

where not all of the ci are equal to 0. Now evaluate at each vi: the equation becomes
cifi(vi) = 0. But fi(vi) = 1, so ci = 0. Therefore all the coefficients vanish and we
do not have an equation of linear dependence. For dimension reasons the fi clearly
span. ut

Theorem 6.1.8. An arbitrary linear functional f is written in terms of the basis vi
and the dual basis fi as
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f =
n

∑
i=1

f(vi)fi. (6.2)

Similarly an arbitrary vector v is written

v =
n

∑
i=1

fi(v)vi. (6.3)

Proof. Evaluate the functionals on either side of (6.2) on every basis vector v j to
get, since the f j are the dual basis:

f(v j) =
n

∑
i=1

f(vi)fi(v j) = f(v j)f j(v j) = f(v j)

so these two functionals agree on a basis, so they agree everywhere. The last result
is proved in the same way, this time applying the functional f j to both sides of (6.3).

ut

Example 6.1.9. If V is Fn with its natural basis, so an element v in V has coordinates
(a1,a2, . . . ,an), then V ∗ is again Fn in the dual basis. Writing a f in the dual basis
with coordinates (b1,b2, . . . ,bn), then the evaluation of the linear functional f on v
is:

f(v) = a1b1 +a2b2 + · · ·+anbn.

Note that this is the matrix product of the the row vector b with the column vector
a, a useful remark, as we shall soon see.

6.2 Application: Lagrange Interpolation

Let Pn be the vector space of polynomials F [t] of degree at most n over F , which
can be either R or C. This is an n+1 dimensional vector space. One possible basis
B of Pn consists of the polynomials {1, t, t2, . . . , tn}.

Consider the graph of the polynomial f (t) ∈ Pn in F2: this means the collection
of points (t, f (t)). Take n+1 distinct points ti, 0≤ i≤ n, in F and the corresponding
n+1 points (ti, f (ti)) on the graph. The map f (t) 7→ ( f (t0), . . . , f (tn)) is a linear map
from Pn to Fn+1. Its matrix, for the basis B is

V =


1 t0 . . . tn

0
1 t1 . . . tn

1
...

... . . .
...

1 tn . . . tn
n

 . (6.4)

Indeed, writing the polynomial f as f (t) = a0 + a1t + · · ·+ antn and writing y for
( f (t0, . . . , f (tn)), the linear map is given by
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V a = y. (6.5)

The matrix of coefficients V of this system is called the Vandermonde matrix at the
points {t0, t1, . . . , tn}. Any polynomial f (t) that satisfies the equations (6.5) interpo-
lates the n+1 points (ti,yi), 0≤ i≤ n. If the (n+1)× (n+1) matrix V is invertible,
then there is a unique interpolating polynomial f . It is easy to see this is true if the
points ti are distinct. Indeed, a polynomial of degree ≤ n has at most n roots, except
for the polynomial 0. Thus the nullspace of the linear map is trivial, and we are done.
Later we will prove that V is invertible directly by showing that its determinant is
non-zero in Example 11.5.5.

Here we will show this by using linear functionals and the dual basis.

Definition 6.2.1. For each t0 ∈ F we get a linear functional et0 on Pn given by

et0 : f (t) 7→ f (t0),

for every f ∈ Pn. The functional et0 called the evaluation functional at t0.

To check that et0 is a linear functional, we must show

et0( f (x)+g(x)) = et0( f )+ et0(g), and et0(c f (x)) = cet0( f (x)).

Both statements are obvious. Notice that we are in the general framework of Exam-
ple 3.2.7.

Here we are only interested in the n+ 1 points ti, and we will only consider the
evaluation functionals eti , that we write for simplicity as ei.

Theorem 6.2.2. For any collection of n+ 1 distinct points ti, the evaluation func-
tions ei form a basis of the dual space P∗n .

Proof. Consider the polynomials

f j(t) =
(t− t0) . . .(t− t j−1)(t− t j+1) . . .(t− tn)

(t j− t0) . . .(t j− t j−1)(t j− t j+1) . . .(t j− tn)
. (6.6)

The numerator is chosen so that f j(ti) = 0 when i 6= j, and the denominator chosen
so f j(t j) = 1. Clearly f j(t) is a polynomial of degree n, so it is in Pn. By Theorem
6.1.7, f j(t) form a basis for Pn. Indeed the ei( f j) = δi j. Thus the {e0( f ), . . . ,en( f )}
form the basis of P∗n dual to the basis { f0(t), . . . , fn(t)} of Pn. ut

As a corollary of Theorem 6.1.8, we can write an arbitrary polynomial f (t) ∈ Pn
in terms of the polynomials fi(t) of (6.6) as

f (t) =
n

∑
i=0

ei( f ) fi(t) =
n

∑
i=0

f (ti) fi(t).

Applying this to the polynomials t i, we get

t i = t i
0 f0(t)+ t i

1 f1(t)+ · · ·+ t i
n fn(t)
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We can write these equations in matrix form as
1 1 . . . 1
t0 t1 . . . tn
...

...
. . .

...
tn
0 tn

1 . . . tn
n




f0(t)
f1(t)

...
fn(t)

=


1
t
...

tn

 .

Notice that the matrix of coefficients is the transpose of the Vandermonde matrix
V . Since the two column vectors form bases of the same vector space Pn, V t is a
change of basis matrix, and therefore invertible. This also allows us to bypass the
Vandermonde determinant computation in Example 11.5.5.

We have established that there is a unique polynomial of degree less than or equal
to n whose graph passes through the n+1 points. This is known as interpolating the
n+1 points by a function of a specific type, here polynomials of degree at most n.

Thus we have proved the desired theorem, which gives us a formula for the
unique interpolating polynomial.

Theorem 6.2.3 (The Lagrange interpolation formula). The unique solution for
the problem of interpolating the n+ 1 points (ti,yi), where the ti are distinct, by a
polynomial of degree at most n is

f (t) = y0 f0(t)+ y1 f1(t)+ · · ·+ yn fn(t),

for the functions fi(t) of (6.6).

Now we return to Example 6.1.2. The vector space Pn is a finite dimensional sub-
space of the space of continuous function on any finite interval I. As we have already
noticed the definite integral of any f in Pn over the interval is a linear functional. We
leave it to you to prove it.

Exercise 6.2.4. Prove that integration is a linear functional. Write down carefully
what needs to be established.

So the integral of f can be written as a linear combination of the evaluation functions
ei, for any set of n+1 distinct points ti.

Theorem 6.2.5 (Quadrature Formula). There are scalars ci, 0 ≤ i ≤ n such that
for any polynomial f (t) ∈ Pn we have∫

I
f (t)dt = c0e0( f )+ c1e1( f )+ · · ·+ cnen( f ) = c0 f (t0)+ c1 f (t1)+ · · ·+ cn f (tn).

It is amusing to see how integration can be reduced to evaluation at points. In
particular, consider the polynomials fi(t) of (6.6). Then∫

I
fi(t)dx = ci fi(ti).
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For the powers t i we get ∫
I
t idt = c0t i

0 + c1t i
1 + · · ·+ cnt i

n.

Exercise 6.2.6. How can you reconcile this computation with what you know about
the integral of t i?

6.3 Bilinear Forms: the General Case

Let V be a vector space of dimension n, and W a vector space of dimension m, over
the base field F .

Definition 6.3.1. A bilinear form on V ×W is a map b(v,w) : V ×W → F such that

1. For each fixed a ∈V the function ga(w) : W → F , defined by ga(w) = b(a,w) is
a linear functional on W ;

2. For each fixed b ∈W the function fb(v) : V → F , defined by fb(v) = b(v,b) is a
linear functional on V ;

These conditions say that b is a linear map in each variable separately.
Our goal is to understand all bilinear forms. First an example, which, as we will

see soon, contains all possible cases.

Example 6.3.2. Take a matrix A of size m×n. Let V = Fn, with coordinates x j, and
W = Fm with coordinates yi. We get a scalar valued function b : V ×W → F by
setting:

b(x,y) = ytAx.

For each fixed a∈ Fn, the function ga(y) = ytAa is a linear functional. Similarly the
function fb(x) = b(v,b) = btAx is a linear functional. So b(x,y) is a bilinear form.

Theorem 6.3.3. A bilinear form b(v,w) on V ×W gives rise to two linear maps D1
and D2:

D1 : w ∈W 7→ fw ∈V ∗;
D2 : v ∈V 7→ gv ∈W ∗;

for the functions fw and gv of Definition 6.3.1.

Proof. We only consider the case of D1, since that of D2 is nearly identical. First by
hypothesis fw is a linear functional. The map D1 is linear because of the linearly of
b(v,w) in its first variable: first,

b(v1 +v2,w) = b(v1,w)+b(v2,w2)

so fv1+v2(w) = fv1(w)+ fv2(w), and then b(cv,w) = cb(v,w) for any scalar c, so
fcv(w) = cfv(w). ut
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Our goal is to show that any bilinear form can be written using a matrix as in
Example 6.3.2, once bases for V and W have been chosen. Thus we imitate what we
did when we described linear maps by matrices in Theorem 5.1.1.

Theorem 6.3.4. Let b(x,y) be a bilinear form on Fn×Fm. Use x j for the coordi-
nates on Fn, and yi for the coordinates on Fm. Let v j be the j-th unit coordinate
vector on Fn and wi be the i-th unit coordinate vector on Fm. Define the scalars ai j
by

ai j = b(v j,wi)

and let A be the m× n matrix (ai j). Then the bilinear form b(x,y) is written ytAx,
and the matrix A is uniquely determined by b(x,y).

Proof. We reduce to Theorem 5.1.1. Consider the linear map D2 that sends a vector
x ∈ Fn to the linear functional b(x,•) ∈W ∗, which has dimension m by Theorem
6.1.7. This is the functional that to every y ∈W associates the scalar b(x,y). We
apply Theorem 5.1.1 to the linear map D2: by choosing bases for V and for W ∗, there
is a unique m×n matrix A matrix representing D2 in these bases. So the functional
b(x,•) in W ∗ is the matrix product Ax, which is a m-vector. By Example 6.1.9 the
value of this functional on y ∈W is ytAx. The uniqueness of A follows easily by
letting y run through the standard basis of Fm, and x run through the standard basis
of Fn. ut

Corollary 6.3.5. Consider instead the linear map D1 : Fm→ Fn which to a vector
y associates the linear map b(•,y) in the dual of Fn. The associated matrix is At ,
the transpose of the matrix for D2.

Here is a corollary of Theorem 6.3.4 that reflects the uniqueness of A:

Corollary 6.3.6. Let Ei j the the m× n matrix with 1 in position (i, i), and 0 every-
where else. Then the Ei j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, form a basis of the matrices of
bilinear forms on V ×W, such that

wt
sEi jvt =

{
1 if s = i and t = j;
0 otherwise.

See §8.8 for some related results.
Of special interest to us is the case W =V ∗, that we study next. Indeed to a v∈V

and a f∈V ∗ we can associate the scalar f(v), the evaluation of f on v. This is bilinear
by definition. All bilinear forms on V ×V ∗ can be interpreted in this way.

6.4 Annihilators

Definition 6.4.1. Let S be a subset of the vector space V . Then the annihilator Sa of
S is the set of f ∈V ∗ that vanish on S.
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Exercise 6.4.2. The annihilator Sa of any subset S ⊂ V is a vector subspace of V ∗.
Furthermore if W is the subspace of V spanned by S, then W a = Sa.

Example 6.4.3. The annihilator of 0 is V ∗; the annihilator of V is 0⊂V ∗. Let W be
a subspace of V of dimension n− 1, where V has dimension n. Then W is called a
hyperplane of V . W has a basis {v1, . . . ,vn−1} which can be extended by one vector
vn to a basis B of V . Using the dual basis B∗ of V ∗, we see that the annihilator W a

of W is spanned by fn, the functional dual to vn, so it is one-dimensional.

More generally we have:

Theorem 6.4.4. If W is a subspace of dimension s of the n-dimensional vector space
V , then its annihilator W a ⊂V ∗ has dimension n− s.

Proof. Use the same method as in the hyperplane example. ut

Definition 6.4.5. If W ⊂V has dimension s, let W c ⊂V denote any complement of
W , namely any subspace of dimension n− s such that W ∩W c = (0).

We can find a basis B of V where v1, . . . , vs span W and vs+1, . . . , vn span W c.
Because W c depends on the basis B, we could write W c

B.

Theorem 6.4.6. Under the isomorphism DB, W c is mapped to W a, and W is
mapped to (W c)a

Proof. Using the basis B defined above, it is clear that the dual basis elements
fs+1, . . . , fn span W a, and f1, . . . , fs span (W c)a ut

This theorem can be used to reprove an important result, already proved using row
reduction in Theorem 5.6.5.

Theorem 6.4.7. The row rank and the column rank of a matrix are equal.

Proof. Let A be a m×n matrix. The rows of A span a subspace W of Fn of dimension
s, the row rank of A. Let r be the column rank of A. This Fn will play the role of V
above, so we will call it V .

Use the standard basis for V and use the dual basis for V ∗. Then by Example 6.1.9
an element f of V ∗ is in W a if and only if its coordinate vector x = (x1,x2, . . . ,xn)
satisfies the equations

aix = 0, for all the rows ai of A.

This is equivalent to saying that x is in the nullspace N of the linear map LA : Fn→
Fm associated to the matrix A. So Theorem 6.4.4 tells us that dimN = n− s. Com-
bining with the Rank-Nullity Theorem, which says dimN + r = n, we get r = s: the
row rank of A is equal to its column rank. ut
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Example 6.4.8. Here is how the isomorphism DB : V → V ∗ depends on the choice
of basis in V , using the change of basis results of §5.3.

As usual we have a vector space V of dimension n with a basis B= {v1, . . . ,vn},
and its dual space V ∗ with dual basis B∗ = {f1, . . . , fn}. Then by construction the
dual map DB : V →V ∗ has the identity matrix as associated matrix MB

B∗(DB). Now
take a second basis C= {w1, . . . ,wn} for V with its dual basis C∗ = {g1, . . . ,gn}

The bases B and C are related by the change of basis formula 5.9

v j = a1 jw1 +a2 jw2 + · · ·+an jwn, 1≤ j ≤ n, (6.7)

so the change of basis matrix [IV ]
B
C is A = (ai j). Here IV is the identity mapping on

V . Apply the functional gk to (6.7) to get

gk(v j) = ak j (6.8)

Since the f j are the dual basis to the v j, this implies that

gk = ak1f1 +ak2f2 + · · ·+aknfn.

Comparing this formula to (6.7) shows that [IV ]
C∗
B∗ = At , because the order of the

indices has been reversed. Finally by construction [DB]BB∗ = I, and [DC]
C
C∗ = I.

This is simply because we have taken the dual bases. Now we write the dual map
DC of V →V ∗, but express it in the B basis.

By Theorem 5.3.6 the matrix of DC expressed in the bases B for the domain, and
B∗ for the target is

[IV ]
C∗
B∗ ◦ [DC]

C
C∗ ◦ [IV ]

B
C = At IA = AtA.

This is the identity matrix, and therefore the same as MB
B∗(DB) if and only if

AtA = I. Such matrices are called orthogonal matrices. We will study them and
give examples in §8.3.

Remark 6.4.9. The isomorphism DB depends on the basis B and maps W c to W a

by Theorem 6.4.6. This is why we can only make the weak statement that W ⊕
W c =V in Theorem 6.4.4. Given a subspace W of dimension m inside a space V of
dimension n, there are infinitely many subspaces W ′ of dimension n−m such that
W ⊕W ′ =V . By Example 6.4.8, each such W ′ is a W c

B for a suitable basis B.

6.5 The Double Dual

Given a n-dimensional vector space V , we have constructed its dual space V ∗, which
also has dimension n. The isomorphism between V and V ∗ depends on the choice
of a basis for V as we showed in Example 6.4.8.
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Next we can take the dual of V ∗, the double dual of V , written V ∗∗. Since V ∗

has dimension n, V ∗∗ again has dimension n. It also has an isomorphism with V
that does not depend on a choice of bases, something V ∗ does not have. We now
construct this isomorphism.

Definition 6.5.1. Pick a v ∈V . The map ev : V ∗→ F given by:

ev(f) = f(v), for any f ∈V ∗

is called evaluation at v. The map ev is easily seen to be a linear functional on V ∗,
so ev ∈V ∗∗.

Exercise 6.5.2. Prove ev ∈ V ∗∗. You must show ev(f1 + f2) = ev(f1) + ev(f2) and
ev(cf) = cev(f) for any scalar c.

Theorem 6.5.3. The map D2 : V → V ∗∗ given by v 7→ ev is an isomorphism of V
with V ∗∗. It is called the natural correspondence between V and V ∗∗.

Proof. We first show D2 is a linear map. The main point is that for two elements v
and w of V ,

ev+w = ev + ew.

To show this we evaluate ev+w on any f ∈V ∗:

ev+w(f) = f(v+w) = f(v)+ f(w) = ev(f)+ ew(f)

just using the linearity of f. Thus D2(v+w) = D2(v)+D2(w). The remaining point
D2(cv) = cD2(v) is left to you.

To show D2 is an isomorphism, all we have to do is show D2 is injective by the
Rank-Nullity theorem. Suppose D2 is not injective: then there is a v such that ev
evaluates to 0 on all f ∈ V ∗, so f(v) = 0. But that is absurd: all functionals cannot
vanish at a point. For example extend v to a basis of V and let f be the element in
the dual basis that is dual to v, so f(v) = 1. ut

Thus we can identify V and V ∗∗ using the isomorphism D2. This has a nice
consequence:

Corollary 6.5.4. Given an arbitrary basis B∗ of V ∗, there exists a basis B of V for
which it is the dual.

Proof. Just take the dual basis B∗∗ of V ∗∗, and then use the isomorphism D2 to get
a basis B of V of which B∗ is the dual. ut

Remark 6.5.5. When we write f(v) we can either think of f as a functional acting
on v ∈ V or v as a functional in V ∗∗ acting on f ∈ V ∗. This suggests that we use a
more symmetric notation, say (f,v). Indeed, as we will define in Chapter 7, this is a
bilinear form on the two spaces, because, as we have already checked:

• (f1 + f2,v) = (f1,v)+(f2,v) and (f,v1 +v1) = (f,v1)+(f,v2).
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• (cf,v) = c(f,v) and (f,cv) = c(f,v).

The annihilator of a subspace W of V is the subspace of functionals f such that
(f,w) = 0 for all w ∈W . The annihilator of a subspace W of dimension r has di-
mension n− r. We can also consider the annihilator (W ∗)a of a subspace W ∗ of V ∗:
(W ∗)a is a subspace of V ∗∗, but using the natural identification of V ∗∗ with V , we
can view it as a subspace of V . The dimension result still holds.

6.6 Duality

We extend the results on linear functionals from §6.4 by applying the duality con-
struction of §B.4.

Suppose we have a vector space V of dimension n, a vector space W of dimension
m, and a linear map L between them:

L : V →W.

To each linear functional g ∈W ∗, which is a linear map W → F , we can associate
the composite linear map:

g◦L : V →W → F.

Exercise 6.6.1. Check that g◦L is a linear functional on V .

Definition 6.6.2. The linear map L∗ : W ∗→V ∗ given by

L∗ : g ∈W ∗ 7−→ f = g◦L ∈V ∗.

is called the dual or the transpose of L.

Theorem 6.6.3. The annihilator R(L)a ⊂W ∗ of the range R(L) ⊂W of L is the
nullspace N(L∗) of L∗ in W ∗. Similarly the annihilator R(L∗)a ⊂ V of the range
R(L∗) ⊂ V ∗ is the nullspace N(L) of L in V . Furthermore L and L∗ have the same
rank.

Proof. Let r be the rank of L so that the range R(L)⊂W of L has dimension r and
the nullspace N(L) of L has dimension n− r (by the Rank-Nullity theorem). The
nullspace N(L∗) of L∗ is the collection of linear functionals g ∈W ∗ such that L∗(g)
is the 0 functional on V , meaning that L∗(g)(v) = g ◦L(v) = 0 for all v ∈ V . This
just says that g annihilates L(v). So N(L∗) = R(L)a.

Next, dimR(L∗) = m− dimN(L∗) by Rank-Nullity again. By Theorem 6.4.4
R(L)a has dimension m− r, therefore dimR(L∗) = r, so L and L∗ have the same
rank.

Finally a functional f∈R(L∗) is written f= g◦L. Obviously any v in the nullspace
of L is in the nullspace of the composite g ◦L, so it is annihilated by R(L∗). Thus
N(L) ⊂ R(L∗)a, which has dimension r, as we just established. By Theorem 6.4.4



118 6 Duality

again, applied in V , this annihilator has dimension n−r, so dimN≤ n−r. The Rank-
Nulllity theorem applied to L then tells us we have equality, so N(L) = R(L∗)a.

This last result can be established in a way parallel to the first argument of the
proof by identifying V ∗∗ with V , W ∗∗ with W , and L∗∗ with L under the previous
identifications. ut

Now assume we are given a basis B = {v1, . . . ,vn} of V and a basis C =

{w1, . . . ,wm} of W . What is the relationship between the m× n matrix [L]BC as-
sociated to L and the n×m matrix [L∗]C

∗
B∗ of L∗, in the dual bases discussed in §6.4?

This is settled by the following theorem. It is a special case of Corollary 6.3.5,
but we repeat the proof for convenience.

Theorem 6.6.4. One matrix is the transpose of the other:

[L∗]E
∗

B∗ =
(
[L]BE

)t
.

Proof. Let (x1,x2, . . . ,xn) be the coordinates of a vector v in the B basis of V . Then
if A in the m×n matrix of L, Ax is the vector of coordinates of L(v) in the C basis.
Now apply a functional g ∈W ∗ with coordinates (y1, . . . ,ym) in the dual basis. Then
by Example 6.1.9 it evaluates to

yt(Ax) = xtAty

If B is the n×m matrix of L∗ in the bases C and B, then applied to g ∈W ∗, you
get the functional By ∈V ∗. By Example 6.1.9, evaluating this functional on v gives
xtBy. Since this is true for all y and x , B = At as we saw in Theorem 6.3.4. ut

Exercise 6.6.5. Explain how the computation done in Example 6.4.8 is a special
case of the theorem.

Exercise 6.6.6. Choose bases for V and W according to Theorem 5.4.1, and work
out what we have done in this section completely for this case.

Now suppose we have a third vector space U of dimension p and a linear map
M : U→V . To each linear functional g∈W ∗, which is a linear map W → F , we can
associate the composite map:

g◦L : V →W → F.

Then we can compose the linear maps L : V →W and M : U →V to get L◦M.

Theorem 6.6.7. The transpose of the composite (L ◦M) is the composite of the
transposes, but in the opposite order:

(L◦M)∗ = M∗ ◦L∗.

Note that this makes sense at the level of the matrix representatives, since (AB)t =
BtAt .
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Proof. On one hand we have the composite map L◦M : U→W , so that its transpose
(L◦M)∗ : W ∗→U∗ maps g ∈W ∗ to g◦ (L◦M) ∈U∗.

On the other hand the transpose L∗ : W ∗→V ∗ maps g to f = g◦L and M∗ maps
f ∈V ∗ to e ∈U∗ where e = f◦M.

Putting this together we get, doing the maps one at a time,

g 7→ e = f◦M = (g◦L)◦M = g◦ (L◦M) = (L◦M)∗g

as claimed. Notice that other than Definition 6.6.2 all we used is the associativity of
composition of maps in the very last step. ut





Chapter 7
Bilinear Forms

Abstract Bilinear forms are a new kind of mapping on a vector space. We study
them the same way we studied linear maps by representing them by matrices. The
main goal is to classify bilinear forms in terms of a basis of the vector space. The
result is simpler than the result we will derive for linear transformations later in this
book in Chapter 10, since any bilinear form can be diagonalized by an appropri-
ate choice of basis, while is not the case for linear transformations: see the Jordan
canonical form in §10.6.

7.1 Bilinear Forms

Now we specialize the results of §6.3 to the case W = V . We simplify the notation
b(v,w) for the bilinear form to (v,w). We will mainly be interested in bilinear forms
that satisfy an additional property.

Definition 7.1.1. A bilinear form (v,w) on V ×V is symmetric if it satisfies

(v,w) = (w,v) for all v and w in V.

If (v,w) is symmetric then the two linear maps D1 and D2 of Theorem 6.3.3 are
identical. We will just call it D.

If the matrix A is symmetric in Example 6.3.2, then (•,•) is a symmetric bilinear
form, since if At = A,

(v,w) = ytAx = ytAtx = (ytAt)x = xtAy = (w,v).

Example 7.1.2. Let A be the square matrix of size 2:

A =

(
2 1
3 4

)
,

then

121
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ytAx=
(
y1 y2

)(2 1
3 4

)(
x1
x2

)
=
(
y1 y2

)( 2x1 + x2
3x1 +4x2

)
= 2x1y1+x2y1+3x1y2+4x2y2.

Check that this bilinear form is not symmetric.

Example 7.1.3. If we make the matrix A symmetric by averaging its off-diagonal
terms, we get the symmetrio bilinear form:

ytAx =
(
y1 y2

)(2 2
2 4

)(
x1
x2

)
= 2x1y1 +2x2y1 +2x1y2 +4x2y2

Notice that the coefficients of the crossterms x2y1 and x1y2 are the same, as they
always will be if A is symmetric.

Using Theorem 6.3.4, we see that a bilinear form on V ×V is symmetric if and
only if the matrix A representing it is symmetric. We use, of course, the same basis
B on both copies of V . We say that the bilinear form b is represented by the matrix
A in the basis B.

Definition 7.1.4. The symmetric bilinear form (v,w) is non-degenerate if the only
v ∈V for which

(v,w) = 0 for all w ∈V,

is v = 0.

Definition 7.1.5. We say that v is perpendicular, or orthogonal, to w if

(v,w) = 0.

We write v ⊥ w if this is the case. For any subset S of V , we let S⊥ be the set of
elements of V perpendicular to all the elements of S. We call S⊥ the orthogonal
complement of S. This notion of course depends on the choice of the bilinear form.

Exercise 7.1.6. Prove S⊥ is a subspace of V . Let U be the subspace of V generated
by the elements of S. Show that S⊥ =U⊥.

Definition 7.1.7. The radical of (v,w) is the orthogonal complement V⊥ of the full
space V . We use the notation ν for dimV⊥.

The radical is (0) if and only if the bilinear form is non-degenerate, by Definition
7.1.4. We can describe the radical in terms of the linear map D : V → V ∗ given by
D(v) = (v,•).

Theorem 7.1.8. The linear map D is an isomorphism if and only if (v,w) is non-
degenerate. The nullspace of D is the radical V⊥. The rank of D is n−dimV⊥, and
is called the rank of (v,w).

Proof. An element v is in the nullspace of D if and only if the linear functional fv
is identically 0, meaning that for all w ∈ V , (v,w) = 0. Thus the nullspace of D is
the radical of V . Because V and V ∗ have the same dimension, D is an isomorphism
if and only if the nullspace is reduced to (0). The last statement is just the Rank-
Nullity Theorem applied to D. ut
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By Theorem 6.3.4 a symmetric bilinear form form gives rise to a symmetric
matrix. In fact it gives rise to many symmetric matrices, depending on the basis
used for V . We want to know how the matrix varies in terms of the basis.

Theorem 7.1.9. If the symmetric quadratic form (v,w) is written ytAx in the basis
B= {v1, . . . ,vn}, then it is written ytCtACx in the basis C= {w1, . . . ,wn}, where C
is the change of basis matrix C from the B basis to the C basis.

Proof. By Corollary 5.3.3
[v]C = [I]BC [v]B, (7.1)

Here C = [I]BC . Because x = Cy, and therefore ytCt = xt , the symmetric matrix A
representing the bilinear form (v,w) in the basis B is replaced by the symmetric
matrix CtAC representing the form in the basis C. Corollary 5.3.7 shows C is invert-
ible. To show that CtAC is symmetric, just take its transpose. ut

This yields a equivalence relation on symmetric matrices of size n, known as
congruence:

Definition 7.1.10. The symmetric matrix A of size n is congruent to a symmetric
matrix B of the same size if there is an invertible matrix C such that B =CtAC.

Example 7.1.11. Let A be the symmetric matrix(
2 0
0 3

)
and C the invertible matrix (

1 1
0 2

)
Then the matrix

B =CtAC =

(
1 0
1 2

)(
2 0
0 3

)(
1 1
0 2

)
=

(
2 2
2 14

)
is congruent to A.

Proposition 7.1.12. Congruence is an equivalence relation on symmetric matrices.

Proof. Use the identity (Ct)−1 =(C−1)t : the inverse of the transpose is the transpose
of the inverse. See Exercise 2.3.9. The rest of the proof is nearly identical to that of
Theorem 5.5.3, and is left to the reader. ut

Congruence partitions symmetric matrices into congruence classes of congruent
matrices. Our goal is to find the simplest matrix is each congruence class: we will
see that there is a diagonal matrix.

Do not confuse congruence with similarity (Definition 5.5.2). Once we have es-
tablished the Spectral Theorem 13.3.1, we will see the connection between these
equivalence relations.
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In Theorem 7.1.8 we defined the rank of a symmetric bilinear form as the rank
of the linear map D : V → V ∗ it induces. We could also define it as the rank of any
matrix A that represents it. This implies:

Theorem 7.1.13. The rank of a symmetric matrix is an invariant of its congruence
class: in other words, if two matrices are congruent, they have the same rank.

Proof. There is nothing to do, since all matrices representing the same linear form
have the same rank.. We can confirm this by computation. Let B =CtAC be a matrix
congruent to A, so C is invertible by definition. The theorem follows from Corollary
4.3.8 applied to the matrix (Ct)−1B = AC. Because C and (Ct)−1 are invertible, the
corollary says that A and B have the same rank. ut

Example 7.1.14 (Hankel Forms). We can produce a symmetric matrix A of size n
from 2n−1 numbers s0, . . . , s2n−2, by letting ai j = si+ j−2. Written out, this gives a
symmetric matrix

A =


s0 s1 s2 . . . sn−1
s1 s2 s3 . . . sn
...

...
...

. . .
...

sn−1 sn sn+1 . . . s2n−2

 (7.2)

called a Hankel form.
Notice that each square submatrix of a Hankel form is again a Hankel form.

Hankel forms were investigated by the German mathematician Frobenius in the late
nineteenth century: a good reference for his work is Gantmacher [8], V. 1, X.10.
Frobenius showed how to compute the rank of a Hankel form in most circumstances.

Exercise 7.1.15. Given any symmetric matrix A, and any square matrix B of the
same size, we have seen that the matrix BtAB is symmetric. What can you say about
the rank of BtAB, if you know the rank of A and of B?

Hint: use Frobenius’s Inequality, Exercise 4.3.9, which builds on Sylvester’s Law
of Nullity, Theorem 4.3.7.

Now we carry this analysis one step further.

Theorem 7.1.16. The set of all bilinear forms on V is a vector space.

Proof. Use Example 3.2.7. We add two bilinear maps f (v,w) and g(v,w) by setting
f +g to be the map such that

( f +g)(v,w) = f (v,w)+g(v,w)

and for any scalar c, (c f )(v,w) = c( f (v,w)). You should check that these maps are
bilinear. This is the vector space structure. ut

Recall that L (V,V ∗) is the vector space of linear maps from V to its dual space
V ∗, according to Theorem 4.1.11. The dual space V ∗ of V is discussed in §6.4.
Next we define a linear map M from the vector space B of bilinear forms on V to
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L (V,V ∗). This is the map we have been implicitly discussing above: to the bilinear
form (v,w) of a point in B we associate the linear map from V to V ∗ that maps v∈V
to its gv ∈V ∗, where gv(w) = (v,w).

Theorem 7.1.17. The linear map M : B→L (V,V ∗) is an isomorphism.

Proof. It is easy to see that M is linear: this is left to you. We construct an inverse
to M. So we start with a linear map g : V → V ∗ that maps any v ∈ V to a linear
functional gv ∈V ∗. This functional gv can be evaluated at any w ∈V , giving gv(w).
This gives the bilinear form (v,w) with values gv(w). This is the inverse of M, so it
is automatically linear and we are done. ut

Remark 7.1.18. The proof is written without resorting to a basis for V and V ∗. In
coordinates the proof becomes easier. You should write it down.

7.2 Quadratic Forms

To each symmetric bilinear form (w,v) on V ×V we associate the scalar valued
function on V given by

q(v) = (v,v).

This function is called the quadratic form on V associated to (•,•) . We have:

Lemma 7.2.1. The quadratic form q(v) associated to (v,w) satisfies:

1. The polarization identities

(v,w) =
q(v+w)−q(v−w)

4
. (7.3)

and

(v,w) =
q(v+w)−q(v)−q(w)

2
. (7.4)

2. an identity only involving q:

q(v)+q(w) =
q(v+w)+q(v−w)

2
(7.5)

3. For any scalar c, q(cx) = c2q(cx).

Proof. For 1) just expand the right hand side using the bilinearity and symmetry of
(v,w). For example, for (7.3) use the bilinearity and the symmetry of (v,w) to get

q(v+w) = (v+w,v+w)

= (v,v)+(v,w)+(w,v)+(w,w)

= (v,v)+2(v,w)+(w,w)



126 7 Bilinear Forms

and similarly
q(v−w) = (v,v)−2(v,w)+(w,w).

Then subtract, and divide by 4.
For 2) subtract (7.4) from (7.3) and rearrange. For 3) by linearity in each factor,

again:
q(cv) = (cv,cv) = c(v,cv) = c2(v,v) = c2q(v).

ut

The third property is the reason why these functions are called quadratic: they are
homogeneous functions of degree 2. The second property is verified for all homo-
geneous polynomials of degree 2, as you should check.

Equip V with the basis B= {v1, . . . ,vn}. If the symmetric bilinear form has the
symmetric matrix A in this basis, then the associated quadratic form is written:

q(v) = vtAv =
n

∑
i=1

( n

∑
j=1

ai jxix j

)
, (7.6)

where the xi are the coefficients of v with respect to the basis. Thus q(v) is a poly-
nomial of degree 2 in the coefficients xi.

By the polarization identities, we can reconstruct all the entries of a matrix A
associated to the symmetric bilinear form from the values of its quadratic form q.
Indeed,

ai j = (vi,v j) =
q(vi +v j)−q(vi−v j)

4
.

Thus if we know the quadratic form, we know the associated biinear form. Quadratic
forms are sometimes easier to deal with, since they only depend on one set of vari-
ables.

We often write quadratic forms as functions of the coefficients in the chosen
basis. For example:

Example 7.2.2. Let q(x1,x2,x3) = x2
1 + 2x1x2− x1x3− x2

2 + x2x3 + 4x2
3. The associ-

ated matrix A is  1 1 −1/2
1 −1 1/2
−1/2 1/2 4


as you should check by carrying out the matrix multiplication xT Ax.

Remark 7.2.3. In this example, note that the off-diagonal terms in the matrix are half
the coefficients in the quadratic polynomial. This is because we have not written
separate coefficients for xix j and x jxi in the polynomial, as we have in the sum in
(7.6). If we write the summation differently, by starting the inner summation at i,
we would have:

q(x) =
n

∑
i=1

( n

∑
j=i

bi jxix j

)
.

For i 6= j, bi j = 2ai j, while bii = aii.
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Exercise 7.2.4. In Example 7.1.3 a basis has already been chosen, and the associ-
ated quadratic form is 2x2

1 + 4x1x2 + 4x2
2. Reconstruct the symmetric bilinear form

from this quadratic form using a polarization identity. Note that the quadratic form
associated to the non-symmetric bilinear form in Example 7.1.2 is the same.

7.3 Decomposition of a Symmetric Bilinear Form

Recall that the annihilator Ua of a subspace U of V is the subspace of elements of
V ∗ that vanish on U : see §6.4 for details. On the other hand by Definition 7.1.5 U⊥

is the subspace of elements w ∈ V such that (u,w) = 0 for all u ∈U . U⊥ depends
on the chosen bilinear form.

Theorem 7.3.1. Let V be a vector space with a non-degenerate symmetric bilinear
form (v,w), and U a subspace of V . Then the space U⊥ ⊂V associated to (v,w) is
isomorphic to the annihilator Ua ⊂V ∗ of U via the linear map D : V →V ∗ defined
by D(v) = (v,•).

Proof. By Theorem 7.1.8 D is an isomorphism if and only if the form (v,w) is non-
degenerate. Since U⊥ = {v ∈ V | (u,v)∀u ∈U} and Ua = {f ∈ V ∗ | f(u) = 0∀u ∈
U} and the isomorphism D maps v to the functional (v,•) it is clear that U⊥ is
isomorphic to Ua under D. ut

Notice the connection with Theorem 6.4.6.
Recall that the rank of a symmetric bilinear form is the rank of the linear map D,

or the rank of any matrix A representing it: see Theorem 7.1.13.

Theorem 7.3.2. If the radical of (v,w) on V has dimension ν , then the rank of (v,w)
is n−ν . In particular if the bilinear form (v,w) is non-degenerate, it has rank n.

Proof. Since the rank does not depend of the choice of basis by Theorem 7.1.13,
pick any basis B = {v1, . . . ,vn} of V , in which the first ν basis elements form a
basis of the radical. Then in this basis the matrix A looks like, in block notation:(

0 0
0 B

)
where B is a symmetric matrix of size n− ν . The matrix B represents a non-
degenerate bilinear form by construction. This reduction shows that it is enough
to prove that the bilinear form (v,w) has rank n when it is non-degenerate.

The non-degeneracy assumption means that there is no non-zero v ∈V such that
(v,w)= 0 for all w∈V . Writing v in coordinates for an arbitrary basis as (x1, . . . ,xn)
and w as (y1, . . . ,yn), this means that there is no non-zero x such that

ytAx = 0, for all y ∈ Fn. (7.7)

If there happens to be a non-zero x with Ax = 0 then (7.7) fails. So the nullspace
of the linear map x 7→ Ax is trivial, so that A has rank n as desired. ut
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Remark 7.3.3. Let W be the subspace of V of dimension n−ν spanned by the vec-
tors {vν+1, . . . ,vn} constructed in the proof. Then clearly

V =V⊥⊕W. (7.8)

so by Theorem 7.3.2 the rank of the (v,w) restricted to W is n−ν .

More generally we have a theorem that does not depend on Theorem 7.3.2. The
method of proof is similar.

Theorem 7.3.4. Let W be any subspace of V on which the restriction of the bilinear
form (v,w) has rank equal to dimW. Then V =W ⊕W⊥.

Proof. Let m denote the dimension of W . Pick an arbitrary vector v ∈ V . We must
show that it can be written uniquely as v = w+u, with w ∈W , and u ∈W⊥. It is
enough to show that v−w is orthogonal to W , i.e. that

(v−w,wi) = 0 , 1≤ i≤ m, for a basis w1, . . . , wm of W . (7.9)

Complete this basis of W to a basis of V . Write the unknown vector w as x1w1+ · · ·+
xmwm in this basis. We must solve the inhomogeneous system of m linear equations
in the m variables xi,

x1(w1,wi)+ x2(w2,wi)+ · · ·+ xm(wm,wi) = (v,wi), 1≤ i≤ m.

Writing ai j as usual for (wi,w j), but this time just for 1 ≤ i, j ≤ m, and b for the
known vector

(
(v,wi)

)
, 1≤ i≤m, on the right hand side, we have the linear system

in matrix notation
Ax = b.

The square matrix A of this system has maximal rank by hypothesis, so the system
can be solved uniquely for any b. ut

The key example to which we will apply this theorem in the next section is any
subspace W of dimension 1 generated by a vector w with (w,w) 6= 0. Here is another
example that follows immediately from Remark 7.3.3.

Corollary 7.3.5. Let V⊥ denote the radical of V . Then if W is any subspace of V
such that V =V⊥⊕W, then (v,w) restricted to W has maximum rank.

Therefore by Theorem 7.3.4, the orthogonal complement W⊥ of W satisfies V =
W ⊕W⊥. Clearly W⊥ =V⊥.

Remark 7.3.6. The results of this section can be proved using Theorem 5.10.5. In-
deed, since a symmetric matrix represents a symmetric bilinear form in a basis
B= {v1, . . . ,vn}, the fact that the quadratic form has a rank r equal to the rank of a
principal submatrix of size r shows that the symmetric quadratic form restricted to
the basis vectors corresponding to the principal submatrix has maximal rank. From
this you can easily show that the radical has dimension n− r, etc.
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Definition 7.3.7 (Orthogonal Projection). Assume that the symmetric bilinear
form has maximal rank on W , so that V =W ⊕W⊥. Then the projection (see Defi-
nition 4.1.7) P from V to W along W⊥ is defined by the unique solution to (7.9). It
is called the orthogonal projection of V to W .

This follows from Theorem 7.3.4. By Theorem 4.6.2, P2 = P.

Remark 7.3.8. To define an ordinary projection, we need two subspaces U and W
such that V =W⊕U , where W is the space you are projecting to: see §4.6. Different
choices of U give rise to different projections to W . In the current situation the
subspace U is uniquely determined by W and the symmetric bilinear form. So W⊥

is its nullspace of the projection, and plays the role of U . The projection exists if the
symmetric bilinear form b has maximal rank on W .

7.4 Diagonalization of Symmetric Bilinear Forms

Using the results of §7.2 and 7.3, we prove Theorem 7.4.1, one of the most important
theorems in linear algebra. The following proof is not constructive, but it is very
simple. Later we give a constructive proof using the Lagrange Algorithm 7.5.3.

Theorem 7.4.1. Any symmetric matrix is congruent to a diagonal matrix.

Proof. Assume that the symmetric matrix A has size n, and acts on a vector space V
of dimension n with a given basis. This allows us to construct a symmetric bilinear
form (v,w) in the usual way.

If the radical V⊥ of (v,w) has dimension n, the matrix A is the zero matrix, so
we are done.

So we may assume the V⊥ has dimension ν < n. Let W be a subspace of V of
dimension n−ν such that V = V⊥⊕W . Then by Corollary 7.3.5, (v,w) restricted
to W has maximum rank. Then we can find a vector w1 ∈W such that (w1,w1) 6= 0.
Indeed if this were not true, the polarization identities would show us that (u,w) is
identically 0 on W . This cannot be the case, since that would imply that W is part
of the radical. So let W1 be the orthogonal complement of w1 in W . By the same
argument as before, we can find a w2 in W1 with (w2,w2) 6= 0. Continuing in this
way, we have found a collection of mutually perpendicular w1, w2, . . . , wn−r, all
non-zero. In this basis the matrix of the symmetric bilinear form is written

0 . . . 0 0 . . . 0
...

. . . . . .
...

. . .
...

0 . . . 0 0 . . . 0
0 . . . 0 d1 . . . 0
...

. . .
... 0

. . . 0
0 . . . 0 0 . . . dn−ν


(7.10)

where all the diagonal elements d1, d2, . . . , dn−ν are non zero. ut
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The proof is not constructive, because there it does not give an algorithm for
finding w1, w2, etc.

7.5 Lagrange’s Diagonalization Algorithm

We now give a constructive, algorithmic proof of Theorem 7.4.1. We simplify sym-
metric matrices A by conjugation using equivalent row and column operations. Here
is what equivalent means: on the left-hand side multiply A by a product of elemen-
tary matrices, which we call E. Thus we can row-reduce as in Gaussian elimination.
On the right-hand side multiply A by the transpose Et . Since A is symmetric, so is
EAEt , which is what we want. As we saw in Proposition 2.10.1, this means that we
are column reducing A Finally if E = EnEn−1 . . .E1, then

EAEt = EnEn−1 . . .E1AE1 . . .En−1En

so if we set A1 =E1AEt
1. . . . , Ak =EkAk−1Et

k, at each step we set a symmetric matrix
Ak. So the goal is to find a suitable collection of En that achieve diagonallization.
This is the content of Algorithm 7.5.3 below. We will use the elementary matrices
Trs, and Ers(c). We will also use a new elementary matrix

Sab := Eba(1)Eb(−2)Eab(1).

Conjugation by this matrix is useful when the diagonal elements of A in rows r and
s are both 0, and the element in position (r,s) (and therefore (s,r)) is non-zero. Note
Sab is symmetric.

First some examples.

Example 7.5.1. Start with the symmetric matrix

A =

1 2 3
2 3 5
3 5 9


To diagonalize, we first use E21(−2) which adds to the second row the first row
multiplied by −2 to get

A1 = E21(−2)AE21(−2)t =

 1 0 0
−2 1 0
0 0 1

1 2 3
2 3 5
3 5 9

1 −2 0
0 1 0
0 0 1

=

1 0 3
0 −1 −1
3 −1 9

 .

We follow with E31(−3):

A2 =E31(−2)A1E31(−3)t =

 1 0 0
0 1 0
−3 0 1

1 0 3
0 −1 −1
3 −1 9

1 0 −3
0 1 0
0 0 1

=

1 0 0
0 −1 −1
0 −1 0

 .
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Finally conjugate by E32(−1) :

A3 = E32(−1)A2E32(−1)t =

1 0 0
0 1 0
0 −1 1

1 0 0
0 −1 −1
0 −1 0

1 0 0
0 1 −1
0 0 1

=

1 0 0
0 −1 0
0 0 1


Check all these computations and notice how the matrix stays symmetric at each
step.

Example 7.5.2. This example illustrates diagonalization using the new kind of ele-
mentary matrix. Let

A =

(
0 2
2 0

)
and E =

(
1 1
1 −1

)
Then

EAEt =

(
2 0
0 −2

)
as you should check. E is the product of three elementary matrices:(

1 1
1 −1

)
=

(
1 0
1 1

)(
1 0
0 −2

)(
1 1
0 1

)
= E21(1)E2(−2)E12(1)

in terms of the elementary matrices, as you should also check.

Here is the algorithm for diagonalizing symmetric matrices. We will use the el-
ementary matrices from Definition 2.8.1, and a generalization of the matrix E from
Example 7.5.2. This is called Lagrange’s method.

Algorithm 7.5.3 (Diagonalization algorithm for symmetric matrices) The sym-
metric matrix A = (ai j) is of size n. This algorithm diagonalizes A by repeatedly
replacing it by a congruent matrix EAEt , where E is invertible. For convenience set
j0 = i0. Fix an integer i1 > i0 in the j0-th row. We assume that we have the follow-
ing situation. Normally we would start at i0 = 1 and i1 = 2, but this description is
written in a way that it also describes all the intermediate steps.

• A has zeroes in all its off-diagonal elements of its first i0−1 rows (and columns
since it is symmetric). Thus if i 6= j, ai j = 0 for i < i0 and therefore for j < j0.

• ai, j0 = 0 when i0 < i < i1. Since A is symmetric, ai0, j = 0 when j0 < j < i1.

Our goal is to increase the number of zeroes in the region given by the assumption,
by incrementing (i.e., increasing by 1) i1 until n is reached, and then incrementing i0,
keeping the matrix symmetric at each step. Here are the cases we need to consider:

1. i1 = n and ai1, j0 = 0. We are at the bottom of the column. Just increment i0.
2. i1 < n and ai1, j0 = 0. We are not at the bottom of the column. Just increment ii.
3. ai1, j0 6= 0 and ai0,i0 6= 0. Then let

c =
ai1, j0
ai0, j0

, and use the elementary matrix Ei1,i0(−c) to clear the entry in (i1, j0).
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The new symmetric matrix Ei1,i0(−c)A(Ei1,i0(−c))t still has zeroes in all the en-
tries indicated in the assumption and a new 0 in position (i1, j0). So we can
increment i1 if i1 < n or i0 if i1 = n.

4. ai1, j0 6= 0, ai0,i0 = 0 and there is diagonal entry ai2,i2 6= 0 with i2 > i0. Then
interchange the rows and columns i0 and i2 using the transposition Ti0,i2 , namely
taking the matrix Ti0,i2ATi0,i2 since a transposition is its own transpose.

5. ai1, j0 6= 0, ai0,i0 = 0 and there is no diagonal entry ai2,i2 6= 0 with i2 > i0. This
is the most difficult case, illustrated by Example 7.5.2. We have to diagonalize
using a new matrix E which has a 1 along the diagonal except for ei2,i2 = −2.
All the off-diagonal terms of E are 0, except ei0,i2 = ei2,i0 = 1. Note that E is
symmetric and invertible. Then EAE has an extra 0 in position (i0, i2), and a
non-zero element in positions (i0, i0) and (i2, i2).

The algorithm terminates in a finite number of steps, since each step increases the
number of 0 in the entries given by the initial assumption.

This algorithm is the analog of Gaussian elimination for a symmetric matrix.
Note that we can read the rank of A from the congruent diagonal matrix A′ obtained:
it is just the number of non-zero elements on the diagonal.

7.6 Skew Symmetric Linear Forms

It is also useful to consider skew symmetric bilinear forms.

Definition 7.6.1. A bilinear form (v,w) on a vector space V is skew symmetric if

(v,w) =−(w,v) for all v and w in V.

We have the analog of Theorem 6.3.4 which says that we can associate to an
skew symmetric (v,w) a skew symmetric matrix A for each basis of V . Notice that
the diagonal entries of A must be 0, since when i = j, (i, j) = −( j, i). Thus the
quadratic form associated to a skew symmetric form is identically 0.

Congruence forms an equivalence relation on skew symmetric matrices, so we
can look for the matrix with the simplest form in each congruence class.

Theorem 7.6.2. A skew symmetric bilinear form can be written in an appropriate
basis as the block diagonal matrix

A1 0 . . . 0 0

0
. . . 0 . . . 0

0 . . . Ak 0 . . .
... . . . . . .

... 0
0 . . . . . . . . . 0


where each Ai is the 2×2 block
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0 1
−1 0

)
.

Thus the rank of A is 2k, twice the number of blocks Ai, and the last n−2k rows and
columns of A are 0.

The proof imitates that of Theorem 7.4.1. Say a little more.

7.7 Sylvesters Law of Inertia

In this section we improve the Diagonalization Theorem 7.4.1 when the scalars are
the real numbers.

Recall that we write diagonal matrices as D(d1, . . . ,dn), where the di are the
diagonal elements. So

Example 7.7.1. Let q(x) be the quadratic form associated to the diagonal matrix
D(d1, . . . ,dn). Then

q(x) = d1x2
1 +d2x2

2 + · · ·+dnx2
n,

as you should check.

Exercise 7.7.2. By using the diagonal matrix

C = D(
√
|d1|, . . . ,

√
|dn|)

verify that D(d1, . . . ,dn) is congruent to the diagonal matrix

B =CD(d1, . . . ,dn)Ct ,

where all the diagonal terms of B are either 0, 1 or−1. We get 1 when di is positive,
−1 when it is negative, and 0 when it is 0.

Sylvester’s Law of Inertia 7.7.61 shows that the following three numbers associ-
ated to a diagonal matrix D are congruence invariants of D, even though the diagonal
entries di themselves are not.

Definition 7.7.3. Let B be an n×n diagonal real matrix with diagonal entries b1, b2,
. . . , bn. Then

• p is the number of positive bi,1≤ i≤ n.
• ν is the number of zero bi,1≤ i≤ n.
• m is the number of negative bi,1≤ i≤ n.

The triple of integers (p,ν ,m) is called the inertia of B.

Note that p+ν +m = n. The dimension of the radical of B is ν , so n−ν is the
rank of B. Theorem 7.1.13 says ν is a congruence invariant of B.

1 Published by J. J. Sylvester in 1852 - [29].
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Example 7.7.4. If D is the diagonal matrix D(7, -1, 0, 3, 3, -2), then p = 3, ν = 1,
and m = 2.

Definition 7.7.5. The signature of a diagonal matrix B is the number p−m. If p+
m = n, B is non-degenerate (sometimes called non-singular). If p+m < n, B is
called degenerate or singular.

Theorem 7.7.6 (Sylvester’s Law of Inertia). Let A be a symmetric n× n matrix.
By Theorem 7.4.1 it is congruent to a diagonal matrix B, which has an inertia. The
inertia is a congruence invariant of A: it is the same for any diagonal matrix con-
gruent to A. Conversely any diagonal matrix with the same inertia as B is congruent
to B.

Proof. Work with a real vector space V of dimension n. Since the radical of V is well
defined independently of the basis, it is enough to prove the theorem for any sub-
space W of V such that V =V⊥⊕W . Then by Theorem 7.3.2, we may assume that
ν = 0. Assume we have two coordinate systems e and f in which the quadratic form
q is diagonal. Let Vp and Vm be the subspaces of V spanned by the basis elements of
e on which the quadratic from is positive and negative, respectively, and let Wp and
Wm be the analogous subspaces for the f-basis. Let pV , mV be the dimensions of Vp
and Vm, and pW , mW the dimensions of Wp and Wm. Clearly pV +mV = pW +mW = n.
We will show that pV = pW , from which it will follow that mV = mW .

We claim that the linear subspaces Vp and Wm of V do not intersect except at the
origin. Suppose they did at a point p 6= 0. Because p ∈ Vp, we have q(p) > 0, but
because p ∈Wm, q(p)< 0, a contradiction, so the claim is established.

This shows that pV ≤ n−mW = pW . Indeed, the e-basis vectors spanning Vp,
and the f-basis vectors spanning Wm can be extended, by the claim, to a basis for V .
Indeed, suppose not: then we would have an equation of linear dependence, which
would express an element of Vp as an element of Wm, and this is precisely what we
ruled out.

Exchanging the role of the V ’s and W ’s, we get pW ≤ pV , so they are equal. This
concludes the proof that (p,k,m) are congruence class invariants.

The converse follows easily: using the notation above, construct linear maps be-
tween Vp and Wp, between Vk and Wk, and between Vm and Wm sending basis ele-
ments to basis elements. This is possible since there are the same number of basis
elements in all three cases. This gives the desired change of basis. The theorem is
proved. ut

The Law of Inertia allows us to talk about the signature of q: it is the signature
of any diagonal matrix representing q.

Here are the main definitions concerning quadratic forms over R.

Definition 7.7.7. The quadratic form q(x) with matrix A is definite if q(x) 6= 0 for
all x 6= 0.

We can refine this classification as follows.

Definition 7.7.8. The quadratic form q(x) with matrix A is
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• Positive definite if ∀x 6= 0, q(x)> 0, or, equivalently, xtAx > 0;
• Positive semidefinite if ∀x, q(x)≥ 0, or, equivalently, xtAx≥ 0;
• Negative definite if ∀x 6= 0, q(x)< 0, or, equivalently, xtAx < 0;
• Negative semidefinite if ∀x, q(x)≤ 0, or, equivalently, xtAx≤ 0;
• Indefinite if it does not fall into one of the four previous cases. Then it is not

definite.

Example 7.7.9. The matrix (
1 0
0 −1

)
associated to the quadratic form q = x2

1− x2
2 is indefinite, because

[
1 0
][1 0

0 −1

][
1
0

]
= 1, while

[
0 1
][1 0

0 −1

][
0
1

]
=−1

We pursue this in Example 7.7.10.

Example 7.7.10. This is a continuation of Example 7.7.9. Let V be a two-dimensional
vector space with basis e1, e2, and write an element v of V as x1e1 + x2e2. Assume
that the quadratic form q is represented in the e-basis as q(x1,x2) = x1x2, so its
matrix is

A =

(
0 1/2

1/2 0

)
.

The bilinear form associated to q is

(x,y) =
(x1 + y1)(x2 + y2)− (x1 + y1)(x2 + y2)

4
=

x1y2 + y1x2

2
,

by (7.3). We construct a diagonalizing basis as in Algorithm 7.5.3: we choose f1 =
a1e1 + a2e2 with q(f1) = a1a2 6= 0. So both a1 and a2 must be non-zero. We could

normalize f1 so that q(f1) = ±1, by dividing by
√

a2
1 +a2

2, but we will not bother,
to avoid burdening the computation. Then, following Algorithm 7.5.3, we consider
the linear form (x,v f1) and find an element f2 in its nullspace. This means solving
for x in the equation x1a2 + x2a1 = 0. Up to multiplication by a non-zero scalar, we
can take x = (a1,−a2), so that the second basis vector f2 = a1e1− a2e2. If z1 and
z2 are the coordinates in the f-basis, the i-th column of the change of basis matrix
satisfying x = Ez is the vector of coefficients of fi in the e-basis, so

E =

(
a1 a1
a2 −a2

)
.

E is invertible because its determinant −2a1a2 6= 0 by our choice of f1.
Then the matrix representing our quadratic form in the f-basis is

B = ET AE =

(
a1 a2
a1 −a2

)(
0 1/2

1/2 0

)(
a1 a1
a2 −a2

)
=

(
a1a2 0

0 −a1a2

)
,
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so, as predicted, it is diagonal, but with entries along the diagonal depending on
a1 and a2. This shows there are infinitely many bases for V in which the quadratic
form is diagonal. Even if one normalizes f1 and f2 to have length one, there is more
than one choice. Our computation shows that in all of them, one of the diagonal
entries is positive and the other is negative. The Law of Inertia 7.7.6 generalizes this
computation.

Corollary 7.7.11. A quadratic form q in Rn is:
Positive definite, if its signature is n, which forces the rank to be n;
Positive semidefinite, if its signature is m, m≤ n, and its rank m;
Negative definite, if its signature is −n, which forces the rank to be n;
Negative semidefinite, if its signature is −m, m≤ n, and its rank m;
Indefinite, if its signature is less than the rank, so both p and m are positive.

Proof. Call the signature s and the rank r. Then s = p−m, r = p+m. Referring
back to Definition 7.7.8, the proof is immediate.

Here is a second example showing what happens when the quadratic form does
not have maximum rank.

Example 7.7.12. Using the same notation as in the previous example, assume that q
can be written in the e-basis as q(x1,x2) = x2

1, so its matrix is

A =

(
1 0
0 0

)
,

The bilinear form associated to q is (x,y) = x1y1, as per (7.3). Pick any vector
f1 = a1e1 + a2e2 ∈ V , so that q(f1) 6= 0. This just says that a1 6= 0. In this case we
divide by a1, and write f1 = e1+ae2. Then, following Algorithm 7.5.3, consider the
linear form (x,a) = x1 and find a non-zero element f2 in its nullspace. Take f2 = ce2,
for c 6= 0 Let

D =

(
1 a
0 c

)
be the change of basis matrix from the e-basis to the f-basis. D is invertible because
its determinant c 6= 0 by choice of f1 and f2. Then we have(

f1
f2

)
= D

(
e1
e2

)
and

(
x1
x2

)
= DT

(
z1
z2

)
.

Then the matrix of our quadratic form in the f-basis is

B = DADT =

(
1 a
0 c

)(
1 0
0 0

)(
1 0
a c

)
=

(
1 0
0 0

)
,

so, as predicted, it is diagonal. In this example, because we normalized the length
of the first new basis vector f1, then entries of the new diagonal matrix are the same
as the ones we started with.
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The form in Example 7.7.4 has signature 1. It is degenerate and indefinite.

Example 7.7.13. We compute the signature of the n× n symmetric matrix Mn with
all diagonal terms equal to n−1 and all off diagonal terms equal to −1:

Mn =


n−1 −1 . . . −1
−1 n−1 . . . −1
. . . . . . . . . . . .
−1 −1 . . . n−1


We will show that the signature and the rank are n− 1, so that the form is positive
semidefinite. We do this by first computing the signature for n = 2 and then setting
up a proof by induction. Letting n = 2, we get

M2 =

(
1 −1
−1 1

)
.

By using symmetric Gaussian elimination we can transform this to the diagonal
matrix (1,0), so p = 1, k = 1 and m = 0. We are done. Next

M3 =

 2 −1 −1
−1 2 −1
−1 −1 2


By symmetric Gaussian elimination again, this transforms our matrix into the con-
gruent matrix: We get 1 0 0

0 3
2 −

3
2

0 − 3
2

3
2


and the 2×2 matrix in the bottom right is just M2 multiplied by 3

2 . The 1 in upper
left-hand corner just adds 1 to the signature we found in the case n = 2, so the
signature is (2,0). This suggests the general strategy: we prove by induction that the
signature of Mn is n−1 and the rank n−1. By row reduction, first dividing the top
row by n−1, and then clearing the first column, you get

1 0 . . . 0
0 n(n−2)

n−1 . . . − n
n−1

. . . . . . . . . . . .

0 − n
n−1 . . . n(n−2)

n−1


The bottom right matrix of size (n−1)× (n−1) is n

n−1 times the matrix Mn−1. By
induction we know that the signature and the rank of Mn−1 are both n−2 and we are
done. Note that we are using Sylvester’s law of inertia 7.7.6 to say that this matrix
is congruent to Mn.

Some authors call a matrix A degenerate, when two of its eigenvalues are the
same (as is the case in the example above). This is a relatively rare phenomenon, as
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explained in [16], p.112-113. This use of the word degenerate conflicts with standard
usage for quadratic forms: see Definition 7.7.5.

Exercise 7.7.14. Show that the matrix of the quadratic form

q(x1,x2,x3) = x2
1 + x1x2 + x1x3 + x2

2 + x2x3 + x2
3 (7.11)

is

A =

1 1
2

1
2

1
2 1 1

2
1
2

1
2 1

 (7.12)

since xtAx = q(x). Show this matrix is positive-definite, so its signature is 3, by the
same method as the previous example.

Corollary 7.7.15. There are as many congruence classes of quadratic forms on an
n-dimensional real vector space as there are different signatures.

Problem 7.7.16. Count the number of signatures when n = 2, 3, 4.

We will develop more tests for positive definiteness, negative definiteness and
the like in §13.5 , but first we must prove the most important theorem connected to
real symmetric matrices: the Spectral Theorem. We do this in a later chapter.

7.8 Hermitian Forms

Bilinear forms are extremely useful over R, as we have just seen, but over C it is
better to use Hermitian forms. First some definitions. V is a complex vector space,
and unless otherwise mentioned, the vectors u, v and w are in V

Definition 7.8.1. A complex valued function f (v) on V is conjugate linear if

1. f (v+w) = f (v)+ f (w)
2. f (cv) = c f (v), where c is the complex conjugate of the complex number c.

This motivates the next definition.

Definition 7.8.2. A form (v,w) on V is sesquilinear if

(u+v,w) = (u,w)+(v,w);
(u,v+w) = (u,v)+(u,w);

(cv,w) = c(v,w);
(v,cw) = c(v,w).

Thus the form is linear in its first variable and conjugate linear in the second
variable. One could have done this the other way around, and indeed physicists do:
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for them a sequilinear form is conjugate linear in the first variable, and linear in
the second. Most mathematicians do it as described here. The word ’sesquilinear‘
means one and a half times linear, which is about right.

Finally we get to the definition we are really interested in:

Definition 7.8.3. A form (v,w) is Hermitian if it is sesquilinear and is also conju-
gate symmetric:

(v,w) = (w,v). (7.13)

Exercise 7.8.4. Show that if a form (v,w) is linear in its first variable and satisfies
(7.13), then it is conjugate linear in the second variable.

Following Theorem 6.3.4, we may associate a n× n matrix A to a Hermitian
form in n variables, and the analog of the matrix of a symmetric bilinear form being
symmetric is that the matrix of a Hermitian form equal to its conjugate transpose:
A = A∗. We say that such a matrix is Hermitian.

Exercise 7.8.5. Prove this last statement.

Next we decompose the Hermitian form which we now write h(v,w), since other
forms will be introduced, into its real and imaginary parts.

h(v,w) = s(v,w)+ ia(v,w) (7.14)

where s(v,w) and a(v,w) are real-valued form. Write VR for the vector space V
considered as an R vector space. See §5.8 for details. Recall that a form a(v,w) is
antisymmetric if a(v,w) =−a(w,v).

Theorem 7.8.6. If h(v,w) be a Hermitian form, decomposed as in (7.14), then

1. s(v,w) and a(v,w) are bilinear forms on VR.
2. s(v,w) is symmetric and a(v,w) is antisymmetric.
3. s(v,w) = a(iv,w) =−a(v, iw) and a(v,w) =−s(iv,w) = s(v, iw).
4. s(iv, iw) = s(v,w) and a(iv, iw) = a(v,w).

Proof. 1. is trivial: in (7.14) just replace v by cv, where c is a real number, and then
w by cw. This plus the additively of h gives the result.

2. comes from interchanging v and w in (7.14). Because the Hermitian is conjugate
symmetric, we get

h(w,v) = s(w,v)− ia(w,v)

which is precisely what we need.
3. is obtained by replacing v by iv in (7.14). Because h is C-linear in the first vari-

able, we get
ih(v,w) = h(iv,w) = s(iv,w)+ ia(iv,w)

Equating this to (7.14) multiplied by i, we get

is(v,w)−a(v,w) = s(iv,w)+ ia(iv,w).
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Equating the real and imaginary parts, we get s(iv,w) =−a(v,w) and s(v,w) =
a(iv,w).
Similarly, replace w by iw in (7.14), and use the fact that h is conjugate linear
in the second variable. So h(v, iw) =−ih(v,w) =−is(v,w)+a(v,w) and this is
also s(v, iw)+ ia(v, iw), so:

−is(v,w)+a(v,w) = s(v, iw)+ ia(v, iw).

Equating real and imaginary parts, we get s(v, iw) = a(v,w) and s(v,w) =
−a(v, iw), as required.

4. works in exactly the same way, but this time using h(iv, iw)= h(v,w). The details
are left to you.

ut

Unfortunately, if h is conjugate linear in the first variable, and linear in the second
variable, the formulas in 3. change.

Just as we associated a quadratic form to a symmetric bilinear form, we can
associate the form

q(v) = h(v,v)

to a Hermitian form.
Let’s establish the properties of q(v).

Theorem 7.8.7. Writing the Hermitian form h(v,w) in terms of its real and imagi-
nary parts s(v,w) and a(v,w) as in (7.14), we get

1.
q(v) is real valued and q(cv) = ‖c‖2q(v).

2.

s(v,w) =
q(v+w)−q(v)−q(w)

2
.

3.

a(v,w) =
q(v+ iw)−q(v)−q(iw)

2
.

Proof. Since the defining property of a Hermitian form says that h(v,v) = h(v,v),
all the values of q(v) are real.

For any complex number c, we have

q(cv) = b(cv,cv) = ccb(v,v) = ‖c‖2q(v),

so the first item is established.

q(u+v) = h(u+v,u+v) = h(u,u)+h(u,v)+h(v,u)+h(v,v)

= q(u)+h(u,v)+h(u,v)+q(v), (7.15)

so
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h(u,v)+h(u,v) = q(u+v)−q(u)−q(v).

If we replace h(u,v) in this expression by (7.14), we get

c(v,w)+ id(v,w)+ c(v,w)− id(v,w) = q(u+v)−q(u)−q(v)

or
2c(v,w) = q(u+v)−q(u)−q(v).

which gives the second item.
Finally replace v in (7.15) by iv to get

q(u+ iv) = q(u)+h(u, iv)+h(u, iv)+q(iv)

= q(u)− ih(u,v)− ih(u,v)+q(iv) (7.16)

or
−i(h(u,v)+ ih(u,v) = q(u+ iv)−q(u)−q(iv)

As before substitute out h using (7.14) to get

2d(v,w) = q(u+ iv)−q(u)−q(iv)

proving the last item. ut

Definition 7.8.8. A form q(v) is a Hermitian quadratic form if it takes real values
and satisfies q(cv) = ‖c‖2q(v).

Just as in the symmetric bilinear case (see Lemma 7.2.1) we can recover the
Hermitian form from its Hermitian quadratic from ‘polarization identities’.

Theorem 7.8.9. Let q(v) be a Hermitian quadratic form. Then there is a unique
Hermitian form h(v,w) for which q(v) is the Hermitian quadratic form.

Proof. Indeed, it is given as h(v,w) = s(v,w) + is(v,w), which can both be ex-
pressed in terms of q(v) . ut

7.9 Diagonalization of Hermitian Forms

We can derive properties of Hermitian forms exactly as we did for symmetric bilin-
ear forms over R: we can reduce them to diagonal form, prove Syslvester’s law of
inertia and then define the various categories of Hermitian forms: positive definite
being the most important.

Examples here.





Chapter 8
Inner Product Spaces

Abstract The informed reader will be surprised that the notion of scalar product of
vectors is only introduced now. There are several reasons for the delay. The first is
that introducing a scalar product is adding an additional piece of data to the structure
of a vector space, so it is useful to understand first what that can be done without
it. The second reason is that a scalar product, which can be defined on a complex
vector space, is not the most useful concept there. On a complex vector space the
most useful concept is that of a Hermitian product. In this chapter we only consider
positive definite scalar products in the real case, and positive definite Hermitian
products in the complex case. We refer to both as inner products. In the first four
sections we develop the theory of the inner product, and its applications to real
vector spaces; in §8.6 we define the Hermitian product in much the same way, and
derive the parallel applications in complex vector spaces. Then we go back to results
that can be treated simultaneously for real and complex vector spaces. We improve
the statements concerning a linear map and its transpose when the vectors spaces
have an inner product or a Hermitian product. Finally we show how to put an inner
product on the space of all matrices, and the space of all symmetric matrices.

8.1 Scalar Products

A scalar product is just a symmetric bilinear form on a vector space. It is given a
new name because we think of the scalar product as being permanently associated
to the vector space. The scalar product we consider here will be positive definite,
which is the standard case considered in calculus and geometry. There are interest-
ing examples of other kinds of scalar products, especially in physics. The following
definition is most useful when the scalars are the real numbers. Although the def-
inition makes sense for the complex numbers, it is less useful than the Hermitian
product, as we will see.

We also give a new definition because we use a different notation for the scalar
product.

143



144 8 Inner Product Spaces

Definition 8.1.1. Let V be a vector space over F . A scalar product on V associates a
scalar to any pair v, w of elements of V . It is written 〈v,w〉. It satisfies the following
three properties for all u, v and w in V :

SP 1 Commutativity: 〈v,w〉= 〈w,v〉;
SP 2 Additivity: 〈u,v+w〉= 〈u,v〉+ 〈x,w〉;
SP 3 For all scalars a, 〈av,w〉= a〈v,w〉.

Exercise 8.1.2. Prove that the definition implies

〈u+v,w〉= 〈u,w〉+ 〈v,w〉 and 〈v,aw〉= a〈v,w〉, for all scalars a,

and therefore 〈0,w〉= 0.

Exercise 8.1.3. Convince yourself that a scalar product is nothing more than a sym-
metric bilinear form.

Example 8.1.4. The prototypical example is Fn with scalar product

〈x,y〉= x1y1 + x2y2 + · · ·+ xnyn. (8.1)

This is called the standard scalar product on Fn.

Exercise 8.1.5. Prove that this is a scalar product according to our definition.

A scalar product is non-degenerate if it is non-degenerate as a symmetric bilinear
form: See Definition 7.1.4. Thus the only v ∈ V for which (v,w) = 0 for all w ∈ V
is the origin.

Exercise 8.1.6. Show that the standard scalar product on Rn is non-degenerate.

In the next definition, for the first time we require that the scalars be R.

Definition 8.1.7. A scalar product is positive definite if for all non-zero v ∈V

〈v,v〉> 0.

Exercise 8.1.8. Show that a positive definite scalar product is non-degenerate.

Definition 8.1.9. A real vector space with a positive definite scalar product is called
a Euclidean space.

Let V be a n-dimensional real vector space, and v1, . . . , vn any basis of V . Then
we can make V into a Euclidean space by taking as the positive definite scalar prod-
uct the one defined by

〈vi,v j〉= δi j.

Thus a vector space can be made into a Euclidean space in many different ways,
depending on the choice of basis.
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To conclude this section we prove some results about orthogonality in Euclidean
spaces. They generalize without difficulty to Hermitian spaces, as we will see in
§8.6. Two vectors v and w are orthogonal if 〈v,w〉= 0. We write v⊥w if this is the
case. So this is the same definition as for symmetric bilinear forms. For a subspace
U of V we define U⊥ , the orthogonal complement of U , as the subspace of vectors
that are perpendicular to all vectors in U .

Theorem 8.1.10. V is a Euclidean space. Let v1, v2, . . . , vr be non-zero vectors that
are mutually orthogonal, meaning that

〈vi,v j〉= 0, whenever i 6= j.

Then the vi are linearly independent. Thus if W is the span of the {v1, . . . ,vr}, they
form a basis of W.

Proof. Assume there is an equation of linear dependence:

a1v1 +a2v2 + · · ·+arvr = 0.

Take the scalar product of this expression with vi, 1≤ i≤ r, to get

ai〈vi,vi〉= 0.

Since 〈vi,vi〉 6= 0 since the scalar product is positive definite, this forces ai = 0 for
all i. Thus there is no equation of linear dependence. ut

Definition 8.1.11. The orthogonal projection of v to the line through the origin with
basis the non-zero vector w is the vector

〈v,w〉
〈w,w〉

w.

Suppose we try to find a scalar c such that

〈v− cw,w〉= 0 (8.2)

The linearity of the scalar product implies 〈v,w〉= c〈w,w〉, so

c =
〈v,w〉
〈w,w〉

. (8.3)

The denominator is non-zero since we assume the vector w 6= 0 and the inner product
is positive definite. If you have read Chapter 7, you will notice that (8.2) is a special
case of the orthogonal projection (7.9) defined for a more general bilinear form.

Definition 8.1.12. The scalar c in (8.3) is called the component of v along w. In the
important special case where w is a unit vector, c = 〈v,w〉.

This is illustrated by the following graph in the plane generated by v and cw.
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Example 8.1.13. Let ei, 1≤ i≤ n be the standard basis of Rn. So e1 = (1,0, . . . ,0),
etc. Let

v = (v1,v2, . . . ,vn)

be any vector in Rn. Then vi is the component of v along ei, and viei is the projection
of v along ei.

Theorem 8.1.14. Consider a Euclidean space V of dimension n, and a non-zero vec-
tor w∈V , spanning a subspace W of dimension 1. Then the orthogonal complement
W⊥ of W has dimension n−1, and V =W ⊕W⊥.

Proof. The linear map v 7→ 〈v,w〉 has range of dimension 1, since < w,w > 0, so
its nullspace has dimension n−1. It is obviously W⊥. Since w is not in W⊥, we get
the last statement. ut

From this follows:

Corollary 8.1.15. Any Euclidean space has an orthogonal basis.

Proof. Call the Euclidean space V . We prove the result by induction on the dimen-
sion n of V . If the dimension is 1, the result is trivial. Assume the result is true for
dimension n−1. Consider a Euclidean space V of dimension n. Pick a non-zero vec-
tor v1 ∈V . By Theorem 8.1.14, the orthogonal complement V1 of v1 has dimension
n−1. Therefore by induction V1 has an orthogonal basis {v2, . . . ,vn}. Furthermore
v1 and V1 span V . Thus {v1,v2, . . . ,vn} is an orthogonal basis of V , so we are done.

ut

A constructive proof of this result is given by the Gram-Schmidt process that we
will study in §8.3. Finally we get, by an easy extension of the proof of the corollary:

Theorem 8.1.16. Let W be a subspace of the Euclidean space V . Then V =W⊕W⊥.
Thus W⊥ has dimension dimV −dimW.

Proof. This generalizes Theorem 8.1.14 to the case where W has dimension greater
than one. Only the first statement needs proof, since the second statement follows
from Definition 3.6.5. We prove this by induction on the dimension m of W . The
case m = 1 is Theorem 8.1.14. Assume the result is true for m−1. Pick a non-zero
v ∈W . Then its orthogonal W0 in W has dimension m−1 in W . If n = dimV , then
the orthogonal V0 of v in V0 of V has dimension n− 1. Thus the orthogonal W⊥0
of W0 in V0 has dimension n− 1− (m− 1) = n−m. By Corollary 8.1.15 pick an
orthogonal basis w2, . . . , wm of W0 so that v, w2, . . . , wm is a basis of W . It is then
clear that W⊥0 is the orthogonal of W in V . ut

8.2 The Geometry of Euclidean Spaces

Throughout this section V is a Euclidean space: see Definition 8.1.9. On first read-
ing, you should think of Rn with the standard scalar product, even though all the
results are valid even for an infinite dimensional V .
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If W is a subspace of V , it inherits a positive definite scalar product from V .
The norm, also called the length, of the vector v is:

‖v‖=
√
〈v,v〉. (8.4)

When V is Rn, with the standard scalar product, then

‖v‖=
√

v2
1 + · · ·+ v2

n.

Exercise 8.2.1. Show
‖cv‖= |c|‖v‖ for all c ∈ R.

The vector v is a unit vector if its length is 1. Any non-zero vector v can be
normalized to length 1 by replacing it by

v
‖v‖

.

The distance d(v,w) between the two vectors v and w in Rn is the norm of the
difference vector:

d(v,w) = ‖v−w‖. (8.5)

Exercise 8.2.2. Show that d(v,w) = d(w,v).

Theorem 8.2.3 (The Pythagorean Theorem). The vectors v and w are perpendic-
ular if and only if

‖v+w‖2 = ‖v‖2 +‖w‖2.

Proof. This is easy. We first use the definition of the scalar product

‖v+w‖2 = 〈v+w,v+w〉= 〈v,v〉+2〈v,w〉+ 〈w,w〉
= ‖v‖2 +‖w‖2

if and only if 〈v,w〉= 0. ut

Example 8.2.4. Apply the theorem to the vectors (1,−1) and (2,2) in R2. Make a
graph.

Theorem 8.2.5 (The Parallelogram Law). For all v and w in V

‖v+w‖2 +‖v−w‖2 = 2‖v‖2 +2‖w‖2.

Proof. Just expand the left hand side as in the proof of the Pythagorean Theorem.
ut

Example 8.2.6. Apply to the vectors v = (1,1) and w = (1,2). Make a graph.

Theorem 8.2.7 (The Cauchy-Schwarz Inequality). For any two vectors v and w
in V ,
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|〈v,w〉| ≤ ‖v‖‖w‖ (8.6)

with equality only if one vector is 0 or if the vectors are proportional—namely,
w = cv for a scalar c.

Proof. First, the result is trivial if either v or w is the zero vector, since then both
sides are 0.

Next assume w has length 1. Then the component c of v along w is 〈v,w〉, as per
Definition 8.1.12. The Cauchy-Schwarz inequality becomes

|c| ≤ ‖v‖. (8.7)

Now v− cw is perpendicular to w, and therefore to cw. Since

v = v− cw+ cw,

the Pythagorean Theorem says

‖v‖2 = ‖v− cw‖2 +‖cw‖2 = ‖v− cw‖2 + |c|2 .

Since the first term on the right hand side is non-negative, this implies |c|2 ≤ ‖v‖2,
which is equivalent to (8.7), so we are done. We get equality when ‖v− cw‖ = 0,
namely when v is proportional to w.

Finally, given that the result holds for a w of length 1, it holds for any cw, c ∈R.
Indeed, just substitute cw for w in (8.6), and note that the positive factor |c| appears
on both side. ut

Theorem 8.2.8 (The Triangle Inequality). For all u and v in V ,

‖u+v‖ ≤ ‖u‖+‖v‖.

Proof. Square the left hand side:

‖u+v‖2 = 〈u+v,u+v〉= ‖u‖2 +2〈u,v〉+‖v‖2.

Now we use the Cauchy-Schwarz inequality to replace 2〈u,v〉 by the larger term
2‖u‖‖v‖:

‖u‖2 +2〈u,v〉+‖v‖2 ≤ ‖u‖2 +2‖u‖‖v‖+‖v‖2.

We recognize the right-hand side as the square of ‖u‖+‖v‖, so we get

‖u+v‖2 ≤ (‖u‖+‖v‖)2.

Taking the square root of both sides, we are done. ut

Exercise 8.2.9. Show that the triangle inequality implies that the length of a side of
a triangle in a real vector space is less than or equal to the sum of the lengths of the
other two sides. This explains the name of the result.



8.3 Gram-Schmidt Orthogonalization 149

8.3 Gram-Schmidt Orthogonalization

In this section, V is again a Euclidean space: see Definition 8.1.7. As we saw in
Theorem 8.1.10, it is convenient to have a basis for V where the basis elements are
mutually perpendicular. We say the basis is orthogonal. In this section we give an
algorithm for constructing an orthogonal basis {w1, . . . ,wn} of V , starting from any
basis {v1, . . . ,vn} of V .

First we explain the idea behind the algorithm. Define Vk to be the subspace of V
spanned by the first k vectors in the basis, namely {v1, . . . ,vk}. Then obviously Vk
has dimension k, and for any j < k, Vj $Vk. So here is how we build the orthogonal
basis. Start with w1 = v1 as our first basis element. Then in V2 take a non-zero vector
w2 orthogonal to V1. Because the dimension of V2 is only one more than that of V1,
the orthogonal complement of V1 in V2 has dimension 1, so w1 and w2 form a basis
of V2 Next in V3 take a non-zero vector w3 orthogonal to V2, and continue in this
way.

The general case is: in Vk take a non-zero vector wk orthogonal to Vk−1. Then w1,
. . . , wk form a basis for Vk They form a basis because they are non-zero and mutually
orthogonal by construction. So we have found the desired orthogonal basis of V .

Our goal is to write down this method as a computational algorithm. The main
step is to compute a vector in Vk that is orthogonal to Vk−1. We already know how
to do this, since we have already computed an orthogonal basis for Vk−1: it is suffi-
cient to modify vk so that it is orthogonal to w1, . . . , wk−1. For this, computing the
component of vk along each one of these wi is the appropriate tool. See Definition
8.1.12 and (8.3). So we write

c jk =
〈vk,w j〉
〈w j,w j〉

The computation in Vk is given by

wk = vk−
k−1

∑
j=1

〈vk,w j〉
〈w j,w j〉

w j = vk−
k−1

∑
j=1

c jkw j.

Just check that when you dot this by any w j, j < k, you get 0. This completes the
construction that we now state.

Theorem 8.3.1 (Gram-Schmidt Orthogonalization Process). If V is a Euclidean
space of dimension n with basis {v1, . . . ,vn}, then V has a basis of mutually orthog-
onal vectors w1, . . . , wn constructed as follows:

w1 = v1;
w2 = v2− c12w1;
w3 = v3− c23w2− c13w1;

...

wn = vn− cn−1,nwn−1− cn−2,nwn−2−·· ·− c1nw1.
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Furthermore any set of non-zero mutually orthogonal vectors w1, . . . , wk can be
extended to a basis of mutually orthogonal vectors by the same process.

Proof. As above let Vk be the span of the vectors {v1, . . . ,vk}. Since {v1, . . . ,vk}
is a basis of Vk, {w1, . . . ,wk} forms another basis, so all the basis vectors wi are
non-zero. As noted above the wi are mutually orthogonal.

The main point is to describe the computational algorithm. We first compute w1
using the first equation, then w2 using the second equation and the computed value
for w1, and so on. This can be done, since the equation defining wk only involves
the known vi, and the w j, with j < k, which have already been computed.

This concludes the proof of the first part of the Gram-Schmidt Theorem. The last
part is easy. Just complete the set of mutually perpendicular non-zero vectors w1,
. . . wk to a basis of V using Proposition 3.4.14: keep adding linearly independent
elements vk+1, . . . , vn to the wi until you get a basis. Then apply the Gram-Schmidt
process to this basis. ut

Corollary 8.3.2. Write the equations in Gram-Schmidt as

v1 = w1;
v2 = w2 + c12w1;
v3 = w3 + c23w2 + c13w1;

...

vn = wn + cn−1,nwn−1− cn−2,nwn−2 + · · ·+ c1nw1.

Let X be the matrix whose columns are the coefficients of vk in the standard basis.
Let W be the matrix whose columns are the coefficients of wk in the standard basis.
Finally let C be the upper-triangular matrix with 1 down the diagonal, ci j above the
diagonal (so i < j), and of course 0 below the diagonal. Then our equations express
the matrix product X =WC by the ever useful Proposition 2.2.7.

Example 8.3.3. Assume the three vectors v1, v2, v3 are the columns, in order, of the
matrix

A =

1 1 3
1 2 1
1 1 1


It is easy to see that they form a basis for R3. We start the Gram-Schmidt process:
w1 = v1. Note that 〈w1,w1〉= 3. Also 〈w1,v2〉= 4. So w2 = v2−4/3w1, which is
the column vector (−1/3,2/3,−1/3). Check it is orthogonal to w1. Also 〈w2,w2〉=
2
3 . Finally 〈v3,w1〉= 5 and 〈v3,w2〉=− 2

3 . So

w3 =

3
1
1

− 5
3

1
1
1

−
 1/3
−2/3
−1/3

=

 1
0
−1


which is orthogonal to w1 and w2. Later we will need 〈w3,w3〉= 2.
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Remark 8.3.4. Once one has an orthogonal basis {w1, . . . ,wn} of a vector space, we
get an orthonormal basis by dividing by the length of each basis vector:

{ 1
‖w1‖

w1, . . . ,
1
‖wn‖

wn}.

It is often useful to do this, when dealing with the QR factorization, for example.

Remark 8.3.5. As we showed in Corollary 8.1.15, an easier proof for the existence
of an orthogonal basis is available, if you only want to show that an orthogonal basis
of Euclidean space exists. All we used is the elementary Theorem 5.7.1 on solutions
of homogeneous linear equations. However this does not give us an algorithm for
constructing a solution, which is the true importance of the Gram-Schmidt process.

Our next topic is the QR factorization, which is a way of expressing the Gram-
Schmidt process as a matrix factorization. For that we will need orthogonal matrices,
that we now define. We will study them in more detail later.

Definition 8.3.6. A matrix Q is orthogonal it is is invertible and if its inverse is its
transpose: Qt = Q−1. So QtQ = I = QQt .

In particular the columns qi of Q are mutually perpendicular, and each column has
length 1: ‖qi‖= 1. Conversely, if you take an orthogonal basis for V , and normalize
all the basis vector so they have length 1, then the matrix whose columns are the
basis elements, in any order, is an orthogonal matrix.

Example 8.3.7 (Rotation Matrix). The rotation matrix(
cosθ −sinθ

sinθ cosθ

)
is orthogonal, as you can easily check.

Example 8.3.8. A permutation matrix is orthogonal. We will define permutation ma-
trices and prove this result in Theorem 11.2.5.

From the Gram-Schmidt orthogonalization process, we get an interesting factor-
ization theorem for invertible matrices..

Theorem 8.3.9 (QR factorization). Any real invertible matrix A of size n can be
written as the product of an orthogonal matrix Q and an upper triangular matrix R:

A = QR

Proof. This will drop straight out of Gram-Schmidt, especially Corollary 8.3.2. To
keep with the notation there, let the columns of the matrix A be written v1, . . . , vn,
and let wi be the basis found using Gram-Schmidt. Let
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q1 =
w1

‖w1‖
.

Then the second Gram-Schmidt equation can be written

w2 = v2−〈v2,q1〉q1.

Set
q2 =

w2

‖w2‖
.

The third Gram-Schmidt equation becomes

w3 = v3−〈v3,q2〉q2−〈v3,q1〉q1.

Then set
q3 =

w3

‖w3‖
.

and continue in this way. Recalling the ever useful (2.7), we see that if we write Q
for the matrix whose columns are q1, . . . , qn, and R = (r jk), where

r jk =


〈vk,q j〉, if j < k;
‖w j‖, if j = k;
0, if j > k.

we have A = QR as claimed. The proof only involved untangling a matrix product.
ut

Notice that when j < k, r jk =
c jk
‖w j‖ with c jk as defined above.

Example 8.3.10. We now find the QR factorization for Example 8.3.3 First we find
the orthonormal basis, by dividing each wi by its length. We get the matrix

Q =


1√
3

−1√
6

1√
2

1√
3

2√
6

0
1√
3

−1√
6

−1√
2


Using the formulas above, we get

R =


√

3 4√
3

5√
3

0
√

2/3 −
√

2/3
0 0

√
2


You should check that A = QR to verify the computation.

In the same way we can prove
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Theorem 8.3.11. Let A be a m×n matrix with linearly independent columns. Then
A can be written as the product of a m× n matrix Q with mutual perpendicular
columns of length 1 and an upper triangular n×n matrix R: A = QR.

Proof. The hypotheses imply m ≥ n and the QR theorem is the case m = n. This
theorem corresponds to the construction of a partial orthonormal basis with n ele-
ments in a Euclidean space V of dimension m. The columns of A need to be linearly
independent because they correspond to the partial basis v1, . . . vn of V . ut
Example 8.3.12. Suppose

A =


1 0
−1 −2
−1 0
1 2


The columns v1 and v2 are obviously linearly independent. Set w1 = v1;

w2 = v2−
〈v2,w1〉
〈w1,w1〉

w1 = v2−v1.

Then

Q =
1
2


1 −1
−1 −1
−1 1
1 1

 and R =

(
2 2
0 2

)

Check A = QR, as expected.

Example 8.3.13. The matrix Q from Example 8.3.12 is connected to the 4×4 matrix

H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


known as a Hadamard matrix, namely a matrix whose entries are either 1 or −1 and
whose columns are mutually orthogonal. If you divide this matrix by 2 you get an
orthogonal matrix. By choosing the columns in the order we did, we get additional
properties. Let

H2 =

(
1 1
1 −1

)
Then in block form

H4 =

(
H2 H2
H2 −H2

)
and H4 is a symmetric matrix, since H2 is.

The QR factorization of an arbitrary invertible real matrix as a product of an
orthogonal matrix and an upper-triangular matrix is the basis is used in important
algorithms for finding eigenvalues of matrices, as we will see later.
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8.4 Orthogonal Projection in Euclidean Spaces

This section defines orthogonal projections in Euclidean spaces, and establishes the
most important properties. We have already considered the case of projection to a
line in Definition 8.1.11. We repeat material from §7.3 with improved and simpler
results due to the stronger hypothesis: the scalar product is positive definite.

Start with a n-dimensional Euclidean space V . Take a subspace U ⊂ V of di-
mension m > 0. By Theorem 8.1.16 its orthogonal complement U⊥ has dimension
r = n−m and V =U⊕W .

Then by Definition 4.1.7 we have a linear map P called projection of V to U
along U⊥. Because the nullspace of P is U⊥, we call P an orthogonal projection as
in §7.3. In our new notation,

Definition 8.4.1. A linear transformation L : V →V is a orthogonal projection of V
to U = L(V ) for the inner product if

〈v−L(v),u〉= 0,∀u ∈U. (8.8)

This says that the vector from v to its projection Lv is perpendicular to the entire
range of L. Notice that (8.8) generalizes Definition 8.1.11, the case of projection to
a line. By linearity it is enough to check (8.8) for a basis of U .

Let’s work out what a projection P looks like in coordinates. Recall Definition
8.1.12 of the component of a vector along a non-zero vector.

Corollary 8.4.2. Let u1, . . . , um be an orthogonal basis of the subspace U. Consider
the orthogonal projection P of V to U. Then for any v ∈V ,

P(v) = c1u1 + c2u2 + · · ·+ ckum

where ci is the component of v along ui.

Proof. The vector
v− c1u1− c2u2−·· ·− ckum

is in U⊥, as an easy computation shows. ut

In addition to the orthogonal basis {u1, . . . ,um} of U , choose an orthogonal basis
{w1, . . . ,wn−m} of U⊥. The two together form an orthogonal basis of V .

Write any v ∈V in terms of this orthogonal basis:

v = c1u1 + · · ·+ cmum +d1w1 + · · ·+dn−mwn−m (8.9)

Then ci is the component of v along ui, and d j is the component of v along w j.
As noted, the orthogonal projection P of V to U maps v to c1u1 + · · ·+ cmum,

while the orthogonal projection Q of V to U⊥ maps v to d1w1 + · · ·+dn−mwn−m.
By Definition 4.1.7, P has nullspace U⊥ and range U . Also P2 = P. Similarly, Q

has nullspace U and range U⊥. Also Q2 = Q. Note that P+Q is the identity linear
transformation.
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Finally divide each basis element by its length. Then the matrix of P in the or-
thonormal basis obtained can be written in block form as

Am =

(
Im 0
0 0

)
(8.10)

where Im is the m×m identity matrix, and the other matrices are all zero matrices.
In particular it is a symmetric matrix.

Conversely we can establish:

Theorem 8.4.3. Any square matrix P that

• is symmetric (Pt = P),
• and satisfies P2 = P;

is the matrix of the orthogonal projection to the range U of P with respect to the
standard inner product.

Proof. We establish Definition 8.4.1 just using the two hypotheses. Any u ∈U can
be written u = P(v′) for some v′ ∈V . For all v in V and u in U , we need to establish
〈v−P(v),u〉= 0. Substituting out u, we get

〈v−Pv,Pv′〉=(v−Pv)tPv′= vtPv′−vtPtPv′= vtPv′−vtP2v′= vtPv′−vtPv′= 0.

In the next-to-the-last step we replaced PtP by P2 because P is symmetric, and then
in the last step we used P2 = P. ut

Now we establish a minimization result, which states the intuitively clear fact that
dropping the perpendicular from a point v to a subspace W gives the point p that is
at the minimum distance of v to W . ‘Dropping the perpendicular’ means taking the
orthogonal projection to the subspace.

Theorem 8.4.4. Let V be a Euclidean space, and U a subspace of smaller dimen-
sion. Let v ∈ V , and let p = P(v) be its orthogonal projection to U. Let u be any
point in U different from p. Then ‖v−p‖< ‖v−u‖.

Proof. Write
v−u = (v−p)+(p−u).

The vector p− u is in U , and by definition of p, v− p ∈ U⊥. Therefore by the
Pythogorean Theorem 8.2.3,

‖v−u‖2 = ‖v−p‖2 +‖p−u‖2,

so we get the strict inequality ‖v−p‖< ‖v−u‖ unless ‖p−u‖= 0, which means
that u = p. ut
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8.5 Solving the Inconsistent Inhomogeneous System

Consider the inhomogeneous linear system in a Euclidean space:

Ax = b

where A is a m×n matrix. We assume that m is larger than n, and that the rank of A is
n, so that its columns are linearly independent. Therefore the linear map LA : Rn→
Rm =V is injective, so the range of LA is a proper subspace U of dimension n of V
by the Rank-Nullity theorem. Then

Proposition 8.5.1. The square matrix AtA is invertible if and only if A has maximum
rank.

Proof. First assume that AtA is invertible. Then for any non-zero v ∈Rn, AtAv 6= 0.
Assume that vtAtAv = 0. This can be rewritten 〈Av,Av〉 = 0. Because the scalar
product is Euclidean, this can only happen if Av = 0, which is impossible since A
has maximal rank, as we just saw.

Now assume A has maximum rank, so for a non-zero v, Av 6= 0. As before the
inner product of Av with itself can be written vtAtAv, which is non-zero. This is
impossible unless Av = 0, a contradiction. ut

Typically, a right hand vector b ∈ Rm does not lie in the range U of LA, so the
equation Ax = b is not solvable. If this is the case, we say the system is inconsistent:
see Definition 1.1.9. Still, we want to find the best possible approximate solution of
the system of linear equations, in some sense.

Here is the approach of the previous section. Project V = Rm to the range U of
LA. The image p of b in U is the point in U that is closest to b, as we showed in
Theorem 8.4.4.

So given any b∈Rm, we need to compute its orthogonal projection p in the range
U . Then instead of solving Ax = b, which is impossible, we will solve Ax = p.

Theorem 8.5.2. Assuming that A is a m× n matrix, m > n, of rank n, then the or-
thogonal projection p of any point b in V = Rm to the range U ⊂ V of the map
x→ Ax is given by

p = A(AtA)−1Atb

Proof. The columns a1, . . . ,an of A form a basis of the range U , since the rank of A
is n, so the projection p of b can be written uniquely as a linear combination

p = x1a1 + · · ·+ xnan (8.11)

for real constants xi. Equation (8.11) is the matrix product

p = Ax (8.12)

as you should convince yourself. Our goal is to determine the xi.
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By definition of the orthogonal projection to U , b− p is orthogonal to all the
vectors in U . Since U is spanned by the columns ai of A, this is equivalent to

〈ai,b−p〉= 0, 1≤ i≤ n.

This system of equations can be rewritten as the matrix product At(b− p) = 0.
Replacing p by Ax as in (8.12) we get the key condition:

At(b−Ax) = 0, or AtAx = Atb. (8.13)

This is a system of n equations in n variables. Because AtA is invertible by hypoth-
esis, we can solve for the unknowns x and get the normal equations:

x = (AtA)−1Atb (8.14)

Finally we can find the projection point:

p = Ax = A(AtA)−1Atb. (8.15)

ut

So the linear transformation with matrix P = A(AtA)−1At takes any b ∈ V to its
projection p ∈U . Since A is a m×n matrix , P is a m×m matrix. Thus p is a vector
in V that lies in the range U of A.

Remark 8.5.3. The basis of the range of LA given by the columns of A is not gener-
ally orthonormal. However using the QR factorization of Theorem 8.3.9 we can see
what happens when we choose an orthonormal basis. This is an amusing computa-
tion. Just replace A by QR in (8.15), using the fact that QtQ = I and R is square to
get

A(AtA)−1At = QR(RtQtQR)−1RtQt = QR(RtR)−1RtQt = QRR−1(Rt)−1RtQt

= QQt

which is the projection formula we derived in Chapter 8. A word of warning: Q is,
like A, a m×n matrix, with m > n. QtQ is the identity matrix, but QQt is not neces-
sarily diagonal. The matrix A in Example 8.5.5 has orthogonal but not orthonormal
columns. Dividing by their length makes it a Q matrix. Compute that QQT is not the
diagonal matrix.

Remark 8.5.4. Let’s confirm Theorem 8.4.3. First notice that P2 = P:

P2 = A(AtA)−1AtA(AtA)−1At = A(AtA)−1At = P

by cancellation of one of the (AtA)−1 by AtA in the middle. Also notice that P is
symmetric by computing its transpose:

Pt = (At)t((AtA)−1)tAt = A((AtA)t)−1At = A(AtA)−1At = P.
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We used ((AtA)t)−1 = ((AtA)−1)t and of course we used (At)t = A. So we have
shown (no surprise, since it is a projection matrix): the matrix P satisfies the hy-
potheses of Theorem 8.4.3: it is symmetric and P2 = P.

Problem 8.5.5. Compute AtA for the rank 2 matrix

A =

1 −1
1 0
1 1


and show that it is positive definite.

AtA =

(
1 1 1
−1 0 1

)1 −1
1 0
1 1

=

(
3 0
0 2

)

This is obviously positive definite. In this case it is easy to work out the projection
matrix A(AtA)−1At :

P =

1 −1
1 0
1 1

(1/3 0
0 1/2

)(
1 1 1
−1 0 1

)
=

 5/6 2/6 −1/6
2/6 2/6 2/6
−1/6 2/6 5/6


which is of course symmetric, and P2 = P as you should check.

In conclusion, given an inconsistent system Ax = b, the technique explained
above shows how to replace it by the solvable system Ax = p that matches it most
closely.

Orthogonal projections will be used when we study the method of least squares.
We proved Theorem 8.5.2 using Theorem 8.4.4 a distance minimizing result

proved just using the Pythagorean Theorem 8.2.3. Here is an alternate approach
for those of you who enjoy optimization techniques using multivariable calculus.

Remark 8.5.6. As before our goal is to minimize the expression

‖Ax−b‖

as a function of the n variables xi, using the standard minimization technique from
multivariable calculus. First, to have an easier function to deal with, we take its
square, which we write as a matrix product:

f (x) = (xtAt −bt)(Ax−b) = xtAtAx−xtAtb−btAx+btb.

Notice that each term is a number: check the size of the matrices and the vectors
involved. Calculus tells us f (x), which is a quadratic polynomial in the xi, has an
extremum (minimum or maximum) only when all the partial derivatives with respect
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to the xi vanish. It is an exercise to see that the vector of partial derivatives, namely
the gradient ∇ f of f in x is

2AtAx−2Atb,

so setting this to 0 gives the key condition (8.13) back. No surprise. We can finish the
problem by computing the second derivative, called the Hessian. It is the constant
matrix 2AtA. By hypothesis it is invertible, so Proposition 8.5.1 tells us that AtA is
positive definite, which guarantees that the point found is a minimum.

Theorem 8.5.2 shows that it is possible to bypass this calculus approach by using
perpendicularity.

8.6 Hermitian Products

When the scalars are the complex numbers, we modify the notion of the scalar
product to preserve positivity.

Definition 8.6.1. Let V be a vector space over C. A Hermitian product on V asso-
ciates to any pair v, w of elements of V a complex number written 〈v,w〉 which
satisfies the following three properties for all u, v and w in V :

HP 1 〈v,w〉= 〈w,v〉, where 〈w,v〉 denotes the complex conjugate of 〈w,v〉;
HP 2 Additivity: 〈u,v+w〉= 〈u,v〉+ 〈x,w〉;
HP 3 For a ∈ C, 〈av,w〉= a〈v,w〉.

Exercise 8.6.2. For two complex numbers a and b, prove that ab = ab: the complex
conjugate of the product is the product of the complex conjugates.

Exercise 8.6.3. Prove that the definition implies

1. Additivity in the first variable:

〈u+v,w〉= 〈u,w〉+ 〈v,w〉;

Hint: justify

〈u+v,w〉= 〈w,u+v〉= 〈w,u〉+ 〈w,v〉= 〈u,w〉+ 〈v,w〉.

2. Conjugate linearly in the second variable:

〈v,aw〉= a〈v,w〉 for all a ∈ C;

Hint: justify

〈v,aw〉= 〈aw,v〉= a〈w,v〉= a〈w,v〉= a〈v,w〉. (8.16)

Thus Hermitian products are not linear in their second variable.
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3. Finally show the easy:
〈0,w〉= 0.

Remark 8.6.4. The elementary, but key remark that motivates this definition is that
for any vector v ∈V ,

〈v,v〉= 〈v,v〉 by the first property,

so that 〈v,v〉 is always real.

The key example of a Hermitian product is

Example 8.6.5. On Cn, the product given by

〈v,w〉= v1w1 + v2w2 + · · ·+ vnwn

is Hermitian.

Definition 8.6.6. A Hermitian product is positive definite if for all non-zero v ∈V

〈v,v〉> 0.

Exercise 8.6.7. Show that the Hermitian product of Example 8.6.5 is positive defi-
nite.

Definition 8.6.8. Let V be a complex vector space with Hermitian product 〈v,w〉.
We say that v is perpendicular, or orthogonal to w if

〈v,w〉= 0.

We write v ⊥ w if this is the case. For any subset S of V , we let S⊥ be the set of
elements of V perpendicular to all the elements of S.

Note the potential confusion with the similar notations of positive definiteness
and orthogonality for scalar products in the real case.

Exercise 8.6.9. Given a complex vector space V of dimension n with a Hermitian
product 〈v,w〉, write the form in terms of its real and imaginary parts:

〈v,w〉= 〈v,w〉R+ i〈v,w〉C

What can we say about these parts? The form 〈v,w〉R is real valued and symmetric;
〈v,w〉C is real valued and alternating, meaning that 〈w,v〉C =−〈v,w〉C

8.7 The Geometry of Hermitian Spaces

In this section we modify the results of §8.2 to the case of a complex vector space V
with a positive definite Hermitian product: see Definition 8.6.1. On first reading, you
should think of Cn with the positive definite Hermitian product of Example 8.6.5.
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As in the real case, any subspace W of V , inherits a positive definite Hermitian
product from V .

The norm of v is:
‖v‖=

√
〈v,v〉. (8.17)

where here 〈〉 denotes the Hermitian product When V is Cn, with the standard Her-
mitian product, then

‖v‖=
√

v1v1 + · · ·+ vnvn.

As in the real case we have

〈v,v〉= 0 if and only if v = 0.

and
‖cv‖= |c|‖v‖ for all c ∈ C.

The distance between two vectors is defined in the same way as the real case.
The Cauchy-Schwarz Inequality still holds: for any two vectors v and w in V ,

|〈v,w〉| ≤ ‖v‖‖w‖

and as in the real case it implies the triangle inequality: for all u and v in V ,

‖u+v‖ ≤ ‖u‖+‖v‖.

for which we write the proof to show the difference with scalar products.

Proof (Triangle Inequality). Square the left hand side:

‖u+v‖2 = 〈u+v,u+v〉= ‖u‖2 + 〈u,v〉+ 〈v,u〉+‖v‖2.

Since
〈u,v〉+ 〈v,u〉= 〈u,v〉+ 〈u,v〉

we are adding two complex conjugate numbers, so the sum is real. It is at most
2 |〈u,v〉|. Use the Cauchy-Schwarz inequality to replace 2 |〈u,v〉| by the larger term
2‖u‖‖v‖ to get

‖u‖2 +2〈u,v〉+‖v‖2 ≤ ‖u‖2 +2‖u‖‖v‖+‖v‖2.

We recognize the right-hand side as the square of ‖u‖+‖v‖, so we get

‖u+v‖2 ≤ (‖u‖+‖v‖)2.

Taking the square root of both sides, we are done. ut

Exercise 8.7.1. For any complex number a written in terms of its real and imaginary
parts as a = b+ ic, show that a+a≤ 2|a|, where |a| of course is

√
b2 + c2. We used

this simple result in the proof above.

Exactly as in the real case we can prove:
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Theorem 8.7.2 (Gram-Schmidt). If V is a complex vector space of dimension n
with a positive definite Hermitian product, then V has a basis w1, . . . , wn, where the
basis vectors are mutually perpendicular: 〈wi,w j〉= 0 whenever i 6= j.

Furthermore any set of non-zero vectors w1, . . . , wk that are mutually perpen-
dicular can be extended to a basis where all the basis vectors are mutually perpen-
dicular.

From complex Gram-Schmidt orthogonalization, we again get a QR factoriza-
tion. First we define the analog of an orthogonal matrix in the real case.

Definition 8.7.3. A matrix Q is unitary it is is invertible and if its inverse is its
conjugate transpose: Q∗ = Q−1. So Q∗Q = I = QQ∗.

In particular the columns qi of Q are mutually perpendicular, and each column has
length 1: ‖qi‖= 1. Conversely if you have an orthonormal basis for V , each vector
normalized to length 1, then the matrix whose columns are the normalized basis
elements, in any order, is unitary.

Theorem 8.7.4. Any complex invertible matrix A of size n can be written as the
product of a unitary matrix Q and an upper triangular matrix R:

A = QR

As in the real case this follows immediately from Gram-Schmidt orthonormaliza-
tion.

As in the real case we get:

Theorem 8.7.5. Let V be a complex vector space with an positive definite Hermitian
product, and W a subspace of V . Then V is the direct sum of W and its orthogonal
complement W⊥.

V =W ⊕W⊥.

8.8 Scalar Product on Spaces of Matrices

Definition 8.8.1. Let Mn denote the vector space of all real n×n matrices.

As we know, Mn is a vector space of dimension n2: here is a basis. Let Ei j be the
element of Mn with 0 in every position except the (i j)-th position where it has a 1.
The Ei j, 1≤ i, j ≤ n, form a basis for Mn, confirming that M has dimension n2.

Consider the following scalar product on Mn. As we will see, the Ei j form an
orthonormal basis for this inner product.

Theorem 8.8.2. For any two matrices A and B in Mn, let 〈A,B〉 = tr(ABt). This is
an inner product on Mn for which the Ei j form an orthonormal basis.
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Proof. First note that 〈A,B〉 is linear in each variable, since the trace is, and that
〈A,B〉= 〈B,A〉. For this last point we need to show that tr(ABt) = tr(BAt). But the
two matrices ABt and BAt are just transposes of each other, and transposes have the
same trace, since the trace is just the sum of the diagonal elements. The final point
is just the computation that the Ei j form an orthonormal basis. Indeed Ei jEt

i j = Eii,
which has trace 1, and Ei jEt

kl is the 0-matrix unless i = k and j = l. ut

Since we have a positive definite scalar product, we can form the norm on Mn:

‖A‖=
√
〈A,A〉=

√
tr(A2)

and the distance function
d(A,B) = ‖A−B‖.

Exercise 8.8.3. On the space Mmn of real m× n matrices, consider the expression
tr(ABt). Show that it is an inner product. Find an orthonormal basis for this inner
product. Show that tr(AtB) is also an inner product, and find an orthonormal basis.

Inside Mn we look at the symmetric matrices, which form a vector subspace Sn
of dimension n(n+1)/2, as you can determine by counting the diagonal entries (n
of them) and the above diagonal entries ((n2−n)/2 of them).

We now let A= (ai j) and B= (bi j) be two matrices in Sn. We get an inner product
on Sn, by restricting the one on Mn.

Definition 8.8.4. The inner product on Sn is given by

〈A,B〉= tr(AB) =
n

∑
i=1

n

∑
j=1

ai jb ji.

The norm and the distance function are as before.

Just as in Theorem 8.8.2, we write an orthonormal basis of Sn for this product.
Not surprisingly, we just modify the basis of Mn to get symmetric matrices. Using
the notation of Theorem 8.8.2, we take the diagonal matrices Eii, and then the sym-
metric matrices (Ei j +E ji)/

√
2, 1≤ i < j ≤ n. They form an orthonormal basis, so

we have an inner product space.

Exercise 8.8.5. Using the inner product for Mn given above, project it orthogonally
to the subspace Sn of symmetric matrices. What is the nullspace of this linear map?
In other words, what matrices are orthogonal to all symmetric matrices? Find an
orthonormal basis for the nullspace: be sure to check that it has the right dimension.

Proposition 8.8.6. This norm interacts nicely with multiplication of matrices, namely

‖AB‖ ≤ ‖A‖‖B‖
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Proof. We need to prove that

tr(ABAB)≤ tr(A2) tr(B2) (8.18)

Write C for the product matrix AB. The the entries ci j of C are

ci j = ∑
k

aikbik

so then

tr(ABAB) = tr(C2) =
n

∑
i=1

n

∑
j=1

c2
i j =

n

∑
i=1

n

∑
j=1

(
n

∑
k=1

aikbik)
2

We need to show that this is less than or equal to

(
n

∑
i=1

n

∑
j=1

a2
i j)(

n

∑
i=1

n

∑
j=1

b2
i j)

Notice that both sides are sums of terms of the form a2
i jb

2
kl , and on the left-hand

side there are many fewer terms (only terms with an index in common) that on the
right-hand side (all possible indices). ut

How to we use this additional property? See [13], §5.6. First note that ‖In‖ = n
and then, if A is invertible, that

‖A−1‖ ≥ n
‖A‖

.

Example 8.8.7. If A is a symmetric matrix with ‖A‖ < 1, then Ai, the i-th power of
A, tends to the zero matrix as i tends to ∞.

Example 8.8.8. If A is a symmetric matrix, then the infinite series of matrices

∞

∑
i=1

ciAi

converges if the infinite numerical series

∞

∑
i=1

ci‖A‖i

converges.

Now we consider the complex case, so let Mn(C be the complex vector space
of n× n complex matrices. It has dimension n2, as in the real case. We define a
Hermitian basis by setting 〈A,B〉 = tr(AB∗), so we take the conjugate transpose of
the second matrix. This inner product is clearly Hermitian. The basis we defined
in the real case is still an orthonormal basis, and the form is positive definite. The
remaining details are left to you.
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Example 8.8.9. We construct a linear map from the
(n

2

)
dimensional space Sn to the

2n− 1-dimensional vector space V of polynomials of degree at most 2n− 2 in the
variable t . To the symmetric matrix A = (ai j) ∈ Sn in the variables ai j and the n-
vector t = (1, t, t2, t3, . . . , tn−1), we associate the polynomial in t of degree 2n−2:

ttAt =
2n−2

∑
k=0

rktk with rk = ∑
i+ j=k+2

ai j.

The 2n− 1 coefficients of this polynomial, of degree 1 in the ai j give a linear map
φ : Sn→ R2n−1. It is easy to see that this map is surjective, so that the nullspace of
φ has dimension n(n+1)/2− (2n−1) = (n−1)(n−2)/2 =

(n−1
2

)
.

Now a Hankel form associates to any vector s = (s0,s1, . . . ,s2n−2) in R2n−1 a
symmetric matrix As (7.2). This is also a linear map, call it ψ : R2n−1→ Sn. It has
trivial null space.

Thus we get a composite linear map φ ◦ψ : R2n−1 → R2n−1. It associates to a
vector s = (s0,s1, . . . ,s2n−2) the coefficients of the polynomial fs(t) = ∑

2n−2
k=0 rktk,

where rk = sk(∑i+ j=k 1) = `(k)sk, where `(k) counts the (constant) antidiagonal
terms in the k-th antidiagonal of an n× n matrix, starting the numbering at 0. So
when n = 3, the vector (s0, . . . ,s4) gets mapped by ψ to the matrix

As =

s0 s1 s2
s1 s2 s3
s2 s3 s4


which gets mapped by φ to the polynomial

fs(t) = s0 +2s1t +3s2t2 +2s3t3 + s4t4.

and `(0) = `(4) = 1, `(1) = `(3) = 2, `(2) = 3. This computation obviously gener-
alizes to all n.

Thus the matrix of the composite map φ ◦ψ from the {si} basis to the {t j} basis
is diagonal: in the case n = 3 the diagonal entries are 1,2,3,2,1. So the map is
surjective, and any polynomial of degree at most 2n−2 can be written uniquely as
the range of a Hankel form of size n. So we can use polynomials to study Hankel
forms.

It turns out this can be used to estimate the rank of a Hankel matrix. For ex-
ample, suppose that the polynomial fs(t) associated to s has a real root t0. If
t0 = (1, t0, t2

0 , . . . , t
n−1
0 ), then by construction the quadratic form tt

0Ast0 = 0, so the
nullspace of the Hankel form As is at at least one dimensional. In particular this form
is not positive definite.





Chapter 9
Operators on Inner Product Spaces

Abstract we start out by giving the classical definition of the adjoint of a linear
operator, first in the real case and then in the complex case. Using it, we list the linear
operators with special properties, some of which we have already encountered. We
also explain where we will encounter them later in this book.

9.1 Adjoints on Real Spaces and Symmetric Matrices

Let V be a Euclidean space. Thus V is a R-vector space with a positive-definite inner
product 〈v,w〉. Fix a vector w, and let fw : V → R be the function fw(v) = 〈v,w〉.
The function fw is a linear map because the inner product is linear in its first variable
v. So fw is a linear functional, as defined in (6.1.1). To avoid confusion, instead
of giving the variable of fw a name, we sometimes replace by a dot, so we write
fw(·) = 〈·,w〉.

The next theorem is just a restatement of Theorem 7.1.8, which says that a non-
degenerate bilinear form gives an isomorphism between V and its dual V ∗, the vec-
tor space of linear functionals. In particular it is not necessary to assume that the
scalar product is positive-definite: it only need be non-degenerate. Here is a simple
independent proof when the inner product is positive definite..

Theorem 9.1.1. Let V be a Euclidean space, and f (v) any linear functional on V .
Then there is a unique w ∈ V such that f (v) = 〈v,w〉. Thus the map d: w 7→ fw,
where fw(v) = 〈v,w〉, is an isomorphism of V with its dual V ∗.

Proof. First we need to show that the map d: w 7→ fw is linear. Indeed

w+ z 7→ 〈·,w+ z〉= 〈·,w〉+ 〈·,z〉

and
cw 7→ 〈·,cw〉= c〈·,w〉

167



168 9 Operators on Inner Product Spaces

using the linearity of the inner product in the second variable. Since V and V ∗ have
the same dimension it is enough to show that this map is injective. If not that would
mean that there is a non-zero element w such that 〈·,w〉 is the zero functional. This
is impossible since 〈w,w〉 6= 0. ut

Now we pick an arbitrary linear operator L : V → V , and consider the mapping
hw : V → R given by

hw(v) = 〈Lv,w〉.

Since hw is the composition of the linear maps:

v ∈V 7−→ Lv 7−→ 〈Lv,w〉 ∈ R

hw(v) is a linear functional. So by Theorem 9.1.1, there is a unique vector z ∈ V
such that hw(v) = 〈v,z〉. Therefore 〈Lv,w〉 = 〈v,z〉. So holding L and v fixed, we
can view z as a function M of w. The key point is that M : V →V is a linear function.
To prove this first compute

〈v,M(w1 +w2)〉= 〈Lv,w1 +w2〉 by definition of M

= 〈Lv,w1〉+ 〈Lv,w2〉 by linearity of 〈, ·〉
= 〈v,Mw1〉+ 〈v,Mw2〉 by definition of M

= 〈v,Mw1 +Mw2〉 by linearity of 〈, ·〉

Since this is true for any v, we get M(w1 +w2) = M(w1)+M(w2), the first of the
two equalities needed to prove linearity.

Similarly, for any scalar c,

〈v,M(cw)〉= 〈Lv,cw〉= c〈Lv,w〉= c〈v,M(w)〉= 〈v,cM(w)〉

so by the same argument as before M(cw) = cM(w). We have proved:

Theorem 9.1.2. For any linear operator L on the Euclidean space V there is a
unique linear operator M on V , called the adjoint of L, such that

〈Lv,w〉= 〈v,Mw〉.

The adjoint of L is written Lt .

Obviously the adjoint of the identity map I is itself.

Definition 9.1.3. The operator L is self-adjoint or symmetric on the Euclidean space
V if L = Lt . Then

〈Lv,w〉= 〈v,Lw〉.

Theorem 9.1.4. Let L and M be linear operators on the real inner product space V .
Then the adjoint with respect to this inner product satisfies:
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(L+M)t = Lt +Mt ;
(L◦M)t = Mt ◦Lt ;

(rL)t = rLt ,∀r ∈ R;
(Lt)t = L.

Proof. Here is a proof of the second identity.

〈(L◦M)v,w〉= 〈Mv,Ltw〉= 〈v,Mt ◦Ltw〉.

Since this is true for all v and w in V , by definition we see that (L ◦M)t = Mt ◦Lt .
The other identities are even simpler to prove. ut

Corollary 9.1.5. Assume L is a self adjoint operator on V , and that C is an arbitrary
operator on V . Then M = CtLC is self adjoint. Furthermore, if C is invertible, and
CtLC is self adjoint, then L is also self-adjoint.

Proof. We use the previous theorem several times. The adjoint of CtLC is CtLtC,
so if L is self adjoint, so is CtLC. Furthermore if C is invertible, so is Ct : indeed let
D be the inverse of C, so DC = I. Then (DC)t =CtDt = I. Finally assume CtLC is
self-adjoint, so

CtLC = (CtLC)t =CtLtC.

Then just compose with the operator (Ct)−1 on the left, and C−1 on the right to get
L = Lt . ut

Theorem 9.1.6. An operator L on a Euclidean space is the zero operator if and only
if 〈Lv,w〉= 0 for all v and w in V .

Proof. This is a special case of Theorem 6.3.4, but it is easy to provide a simpler
proof. One direction is obvious: if L is the zero operator, 〈Lv,w〉= 0.

For the reverse implication, if all the inner products vanish, then choosing for w
the vector Lv, we would have 〈Lv,Lv〉= 0, which by positive definiteness can only
happen if Lv = 0. ut

Here is another result we have already proved by bilinear form techniques.

Theorem 9.1.7. A self-adjoint operator L on a Euclidean space is the zero operator,
if and only if 〈Lv,v〉= 0 for all v in V .

Proof. As in the previous theorem, one implication in obvious. For the other, just
establish directly a polarization identity of Lemma 7.2.1:

〈Lv,w〉+ 〈Lw,v〉= 〈L(v+w),v+w〉−〈Lv,v〉−〈Lw,w〉 (9.1)

by expanding, using linearity, 〈L(v+w),v+w〉. Then use the fact that L is self-
adjoint:

〈Lv,w〉= 〈Lw,v〉.

Since the hypothesis says that all the terms on the right hand side of (9.1) are 0, we
get 〈Lv,w〉= 0, so by Theorem 9.1.6, L is the zero operator. ut
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Exercise 9.1.8. Show that any operator L can be written uniquely as the sum of a
self adjoint operator and a skew adjoint operator, meaning that Lt =−L.

Theorem 9.1.9. Let V be a Euclidean space and B= {v1, . . . ,vn} an orthonormal
basis of V . Let L be any operator on V , and let A be the matrix of L associated to L
in the basis B. Then the matrix of the adjoint Lt is the transpose of A. Therefore L
is self adjoint if and only if A is symmetric.

This is why we write the adjoint of a linear transformation with the same symbol as
that of the transpose of a matrix.

Proof. Write v = x1v1 + · · ·+ xnvn and w = y1v1 + · · ·+ ynvn in the basis B. Thus
the inner product 〈v,w〉= x1y1 + . . .xnyn, namely the matrix product xty. Since A is
the matrix associated to L in the basis B, L maps the vector with coordinates (xi) to
the vector with coordinates (zi) given by z = Ax according to Definition 5.1.2. Then
because B is orthonormal, 〈Lv,w〉= (Ax)ty. By the properties of matrix multiplica-
tion (Ax)ty = xtAty = xt(Aty) = 〈v,Mw〉 where M is the linear transformation with
matrix At . M is clearly the adjoint of L, so the matrix associated to the adjoint Lt is
the transpose of A. Finally L is self adjoint if and only if A is symmetric. ut

Remark 9.1.10. This construction is closely tied to the construction in §6.6, in the
special case where W =V . In the current situation, all elements of V ∗ can be written
as hw(·) = 〈L(·),w〉, as w varies over V . The map L∗ : V ∗→V ∗ of Definition 6.6.2
maps the linear functional hw(·) to the composite hw(L(·)). By Theorem 9.1.2 we
can write this as hM(w)(·) and M is what we called the transpose L∗ in §6.6. Not
surprisingly, this is our adjoint, which as we noted in Theorem 6.6.4 in suitable
bases has for matrix the transpose of the original matrix.

should I put exercises about positive definiteness, etc, here or elsewhere? Perhaps
move some of the material from Bilinear Forms to this chapter?

9.2 Adjoints for Hermitian Products and Hermitian Matrices

We now imitate what we did in §9.1 for V is a complex vector space with a positive-
definite Hermitian product 〈v,w〉. We establish the same results as in first section.
We need to be a little more careful, because the Hermitian product is linear only in
the first variable, while conjugate linear in the second variable. So what we did in
§9.1 is a special case of what we do here.

Theorem 9.1.1 has to be modified, because the Hermitian inner product is only
conjugate linear in the second variable, so the map V → V ∗ is not complex linear,
but only conjugate linear, since 〈v,cw〉= c〈v,w〉. So we only have

Theorem 9.2.1. Let V be a complex inner product space, and f (v) any linear func-
tional on V . Then there is a unique w ∈ V such that f (v) = 〈v,w〉. The map
w ∈V 7→ fw ∈V ∗, where fw(v) = 〈v,w〉, satisfies fcw = c fw.
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The analog of Theorem 9.1.2 holds:

Theorem 9.2.2. For any linear operator L on the complex inner product space V
there is a unique linear operator M on V , called the adjoint of L, such that

〈Lv,w〉= 〈v,Mw〉.

The adjoint is written L∗ in the complex case.

The proof is the same, and therefore is left to you. It is worth noticing that L∗ is
complex linear and not conjugate linear. Indeed

〈v,L∗(cw)〉= 〈Lv,cw〉= c〈Lv,w〉= c〈v,L∗w〉= 〈v,cL∗w〉

because the Hermitian form is conjugate linear in the second variable, and we use
that fact twice.

We say the operator L is self-adjoint, or Hermitian if L = L∗.
Theorem 9.1.4 remains true with the obvious change of notation:

Theorem 9.2.3. Let L and M be linear operators on the complex inner product
space V . Then the adjoint with respect to this inner product satisfies:

(L+M)∗ = L∗+M∗;
(L◦M)∗ = M∗ ◦L∗;

(cL)∗ = cL∗,∀c ∈ C;
(L∗)∗ = L.

Proof. Since the proof is very similar, it is left to you, as are the proofs of the analogs
of Corollary 9.1.5 and Theorem 9.1.6. We just prove the third equality:

〈(cL)v,w〉= c〈Lv,w〉= c〈v,L∗w〉= 〈v,cL∗w〉.

ut

Next an easy but useful theorem that applies to all operators in an inner product
space. It illustrates proof techniques for adjoints.

Theorem 9.2.4. Let V be an inner product space, L any operator on V , Let W be a
subspace of V invariant under L. Then W⊥ is invariant under the adjoint L∗.

Proof. The fact that W is invariant under L means that for all w ∈W , Lw ∈W .
Therefore 〈Lw,u〉= 0 for all u ∈W⊥. Then by definition of the adjoint

〈Lw,u〉= 〈w,L∗u〉= 0

for all u ∈W⊥ and all w ∈W . This says precisely the L∗u is perpendicular to W , so
L∗u ∈W⊥. ut

After this survey of results from §9.1 and above that hold for both R and C, we
prove two important results that only hold over C.
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Theorem 9.2.5. Any operator L on a Hermitian inner product space is the zero
operator if and only if 〈Lv,v〉= 0 for all v ∈V .

Thus this improves Theorem 9.1.6.

Proof. If L is the zero operator, the implication is obvious. So assume 〈Lv,v〉 = 0
for all v ∈ V , and show that L is the zero operator. We use (9.1), which is still true
in the complex case, from which we get

〈Lv,w〉+ 〈Lw,v〉= 0. (9.2)

Because we do not assume that L is self-adjoint, we cannot go further without a new
idea involving C. In (9.2) replace v by iv. Then it becomes

i〈Lv,w〉− i〈Lw,v〉= 〈L(iv+w), iv+w〉+ 〈Lv,v〉−〈Lw,w〉. (9.3)

Check this carefully, especially the signs. Since by hypothesis the right hand side is
0, we get

i〈Lv,w〉= i〈Lw,v〉 or 〈Lv,w〉= 〈Lw,v〉.

Comparing this equation to (9.2) shows 〈Lv,w〉 = 0 for all v and w in V , so by
Theorem 9.1.6 we are done. ut

We conclude with a useful result.

Theorem 9.2.6. Let L be an operator on a Hermitian inner product space. Then L
is Hermitian (self-adjoint) if and only if 〈Lv,v〉 is real for all v ∈V .

Proof. First assume L is Hermitian. Then

〈Lv,v〉= 〈v,Lv〉= 〈Lv,v〉

which means that 〈Lv,v〉 is equal to its conjugate, therefore real.
Now we do the other implication, so assume 〈Lv,v〉 is real. Then

〈Lv,v〉= 〈Lv,v〉= 〈v,Lv〉= 〈L∗v,v〉.

First we used the reality of 〈Lv,v〉, then the fact that the inner product is Hermitian,
thus conjugate symmetric. Finally we used the definition of the adjoint.

Now by linearity in the first variable 〈(L−L∗)v,v〉 = 0 for all v ∈ V . Theorem
9.2.5 then tells us that L = L∗, the desired conclusion. ut

The analog of Theorem 9.1.9 is

Theorem 9.2.7. Let V be a finite dimensional Hermitian space and {v1, . . . ,vn} an
orthonormal basis. Let L be any operator on V , and let A be the matrix of L in the
given basis. Then the matrix of L∗ is the conjugate transpose of A. Therefore if L is
self adjoint, A is conjugate symmetric: a ji = ai j.
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The proof is left to you.
A square matrix is Hermitian if it is equal to its conjugate transpose: A∗ = A. Ob-

viously if A is real, then to be Hermitian is just to be symmetric. For that reason most
results on symmetric matrices are special cases of results on Hermitian matrices.

9.3 Positive Definite Operators and Matrices

In this section V denotes either a Euclidean space or a Hermitian space, with the
inner product written 〈v,w〉 as usual. By the Gram-Schmidt orthonormalization pro-
cess this guarantees that there exists an orthonormal basis B = {v1,v2, . . . ,vn} for
V . We can do this over R or C.

A self-adjoint operator L is positive semidefinite

〈Lv,v〉 ≥ 0, for all v ∈V. (9.4)

Similarly a self-adjoint operator L is positive definite if

〈Lv,v〉> 0, for all v 6= 0. (9.5)

In particular, positive definite operators are a subset of positive semidefinite opera-
tors. By Theorem 9.2.6 in the complex case 〈Lv,v〉 is real.

By Theorems 9.1.9 and 9.2.7 the matrix for L in an orthonormal basis is symmet-
ric in the real case, and Hermitian in the complex case. In both cases they are called
positive definite (and positive semidefinite) matrices. We could make a parallel def-
inition for negative definite and negative semidefinite operators and matrices: that is
left to you as an exercise.

Positive definite matrices are among the most important in linear algebra, and
after proving the Spectral Theorem in Chapter 13, we will develop many ways of
testing when a matrix is positive definite. Here is a theorem we can prove with the
tools at hand.

Theorem 9.3.1. If L is positive definite, then it is invertible, and its inverse is posi-
tive definite.

Proof. By hypothesis 〈Lv,v〉 > 0 when v 6= 0. By the Cauchy-Schwarz inequality,
|〈Lv,v〉 ≤ ‖Lv‖‖v‖, so ‖Lv‖ 6= 0, and L is injective. Therefore L is an isomorphism.
Its inverse L−1 is also positive definite, as we now show. Since any v ∈ V can be
written Lw, we have

〈L−1v,v〉= 〈L−1Lw,Lw〉= 〈w,Lw〉= 〈Lw,w〉> 0.

ut

Next we make a construction that will be useful later. We only write the details
in the real case, and leave the complex case to you. Let A be a m×n matrix, and B
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its transpose in the real case, or its conjugate transpose in the complex case. Then
we consider the square matrix G = BA of size n. Thus in the real case gi j = 〈ai,a j〉.
G is called the Gram matrix of A.

Theorem 9.3.2. The rank of G equals the rank of A.

Proof. Here is the proof in the real case: for the complex case just replace the trans-
pose by the conjugate transpose. Let v be a vector in the nullspace of G, so that
AtAv = 0. Obviously then vtAtAv = 0, so (Av)tAv = 0. Because the product on the
vector space V is positive definite, this means Av = 0, so v is in the nullspace of
A. The other implication is obvious. Now we just use the Rank-Nullity Theorem
applied to the linear maps LA and LG. Because they have the same nullity and the
source space has dimension n in both cases, they have the same rank. ut

Corollary 9.3.3. The Gram matrix G of any matrix A is positive semidefinite. Fur-
thermore G is invertible if and only if A has rank n. G is invertible if and only if it is
positive definite.

Proof. First G is clearly symmetric. We need to show that for any v ∈V , vtGv≥ 0.
Replacing G by AtA as in the previous theorem, we see that we need

vtAtAv = (Av)tAv≥ 0

which is clear because the inner product on V is positive definite.The last point is
left to you. ut

Remark 9.3.4. If m < n, obviously A can have at most rank m, and therefore G has
at most rank m. As we will see, the Gram construction is mainly interesting when
m≥ n.

9.4 Orthogonal Operators

Let V be a Euclidean space of dimension n. Recall that in Definition 8.3.6 we defined
orthogonal matrices.

Definition 9.4.1. An operator L : V →V is orthogonal for the positive definite inner
product on V if

〈Lv,Lw〉= 〈v,w〉 for all v,w ∈V. (9.6)

As usual, we write ‖v‖ for
√
〈v,v〉. Then

Theorem 9.4.2. The operator L is orthogonal if and only if ‖Lv‖= ‖v‖ for all v∈V .

Thus L is orthogonal if and only if it preserves distance.
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Proof. If L is orthogonal then it is obvious that ‖Lv‖ = ‖v‖. The reverse implica-
tion is more interesting. We prove it by a polarization argument already used when
studying bilinear forms. By linearity we have

〈v+w,v+w〉−〈v−w,v−w〉= 4〈v,w〉
〈L(v+w),L(v+w)〉−〈L(v−w),L(v−w)〉= 4〈Lv,Lw〉

Rewriting in terms of the norm, we get

‖v+w‖2−‖v−w‖2 = 4〈v,w〉
‖L(v+w)‖2−‖L(v−w)‖2 = 4〈Lv,Lw〉

Since the left hand sides are equal by hypothesis, the right hand sides are too, and
this is what we needed to prove. ut

In the theorem we only need to know that ‖Lv‖= ‖v‖ for vectors v of length 1,
since it is then obviously true for rv, for any r ∈ R.

Note that orthogonal operators preserve angles, in particular perpendicularity.
The last point is obvious since for an orthogonal L, since by definition 〈v,w〉= 0 if
an only if 〈Lv,Lw〉= 0.

Exercise 9.4.3. Write down an explicit linear operator on R2 that preserves perpen-
dicularity, but not distance.

Exercise 9.4.4. What does it mean to say that L preserves angles? As usual we de-
fine the angle between vectors v and w to be the angle θ whose cosine is

〈v,w〉
‖v‖‖w‖

.

By the Cauchy-Schwarz inequality (8.6), this number is between −1 and 1, so it is
the cosine of a well-defined angle θ . So a linear operator L preserves angles if the
angle between Lv and Lw is the same as that between v and w for all v, w in V .
What is L?

Theorem 9.4.5. An operator L : V → V is orthogonal if and only if it is invertible
and L◦Lt = I, so that its adjoint is its transpose.

Proof. Indeed, by definition of the adjoint 〈Lv,Lw〉 = 〈v,Lt ◦ Lw〉. On the other
hand, by definition of an orthogonal operator 〈Lv,Lw〉= 〈v,w〉 for all w.

So 〈v,Lt ◦Lw〉= 〈v,w〉 for all v and all w. This implies Lt ◦L(w) = w and there-
fore Lt ◦ L = I. In particular L is invertible and Lt is its inverse. The converse is
immediate. ut

Theorem 9.4.6. Let V be a Euclidean space and {v1, . . . ,vn} an orthonormal basis.
Let L be an operator on V , and let A be the matrix of L in the given basis. L is
orthogonal if and only if A−1 = At .
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Therefore by Definition 8.3.6 A is an orthogonal matrix. Orthogonal matrices are
especially pleasant to deal with because their inverses can be computed trivially. As
we have already noted:

Theorem 9.4.7. In an orthogonal matrix A, we have 〈ai,a j〉 = δi j, where ai is the
i-th row of A, a j the j-th column, and δi j is the Kronecker delta.

Example 9.4.8. Let P be a n× n matrix with exactly one 1 in each row and each
column, and 0 everywhere else. Then P is orthogonal.

Explicit examples here.
We will study permutation matrices in §11.2.

Example 9.4.9. Rotations and reflections in R2. Refer to §13.7. Similarly for R3.

Similarity with orthogonal matrices = conjugation.

9.5 Unitary Operators

Now let V be a Hermitian space of dimension n. We develop the complex analog of
orthogonal operators. You should review the notation at the beginning of §8.7 before
reading on.

Definition 9.5.1. An operator L : V → V is unitary for the Hermitian product on V
if

〈Lv,Lw〉= 〈v,w〉 for all v,w ∈V. (9.7)

Theorem 9.5.2. The operator L : V →V is unitary if and only if ‖Lv‖= ‖v‖ for all
v ∈V .

The proof is identical to that of Theorem 9.4.2 in the real case. In the theorem
we only need to know that ‖Lv‖ = ‖v‖ for vectors v of length 1, since it is then
obviously true for cv, for any c ∈ C.

Theorem 9.5.3. An operator L : V → V is unitary if and only if it is invertible and
its inverse is its adjoint: L◦L∗ = L∗ ◦L = I

Theorem 9.5.4. Let V be a complex inner product space and {v1, . . . ,vn} an or-
thonormal basis. Let L be an operator on V , and let A be the matrix of L in the given
basis. Then L is unitary if and only if A−1 = A∗.

In Definition 8.7.3 we learned that a square matrix A is unitary if A−1 = A∗.
Therefore a square matrix A is unitary if it is invertible and its inverse is its conju-
gate transpose. So A∗A = I = AA∗. Unitary matrices are as pleasant as orthogonal
matrices. As we have already noted:

Theorem 9.5.5. In a unitary matrix A, we have 〈ai,(a j)
∗〉= δi j, where ai is the i-th

row of A, a j the j-th column, and δi j is the Kronecker delta.
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Let’s recall here Theorem 8.7.4, which say that any complex invertible matrix
can be written as the product of a unitary matrix Q and an upper triangular matrix
R:

A = QR.

Similarity with unitary matrices = conjugation.

9.6 Normal Operators

A linear operator L is normal if L commutes with its conjugate transpose L∗:

LL∗ = L∗L.

Passing to the matrix associated to L in an orthonormal basis, we say that a square
matrix A is normal if A commutes with its conjugate transpose A∗: AA∗ = A∗A. If A
is a real matrix this means that A commutes with its transpose.

Since a matrix always commutes with itself and with its inverse (by definition)
we see that normal matrix encompass the classes of symmetric matrices, skew sym-
metric matrices, Hermitian matrices, skew Hermitian matrices, orthogonal matrices
and unitary matrices. Scalar multiples of such matrices are obviously also normal.

Exercise 9.6.1. Verify the skew-symmetric case and the skew-Hermitian cases by
direct computation of the matrix products.

In fact it is worth asking if there are any matrices other than those in the classes
mentioned above that commute with their adjoint.

Exercise 9.6.2. In the 2× 2 real case show all normal matrices are of the form de-
scribed above.

Exercise 9.6.3. Do the same thing for 2×2 complex matrices.

Remark 9.6.4. Once we have studied polynomials in operators and square matrices
in the next chapter, we will see that any operator L commutes with any polynomial
in L, and if it is invertible, and polynomial in L−1. So if the adjoint of L can be
expressed in the way, as in the examples above, L is normal.

Here is an example of how to normality is used..

Theorem 9.6.5. If L is a normal operator with adjoint L∗, then for any vector v,

‖Lv‖2 = 〈Lv,Lv〉= 〈L∗v,L∗v〉= ‖L∗v‖2.

Proof. The two outside equalities are just the definition of the length of a vector.
For the rest
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〈Lv,Lv〉= 〈v,L∗Lv〉 by definition of the adjoint
= 〈v,LL∗v〉 by normality of L

= 〈L∗v,L∗v〉 by definition of the adjoint again.

ut

Exercise 9.6.6. Show directly that this result is true for self-adjoint, orthogonal and
unitary matrices.

Theorem 9.6.7. Let L be a normal operator on an inner product space V . Then
the nullspace and the range of L are mutually perpendicular. In particular their
intersection is (0).

Proof. Assume a vector v ∈ V is orthogonal to the range of L, namely 〈v,Lw〉 = 0
for all w ∈V . So 〈L∗v,w〉= 0 for all w ∈V . This means that L∗v is the zero vector.
By Theorem 9.6.5, Lv = 0, so v is in the nullspace of L. This shows that all the
vectors orthogonal to the range of L are in the nullspace of L. By the rank-nullity
theorem this must be the full nullspace, so we are done. ut

There are a number of other interesting theorems that we can prove for the large
class of normal matrices: all of them require understanding eigenvalues and eigen-
vectors so they will have to be postponed to Chapter 13, devoted to the Spectral
Theorem.

9.7 The Four Subspaces Associated to a Matrix

This section says more about the four key spaces1 associated to a m× n matrix A
using standard inner product on Rn and Rm or the standard Hermitian product on
Cn and Cm. In both cases we write it 〈v1,v2〉.

The four subspaces are the range R(A) and nullspace N(A) of A, and the nullspace
N(At) and the range R(At) of At . We summarize what we have obtained so far, from
the Rank-Nullity Theorem and the fact that row rank equals column rank:

Theorem 9.7.1.

dimN(A)+dimR(A) = n;
dimN(At)+dimR(At) = m;

dimR(A) = dimR(At).

Obviously the rank of A (and At ) is at most the smaller of m and n.
We have already covered some of the material in this section using duality in

§6.6. In particular, if you have studied duality, compare with Theorem 6.6.3.

1 An excellent reference for this material is Strang [28], whose entire presentation in §2.4 and §3.1
is organized around this approach (especially 3C on p. 136).
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Definition 9.7.2. Two subspaces V1 and V2 of Fn are mutually orthogonal if for
any v1 ∈ V1 and any v2 ∈ V2, 〈v1,v2〉 = 0. We write V1 ⊥ V2 to indicate that the
spaces are mutually orthogonal. V1 and V2 have complementary dimensions in Fn if
dimV1+dimV2 = n. By Theorem 8.1.16 and the analogous theorem in the Hermitian
case we know that in an inner product space, the orthogonal complement U⊥ of any
subspace U has complementary dimension, and furthermore Fn =U⊕U⊥.

Theorem 9.7.1 shows that N(A) and R(At) have complementary dimensions in
Fn, and N(At) and R(A) have complementary dimensions in Fm.

Theorem 9.7.3 (The Four Subspaces Theorem).

• N(A) ⊥ R(At) in the domain Fn of A. In particular any element of Fn can be
written uniquely as the sum of a vector of N(A) and a vector of R(At).

• N(At) ⊥ R(A) in the domain Fm of At . In particular any vector of Fm can be
written uniquely as the sum of a vector of N(At) and a vector of R(A).

Proof. Take an element x0 in the nullspace of A, so Ax0 = 0, and an element x1 in
the range of B, so there exists y such that x1 = By. We compute the inner product

〈x1,x0〉= xt
1x0 = (ytBt)x0 = (ytA)x0 = yt(Ax0) = 0

so that they are orthogonal. It is enough to prove the first statement, since Bt = A.
The first and the third equations of Theorem 9.7.1 show that a basis for Fn can
be formed by adjoining a basis of R(B) to a basis of N(A), if we can show that
the basis elements of the two spaces are linearly independent. This is what we just
established, so we are done. ut

We get Theorem 2.7.2 as an easy corollary of this result. Here is a proof that uses
the positive definite inner product over R.

Corollary 9.7.4. The equation Ax = b has a solution if and only if there is no vector
y in Rm with

ytA = 0 and ytb 6= 0.

Proof. If Ax= b has a solution, then b∈R(A). If ytA= 0, then y∈N(B). According
to the Four Subspaces Theorem 9.7.3, N(B) ⊥ R(A). This is contradicted by the
condition that there exists a y with ytb = 〈y,b〉 6= 0 so the existence of both x and
y satisfying the hypotheses of the theorem is impossible. On the other hand, one
always exists. If b ∈ R(A), then we are in case 1. If not, then b can be written
uniquely as b′+y, with b′ ∈ R(A) and y a non-zero element in N(B). Furthermore
b′ ⊥ y by the Four Subspaces Theorem. Then

ytb = yt(b′+y) = yty 6= 0,

so we have the desired y. We used positive definiteness to get the very last step. ut

Remark 9.7.5. By replacing y by a scalar multiple, we can assume that ytb = 1 in
the statement of Corollary 9.7.4.
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We state the next result for R only, for convenience.

Proposition 9.7.6. In terms of the inner product 〈∗,∗〉1 on Rn, and the inner product
〈∗,∗〉2 on Rm, we have

〈y,Ax〉2 = 〈Aty,x〉1 (9.8)

Proof.

〈y,Ax〉2 = ytAx (switching to matrix multiplication in Fm),
= (Aty)tx (since transposition reverses order),
= 〈Aty,x〉1 (switching back to dot product in Fn),

so we are done. ut

When m = n, we recover the result concerning the matrix of self-adjoint linear
transformations in the standard basis.

Example 9.7.7. Assume m < n, and let A be a m×n matrix of rank m, the maximum
possible. Then the nullspace of A has dimension n−m, and the nullspace of B has
dimension 0.



Chapter 10
The Minimal Polynomial

Abstract After a general discussion of our goal, this chapter applies the results on
polynomials given in Appendix C to linear operators, therefore to square matrices.
The main idea is that it is possible to substitute a linear operator or square matrix for
the variable of a polynomial. This allows us to define the minimal polynomial of a
linear operator, and compute it in some cases. Then we prove the Primary Decompo-
sition Theorem which explains how to decompose a vector space as a direct sum of
subspaces, each invariant under the linear operator: these subspaces corresponding
to irreducible factors of the minimum polynomial, which we compute in a few spe-
cial cases. Finally we derive the Jordan Canonical Form for any linear operator over
the complex numbers. Indeed we do this for any operator whose minimal polyno-
mial factors as a product of linear polynomials. We show that the Jordan Canonical
Form is unique and then show how to find a canonical form for linear operators over
the real numbers.

10.1 Linear Operators: the Problem

Before starting out, note that we are going back to vector spaces without inner prod-
ucts. Here are two questions we want to answer.

1. Given a linear operator L , what is the best basis to put on V to make L appear as
simple as possible?

2. What is a complete list of all linear operators on V ?

For the first question, if A is the matrix of the linear transformation in one basis,
and B in a second basis, then there is an invertible change of basis matrix C such
that B = C−1AC as we saw in Theorem 5.5.4. Because every invertible matrix is a
product of elementary matrices, the direct approach to solving this problem would
be to find suitable elementary matrices E so that EAE−1 is simpler than A. Check
with the three kinds of elementary matrices in Definition 2.8.1 and their inverses in
Theorem 2.8.4 to see how difficult it would be to make this direct method work.

181
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The second question requires some additional tools to answer. We develop these
tools in this chapter and the next. In this chapter we use tools that work for any base
field F . In the next chapter we look at tools that work best for C, and sometimes do
not work for R and Q,

First let’s look at some examples.

Definition 10.1.1. A linear operator L : V → V is diagonalizable if there is a basis
for V such that for every element v of the basis, v = λv, where λ is a scalar. This
means that the matrix for L in that basis is diagonal. If we start with a matrix A for
the linear operator L in another basis, there is a change of basis matrix C so that
C−1AC is diagonal.

This is certainly the most important (and desirable) kind of linear operator, be-
cause it says that we can choose the coordinates of V so that each variable in the
output of L only depends on one variable in the input. We say that we have decou-
pled the variables. This is the result we achieved for symmetric bilinear forms in
Chapter 7. Unfortunately, as we will see, not all linear operators are diagonalizable.

Definition 10.1.2. A subspace W of V is invariant for L if for all w ∈W , Lw is in
W .

If the invariant subspace W is one-dimensional, so a basis consists of one ele-
ment, say w, then Lw = λw for some λ . We have special names for this case.

Definition 10.1.3. If w is a non-zero vector, and Lw = λw, then w is an eigenvector
of L and the scalar λ is its associated eigenvalue.

It is traditional to write eigenvalues with lower case Greek letters. Note carefully
that eigenvectors must be non-zero by definition.

If W is an invariant subspace, then L restricts to a linear operator LW on W .
The requirement that W be non-trivial just excludes the cases W = (0) and W =V ,
where the result is always true. Then the dimension of W is less than that of V , so
it is usually easier to study LW than L. Let r be the dimension of W . We can build a
basis for V such that the first r basis elements w1, . . . , wr form a basis for W , and
the last n− r basis elements ur+1, . . . , un are chosen arbitrarily. Then the matrix A
for L is this basis can be written in block form as(

AW C
0 B

)
where AW is the r× r matrix of LW . The size of the zero matrix 0 is (n− r)× r, and
C is r×(n−r). The matrix B is square of size n−r. The ideal situation occurs when
we can choose C to be the 0 matrix. The the subspace U spanned by the vectors
ur+1, . . . un is invariant under L. So we can write the restriction of L to U as LU ,
which has matrix AU on U , so

A =

(
AW 0
0 AU

)
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In this case V as the direct sum W ⊕U of two subspaces invariant under L, so
that if we understand LW and LU , we understand L. This leads us to the following
definition.

Definition 10.1.4. A operator L can be block-diagonalized if V is the direct sum of
subspaces Vi that are each invariant under L.

If each block has dimension 1 so that there are n = dimV blocks, the L is diago-
nalizable.

There is one special case in the classification of linear operators that we can
handle immediately.

Theorem 10.1.5. Assume V has dimension n, and that L : V →V has k eigenvectors
vi whose eigenvalues λi, 1≤ i≤ k, are all distinct. Then the vi are linearly indepen-
dent. In particular, if k = n they form a basis for V , and in that basis the matrix of L
is diagonal with the elements λ1, . . . , λn down the diagonal.

Proof. Assume by contradiction that the vi are not linearly independent, so that
there is an equation of linear dependence

a1v1 +a2v2 + · · ·+akvk = 0, (10.1)

where at least one ai 6= 0. Apply the operator L and use the fact that the vi are
eigenvectors with eigenvalue λi:

a1Lv1 +a2Lv2 + · · ·+akLvk = a1λ1v1 +a2λ2v2 + · · ·+akλkvk = 0 (10.2)

By induction we show that this cannot happen. We start the induction at k = 1.
Because by definition all eigenvectors are non-zero, then a1v1 = 0 implies a1 = 0,
which is not an equation of linear dependence. So we assume the result is true
for k− 1, and must prove it is true for k. Note that induction implies that all the
coefficients ai in (10.1) must be non-zero. Because the λi are distinct, since n≥ 2 this
implies that at least one of them is non-zero: we may assume it is λ1. Then subtract
(10.2) from λ1 times (10.2) to get an equation of linear dependence involving only
k−1 vectors: thus all the coefficients ai must be 0 for i≥ 2. But then a1 = 0 so we
do not have an equation of linear dependence, and we are done.

The statement for k = n follows trivially. ut

We have the following pretty variation on Theorem 10.1.5.

Theorem 10.1.6. The n×n matrix A is similar to a diagonal matrix if and only if A
has n linearly independent eigenvectors.

Proof. If A is similar to a diagonal matrix, then C−1AC = D, where D is a diagonal
matrix with diagonal entries d1, . . . ,dn. Multiply this equation by C to get AC =CD.
We now equate the i-th column on both sides. On the right side, recalling that the
i-th column of C is written ci, the i-th column of CD is dici. On the left side, the i-th
column of AC is Aci. See Proposition 2.2.7. So Aci = dici, which says that ci is an
eigenvector for A with eigenvalue di.
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Now assume A has n linearly independent eigenvectors. We could just invoke
the end of the proof of Theorem 10.1.5 to conclude, but instead we will use an
argument that is parallel to the first part. Write the eigenvectors as c1, . . . , cn. Write
the eigenvalue of ci as di, and let D be the diagonal matrix with diagonal entries the
di. Let C be the matrix whose columns are the ci. This matrix is invertible because its
columns are linearly independent by hypothesis. We can just reverse the argument of
the first part to show that AC =CD. Multiply on the left by C−1 to get C−1AC = D,
so A is diagonalizable. ut

Definition 10.1.7. A linear operator is triangulable if there is a basis of V so that
the matrix of L is this basis is triangular, either upper triangular or lower triangular.

Proposition 10.1.8. If a linear operator is triangulable, it has an eigenvector.

Proof. Assume that the n×n matrix A of the linear transformation is lower triangu-
lar. Then the last column an of A has all entries 0 except for the last entry, which is
ann. An easy computation shows that Aan = annan, so we are done. ut

We will show later that every operator over C is triangulable..
Finally consider the matrix of a rotation of R2. A rotation other than one of 0

radians or π radians, clearly has no eigenvectors, so is not triangulable.
In the next few sections we study polynomials in order to develop the tools we

need. We will use these tools to study linear operators at the end of the chapter.

10.2 Polynomials of Matrices

A key use of polynomials in linear algebra is to take a polynomial f (x) and to
substitute for x either a linear transformation or a square matrix of some size n with
coefficients in the same field F as the coefficients of the polynomial. Notice that we
have started this for linear operators in §4.6 and 4.5. We now study this for matrices
using the results of Appendix C.

So the first thing to do is to make sure that given a polynomial

f (x) = amxm +am−1xm−1 + · · ·+a1x+a0

with coefficients in F , it makes sense to write down the expression

f (A) = amAm +am−1Am−1 + · · ·+a1A+a0I

where I is the identity matrix of size n. Because we can add matrices and multiply
them by scalars, this does make sense. Because the only matrices that will appear
are powers of A and I, they all commute.

Next we need to show that the operations on polynomials get reflected in the
operations on matrices. More precisely
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Theorem 10.2.1. Let f (x) and g(x) be two polynomials in F [x], written as in (C.1)
and (C.2). Let A be any square matrix with entries in F. Then

(c f )(A) = c( f (A), ∀c ∈ F

( f +g)(A) = f (A)+g(A)

( f g)(A) = f (A)g(A)

Thus on the left hand side of this three equations, the operation (scalar multi-
plication, addition and multiplication) is performed on polynomials, while on the
right hand side the operation is performed on matrices. This is why we need square
matrices: we need to be able to multiply two of them and get a matrix of the same
size.

Proof. • For all c ∈ K, (c f )(A) = canAn + · · ·+ ca1A+ ca0 = c f (A).
• For addition, we may assume by symmetry that deg f ≥ degg, and set all the

coefficients bk, for m+ 1 ≤ k ≤ n, to 0, for convenience in writing the formula.
Then

( f +g)(A) = (an +bn)An + · · ·+(a1 +b1)A+(a0 +b0)I

= anAn + · · ·+a1A+a0I +bnAn + · · ·+b1A+b0I

= f (A)+g(A).

• For multiplication, using the notation of (C.3), we get

( f g)(A) = cn+mAn+m + · · ·+ c1A+ c0I. (10.3)

On the other hand,

f (A) = anAn + · · ·+a1A+a0I

g(A) = bnAm + · · ·+b1A+b0I

Multiplying them together, we get (10.3) by collecting all the terms that have the
same power in A. For example the leading term of the product is

anAnbmAm = anbmAnAm = cn+mAn+m.

Remark 10.2.2. Instead of doing this for a matrix A, we could do it instead for a
linear transformation L : V → V . We replace the product Ak by the composition of
the linear map k times. The statement of Theorem 10.2.1 still makes sense and the
proof follows the same lines as that for matrices. The advantage of using linear
transformations is that the result is then independent of the choice of basis.

We will often look at equations of the form

f (A) = amAm +am−1Am−1 + · · ·+a1A+a0I = 0 (10.4)
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where the 0 is the n× n zero matrix. All the terms on the left side are also n× n
matrices, so the equations says that the sum of all particular entries are zero.

Definition 10.2.3. A polynomial f (x) vanishes on the matrix A if f (A) = 0. The
right hand side is the zero n×n matrix.

We are primarily interested in linear transformations, and only use matrices as
a computational tool. We should verify that if (10.4) is true for a matrix A, it is
true for any matrix C−1AC that is similar to A, since it represents the same linear
transformation expressed in a different basis. This means that we can talk about a
polynomial f (x) vanishing on a linear transformation.

Theorem 10.2.4. For any invertible matrix C, and any polynomial f (x),

C−1 f (A)C = f (C−1AC).

Proof. Write the polynomial as in (10.4). Then

C−1 f (A)C = amC−1AmC+am−1C−1Am−1C+ · · ·+a1C−1AC+a0C−1IC

and for each k

C−1AkC =C−1A(CC−1)A(CC−1) . . .(CC−1)AC =
(
C−1AC

)k

so we are done. ut

Thus if an equation (10.4) is true for a matrix A, it is true for any matrix similar
to it, as promised.

10.3 The Minimal Polynomial

We fix a square matrix A of size n. First we show that there always exists a polyno-
mial f (x) that vanishes on A.

Theorem 10.3.1. There is a polynomial f (x) of degree m less than or equal to n2

such that f (A) = 0.

Proof. The vector space of square matrices of size n has dimension n2, as we have
seen. We are trying to find a certain polynomial, so we let its coefficients be the
unknowns yi, 0≤ i≤ m of our problem, for some m to be determined. Write

f (x) = ymxm + ym−1xm−1 + · · ·+ y1x+ y0

so we are trying to solve the linear system in the yi given by

f (A) = ymAm + ym−1Am−1 + · · ·+ y1A+ y0I = 0.



10.3 The Minimal Polynomial 187

The coefficients of A and all its powers are known to us. Write Ak = (a(k)i j ) so we
have a name for the entries of all the powers, including I = A0. So for example

a(0)i j =

{
1 if i = j;
0 otherwise.

and a(1)i j = ai j.

So we have a homogeneous system of n2 linear equations in m+1 variables, one for
each entry (i, j):

y0a(0)i j + y1a(1)i j + · · ·+ yma(m)
i j = 0. (10.5)

We want a non-zero solution. We can only guarantee one if the number of variables
is strictly greater than the number of equations, so m > n2. ut

Of course they could be a polynomial of smaller degree vanishing on A. In fact
there always is one of degree at most n, as we will see using the characteristic
polynomial in Chapter 12. In this chapter we will prove this for many matrices A.

Definition 10.3.2. Call the smallest degree of a non-trivial polynomial vanishing on
A the minimal degree.

Theorem 10.3.1 guarantees that there is a minimal degree. Then

Theorem 10.3.3. All polynomials of minimal degree vanishing on A differ by a
scalar multiple. The one that is monic (i.e. has leading coefficient 1) is called the
minimal polynomial of A. Any other polynomial g(x) vanishing on A is divisible by
the minimal polynomial.

Proof. Both parts of the theorem can be proved at once. Let f (x) be a monic poly-
nomial of minimal degree vanishing on A, and let g(x) be any other polynomial van-
ishing on A. Then do long division: g(x)= q(x) f (x)+r(x), with degr(x)< deg f (x).
By hypothesis g(A) = 0 and f (A) = 0, so q(A) f (A) = 0 too. Thus r(A) = 0. This
forces r(A) to be the zero matrix, since its degree is otherwise too small. This proves
the theorem. ut

Theorem 10.3.4. All similar matrices have the same minimal polynomial. Therefore
we can talk about the minimal polynomial of a linear transformation.

Proof. This is an immediate corollary of Theorem 10.2.4. ut

Example 10.3.5. Suppose that the diagonal n× n matrix A has k distinct diagonal
elements a1, . . . , ak. Then the minimal polynomial of A is ∏

k
i=1(x−ai).

Proof. It is obvious that the minimal polynomial divides ∏
k
i=1(x− ai), since this

polynomial vanishes on the space. So assume one of the factors x− ai is missing.
On the other hand, if one of the diagonal elements does not appear in the product,
then the simple fact that a product of diagonal matrices is just the diagonal matrix
that is the product of the diagonal entries shows that the product does not vanish on
the matrix. ut
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In one case it is easy to get an upper good bound on the minimal degree. The
result follows from the Cayley Hamilton theorem proved in §12.4, but it is may be
interesting to see a direct proof. We will soon prove in Corollary 10.6.1 that all linear
operators over C are triangulable, so the result below holds for any linear operators
over C. In particular it gives an alternate proof of the Cayley-Hamilton Theorem.

Theorem 10.3.6. Assume L is a linear operator on V that is triangulable, so that
there is a basis of V in which the matrix A of L is upper-triangular. The diagonal
elements of A are written a11, . . . , ann as usual. Then the polynomial

n

∏
i=1

(x−aii)

vanishes on A, so the minimal polynomial divides this polynomial of degree n.

Proof. We need to show that ∏
n
i=1(A− aiiI) = 0. We prove this by induction on n.

We start the induction at n = 1, in which case A = (a11), the polynomial is (x−a11).
Substituting a11 for x the result is obvious.

So assume the result is true for n−1. Write A in block triangular form as(
A11 ?
0 ann

)
where A11 is square and upper–triangular and ? is a matrix that will not affect the
computation. By induction we know that

n−1

∏
i=1

(A11−aiiIn−1) = 0.

Then by block multiplication

n−1

∏
i=1

(A−aiiIn) =

(
∏

n−1
i=1 (A

11−aiiIn−1) ?

0 ∏
n−1
i=1 (ann−aii)

)
=

(
0 ?
0 ?

)
.

To get this use the induction hypothesis and the fact that A is upper–triangular. We
multiply this by A−annI, which in the same block form is(

? ?
0 0

)
By block–multiplication the product of these two matrices is the zero matrix, so we
are done. ut
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10.4 Cyclic Vectors

First we construct the minimal polynomial on certain subspaces invariant under a
linear operator L : V → V . We consider polynomials f (x) such that f (A) vanishes
on the cyclic subspace generated by any non–zero v ∈ V , rather than all of V . We
use the definitions of §5.9: the powers of v under L generate a subspace W of V
invariant under L of dimension p, called the period of v. Therefore L restricts to an
operator Lv on W . Lemma 5.9.1 gives the matrix A of Lv in the basis of powers of v.

Definition 10.4.1. Any polynomial g(x) that satisfies g(A)v = 0 is an A–annihilator
of v in V .

Theorem 10.4.2. There is a unique monic polynomial f (x) of smallest degree that
annihilates v. It divides any other polynomial that A–annihilates v. f (x) is the min-
imal polynomial of Lv on W.

Proof. This follows from the existence of the minimal polynomial of Lv on W . ut

For a moment assume that the iterations of Lv on v generate all of V , so the
A–annihilator of v is the minimal polynomial of A on V . Then

Theorem 10.4.3. The degree of the minimal polynomial of A is the dimension of V .

Proof. Let n = dimV . Then for dimension reasons there is an equation of linear
dependence between {v,Av,A2v, . . . ,Anv}:

b0v+b1Av+ · · ·+bn−1An−1v+Anv = 0.

The last coefficient can be taken to be 1 since we know that the previous powers are
linearly independent. Set M to be the matrix

b0I +b1A+ · · ·+bn−1An−1 +An.

By construction M vanishes on v, and it vanishes on all the Aiv since, for instance,
MAi = AiM. So M vanishes on V . Any polynomial in A of degree less than n would
lead to a relation of linear dependence between the powers {v,Av,A2v, . . . ,An−1v}
of v. This contradicts Lemma 5.9.1. ut

In the basis of compositions of Aiv on V , the matrix for A is given by (5.16).
This matrix is called the companion matrix of the annihilator f (A) of v In particular
any monic polynomial is the minimal polynomial of a suitable operator, namely the
operator with matrix A.

Back to the general situation. We can construct the A–annihilating polynomial
for every vector v ∈V . Then finally

Theorem 10.4.4. The minimal polynomial of A on V is divisible by the annihilator
of the cyclic subspace generated by any non-zero v∈V . More generally it is divisible
by the minimal polynomial of the restriction of L to any L-invariant subspace W of
V .
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Proof. It suffices to prove the last statement. Just use the fact that the minimal poly-
nomial on V vanishes on W .

Thus any cyclic vector allows us to find factors of the minimal polynomial of A on
V . If v is a non-zero cyclic vector of period 1, then Av = λv for some scalar λ , and
the minimal polynomial of A restricted to the one-dimensional subspace generated
by v is obviously x−λ . So v is an eigenvector for A, and λ its associated eigenvalue.
The results above show that x−λ divides the minimal polynomial of A on V .

Example 10.4.5. Consider the special case where A is the permutation matrix

A =


0 0 . . . 0 1
1 0 . . . 0 0
...

. . . . . .
...

...
0 0 . . . 0 0
0 0 . . . 1 0

 (10.6)

where the only nonzero entries are a1n and ai,i−1 for i≥ 2. An easy computation (do
it) shows An = I, so xn−1 is a A–annihilating polynomial. By Theorem 10.4.3 the
minimal polynomial is xn− 1. Write λ = ei2π/n. Then the roots of this polynomial
are the n distinct complex numbers λ k, 0≤ k ≤ n−1, called the n-th roots of unity,
because (λ k)n = 1. Consider the vectors

v j = λ
je1 +λ

2 je2 + · · ·+λ
n jen.

Then

Av j = λ
jAe1 +λ

2 jAe2 + · · ·+Aen

= λ
je2 +λ

2 je3 + · · ·+ e1

= e1 +λ
je2 + · · ·+λ

(n−1) jen

= λ
− j(

λ
je1 +λ

2 je2 + · · ·+λ
n jen

)
= λ

− jv j = λ
n− jv j.

so we have found an eigenvector v j with eigenvalue λ n− j for each one of the factors
of the minimal polynomial.

Exercise 10.4.6. Take any other permutation σ that is a cycle of period n. Write
down the matrix that corresponds to A, and find the eigenvalues and eigenvectors.

In §5.9 we analyzed nilpotent operators. In the notation of Theorem 5.9.5 the
minimal polynomial of a nilpotent L is the maximum of the pi.

Exercise 10.4.7. Prove this.
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10.5 The Primary Decomposition Theorem

Assume L is a linear operator on V and f (x) a polynomial such that the operator f (L)
vanishes on V . The important primary decomposition theorem allows us to write V
as a direct sum of subspaces corresponding to the primary factors of the minimal
polynomial of the linear operators acting on V . Its proof only uses the polynomial
techniques developed in Appendix C. We first prove a special case that we will use
in the induction needed in the general case.

Theorem 10.5.1. Let L be a linear operator acting on the vector space V , and let
f (x) a polynomial that vanishes on L: f (L) = 0. Assume that f (x) = f1(x) f2(x),
where f1(x) and f2(x) are polynomials of positive degree (therefore not constants)
that are relatively prime. Let N1 be the nullspace of f1(L) and N2 be the nullspace
of f2(L). Then V = N1⊕N2, where both N1 and N2 are invariant under L.

If V is finite dimensional, let A be a matrix representing L in a basis where the
first basis elements are a basis for N1 and the remaining ones a basis for N2. Then

A =

(
A1 0
0 A2

)
so it is written in block diagonal form.

If V is finite dimensional, and f (x) is the minimal polynomial of L on V , then
f1(x) is the minimal polynomial of L restricted to N2 and f2(x) is the minimal poly-
nomial of L restricted to N1.

Proof. By Corollary C.4.4 there are polynomials c1(x) and c2(x) such that c1(x) f1(x)+
c2(x) f2(x) = 1. So

c1(L) f1(L)+ c2(L) f2(L) = I (10.7)

where I is the identity operator. Let P1 be the operator c1(L) f1(L) on V and P2 the
operator c2(L) f2(L), so

P1 +P2 = I. (10.8)

Now P1P2 = 0, since it contains as a factor f1(L) f2(L) = f (L) which vanishes on
V . Finally multiplying (10.8) by P1 and then P2 gives P2

1 = P1 and P2
2 = P2. So by

Corollary 4.6.3 (the converse statement) if Ui = Im(Pi), then V =U1⊕U2. Now U1
is in the nullspace N2 of f2(L), since any vector written as c1(L) f1(L)(v) goes to
0 when f2(L) is applied, since a factor of f (L) appears. The same argument shows
U2 ⊂N1. Next we show N2 ⊂U1. Let v be in N2, so c2 f2(L)v= 0. Multiply (10.7) on
the right by the column vector v. Then v = c1(x) f1(L)v, so v ∈U1. In the same way
we show N1⊂U2, so N2 =U1 and N1 =U2. This gives the direct sum decomposition.

Now we assume V is finite dimensional, so it have a minimal polynomial f (x)
for the operator L. The polynomial f1(L) vanishes when considered as an operator
on N1. If it is not the minimal polynomial of L restricted to N1, then there is a
polynomial g(x) of smaller degree than that of f1(x) such that g(L) vanishes on N1.
But then the polynomial g(x) f2(x) is such that g(L) f2(L) vanishes: g(L vanishes on
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N1⊕0 and f2(L) vanishes on 0⊕N2. This contradicts the assertion that f1(x) f2(x)
is the minimal polynomial for A. ut

Now we want to generalize this result to the finest possible decomposition of f (x)
that still allows the techniques of the proof to go through. Write f (x) according to its
decomposition in Theorem C.5.3. Let fi(x) = pi(x)mi . Then the f1(x) are relatively
prime, so the theorem will go through. Here is the statement:

Theorem 10.5.2 (Primary Decomposition Theorem). Let L be a linear operator
acting on the vector space V , and let f (x) a polynomial that vanishes on L: f (L)= 0.
Assume that f (x) factors as a product of primary polynomials fi(x)= pi(x)mi , where
the irreducible pi are distinct, 1 ≤ i ≤ k. Let Ni be the nullspace of fi(A). Then
V = N1⊕N2⊕·· ·⊕Nk, where each Ni is invariant under L. Thus L restricts to an
operator Li on Ni

If V is finite dimensional, let A be a matrix representing L in a basis for V con-
sisting first of a basis of N1 followed by a basis for N2, . . . followed by a basis of
Nk. Then A can be written in block diagonal form

A =


A1 0 . . . 0
0 A2 . . . . . .
...

...
. . .

...
0 . . . 0 Ak


where Ai is the restriction of A to Ni.

Furthermore if f (x) is the minimal polynomial of L on V , then f1(x) is the mini-
mal polynomial of L restricted to N2⊕·· ·⊕Nk and so on.

Proof. We prove this by induction on the number of factors k by writing f (x) as
f1(x)g(x), where g(x) = ∏

k
i=2 fi(x). The key point is that f1(x) and g(x) are rela-

tively prime. By induction we may assume that the theorem is true for g(x); then we
must establish it for f (x). Still needs finishing ut

The value of this theorem is that it shows that to understand an operator A acting
on a vector space V , it suffices to decompose its minimal polynomial f (x) into its
primary components. Then the operator can be decomposed into a sum of operators
each (called Ai) acting on a subspace Ni that is part of a direct sum decomposition of
V . Thus we have reduced the original problem into a collection of smaller problems
- because each smaller problem concerns an operator whose minimal polynomial is
primary, acting on a vector space of smaller dimension.

For the following corollary we use the terminology of Theorem 10.5.1.

Corollary 10.5.3. In Ni there is a vector vi whose Ai-annihilator is pi(x)mi . Fur-
thermore the A annihilator of v1 + · · ·+vk is the minimal polynomial f (x) of A.

Proof. Recall that by Theorem 10.4.4, the Ai-annihilator of any vector in Ni divides
the minimal polynomial pi(x)mi . Thus if there is no vector with annihilator pi(x)mi ,
then all vectors are annihilated by a smaller power of pi(x), which then must be the
minimal polynomial. Thus there is a vector vi whose Ai annihilator is pi(x)mi .
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Now consider the vector v=∑i vi. It is obviously annihilated by f (x)=∏ pi(x)mi ,
but not by any non-trivial divisor of f (x). ut

Polynomials x− ai of degree 1 are are all irreducible. They are relatively prime if
and only if the coefficient ai are distinct. (When the base field F is the complex
numbers, then the irreducible polynomials are all of degree 1.)

Example 10.5.4. If we are the situation of Theorem 10.1.5, where k = n, with n
eigenvectors vi with distinct eigenvalues λi, then the nullspace Ni of each L−λiI is
non-trivial, so each Ni has dimension 1. The Primary Decomposition Theorem tells
us that in the basis of the vi the matrix of L is diagonal with the λi along the diagonal.
Then the polynomial ∏

n
i=1(x−λi) is the minimal polynomial, as you should check.

So we have a converse in this case to the last statement in Theorem 10.5.2, and the
degree of the minimal polynomial is the dimension of the space. This is another way
of establishing Theorem 10.1.5.

In general we do not know how to construct the minimal polynomial, except in
special cases such as the one above, when we can find a cyclic vector. The only
constructive method we have is to solve the system of equations (10.5) in n2 +
1 variables. We will remedy this problem (in part) by defining the characteristic
polynomial f (x) of A, and showing that f (A) vanishes: this is the famous Cayley-
Hamilton Theorem, proved in the next chapter. Since the characteristic polynomial
has degree n, the homogeneous system of equations is much easier to solve.

Remark 10.5.5. The minimal polynomial seems to depend on the base field. Suppose
that the matrix A has coefficients in R as often happens in examples. Then we can
define the minimal polynomial for A over A. One can prove that this polynomial is
the same as the minimal polynomial of A over C, even though the irreducible factors
are different. We will settle this in §10.8.

10.6 The Jordan Canonical Form

In the remainder of this chapter we show how to write a linear operator L acting on a
complex vector space V as a direct sum of operators whose matrix is a Jordan block,
that we shall soon define. This representation is essentially unique as we shall see
in §10.7. In the last section we show what happens over R.

In this section we deal with any operator whose minimal polynomial only has
linear factors, so it is the product

k

∏
i=1

(x−ai)
mi = (x−a1)

m1(x−a2)
m2 . . .(x−ak)

mk , (10.9)

where ai 6= a j for all i 6= j. By the Fundamental Theorem of Algebra (see §C.6) this
covers all operators over C.

An important corollary of the main result we prove in this section is
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Corollary 10.6.1. Any linear operator whose minimal polynomial factors into lin-
ear factors is triangulable. In particular all complex linear operators are triangu-
lable.

Since the linear polynomials in (10.9) are relatively prime, by the Primary De-
composition Theorem we only need to consider the case of one factor. So we
may assume the minimal polynomial of L is just (x− a)m. Therefore (x− a) is
the irreducible polynomial p(x) of the previous sections, so there is a v so that
(L−aI)m−1v 6= 0, and yet of course (L−aI)mv = 0. So each non-zero v generates
a cyclic (L−aI) subspace as in Lemma 5.9.1.

Definition 10.6.2. A Jordan block of size r for a is the r× r matrix

Jr(a) =



a 0 0 . . . 0 0 0
1 a 0 . . . 0 0 0

0 1 a
. . . 0 0 0

0 0 1 . . . 0 0 0
...

...
. . . . . . . . . . . .

...
0 0 0 . . . 1 a 0
0 0 0 . . . 0 1 a


(10.10)

with a along the diagonal, 1 on the subdiagonal, and 0 everywhere else. When a is
given, we write just Jr.

We prove:

Theorem 10.6.3. Let L : V → V be a linear operator on the vector space V of di-
mension n, with minimal polynomial (x−a)m. Then V =⊕Vi, where Vi is an L−aIn-
invariant cyclic subspace of size ri, so that if Li−aIri is the restriction of L−aI to the
ri-dimensional Vi, then there is a vector vi ∈Vi so that a basis for Vi is, generalizing
(5.18),

{vi,(Li−aI)vi,(Li−aI)2vi, . . . ,(Li−aI)ri−1vi}, for some ri ≤ m, (10.11)

and the ri× ri matrix Ai for Li in this basis is the Jordan block Jri .

This explains the simpler matrix we get at the end: (10.10) compared to (5.16).
Since the Jordan blocks are all triangular, this establishes Corollary 10.6.1.

Proof. Consider the operator M = L−aI. The key elementary observation is that M
is nilpotent, since by hypothesis Mmv = 0 for all v ∈V .

Therefore we may apply Theorem 5.9.5 to M. Thus in a suitable basis the matrix
of M is block diagonal with standard nilpotent blocks Nr along the diagonal. Adding
the matrix aI, we get the Jordan blocks Jr(a) as required.

ut

Corollary 10.6.4. The minimal polynomial of L is (x−a)ri , where ri is the maximum
of the periods over the direct sum. So it is the size of the largest Jordan block.
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Write down the general Jordan matrix for 1 eigenvalue, then several.

Theorem 10.6.5. Let L be an operator on a space V of dimension n whose minimal
polynomial is ∏

k
i=1(x−ai)

mi . Then the degree of the minimal polynomial is strictly
less than n unless there is only one Jordan block for each factor.

Because all polynomiais factor as a product of polynomials of degree 1 over C,
we have achieved one of the major goals of linear algebra: we have a complete
classification of all linear operators over C.

Remark 10.6.6. In some books the Jordan block is defined as the transpose of
(10.10). This is simply because the basis has been taken in the opposite order:

vr−1,vr−2, . . . ,v1,v.

The r× r permutation matrix

Pr =


0 0 . . . 0 1
0 0 . . . 1 0
...

... . . .
...

...
0 1 . . . 0 0
1 0 . . . 0 0

 (10.12)

is called the reversal matrix, since it simply reverses the order of the variables. It is
symmetric and orthogonal, so Pt = P−1.

Then
Jt

r = PrJrP−1
r . (10.13)

The difference between the two definitions of the Jordan block is therefore unim-
portant since Jr and Jt

r are similar.

10.7 Uniqueness of the Jordan Form

To finish the classification over C, we show that the decomposition into Jordan
blocks that we have found is unique, in the sense that for a given irreducible factor
(x−a), the number ni of Jordan blocks of size ri is uniquely determined for all i.

We can do this one irreducible factor at a time, so assume that we have only
one factor (x− a) in the minimal polynomial. Let m be the degree of the minimal
polynomial. The information that we have (the givens of the problem) are the di-
mension n of the space, the degree m of the minimal polynomial, and the dimension
Ki of the nullspace of (L−aI)i. Obviously we only need consider the Ki for i ≤ m.
Since the nullspace of (L−aI)i is contained in the nullspace of (L−aI)i+1, we have
Ki ≤ Ki+1. Obviously K0 = 0.

Since there is a contribution of 1 to the nullspace of (L− aI) from each cyclic
subspace, we have
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K1 =
m

∑
i=1

ni.

For (L− aI)2, we already have K1 from the previous nullspace. Only the cyclic
subspaces of period ri ≥ 2 contribute again, so

K2 = K1 +
m

∑
i=2

ni.

More generally,

K j+1 = K j +
m

∑
i= j

ni

and of course Km = n. So we have a system of m linear equations in m variables n1,
n2, . . . nm. To make it simpler to solve, write k1 = K1, and k j = K j−K j−1. So our
system of equations is (remember that the variables are the ni) An = k, where A is
the upper-triangular matrix 

1 1 . . . 1 1
0 1 . . . 1 1
...

...
. . .

...
0 0 . . . 1 1
0 0 . . . 0 1


This matrix is invertible: in fact its inverse was seen in Exercise 2.3.6 to be

1 −1 . . . 0 0
0 1 −1 . . . 0
...

...
. . . . . .

...

0 0
. . . 1 −1

0 0 . . . 0 1


so we get the unique solution k = A−1n, which shows that the sizes of the Jordan
blocks are uniquely determined by the operator.

Example 10.7.1. Assume that L is diagonalizable. This means that all its Jordan
blocks have size 1. So n1 = n, and ni = 0 for i > 1. So An applied to the vector
(1,0, . . . ,0) gives k1 = n1, and ki = 0 for i > 1.

At the other extreme, assume that there is only one Jordan block of size r. So
nr = 1, and all the others are 0. Apply A to this vector to get k1 + k2 + · · ·+ kr = 1.
The n = m = r

From this we get the important theorem:

Theorem 10.7.2. Suppose given two linear operators whose minimal polynomials
factor into the same linear terms, and whose Jordan decompositions on each factor
are the same. Then they are similar.
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The proof is easy: construct an isomorphism on each Jordan block, and since the
sum is direct, this isomorphism extends to the entire space.

10.8 The Jordan Form over the Real Numbers

So far we have only determined all the Jordan forms over the complex numbers. To
get the Jordan form of a real n×n matrix A over the reals, we complexify, as in §5.8.
Therefore we view A as acting on Cn. We get a complex Jordan decomposition for
A, in which some of the eigenvalues λ are real, while the others appear in complex
conjugate pairs. The Jordan blocks Jk(a), a ∈ R of A over R are the same as those
over C. A may have blocks Jk(a), where a is not in R. Then

Theorem 10.8.1. Let λ be a non-real eigenvalue for A. Then the number and size of
the Jordan blocks for λ are the same as those for the complex conjugate λ .

Proof. In the factorization of a real polynomial over C, there are as many factors
(x−λ ) as there are of factors (x−λ ). ut

Theorem 10.8.2. A Jordan block for corresponding to the complex conjugate pair
of eigenvalues λ = a+ ib and λ = a− ib is, when written in 2×2 blocks:

Λ 0 0 . . . 0
I2 Λ 0 . . . 0
0 I2 Λ 0 . . .
...

. . . I2 Λ 0
0 0 . . . I2 Λ

 (10.14)

where

I2 =

(
1 0
0 1

)
and

Λ =

(
a −b
b a

)
.

Therefore it is not triangular.
These results can be proven without too much difficulty but with a great deal

of book keeping. Proofs can be found in Shafarevich– Remizov and Horn–Johnson
[13]. It would take us too far afield to prove them.

10.9 An Application of the Jordan Canonical Form

Here is an important and surprising application.
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Theorem 10.9.1. Let A be an arbitrary n×n matrix. Then A is similar to At .

Proof. Since for an invertible matrix (Ct)−1 = (C−1)t we write this just C−t for sim-
plicity of notation. We start by assume that A has only one Jordan block J, therefore
of size n. By construction A is similar to J, so there is an invertible matrix C such
that A =CJC−1, so

At =C−tJtCt =C−tPJPCt

using (10.12) and (10.13). Now J = C−1AC so substituting that in the right hand
side, we get

At =C−tPC−1ACPCt . (10.15)

Since the inverse of D = CPCt is C−tP−1C−1 = C−tPC−1, then (10.15) becomes
At = D−1AD, so A and At are indeed similar. To do the general case just replace P
by the block diagonal matrix with blocks Pr of appropriate size along the diagonal.
This matrix is clearly still orthogonal and symmetric, and transforms the Jordan
form of A into its transpose form. Then the proof goes through as before. ut

A second major application is to the solutions of systems of linear differential
equations with constant coefficients. That is covered in §16.4.



Chapter 11
The Determinant

Abstract If you compare elimination from linear equations in Chapter 1 to Gaus-
sian elimination in Chapter 2, you notice that one of the main differences is that in
the first it was not necessary to keep careful track of the order of the equations or of
the order of the variables, since it is clear that the zero set of a set of linear equations
depends on neither. The situation is different in Gaussian elimination. Because the
matrix of coefficients has numbered rows and columns: we have to define a row
operation that interchanges the rows of a matrix. In the same way we can define a
column operation that interchanges the columns of a matrix. So in this chapter we
first look at the mathematics behind row interchanges or column interchanges of a
matrix: this is the mathematics of permutations. Why do we need this? In order to
define the determinant of a square matrix. We already wrote it down in Chapter 1
for square matrices of size 2 in (1.11) and size 3 in (1.15). We now want to write
down the general formula, and understand the properties of the determinant. The
most important square matrices are those that are invertible. We know that this have
maximum rank, meaning that their rank is equal to their size. We want to get a new
criterion for invertibility of square matrices: their determinant is non–zero.

11.1 Permutations

If you need background on the language of sets, see §B.1.

Definition 11.1.1. A permutation of a finite set S is a one-to-one map from S to
itself.

Example 11.1.2. If the set S has three elements, that we label 1, 2 and 3 then the
map σ from S to S such that σ(1) = 2, σ(2) = 3, σ(3) = 1 is a permutation. So is
the map τ such that τ(1) = 2, τ(2) = 1, τ(3) = 3

We denote permutations by lower case Greek letters, such as σ , τ , υ , γ . We re-
serve the Greek letter iota, written ι , for the trivial permutation, namely the permu-
tation that sends every element k of S to itself: ι(k) = k. If the set S has n elements,

199
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we write it as Sn. We usually use the integers {1,2, . . . ,n} to label the elements
of Sn, but on occasion we are forced to use a different set of labels, for example
{0,1, . . . ,n−1} or {1,2, . . . ,k−1,k+1, . . . ,n+1} for any integer k between 1 and
n+1 except for the integer k.

Example 11.1.3. The simplest permutations after the trivial one ι are the transpo-
sitions, which interchange two integers but do not move the others. For example,
the permutation σ with values σ(1) = 2, σ(2) = 1, and σ(i) = i for i 6= 1,2 is a
transposition.

There are exactly two permutations on {1,2}, the trivial permutation and the
transposition exchanging 1 and 2.

A standard way of writing a permutation σ on n elements consists in writing the
integers 1 through n on a top row; then beneath each integer i write the value σ(i).
So, for example ∣∣∣∣1 2 3 4

2 4 3 1

∣∣∣∣ (11.1)

denotes the permutation σ sending 1 to 2, 2 to 4, 3 to 3 and 4 to 1. In this notation,
the fact that a permutation is one-to-one is expressed by the fact that each integer
from 1 to n appears exactly once in the second row. Notice that if you interchange
the rows you get a new permutation τ , where τ(1) = 4, τ(2) = 1, τ(3) = 3,τ(4) = 1,

Exercise 11.1.4. Enumerate all the permutations on {1,2,3}, listing the trivial per-
mutation, then all the transpositions, and then the remaining ones.

Recall that n! = n(n−1)(n−2) · · ·(2)(1). Therefore 2! = 2, 3! = 6 and 4! = 24.

Proposition 11.1.5. There are n! distinct permutations of a set with n elements. We
write the set of permutations on n elements as Sn, not to be confused with Sn.

Proof. We prove this by induction on n. The starting case n = 1 is trivially verified,
and we have already noticed that it is true for n = 2. Suppose that we have proved
that there are n! permutations on n elements. We use this to prove the case n+1. The
new element n+ 1 can be mapped to any integer k between 1 and n+ 1. For each
choice of k the remaining integers (1,2, , . . . ,n) can be mapped bijectively to the
n integers (1, . . . ,k−1,k+1, . . . ,n+1). By induction there are n! of doing this for
each of the n+1 choice of k. So in total there are n! ·(n+1) = (n+1)! permutations.

ut

Definition 11.1.6. We can follow a permutation σ in Sn by another permutation τ

in Sn, yielding a third permutation τ ◦σ called the composition of the two permuta-
tions or the product permutation. It sends the element k to τ ◦σ(k)). We often drop
the circle in the representation of the composition of permutations, writing just τσ

for τ ◦σ .

So using the σ and τ from Example 11.1.2 (τ ◦σ)(1) = 1, (τ ◦σ)(2) = 3 and
(τ ◦ σ)(3) = 2. We can also form σ ◦ τ . In this example we get (σ ◦ τ)(1) = 3,
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(σ ◦τ)(2)= 2 and (σ ◦τ)(3)= 1. In particular it is not always true that τ ◦σ =σ ◦τ .
We say that composition of permutations is not commutative.

Any permutation has an inverse, namely the permutation σ−1 that undoes the
effect of σ : for all k, σ−1(σ(k)) = k. So, for example the inverse of the permutation
in (11.1) is ∣∣∣∣1 2 3 4

4 1 3 2

∣∣∣∣
obtained just by interchanging the order of the rows

By Theorem B.1.5, composition of permutations is associative, so

υ ◦ (τ ◦σ) = (υ ◦ τ)◦σ ,

so we can omit the parentheses. We sometimes also omit the ◦ and just write υτσ .

Exercise 11.1.7. Write the inverse of the permutation σ ∈S3 sending 1→ 2, 2→ 3,
3→ 1. Write σ2 and σ3. Here, we write σ2 for σσ , and σ3 for σσσ .

In our permutation notation (11.1)

σ
−1 =

∣∣∣∣1 2 3
3 1 2

∣∣∣∣ .
Similarly you will find that σ2 = σ−1, from which it follows that σ3 is the identity.

Let’s write the transposition that interchanges i and j as τi j. By definition it fixes
all the other integers.

Proposition 11.1.8. Any permutation in Sn can be written as the composition of at
most n−1 transpositions.

Proof. We prove this by induction on n. The result is obvious for n = 1. Assume
we have established it for the integer n. We need to prove it for n+ 1. Let σ is a
permutation of the n+1 integers [1, . . . ,n+1]. Then σ sends n+1 to some element
k. Compose σ with the permutation τk,n+1: τk,n+1 ◦ σ . If k = n+ 1, the τn+1,n+1
means the identity permutation ι , otherwise it means the transposition j↔ n+ 1.
Then the composition τk,n ◦σ fixes n+ 1, so it is a permutation of [1, . . . ,n]. By
induction this is a composition of n− 1 transpositions, so σ is a composition of n
transpositions, as required. ut

Exercise 11.1.9. Write the permutation∣∣∣∣1 2 3 4
2 3 4 1

∣∣∣∣ ,
as a composition of transpositions.

Definition 11.1.10. Assume (i1, i2, . . . , im) are m distinct elements in [1, . . . ,n], Let
γ be the permutation that sends i1 to i2, i2 to i3, . . . , im−1 to im and finally im to i1.
Thus
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i2 . . . im i1

∣∣∣∣ ,
while all the remaining integers are fixed by γ and are omitted. Then γ is called a
cycle of order m. When m = 1, γ is the identity, when m = 2 it is the transposition
τi1i2 . When m > 2 it can be written as the composition of the m−1 transpositions:

τi1i2τi2i3 . . .τim−1im ,

as you should check.

Example 11.1.11. Consider the permutation

υ =

∣∣∣∣1 2 3 4 5
3 4 5 2 1

∣∣∣∣ ,
Then υ = γ135 ◦ τ24. We say υ is the composition of disjoint cycles. Note υ is also
equal to τ24 ◦ γ135.

Exercise 11.1.12. Show any permutation can be written as the composition of dis-
joint cycles, and devise an algorithm for computing the cycles. Also show that dis-
joint cycles commute.

11.2 Permutation Matrices

Given a permutation σ on [1, . . . ,n], there are two matrices that can be naturally
associated to σ .

Definition 11.2.1. First the matrix Pσ = (pσ
i j) with entries:

pσ
i j =

{
1, if j = σ(i);
0, otherwise.

and second the matrix Qσ = (qσ
i j) with entries:

qσ
i j =

{
1, if i = σ( j);
0, otherwise.

So Pσ has ones is positions (i,σ(i)) while Qσ has ones is positions (σ( j), j).

Example 11.2.2. For any n, the matrices Pι and Qι associated to the identity per-
mutation are both the identity matrix. When n = 2, the matrices associated to the
unique non-trivial element of S2 are both(

0 1
1 0

)
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Example 11.2.3. Consider the permutation σ defined by∣∣∣∣1 2 3
2 3 1

∣∣∣∣ .
So σ(1) = 2, σ(2) = 3, and σ(3) = 1, It is a cycle of order 3. Then

Pσ =

0 1 0
0 0 1
1 0 0

 , and Qσ =

0 0 1
1 0 0
0 1 0

 .

The following property is often used to define a permutation matrix.

Theorem 11.2.4. A square matrix is a permutation matrix if and only if it has ex-
actly one 1 in each row and each column, and all other entries equal to 0

Proof. To each matrix with exactly one 1 in each row and column, and 0 everywhere
else, there corresponds a permutation. Indeed if the matrix has a 1 in position (i, j),
then the associated permutation σ is defined by σ( j) = i, for all j, and the matrix is
Qσ . This is well defined because there is only one non-zero element ion column j.
On the other hand, taking the permutation τ such that τ(i) = j, then the same matrix
is Pτ . ut

Theorem 11.2.5. Qσ is the transpose of Pσ and Pσ Qσ = I, so Qσ is the inverse of
Pσ .

Proof. The σ(i)-th row of Qσ is the σ(i)-th column of Pσ , and this gives both
results. ut

Example 11.2.6. Now consider the transposition σ12 in S3. Then

Pσ = Qσ =

0 1 0
1 0 0
0 0 1

 .

Next we look at products of permutation matrices. First an exercise:

Exercise 11.2.7. Compute the matrix product Pσ Pτ for the matrices above. Also
compute Pτ Pσ . Note they are not equal, but that each one is a permutation matrix.

Next we work out the general case:

Theorem 11.2.8. If σ and τ are two permutations on [1, . . . ,n], with permutation
matrices defined as above, then:

Pσ Pτ = Pτσ and Qσ Qτ = Qστ .

Thus in the second case, the matrix Qστ of the composition of permutations is the
matrix product Qσ Qτ of the matrices of permutations. In the first case the order is
reversed.
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Proof. We first prove the result for the P matrices. Where does Pσ Pτ have a 1 in the
i-th row? Work out the multiplication: take the i-row of Pσ : it has a 1 in the σ(i)-th
position. So we are looking for the column of Pτ with a 1 in the σ(i)-th position, i.e.
the σ(i)-th row of Pτ . That is column τ(σ(i)). This shows that the product matrix
is Pτ(σ , proving the first statement.

We get the second statement by taking transposes of the first:

(Pσ Pτ)t = (Pτσ )t so (Pτ)t(Pσ )t = (Pτσ )t .

The last equality is the desired conclusion, since (Pτ)t = Qτ . ut

Corollary 11.2.9. The composition of two permutation matrices is a permutation
matrix.

Example 11.2.10. The permutation matrix of the transposition τ exchanging 1 and
2 has matrix (

0 1
1 0

)
and therefore is its own inverse.

Theorem 11.2.11. There are exactly n! permutation matrices of size n.

This is obvious, since there is one Q matrix for each permutation.
The following theorem is important.:

Theorem 11.2.12. If v is the column vector [v1, . . . ,vn)], then Pσ v is the column
vector [vσ (1), . . . ,vσ (n)]. More generally if A is a n×m matrix, the matrix Pσ A is
the matrix whose rows are, in order, aσ(1), aσ(2), . . . , aσ(n). If A is a r× n matrix,
then AQσ is the r×n matrix whose columns are, in order, aσ(1), aσ(2), . . . , aσ(n).

Proof. Just work out the multiplication. ut

Thus multiplying a matrix A on the left by a permutation matrix gives a row
operation on A: this generalizes what we did in §2.8. Indeed the elementary matrix
called Trs in Definition 2.8.1 is simply the permutation matrix of the transposition
τi j. By Proposition 11.1.8 we now see that by multiplying on the left repeatedly by
different elementary matrices interchanging rows, we may achieve any permutation
of the rows of A that we desire.

Example 11.2.13. Here is a computation:0 1 0
0 0 1
1 0 0

1 2 3
4 5 6
7 8 9

=

4 5 6
7 8 9
1 2 3


as you should check.



11.2 Permutation Matrices 205

Definition 11.2.14. Now fix a permutation σ and its permutation matrix Pσ . Its
non-zero entries are by definition (pσ

i,σ(i)). Consider two distinct entries pi,σ(i) and
p j,σ( j). They are reversed if i < j and σ(i)> σ( j). Thus the row index of pi,σ(i) is
less than that of p j,σ( j), while the opposite is true for the column indices. Thus if we
draw an arrow from the (i,σ(i)) entry to the ( j,σ( j)) in the standard representation
of the matrix, it goes north-west if they are reversed.

Example 11.2.15. The permutation matrix in Example 11.2.13 has two reversals:
first, the one between the first and second columns, that we write 1↔ 2 , and then
1↔ 3.

Consider the two permutation matrices
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 and


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


The one on the left has one reversal 2↔ 3, and the one on the right three reversals
1↔ 2, 1↔ 3, and 2↔ 3.

The number of reversals for the matrix Pσ , or, which is the same, for the permu-
tation σ is written rev(σ).

A key step is the following:

Exercise 11.2.16. For the transposition of adjacent elements τi,i+1, rev(τi,i+1) = 1.
For the transposition τi,i+k, rev(τi,i+k) = 2k−1.

Hint: To get started consider the transposition τ2,3 in S3. There is one reversal
2↔ 3. Now consider the transposition τ1,3. Its matrix is0 0 1

0 1 0
1 0 0


There are three reversals 1↔ 2, 1↔ 3, and 2↔ 3 as noted above. Just continue in
the same way.

Definition 11.2.17. We define the sign ε(σ) of σ to be (−1)rev(σ). So ε can be either
1 or −1. If rev(σ) is even, then ε(σ) = 1, in which case we say that σ is an even
permutation; while if rev(σ) is odd, ε(σ) =−1: we say σ is an odd permutation.

Thus by Exercise 11.2.16, the sign of any transposition is−1. Here is the theorem
that explains the importance of the sign.

Theorem 11.2.18.
ε(τσ) = ε(τ)ε(σ).

Thus the composition of two even permutations is even, the composition of two odd
permutations is even, and the composition of an odd and an even permutation is
odd.
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Proof. Since every permutation can be written as a composition of transpositions,
it is enough to prove this when τ is a transposition. So assume that τ is the trans-
position τi j, j = i+ k. From the argument of Exercise 11.2.16, we see that τi j inter-
changes the order in 2k−1 pairs. ut

Theorem 11.2.19. In Sn, n ≥ 2, there are as many even permutations as odd per-
mutations.

Proof. The proof is simple and beautiful. Let E be the set of even permutations on
n≥ 2 elements, and O the set of odd permutations. Let τ be any transposition. Then
composition by τ gives a map from the even permutations to the odd permutations
by Theorem 11.2.18. This map is

• injective: if σ1 and if σ2 get mapped to the same element when multiplied by τ ,
we get τσ1 = τσ2. Now apply by τ−1 to see that σ1 = σ2.

• It is also surjective. We must show that any odd permutation σ comes from an
even one. Indeed, if comes from τ−1σ .

Thus E and O have the same number of elements. ut

Since the total number of permutations is n! by Proposition 11.1.5, the number
of even and odd permutations is n!/2 except when n = 1..

Exercise 11.2.20. Write down the even and odd permutations for n = 2,3,4.

Exercise 11.2.21. By Example 11.1.10, if γ is a cycle of order m, then ε(γ) =
(−1)m−1.

11.3 Permutations and the Determinant

In (1.10), we gave the formula for a quantity that must be non-zero for there to be a
unique solution to an linear system of 2 equations in 2 variables:

a11a22−a12a21.

We have only two permutations in two variable: the identity permutation ι and the
transposition τ that exchanges 1 and 2, and therefore has sign ε(τ) =−1. Then we
notice that our formula can be written

a1,ι(1)a2,ι(2)+ ε(τ)a1,τ(1)a2,τ(2).

In (1.14) we did the same thing for three equations in three variables, getting the
expression

a11a22a33−a11a23a32 +a12a23a31−a12a21a33 +a13a21a32−a13a22a31. (11.2)

Here we have six terms, three with a positive sign and three with a negative sign. In
each term, say a13a21a32 the first subscript of the coefficients are arranged {1,2,3},
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while the second coefficients describe all six permutations on {1,2,3}. Furthermore
the three terms corresponding to transpositions have coefficient −1. This implies
that (11.2) can be written

∑
σ∈S3

ε(σ)a1,σ(1)a2,σ(2)a3,σ(3).

Written this way, this formula generalizes nicely to n variables, and leads us to
our definition.

Definition 11.3.1 (The Leibniz Formula). Let A = (ai j) be a square matrix of size
n. The its determinant det(A) is

det(A) = ∑
σ∈Sn

ε(σ)
n

∏
i=1

ai,σ(i) (11.3)

We also occasionally use the traditional notation

detA =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
when we want to show the coefficients. So the determinant is a function that asso-
ciates to any square matrix a number.

Exercise 11.3.2. Show that (11.3) generalizes the formulas in the cases n = 2 and
n = 3 above.

Exercise 11.3.3. Show that in each product ∏
n
i=1 ai,σ(i) there is an exactly one entry

from each row and each column of A.

Theorem 11.3.4. Assume A is upper-triangular, so that ai j = 0 if i > j. Then det(A)
is the product of the diagonal elements: a11a22 . . .ann. Similarly when A is lower-
triangular.

Proof. All we have to do is show that for any non-trivial permutation σ , there is
an i such that i < σ(i): then all the other terms in the sum (11.3) vanish. For σ to
be non-trivial means that there is an i such that i 6= σ(i). We may therefore assume
that i > σ(i), since otherwise we get 0. Let j = σ(i), and consider the integers
S j = {1,2, . . . , j}. Where are they mapped by the bijection σ? Since j is already the
image of i > j, as least one of them, say k ≤ j has to be sent to an element outside
S j in other words σ(k)> k, so we are done. ut

If our matrix A is written in blocks, and is block triangular according to Definition
2.9.7, then the previous theorem generalizes:
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Theorem 11.3.5. Assume A is block triangular, with diagonal blocks A11, . . . , Ass.
Then

det(A) =
s

∏
i=1

det(Aii).

Proof. Just do the same analysis as in the previous theorem, but do it block by
block. Show that the only permutations σ that contribute a non-zero term to the
determinant of A are the ones that permute the first n1 elements among themselves,
then the next n2 elements and so on. The result then follows. ut

A criterion under which a determinant vanishes is given in §11.11. It will not be
used later.

We have already shown that det(A) has the following desirable property when
n = 2 and n = 3: det(A) 6= 0 is equivalent to the fact that any square system of linear
equations where A is the matrix of coefficients of the variables, and any right hand
side b can be solved uniquely. Another way of saying this is that the n× n matrix
A has rank n if and only if det(A) 6= 0. A third way is A is invertible if and only if
det(A) 6= 0. We still have to do the same in the the general case. First an easy result,
a corollary of Theorem 11.3.4.

Theorem 11.3.6. For the identity matrix I,

det(I) = 1.

Proof. There is only one non-zero term in the sum (11.3), and it is the product of n
1s. ut

Definition 11.3.7. For a square matrix A whose rows are a1, . . . , an, the function
d(a1, . . . ,an) = det(A).

Theorem 11.3.8. Hold fixed all the rows of A except the i-th one, say, so writing the
i-th row as x = (x1,x2, . . . ,xn). Then

d(a1, . . . ,ai−1,x,ai+1, . . . ,an)

is a linear function of x. So for any scalar c,

d(a1, . . . ,ai−1,cx, . . . ,an) = cd(a1, . . . ,ai−1,x,ai+1, . . . ,an)

and

d(. . . ,ai−1,x+y,ai+1, . . .) = d(. . . ,ai−1,x,ai+1, . . .)+d(. . . ,ai−1,y,ai+1, . . .).

Finally det(A) = 0 if a row of A consists entirely of 0s.

Proof. This is obvious once you notice that in any term of (11.3) there is exactly
one term belonging to the i-th row. ut
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Here is the important point to establish. It is the reason for introducing the sign
ε of a permutation.

First

Definition 11.3.9. If τ is a permutation on [1, . . . ,n] and A is a matrix with n rows, let
Aτ = (aτ

i j) be the matrix with the rows permuted by τ , meaning that the i-th row of A
becomes the τ(i)-th row of Aτ , or, what is the same, k-th row of Aτ is the τ−1(k)-th
row of A. Thus if we write Aτ = (aτ

i j), we have ai j = aτ

τ(i), j, or aτ
k, j = aτ−1(k), j.

Using the definition of Pτ of the previous section,

Aτ = Pτ A.

.

Theorem 11.3.10. Then
det(Aτ) = ε(τ)det(A).

Proof. Write Aτ = (aτ
i j), so that by definition aτ

i j = aτ−1(i), j. The determinant we
want to compute is

det(Aτ) = ∑
σ∈Sn

ε(σ)
n

∏
i=1

aτ

i,σ(i).

By definition aτ

i,σ(i) = aτ−1(i),σ(i), so

ε(σ)
n

∏
i=1

aτ

i,σ(i) = ε(σ)
n

∏
i=1

aτ−1(i),σ(i). (11.4)

Switching to the summation variable j = τ−1(i), we can write (11.4) as

ε(σ)
n

∏
j=1

a j,στ( j).

Next we change the summation variable σ that enumerates all the permutations to
υ = στ which also enumerates all the permutations as σ varies, remembering that
τ is fixed. Since σ = υτ−1,

det(Aτ) = ∑
υ∈Sn

ε(υτ
−1)

n

∏
j=1

a j,υ( j) = ε(τ−1) ∑
υ∈Sn

ε(υ)
n

∏
j=1

a j,υ( j) = ε(τ)det(A).

We used the fact that ε(υτ−1) = ε(υ)ε(τ−1) by Theorem 11.2.18, to pull the con-
stant factor ε(τ−1) out of each term in the sum. We also used ε(τ−1) = ε(τ), which
is true for any permutation τ . ut

From these theorems we get the corollaries we are interested in.

Corollary 11.3.11. If the square matrix A has two equal rows, then det(A) = 0.
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Proof. Let τ be the transposition that permutes the two equal rows. On one hand
ε(τ) =−1, so det(Aτ) =−det(A) by Theorem 11.3.10. On the other hand Aτ = A.
so obviously det(Aτ) = det(A). The only way this can be reconciled is if det(A) = 0.

ut

Corollary 11.3.12. Here is how the determinant of a square matrix A is transformed
under the elementary row operations of Definition 2.5.2.

1. If a row of A is multiplied by the non-zero scalar c, then the determinant of the
new matrix is cdet(A)

2. If two rows of A are interchanged, then the determinant is multiplied by −1.
3. If you add to a row of A a multiple of a different row, then the determinant does

not change.

Proof. (1) follows from Theorem 11.3.8.
(2) is an immediate corollary of Theorem 11.3.10.
(3) uses linearity followed by Corollary 11.3.11:

d(. . . ,ai + ca j, . . . ,a j, . . .) = d(. . . ,ai, . . . ,a j, . . .)+d(. . . ,ca j, . . . ,a j, . . .)

= d(. . . ,ai, . . . ,a j, . . .)+ cd(. . . ,a j, . . . ,a j, . . .)

= d(. . . ,ai, . . . ,a j, . . .).

ut

This is important because it shows that if the determinant of a matrix is non-zero,
then the determinant of any row equivalent matrix is also non-zero.

Corollary 11.3.13. A square matrix A of size n has rank less than n if and only if its
determinant is 0.

Proof. By using row operations, which only multiply the determinant by a non-zero
constant, by Theorem 2.8.11 we can modify A to

• a matrix with a row of 0s;
• or to the identity matrix I.

In the first case by Theorem 11.3.8, det(A) = 0; in the second case, because we
know det(I) = 1, the determinant is non-zero. ut

11.4 Properties of the Determinant

Now determinant results with a different flavor.

Theorem 11.4.1. The determinant of a square matrix is equal to that of its trans-
pose: det(At) = det(A). Similarly det(A∗) = det(A).
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Proof. The beautiful proof is a simple change of variables, just like the proof of
Theorem 11.3.10. Write the entries of the transpose Atas(at

i j). Then by definition

det(At) = ∑
σ∈Sn

ε(σ)
n

∏
i=1

at
i,σ(i).

Because At is the transpose of A, we can write this in terms of the entries of A.

det(At) = ∑
σ∈Sn

ε(σ)
n

∏
i=1

aσ(i),i. (11.5)

Make the change of summation variable υ = σ−1. As we have already noted ε(υ) =
ε(σ). As σ runs over all permutations, so does its inverse υ . Finally, instead of using
i as the variable, use j = υ(i). Then (11.5) is rewritten

det(At) = ∑
υ∈Sn

ε(υ)
n

∏
i= j

a j,υ( j) = det(A).

The second statement is left to you. ut

The most important result concerning determinants is

Theorem 11.4.2. If A and B are two square matrices of size n, then det(AB) =
det(A)det(B). Therefore det(AB) = det(BA).

Proof. This is an exercise in matrix multiplication, followed by a use of the proper-
ties of determinants given in Theorems 11.3.8 and 11.3.10. Write C for the product
AB. Then as noted in (2.8), the rows of C can be written in terms of the rows of B as

ci = ai1b1 + · · ·+ainbn =
n

∑
j=1

ai jb j. (11.6)

We need to compute det(C) = d(c1, . . . ,cn). We replace each ci by its expression
(11.6) in terms of the entries of A and B and use the linearity of d in each row. To
start, using the linearity, for each i we get:

d(c1, . . . ,ci−1,
n

∑
j=1

ai jb j,ci+1, . . . ,cn) =
n

∑
j=1

ai jd(c1, . . . ,ci−1,b j,ci+1, . . . ,cn).

Key remark: when you get b j in the slot for the i-th row entry of the determinant,
a coefficient ai j gets pulled out as shown above.

When we do this for all the rows of C, we get a sum of terms with certain coeffi-
cients: the product of n of the ai j multiplied by determinants of matrices where each
entry consists of a different row of B. We know that we only have to consider the
case of distinct rows, because whenever a determinant of rows has two equal rows,
it is 0. So for each term in the sum, the order of the b is described by a permutation
of {1, . . . ,n}, call it σ . So we write
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d(bσ(1),bσ(2), . . . ,bσ(n)).

By Theorem 11.3.10 , this is ε(σ)det(B). What is the coefficient of this term? By
the key remark it is a1,σ(1)a2,σ(2) . . .an,σ(n). So we have shown that

det(C) = det(B)
(

∑
σ∈Sn

ε(σ)
n

∏
i=1

ai,σ(i)
)
.

By (11.3) this is det(B)det(A), which is the same thing as det(A)det(B), since these
are just scalars. ut

By Corollary 11.3.13, a square matrix A has an inverse if and only if det(A) 6= 0.

Corollary 11.4.3. If the square matrix A has an inverse, written A−1 as usual, then

det(A−1) =
1

det(A)
.

Proof. This is immediate, since AA−1 = I and det(I) = 1. ut

The following corollary is very important because it says that the determinant of
a square matrix A is an invariant of the similarity class of A, so that it is an invariant
of the linear operator represented by A.

Corollary 11.4.4. For any invertible matrix C, det(CAC−1) = det(A)

Proof.

det(CAC−1) = det(C)det(AC−1) = det(AC−1)det(C)

= det(A)det(C−1)det(C) = det(A)det(I) = det(A)

ut

We have already noted how to compute the determinant of a block triangular
matrix in Theorem 11.3.5. This becomes easy to prove using Theorem 11.4.2. We
only do a simple case.

Assume the matrix A is written in block-diagonal form (see §2.9)

A =

(
B 0rs

0sr C

)
where B and C are square matrix of size r and s respectively, and the other two are
matrices of the marked size.

Note that

A =

(
B 0rs

0sr Is

)(
Ir 0rs
0sr C

)
The determinants of the matrices of the right are easily seen to be det(B) and det(C),
so that det(A) = det(B)det(C) by Theorem 11.4.2.
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If the matrix A is written in block-diagonal form as

A =

(
B D

0sr C

)
where B and C are square matrix of size r and s respectively, and D is an arbitrary
matrix of size r× s. Assume s≥ r and proceed as follows. If C has maximum rank,
we can reduce to the previous corollary by doing row operations involving the last
s rows on the first r ones. Note that these row operations do not modify b, so we are
done. If B does not have maximum rank, then det(B) = 0 and det(A) = 0 so we get
0 on both sides. If s < r do column operations instead.

Corollary 11.4.5. In Example 2.5.1, we looked at an invertible matrix A that could
be factored as a lower triangular matrix times an upper triangular matrix: A = LU.
This implies that both L and U are invertible, so that their diagonal elements are all
non-zero.

11.5 The Laplace Expansion

Our next result is the Laplace expansion for the matrix. We need some preliminary
definitions. In §2.4, we defined and gave notation for a submatrix of a matrix A.
Here we need a special kind of submatrix for a square matrix A of size n, for which
we use a simpler notation.

Definition 11.5.1. Write Ai j for the square submatrix of size n−1 from which the i-
th row and the j-column of A have been removed. This submatrix has a determinant,
called the minor mi j. It is more common to consider the cofactor m̂i j, which is just
(−1)i+ jmi j.

Then

Theorem 11.5.2 (Laplace Expansion). For the square matrix A of size n, and for
any i,

det(A) =
n

∑
i=1

ai jm̂i j.

Similarly for any j,

det(A) =
n

∑
j=1

ai jm̂i j.

Notice that only the index in the summation changes. These two expansions are
called the expansions along the j-column and the expansion along the i-th row,
respectively.

Proof. If is enough to prove this in one of the two cases. We will prove the second.
Each term in the formula for the determinant contains exactly one term from the i-tu
row, i.e. a term ai j. So the determinant of A can be written
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∑

σ∈Si1

ε(σ)a2σ(2) . . .a2σ(n)
)
ai1 + . . .

+
(

∑
σ∈Si j

ε(σ)a2σ(2) . . .a2σ(n)
)
ai j + . . .

+
(

∑
σ∈Sin

ε(σ)a2σ(2) . . .a2σ(n)
)
ain (11.7)

where Sik is the subset of permutations sending i to k. Notice that the n sets Sik,
1≤ k≤ n, are disjoint and each has (n−1)! elements, so we get all permutations in
S in this way.

Each σ ∈Si j yields a permutation τ on {1,2, . . . ,n−1} excluding the integer i
since it always is mapped to j. Here is the rule:

τ(k) =


σ(k), if k < i and σ(k)< j;
σ(k)−1, if k < i and σ(k)> j;
σ(k+1), if k ≥ i and σ(k+1)< j;
σ(k+1)−1, if k ≥ i and σ(k+1)> j.

(11.8)

To understand what this means look at the following matrix of size 4 and suppose
we are looking at a permutation taking 2 to 3. Then to find the ‘residual’ permutation
on {1,2,3} remove the second row and the third column from A:

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 (11.9)

The row and column in bold split the remaining part of the matrix in four regions
corresponding to the four cases of (11.8), which explains how to renumber the en-
tries to get a permutation on {1,2, . . . ,n−1}. Suppose that σ ∈S23 is∣∣∣∣1 2 3 4

2 3 1 4

∣∣∣∣
Since i = 2 and j = 3, the rule of (11.8) tells us that the corresponding τ is∣∣∣∣1 2 3

2 1 3

∣∣∣∣
We now need to compare ε(σ) to ε(τ). The argument that follows is completely
elementary, and is best understood by referring to a geometric diagram. Consider
for example the diagram based on the matrix in (11.9) and a specific permutation σ

such that σ(2) = 3, for example the permutation∣∣∣∣1 2 3 4
2 3 4 1

∣∣∣∣
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Then this permutation ( a 4-cycle, by the way) gives the term ±a12a23a34a41 in the
determinant, so mark them in bold in the matrix:

∗ a12 • ∗
• • a23 •
∗ ∗ • a34

a41 ∗ • ∗

 (11.10)

How do you detect a reversal in a permutation from this diagram? When there
are two entries so that the left one is below the right one. So, in the diagram above
there are three reversals:

(a41,a12),(a41,a23),(a41,a34)

If you remove the i-th row and the j-the column all the reversals containing ai j
disappear. In our example we are left with

(a41,a12),(a41,a34)

These reversals are the same as those of the permutation τ associated to σ . In our
example  ∗ a12 ∗

∗ ∗ a23
a31 ∗ ∗


Notice the renumbering, which derives from the rule (11.8). All the reversals that
do not involve the removed element a23 survive: the formal proof is left to you.

So to understand the relationship between ε(σ) and ε(τ) we need only consider
the reversals that involve ai j. If we number the quadrants clockwise in the matrix
created by the i-th row and the j-th column by

Q1 = (k, l) such that k < i and l < j;
Q2 = (k, l) such that k < i and l > j;
Q3 = (k, l) such that k > i and l > j;
Q4 = (k, l) such that k > i and l < j.

(11.11)

For a given permutation σ let ni be the number of ak,σ(k) in Qi. Note that ai j is
in none of them, so that the total number is n− 1. Because there is one of these in
each row and each column (other than the i-th row and the j-th column), we have
the four linear equations:

n1 +n2 = i−1;
n3 +n4 = n− i;
n1 +n4 = j−1;
n2 +n3 = n− j.
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Exercise 11.5.3. Show that the matrix associated to this linear system has rank 3.

Exercise 11.5.4. Determine the ni for the example above.

Now the number of reversals involving ai,σ(i) is the number of elements in quad-
rants 2 and 4, so it is n2 +n4. By the linear equations above , we see that n2−n4 =
i− j, so n2 +n4 has the same parity as i+ j. This shows that ε(σ) = (−1)i+ jε(τ).
This shows that

det(A) =
n

∑
i=1

(−1)i+ jai jmi j

and completes the proof. ut

This gives the familiar checkerboard pattern for the signs used in each minor:+ − +
− + −
+ − +


Many examples here.

Example 11.5.5. Consider the n×n matrix, called the Vandermonde matrix:
1 1 . . . 1
x1 x2 . . . xn
...

...
. . .

...
xn−1

1 xn−1
2 . . . xn−1

n

 (11.12)

We wish to compute its determinant. In §6.2, we considered the transpose of this
matrix, which we also called the Vandermonde matrix, and showed that it is invert-
ible when the scalars xi are distinct. Therefore we already know its determinant is
non-zero in that case. In fact we can compute the determinant explicitly.

So each column of the matrix consists in the first n powers of the scalar xi, start-
ing with the 0-th power. We will compute the determinant of this polynomial by
induction on n. When n = 2 it is (x2−x1). When n = 3, we do some row operations.
We start with  1 1 1

x1 x2 x3
x2

1 x2
2 x2

3


First subtract the second row multiplied by x1 from the third to get 1 1 1

x1 x2 x3
0 x2

2− x1x2 x2
3− x1x3

=

 1 1 1
x1 x2 x3
0 x2(x2− x1) x3(x3− x1)


First subtract the first row multiplied by x1 from the second to get
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0 x2− x1 x3− x1
0 x2(x2− x1) x3(x3− x1)


So by the Laplace expansion along the first column, the determinant is that of(

x2− x1 x3− x1
x2(x2− x1) x3(x3− x1)

)
We can factor (x2−x1) from the first column and (x3−x1) from the second column.
So the determinant is

(x2− x1)(x3− x1)

∣∣∣∣ 1 1
x2 x3

∣∣∣∣= (x2− x1)(x3− x1)(x3− x1)

This suggests that the general answer in the n×n case is

∏
i> j

(xi− x j) (11.13)

so that there are (n(n−1)
2 factors. Assume this is true in the case (n− 1). Then just

do the same row operations we did in the 3×3 case to get the Vandermonde deter-
minant for n−1: subtract x1 times the next-to-last row from the last row, and work
backwards. Use the Laplace expansion as before to reduce to the n−1 Vandermonde
matrix. We are done.

Notice that the determinant of the Vandermonde matrix vanishes when xi = x j,
since the matrix then has two equal columns. This is confirmed by our computation.
We could compute the determinant by using this remark: it must be a product of
factors (xi− x j), for i 6= j. So there are (n(n−1)

2 factors needed, just as in (11.13). So
up to a constraint factor, we have the right answer.

Exercise 11.5.6. Multiply (11.12) by its transpose, and compute the determinant in
terms of sums of powers of the xi.

11.6 Cramer’s Rule

We now prove one of the most famous theorems in linear algebra, proved very early
in its history by Cramer.

Theorem 11.6.1 (Cramer’s Rule). Consider the system of linear equations

Ax = b

where A is a square matrix of size n with det(A) 6= 0. Then writing as usual a1, . . . ,
an for the columns of A, we get for the entries of the unique solution x of this system
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x j =
d(a1, . . . ,a j−1,b,a j+1, . . . ,an)

det(A)
.

Proof. We can give a simple conceptual proof of this. Rewrite the equation as

b = x1a1 + x2a2 + · · ·+ xban (11.14)

Consider the determinant

d(a1, . . . ,a j−1,b,a j+1, . . . ,an)

where we have simply replaced the j-th column of A by b. Now expand b by (11.14)
and use the linearity of the determinant in its columns and the fact that the determi-
nant is 0 when two of its columns are multiples of each other to get

d(a1, . . . ,a j−1,b,a j+1, . . . ,an) = x jd(a1, . . . ,a j−1,a j,a j+1, . . . ,an).

The right hand side is just x j det(A), so just divide by det(A) to get the desired result.
ut

Remarks about how this is not useful for computation: always solve using Gaus-
sian elimination. So from a modern point of view this result is a curiosity. Still, it is
nice that there is such a beautiful and simple formula.

A 2×2 and 3×3 example here.

11.7 The Adjugate Matrix

In this optional section, given a square matrix A of size n, consider the square matrix

Â = (m̂i j),

where the entries of Â are the cofactors (see Definition 11.5.1) of the matrix A. So
Â also has size n. Then the adjugate matrix of A is the transpose of Â. It is written
adjA.

This definition allows us to rewrite all the Laplace expansions as one matrix
multiplication.

Corollary 11.7.1.
AadjA = (adjA)A = (detA)I.

Here I is the identity matrix of size n.

Proof. For the terms on the diagonal, notice that this result just expresses all the
Laplace expansions as one. So the only issue is to show that the off-diagonal terms
are zero. ut
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11.8 The Cauchy-Binet Theorem

Now assume C = AB, where C is an m×m matrix, A a m×n matrix and B of course
a n×m matrix. Then by (2.7)

ck = b1ka1 + · · ·+bnkan =
n

∑
j=1

b jka j. (11.15)

Then exactly as in the proof of Theorem 11.4.2, we get

det(C) =
n

∑
k1,...,km=1

bk11 bk22 . . .bkmmd(ak1 ,ak2 , . . . ,akm). (11.16)

Here the summation means that you sum over each of the ki.
Let’s make sure the right hand side makes sense. Each column of A is a m-vector,

so in the determinant we take m columns of A, since we need a square matrix.
All the terms in the sum are 0 unless A has at least m columns, since otherwise

we have to repeat a column, in which case the determinant is 0. So we get a first
interesting result:

Theorem 11.8.1. If the square matrix C of size m can be written as the product of a
m×n matrix A by a n×m matrix B with n < m, then det(C) = 0.

Theorem 11.4.2 is the case n = m. What happens if n > m?
Consider the terms in the sum on the right hand side of (11.16). As always, if the

ki are not distinct, the corresponding determinant vanishes.
For any collection K of m integers ki, 1≤ k1 < k2 < · · ·< km ≤ n, let SK be the

collection of all one-to-one mappings from [1, . . . ,m] to (k1, . . . ,km) Then we can
rewrite (11.16) as

det(C) = ∑
K

∑
σ∈SK

bk11 bk22 . . .bkmm ε(σ)(d(ak1 ,ak2 , . . . ,akm). (11.17)

Now denote by AK the square submatrix of size m of A using the columns ak for
k ∈ K, and BK the square submatrix of size m of B using the rows bk, for k ∈ K.

Theorem 11.8.2 (Cauchy-Binet Theorem).

detC = ∑
K

det(AK)det(BK),

where the sum of over all the subsets of [1, . . . ,n] consisting of m elements.

This follows immediately from (11.17).

Example 11.8.3. Let A the 2×3 matrix (ai j) and B the 3×2 matrix (b jk). Then their
product C is the 2×2 matrix (cik),
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C =

(
a11b11 +a12b21 +a13b31 a11b12 +a12b22 +a13b32
a21b11 +a22b21 +a23b31 a21b12 +a22b22 +a23b32

)
There are three sets K: {1,2}, {1,3} and {2,3}. So for example

A{1,3} =
(

a11 a13
a21 a23

)
and B{1,3} =

(
b11 b12
b31 b32

)
so

det(A{1,3}) = a11a23−a13a21 and det(B{1,3}) = b11b32−b12b31.

So one of the three terms in the sum giving det(C) is

det(A{1,3})det(B{1,3}) = (a11a23−a13a21)(b11b32−b12b31)

Thus you can explicitly compute the expressions on both sides of the Cauchy-Binet
formula, and check that they match.

We now generalize the Cachy-Binet Theorem. We use the notation of §2.4 to
describe the square submatrices of a square matrix C that is the product AB of two
square matrices A and B: see (2.13).

Theorem 11.8.4. Assume C = AB, where all three matrices are square of size n. Let
I and J are fixed subsets of [1, . . . ,n] consisting of k elements each. Then

detCI
J = ∑

K
det(AI

K)det(BK
J ),

where the sum is over all subsets K of [1, . . . ,n] consisting of k elements.

Proof. We simply reduce to the previous theorem. The key remark follows the very
definition 2.2.3 of matrix multiplication: see (2.7) and (2.8). Thus every entry in CI

J
can be computed just from rows of A with index in J and the columns in B with
index in I. In other words

CI
J = AJBI .

You should check this one entry ci j of C at a time. So now just apply Theorem 11.8.2
to this triple of matrices to get

det(CI
J) = ∑

K
det(AJ

K)det(BK
I ).

ut

We will use this result in Chapter 12.
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11.9 Gaussian Elimination via Determinants

We now want to look back at Gaussian elimination using determinants, especially
the minors of a matrix. We show how this works for a square system. We follow the
presentation and largely the notation of Gantmacher [8], chapter II, §1.

So assume we have a system of n equations in n variables:

Ax = b.

Assume A has rank r. This means there is a r× r submatrix of A which has rank r.
Then we can multiply A on the left by a suitable permutation matrix Pσ , and on the
right by a suitable permutation matrix Qτ so that the leaning principal submatrix of
size r of Pσ AQτ has rank r. This follows from Theorem 11.2.12. This just means
that we reorder the equations (using Pσ ) and the variables (using Qτ ) to move the
submatrix into the right position. In fact, by a sufficiently careful reordering (which,
unfortunately we can only determine during Gaussian elimination) we may assume
that all the leading principal submatrices of size k of Pσ AQτ have maximal rank.
The system of equations is now Pσ AQτ = Pσ bQτ . This system is equivalent to the
previous system, in the sense of Chapter 1. To simplify notation we continue to write
it as Ax = b.

Remark 11.9.1. What we do next is to show that with these hypotheses A = LU ,
where L is lower triangular, and D is upper triangular. In other words we only use
the elementary transformation of Definition 2.8.1 of type 1 and of type 3, but where
the matrix Ers(c) is lower triangular, so r > s, so the product of all the elementary
matrices used is itself lower triangular. As we already noted in Example 2.5.1, it is
easy to solve the equation LUx = b.

By assumption the leading principal minors Dk of A, 1≤ k ≤ r, are all non-zero,
while Dk = 0 when k > r. The last inequalities are implied by the rank of A being r.
In particular D1 = a11 6= 0. Then:

Definition 11.9.2. a11 is the first pivot d1 of A.

Let E1 be the elementary n×n matrix:

E1 =


1 0 . . . 0
− a21

a11
1 . . . 0

...
...

. . .
...

− an1
a11

0 . . . 1


So E1 is invertible with determinant equal to one, since it is lower triangular with
ones on the diagonal. We write A(1) for the product matrix E1A. By construction:
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A(1) =



a11 a12 a13 . . . a1n

0 a(1)22 a(1)23 . . . a(1)2n

0 a(1)32 a(1)33 . . . a(1)3n
...

...
...

. . .
...

0 a(1)n2 a(1)n3 . . . a(1)nn


where the matrix entries without suffix are the original entries of A, while those with
an upper (1) are by definition the entries of A(1).

Proposition 11.9.3. We compute the second diagonal element of the matrix A(1),
and show it is non-zero, under the assumption that the rank of A is at least 2, so it
will serve as our second pivot d2:

a(1)22 = a22−
a12a21

a11
=

D2

D1
. (11.18)

Proof. Because A(1) was obtained from A by adding the first row of A multiplied
by a constant, the minors that contain that row (in particular the leading principal
minors) do not change when one passes from A to A(1), by Corollary 11.3.11. On
the other hand, the second leading principal minor of A(1) is simply a11a(1)22 , because
that principal matrix is triangular. So a11a(1)22 = D2, and since D1 = a11, this is what
we found by direct computation. This computation establishes the result, since by
hypothesis, the leading principal minor D2 is non-zero. ut

This simple but important argument will generalize as we create more zeroes by
Gaussian elimination.

Exercise 11.9.4. Write down the definition of E2 using that of E1 as a model.

We write A(2) for the matrix E2A(1). By construction:

A(2) =



a11 a12 a13 . . . a1n

0 a(1)22 a(1)23 . . . a(1)2n

0 0 a(2)33 . . . a(2)3n
...

...
...

. . .
...

0 0 a(2)n3 . . . a(2)nn


We claim, as before, that if 3≤ r, where r is the rank of A, then a(2)33 6= 0, because

a(2)33 =
D3

D2
.

by the same argument as in (11.18). So this gives us the third pivot d3.
So if 2 < r we can continue the elimination process until we reach the rank r of

the matrix. For simplicity, first consider the case of maximum rank r = n. At each
step we get a new non-zero pivot
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dk = a(k−1)
kk =

Dk

Dk−1
.

Thus in the end we get the upper triangular matrix:

A(n−1) =



a11 a12 a13 . . . a1,n−1 a1n

0 a(1)22 a(1)23 . . . a(1)2,n−1 a(1)2n

0 0 a(2)33 . . . a(2)3,n−1 a(2)3n
...

...
...

. . .
...

...
0 0 0 . . . a(n−2)

n−1,n−1 a(n−2)
n−1,n

0 0 0 . . . 0 a(n−1)
nn


with an accompanying lower triangular matrix E = En−1En−2 · · ·E2E1. By construc-
tion A(n−1) = EA.

Now let us consider the more general case where A only has rank r, that can be
less than n. Then by left multiplication by invertible matrices we get, after r− 1
steps:

A(r−1) =



a11 a12 a13 . . . a1r . . . a1n

0 a(1)22 a(1)23 . . . a(1)2r . . . a(1)2n

0 0 a(2)33 . . . a(2)3r . . . a(2)3n
...

...
...

. . .
...

. . .
...

0 0 0 . . . a(r−1)
r,r . . . a(r−1)

r,n
0 0 0 . . . 0 . . . 0
...

...
...

. . .
...

. . .
...

0 0 0 . . . 0 . . . 0


together with an invertible matrix E so that EA = A(r−1). The non-zero pivots are

Dk
Dk−1

, 1 ≤ k ≤ r, so their product is the determinant of the leading principal matrix
of size r. This is the classic way of producing an upper-triangular matrix that is row
equivalent to A. We finish solving by doing back substitution on the upper triangular
A(r−1).

Symmetric Case
Now we assume that A is symmetric. This will allow us to do the back-substitution

to make A diagonal in a conceptually simple way. . Since the matrix E used to make
A upper-triangular is lower triangular, Et is upper triangular. So (EA)Et , the product
of two upper triangular matrices, is upper triangular. But EAEt is symmetric: just
compute its transpose. The only symmetric upper triangular matrices are diagonal,
so EAET is diagonal and we have achieved the goal of Gaussian elimination without
any further computation. We record this special case as a theorem.

Theorem 11.9.5. Assume A is a symmetric matrix of size n such that all its leading
principal minors are non zero. Then Gaussian elimination can be accomplished by
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left multiplication by an invertible lower triangular matrix E of determinant 1. The
k-th diagonal element of the diagonal matrix EAEt is dk = Dk

Dk−1
, where the Dk,

1≤ k ≤ n are the leading principal minors of A, and D0 = 1 by convention.

We now generalize this to matrices of smaller rank It can also be used to compute
the signature of a quadratic form in many cases, as explained in [8], volume 1, p.302.

We make the simple but important remark: by definition, Gaussian elimination
applied to symmetric matrices as above yields a matrix is the same congruence class
as the original matrix.

Theorem 11.9.6. A is an n× n symmetric matrix of rank r with non-zero leading
principal minors Dk, 1 ≤ k ≤ r. Then Gaussian elimination can be performed to
produce zeroes below and to the right of the first r diagonal elements of the matrix.
Denoting the pivots of A by dk,1≤ k ≤ n, we have

dk =
Dk

Dk−1
for 1≤ k ≤ r,

where D0 = 1 by definition.

Proof. After the first k−1 columns of A have been cleared by forward elimination,
the k-th leading submatrix Ak is upper triangular with the first k pivots on the diag-
onal. So Dk = det(Ak) = ∏

k
i=1 di. Further Gaussian elimination does not modify Ak.

Thus, if all leading principal minors of A are non-zero, then so are all the pivots,
which means that Gaussian elimination can occur without row exchanges. ut

11.10 Determinants and Volumes

We restrict the scalars to R and assume we are working in Rn equipped with the
standard inner product.

First we compute a determinant by expansion by minors.

Example 11.10.1. If A is the matrix 1 2 3
4 5 6
7 8 9


then the submatrices and their minors from the first row are:

A11 =

(
5 6
8 9

)
and m11 =−3;

A12 =

(
4 6
7 9

)
and m12 =−6;

and
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A13 =

(
4 5
7 8

)
and m13 =−3.

Example 11.10.2. The determinant of the matrix A from Example 11.10.1, following
our formula of expansion by minors, is given by:

1(5 ·9−6 ·8)−2(4 ·9−6 ·7)+3(4 ·8−5 ·7) =−3+12−9 = 0.

Exercise 11.10.3. Compute the determinant of

M =


1 −2 0 0
−3 2 0 0
0 0 −1 3
0 7 2 1

 and N =


1 −2 0 0
−3 2 0 0
0 0 −1 0
1 1 2 1

 .

Definition 11.10.4. In Rn start with n vectors v1, . . . , vn. Then the n-dimensional
parallelepiped spanned by the origin and these n vectors is the set of linear combi-
nations ∑

n
i=1 xivi, 0≤ xi ≤ 1.

Example 11.10.5. When n = 2, you have the parallelogram with four vertices 0, v1,
v2, and v1 + v2. When n = 3, you have the parallelepiped with eight vertices. The
first four as when n = 2: 0, v1, v2, v1 +v2, to which one adds the sum of each with
v3.

Corollary 11.10.6. If V is the n-dimensional parallelepiped in Rn spanned by the
origin and n vectors v1, . . . , vn, then the n-volume of V is |detA|, where A is the
n×n matrix with columns the vi.

When you enter the columns of A in a different order, the determinant either stays
the same or is multiplied by −1, so the volume does not change. The sign of the de-
terminant tells us whether the linear transformation TA associated to multiplication
by the matrix A is orientation-preserving (+) or orientation-reversing (−).
Example 11.10.7. Because the determinant of the matrix A from Example 11.10.1
is 0, as we saw in Example 11.10.2, A is not invertible. Indeed, its nullspace is one-
dimensional, generated by the vector (1,−2,1). Take the cube in R3 with vertices
the origin and the three unit vectors. Under the linear transformation TA, what hap-
pens to this cube? In other words, what are the points Ax, where x is the column
vector with all coordinates between 0 and 1.

Also see Minsky p. 416 and Franklin p. 153. Also Serre p. 120.

11.11 The Birkhoff-Koenig Theorem

Definition 11.11.1. Given a n×n matrix A, for each permutation σ of [1, . . . ,n], we
call the list of entries ai,σ(i) a generalized diagonal of A. Thus there are as many gen-
eralized diagonals as there are permutations, namely n!. We say that a generalized
diagonal vanishes if ∏

n
i=1 ai,σ(i) = 0.
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Theorem 11.11.2 (Birkhoff-Koenig Theorem). All the generalized diagonals of a
square matrix A of size n vanish if and only if there is a r× s submatrix of A with
r+ s = n+1 that is 0r,s.

First note that the vanishing of all the generalized diagonals implies by definition
that the determinant of A is 0.

Proof. First we assume that A has a r× s submatrix B of 0s. Let the rows of B be
i1, . . . , ir and the columns of B be j1, . . . , js. Assume that the result is false, so that
there is a generalized diagonal D that does not vanish. The in the rows i1, . . . , ir,
the entry of D must be outside j1, . . . , js. We have r elements to place, but only
n− s = n− (n+1− r) = r−1 places to put them. Contradiction.

The other implication is harder. We assume that every generalized diagonal of
A vanishes, and prove by induction that there is a r× s submatrix of A what is the
zero matrix. There is nothing to do to start the induction at n = 1. So assume that
the result is true for all square matrices of size less than n, and establish it for n. If
A is the zero matrix, again there is nothing to prove. So we may assume that some
entry ai j 6= 0, so the result is true by induction. We call the submatrix with that
row and column removed Ai j as in Definition 11.5.1. By induction Ai j has a r× s
submatrix 0, with r+ s = n. By permuting rows and columns of A to get a matrix
A′, we may assume that the r× s submatrix in the upper right hand corner of A′ is
the zero matrix. Thus in block notation

A′ =
(

B 0
C D

)
where B is a square matrix of size r and D a square matrix of size s. Assume that
there is a generalized diagonal of D that does not vanish. Then extending this diag-
onal in all possible way to A′, we see that all the diagonals of B vanish, so that by
induction applied to B there is a t×u submatrix of B, with t +u = r+1 that is 0. By
permuting the first n− r rows of A′ we get a matrix A′′ whose first n− r rows can be
written in block notation as

E =

(
B′ 0 0
B′′ B′′′ D′

)
This submatrix of A visibly contains a u× (t + s) submatrix of 0s. Since u+ t +
s = r+ 1+ s = n+ 1, the matrix A′′ satisfies the conclusion. Now just undoing the
permutations made to get A′′, the result is true for A. Finally we need to consider the
case where there is a generalized submatrix of D that does not vanish. That case is
handled exactly the same way, and is left to you. ut

Of course a determinant can be 0 even if not all the generalized diagonals are 0.



Chapter 12
The Characteristic Polynomial

Abstract We continue our work on understanding all linear operators L from a
vector space V to itself. The fundamental approach is to find invariant subspace for
L. An invariant subspace is a proper subspace W ⊂ V such that L(W ) ⊂W . The
primary decomposition theorem of Chapter C allowed use to do this in terms of
the decomposition of the minimal polynomials into relatively prime factors. It is
especially useful because it allows the decomposition of the space into a direct sum
of invariant subspaces. We also fixed a vector v and looked at the subspace generated
by applications of L to v. This generates a subspace W that is invariant under L, and
on which we get a minimal polynomial with degree equal to the dimension of W .
This led us naturally to the notion of eigenvector: a non-zero vector such that the
generated subspace has dimension 1. How to find the eigenvectors? We construct the
characteristic polynomial of L, and show that it is always divisible by the minimal
polynomial of L: this is the famous Cayley-Hamilton Theorem. We compute the
characteristic polynomial in several important cases.

12.1 The Characteristic Polynomial

First some motivation for the introduction of the characteristic polynomial
Given a linear operator L on V , we know that an invariant subspace of dimension

1, spanned by a single vector, call it v, satisfies L(v) = λv, for some scalar λ . By
Definition 10.1.3 the non-zero vector v is called an eigenvector of the linear trans-
formation L and the scalar λ in the base field, is called the eigenvalue associated to
v.

We can also make this definition in terms of any matrix A representing L in some
basis, and the coordinate vector of v in that basis, which we still write v: Av = λv.

The key remark is that v is an eigenvector with eigenvalue λ if v is in the
nullspace of the operator λ In − L. As usual In is the identity operator, or, when
needed, the n×n identity matrix. Passing to matrix notation, if A is the matrix of L

227
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for a certain basis of V , then the matrix λ In−A is not invertible, so that its determi-
nant is 0.

We do not know what λ is, other than a scalar. So replacing λ by the variable
x, to find the eigenvalues we need to solve the polynomial equation det(xIn−A) =
0. An eigenvalue of A is a root of this polynomial. Conversely any root λ of this
polynomial is an eigenvalue. It is associated to any non-zero vector in the nullspace
of λ In−A. Notice that the eigenvalues depend of the base field, since the roots of a
polynomial depend on the field considered. For example, the polynomial x2 +1 has
no roots in R, but factors as (x+ i)(x− i) in C.

Thus the polynomial det(xIn−A) is quite important.

Definition 12.1.1. The characteristic polynomial1 p(x) of the n×n matrix A is

det(xIn−A)

where, as usual, In is the n×n identity matrix, and x is a variable.

As already noted the roots of the characteristic polynomial are the eigenvalues.
This may depend of the field of coefficients: for example quadratic polynomials that
are irreducible over R factor over C.

Theorem 12.1.2. The characteristic polynomial p(x is a monic polynomial of de-
gree n in x, which we write with alternating signs as

p(x) = xn− p1xn−1 + p2xn−2 + · · ·+(−1)k pkxn−k + · · ·+(−1)n pn, (12.1)

where the pi are in the base field F.

Proof. We use Definition 11.3.1 of the determinant. So p(x) is a sum of a product
of terms, one from each row and column of A, corresponding to a permutation of n
elements. Note that the variable x only appears in the terms along the diagonal, and
to the first power with coefficient 1. This implies that the degree of p(x) is at most
n. Furthermore the only term where n diagonal elements occur corresponds to the
identity permutation. We get leading coefficient 1 since the product is

n

∏
i=1

(x−aii). (12.2)

Since (12.1) is just a monic polynomial of degree n, we are done. ut

Theorem 12.1.3. The characteristic polynomial of a upper or lower triangular ma-
trix A of size n is ∏

n
i=1(x− aii). In particular, if A has r distinct scalars λ1, . . . ,

λr along the diagonal, then A has at least r eigenvectors vi with eigenvalues λi,
1≤ i≤ r. These eigenvectors are linearly independent.

1 Note that some authors (for example [28]) define the characteristic polynomial as det(A− xIn),
while others (in particular [8], [16], and [24] use the one given here. It is a simple exercise using
properties of the determinant to show that the two possible definitions differ by a factor of (−1)n.
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Proof. Since the characteristic polynomial is a determinant, we simply apply Theo-
rem 11.3.4. The last statement is just Theorem 10.1.5. ut

An important property of the characteristic polynomial is that it is invariant un-
der similarity, just like the determinant. Thus we may talk about the characteristic
polynomial of a linear operator. In other words

Theorem 12.1.4. The characteristic polynomial of A is the same as that of CAC−1,
for any invertible matrix C of size n.

Proof. We need to compute det(xI−CAC−1). Since

xI−CAC−1 =C(xI−A)C−1

this follows immediately from Corollary 11.4.4. ut

This implies that all the coefficients pi in (12.1) are invariant for similarity.

Theorem 12.1.5. For any two square matrices A and B of size n, the characteristic
polynomial of AB is equal to that of BA.

Proof. If either one is invertible, let’s say A, then A(BA)A−1 = AB, so the matrices
AB and BA are similar: now just use Theorem 12.1.4.

If A is not invertible, replace A by A− tI for |t| > |λi|, for any eigenvalue λi of
A. Then A− tI is invertible, so by the previous case the characteristic polynomial of
(A− tI)B is equal to that of B(A− tI), so

det(xI− (A− tI)B = det(xI−B(A− tI).

Now fix x, so that we have an equality of polynomials of degree n in t that agree
for an infinite number of values of t. Theorem 6.2.3 says that they are equal for all
values of t including the value t = 0: in fact all we need is that they agree at n+ 1
points, by using the computation of the determinant of the Vandermonde matrix in
Example 11.5.5. So setting t = 0 we get det(xI−AB) = det(xI−B(A) for all values
of x, which is what we wanted to prove. ut

In particular

Corollary 12.1.6. The eigenvalues of AB are the same as those of BA, counted each
with their multiplicity as roots of the corresponding characteristic polynomial.

You may well ask why we chose to write 12.1 with alternating coefficients. It is
because the coefficients then have an interesting interpretation. For example

Theorem 12.1.7. The coefficient p1 in (12.1) is the trace of A, namely:

p1 = trA =
n

∑
i=1

aii.

The coefficient pn in (12.1) is the determinant of A.
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Proof. This is easy to prove using the expansion (11.3) of the determinant of xIn−A
in terms of permutations. First we look at the coefficient of the term of degree 0. We
get it by setting x = 0, so the constant term is det(−A) = (−1)n det(A) = (−1)n pn.
Finally we look at the term of degree n− 1. It must come from a term with at
least n− 1 diagonal elements, to get a high enough degree. Since each term in the
determinant expansion involves a term from each row and column, this forces the
remaining term to be a diagonal term too. So in the product (12.2) we choose the
term x from n−1 factors, and the term −aii from the last one. This gives the result.

ut

Exercise 12.1.8. Compute the characteristic polynomials of the matrices A and B:

A =

(
1 2
1 3

)
and B =

1
2

(
7 −3
−1 1

)
and show that the determinant and the trace agree with the computation in (12.1).

Simple examples of the characteristic polynomial here.

Example 12.1.9. We compute the characteristic polynomial of the permutation ma-
trix A from Example 10.4.5 by Laplace expansion. You will see that you get the
minimal polynomial for A, which follows from the Cayley Hamilton Theorem we
will prove soon. We will also do a more general computation in Theorem 12.6.1.

12.2 The Multiplicity of Eigenvalues

Associated to any eigenvalue λ of a linear operator L w can associate two numbers.
First the multiplicity of λ as a root of the characteristic polynomial of L, which we
call the algebraic multiplicity, and second the dimension of the nullspace of L−λ I
which we call the geometric multiplicity.

Then:

Theorem 12.2.1. The algebraic multiplicity of any eigenvalue of L is greater than
or equal to the geometric multiplicity.

Proof. Assume that the geometric multiplicity of the eigenvector λ is g. So there are
g linearly independent vectors v1, . . . , vg that are in the nullspace of L−λ I, so they
form a basis for the nullspace of L−λ I. Complete this basis to a basis of the vector
space V on which L is acting. In this basis, L has a matrix A. The eigenvalues of L
are those of A, by Theorem 12.1.4, so we need only work with A. By construction,
in this basis the first g columns of A are 0 except for the entry λ is position (i, i).
In particular the upper right hand corner of A of size g is λ I. This means that A is
block upper triangular. By Theorem 11.3.5, the determinant of xI−A is the product
of the determinants of the blocks, which implies that the characteristic polynomial
has the root λ with multiplicity at least g, which is what we needed to prove. ut

Now deal with generalized eigenvectors.
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12.3 The Trace and the Determinant

In this section we consider the n×n matrix A of a linear operator. We may assume
that we have chosen the most convenient basis , so if A is complex, we may assume
A is triangular. Consider the characteristic polynomial of A. Over C it has n roots,
its eigenvalues counted with multiplicity: λ1, . . . , λn. Since we may assume A is
triangular, by Theorem we know that these values are the diagonal entries of A.
Thus

Theorem 12.3.1. The trace of A is the sum of the eigenvalues counted with multi-
plicities.

If A has only real entries, and we want to consider it as the matrix of a real linear
operator, when A does not have enough eigenvalues. We can however consider it as
a complex matrix, in which case Theorem 12.3.1. As we know, the eigenvalues then
are either real or occur in complex conjugate pairs. In either case we see that the
sum of the eigenvalues is real. While we cannot diagonalize A over R we can block
diagonalize it, with blocks of the form(

a −b
b a

)
, b 6= 0,

along the diagonal. Over C this has eigenvalues a±ib, so their sum is 2a as expected.
Now we turn to the determinant. Over C, we may choose as before a triangular

A, in which case we know that the determinant is the product of the diagonal entries,
so

Theorem 12.3.2. The determinant of A is the product of the eigenvalues counted
with multiplicities.

Again, if A is real, so that its eigenvalues occur in complex conjugate pairs, we
see that its determinant is real, as it must be.

Now we go back to the polynomial techniques of Chapter 10. Let f (x) be any
polynomial. We want to compute the eigenvalues of f (A).

Theorem 12.3.3 (Spectral Mapping Theorem). Assume λ1, . . . , λn are the eigen-
values of the n× n matrix, considered over C. Then for any polynomial f (x), the
eigenvalues of f (A) are f (λ1), . . . , f (λn).

Proof. The key point is that A is similar to an upper triangular matrix, i.e. A =
CTC−1. Then, since Ak = CTC−1 . . .CTC−1 = CT kC−1, f (A) = C f (T )C−1. f (T )
is upper triangular, and its diagonal elements are f (tii, and therefore its eigenvalues.
Since they are also the eigenvalues of f (A), we are done. ut

We can apply this result to the characteristic polynomial p(x) of A.

Corollary 12.3.4. All the eigenvalues of p(A) are 0.
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Proof. Indeed, the theorem tells us that all the eigenvalues of p(A) are of the form
p(λ ), where λ is an eigenvalue of A. Since the eigenvalues of A are the roots of p(x)
we are done. ut

In the next section we will improve this result.

12.4 The Cayley-Hamilton Theorem

We did something unusual when we formed the characteristic polynomial. We
worked with a matrix whose coefficients are not in a field, but in the set of poly-
nomials F [x]. It has all the properties of addition and multiplication of a field, but
we cannot divide in it. Fortunately when we form a determinant, only addition and
multiplication are needed, and, as we saw in §C.1, these behave in the expected way.

Here is the statement of the Cayley-Hamilton Theorem, using the terminology of
§10.3.

Theorem 12.4.1 (Cayley-Hamilton). If A is a square matrix of size n, and p(x) its
characteristic polynomial, then p(x) vanishes on A, so p(A) = 0.

Thus for any matrix of size n, the minimal polynomial has degree at most n, and
divides the characteristic polynomial Recall that from the elementary linear algebra
techniques used in Theorem 10.3.1, the best bound we were able to produce for
the degree of the minimal polynomial is n2, so the bound provided by the Cayley-
Hamilton Theorem is much better. On the other hand, in Theorem 10.4.3 we showed
that in some cases the minimal polynomial has degree n, so it must be the character-
istic polynomial. Furthermore if we take for A a diagonal matrix where the diagonal
entries are all distinct, it is easy to see that the minimal polynomial is the character-
istic polynomial. In fact this is a good exercise. Thus the Cayley Hamilton Theorem
is not completely unexpected.

Proof. Let Px = xI−A be the characteristic matrix of A. Its entries are polynomials
of degree at most 1 in x. As in §11.7, we can form the adjugate matrix Rx of Px. We
can do this since that just requires forming minors of Px, which are determinants,
exactly as in the case of the characteristic polynomial. Each minor considered has
degree at most n−1 in x, since it is the product of n−1 terms of Px. So the adjugate
Rx of Px is a square matrix of size n, whose entries are polynomials in x of degree at
most n−1. We can therefore write it as

Rx = R0xn−1 +R1xn−2 + · · ·+Rixn−i−1 + · · ·+Rn−2x+Rn−1

where the Ri in the right hand side are n× n matrices of scalars. Clearly xI−A is
the parallel representation of Px.

By Corollary 11.7.1 , we have

det(Px)In = PxRx. (12.3)
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Multiply out PxRx using the representations above:

PxRx = R0xn +R1xn−1 + · · ·+Rixn−i + · · ·+Rn−2x2 +Rn−1x

−
(
AR0xn−1 +AR1xn−2 + · · ·+ARixn−i−1 + · · ·+ARn−2x+ARn−1

)
(12.4)

Now we enter this into (12.3), writing the left hand side as the scalar

det(Px)In = p(x)In = xnIn + p1xn−1In + · · ·+ pixn−iIn + · · ·+ pnIn

without the alternation of sign of the coefficients, as before, since it serves no pur-
pose here. So (12.3) becomes, after equating the constant matrices of polynomials
appearing as coefficients of xi on each side:

I = R0 coefficient of xn

p1I = R1−AR0 coefficient of xn−1

. . .= . . .

piI = Ri−ARi−1 coefficient of xn−i

. . .= . . .

pn−1I = Rn−1−ARn−2 coefficient of x

pnI =−ARn−1 constant coefficient

as you should check. Notice that each equation is a matrix equation that involves
equating all the corresponding coefficients of n×n matrices. Now a miracle occurs:
multiply the equation giving the coefficient of xi on the left by Ai, and sum the
equations. The right hand side telescopes to the zero matrix, and the left hand side
is

An + p1An−1 + · · ·+ pn−1A+ pn

which is just the characteristic polynomial evaluated at the matrix A. We have shown
that the characteristic polynomial vanishes at A, so we are done. ut

Examples, especially the 2×2 case.
Explain the miracle.

12.5 The Schur Unitary Triangularization Theorem

After the boring generalization to C of results that are true over R, we prove an
interesting factorization theorem.

Theorem 12.5.1 (Schur Unitary Triangularization Theorem). Let A be an n×n
complex matrix, and let λ1,λ2, . . . ,λn be its eigenvalues, listed with the multiplicity
with which they appear in the characteristic polynomial. They are written in any
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order. Then there is a unitary matrix U such that U∗AU = T , where T is an upper
triangular matrix with tii = λi.

How does this compare to what we already know? Because U∗ = U−1, the the-
orem says that A is similar to T , but the similarity is achieved using a smaller col-
lection of matrices: unitary rather than more general invertible matrices. We already
know (Corollary 10.6.1 that A is similar to an upper triangular matrix, but our proof
requires establishing the Jordan canonical form: the proof here is much more direct.
Theorem 12.1.3 tells us that the characteristic polynomial of the upper triangular T
is ∏

n
i (x− tii) so that the tii are the eigenvalues. One point that is new is that we can

put the eigenvalues of A on the diagonal of T in any order.

Proof. Pick one of the eigenvalues of A and a unit length eigenvector u1 for this
eigenvalue, which we write λ1.

The first thing we will do is construct an orthogonal matrix U that will act as
a change of basis matrix so that the new matrix B = U∗AU , which is similar to A
since U∗ =U−1 and therefore has the same eigenvalues as A, has the unit coordinate
vector e1 as eigenvector corresponding to λ1.

Here is how we do that: Gram-Schmidt orthogonalization says we can complete
u1 to a orthogonal basis ui, 2≤ i≤ n. By simply dividing each vector by its length
we get an orthonormal basis. The matrix U whose columns are the unit length ui is
unitary. Consider the matrix B =U∗AU , so UB =UU∗AU = AU . Then by elemen-
tary matrix multiplication Ue1 = u1. Then

UBe1 = AUe1 = Au1 = λ1u1 = λ1Ue1.

Multiplying both sides by U∗, we get Be1 = λ1e1, as claimed. By obvious matrix
multiplication. this means

B =

(
λ1 ?

0n−1,1 B1

)
(12.5)

so that B is block triangular, with diagonal blocks 1×1 (λ1) and a n−1×n−1 block
B1 on the diagonal. Because B was obtained from A by similarity, the eigenvalues
of B1 are the remaining eigenvalues λ2, . . . , λn of A.

We can repeat this operation on B1 using a unitary matrix U1, and so on, until we
get a upper triangular matrix T whose diagonal elements are the λi in the order we
chose. ut

Geometrically here is what we are doing. We first pick any eigenvalue λ1, with an
associated eigenvector v1. We make a unitary change of coordinates to move v1
to e1. Then we restrict to the orthogonal complement of v1, a space of dimension
n− 1, and restrict the operator to this space. Its eigenvalues are the unused ones
of the original operator. Find a new eigenvalue eigenvector pair, do another unitary
coordinate change to move it to e2, and repeat.

We can use the Schur Theorem to improve the Spectral Mapping Theorem 12.3.3.
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Theorem 12.5.2. If the eigenvalues of the n× n matrix A are λ1, λ2, . . . , λn, listed
with the multiplicity with which they appear in the characteristic polynomial. Then
the eigenvalues of f (A), for any polynomial f (x), are f (λ1), . . . , f (λn).

Proof. By the Schur Theorem (or by Jordan Canonical Form) we know that A is
similar to a triangular matrix T , so A =CTC−1. We do not need to assume that the
change of basis matrix C is unitary. Then f (A) = f (CTC−1) =C f (T )C−1 as we saw
in Theorem 10.2.4. The diagonal entries of f (T ) are the f (λi). Since A is similar to
T , these are the eigenvalues of f (A). ut

12.6 The Characteristic Polynomial of the Companion Matrix

We compute the characteristic polynomial of the companion matrix (5.16). We al-
ready know the answer: indeed in Theorem 10.4.3 we showed that (12.6) is the
minimal polynomial of the matrix: since it has degree n it is also the characteristic
polynomial. We do the computation here by a different method.

Theorem 12.6.1. The characteristic polynomial of the companion matrix is the
polynomial

f (x) = xn−an−1xn−1−an−2xn−2−·· ·−a0 (12.6)

Proof. The characteristic polynomial of A is the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 0 . . . 0 −a0
−1 x . . . . . . 0 −a1
0 −1 x . . . 0 −a2
0 0 −1 . . . 0 −a3
...

...
. . . . . . . . .

...
0 0 0 . . . −1 x−an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(12.7)

We compute the Laplace expansion along the first row, using induction on n. First
we do the case n = 2. The determinant we need is∣∣∣∣ x −a0

−1 x−a1

∣∣∣∣= x(x−a1)−a0 = x2−a1x−a0,

as required.
Now we do the case n. By Laplace expansion of the determinant along the first

row we get two terms:

x

∣∣∣∣∣∣∣∣∣∣∣

x . . . . . . 0 −a1
−1 x . . . 0 −a2
0 −1 . . . 0 −a3
...

. . . . . . x
...

0 0 . . . −1 x−an−1

∣∣∣∣∣∣∣∣∣∣∣
+(−1)na0

∣∣∣∣∣∣∣∣∣∣∣

−1 x . . . . . . 0
0 −1 x . . . 0
0 0 −1 . . . 0
...

...
. . . . . . x

0 0 0 . . . −1

∣∣∣∣∣∣∣∣∣∣∣
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By induction, since the first term is x times the characteristic polynomial in the
case n−1, we get

x(xn−1−an−1xn−2−an−2xn−3−·· ·−a2x−a1)

while the second term gives a0(−1)n(−1)n−1 = −a0, since the matrix is triangular
with −1 along the diagonal.

Thus we do get the polynomial (12.6) as characteristic polynomial of (5.16). ut

Remark 12.6.2. Starting with any monic polynomial f (x) of degree n, we can ask
for all similarity classes of n×n matrices whose characteristic polynomial is f (x) .
We know that there is at least one, namely (5.16).

If F =C, then f (x) factors linearly with n complex roots b1, . . . , bn, not necessar-
ily distinct. Then we can construct an operator M whose matrix is a lower triangular
n×n matrix B over C, whose diagonal entries are the bi, taken with their multiplic-
ity as zeroes of f (x). Then the characteristic polynomial of B is f (x) by Theorem
12.1.3. Can we guarantee that these two operators are distinct? If they are similar,
then they must have the same minimal polynomial as well as the same characteristic
polynomial. Now Corollary 10.6.4 shows that the minimal polynomial for each i is
the size of the largest Jordan block for that bi. So if there is more than one Jordan
block for at least one of the bi, the minimal polynomial has degree less than n, so
the operators are not similar.

When F =R the situation is more complicated, since the irreducible factorization
of f (x) over R contains polynomials of degree 1 and degree 2. Let us look at the
2×2 case: the real matrix (

a b
c d

)
(12.8)

with characteristic polynomial

g(x) = x2− (a+d)x+(ad−bc).

The trace of this matrix is a+d and its determinant ad−bc. Notice how they appear
in the characteristic polynomial. For this to be irreducible over R, by the quadratic
formula we must have

(a+d)2−4(ad−bc) = (a−d)2 +4bc < 0

or (a−d)2 < 4bc.
The companion matrix of this polynomial is(

0 −(ad−bc)
1 a+d

)
The full value of the companion matrix only reveals itself when one takes smaller

subfields of C, for example the field of rational numbers Q. Over such a field there



12.7 The Minors of a Square Matrix 237

are irreducible polynomials of arbitrary high degree: for example the cyclotomic
polynomial

Φp(x) = xp−1 + xp−2 + · · ·+ x+1

for p a prime number. Since (x−1)Φp(x) = xp−1, the roots of Φ(t) are complex
numbers on the circle of radius 1, thus certainly not rational. It is a bit harder to show
that Φp(x) is irreducible, but it only requires the elementary theory of polynomials
in one variable. A good reference is Steven H. Weintraub’s paper Several Proofs of
the Irreducibility of the Cyclotomic Polynomial

12.7 The Minors of a Square Matrix

Now assume that A and B are two square matrices of size n. We know that if they are
similar, meaning that there is an invertible matrix C so that B = CAC−1, they must
have the same minimal polynomial and the same characteristic polynomial. Is that
enough to insure they are similar? We will now see it is not, using the Cauchy-Binet
Theorem 11.8.4.

Definition 12.7.1. For the matrix A of size n let DA(k) be the greatest common di-
visor of all the minors of xI−A of size k. Thus DA(k) is a polynomial in x, that we
normalize so that its leading coefficient is 1: it is monic.

It is immediate that DA(n) is the characteristic polynomial of A. For convenience
we set DA(0) = 1. Then Dk(A) divides Dk+1(A) for 0≤ k ≤ k−1.

Write Ā for xI−A and B̄ for xI−B. We know that if A and B are similar, then
B̄ = CĀC−1. For an arbitrary minor B̄I

J of size k of B, by two uses of the Cauchy-
Binet Theorem 11.8.4, with the notation there, we get

det(B̄I
J) = ∑

K

(
∑
L

det(CI
L)det(ĀL

K)
)

det((C−1)K
J )

where the sums over K and L are over all subsets of [1, . . . ,n] containing k elements.
Remembering that the matrices C and C−1 involve only constants this implies that

det(B̄I
J) divides all the det(ĀL

K). In particular the greatest common divisor DB(k) of
the det(B̄I

J) divides the greatest common DA(k) of the det(ĀI
J). Running the same

argument by moving the C and C−1 to the other side, we see that DA(k) divides
DB(k), so they are the same monic polynomial. So we have proved:

Theorem 12.7.2. If A and B are similar matrices, then DA(k) = DB(k) for all k.

Example 12.7.3. If A is the n×n companion matrix (5.16), let’s compute DA(n−1).
Remove the first row and the last column from the characteristic polynomial A, given
in (12.7). The determinant of that minor of size n−1 is clearly ±1, since it is upper
triangular with −1 along the diagonal. Thus DA(n− 1) = 1, so all the DA(k) = 1,
for 1≤ k ≤ n−1, since the others must divide DA(n−1).
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Example 12.7.4. To be sure that this is a new invariant, beyond the minimal poly-
nomial and the characteristic polynomial, we should exhibit two polynomial that
have the same minimal and characteristic polynomials, and yet are not similar, by
showing that DA(k) 6= DB(k) for some k.

For example take

A =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 so xI−A =


x 0 0 0
−1 x 0 0
0 0 x 0
0 0 −1 x


and

B =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 so xI−B =


x 0 0 0
−1 x 0 0
0 0 x 0
0 0 0 x


Then the minimal polynomial for both is x2 and the characteristic polynomial x4,
as you should check. However DA(2) = 1 while DB(2) = x, and DA(3) = x while
DB(3) = x2 so these matrices are not similar.

12.8 Computation of Eigenvectors

Put the material about iteration of A and importance of eigenvector computations?
Probability matrices? Markov chains?

12.9 The Big Picture

A summary of what happens first general results, then over C, then over R.
Talk about iterations Ak of linear operators: what happens as k gets large and

what do the eigenvalues tells you.

12.10 The Coefficients of the Characteristic Polynomial

We have already described the two most important coefficients in the characteristic
polynomial: the trace and the determinant. In this optional section we explain the
others. This is a more complicated combinatorial problem.

Before stating the result, we need notation concerning submatrices and their de-
terminants, called minors, of A. We first considered submatrices and established
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notation in §2.4; then we looked at their determinants in §11.5, but only for subma-
trices of size n−1 of a matrix of size n. Here we need some more general notation.

Definition 12.10.1. Let J = {i1, . . . , ik} be a set of k distinct integers in the interval
[1,n], listed in increasing order. If A is a square matrix, let AJ or A(i1, . . . , ik) (which
is the notation used in §2.4) be the principal submatrix of A formed by the rows
and the columns of A with indices J. Let mJ = m(i1, . . . , ik) be its determinant, or
minor. Then AJ is a principal submatrix of A, and its determinant mJ or m(i1, . . . , ik)
a principal minor of A.

For each k between 1 and n, the submatrices A(1,2, . . . ,k) are the leading princi-
pal submatrices, and their determinants the leading principal minors of A.

Example 12.10.2. So if A is the matrix
2 0 0 1
0 4 3 0
0 3 4 0
1 0 0 2


then

A(1,2) =
(

2 0
0 4

)
, A(2,3) =

(
4 3
3 4

)
, and A(1,2,3) =

2 0 0
0 4 3
0 3 4


Obviously, if A is symmetric as in this example, AJ is symmetric. For each k, there
is only one leading principal matrix, but

(n
k

)
principal minors of order k.

For the matrix A above, we have already computed A(1,2) and A(1,2,3); A(1) is
the 1×1 matrix (2) and A(1,2,3,4) is A. So the determinant m(1) = 2, m(1,2) = 8,
and m(1,2,3) = 2(16−9) = 14.

Then we compute the coefficients of the characteristic polynomial in the follow-
ing theorem. The proof is complicated: you may want to look at Example 12.10.5
first, since it deals with the simplest case: a diagonal matrix. In any case, we only
use this result much later in the book.

Theorem 12.10.3. For each index j, 1≤ j ≤ n we have

p j = ∑
J

detAJ = ∑
J

mJ

where the sum is over all choices of j elements J = {i1, . . . , i j} from [1,n], and AJ is
the corresponding principal submatrix of A, and mJ its determinant. Thus the sum
has

(n
j

)
terms.

Example 12.10.4. We first check this in the two cases we already know from Theo-
rem 12.1.7.

• If j = n, then there is only one choice for J: all the integers between 1 and n.
Theorem 12.10.3 then says that pn = detA.
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• If j = 1, the sets J have just one element, so Theorem 12.10.3 says

p1 = a11 +a22 + · · ·+ann

which is indeed the trace.

Proof. To do the general case, we use the definition of the determinant (11.3) in
terms of permutations.

To pass from the determinant to the characteristic equation, we must make the
following substitutions: we replace each term ai j by δi jx−ai j, where x is a variable
and δi j is the Kronecker delta

δi j =

{
1, if i = j;
0, otherwise.

With this notation the characteristic polynomial is the sum over all permutations σ

of

ε(σ)(δ1,σ(1)x−a1,σ(1))(δ2,σ(2)x−a2,σ(2)) . . .(δn,σ(n)−an,σ(n)). (12.9)

We fix an integer k in order to study the coefficient pk of xn−k in the characteristic
polynomial.

Then we consider a subset I = {i1, i2, . . . , ik}, 1 ≤ i1 < i2 < · · · < ik ≤ n, of the
first n positive integers, and we ask how a term such as (12.9) can produce a factor

±ai1,σ(i1)ai2,σ(i2) . . .aik,σ(ik)

The permutation σ must fix at least the n−k integers not in I, meaning that σ(i) = i
for i /∈ I.

The key point is that σ then restricts to a permutation τ : I → I. Conversely a
permutation τ : I→ I extends uniquely to a permutation σ of the first n integers by
defining it to be constant on the integers not in I. Note that ε(σ) = ε(τ).

Thus the term of degree n− k in the characteristic polynomial can be written

∑
I

∑
σ

ε(σ)∏
JI

(δ j,σ( j)∏
I
(−ai,σ(i)) (12.10)

where the first sum is over all the subsets I of k elements as defined above; the
second sum is over all the permutations of [1, . . . ,n]. JI is the complementary set to
I of n− k elements in [1, . . . ,n], and the product

∏
JI

(δ j,σ( j)

is over all the j ∈ J. In other words in the product of binomials of (12.10) we pick
n− k times the Kronecker delta term, and k times the −ai,σ(i) term, in all possible
ways.
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Unless the permutation σ fixes the elements in J, the corresponding term in
(12.10) vanishes, so by the key point we can rewrite (12.10) as

∑
I

(
∑
τ

ε(τ)∏
i∈I

(−ai,τ(i))
)

(12.11)

where τ varies over all the permutations of I. Then the interior sum is just (−1)k

times the determinant of the principal submatrix AI of A, which proves the result.
ut

Example 12.10.5. If the matrix A is diagonal, then the characteristic polynomial of
A is just ∏

n
i=1(x−aii), Therefore by Definition 12.11, the coefficients of the charac-

teristic polynomial are just the elementary symmetric polynomials in the aii, which
are of course the eigenvalues of A. It is easy to see in this case that the elementary
symmetric polynomials are the sum of the determinants of the principal sub minors
of the appropriate size of A, as Theorem 12.10.3 says they are.

More examples here.





Chapter 13
The Spectral Theorem

Abstract The main result of the lecture, one of the most important results in lin-
ear algebra, indeed, all of mathematics, is the Spectral Theorem 13.3.1. It tells us
that the eigenvalues and eigenvectors of a real symmetric matrix (and of a complex
Hermitian matrix) are real. We prove it first by using an argument over C, and a
second time (in the real symmetric case) , without introducing complex number, us-
ing the Rayleigh Quotient instead. This argument requires a famous theorem in real
analysis: the maximum theorem for a continuous function on a compact set, that we
do not prove. An immediate corollary of the Spectral Theorem is Theorem 13.3.4,
which shows that we can diagonalize real symmetric matrices using orthogonal ma-
trices, defined in Definition 8.3.6 precisely for this appearance. This gives another
verification of Algorithm 7.5.3. Then we list various ways of characterizing positive
definite and semidefinite forms: Theorem 13.5.4.

13.1 Triangulation of Complex Operators

In this section we prove a variant of Corollary 10.6.1, which was derived indirectly
from the Jordan canonical form.

First recall some definitions: a vector space V is an inner-product space if it is
either a Euclidean space (therefore real) or a Hermitian space (therefore complex).
In both cases we can associate to an operator L : V → V its adjoint, that we will
write here as L∗. See Sections 9.1 and 9.2.

Theorem 13.1.1. Assume V is an inner-product space, L an operator on V . Let W
be a subspace of V invariant under L. Then W⊥ is invariant under L∗.

Proof. By hypothesis, if w ∈W , then Lw ∈W . Let v be in W⊥. Then

0 = 〈Lw,v〉= 〈w,L∗v〉.

Since w is an arbitrary element of W , this shows that every L∗v is orthogonal to
W . ut

243
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Now we apply this in the complex case.

Theorem 13.1.2. Let V be a Hermitian space, and L any operator on V . Then there
is an orthonormal basis for V in which the matrix A of L is upper-triangular. thus L
is triangulable.

Proof. We prove this by induction on the dimension n of V . If n = 1 there is nothing
to prove. Because V is complex, the adjoint L∗ has an eigenvalue λ with associ-
ated eigenvector v of length 1. Let W be the orthogonal complement of the one-
dimension space spanned by v. So W is invariant under L. We can restrict L to . an
operator LW on W . Since W has dimension n−1, by induction we know that LW is
triangulable in an suitable orthonormal basis v2, . . . , vn of W . I claim that the matrix
of L is upper-triangular in the orthonormal basis v, v2, . . . , vn of W . We do not know
how L acts on v, since we only know that v is an eigenvector for the adjoint L∗. But
that does not matter, since it is the first vector. ut

This is the desired result.

13.2 The Rayleigh Quotient

Now V is a Euclidean space of dimension n. Let A be the matrix of the symmetric
operator L in an orthonormal basis. Thus A is a symmetric matrix. Our goal is to
prove that all the eigenvalues of A are real. We will do this in two different ways.
The first proof does not involve the complex numbers, but requires a well-known
theorem in multivariable calculus you may not have seen. We start on that proof
here. First recall that since A is symmetric: 〈x,Ax〉 = xtAx = 〈Ax,x〉, which just
expresses the fact that L is self-adjoint.

Starting from the quadratic form xtAx, we define a function that is the key to the
proof.

Definition 13.2.1. The Rayleigh quotient is the real-valued function, defined for all
non-zero vectors x as:

R(x) =
〈x,Ax〉
〈x,x〉

.

R is clearly continuous everywhere it is defined, namely everywhere except at
the origin. In fact it is infinitely differentiable there, since it is just a quotient of
polynomials in the variables. Moreover it has the following useful property:

Lemma 13.2.2. For any non-zero t ∈ R , R(tx) = R(x)

Proof. Just substitute tx for x in the definition of R(x). ut

Next we define a simple geometric concept.

Definition 13.2.3. A ray emanating from the origin through a non-zero point e is
the set of te, for t > 0. Thus a ray is a half-line starting at the origin and passing
through e.
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The reason we formed the Rayleigh quotient is

Lemma 13.2.4. All the values of R(x) are attained on the unit sphere U = {x|‖x‖=
1}.

Proof. Lemma 13.2.2 says that the Rayleigh quotient is constant along rays ema-
nating from the origin. Since every point in Rn \ 0 is on a (unique) ray emanating
from the origin, and since each such ray meets the unit sphere (why?), all values of
R are attained on the unit sphere U . ut

Theorem 13.2.5. R(x) attains its maximum M and its minimum m on the unit
sphere.

Proof. We do not prove this result. A famous theorem in multivariable calculus
called the Weierstrass maximum theorem says R(x), when restricted to U attains
both its minimum and its maximum values, because R(x) is continuous on U and U
is closed and bounded. We will not define what it means to be closed, but roughly it
means that every limit of a converging sequence of points in U is in U . Bounded just
means that U is contained in a ball of finite radius, which is obviously true for U .
By Lemma 13.2.4, the maximum and minimum of R(x) on all of Rn \0 are attained
on U , so the values M and m we have found are not only the maximum and the
minimum for R when restricted to U , but for R on all of Rn \0. ut

Recall that the gradient R(x) is the vector of partial derivatives
(

∂R
∂xi

)
, for 1≤ i≤

n. We now use without proof a well-known theorem of multivariable calculus: any
point where R(x) attains its maximum or minimum is a critical point for R, namely
a point e where ∇R(e) = 0.

Here is the key computation.

Proposition 13.2.6. Let e ∈U be a critical point for R. Then e is an eigenvector of
A with eigenvalue λ = R(e).

Proof. Let f be an arbitrary but fixed non-zero vector in Rn, and let t be a real vari-
able. We evaluate the Rayleigh quotient at e+ tf, and write the composite function
as

g(t) = R(e+ tf).

The numerator of g(t) is

p(t) = 〈e+ tf,A(e+ tf)〉= 〈e,Ae〉+2t〈e,Af〉+ t2〈f,Af〉 (13.1)

and its denominator is

r(t) = 〈e+ tf,e+ tf〉= 〈e,e〉+2t〈e, f〉+ t2〈f, f〉 (13.2)

so they are both quadratic polynomials in the variable t. Now the derivative g′(t) =
〈∇R((e+ tf), f〉 by the chain rule. We evaluate g′(t) at t = 0. Since the gradient
∇R(e) = 0 by the hypothesis that we are at a critical point, we get g′(0) = 0.

On the other hand, since g(t) = p(t)/r(t), by the quotient rule we get
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g′(0) =
p′(0)r(0)− p(0)r′(0)

r2(0)
= 0.

Now r2(0) = 〈e,e〉= 1, since e is on U . Furthermore p(0) = R(e), which we denote
λ . So we get:

g′(0) = p′(0)−λ r′(0) = 0. (13.3)

Next we compute the derivatives of p(t) and r(t) at 0, using (13.1) and (13.2) re-
spectively.

p′(0) = 2〈f,Ae〉
r′(0) = 2〈f,e〉

Equation (13.3) reads, after substituting in these values:

2〈f,Ae〉−2λ 〈f,e〉= 0 , or 〈f,Ae−λe〉= 0.

Since f is an arbitrary vector in Rn, this means that Ae− λe is perpendicular to
every vector, which can only happen if it is the zero vector: Ae− λe = 0. Thus e
is an eigenvector of A with eigenvalue λ = R(e), which concludes the proof of the
proposition. ut

Theorem 13.2.7. Let m be the minimum, and M the maximum value of R(x). Then
m and M are eigenvalues of A, so A has a real eigenvalue.

Proof. Theorem 13.2.5 says R(x) has a maximum and a minimum, therefore it has
a least one critical point. In fact, unless R(x) is constant, it has two critical points.
By Proposition 13.2.6 each critical point e is an eigenvector with eigenvalue R(e).
Since R(x) is a real-valued function each such eigenvalue is real. ut

The minimum m is therefore the smallest value of R(x) at a critical point, and the
maximum the largest.

13.3 The Spectral Theorem for a Real Symmetric Matrix

Using the results on the Rayleigh quotient, we give a first proof of the spectral
theorem for real self-adjoint operators on a Euclidean space V . We work with its
matrix A in an orthonormal basis of V , which is therefore symmetric.

Theorem 13.3.1 (The Spectral Theorem). If A is a real symmetric n× n matrix,
then its eigenvalues are real and its eigenvectors can be selected to form an or-
thonormal basis of the vector space V .

The spectrum of a matrix is the set of its eigenvalues. This theorem is called the
spectral theorem because it describes the eigenvalues of a real symmetric matrix:
they are real. The first paragraph of Steen [25] discusses the early history of the
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spectral theorem, at the time it was called the principal axis theorem. We have al-
ready seen the contribution of Sylvester in his law of inertia 7.7.6. We have used the
method of Lagrange (§7.5) to diagonalize quadratic forms.

Example 13.3.2. Before starting the proof, let’s work out the familiar 2×2 case. Let
A be an arbitrary 2×2 matrix (

a b
c d

)
To compute the eigenvalues of A, we need the roots of the characteristic polynomial
of A, namely the determinant∣∣∣∣t−a −b

−c t−d

∣∣∣∣= t2− (a+d)t +ad−bc.

The quadratic formula tells us that this polynomial has real roots if and only if the
discriminant is non-negative. The discriminant is

(a+d)2−4(ad−bc) = a2 +2ad +d2−4ad +4bc = (a−d)2 +4bc.

When the matrix is symmetric, b = c, so we get (a− d)2 + 4b2, a sum of squares,
which is always non-negative. So the eigenvalues:

λi =
a+d±

√
(a−d)2 +4b2

2

are real.
What about the eigenvectors? We could compute them, but we only need to show

they are orthogonal. First assume the matrix has a double eigenvalue. This corre-
sponds to the discriminant being 0, which means that b = 0 and a = d. Because the
matrix is diagonal, any non-zero vector in the plane is an eigenvector. There is there-
fore no difficulty in finding two eigenvectors that are orthogonal. Now assume that
the eigenvalues are distinct. Let v1 be the unit eigenvector corresponding to the first
(real) eigenvalue λ1. Let v2 be a unit vector generating the orthogonal complement
of v1. So

〈Av1,v2〉= λ1〈v1,v2〉= 0.

On the other hand, since A is symmetric

〈Av1,v2〉= 〈v1,Av2〉.

The two equations together say that Av2 is orthogonal to v1, so it is a multiple of v2.
Thus v2 is the second eigenvector. This settles the theorem in dimension 2.

Proof (Proof of the Spectral Theorem). We now do the case of general n, general-
izing the ideas of the two-dimensional case. By Theorem 13.2.7 we have one real
eigenvalue λ1 with its eigenvector v1, which we can normalize to length 1 .

Apply Theorem 13.1.1 to L, using for W the one-dimension space spanned by
v1. Then the orthogonal W⊥ is invariant under L∗ , namely under L, since L is self-
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adjoint. So choose an orthonormal basis for V that starts with v1. Then the remaining
elements of the basis are a basis of W⊥. In this basis, the matrix A for L has only
zeroes in the first row and column except at a11 = λ1. Because L is self-adjoint, A
is symmetric. This shows that L restricts to a self-adjoint operator L1 on W⊥. Its
matrix in the basis above is just the principal submatrix of A consisting of rows and
columns (2,3, . . . ,n). Repeating the argument using the Rayleigh quotient applied
to L1, we find a second real eigenvalue λ2 with unit length eigenvector v2.

We just repeat this until we get n mutually orthonormal eigenvectors vi with real
eigenvalues λi. ut

If at each step we take the eigenvalue corresponding to the minimum of the
Rayleigh quotient, we get λ1 ≤ λ2 ≤ ·· · ≤ λn.

Definition 13.3.3. Let A be a symmetric n× n matrix. Let v1, v2, . . . , vn be the
collection of orthonormal eigenvectors found in the Spectral Theorem, and λi the
corresponding eigenvalues. Let Q be the matrix whose i-th column is the eigenvector
vi. Then Q is called the matrix of eigenvectors of A, and λ = (λ1, . . . ,λn) the vector
of eigenvalues. The basis {v1, . . . ,vn} of V is called a spectral basis for A.

We write D for D(λ1,λ2, . . . ,λn), the diagonal matrix with diagonal entries the
eigenvalues.

Theorem 13.3.4. Let A be a real symmetric n×n matrix, Q its matrix of unit length
eigenvectors, and λ its vector of eigenvalues. Then Q is an orthogonal matrix. and

Q−1AQ = D or A = QDQt (13.4)

Proof. That the matrix Q is orthogonal follows immediately from the fact that its
columns, the eigenvectors, have length 1 and are orthonormal. We can write all the
eigenvector-eigenvalue equations in one matrix equation:

AQ = QD, (13.5)

as a moment’s thought will confirm. Multiply on the left by Q−1, to get Q−1AQ =
Q−1QD = D. Because Q is an orthogonal matrix, Q−1 = Qt . ut

Exercise 13.3.5. Show that (13.5) encodes all the eigenvector-eigenvalues, as claimed.

Review Definition 7.7.3 for the meaning of p, k, and m in the next result. If you
have not read that chapter, just define them using the following result.

Corollary 13.3.6. Start with a symmetric matrix A. Its rank is the number of non-
zero eigenvalues. p is the number of positive eigenvalues, k is the number of zero
eigenvalues, and m is the number of negative eigenvalues.

Proof. The matrix D = D(λ1,λ2, . . . ,λn) is congruent to A because Q is an orthog-
onal matrix, so Q−1 = Qt . Now p, k, and m are invariants of the congruence class.
They are easy to compute for the matrix D. ut
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13.4 The Spectral Theorem for Self-Adjoint Operators

We now prove the Spectral Theorem for self-adjoint operators over R or C. In the
real case, the proof we give here could replace the part of the proof involving the
Rayleigh quotient in §13.2, at the cost of using techniques involving complex vari-
ables. Since we already have a proof for the real case, we focus on the complex case,
but the proof works in both cases.

First we prove a general result that holds only over C. It gives a simple proof of
a result we proved very indirectly using the minimal polynomial, primary decom-
position and Jordan normal form: see Corollary 10.6.1.

Theorem 13.4.1. Let V be a Hermitian space and L any operator on V . Then there is
an orthonormal basis for V in which the matrix A representing L is upper-triangular.

Proof. We prove this by induction of the dimension n of V . Because V is a complex
vector space, the adjoint L∗ has a unit eigenvector v, therefore a one-dimensional
invariant subspace W spanned by v. By Theorem 9.2.4, the orthogonal complement
W⊥ is invariant under L = (L∗)∗. W⊥ has dimension n− 1, so by induction the
theorem applies to the restriction of L to W⊥. To choose a orthonormal basis for V
that starts with v and then continues with an orthonormal basis of W⊥. The vector
v is mapped under L to some linear combination of all the basis vectors. The matrix
A representing L in this basis is upper-triangular, so we are done. ut

Now we turn to the spectral theorem. Notice how the next theorem improves the
result we just proved.

Theorem 13.4.2. If L is a self-adjoint operator on an inner-product space then any
eigenvalue of L is real, and the eigenvectors corresponding to distinct eigenvalues
are orthogonal.

Proof. Assume Lv = λv. Then

〈Lv,v〉= 〈λv,v〉= λ 〈v,v〉

because of the linearly of the inner product in the first variable. On the other hand,

〈v,Lv〉= 〈v,λv〉= λ 〈v,v〉

since the inner product is conjugate linear in the second variable. These two expres-
sions are equal. Now λ 〈v,v〉 6= 0, because v, being an eigenvector is non-zero and
the inner product is positive definite. Thus we must have λ = λ , which just says that
λ is real.

In the real case, we must show that the eigenvector we used can be chosen to be
real. Work with the matrix A of L in any orthogonal basis. Then for the vector of
coefficients z of v we have Az = λz. The matrix A is real, and, as we just proved
A is real. Write z = x+ iy, where both x and y are real. Then both x and y are real
eigenvectors associated to λ .
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Now we turn to the second statement. Assume that we have two distinct eigen-
values λ and µ with associated eigenvectors v and w. Then

λ 〈v,w〉= 〈Lv,w〉= 〈v,Lw〉= µ〈v,w〉.

Since µ is an eigenvalue, therefore real, µ = µ . Since λ 6= µ we must have 〈v,w〉= 0
as required. ut

This theorem does not immediately imply that in the real case L has an eigen-
value. However let the real symmetric matrix A act on the complexification VC of V .
Then A is Hermitian, and viewed as a complex matrix has the same characteristic
polynomial as when viewed as a real matrix. Since as a complex matrix it has an
eigenvalue and eigenvector, the theorem above shows that the eigenvalue is real and
the eigenvector can be chosen to be real, too.

In both the real and complex cases we can use the spectral basis {v1, . . . ,vn}
of eigenvectors as an orthonormal basis for V . Then we have generalizations of
Theorem 13.3.4 and Corollary 13.3.6, where you just replace the word symmetric by
Hermitian and orthogonal by unitary. Because the eigenvalues are real by Theorem
13.4.2, the statement of Corollary 13.3.6 still makes sense in the complex case.

13.5 Positive Definite Matrices

We started out study of positive definite operators and matrices in §9.3, where the
key definitions are given. We continue treating the real and complex cases in par-
allel, but focussing on the real case. In Theorem 9.3.1 we showed that a positive
definite matrix A is invertible, and that its inverse is positive definite. We can say
more now.

Corollary 13.5.1. If A is positive definite, the eigenvalues of A−1 are 1/λi with the
same unit eigenvectors vi, and therefore the same eigenvector matrix Q, so A−1 is
also positive definite. Then the eigenvalue-eigenvector decomposition of A−1 can be
written:

Q−1A−1Q = D(1/λ1,1/λ2, . . . ,1/λn)

Proof. All the matrices in (13.4) are invertible, so just compute the inverse using the
fact that the inverse of the orthogonal matrix Q is its transpose, that the inverse of
the diagonal matrix D(λ1,λ2, . . . ,λn) is D(1/λ1,1/λ2, . . . ,1/λn) and that computing
the inverse of a product of invertible matrices reverses the factors of the product. ut

So Q is a change of basis matrix that diagonalizes the quadratic form, as in The-
orem 7.4.1. It is an orthogonal matrix in the real case, and a unitary matrix in the
complex case. It is a “better” change of basis because it preserves distance and angle
- that is what being orthogonal means. Note finally, that the diagonal matrix obtained
by this method is uniquely defined (up to order), since it consists in the eigenvalues
of A.
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Why not always diagonalize by this method? The answer is that it is harder (and
more expensive computationally) to compute the eigenvalues than to do Gaussian
elimination.

Example 13.5.2 (Example 7.7.14 once again). In §7.5 we computed a diagonal ma-
trix (associated to the quadratic form given by (7.12) by change of basis), and obtain
D(1,3/4,2/3). In (7.7.14) we computed the eigenvalues of the same form q, and ob-
tained D(1/2,1/2,2) . From the preceding remark see that D(1/2,1/2,2) can also
be viewed as being obtained from a change of basis. Thus, as we claimed in the
remark before Definition 7.7.3, the matrix D itself is not unique. However, in ac-
cordance with the Law of Inertia 7.7.6, the numbers p+, p0 and p− are the same:
indeed, for both, we get (3,0,0). The form q is positive definite.

Example 13.5.3. The permutation matrices A and Aσ (recall Definition 11.3.9 have
the same type: if one is positive definite, the other is; if one is positive semidefinite,
the other is, and so on.

Indeed, they have the same characteristic polynomial and therefore the same
eigenvalues. Therefore by Corollary 13.3.6 they have the same signature.

Our goal is to develop tests for positive definiteness and positive semidefiniteness
for symmetric matrices in the real case, and conjugate symmetric matrices in the
complex case . Here is the first result, expressed using operators

Theorem 13.5.4. The following conditions on the self-adjoint operator L are equiv-
alent.

1. L is positive (semi)definite.
2. The eigenvalues of L are all positive (non negative).
3. There exists self-adjoint operator S on V such that L = S2, which is invertible if

and only if L is positive definite. S∗ is as usual the adjoint of S.
4. The index of negativity of L is 0 in both cases.

Proof. By the Spectral Theorem we can find an orthonormal basis of eigenvectors
for any self-adjoint operator. We only consider the positive definite case, and leave
the semidefinite case as an exercise. Let A be the matrix of L is the spectral basis of
unit eigenvectors of L, so that A is a diagonal matrix with the eigenvalues along the
diagonal.

For (1)⇒ (2), assume v is an eigenvector with eigenvalue λ : Lv = λv. Then

〈Lv,v〉= 〈λv,v〉= λ 〈v,v〉.

This must be positive. Since 〈v,v〉> 0, we must have λ > 0. Thus all the eigenval-
ues are positive. For (2)⇒ (1), assume all the eigenvalues are positive. Write an
arbitrary element v ∈V as a linear combination of the orthonormal eigenvectors vi,
which form a basis of V :

v = c1v1 + c2v2 + · · ·+ cnvn
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for complex numbers ci. Then

〈Lv,v〉= c1〈Lv1,v〉+ c2〈Lv2,v〉+ · · ·+ cn〈Lvn,v〉
= |c1|2〈Lv1,v1〉+ |c2|2〈Lv2,v2〉+ · · ·+ |cn|2〈Lvn,vn〉
= λ1|c1|2 +λ2|c2|2 + · · ·+λn|cn|2

which is positive unless all the coefficients ci are 0.
For (1)⇒ (3), again let {v1,v2, . . . ,vn} be an orthonormal basis of eigenvectors

for L. By the first equivalence L is positive definite if and only if the λi are all pos-
itive. Then take for S the operator that maps vi 7→

√
λivi. S is invertible if and only

if all the λi are positive. It is obvious that S is self-adjoint, since in the orthonormal
basis {v1, . . . ,vn} its matrix is diagonal with real numbers on the diagonal and that
S2 = L. S is called the square root of L. Note that a positive semidefinite operator
also has a square root, but it is invertible only if L is positive definite.

(3)⇒ (1) is a special case of Theorem 9.3.3. We reprove it in the language of
operators. We take any operator S on V . S∗S is self-adjoint because

〈S∗Sv,w〉= 〈Sv,Sw〉= 〈v,S∗Sw〉.

It is positive semidefinite because, by the same computation,

〈S∗Sv,v〉= 〈Sv,Sv〉 ≥ 0

for all v ∈V . If S is invertible, then Sv 6= 0 when v 6= 0. Then 〈Sv,Sv〉> 0 because
the scalar product itself is positive definite.

(1)⇔ (4) follows easily from the definition of the index of positivity. More gen-
erally, here is the definition of the more commonly used inertia of A: it is the triple
of non-negative integers (n+,n−,n0), where n+ is the index of positivity, n0 the in-
dex of nullity and n− = n− n1− n3 what could be called by analogy the index of
negativity: thus if {v1, . . . ,vn} is any orthogonal basis of V , then

1. n+ is the number of basis elements vi such that vt
iAvi > 0,

2. n− is the number of basis elements vi such that vt
iAvi < 0,

3. n0 is the number of basis elements vi such that vt
iAvi = 0,

The fact that these numbers do not depend on the choice of orthogonal basis is the
content of Sylvester’s Theorem. Thus, essentially by definition:

• A is positive definite if and only if its inertia is (n,0,0).
• A is positive semidefinite if and only if its inertia is (n+,0,n0).

This concludes the proof. ut

There are two other useful criteria for positive definiteness.
First we recall a result for all square matrices proved in §12.10. We will use

it in the next tests for positive (semi)definiteness. As there write the characteristic
polynomial of the n×n matrix A over a field F as
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P(t) = tn− p1tn−1 + p2tn−2−·· ·+(−1)n pn,

where pi ∈ F for all i, 1≤ i≤ n. Then by Theorem 12.10.3,

p j = ∑
J

detAJ = ∑
J

mJ ,

where the sum is over all choices of j elements J = {i1, . . . , i j} from [1,n], and AJ is
the corresponding principal matrix of A, and mJ its determinant, called a principal
minor. Thus the sum has

(n
j

)
terms.

We now turn to the last two tests for positive definiteness. The first result is

Theorem 13.5.5. A symmetric matrix A is positive definite if and only if all its lead-
ing principal minors are positive. It is positive semidefinite if and only if all its
principal minors are non-negative.

Notice the subtle difference between the two cases: to establish that A is positive
semidefinite, you need to check all the principal minors, not just the leading ones.

Example 13.5.6. Consider the matrix(
0 0
0 −1

)
The leading principal minors of this matrix are both 0, and yet it obviously not
positive semidefinite, since its eigenvalues (0 and −1) are not both non-negative.

To prove Theorem 13.5.5 we use and extend the notation of Definition 12.10.1

Definition 13.5.7. Given J = {i1, . . . , ik} as in Theorem 12.10.3, for any n-vector
x = (x1, . . . ,xn) let xJ be the k-vector (xi1 ,xi2 . . . ,xik). Let x̃J be the n-vector whose
i-th entry x̃i is given by

x̃i =

{
xi, if i ∈ J;
0, otherwise.

Then it is clear that
x̃t

JAx̃J = xt
JAJxJ . (13.6)

Example 13.5.8. If n = 4, k = 2 and J = {2,4}, then

xJ =

(
x2
x4

)
, and x̃J =


0
x2
0
x4

 .

Since

AJ =

(
a22 a24
a42 a44

)
you can easily verify (13.6) in this case.
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This allows us to prove:

Proposition 13.5.9. If A is positive definite, the symmetric matrix AJ is positive def-
inite. If A is positive samidefinite, then AJ is positive semidefinite.

Proof. If A is positive definite, the left hand side of (13.6) is positive if x̃J 6= 0. So
the right hand side is positive when xJ 6= 0, since xJ is just x̃J with n−k zero entries
removed. That is the definition of positive definiteness for AJ , so we are done. The
positive semidefinite case is even easier. ut

If AJ is positive definite, its determinant, which is the principal minor mJ of A,
is positive: indeed the determinant is the product of the eigenvalues, which are all
positive. This shows that all the principal minors are positive, and finishes the easy
implication in the proof of Theorem 13.5.5. A similar argument handles the positive
semidefinite case.

Before proving the more difficult implication of Theorem 13.5.5, we look at some
examples.

Example 13.5.10. When the set J has just one element, so k = 1, we are looking
at 1× 1 principal minors. So we get: m(i) = aii > 0. However there are symmetric
matrices with positive diagonal entries that are not positive definite. The matrix

A =

(
1 −2
−2 1

)
is not positive definite: test the vector (1,1):

(
1 1
)

A
(

1
1

)
=−2

When J has two elements, so J = {i, j}, we get:

Corollary 13.5.11. Let A be a positive definite matrix. Then for i 6= j,∣∣ai j
∣∣≤√aiia j j.

In Example 13.5.10, |a12| = 2, while a11a22 = 1, so the matrix is not positive
definite.

Example 13.5.12. The matrix

A =


2 0 0 2
0 4 3 0
0 3 4 0
2 0 0 2


is not positive definite, by applying the lemma to i = 1, j = 4. It is positive semidef-
inite, however.
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A weaker result implied by this corollary is useful when just scanning the matrix.

Corollary 13.5.13. If A is positive definite, the term of largest absolute value must
be on the diagonal.

Now we return to the proof of Theorem 13.5.5. In the positive definite case it
remains to show that if all the leading principal minors of the matrix A are positive,
then A is positive definite. Here is the strategy. From Sylvester’s Theorem, if U be
any invertible n× n matrix, then the symmetric matrix A is positive definite if and
only if U tAU is positive definite, since this is just a computation of the signature of
the symmetric matrix. We have the following obvious facts for diagonal matrices ,
which guide us.

Proposition 13.5.14. If the matrix A is diagonal, then it is positive definite if and
only if all its diagonal entries are positive.

This can be rewritten: A is positive definite if and only if all its its leading prin-
cipal minors are positive.

Proof. If the diagonal entries are {d1,d2, . . . ,dn}, the leading principal minors are
D1 = d1, D2 = d1d2, . . . , Dn = d1d2 · · ·dn. So the positivity of the di is equivalent to
that of the Di. ut

The key step in the proof of Theorem 13.5.5 is the following result:

Proposition 13.5.15. If A has positive leading minors, it can be diagonalized by an
invertible lower triangular matrix U with uii = 1 for all i. In other words UAU t is
diagonal.

Proof. We rewrite the diagonalization algorithm for symmetric matrices 7.5.3 in
terms of determinants: see §11.9. Then we examine why we can avoid using ele-
mentary matrices other than lower triangular matrices on the left side to diagonalize.
This follows from Theorem 11.9.5 which expresses the pivots in terms of quotients
of principal minors. ut

More generally, the proof implies a result that is interesting in its own right.

Proposition 13.5.16. Let A be any symmetric matrix that can be diagonalized by a
product U of lower triangular matrices as in Proposition 13.5.15. Then the leading
principal minors of A′ =UAU t are equal to those of A.

Proof. As before, this immediately follows from the fact that if you add to a row (or
column) of a square matrix a multiple of another row (or another column), then the
determinant of the matrix does not change. Just apply this to the leading principal
minors. ut

Exercise 13.5.17. State the result concerning negative definite matrices that is anal-
ogous to the main theorem, noting that Proposition 13.5.16 applies. Do the same for
Theorem 13.5.4.
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We now finish the proof of the main theorem in the positive–definite case.
Assume that A is a symmetric matrix whose leading principal minors Dk are

all positive. Proposition 13.5.15 tells us that A can be diagonalized to a matrix
A(n−1) = UAU t by a lower diagonal matrix U with 1’s on the diagonal The diag-
onal matrix A(n−1) obtained has all its diagonal entries a11, a(1)22 , . . . , a(n−1)

nn positive,
so it is positive definite by the easy Proposition 13.5.14. By Proposition 13.5.16 A
is positive definite, so we are done in the positive–definite case.

We now prove Theorem 13.5.5 in the positive semidefinite case. Proposition
13.5.9 establishes one of the implications. For the other implication we prove:

Proposition 13.5.18. If A is positive semidefinite, then A+εI is positive definite for
any ε > 0.

More generally we could prove that for any symmetric matrix A, there is a positive
number c such that A+ cI is positive definite.

We also need Theorem 12.10.3. Write the characteristic polynomial of A as in
(12.1):

P(t) = tn− p1tn−1 + p2tn−2−·· ·+ pn.

Since all the principal minors of A are non-negative, Theorem 12.10.3 says that all
the pi are non-negative. We have the elementary proposition:

Proposition 13.5.19. Assume the characteristic polynomial of A is written as in
(12.1). Then if all the pi are non-negative, A is positive semidefinite. If all the pi
are positive, then A is positive definite.

Proof. We first note that all the roots of P(t) are non negative, only using the non-
negativity of the pi. Assume we have a negative root λ . Then all the terms of P(λ )
have the same sign, meaning that if n is even, all the terms are non-negative, while
if n is odd, all the terms are non-positive. Since the leading term λ n is non-zero, this
is a contradiction. Thus all the roots are non-negative, and A is therefore positive
semidefinite by Theorem 13.5.4, (1). If the pi are all positive (in fact if a single one
of them is positive) then the polynomial cannot have 0 as a root, so by the same
criterion A is positive definite. ut

This concludes the proof of Theorem 13.5.5.
The last test is the characteristic polynomial test. We write the characteristic poly-

nomial of A as in (12.1). With this notation, we get a new test for positive definite-
ness.

Theorem 13.5.20. A is positive definite if and only if all the pi, 1≤ i≤ n, are posi-
tive. A is positive semidefinite if and only if all the pi, 1≤ i≤ n, are nonnegative.

Proof. One implication follows immediately from Theorem 13.5.19.
For the reverse implication, we must show that if A is positive definite, then all

the constants pi are positive. This follows immediately from Theorem 12.10.3 and
Proposition 13.5.9: all the principal minors are positive (non-negative) and the pi
are sums of them. ut
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13.6 The Spectral Theorem for Unitary Operators

In this section and the next one we prove a spectral theorem for isometries, meaning
operators that are orthogonal over R or unitary over C. Unusually we start with the
complex case, which is easier and has a simpler result.

So let V be a Hermitian space of dimension n and L a unitary operator on V ,
as studied in §9.5. By definition 〈Lv,Lw〉 = 〈v,w〉 for all v and w in V , and as we
proved in Theorem 9.5.2 this is verified if and only if ‖Lv‖= ‖v‖ for all v ∈V . We
say L preserves length, or is an isometry. In particular L is invertible and its inverse
L−1 is its adjoint by Theorem

Since we are over C, L has an eigenvector v: Lv = λv, for some complex number
λ . Because L is an isometry, |λ |= 1, so that λ = eiθ = cosθ + i sinθ .

The one-dimensional space spanned by the eigenvector v is invariant under L.
We will apply the following theorem to it:

Theorem 13.6.1. If L is unitary, and the subspace W of V is invariant under L, then
its orthogonal complement W⊥ is invariant under L.

Proof. We must prove that if u ∈W⊥, then Lu ∈W⊥, If u ∈W⊥, then 〈u,w〉 = 0
for all w ∈W . Because L is invertible L−1w ∈W . Then

〈Lu,w〉= 〈u,L∗w〉= 〈u,L−1w〉= 0

by hypothesis. ut

We can apply this theorem to the space W generated by an eigenvector, so L
restricts to an operator on W⊥, which has dimension n−1. The restriction is unitary,
so by induction on the dimension as in the self-adjoint case, we can construct a
spectral basis of V consisting of unit eigenvectors for L: see Theorem 13.3.4. Now
let A be the matrix of L in any orthonormal basis of V , so that A is a unitary matrix.
Then

Theorem 13.6.2. Let A be a unitary n× n matrix, U its matrix of unit eigenvec-
tors, and λ its vector of eigenvalues. Then U is a unitary matrix, and U∗AU is the
diagonal matrix D(λ1, . . . ,λn).

Proof. As before, the system of equations AU =UD is simply a convenient way of
writing all the eigenvector-eigenvalue equations. Since U−1 =U∗, we get U∗AU =
D. ut

13.7 The Spectral Theorem for Orthogonal Operators

Finally we treat the case of an orthogonal operator L on a Euclidean space V . This
is slightly harder than the cases we have already considered, because we cannot
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guarantee that L has an eigenvalue: consider the case of a rotation in R2. Fortunately,
this turns out to be the only problem.

So we perform the same trick as at the end of §13.4. First we pick an orthonormal
basis for V , and consider the matrix A of L in this basis. Since the real matrix A acts
on the Rn of vector coordinates, it also acts on Cn in the same way. The orthogonal
matrix A is obviously a unitary matrix acting on Cn, so the results of the previous
section apply. Let v be an eigenvector of A on Cn with eigenvalue λ . We know that
λ is a complex number of modulus 1. If λ is real, it is±1. Otherwise we still have an
eigenvalue-eigenvector equation Av = λv, where both λ and v are complex. Since
|λ | = 1 we can write λ = cosθ + i sinθ . We also write v = x+ iy, where x and
y are real vectors. Then take the complex conjugate of the eigenvalue-eigenvector
equation. Because A is real we get: Av = λv. This says that λ is an eigenvalue of A
with eigenvector v. Write everything out in terms of real and imaginary parts:

Ax+ iAy = (cosθ + i sinθ)(x+ iy)
= cosθx− sinθy+ i(cosθy+ i sinθx).

Take the real and imaginary parts of this equation:

Ax = cosθx− sinθy;
Ay = cosθy+ sinθx.

Because λ is not real, the vectors x and y are linearly independent. This equations
say that A leaves the plane spanned by x and y invariant. The matrix of this restric-
tion using the basis {x,y} is (

cosθ −sinθ

sinθ cosθ

)
(13.7)

which is the matrix of the rotation by θ radians.
The analog of Theorem 13.6.1 holds for orthogonal matrices, so by repeating this

construction we can construct an orthonormal basis on V so that in this basis the
orthogonal operator is block diagonal, with one-dimensional blocks corresponding
to the real eigenvalues, and two-dimensional blocks (13.7) of rotations.

Note that the orthogonal transformations of determinant one play a special role,
since the composition of two of them is also an orthogonal transformation of deter-
minant. These are sometimes called proper orthogonal transformations or rotations.

Example 13.7.1. Consider orthogonal operators L on R2. Then L has

• either two real eigenvalues, which must be either 1 or−1. If they are both 1, then
the transformation is the identity. If they are both −1, then the linear transfor-
mation is rotation by π . The most interesting case occurs when one eigenvalue
is 1 and the other is −1, in which case the operator is called a reflection along
the eigenvector e1 with eigenvalue 1. Let v be any vector in R2 and let ce be
the component of v in the one-dimensional eigenspace spanned by e, so that
〈v− ce1,e1〉 = 0. Then the image of v under L is v−2ce1 as you should check.
The determinant of L is −1.
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• or no real eigenvalues, in which case it is a rotation by an angle θ for which both
cosθ and sinθ are non-zero. The determinant is 1.

Example 13.7.2. Now consider orthogonal operators L on R3.

• If the eigenvectors of L are 1, 1 and −1, describe the motion as a reflection: in
which linear subspace?

• The most interesting case is that where there is one real eigenvector e with eigen-
value ±1, and one block of type (13.7). The orthogonal complement of e is a
two-dimensional subspace V , so we have reduced to Example 13.7.1 in V . If the
eigenvalue of e is 1, then we have a rotation in V The construction shows that to
specify a rotation in R3 you need an axis of rotation (spanned by the eigenvector
e) and the angle θ given by the complex eigenvectors in the plane perpendicular
to e.

Exercise 13.7.3. Prove all assertions in Examples 13.7.1 and 13.7.2. In the last ex-
ample, if the eigenvector of e is −1, describe the motion of R3 obtained in terms of
rotations and reflections.

13.8 The Spectral Theorem for Normal Operators

We defined normal operators and normal matrices in §9.6: the operator L is normal
if it commutes with its adjoint: LL∗ = L∗L, and the square matrix A is normal if it
commutes with its conjugate transpose: AA∗ = A∗A. We proved some preliminary
results on normal operators in §9.6, which you should review now.

The first technical result is:

Theorem 13.8.1. If V is an inner product space, and L a normal operator on V ,
then v is an eigenvector for L with eigenvalue λ if and only if v is an eigenvector for
L∗ with eigenvalue λ .

Proof. The easy but key remark is that v is an eigenvector of L with eigenvalue λ if
and only if

‖(L−λ I)v‖= 0.

The operator L−λ I is normal for any λ ∈ C, since its conjugate is L∗−λ I:

〈(L−λ I)v,w〉= 〈Lv,w〉−〈λv,w〉= 〈v,L∗w〉−〈v,λw〉= 〈v,(L∗−λ I)w〉.

By Theorem 9.6.5, we have

‖(L−λ I)v‖= ‖(L∗−λ I)v‖

for any v ∈V . We are done. ut

We will be mostly interested in complex normal operators. Recall (Theorem
13.4.1) that for any operator L on a Hermitian space V there is a unitary basis v1,
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. . . , vn in which the matrix A representing L is upper triangular. Then in that basis
the matrix of a normal operator is diagonal. This is a natural generalization of the
statement that a symmetric or Hermitian matrix that is upper triangular is diagonal.

Theorem 13.8.2. If L is a normal operator on the Hermitian space V of dimension
n, then in any basis such that the matrix A representing L is upper triangular, it is in
fact diagonal.

Proof. Because A is upper triangular, the column vector (0, . . . ,0,1) is an eigen-
vector for A with eigenvalue ann. By Theorem 13.8.1 it is also an eigenvector for
the conjugate transpose At of A. Thus the last row of At has zeroes in all positions
except the n-th where it has ann. Therefore A is block diagonal, where the top, left
square block A11 of size n− 1 is upper-triangular, the two off-diagonal blocks A21

and A12 are both zero, the the bottom right square block A22 of size 1 is just (ann).
By induction we may assume that the result is true for A11, so that it is diagonal.
Therefore A is diagonal. ut

This gives us the spectral theorem for complex normal operators. Conversely we
see that normal operators are the only operators for which such a theorem is true.

Corollary 13.8.3. If L is a normal operator on the Hermitian space V of dimension
n, then V has a spectral basis for L, meaning a unitary basis of eigenvectors for L.
Therefore if A is the matrix for L in a spectral basis, U is the spectral basis, and D
is the diagonal matrix of eigenvalues, then U−1AU = D.

Conversely if L is a complex operator on a Hermitian space such that there is a
unitary basis in which the matrix representing L is diagonal, then L is normal.

Proof. We only need to prove the easy converse: a diagonal matrix D is obviously
normal, since D∗ is also diagonal, so the operator represented by D in the basis is
normal. ut

Thus we know exactly which operators admit a spectral theorem. We could easily
formulate such a result in the real case too, but it could have to be more complicated,
since one cannot diagonalize orthogonal operators.

We may ask how to characterize the various subclasses of normal matrices using
their eigenvalues.

Theorem 13.8.4. Let L be a normal operator on a Hermitian space V . Then

1. L is Hermitian if and only if its eigenvalues are real;
2. L is unitary if and only if its eigenvalues have modulus 1.
3. L is positive definite if and only if its eigenvalues are positive;
4. L is positive semidefinite if and only if its eigenvalues are non-negative;

Proof. In each case one direction has already been established. So we establish the
other implication. By assumption L is normal, so it is diagonalizable in all four
cases. So choose a spectral basis for V , and let D be the diagonal matrix for A in this
basis. The diagonal entries of D are the eigenvalues of L. It is now almost trivial to
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establish the result. For example, assume that the entries of D are all real. Then the
matrix D is self-adjoint, so the operator L it represents is self adjoint. Now assume
all the entries of D are real and positive. To show that L is positive definite, we must
show that 〈Lv,v〉> 0 for all non-zero v. Just expand v in terms of the basis {vi} of
eigenvectors to get

〈Lv,v〉= λ1‖v1‖2 + · · ·+λn‖vn‖2.

For this to be positive for any non-zero v, all the λi must be positive. The same argu-
ment works in the positive-semidefinite case. If all the eigenvectors have modulus
1, then using the expansion of any vector v in terms of eigenvectors, we see that the
operator L preserves length. So by Theorem 9.5.2 we are done. ut

What can we say about normal operators on a Euclidean space? To be written....
Finally what can we say about the minimal polynomial of a normal operator on

an inner product space? Over C, Corollary 13.8.3 says that the operator is diagonal-
izable. As we have seen, the minimal polynomial of a diagonal matrix is simply the
product of (x−λi), where the product is over all the distinct eigenvalues of L.

13.9 The Polar Decomposition

In this section we do the real and complex case simultaneously. Here V is an inner
product space, L an arbitrary operator on V , and L∗ its adjoint. First we assume L is
invertible.

Theorem 13.9.1 (Polar Decomposition). There is a unique positive definite trans-
formation S and a unique isometry Q such that L = SQ.

Proof. By Theorem 9.3.2 the self adjoint operator L∗L is positive definite. Thus by
Theorem 13.5.4 there is a unique self-adjoint operator S such that S2 = L∗L, and
S is invertible. Then consider the operator Q = LS−1. By Theorem 9.1.4 or 9.2.3
Q∗ = S−1L∗, since S is self-adjoint. Then

Q∗Q = S−1L∗LS−1 = S−1S2S−1 = I

so by Theorem 9.4.5 or 9.5.3 Q is an isometry and we are done. ut

A slightly more involved argument shows that if L is not invertible it can be
written L = SQ where S is again the uniqueness determined square root of S, which
is only positive semidefinite, and Q is an isometry.

This theorem is called the polar theorem because it generalizes the decomposition
of a complex number (the arbitrary transformation L) into a positive real number (the
positive definite S) and a complex number of length 1 (the isometry Q).
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13.10 The Singular Value Decomposition

For the final construction of this chapter we will work over R for simplicity and
clarity only. Our goal is to generalize past constructions to matrices that are not
square, so do not correspond to operators, contrary to the theme of the rest of the
chapter.

In §5.4 we studied linear maps L of a vector space of dimension n to a vector
space of dimension m and showed how to choose bases of the two spaces so that the
matrix of L in these bases is diagonal. Now we want to do something similar, but for
inner product spaces, where we only allow orthogonal bases. It is not obvious that
diagonalization can be achieved, but we now show it can.

So let L : V →W be a linear map from a Euclidean space V of dimension n and
a Euclidean space W of dimension m. After picking a orthonormal basis for each
space, we can view them as Rn and Rm with the standard inner product. Let A be
the matrix of L in these bases.

So A be an arbitrary real m× n matrix. Consider the square matrix S = AtA of
size n. It is symmetric, so we can apply the spectral theorem: it has real eigenvalues
λ1, . . . , λn corresponding to eigenvectors v1, . . . , vn that are mutually orthogonal
and of length 1. So

vt
iSvi = λivt

ivi = λi and when i 6= j, vt
iSv j = λivt

iv j = 0, (13.8)

since the vi form an orthonormal basis of Rn. On the other hand we also have

vt
iSvi = vt

iA
tAvi = (Avi)

t(Avi), (13.9)

the length squared of a vector. Since vt
ivi is positive, in fact = 1, this shows that

λi ≥ 0. Finally when i 6= j,

(Avi)
t(Av j) = vt

iSv j = λivt
iv j = 0. (13.10)

So AtA is a positive semidefinite matrix of size n. Let r be the number of positive
eigenvalues. We reorder the basis so they come first: they correspond to v1, . . . , vr.
By Gram-Schmidt we can complete this with vectors vr+1, . . . , vn to an orthonormal
basis of V . The matrix U whose columns are the v j is orthogonal by construction.

Now we construct an orthonormal basis for W . Let σi =
√

λi, 1 ≤ i ≤ r, and
consider the elements

qi =
Avi

σi
, 1≤ i≤ r.

By (13.9) and (13.10) these vectors in W have length 1. By (13.10) these r vectors
are mutually orthogonal:

〈qi,q j〉= qt
iq j =

vt
iA

tAv j

σiσ j
= 0.
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By Gram-Schmidt again, we can complete q1, . . . , qr with vectors qr+1, . . . , qm to
get an orthonormal basis of W . Let Q be the square matrix of size m with columns
the qi. Then Q is an orthogonal matrix. On the other hand Av j = 0, for r+ 1, . . .n.
This makes it obvious that in the basis of the v j for V and the basis qi for W the
matrix of L is diagonal with the elements σi, 1 ≤ i≤ r as the only non-zero entries
in the first r diagonal positions.

Finally let Σ be the m×n matrix whose only non-zero terms are the first r diago-
nal elements, which are σi. The change of basis computation from §5.3 tells us that
is our original basis the matrix of L is

A = QΣU−1 = QΣU t (13.11)

since U is orthogonal.
STATE the theorem here.
By construction the basis of V used for A is a spectral basis for AtA. Similarly

the basis used for W is a spectral basis for AAt . Indeed by (13.9)

AAt = QΣU tUΣQt = QΣ
2Qt

and by taking transposes in the opposite order

AtA =UΣQtQΣU t =UΣ
2U t .

Finally this shows that the eigenvalues of AAt and AtA are the same: the diagonal
entries of Σ 2, which are the λi. The rank of A is of course r.

The σi are invariants of the transformation L. Therefore linear transformations on
Euclidean spaces can be partitioned into equivalence classes corresponding first to
it rank, and second to the positive numbers σ1, . . . , σr, which are called the singular
values of L.

The most important application of the SVD is the definition of the pseudoinverse
of an arbitrary matrix.

Definition 13.10.1. If the n× n matrix A has singular value decomposition A =
QtΣU , then its pseudoinverse is the n×m matrix

A+ =U t
Σ
+Q

where Σ+ is n×m quasi diagonal matrix with entries 1/σi on the diagonal, where
the σi are the diagonal entries of Σ .

So
A+A =U t

Σ
+QQt

ΣU =U t
Σ
+

ΣU =U t IrU

and
AA+ = Qt

Σ
+UU t

ΣQ = Qt
Σ
+

ΣQ = Qt IrQ

This shows that if A is square and invertible then A+A = AA+ = I.
Obviously A++ = A.





Chapter 14
The Method of Least Squares

Abstract In Chapter 8 we showed how to determine the ’best‘ approximation for
the solution of an inconsistent system of linear equations. Here we show how this
is equivalent to one of the most important minimization techniques in science: the
method of least squares. This method is useful in statistics, as it leads to the regres-
sion line. In §14.3 we show how to interpret what we have done into the language of
data measurement. Then we study a related but more symmetric minimization prob-
lem that goes under the name orthogonal least squares. Finally we report briefly on
the methods for computing the least squares solution.

14.1 The Method of Least Squares

Here we give an application of the methods of §8.5. First some background.
Assume you run an experiment that has n inputs q1, . . . , qn and one output r.

You have reason to believe, or are trying to confirm, that when measured in the
appropriate units, the output of the experiment satisfies an affine equation:

r = a0 +a1q1 + · · ·+anqn.

You do not know the coefficients a0, a1, . . . , an of the affine equation, which deter-
mine the relationship between the output r and the inputs q1, . . . , qn. You wish to
determine them by experiment. In each experiment there is measurement error, so
you run the experiment a large number of times, say m > n+1 times. Let ri and ai1,
. . . ain be the results obtained in the i-th experiment. In each experiment we want to
use the same coefficients ai. For these coefficients, in the i-th equation, instead of
getting ri when using qi1, . . . qin, you get the linear combination

si = a0 +a1qi1 +a2qi2 + · · ·+anqin

of the inputs. In matrix notation if Q is the m×n matrix

265
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Q =


1 q11 . . . q1n
1 q21 . . . q2n
...

...
. . .

...
1 qm1 . . . qmn


and s the m-vector with entries si, and a the (n+1)-vector with entries a j, the equa-
tion can be written s = Qa.

The question is: how to choose the coefficients ai to minimize the sum of the
errors si− ri, in some sense. We want to make all the errors non-negative, so there is
no cancelation. So you could minimize the sum of the absolute value of the errors.
Instead, here we minimize the sum of the square (si− ri)

2, hence the name ‘method
of least squares’. So we minimize the expression

m

∑
i=1

(ri− si)
2 = (r−Qa)t(r−Qa) (14.1)

the dot product of the vector (r−Qa) with itself. It can be written

atQtQa−2atQr+ rtr

The variables are denoted a0, . . . , an while the constants are denoted ri and qi j.
This is the same equation as Remark 8.5.6. Equation (14.1) is quadratic in each one
of the n+ 1 variables a j, so we can take the partial derivatives without difficulty,
and a minimum can only occur when the partials with respect to a j are 0, getting

QtQa−Qtr = 0.

These are the same normal equations as in the previous section.
We assume that m is greater than n+1. To apply the method of §8.5, we need to

know Q has rank n+ 1. Then QtQ is invertible matrix of size n+1 and the unique
minimum is

a = (QtQ)−1Qr. (14.2)

This gives us the coefficients of the affine space that is the best fit to the data
according to the method of least squares.

14.2 Fitting to a Line

The most important case of the method of least squares occurs when the data con-
sists of only one input variable denoted q, and only output variable r. So this is a
special case of the one considered in §14.1

We wish to fit our data to a line r = a0 + a1q. By choosing to write our line
in this way, we exclude the possibility that the line be vertical, but that is of little
importance. Let’s repeat the derivation of §14.1 in this special case. So we use the
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method of least squares to fit a line r = a0 +a1q to m data points (qi,ri), which we
can think of as m points in the plane

Give names to the sums of the coordinates of the data points:

sq =
m

∑
i=1

qi and sr =
m

∑
i=1

ri. (14.3)

and to the squares:

Sqq =
m

∑
i=1

q2
i , Sqr =

m

∑
i=1

qiri, and Srr =
m

∑
i=1

r2
i . (14.4)

Definition 14.2.1. The average or mean (q,r) of the data is given by

q =
∑i qi

m
and r =

∑i ri

m
.

The point (q,r) is called the centroid of the data. Note that q and r are scalars, not
vectors.

The matrix Q in our special case is

Q =


1 q1
1 q2
...

...
1 qm


so

QtQ =

(
m sq
sq Sqq

)
(14.5)

which has determinant mSqq−s2
q. Since we assume Q has rank 2, we know that QtQ

is positive definite, so that mSqq− s2
q > 0.

How does this computation compare with what we did in the general case? Equa-
tion (14.2) is written (

m sq
sq Sqq

)(
a0
a1

)
=

(
sr
Sqr

)
The inverse of QtQ can be computed explicitly as

1
mSqq− s2

q

(
Sqq −sq
−sq m

)
.

The main computation of this section gives:(
a0
a1

)
=

1
mSqq− s2

q

(
Sqq −sq
−sq m

)(
sr
Sqr

)
=

1
mSqq− s2

q

(
Sqqsr−Sqrsq
−sqsr +mSqr

)
or
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a0 =
Sqqsr−Sqrsq

mSqq− s2
q

and a1 =
mSqr− sqsr

mSqq− s2
q
. (14.6)

We are done, having found simple explicit formulae for a0 and a1.

Remark 14.2.2. The minimizing line passes through the centroid of the points. In-
deed just change coordinates so the centroid is the origin: then sq and sr are 0. Then
(14.6) says that a0 = 0, so the minimizing line goes through the origin. In §14.4 we
will proceed differently: we will first show that the minimizing line must go through
the centroid, and then minimize over all lines going through the centroid. We could
have done that here, too. Consult Proposition 14.4.2.

Corollary 14.2.3. Assume you have performed the experiment m times, and have
computed sq, sr , Sqq and Sqr for those m experiments. Now perform the experiment
one more time, getting values qm1 and rm1 . You can update (14.6) easily since

sq 7→ sq +qm+1

sr 7→ sr + rm+1

Sqq 7→ Sqq +q2
m+1

Sqr 7→ Sqr +qm+1rm+1

Exercise 14.2.4. Write done an explicit example with m = 3 and corresponding val-
ues. Then add a fourth row to Q and do the update.

Exercise 14.2.5. Show that if you change units by the same factor in both q and r,
then the slope does not change, and b scales by the same factor.

Remark 14.2.6. Interchange the coordinates qi↔ ri for all m points. Then the slope
of the minimizing line for the new configuration of points is

a =
mSqr− sqsr

nSrr− s2
r

.

This is the slope if you use the method of least squares with the role of the variables
q and r interchanged. Note that it is different from the original formula unless

mSqq− s2
q = mSrr− s2

r .

Let’s work out completely one example where we have run the experiment 3
times. The measurements for the input variable q are (1,2,3) and the output variable
r are (1,1,3).

Solve and draw a graph and show what the errors are on the graph.
Compare the two answers for the special case above.
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14.3 Connection to Statistics

This section is for readers who want to see the connection of this material to ele-
mentary statistics: measurement error, correlation and regression. More details, use-
ful for novices in statistics, are given in [7], especially Part III. Most of Part One
of [26] gives a detailed history of the method of least squares as expounded first
by Legendre in 1805. Chapter IX of [32] gives a different, more technical historical
coverage of Least Squares. Finally for an advanced mathematical treatment see [30]
Chapter VII. The main point is to connect what we do to the cognate concepts in
statistics.

This is mainly a question of giving new names to concepts we have already de-
fined in §14.2. So for example we have a random variables x that we sample m times,
to get measurements xi.

For simplicity, we only cover the case of a scatter diagram in the plane, meaning
a collection of points (xi,yi), 1≤ i≤ n. These points represent the data that has been
collected. For example each xi represents the height of a mother, and yi the height
of her daughter, or xi is time and yi the measurement of the quantity of some good
produced at time xi. We write x for the vector (x1,x2, . . . ,xn), and similarly for y.
We consider x as the independent variable and y as the dependent variable.

We can take the mean of the samples for x, which is by definition

x =
∑

m
i=1 xi

m
.

This is sx/m,writing as in §14.2 sx = ∑
m
i=1(xi. Then the variance of this sample of

the random variable is by definition

σxx =
∑

m
i=1(xi− x)2

m
,

the mean of the squares of the values centered at their mean. The standard devia-
tion σx of x is the square root of the variance: its advantage is that it has the same
dimension as x. Writing as in §14.2 Sxx = ∑

m
i=1(x

2
i , the variance is

∑
m
i=1(x

2
i −2xxi + x2)

m
=

Sxx− xsx

m
=

Sxx− s2
x/m

m
=

mSxx− s2
x

m2 .

as a little computation shows. We can of course define the same quantities for y.
The covariance of x and y is

σxy =
∑

m
i=1(xi− x)(∑m

i=1(yi− y)
m

,

so that the variance is the special case x = y of the covariance. In the notation of
§14.2 the covariance is

σxy =
mSxy− sxsy

m2 .
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Our main goal is to write the coefficients a0 and a1 of the line found by the
method of least squares in terms of the variables we have just introduced. They are
given by (14.6), so the slope of the line is

a1 =
mSxy− sxsy

mSxx− s2
x

=
σxy

σxx
.

Finally since

σxxx−σxyx =
(mSxx− s2

x

m2

) sy

m
−
(mSxy− sxsy

m2

) sx

m
=

Sxxsy

m2 −
Sxysx

m2

we get for the constant term:

a0 =
Sxxsy−Sxysx

mSxx− s2
x

=
σxxy−σxyx

σxx
= y−

σxyx
σxx

This line is called the recession line.

We defined the centroid whose coordinates are the means (x,y) in Definition
14.2.1.

It is easy to see what happens to the centroid if you change the coordinate system
in two important ways.

1. Suppose we move the origin of the coordinate system to the point (−a,−b). In
this new coordinate system, for all i, xi is replaced by xi +a, which we can write
in vector notation as x′ = x+a, for the vector a with the constant a in all entries.
Then the mean x+a = x+a, and y+b = y+b.

2. Suppose the scales on the axes are changed independently by factors of c and d,
so that any point with coordinates (x,y) now has coordinates (cx,dy). Then for
all i, the coordinates of (xi,yi) become (cxi,dyi), and (cx,dy) = (cx,dy).

We defined the standard deviation, also called the root mean square of the data,
as the square root of the variance, so:

Definition 14.3.1.

σx =

√
∑i(xi− x)2

n
and σy =

√
∑i(yi− y)2

n
.

Using the same notation as for the average, and letting a be the constant variable of
value a we get

1. σx+a = σx;
2. σax = |a|σx.

Next we convert to the standard deviation coordinate system, meaning that we
translate the origin so that it is at (x,y) and rescale the axes so that the unit of
measurement on the x axis is σx, and on the y axis is σy. Thus a point a = (a1,a2)
in the original coordinate system has coordinates
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σx

,
a2− y

σy

)
(14.7)

in the standard deviation system associated to the data points (xi,yi).
In particular if the data (xi,yi) is in standard deviation coordinates for itself, then

by definition √
∑i x2

i
n

= 1 and

√
∑i y2

i
n

= 1

or ∑i x2
i = n and ∑i y2

i = n.
Let the standard deviation line be the line in the standard deviation coordinate

system that goes through the origin and has slope 1. Then in the original coordinate
system this line goes through the centroid (x,y) and has slope σy

σx
.

Exercise 14.3.2. Generalize (14.7) to a change to an arbitrary coordinate system, by
which I mean one where the origin is chosen to be any point, and the scale on the
axes are changed independently.

Next we define the correlation of x and y to be the covariance divided by the
standard deviations:

ρxy =
σxy

σxσy

Theorem 14.3.3. The correlation ρxy satisfies three properties:

1. it is invariant under adding the same number to each of the xi or each of the yi;
2. it is invariant under multiplication of all of the xi or all of the yi by the same

positive number.
3. it is invariant under the interchange x↔ y;

The first two properties say that r is independent of the coordinate system used.
Therefore we drop the subscripts. The last one says that it is symmetric.

Proposition 14.3.4. Furthermore −1≤ ρxy ≤ 1.

Proof. We may as well work in standard deviation coordinates, so we assume our
data (xi,yi), 1 ≤ i ≤ n, satisfies x = 0, y = 0, ∑i x2

i = n and ∑i y2
i = n. We need to

show
−n≤∑

i
xiyi ≤ n.

The key idea is to expand the expression

n

∑
i=1

(xi± yi)
2 =

n

∑
i=1

x2
i ±2

n

∑
i=1

xiyi +
n

∑
i=1

y2
i = 2n±2

n

∑
i=1

xiyi,

remembering that we are in standard deviation coordinates. Since this is a sum of
squares, it is non-negative. So n−∑

n
i=1 xiyi ≥ 0, showing r≤ 1 and n+∑

n
i=1 xiyi ≥ 0,

showing r ≥−1. ut
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Exercise 14.3.5. Show that this proposition is just the Cauchy-Schwarz inequality
in disguise.

Example 14.3.6. What does it mean for ρxy to be 1? The previous proof shows that
it implies xi = yi for all i in standard deviation coordinates. Similarly for the other
extreme case: if r =−1, then xi =−yi for all i in standard deviation coordinates.

We now can compare the slope σxy
σxx

of the recession line with the slope σy
σx

of the
standard deviation line. A little computation shows that

σxy

σxx
= ρxy

σy

σx
.

Since |ρxy| ≤ 1 the recession line has smaller slope than the standard deviation
line. Thus if the correlation ρxy between the {xi} and the {yi} is 0, then the least
squares line is horizontal.

Now there is a second regression line, where we interchange the roles of x and
y. It goes through the same point (x,y), but its slope is 1

ρxy

σy
σx

, therefore greater than
the slope of the standard deviation line.

Now we consider the case of n variables for which we have m observations. Then
we get a m×n matrix X whose columns x1, . . . , xn are the m measurements for each
variable. Assume we are in centroid coordinates.

Theorem 14.3.7. Then the symmetric matrix

X tX
mm =


σx1x1 σx1x2 . . . σx1xn

σx2x1 σx2x2 . . . σx2xn
...

...
. . .

...
σxmx1 σxmx2 . . . σxmxn


is called the variance-covariance matrix of the n samples of data.

If the input data are not collinear, then by definition the matrix X tX is invertible.
Therefore it is positive definite. Consider the least squares problem considered in
§14.1 with input data given by the x j, and a single output of data y. The only differ-
ence with what we did early is that we leave out the column of constants. Then an
easy computation shows that the least squares hyperplane in Rn that gives the best
fit to the data has coefficients

a = (X tX)−1Xy.

This is the analog of (14.2). So the variance-covariance matrix gives the solution.
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14.4 Orthogonal Least Squares

In the method of least squares, explained in §14.1, we noticed that the output is
treated differently from the inputs. One could ask for a more symmetric treatment.
Here we give one in the case that we have a collection of n points (xi,yi) in the
plane, and we ask for lines written in the form xcosθ + ysinθ + c = 0 that are the
best fit to the data in the following sense. We want the sum of the squares of the
distance of the points from the line, in the sense of perpendicular projection, to be
minimum. This problem is known as the orthogonal least squares problem.

As you know from calculus, the perpendicular distance of the point (xi,yi) from
the line xcosθ + ysinθy+ c = 0 is

xi cosθ + yi sinθ + c

So we wish to minimize the function of two variables

f (θ ,c) =
n

∑
i=1

(xi cosθ + yi sinθ + c)2

Lemma 14.4.1. Let x1, . . . , xn be points on a line. Consider the real number t0 that
minimizes the function

g(t) =
n

∑
i=1

(xi− t)2.

Then

t0 =
n

∑
i=1

xi

n
.

Proof. Just take the derivative of g(t) and set it to 0. ut

Proposition 14.4.2. The line minimizing distance passes through the centroid (x,y)
of the data set.

Proof. Consider a line minimizing distance. If it does not pass through the centroid,
take the parallel line that does. A little computation using the lemma says that the
new line has smaller f (θ ,c) than the old line. ut

In Remark 14.2.2, we proved in passing that the minimizing line for least squares
goes through the centroid. We could have proceeded as we do here.

So we change the coordinate system so that the centroid of the data is the origin.
Then the lines to consider are of the form xcosθ + ysinθ = 0, −π

2 ≤ θ ≤ π

2 and
the function to minimize is

f (θ) =
n

∑
i=1

(xi cosθ + yi sinθ)2

a function of a single variable θ . So we compute the derivative:



274 14 The Method of Least Squares

f ′(θ) = 2
n

∑
i=1

(xi cosθ + yi sinθ)(−xi sinθ + yi cosθ)

= 2
n

∑
i=1

(
− x2

i sinθ cosθ + xiyi(cos2
θ − sin2

θ)+ y2
i sinθ cosθ

)
We wish to divide by cosθ to express everything in terms of tanθ . We first need to
consider what happens if cosθ = 0. Then for the derivative to be 0 we must have
∑

n
i=1 xiyi = 0. This shows that sinθ = 0 is a second root of the equation.
So now we assume that cosθ 6= 0, so dividing by cosθ we get for the vanishing

of the derivative the quadratic equation in tanθ :

−Sxy(tanθ)2 +(Sxx−Syy) tanθ +Sxy = 0

using the notation for sums of (14.4). We can divide by Sxy since we have already
considered the case where it vanishes, so we are left with

(tanθ)2 +
Syy−Sxx

Sxy
tanθ −1 = 0

The discriminant of this quadratic is obviously positive, so it has two distinct roots
giving the slopes of two lines:

−
Syy−Sxx

2Sxy
±

√(Syy−Sxx

2Sxy

)2
+1.

Since their product is−1, the lines corresponding to the two roots are perpendicular.
One is the minimum that we are looking for, and the other is the maximum over all
the lines going through the centroid.

Let’s compare these slopes with the slope m of the minimizing line for the ordi-
nary least squares problem found in (14.6). So compare, shift the coordinates there
so that the line goes through the centroid of the data. Then the slope is

mLS =
Sxy

Sxx
.

Example 14.4.3. Assume we have three points (so r = 3 with coordinates (0,1),
(1,1) and (2,3). These points are obvious not aligned. We get sx = 3, sy = 5, so the
centroid is (1,5/3). Shift the points so the centroid is the origin. The three points
are now (−1,−2/3), (0,−2/3) and (1,4/3). In that coordinate system we have

Sxx = 2, Sxy = 2 and Syy = 20/9. The slope of the ordinary least squares line is
m =

Sxy
Sxx

= 1.
The two possible slopes of the orthogonal least squares lines are

− 2
36
±
√( 2

36

)2
+1
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so the minimum clearly occurs for the + sign. The slope of the orthogonal least
squares line is smaller than that of the least squares line as a little computation
shows.

Here is a graph:

14.5 Computational Techniques in Least Squares

The key reference for this material is [9], Chapter 6. We use the notation of §8.5.
As there, we assume for simplicity that the m×n matrix A of coefficients has rank
n, so that there is a unique minimizer for the problem. The error, usually called the
residual for the problem is the vector b−p. As noted in (8.13) it is orthogonal to
the columns of A.

By the singular value decomposition (SVD) of A, we can write

A = Q1DQt
2,

where Q1 is an orthogonal matrix of size m whose columns are the eigenvectors of
AAt , Q2 is the orthogonal matrix whose columns are the eigenvalues of AtA, and the
m×n matrix D only has non-zero entries along the diagonal, and they are the square
roots of the non-zero eigenvalues of AAt and AtA.

Notice that At = Q2DtQt
1, so

AAt = (Q1DQt
2)(Q2DtQt

1) = Q1DDtQt
1 and At = Q2DtDQt

2.

So we have the eigenvector-eigenvalue decomposition for the matrices AAt and AtA,
which are both symmetric so that the spectral theorem applies. Furthermore AtA is
positive definite, so its eigenvalues are positive so we can take their square roots,
which are the n non-zero diagonal elements of D and Dt .

Given the matrix A we define its pseudoinverse A+ using its SVD of A by the
four Moore-Penrose conditions. A+ is the unique n×m matrix X so that

1. AXA = A;
2. XAX = X ;
3. (AX)t = AX ;
4. (XA)t = XA.

These conditions imply that AA+ is the orthogonal projection to the range of A,
and A+A the orthogonal projection to the range of At . In other words in our setup

A+ = (AtA)−1At .

Then the first method of solving least squares is to use the Cholesky factorization
of the positive definite C = AtA. This means we write C = GGt . Because C is sym-
metric and positive definite, its LDM decomposition, where L is lower triangular, D
is diagonal and M is upper triangular, has M = Lt , and all the diagonal entries of
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D are positive. So D = D2
1, where D1 is again diagonal. So let G = LD1. Thus G

is lower triangular with positive elements on the diagonal Then to solve the least
squares problem written in normal equations as AtAx = Atb, write AtA = GGt and
d = Atb.

Algorithm
First solve Gy = d and then Gtx = y.
Thus this is a variant of the solution of a system of linear equations by writing

the coefficient matrix as a product of lower triangular and upper triangular, which
can be done quickly.

The second method is to use QR factorization. Write A = QR, where A is an
orthogonal m×m matrix and R is an upper triangular m× n matrix, so that its last
m−n rows are 0. Write R1 for the square matrix of size n consists of its top n rows.
Then write Qtb = c. Write the first n entries of c as the n vector c1, and the last
m−m entries as the vector c2. Then since Q is orthogonal, and therefore preserves
distance, the Pythagorian theorem gives us:

‖Ax−b‖2 = ‖QtAx−Qtb‖2 = ‖R1x− c1‖2 +‖c2‖2.

So the least squares solution is given by the easy triangular system R1x = c1 and the
error is ‖c2‖2.



Chapter 15
Linear Inequalities and Polyhedra

Abstract In this chapter we restrict to real coefficients, so that we can compare con-
stants and write down inequalities. First in a section that introduces the tools of the
chapter, we study affine geometry, which is essentially linear geometry, but where
we do not have an origin. Then we show how systems of linear inequalities can be
studied and solved by elimination much in the same way as systems of equalities.
The set of solutions of families of linear inequalities is called a polyhedron: they
represent a special case of convex sets, about which we study next. Using projec-
tions we can say a great deal about polyhedra, and prove that bounded polyhedra
are polytopes.

15.1 Affine Geometry

In the linear algebra we have studied so far we have only given a name to subspaces
of Rn given by the vanishing of a collection of homogeneous linear equations, which
we can write in matrix form as the x that satisfy Ax = 0. These subspaces are of
course called linear subspaces. Now we generalize.

Definition 15.1.1. An affine subspace or a flat1 of Rn is a subset of x ∈Rn given by
the vanishing of a family of equations Ax = b, where A is as usual a m×n matrix,
so b is an m-vector.

The goal of this section is to extend linear algebra to include flats as the basic
objects of study. This could be called affine algebra, but it is always referred to as
affine geometry.

A flat T = {t ∈ Rn|At = b} can be empty, precisely when b is not in the column
space of A. Assume T is non-empty. Let W be the linear subspace of Rn given by
W = {w ∈ Rn|Aw = 0}. We call W the linear subspace associated to the flat T ,
following Definition 1.1.6. It is obviously uniquely determined by T . If the matrix

1 A term used in many books on affine geometry: see for example Lay [17], p. 12.

277
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A has rank n, then T is a single point. Conversely any point p is the flat associated
to the family of equations Ix = p, where I is the n×n identity matrix.

Lemma 15.1.2. Fix an element t0 ∈ T . Any element t in T can be written uniquely
as t0 +w, for an element w ∈W.

Proof. This is easy. First note that any element of the form t0 +w is in T . Then
assume that t ∈ T has two different representations t0 +w1 and t0 +w2, and show
that w1 = w2. This is closely related to Theorem 1.1.7. ut

Definition 15.1.3. The dimension of a non-empty flat T is the dimension of its as-
sociated linear subspace W .

Thus if T = {t ∈ Rn|At = b}, the dimension of T is n− r, where r is the column
rank of A.

Remark 15.1.4. The union of a flat T of dimension m that does not go through the
origin and its associated linear space W is contained in a linear subspace U of di-
mension m+1. Indeed a basis for U is given by a basis of W plus any t ∈ T .

What we have done so far defines flats by the equations that vanish on it. Now
we want to argue directly on the points of the flat: what makes it affine?

Its associated linear space W is determined by n− r linearly independent points
on it (a basis). To determine T we also need the additional information given by
the m-vector b, whose coordinates tells us how far the equations are from being
homogeneous.

We want a more intrinsic description, so we make a new definition:

Definition 15.1.5. A set S in Rn is affine if for every pair of points p and q in S and
every real number λ , the point λp+(1−λ )q is in S.

In other words, if two distinct points are in S, then any point on the line joining
the two points is in S. As we now see all affine sets are flats.

Theorem 15.1.6. A non-empty subset S of Rn is affine if and only if it is a flat of Rn.

Proof. It is easy to show that every flat is an affine subset. Assume the flat T is the
set of solutions x of Ax = b. Then T is an affine subset. Indeed take two points p
and q in T , so that Ap = b and Aq = b. Then by linearity

A(λp+(1−λ )q) = λAp+(1−λ )Aq = λb+(1−λ )b = b

so we are done,
The other direction is harder. Assume that S is an affine subset. Pick any s0 ∈ S.

Consider the subset V = {−s0 + s| for all s ∈ S}. It contains the origin: take s = s0.
To show V is a subspace, we must additionally show that it is closed under scalar
multiplication and vector addition.

First we consider scalar multiplication. The following graph explains the argu-
ment:
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If S consists in just one point s0, there is nothing to do, since V is just the origin.
Otherwise take any other point s ∈ S. Then s− s0 is in V . We need to show that for
any λ ∈ R, λ (s− s0) ∈V . Since S is affine λ s0 +(1−λ )s ∈ S, so

λ s0 +(1−λ )s− s0 = (λ −1)s0 +(1−λ )s = (1−λ )(s− s0) is in V.

Finally we do vector addition. Take any s1 and s2 in S. So −s0 + s1 and −s+ s2
are in V . We must show that for any λ1 and λ2 in R,

λ1(−s0 + s1)+λ2(−s0 + s2) =−(λ1 +λ2)s0 +λ1s1 +λ2s2 is in V.

This element is in V if and only if when s0 is added to it, the new element is in S.
This new element is written

(1−λ1−λ2)s0 +λ1s1 +λ2s2 = is in V.

This is true when λ1 +λ2 = 1, and then by multiplying s2 by the appropriate scalar
using the first part of the proof, we get it for all λ1 and λ2.2 ut

Theorem 15.1.7. The intersection of any collection of affine sets in Rn is affine,
possibly empty.

Proof. The easy method is just to notice that the intersection of flats is a flat and
use Theorem 15.1.6. We can also argue directly. Let S and T be affine. Consider the
intersection S∩T . Pick any two points p and q in it. The for any λ , λp+(1−λ )q
is in S and in T , so it is in the intersection.

Definition 15.1.8. The affine hull of an arbitrary set S ∈ Rn is the intersection of all
affine sets containing S.

Corollary 15.1.9. The affine hull of a set S is affine.

Definition 15.1.10. Let x1, . . . ,xr be a collection of r points in Rn, where r is any
positive integer. Then x is an affine combination of the points xi if there exists real
numbers λi, ∑

r
i=1 λi = 1, such that

x =
r

∑
i=1

λixi

Theorem 15.1.11 (The Affine Combinations Theorem). A set S is affine if and
only if all finite affine combinations of points of S are in S.

Proof. One direction is obvious: if all finite affine combinations of points in S are
in S then S is affine, since affineness is just the case r = 2.

For the other direction assume that S is affine. We could argue on the flat, just as
at the end of the proof of Theorem 15.1.6, but it is easier to do it directly: we prove

2 This is a special case of Theorem 15.1.11.
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by induction that if any affine combination of r− 1 points is in S, then so is any
affine combination of r points. We start the induction at r = 2 where we just use the
definition of affine. So take an affine linear combination of r points: x = ∑

r
i=1 λixi,

with ∑
r
i=1 λi = 1. If any of the λi is 0 then we have an affine combination of r− 1

points, so x is in S. So we may assume that λr 6= 0. The following combination of
the first n−1 points is affine:

y =
λ1

1−λr
x1 +

λ2

1−λr
x2 + · · ·+

λr−1

1−λr
xr−1.

So by induction y∈ S. Then since S is affine, the affine combination (1−λr)y+λrxr
is in S. ut

Definition 15.1.12. For any set S, let A(S) be the set of all finite affine combinations
of points of S.

By taking the number of points r in the affine combination to be 1, so that λ1 = 1,
we have

S⊂ A(S) (15.1)

Theorem 15.1.13. For any set S, A(S) is an affine set.

Proof. Pick two points p and q in A(S). Then

p =
r

∑
i=1

λixi with xi ∈ S and
r

∑
i=1

λi = 1. (15.2)

q =
r

∑
i=1

µiyi with yi ∈ S and
r

∑
i=1

µi = 1.

We must show that for any number ν , νp+(1−ν)q is in A(S). In this expression
replace p and q by the sums in (15.2):

νp+(1−ν)q = ν(
r

∑
i=1

λixi)+(1−ν)(
r

∑
i=1

µiyi

=
r

∑
i=1

νλixi +
r

∑
i=1

(1−ν)µiyi. (15.3)

Since ∑
r
i=1 νλi + ∑

r
i=1(1− ν)µi = 1 this is an affine combination of the points

{x1, . . . ,xr,y1, . . . ,ys}. ut

Theorem 15.1.14. For any set S, the affine hull is equal to the set of affine combi-
nations.

Proof. Temporarily denote by H the affine hull of A. Since H is the intersection of
all affine sets containing S and A(S) is affine and contains S, we have H ⊂ A(S).
We need to prove the other inclusion: it is an immediate consequence of the Affine
Combinations Theorem. ut
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Definition 15.1.15. The points x0, . . . , xk are affinely dependent if there are real
numbers ai, with ∑

k
i=0 ai = 0 and not all ai = 0 such that

k

∑
i=0

aixi = 0. (15.4)

Otherwise we say they are affinely independent.

Linearly independent sets of points are affinity independent, but as the next ex-
ample shows, there are affinely independent sets of points that are not linearly inde-
pendent.

Proposition 15.1.16. Any subset of a collection of affinely independent points is
affinely independent.

Proof. This is trivial. Suppose that the points x0, . . . , xk are affinely independent,
but that some subset, say x0, . . . , xl , is affinely dependent. Then there is a collection
ai, 0 ≤ i ≤ l, non all zero, with ∑

l
i=0 ai = 0. Then define al+1 = · · · = ak = 0. This

gives an equation of linear dependence for the original set, a contradiction.. ut

Example 15.1.17. The points (1,0,0), (0,1,0) and (0,0,1) in R3 are affinely inde-
pendent. Indeed, if you add the origin (0,0,0) to this set of points, it is still affinely
independent.

Exercise 15.1.18. Show that if there is repetition in the list of points x0, . . . , xk, so
for example if x0 = x1, the points are affinely dependent.

Proposition 15.1.19. The points x0, . . . , xk are affinely dependent if and only if the
vectors xi−x0, 1≤ i≤ k, are linearly dependent.

Proof. Assume that x0, . . . , xk are affinely dependent, so there are real numbers ai
satisfying (15.4). Then

a0 =−
k

∑
i=1

ai. (15.5)

If a0 6= 0, substitute a0 into the equation of affine dependence, getting

k

∑
i=1

ai(xi−x0) = 0. (15.6)

Not all the coefficients in this equation are zero by (15.4), so this is the required
equation of linear dependence between the xi−x0.

To get the other implication, start from the equation of linear dependence (15.6)
and define a0 by (15.5). This gives (15.4), the required equation of affine depen-
dence. ut

Exercise 15.1.20. Prove that if x is an affine combination of x0, . . . , xk, and if the
xi, 0 ≤ i ≤ k, are affinely dependent, then x is an affine combination of a smaller
number of the xi.
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The importance of affine independence comes from the following theorem,
which is analogous to Theorem 3.4.12 in linear algebra.

Theorem 15.1.21. Let x0, . . . , xm be a collection of affinely independent points in a
flat of dimension m. Then any point x is the flat can be written uniquely as an affine
combination of the xi, 0≤ i≤ m.

Proof. First we prove the uniqueness. Suppose

x =
m

∑
i=0

λixi where
m

∑
i=0

λi = 0;

=
m

∑
i=0

µixi where
m

∑
i=0

µi = 0;

and where not all the λi are zero and not all the µi are zero. Then subtract the two
representations. You get an equation of affine dependence between the xi unless all
the coefficients are 0, meaning that λi = µi for all i.

The existence follows from Lemma 15.1.2: this is where you use the hypothesis
on the dimension. ut

Thus affinely independent sets of m+1 elements in an affine subset of dimension
m form the analog of a basis in a vector space of dimension m.

Definition 15.1.22. Assume S is a flat of dimension n−1 in Rn, and W its associated
linear space. Then S is called a hyperplane, the zeroes of a unique equation

a1x1 +a2x2 + · · ·+anxn = b

which we can write in terms of matrix multiplication as

atx = b

or in terms of the standard inner product on Rn as

〈a,x〉= b. (15.7)

We will always assume that the vector a is not the zero vector. So b = 〈a,s〉, for
any s ∈ S. Since V is a hyperplane through the origin we get 〈a,x〉 = 0, so that
a is orthogonal to any v ∈ V Thus a is called a normal (meaning perpendicular)
vector to V , and by extension also to S where for any two vectors s1 and s2 in S, we
have 〈a,s1− s2〉 = 0. The normal vector a is only defined up to multiplication by
a non-zero scalar. We write S = Ha,b and V = Ha,0. Note that Ha,b = Hca,cb for any
non-zero scalar c.

Lemma 15.1.23. Take n linearly independent points bi, 1≤ i≤ n, in Rn. Then there
is a unique hyperplane H passing through these points.
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Proof. Write B for the n×n matrix whose i-th row are the coordinates of bi. Write
the equation of H as

c1x1 + c2x2 + . . .cnxn = d,

so the vector c and the unknown number d satisfy the system of n equation Bc = d,
where d = (d,d, . . . ,d). Linear independence of the points bi is equivalent to saying
that the matrix B is invertible, so there is a unique solution c = B−1d to the system
of equations, up to scaling by a non-zero constant. Thus the hyperplane H is unique.

ut

Remark 15.1.24. The distance between a hyperplane S and its associated linear
space V is √

〈a,s−v〉
‖a‖

for any s ∈ S and v ∈V , as you should check.

Example 15.1.25. Let’s write the equations of the affine line in R3 through the points
(3,0,1) and (1,2,0). That means we need to find all the solutions in (a,b,c,d) of
the equations

ax+by+ cz = d

that verify 3a+ c = d and a+2b = d. We have 2 equations in 4 unknowns, and we
can easily solve in terms of a and b:

c =−2a+2b

d = a+2b

Therefore there are two affine equations vanishing on the points, and therefore on
the line. On the other hand there is only one linear equation through the points:
indeed, when d = 0, we have , up to a scalar, −2x+ y+ 6z = 0. The two affine
equations, are, for example, x−2z = 1 and y+2z = 2.

15.2 Systems of Linear Inequalities and Polyhedra

For simplicity we only consider weak inequalities (≤ and ≥) even though we could
also use strong inequalities (<, >): they just make the bookkeeping more compli-
cated. We can arrange that all the inequalities be oriented in the same way: this is
no restriction, since it can always be achieved by multiplying the inequality by −1.

We keep the same notation as in the equality case described in §1.3, so the system
S we study has m inequalities in n variables:

ai1x1 + · · ·+ainxn ≤ bi (1≤ i≤ m) (15.8)

As usual we write
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fi(x1, . . . ,xn) = ai1x1 + · · ·+ainxn−bi

for the function associated to the i-th row. We also write Ax ≤ b, where A is the
m× n matrix of coefficients of the x j and b in n vector of b j. The first question
is: when is the set of solutions Z(S), namely the set of (x̄1, x̄2, . . . , x̄n) satisfying
the m inequalities a jx ≤ b j in the system S nonempty? Thus what we are doing is
completely parallel to the case of equalities.

We give a name to the set of solutions:

Definition 15.2.1. A polyhedron P in Rn is the set of solutions x of (15.8).

We write P(A,b) when we need to indicate the dependence on A and b.
The polyhedron P(A,b) could very well be empty, as could be set of solutions of

a system of inhomogeneous equations. We say that the system of inequalities (15.8)
is consistent if the polyhedron is not empty. Otherwise it is inconsistent.

We define a consequence of (15.8) as any linear inequality

c1x1 + c2x2 + . . .cnxn ≤ c

that is true for any x ∈ P(A,b). As in the case of equalities, we only use this concept
if the system (15.8) is consistent, since otherwise any linear inequality is a conse-
quence since we only have to verify it on the empty set.

We can produce consequences of S as follows: for any set of non-negative con-
stants c1,c2, . . . ,cm form the inequality

c1 f1 + · · ·+ cm fm ≤ 0

which can be written out as

(c1a11 + · · ·+ cmam1)x1 + · · ·+(c1a1n + · · ·+ cmamn)xn ≤ c1a1 + · · ·+ cmam

Because we have restricted the coefficients ci to non-negative numbers, we always
get in this way consequences of S: the direction of the inequality is preserved, so the
inequality is preserved.

We now show that elimination proceeds exactly as in the case of equalities. Be-
fore stating the result, let’s do some simple examples. Even the simplest possible
example is instructive.

Example 15.2.2. Assume there is only one variable, so the inequalities can be writ-
ten: aix≤ bi, 1≤ i≤m. If ai = 0 in some equation, we get a contradiction if bi < 0.
This is the situation we always reduce to when trying to get a contraction. If bi ≥ 0,
we get an identity which can be ignored. Assume that we are in that case.

Now consider the equations where ai 6= 0. Let P denote the indices p where
ap > 0 and Q those where aq < 0. Then for any p ∈ P and any q ∈ Q the linear
combination−aqapx+apaqx≤−aqbp+apbq follows from the original inequalities.
Thus aqbp ≤ apbq, so if this is not verified we get a contradiction.

Finally assume that all the inequalities obtained are consistent. Solving for x in
each equation we have
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x≤
bp

ap
for all p ∈ P, (15.9)

bq

aq
≤ x for all q ∈ Q.

Then we have the following simple lemma, which tells us that the solutions form an
interval, which could be unbound negatively, positively or both.

Lemma 15.2.3. The equations 15.9 are satisfied if and only if

max
q∈Q

bq

aq
≤min

p∈P

bp

ap
. (15.10)

The easy proof is left to you.
Thus in this case the polyhedron associated to this family of inequalities is non-

empty if and only if (15.10) is verified, and for equations where ai = 0, bi ≥ 0.

Now an example in R2.

Example 15.2.4. We work in the plane with unknowns x and y to simplify the nota-
tion. Assume we have the two inequalities:

−4x− y≤−12 (15.11)
−x+2y≤ 8

First think about this geometrically. The two lines y = −4x + 12 and y = x/2+
4 meet at the point (16/9,44/9). The region that satisfies both inequalities is the
region above the line with negative slope and below the line with positive slope.
Therefore it is the

GRAPH HERE
Because the sign of the coefficients of x is the two equations is the same, we

cannot eliminate x and produce a consequence using an equation involving y alone.
But we can eliminate y by adding twice the first equation to the second. So we get

−9x≤−16 or x≥ 16
9
. (15.12)

For later purposes it is more convenient to put y by itself on one side of each equation
in (15.11), getting

12−4x≤ y

y≤ x/2+4

so combining the two, by dropping the middle inequality involving y, we get

12−4x≤ x/2+4.

This is just another way of producing (15.12). For any x̄ satisfying (15.12), any ȳ in
the interval [12− 4x̄, x̄/2+ 4] gives a solution (x̄, ȳ) to the original system. The
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interval is non-empty because of the restriction (15.12) on x̄, Draw a graph to show
what is happening. Thus the polyhedron of (15.12) is the same as the polyhedron of

−x≤ 16
9

−4x− y≤−12
−x/2+ y≤ 4

The advantage of this representation is that the new first equation only involves x.

Example 15.2.5. We make the previous example a little more complicated. Add two
inequalities, so that the full set is:

−4x− y≤−12 (15.13)
2x+ y≤ 12
x− y≤ 0

−x+2y≤ 8

Are there any solutions? For variety we first eliminate the variable x, and then deter-
mining the constraints on y. Then we finish, just as in the equality case, by showing
that for each solution ȳ of the new system S(1) in y alone , there is a solution (x̄, ȳ)
for the original system S.

Since we are in the plane, we can first understand the configuration of the four
lines obtained by replacing each inequality in (15.13) by an equality. This is useful,
because the region where one inequality is satisfied is one of the two half planes
separated by the line where there is equality. The lines are:

L1 = {(x,y)|4x+ y = 12};
L2 = {(x,y)|2x+ y = 12};
L3 = {(x,y)|x− y = 0};
L4 = {(x,y)|x−2y =−8}.

We can easily find the point of intersection of each pair of lines by Gaussian
elimination. We get 6 points, distinct in this case, that we label pi j = Li ∩ L j, for
i < j. So p12 = (0,12), p13 = (2.4,2.4), p14 = (16/9,44/9), p23 = (4,4), p24 =
(16/5,28/5), p34 = (8,8).

Here is a graph of the region that satisfied the inequalities.
How would be determine this if we were not able to draw the graph? By elimi-

nation.
How do we eliminate x? Note that in the second and third equations, the coef-

ficient of x is positive while in the first and fourth it is negative. We consider two
inequalities where the coefficients of x have opposite signs, and we form the linear
combinations with positive coefficients that makes the coefficient of x vanish. This
new inequality is a consequence of the original two, and that does not contain x.
There are four ways of doing this
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So

• f1 +2 f2 gives y≤ 12.
• f3 + f4 gives y≤ 8.
• f1 +4 f3 gives 5y≥ 12.
• f2 +2 f4 gives 5y≤ 28.

So we have 4 inequalities involving y: one limiting it from below, and three from
above. Using Lemma 15.2.3, take the most stringent inequality on either side, so

12
5
≤ y≤ 28

5
. (15.14)

This interval is not empty so we can find such a y.
Now we prove that for any ȳ satisfying (15.14), there is a point (x̄, ȳ) satisfying

the original inequalities (15.13) in x and y. You should work this out geometrically
on the graph.

The polyhedron of (15.13) is therefore the polyhedron of

y≤ 28
5

(15.15)

−y≤−12
5

−4x− y≤−12
2x+ y≤ 12
x− y≤ 0

−x+2y≤ 8

which is easier to work with because of the added first two inequalities.

We continue by working out a three dimensional example, where you can still
visualize what is going on.

Example 15.2.6. We work in ordinary space with unknowns x, y and z to simplify
the notation. Assume we have the six inequalities:

x+ y+ z≥−1 (15.16)
−x− y− z≥−1

x− y+ z≥−1
−x+ y− z≥−1

x− y− z≥−1
−x+ y+ z≥−1

Notice how the inequalities are grouped in consecutive pairs. if you multiply the
second inequality in each pair by −1, you should be able to see what is going on
geometrically. We eliminate x. For each equation where x has a positive coefficient
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(always 1 in our example) we take a positive linear combination with an equation
where x has a negative coefficient (always −1 in the example) so that x disappears
from the new equation. Since we have 3 equations with positive x coefficient, and 3
with negative coefficient, we will end up with 9 inequalities from which x has been
eliminated. They are

0≥−2 Equations 1 and 2 (15.17)
y≥−1 Equations 1 and 4

y+ z≥−1 Equations 1 and 6
−y≥−1 Equations 3 and 2

0≥−2 Equations 3 and 4
z≥−1 Equations 3 and 6

−y− z≥−1 Equations 5 and 2
−z≥−1 Equations 5 and 4

0≥−2 Equations 5 and 6

Three of the inequalities are identically true, so we are left with six inequalities in
y and z. y is already eliminated from two of them, so we are left with 4 inequalities
on which we have to perform elimination of y:

y≥−1 (15.18)
−y≥−1

y+ z≥−1
−y− z≥−1

After elimination of y we get, listing first the two equations from the first step on
which y was already eliminated:

z≥−1 (15.19)
−z≥−1

0≥−2

where repeats have been eliminated. This implies that the values of z that produce
solutions after two steps are −1≤ z≤ 1. The inequalities from (15.18) say that for
any z̄ in the interval, y must satisfy

−1− z̄≤ y≤ 1+ z̄

This always has a solution when −1 ≤ z ≤ 1, since then −1− z̄ ≤ 1+ z̄. Finally,
for any solution ȳ, z̄, the theorem tells us there is always a solution in x. You should
work this out, and graph the solutions for any ȳ, z̄.

A simple way of solving this problem is noting that the three vectors u = x+y+
z, v = x−y+ z and w = u =−x+y+ z are linearly independent. Using these as a



15.2 Systems of Linear Inequalities and Polyhedra 289

basis, the inequalities become easy to understand, and the solution set is just a cube
bounded by −1 and 1 in all three coordinates.

Now we state and prove the general case, reverting to the notation in (15.8).
Let P(0) be the polyhedron associated to this system of inequalities. We pick one
variable, which after renaming the variables we may assume is x1, and group the
inequalities into three groups.

• The indices p where ap1 is positive; the set of such p we call P.
• The indices q where aq1 is negative; the set of such q we call Q.
• The indices r where ar1 is zero; the set of such r we call R.

Our goal is to eliminate x1. For the inequalities with index in R there is nothing
to do. So if #R denotes the cardinality of R, then we obviously get #R inequalities
from which xi has been eliminated. Now consider an inequality with index p in P.
Dividing by ap1 > 0 and isolating x1 on the left hand side, we get

x1 ≤−
ap2

ap1
x2−·· ·−

apn

ap1
xn +

bp

ap1
.

On the other hand, for each q in Q we get

−
aq2

aq1
x2−·· ·−

aqn

aq1
xn +

bq

aq1
≤ x1.

Let #P denote the number of inequalities in P and #Q denote the number of inequal-
ities in Q. Then from any pair of inequalities, one in Q and the other in P we get an
inequality from which xi has been eliminated:

−
aq2

aq1
x2−·· ·−

aqn

aq1
xn +

bq

aq1
≤−

ap2

ap1
x2−·· ·−

apn

ap1
xn +

bp

ap1

or

(ap2

ap1
−

aq2

aq1

)
x2 + · · ·+

(apn

ap1
−

aqn

aq1

)
xn ≤

bp

ap1
−

bq

aq1
. (15.20)

Therefore we get a new polyhedron P(1) in Rn−1 given by the inequalities in R
and the inequalities 15.20 for each p ∈ P and q ∈ Q.

We have established

Theorem 15.2.7. The polyhedron P(1) is the projection of P(0) into Rn−1. The poly-
hedron P(0) is non-empty if and only if P(1) is non-empty.

By repeating this elimination process, we can determine when the polyhedron is
non-empty. If it is non-empty we would like to study its properties, much as we did
for affine sets. The most important question is: is the polyhedron bounded? This just
means it can be put inside a ball of finite radius in Rn.

We can determine this somewhat crudely by our projection technique. Keep pro-
jecting the polyhedron until you get its projection onto the line with coordinate xi,
for some i. Then there are four possibilities:
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1. There are no constrains on the projection: in other words the projection is the
entire line.

2. There is one constraint above: xi ≤M: so the projection is a half-line;
3. There is one constraint below: m≤ xi: again the projection is a half-line;
4. There are constraints on both sides: m≤ xi ≤M: the projection is a finite interval.

Clearly the only way the original polyhedron can be bounded is if we are in the
last case. This is a necessary but not sufficient condition, as you should convince
yourself by taking the polyhedron in R2 given by x2 ≤M and m≤ x2, where m < M.
Then the projection to the x2 line gives an interval but the projection to the x1 line
puts us in case 1. However we get the following easy theorem:

Theorem 15.2.8. A polyhedron is bounded if and only if its projection to all the
coordinate axes is an interval.

The easy proof is left to you. Note that the polyhedron in Example 15.2.6 is
bounded.

Application 15.2.9 (Linear Optimization) Using this elimination technique we
can determine when a linear function

f (x1,x2, . . . ,xn) = c1x1 + c2x2 + · · ·+ cnxn, ci ∈ R

has a maximum or a minimum on a polyhedron P given by Ax≤ b.

Define a new variable xn+1 = c1x1 + · · ·+ cnxn, and use this equation to eliminate
one of the xi, 1≤ i≤ n with ci 6= 0 from the inequalities defining P. Then we have a
new polyhedron in the n variables: xn+1 and the original variables with xi removed.
This is in fact the same polyhedron but described in a new coordinate system. Then
eliminate the original variables by the technique above until we get down to the line
with variable xn+1.

Assuming again that the original polyhedron was non-empty, we have the four
possibilities enumerated above. Here is what they say about the maximum or mini-
mum of the function f (x) on the polyhedron.

1. If the projection is the entire line, f (x) takes all values on the polyhedron;
2. If xn+1 ≤M, then M is the maximum of f (x) on P;
3. If m≤ xn+1, then m is the minimum of f (x) on P.;
4. If m≤ xn+1 ≤M, then f (x) has both a maximum and a minimum on P

To say more the tool we need is convexity.

15.3 Convex Sets

We start with some geometric considerations to motivate the definition of convexity.
Take two distinct points p and q in Rn. There is a unique straight line L passing
through both of them. By extension of the notation in R we denote [p,q] and (p,q)
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the closed and open segments of points on L bounded by p and q. The points r of
(p,q) can be parametrized by

r = λp+(1−λ )q, for λ ∈ R,0 < λ < 1. (15.21)

If we think of λ as time and r(λ ) being the position of a particle at time λ , then at
time 0 it is at q and then it moves at constant speed to p which it reaches at time 1.

Definition 15.3.1. A point r is between p and q if it satisfies (15.21), so that it is in
the open segment (p,q).

Definition 15.3.2. A set S in Rn is convex if for every pair of points p and q in S,
any point of the open segment joining p and q is in S. In other words, every point
between p and q is in S.

Before giving some examples of convex sets, we make some definitions and set
up some notation that will be used throughout this chapter.

Definition 15.3.3. Start with the hyperplane Ha,b of (15.7). Then the two closed
half-spaces associated to this hyperplane are:

H+
a,b = {x | 〈a,x〉 ≥ b}, and H−a,b = {x | 〈a,x〉 ≤ b}.

Note that H+
a,c is the half-space the normal vector a points into. The hyperplane Ha,b

is called the face of both half-spaces.

Here graph in plane.

Theorem 15.3.4. The intersection of any collection of convex sets in Rn is convex.

Proof. Let Cα , α ∈ I, be such a collection, where the index set I may be infinite. If
the intersection is empty, we are done; if there is just one point in the intersection,
likewise. So take any two points p and q in the intersection. For every α ∈ I, the
segment [p,q] is in Cα , so it is in the intersection, which is therefore convex. ut

Example 15.3.5. Using this theorem, we can show the following sets are convex:
The empty set;3

A point;
A line or a segment on a line;
Any affine hyperplane Ha,b; More generally, any linear space;
A half-space H+

a,b or H−a,b. More generally, any polyhedron (see Definition
15.2.1).

We are primarily interested in polyhedra. However it is worth knowing about the
following example.

3 In a few texts, the empty set is not taken to be convex. The majority of references say that the
empty set is convex: [3], [4], [5], [14], [17], [21], [23], [27]. This is simply a matter of convention.
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Example 15.3.6. Consider the closed ball Nr(c) in Rn of points at distance less than
or equal to r from the center c. It is convex. Change coordinates so that its center
is at the origin. Then the closed ball Nr(0) is just the set of points x ∈ Rn such that
‖x‖ ≤ r. Given two points p and q such that ‖p‖ ≤ r and ‖q‖ ≤ r, we must show
that ‖λp+(1−λ )q‖ ≤ r for all λ , 0 < λ < 1. By the triangle inequality

‖λp+(1−λ )q‖ ≤ λ‖p‖+(1−λ )‖q‖ ≤ λ r+(1−λ )r = r,

so we are done.

Definition 15.3.7. A point r of a convex set S is an extreme point of S if it is not
between two points of S.

In other words, one cannot find distinct points p and q in S so that (15.21) is
satisfied.

Example 15.3.8. Let T be the polyhedron in R2 that is the set of solutions of the
three inequalities Ax ≤ b, where A is a 3× 2 matrix and x1, x2 are the coordinates
on R2. Assume that any two rows of A are linearly independent. Then there is a
unique point of intersection pk of the line Li = 〈ai,x〉 = bi and L j = 〈a j,x〉 = b j,
where {i, j,k} are all distinct. Also assume that the three points p1, p2 and p3 are
distinct. Finally sssume the normal ai of Li, the i-th row of A, points to the opposite
half-plane that the point pi lies in. Then T is the triangle whose vertices are the
pi. Convince yourself T is convex. The extreme points of T are the vertices of the
triangle.

Example 15.3.9. The extreme points of the closed ball Nr(c) in Rn are the (n−1)-
sphere Sr(p) of points at distance exactly r from the center c.

Exercise 15.3.10. If you remove an extreme point from a convex set, what remains
is convex. Conversely, if you remove a point from a convex set, and the remainder
is convex, the removed point was an extreme point. Combining Example 15.3.9 and
this exercise, we see that balls ball Nr(c) in Rn of points at distance less than r from
the center c are convex.

Definition 15.3.11. The convex hull of a set S ∈ Rn is the intersection of all convex
sets containing S. It is denoted C(S).

Corollary 15.3.12. The convex hull of any set S is convex.

Definition 15.3.13. A n-simplex is the convex hull of n+ 1 affinely independent
points in Rn. If the points are a0, . . . , an, then each ai is an extreme point of the
simplex, also called a vertex of the simplex, and the segments [ai,a j] are the edges.
More generally the convex hull of any collection of ai is called a face of the simplex.

We write the simplex as:

H(a0, . . . ,an) = {x =
n

∑
i=0

λiai | λi ≥ 0 ,
m

∑
i=0

λi = 1} (15.22)
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Definition 15.3.14. Let x1, . . . ,xr, be a collection of r points in Rn, where r is any
positive integer. Then x is a convex combination of the points xi if there exist non-
negative real numbers λi, ∑

r
i=1 λi = 1 such that

x =
r

∑
i=1

λixi (15.23)

This is very similar to the definition of affine combination: the only difference is
that the λi are required to be non-negative.

Exercise 15.3.15. The low dimensional simplices.

• if x0,x1,x2 are three distinct, non-aligned points in the plane, then the set of
convex combinations of x0,x1,x2 is the triangle and the inside of the triangle
formed by the three points.

• if x0,x1,x2,x3 are four distinct points in R3, such that any three span a plane,
and the four points do not lie in a plane, then the set of convex combinations of
x0,x1,x2,x3 is a tetrahedron4 and its interior.

Theorem 15.3.16 (The Convex Combinations Theorem). A set S is convex if and
only if all finite convex combinations of points of S are in S.

Proof. By definition, S is convex if convex combinations of two points of S are in S.
So half of the theorem is clear, and we only need to show that a convex combination
of r points of a convex set S is in S, for any r ≥ 2. We do this by induction on r. We
start the induction at r = 2: this is the definition of convexity, so there is nothing to
do.

Next we assume that the result is known for r ≥ 2, namely that any convex com-
bination of r points is in S, and we prove it for r + 1. Let x1, . . . , xr+1 be r + 1
arbitrary points of S, and let

x =
r+1

∑
i=1

λixi , where all λi ≥ 0 and
r+1

∑
i=1

λi = 1.

We need to show x ∈ S. We may assume that λi > 0 for all i, since otherwise there is
nothing to prove since there are only r terms. Let γ = ∑

r
i=1 λi, so by the last remark

0 < γ < 1. Then let
γi = λi/γ , 1≤ i≤ r,

so that the point y = ∑
r
i=1 γixi is a convex combination of r points of S, and is

therefore in S by induction. Then x = γy+ λr+1xr+1, and γ + λr+1 = 1, so x is a
convex combination of two points of S and is therefore in S, since S is convex. ut

Definition 15.3.17. For any set S, let K(S) be the set of all finite convex combina-
tions of points of S.

4 If you do not remember what a tetrahedron is, you can use this as a definition.
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By taking just one point in the convex combination, so r = 1 and λ1 = 1, we see
that S⊂ K(S). When S is empty, K(S) is empty.

Theorem 15.3.18. For any set S, K(S) is a convex set.

Proof. To show that K(S) is convex, we need to show that if k1 and k2 are points of
K(S) then for any λ , 0 ≤ λ ≤ 1, λk1 +(1−λ )k2 is in K(S). Since k1 is a convex
combination of points of S, we have

k1 =
n

∑
i=1

µixi, for µi ≥ 0 ,
n

∑
i=1

µi = 1,

and similarly for k2:

k2 =
m

∑
j=1

ν jy j, for ν j ≥ 0 ,
m

∑
j=1

ν j = 1,

where the xi and y j are all in S. Then

λk1 +(1−λ )k2 =
n

∑
i=1

λ µixi +
m

∑
j=1

(1−λ )ν jy j. (15.24)

To show that the right-hand side is a convex combination of the n+m points {xi}
and {y j}we need to show that all the coefficients in (15.24) are non-negative, which
is easy, and that they sum to 1, which we check:

n

∑
i=1

λ µi +
m

∑
j=1

(1−λ )ν j = λ

n

∑
i=1

µi +(1−λ )
m

∑
j=1

ν j = λ +1−λ = 1,

so this is in K(S). ut

Theorem 15.3.19. For any set S, the hull is equal to the set of convex combinations:
C(S) = K(S).

Proof. By Theorem 15.3.18 K(S) is convex, and it contains S. Since C(S) is the
intersection of all convex sets containing S, we have:

C(S)⊂ K(S)

To get the opposite inclusion, take a convex combination ∑
r
i=1 λixi of elements xi of

S, and an arbitrary convex set T containing S. All we need to do is show that this
convex combination is in T . Since the xi are in S, they are in T , and Theorem 15.3.16
shows that all convex combinations of points of T are in T , so we are done. ut

An immediate corollary of this theorem is that any point in the convex hull of a
set S can be written as a finite convex combination of points in S.

Since we no longer need to make the distinction between the convex hull and the
set of all convex combinations, in both cases we write K(S) and refer to it as the
convex hull.
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Theorem 15.3.20. Let T : V →W be a linear transformation between two vector
spaces V and W. Let S be a convex set in V . Then its image T (S) under T is convex
in W.

Proof. Take any two points p and q in T (S). We must show that for any λ , 0 <
λ < 1, λp+(1−λ )q is in T (S). By definition of T (S), there is a a ∈ S such that
T (a) = p and a b ∈ S such that T (b) = q. Since S is convex, for our choice of λ ,
λa+(1−λ )b is in S. By linearity of T ,

T (λa+(1−λ )b) = λT (a)+(1−λ )T (b) = λp+(1−λ )q,

which is therefore in T (S), as required. ut

Definition 15.3.21. If S and T are non-empty subsets of Rn, and a and b are fixed
real numbers, then the Minkowski sum of S and T with coefficients a and b, written
aS+bT , is

aS+bT := {as+bt | ∀s ∈ S,∀t ∈ T}.

If T is empty, then aS+bT := aS. Similarly, if S is empty, aS+bT := bT .

Proposition 15.3.22. If S and T are convex, then so is the Minkowski sum aS+bT ,
for any choice of a and b.

Proof. Pick two points as1 + bt1 and as2 + bt2 in aS+ bT . We must show that for
any λ , 0 < λ < 1,

λ (as1 +bt1)+(1−λ )(as2 +bt2)

is in aS+bT . This can be written

a(λ s1 +(1−λ )s2)+b(λ t1 +(1−λ )t2)

and since S and T are both convex, this is in aS+bT . ut

Exercise 15.3.23. Let S be a convex set in the plane with coordinates x and y. As-
sume S contains an entire line L. For simplicity, and without loss of generality, let L
be the line with equation y = 0, namely the x-axis. What are all the possibilities for
S?

Hint: S could be just the line L, or the entire plane, or the upper half-plane y≥ 0,
or the lower half-plane y ≤ 0. In order to analyze the remaining cases, assume that
S only contains points in the upper half-plane. Assume that it contains a point p
with second coordinate y = a, for some a > 0. Then show, by connecting p to points
on the lines with very large and very small x coordinates, that S contains the entire
strip of points (x,y) with 0 ≤ y < a. Finally let b be the greatest lower bound of y-
coordinates of points in the upper half-plane that are not in S. Note that b is greater
than or equal to any a found previously. Then show that S is contained in the strip
of points (x,y) with 0≤ y≤ b. Then what can you say?

Exercise 15.3.24. If S is the closed ball of radius r1 centered at c1, and T the closed
ball of radius r2 centered at c2, then S + T is the closed ball B of radius r1 + r2
centered at c1 + c2.
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Hint: First show that S+T ⊂B, because every point in S+T is at most at distance
r1+r2 from c1+c2. Then show the opposite inclusion, by writing every point of the
boundary of B as the sum of points from S and T . Make a picture in R2.

Definition 15.3.25. The dimension of a convex set C is the dimension of the affine
hull of C, namely the flat of smallest dimension containing C.

Just as we defined linear independence and affine independence for a set of
points, we can do the same for convex independence.

Definition 15.3.26. A set S of two or more points is convexly independent if no
point s0 in S is in the convex hull of the remaining points. A single point is convexly
independent.

Exercise 15.3.27. Show that if a (necessarily finite) set of points is linearly inde-
pendent, then it is affinely independent. If a set is affinely independent, then it is
convexly independent. Given an example of

1. An infinite set of points that is convexly independent. Because it is infinite, it
cannot be affinely independent;

2. A finite set of points that is convexly independent, and not affinely independent.
3. An affinely independent set of points that is not linearly independent.

The following lemma will be used in the proof of Theorem 15.3.29. Its proof is
a simple exercise, and is left to you.

Lemma 15.3.28. Assume a set S is not convexly independent, so that there is a point
s0 ∈ S that is a convex combination of other points of S. Then s0 is not extreme for
the convex hull of S.

Theorem 15.3.29. If S is a finite set of points, then the extreme points E of the
convex hull of S form the unique convexly independent subset of S with convex hull
equal to the convex hull K(S) of S.

Proof. If the set S is not convexly independent, then an s0 ∈ S can be written as
a convex combination of the remaining points of S. Then remove s0 from S: the
remaining points have the same convex hull as S. Continue doing this one point
at a time until you are left with a convexly independent subset S0 with the same
convex hull as S. None of the removed points is extreme by Lemma 15.3.28, and
conversely it is easy to see that the extreme points are all contained in S0. Write the
points of S0 as ai, 0≤ i≤m. To conclude the proof we must show that all the ai are
extreme. We prove this by contradiction. Assume, without loss of generality, that am
is not extreme. Then it can be written as a combination am = λp+(1−λ )q, with
0 < λ < 1 and p and q in K(S) = K(S0), with p 6= am 6= q. Since p and q are in the
convex hull of the S0, they can be written
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p =
m

∑
i=0

µiai,
m

∑
i=0

µi = 1,µi ≥ 0;

q =
m

∑
i=0

νiai,
m

∑
i=0

νi = 1,νi ≥ 0;

so that

am = λp+(1−λ )q =
m

∑
i=0

(
λ µi +(1−λ )νi

)
ai.

For all i, 0≤ i≤ m, define

πi = λ µi +(1−λ )νi. (15.25)

Then πi ≥ 0, as you should check, and

m

∑
i=0

πi = λ

m

∑
i=0

µi +(1−λ )
m

∑
i=0

νi = λ +(1−λ ) = 1. (15.26)

Moving the term in am to the left-hand side, we get:

(1−πm)am =
m−1

∑
i=0

πiai

If 1−πm > 0, divide by it to get

am =
m−1

∑
i=0

πi

1−πm
ai.

Since all the coefficients in this sum are non-negative, and

m−1

∑
i=0

πi

1−πm
= 1,

this expresses am as a convex combination of the remaining ai: a contradiction to
the assumption of convex independence.

If 1−πm = 0, the only other possibility, then all the other πi are 0, since they are
non-negative and (15.26) holds. By (15.25), since λ and 1−λ are both positive, this
forces µi = νi = 0, for 0≤ i≤ m−1. This in turn says that p = q = am, so that am
is extreme. So all the points in S0 are extreme. ut

15.4 Polyhedra and Polytopes

We use the notation of (15.8) for our polyhedron P = P(A,b) in Rn.
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Definition 15.4.1. Given a vector c ∈ Rn, assume that there is a point p ∈ P such
that for all q ∈ P, 〈c,p〉 ≤ 〈c,q〉. Let d = 〈c,p〉. Geometrically this means that the
affine hyperplane with equation Hc,d meets P in at least one point - the point p, and
that the whole polyhedron lies in the half space H−c,d . Then the face of P defined by
c is the intersection of P with the hyperplane Hc,d .

Theorem 15.4.2. A simplex is a polyhedron.

Proof. Suppose the simplex S is given by n+1 affinely independent vectors a0, a1,
. . . , an in Rn. To establish the result, we will write S as the intersection of n+ 1
half-spaces.

For any j, 0 ≤ j ≤ n, let H ′j be the flat that goes through bi = ai− a j, for all
i except j. Since the n+ 1 points ai are affinely independent, the n points bi are
linearly independent by Proposition 15.1.19, so H ′j is uniquely determined, as we

showed in Lemma 15.1.23. Write the equation of H ′j as c j
1x1 + · · ·+ c j

nxn = d j. The
equation for the hyperplane H j passing through the ai, i 6= j, is c j1x1+ · · ·+c jnxn =
e j, where e j = d j + f (a j), so only the right-hand side of the equation changes. If
you substitute for the xk the coordinates aik of the i-th point ai, then the c jk and e j
must satisfy these n equations. Now let H+

j be the half-space bounded by H j that
contains the last generator a j of the simplex S. Clearly H+

j contains S and is convex.
So the intersection C := ∩n

j=0H+
j contains S and is convex. Any point p in Rn is an

affine combination of the ai, so it can be written

p =
k

∑
i=1

λiai

with ∑
k
i=1 λi = 1. Those that are convex combinations of the ai also have all λi ≥ 0.

Suppose that there is a point p ∈C that is not a convex combination of the ai. Then
there is an i such that λi < 0. We evaluate Hi on p. By linearity we see that its
value is λi times the value at ai, since it vanishes at all the other a j. Since λi is
negative, the point λiai is inside the half-space H−j , so it is not in C, and we have
our contradiction. ut

Definition 15.4.3. The λi in (15.22) are the barycentric coordinates of the point x
in the n-simplex H(a0, . . . ,an). The barycenter or centroid of the n-simplex is the
point

c :=
1

n+1
(a0 +a1 + · · ·+an) (15.27)

of the simplex.

The barycentric5 coordinates are uniquely determined for every point in the affine
hull of the vertices of the simplex, as we saw in Theorem 15.1.21.

Definition 15.4.4. A polytope is the convex hull of a finite number of points.

5 Introduced by Möbius in 1827: see [14], p. 134
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The simplest polytope is the simplex.

Example 15.4.5. The unit cube in Rn is the polytope with vertices all the points
whose coordinates are either 0 or 1. Thus it has 2n vertices. Its vertices are the 2n

points whose coordinates are either 0 or 1. So in R2, the vertices are (0,0), (0,1),
(1,0), (1,1).

The crosspolytope is the polytope in Rn with vertices the 2n points whose co-
ordinates are all 0 except in one position, where the coordinate is either 1 or −1.
The crosspolytope in R2 has vertices (−1,0), (1,0), (0,−1), (0,1) and thus is just
a rotated square. In R3 its vertices are the six points (−1,0,0), (1,0,0), (0,−1,0),
(0,1,0), (0,0,−1), (0,0,1), so it is not a rotated cube: it does not have enough
vertices.

Remark 15.4.6. By Theorem 15.3.29, it suffices to consider polytopes on convexly
independent sets of points, which are then called the vertices of the polytope. This
definition agrees with the more general definition of vertex since we are just talking
about the extreme points of the convex set.

Example 15.4.7. A simplex is regular if all its edges have the same length. Regular
simplices exist in all dimensions. To construct a regular simplex of dimension n,
take the n+ 1 unit coordinate vectors e0, e1, . . . , en in Rn+1. These points all lie
on the affine hypersurface with equation x0 + x1 + · · ·+ xn = 1, an n dimensional
affine space. The ei are affinely independent. Therefore any point in the polytope
generated by the ei can be written uniquely as

n

∑
i=0

λiei

where, as usual, all the λi are nonnegative and ∑
n
i=0 λi = 1. These are the barycen-

tric coordinates of the simplex. The barycenter is the point in Rn+1 with all coordi-
nates equal to 1/(n+1), so by construction the distance of each vertex e1 from the
barycenter is the length of the vector

1
n+1

(
n,−1, . . . ,−1

)
.

Show this vector has length rn =
√

n/(n+1). Thus this regular simplex is inscribed
in a sphere in Rn of radius rn with center the barycenter, and inscribes the sphere of
radius x centered at the barycenter. As n increases, rn increases.

If the vertices of a polytope are a0, . . . ,am, and we write A for the (m+ 1)× n
matrix with rows ai, then we denote the polytope on these points by

PA = {x ∈ Rn | x =
m

∑
i=0

λiai, for 0≤ λi ≤ 1,0≤ i≤ m,
m

∑
i=0

λi = 1}. (15.28)

We will prove later that any bounded polyhedron is a polytope, Theorem 15.6.7,
and then that any polytope is a polyhedron, the famous Weyl-Minkowski Theorem
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15.7.11). Thus there must be a way of passing from the representation P(A,b) for
the bounded polyhedron to the representation PA for the same set considered as a
polytope: the matrix A will be different, of course. We have already shown how to
do this for a simplex.

15.5 Carathéodory’s Theorem

Next a beautiful and important theorem that tells us how many terms r we need in
the convex combination of the convex hull of any set in Rn.

Theorem 15.5.1 (Carathéodory’s Theorem). If S is a set in Rn and x a point in
the convex hull of S, then x can be written as a convex combination of at most n+1
points in S.

Proof. Theorem 15.3.19 says any x ∈ K(S) can be written as a convex combination
of points in S, but it does not give us a bound. We find a bound by arguing by
contradiction. Assume there is a point x∈K(S) for which the shortest representation
as a convex combination of points of S required N points, N > n+1, so

x =
N

∑
i=1

λixi where all xi ∈ S , and λi > 0 , and
N

∑
i=1

λi = 1

Consider the N−1 points (xi−xN), 1≤ i≤ N−1. Since N−1 > n, these points
are linearly dependent in Rn, so we write an equation of linear dependence (so not
all the coefficients are 0)

N−1

∑
i=1

γi(xi−xN) = 0

or
N

∑
i=1

γixi = 0

where we have set γN =−∑
N−1
i γi.

The following argument will be used many times in this chaptrt so it is worth
remembering. Let t be a real variable. For every t ∈ R we can write

x =
N

∑
i=1

(λi− tγi)xi

Setting ηi(t) = λi− tγi, and recalling that the λi are all positive, our goal is to find a
value of t so that all the ηi are non-negative, and at least one is 0. For such value of t
the ηi(t) give a representation of x as a convex combination of at most N−1 points
of S, the desired contradiction. So look at the set I+ of indices i where γi is positive.
Since the sum of all the γ is 0, this set is non-empty. Consider the set of ratios λi/γi,
i ∈ I+. Pick an index i0 for which this ratio is minimal, and let t0 = λi0/γi0 , so that
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ηi0(t0) = 0 and all the other η are non-negative. Then x is a convex combination of
fewer than N of the xi, the desired contradiction. ut

Corollary 15.5.2. If the dimension of the convex hull of S is d < n then the estimate
in Carathéodory’s Theorem improves to d +1.

Exercise 15.5.3. According to Definition 15.3.13, the n-simplex in Rn is the con-
vex combination of its n+ 1 vertices S spanning Rn. Show that there are points in
the simplex that are not a convex combination of fewer than n+ 1 points, showing
that Carathéodory’s Theorem gives the best general bound for the number of points
needed.

Definition 15.5.4. Let the polytope P (see Definition 15.4.4) in Rn be the convex
hull of its m extreme points a1, . . . , am. Without loss of generality we can assume
that the dimension of P is n, so m≥ n+1. To each set of n+1 affinely independent
subsets of the m points ai we can associate a simplex S j with that set of points as
vertices. These simplices are called the subsimplices of P.

Note that a simplex has only one subsimplex: itself.

Corollary 15.5.5. A polytope is the union of its subsimplices.

Proof. Just use the main argument in the proof of the theorem. ut

Example 15.5.6. Find the subsimplices of the cube and the crosspolytope (see
15.4.5) in R3.

15.6 Minkowski’s Theorem

The main theorem of this section is sometimes also called the Krein Milman Theo-
rem. We will only prove the result for polytopes and bounded polyhedra, since those
are the only cases that interest us.

Theorem 15.6.1 (Minkowski’s Theorem). Let C be a compact convex set, and let
E be the set of extreme points of C. Then E is non-empty and C is the convex hull of
E.

Proof. We prove this by induction on the dimension of the convex set C. The result
is clear if C has dimension 1 - and therefore is a closed interval: every point in C is
in the convex hull of the two end points of the interval. Assume the result true for
dimension n−1. Let C be a compact convex set of dimension n.

First let x be a boundary point of C, and H a supporting hyperplane of C through
x. C∩H is a compact convex set of dimension at most n−1. Thus by induction, x
can be written as a convex combination of extreme points of C∩H. But an extreme
point of C ∩H is an extreme point of C: x is not an interior point of a segment
[a,b] ∈ H, because x is extreme in C∩H. On the other hand x is not an interior
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point of a segment [a,b] transverse to H, thus meeting H just in the point x, since
H is a supporting hyperplane of C, so that C is contained in one of the closed half-
planes delimited by H.

Now assume x is not a boundary point of C: take any line ` through x. Because
C is compact, ` intersects C in two points x1 and x2 in the boundary of C, with
x ∈ [x1,x2]. By the previous argument, x1 and x2 are in the convex hull of extreme
points, so is x. ut

As Example 15.3.9 shows, the number of extreme points of a compact convex
set need not be finite. By Definition 15.4.4 a polytope has only a finite number of
extreme points, and Corollary 15.6.4 shows the same is true for polyhedra.

Definition 15.6.2. If the compact convex set C has a finite number of extreme points,
each extreme point of C is called a vertex.

We will use the word vertex and extreme point interchangeably.

Theorem 15.6.3. Let p be a boundary point of the polyhedron P = P(A,b). Then
p is an extreme point of the polyhedron if and only if the normal vectors of the
constraints that are active at p span Rn. In particular there must be at least n active
constraints at p for it to be an extreme point.

Proof. First assume that the active normal vectors do not span. Then the intersection
of the hyperplanes Hai,bi

is a positive dimensional linear space containing p. So we
can find a line segment p+ tu, −ε ≤ t ≤ ε , ε > 0 in P so p is not extreme.

Next assume that the active ai at p span. Assume that p is not extreme, and derive
a contradiction. If p is not extreme, we can find q and r different from p in P with

p =
q
2
+

r
2
. (15.29)

For each active i, we have

〈ai,q〉 ≤ bi, because q ∈ P;

〈ai,r〉 ≤ bi, because r ∈ P;

〈ai,p〉= bi, because i is active at p;
1
2
〈ai,q〉+ 1

2
〈ai,r〉= bi, by (15.29).

Thus, for each active constraint, we have

〈ai,p〉= 〈ai,q〉= 〈ai,r〉= bi.

Since the active ai span, the system of all 〈ai,x〉 = bi has only one solution, so q
and r are not distinct from p. Thus p is extreme. ut

Corollary 15.6.4. A polyhedron has either no extreme points, or a finite number of
extreme points.



15.6 Minkowski’s Theorem 303

Proof. Theorem 15.6.3 tells us that the extreme points are the points where any set
of at least n linear equations with linearly independent left-hand sides meet. For
each set of n such equations there is at most one solution, so all in all there are only
a finite number of solutions and therefore only a finite number of vertices. Indeed,
the number of solutions is at most

(m
n

)
. In particular if m < n there are no extreme

points. ut

The corollary does not exclude the possibility that a polyhedron has no extreme
points. Indeed, any polyhedron defined by fewer than n half-spaces has no extreme
points.

Example 15.6.5. Consider the polyhedron P in R3 given by the inequalities x ≥ 0,
y≥ 0, z≥ 0 and x+y≤ 3,−1≤ z−x≤ 2, and y+z≤ 4. We want to find the vertices
of P, by considering the points in P where three inequalities with linearly indepen-
dent directions vanish. Clearly the origin 0 is a vertex: it satisfies all the constraints
and the three positivity constraints are active there. The next easiest vertices to find
are those that are the intersection of two positivity constraints and one other equa-
tion. An easy computation gives the vertices (1,0,0), (0,3,0) and (0,0,2). Next we
find those where only one coordinate vanishes. Checking cases, we get (1,2,0) ,
(2,0,4), (3,0,4), (3,0,2), (0,3,1), (0,2,2). There are no vertices where all three
coordinates are non-zero: this is because the directions of the constraints (other than
the positivity constraints) only span a 2-dimensional vector space. We end up with
a compact polyhedron with 10 vertices: so it is the convex hull of these vertices.

The following corollary is interesting when attempting to make a polytope from
a polyhedron..

Corollary 15.6.6. Let P be a non-empty polyhedron in Rn given as the intersection
of m half-spaces H−ai,bi

. Assume that the normal vectors ai span Rn, so that m ≥ n.
Then P has at least one extreme point.

Proof. Pick a collection of n normal vectors that form a basis of Rn. By reordering
the half-spaces, we can assume they are ai, 1 ≤ i ≤ n. The polyhedron P0 which
is the intersection of these n half-spaces clearly has a unique extreme point: the
intersection p of the n linearly independent hyperplanes Hai,bi

, 1≤ i≤ n. Next define
the polyhedron P1 to be the intersection of P0 with Han+1,bn+1

. If p is in Han+1,bn+1
, it

is an extreme point of P1. Otherwise linear algebra tells us that we can find a subset
of n− 1 of the n half-spaces defining P0, such that their normal vectors and an+1

form a basis of Rn. The intersection point p1 of the corresponding hyperplanes is an
extreme point of P1. Continuing in this way, adding one half-space at a time, gives
the result. ut

Compare this to Exercise 15.6.9.

Theorem 15.6.7. A bounded polyhedron P is a polytope.

Proof. Our goal is to apply Minkowski’s Theorem 15.6.1. Since P is the intersection
of m half-spaces given by ai ·x≤ bi, P is closed. Since it is bounded, it is compact.
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Since it is a polyhedron, it is convex. Minkowski’s Theorem tells us that P is the
convex hull of its extreme points, which are finite in number by Corollary 15.6.4.
Thus P is a polytope. ut

We will prove the converse later: Corollary 15.7.11. We already proved the result
for simplices in Example 15.4.2.

Exercise 15.6.8. Prove the following result. If C is a compact convex set, then a
point p ∈C at maximum distance from the origin is an extreme point of C. There is
nothing special about the origin in this statement: any point will do.

Hint: If p is not extreme, then it is between two points q and r in C. A little
geometry in the plane spanned by the three points q, r and 0 gives the result.

Example 15.6.9. Prove that a closed convex set C has an extreme point if and only
if it does not contain a line.

Hint: First assume C contains a line L. A point on the line clearly is not an ex-
treme point. Pick a point p off the line that is extreme. Then Exercise 15.3.23 shows
that in the plane spanned by L and p, C contains a strip bounded by L on one side,
and by the line L′ parallel to L through p on the other. Because C is closed, L′ is in
C, and p is not extreme. This contradiction proves the result.

Now assume that C does not contain a line. Pick a point q in C. We now construct
a function whose domain is the set of lines ` through q. This set of lines is compact,
by an argument similar to the one used in the proof of Theorem 13.2.7. Consider
the function d(`) that associates to ` the distance from q to the closest point where `
intersects the boundary of C. Since C contains no lines, this distance is finite. Show
d(`) is continuous, so it has a maximum. Conclude using Exercise 15.6.8.

15.7 Polarity for Convex Sets

It is not difficult to show that a closed set S is convex if and only if it is the inter-
section of all the half-spaces containing it. How can we describe these half-spaces?
Here is an approach.

In Example 15.3.5 we wrote H−a,c = {x | 〈a,x〉 ≤ c}. As long as c 6= 0, we get the
same half-space by dividing the equation by c, so we look at: H−a,1 = {x | 〈a,x〉 ≤ 1}.
This suggests that to the set S we associate all the vectors a so that S is contained in
H−a,1. We make this into a definition:

Definition 15.7.1. Let S by a non-empty set in Rn. Then the polar set S∗ of S is
given by

S∗ = {y ∈ Rn | 〈y,x〉 ≤ 1 for all x ∈ S}. (15.30)

Thus S lies in the intersection of the half-spaces H−y,1, for all y∈ S∗. Dually, S∗ is the
intersection of the half-spaces:

S∗ =
⋂
x∈S

H−x,1.
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Example 15.7.2. If the set S contains a single point a other than the origin, then S∗

is the closed half-space bounded by the hyperplane Ha,1 with equation 〈a,x〉 = 1,
that contains the origin.

If S only contains the origin, then S∗ is all of Rn.

Proposition 15.7.3. If S = Nr(0), the closed ball of radius r centered at the origin,
then S∗ = N1/r(0).

Proof. This follows from the Cauchy-Schwarz inequality 8.2.7. To test if a non-
zero element y is in S∗, dot it with the unique element x on the same ray through the
origin and on the boundary of S. Then ‖x‖= r and

〈y,x〉= ‖x‖‖y‖= r‖y‖ ≤ 1

so ‖y‖ ≤ 1/r. If this is true, then the Cauchy-Schwarz inequality shows us that for
any x ∈ Nr(0),

〈y,x〉 ≤ ‖x‖‖y‖ ≤ 1,

as required. ut

We have the elementary

Theorem 15.7.4. If {Sα} is an arbitrary collection of sets indexed by α , then the
polar of the union of the {Sα} is the intersection of the polars of the Sα .

From this we deduce the useful:

Theorem 15.7.5. The polar of an arbitrary set S is a closed and convex set contain-
ing the origin.

Proof. Write S as the union of its points, and notice from Example 15.7.2 that the
polar of a point is convex, closed and contains the origin. By Theorem 15.3.4, any
intersection of convex sets is convex, and any intersection of closed sets is closed
(see Theorem 13.2.5, so we are done. ut

Another elementary consequence of Theorem 15.7.4 is

Theorem 15.7.6. If S⊂ T , then T ∗ ⊂ S∗.

Proof. Because S⊂ T , S∗ is the intersection of a smaller number of half-spaces than
T ∗, so certainly T ∗ ⊂ S∗. ut

Theorem 15.7.7. Assume that the polytope P has the points a0, . . . ,am as vertices.
Then

P∗ = {y | 〈ai,y〉 ≤ 1 for all i = 0, . . . ,m}. (15.31)

Proof. This is easy. The right-hand side of (15.31) contains the left-hand side by
the definition of the polar, so all we need is the opposite inclusion. So take any y
satisfying the right-hand side inequalities. An arbitrary point in the polytope is given
by (15.28). Dot this expression with y to get
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m

∑
i=0

λi〈ai,y〉 ≤
m

∑
i=0

λi = 1,

since the λi are non-negative, and ∑
m
i=0 λi = 1. Thus y is in P∗. ut

Thus the polar of a polytope PA is the polyhedron P(A,1), using the notation of
(15.28) and Definition 15.2.1.

The first important result of the section is

Theorem 15.7.8. Let S be a compact and convex set of dimension n in Rn that con-
tains the origin in its interior. Then S∗ is a compact convex set of dimension n con-
taining the origin in its interior.

Proof. Theorem 15.7.5 tells us that S∗ is closed, convex and contains the origin.
Thus we need only prove that S∗ is bounded and that the origin is an interior point.
Because the origin is an interior point of S, for some small radius r, the ball Nr(0)
is contained in S. But then S∗ is contained in the ball N1/r(0) by Proposition 15.7.3
and Theorem 15.7.6, which shows that S∗ is bounded. Because S is compact it is
bounded, so is a subset of NR(0) for a large enough R. Proceeding as before, this
shows that the ball N1/R(0) is contained in S∗, showing that the origin is an interior
point. ut

The next step is to apply polarity twice.

Definition 15.7.9. The bipolar S∗∗ of a set S as the polar of the polar of S, S∗∗ =
(S∗)∗.

Then in complete generality we have S⊂ S∗∗. Indeed, rewrite (15.30) for S∗:

S∗∗ = {x ∈ Rn | 〈y,x〉 ≤ 1 for all y ∈ S∗}. (15.32)

Comparing this to (15.30) shows that if x is in S, then it is in S∗∗, so S⊂ S∗∗.
Now the main result of this section. It uses the Separation Theorem for closed

convex sets, that we have not proved.

Theorem 15.7.10 (The Bipolar Theorem). Let S be a closed convex set containing
the origin. Then the bipolar S∗∗ of S is equal to S.

Proof. We have just established the inclusion S⊂ S∗∗. To get the opposite inclusion,
pick a point b not in S. We must show it is not in S∗∗. Since S is convex and closed,
by the Separation Theorem, we can find a hyperplane H = {x | 〈a,x〉 = 1} strictly
separating S and b. Because 0 ∈ S, we have 〈a,x〉 < 1 for all x ∈ S, and 〈a,b〉 > 1.
The first inequality says that a is in S∗, from which the second inequality say that b
is not in S∗∗, and we are done. ut

By this result and Theorem 15.7.5 we see that S = S∗∗ if and only if S is a closed
convex set containing the origin.

Corollary 15.7.11. A polytope is a polyhedron, and a bounded polyhedron is a poly-
tope.
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Proof. The last statement is Theorem 15.6.7, so we need only prove the first one.
By restricting to the affine hull of the polytope P, we can assume it has maximum
dimension, so that it has a non-empty interior. Then by translating it, we can make
the origin an interior point. Then by Theorem 15.7.8, P∗ is compact, and by Theorem
15.7.7 it is a polyhedron, therefore a bounded polyhedron. So by Theorem 15.6.7, P∗

is a polytope, so its polar (P∗)∗ is a polyhedron. By the Bipolar Theorem, (P∗)∗ =P,
so P is a polyhedron as claimed. ut

We now see that bounded polyhedra and polytopes are the same. This result is
known as the Weyl-Minkowski Theorem: see [31].

We could pursue this line of inquiry by determining the polar of a given polytope.
Example 15.4.2 shows that the polar polytope of a simplex is again a simplex. This
is investigated in [17], chapter 9, which is a good reference for the material in this
section. A more advanced reference is [3], chapter IV.

Example 15.7.12. Show that the polar polytope of the cube is the crosspolytope.
from which is follows that the polar polytope of the crosspolytope is the cube. First
work this out in R2 and R3.





Chapter 16
Linear Differential Equations

Abstract Linear algebra is a very useful tool for studying differential equations.
We illustrate this with the simplest differential equations: linear differential equa-
tions with constant coefficients. Our approach is to solve the equations without the
existence and uniqueness theorems for linear equations: instead we use only ele-
mentary results of linear algebra. We first study a single linear differential equation
with constant coefficients of high order, and determine all its solutions using the
primary decomposition theorem of Chapter §10. Then we study a system of linear
equations with constant coefficients of order one. We study these, which generalize
what we did in the first part of the chapter, which leads us to the matrix exponential
and an application of the Jordan form in the same chapter.

16.1 Differential Calculus Review

Our vector space will be the space C ∞ of infinitely differentiable functions f (t)
defined on the entire line R. We call the variable t because we are thinking of it as
time. C ∞ is a vector space because the sum of two infinitely differentiable functions
is infinitely differentiable, as is a scalar multiple of such a function. Unlike most of
the vector space we have studied it is infinite dimensional. Indeed, inside C ∞ lies
the subspace of polynomials of all degrees. It is already infinite dimensional with
basis 1, t, t2, . . . , tn, . . . . Consider the map from C ∞ to C ∞ given by differentiation
d/dt. It is a linear operator since if f (t) and g(t) are in C ∞ and c is a real number,
we have:

d
dt

(
f (t)+g(t)

)
=

d
dt

f (t)+
d
dt

g(t)

d
dt

(
c f (t)

)
= c

d
dt

f (t)

and the range is in C ∞ since d
dt f (t) is infinitely differentiable. For simplicity of

notation we write d/dt as D. As is the case for any linear operator we can compose D

309



310 16 Linear Differential Equations

with itself, getting the higher order derivatives. Consider polynomials in the operator
D wisth real coefficients:

Dn +an−1Dn−1 + · · ·+a1D+a0I, (16.1)

where the ai are real numbers. They are linear operators as studied in Chapter 10.
They all commute.

Calculus tells us that the nullspace N (D) of D itself consists of the constant
functions, so it has dimension 1. Similarly the nullspace of Dn has dimension n,
as you see by iterating D: it consists of the polynomials of degree at most n− 1.
We also need to know that the exponential et and the trigonometric functions sin t
and cos t are in C ∞, and that their derivatives are, respectively, et , cos t and −sin t.
Finally recall that et does not vanish on R.

We first consider differential operators in the form (16.1). To solve the differen-
tial equation associated to this operator means determining its nullspace, that is the
functions f (t) satisfying

Dn f +an−1Dn−1 f + · · ·+a1D f +a0 f = 0, (16.2)

Thus we can associate the polynomial

xn +an−1xn−1 f + · · ·+a1x+a0 = 0 (16.3)

to the differential equation, simply by replacing the linear operator D by the poly-
nomial variable x.

16.2 Examples

We start with the simplest possible differential equation after dn f = 0, where we
have already determined the solutions. Then we have:

Example 16.2.1. The differential equation D f (t)−a f (t)I = 0, where f (t)∈C ∞. We
now show that its only solutions, that is, the functions is the nullspace of the operator
D−aI, are the ceat , for an arbitrary c ∈R. Thus the nullspace has dimension 1. The
constant c is the initial value f (0), so there is a unique solution with given initial
value.

Proof. An easy differentiation shows that ceat is a solution. As noted eat is nowhere
0 on R. So consider any other solution g(t) of the differential equation. Compute
the derivative of

g(t)
eat .

The quotient rule and the chain rule say that the derivative is

g′(t)−ag(t)
eat .
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Since g(t) is a solution of the differential equation, this vanishes, so the derivative
of g(t)

eat is 0. Thus g(t) = ceat for some constant c and g(0) = c. ut

Example 16.2.2. Now we compute the solutions of the differential equation

f ′′+ c2 f = 0 for some real number c 6= 0.

Then the solutions are linear combinations of cos(ct) and sin(ct). For initial values
f (0) = c and f ′(0) = d there is a unique solution f (t) = ccos(ct)+d sin(ct).

Proof. Differentiation shows that cos(ct) and sin(ct) are solutions. These two so-
lutions are linearly independent over R: assume by contradiction that there is an
equation of linear dependence, and evaluate at t = 0 and t/(2c) to get a contradic-
tion. Finally we show that any solution f (t) is a linear combination of these two.

Suppose that g(t) is either sin(ct) or cos(ct).
Consider the expression f (t)g′(t)− f ′(t)g′. Its derivative is

f g′′+ f ′g′− f ′g′+ f ′′g = f g′′+ f ′′g.

If g(t) = sin(ct) this derivative is

− f (t)c2 sin(t)− f ′′ sin(t) =−sin(t)(c2 f (t)+ f (t) = 0

since f is assumed to be a solution. Thus

− f (t)ccos(ct)− f ′(t)sin(t) = a, (16.4)

a constant.
Similarly setting g(t) = cos(t), we get

− f (t)csin(ct)+ f ′(t)cos(ct) = b, (16.5)

another constant. We do Gaussian elimination on functions by multiplying (16.4) by
cos(ct) and (16.5) by sin(ct), and adding. We get

c f (t) = acos(ct)+bsin(ct)

so f (t) is a linear combination of the two previous solutions. Thus the space of
solutions has dimension 2. At t = 0 we have c f (0) = a and c f ′(0) = bc so there is
a unique solution satisfying these initial conditions. ut

Example 16.2.3. Next we compute the solutions of the differential equation

f ′′− c2 f = 0 for some real number c 6= 0.

Differentiation shows that ect is a solution as is e−ct . These functions are linearly
independent, so we have a set of solutions of dimension at least two. As before for
initial values f (0) = d and f ′(0) = e there is a unique solution f (t) = cect +dect .
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Proof. By the same method as in the previous example, we show that linear combi-
nations of these are the only solutions. Take any solution f (t). Then as before form
the functions

f (t)cect − f ′ect

− f (t)ce−ct − f ′e−ct

and compute their derivatives as in the previous example. In both case you get a
factor f ′′−c2 f , so since f is a solution of the differential equations both derivatives
are 0. Thus the functions are constants, so for example

c f (t)ect − f ′ect = a

−c f (t)e−ct − f ′e−ct = b

Multiply the first equation by e−ct and the second by ect and subtract. The derivative
terms vanish, so since ecte−ct = 1, we get c f (t) = ae−ct + bect as required. So we
get a two-dimensional space of solutions. Obviously c f (0) = a+ b and c f ′(0) =
−ca+ bc showing that for given initial conditions there is a unique pair (a,b) as
required. ut

Example 16.2.4. In Example 16.2.2 the polynomial t2+c2 has roots±i. We will also
need to analyze what happens when the roots, more generally, are any two complex
conjugate numbers a± ib, where a and b 6= 0 are real. These complex numbers are
the two roots of the real polynomial t2−2at +a2 +b2. So consider the differential
operator D2− 2aD+ (a2 + b2)I. From Example 16.2.1 we see that the functions
e(a±ib)t are complex solutions of the differential equation. By taking the right com-
plex linear combinations c1e(a+ib)t + c2e(a−ib)t , we get for real solutions the func-
tions eat cosbt and eat sinbt, using the fact that e(a+ib)t = eat(cos(bt)+ i sin(bt), as
we point out in the complex variables review in Appendix B.5. So we get a two-
dimensional space of solutions. Instead of proving that these are the only solutions
using a trick similar to the one above, we will rely on the general theorem 16.3.1.
For later on, note that the equation D2 f −2aD+(a2 +b2)I can be replaced by the
2×2 system in the two unknown functions f and its derivative f ′:(

f ′

f ′′

)
=

(
0 1

−(a2 +b2) 2a

)(
f
f ′

)
(16.6)

Example 16.2.5. Our fifth example is the differential equation (D−aI)n f = 0, Writ-
ing this out with derivatives, and expanding using the binomial theorem we have

f (n)−na f (n−1)+

(
n
2

)
a2 f (n−2)−·· ·+(−1)n−1nan−1 f ′+(−1)nan = 0.

eat is a solution because it is already a solution of (D−aI) f = 0. We use the same
trick as before. Let f (t) be any solution, and take the function f (t)

eat . Compute its
derivatives:
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D
( f (t)

eat

)
=

f ′−a f
eat

D2
( f (t)

eat

)
=

f ′′−2a f ′+a2 f
eat

... =
. . .

Dn
( f (t)

eat

)
=

f (n)−na f (n−1)+
(n

2

)
a2 f (n−2)−·· ·+(−1)n−1nan−1 f ′+(−1)nan

eat

Notice that the numerator on the rhs is just the lhs of the differential equation, so
for the solution f it is 0. Thus the n-th derivative of f (t)

eat is a constant, so f (t)
eat is a

polynomial of degree ≤ n−1. Thus

f (x) = a0eat +a1teat + · · ·+an−1tn−1eat ,

for any choice of constants ai. As we have already noticed the monomials 1, t,
. . . , tn−1 are linearly independent , so multiplying by eat , linear independence is
preserved. So the vector space of solutions has dimension n.

16.3 The General Case

After these examples we consider the general case, the differential equation

dn

dtn f (t)+an−1
dn−1

dtn−1 f (t)+ · · ·+a1
d
dt

f (t)+a0 = 0. (16.7)

To solve it, factor the polynomial

P(t) = tn +an−1tn−1 + · · ·+a1t +a0

into distinct factors, so we have

P(t) = (t− r1)
m1(t− r2)

m2 . . .(t− rk)
mk

Since the polynomial P(t) has real coefficients, in order to get linear factors we must
allow the ri to be complex. They come in complex conjugate pairs, as we have seen.

Theorem 16.3.1. The vector space N of solutions of (16.7) is the direct sum of the
solutions of ( d

dt
− riI

)mi
f (t) = 0. (16.8)

Furthermore N has dimension n.

Proof. This is just a restatement of the Primary Decomposition Theorem 10.5.2.
Indeed the linear operator D vanishes on the space N (D) by definition. The dimen-
sion statement was proved in (16.8) in Example 16.2.5. ut
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Finally we should consider the case where an r is complex. This is the case we
analyzed, with multiplicity one, in Example 16.2.2, where the complex conjugate
roots are ±i. We showed that we can produce two linearly independent real solu-
tions.

Next we handle the case (D2+bD+cI) f = 0 where the discriminant
√

b2−4c of
the quadratic is negative. The roots can be written a(bcosθ + iicsinθ), where b2 +
c2 = 1. Then take a power of this operator. Must show we get the right dimension
for the real solutions.

16.4 Systems of First Order Differential Equations

Take any n× n matrix A over R, and let f(t) be a vector of n R valued functions
f j(t), 1≤ j ≤ n. Then form the system of linear differential equations:

Af(t) = f′(t) (16.9)

with the initial value condition f(0) = k, where k is a given vector of constants.

Example 16.4.1. We can always put the high order differential equation (16.2) into
this form, so what we do now generalizes what we did in the first part of this chapter.
Indeed let f1(t) = f ′(t), f2(t) = f ′′(t), . . . , fn−1(t) = f (n−2(t), so that (16.2) become

D fn−1 +an−1 fn−1 + · · ·+a1 f1 +a0 f = 0

Renaming f to f0 for convenience, our single differential equation is replaced by
the n×n system

f′+Af = 0,

where f = ( f0, f1, . . . , fn−1), f′ = ( f ′0, f ′1, . . . , fn−1′) and

A =


0 −1 0 . . . 0
0 0 −1 . . . 0
...

...
. . .

...
0 0 . . . 0 −1
−a0 −a1 . . . . . . −an−1


Unsurprisingly this is the companion matrix (12.7) of the polynomial (16.3), up to
transpose and a sign. Therefore we know that the minimal polynomial of the matrix
A is its characteristic polynomial. If the characteristic polynomial has distinct roots
over C, then A is diagonalizable over C. However if the characteristic polynomial
has a repeated root λ , then for that λ A has a single Jordan block of size equal to the
multiplicity of the root.
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The most favorable case for the system (16.9) occurs when A is diagonal, so that
the functions are ”decoupled”: the equations are f ′j(t) = a j j f j(t) = 0, 1 ≤ j ≤ n,
which we know how to solve by Theorem 16.2.1.

Now take an arbitrary A. By definition A is similar to its Jordan form J, so there
exists an invertible matrix C so that A = CJC−1. Then define g(t) = C−1f(t) and
l = C−1k. Since Af(t) = f′(t), we get ACg(t) = Cg′(t) or C−1ACg(t) = g′(t) with
initial condition l = C−1f0. So clearly it is equivalent to solve the initial condition
problem in f or the new one in g. So we need only consider the case where A is
already in Jordan form.

Thus the only case that remains is that of a Jordan block (10.10) of size r ≥ 2,
since there still is interaction between the variables in the block. If a is the term on
the diagonal of J, then the equations are

f ′1(t) = a f1(t)

f ′2(t) = f1(t)+a f2(t)

. . .= . . .

f ′n(t) = fn−1(t)+a fn(t)

So, using the initial conditions, f1(t) = l1eat , so the second equation is f ′2(t) =
l1eat + a f2(t) which has a solution f2(t) = eat(l1t + l2), which gives the desired
initial condition.

Continuing in this way, we can solve the system for any set of initial conditions:

fk(t) = eat(lk + lk−1t + lk−2
t2

2
+ · · ·+ lk−i

t i

(k− i)!
+ · · ·+ l1tk−1)

Why is this the only solution. These differential equations are not homogenous.
As in systems of linear equations, the difference of any two solutions of the inho-
mogeneous equation is a solution of the homogenous equation, and we have found
all the solutions of the homogenous equation in the previous section.

16.5 Eigenvector Computations for Linear ODE

16.6 Difference Equations





Appendix A
Notation

A.1 Generalities

The Kronecker δi j is the function of i and j that takes the value 1 when i = j and
the value 0 when i 6= j. Here i and j are integers, usually the indices in double sums
as occur often in linear algebra.

A.2 Real and Complex Vector Spaces

The term scalar denotes either a real or a complex number. F denotes either the field
of real numbers or of complex numbers.

The n-th cartesian product of scalars F is written Fn. Lower-case bold letters
such as x and a denote vectors in Fn, each with coordinates represented by non-
bold letters (x1, . . . ,xn) and (a1, . . . ,an), respectively. We typically use x (and y, z,
etc.) for unknowns and a (and b, c, etc.) for constants.

Vectors are also called points, depending on the context. When the direction is
being emphasized, it is called a vector.
With the exception of gradients, vectors are always column matrices.
In the body of the text, an expression such as [a1,a2, . . . ,an] denotes a column vector
while (a1,a2, . . . ,an) denotes a row vector.

The length of a vector v is written ‖v‖. If v is real, this is
√

v2
1 + · · ·+ v2

n while if

v is complex this is
√

v1v1 + · · ·+ vnvn. The inner product of v and w is 〈v,w〉, or,
more rarely, v ·w. The context tells you whether it is a scalar product or a hermitian
product.
The linear span of vectors x1, . . . , xr in a vector space is written lin(x1, . . . ,xr).
The partial order in Rn leads to the following notation:
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x≺ y means that xi < yi for all 1≤ i≤ n

x� y means that xi ≤ yi for all 1≤ i≤ n

x 4 y means that xi ≤ yi for all 1≤ i≤ n and x j < y j for some j

and therefore

Rn
� = {x | x� 0}

Rn
� = {x | x� 0}

Rn
< = {x | x < 0}

The open ball of radius r centered at the point p ∈ Rn is written

Nr(p) = {x | ‖x−p‖< r}

and the closed ball
Nr(p) = {x | ‖x−p‖ ≤ r}

A.3 Matrices

Matrices are written with round brackets as in

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn


for the m× n matrix A. Matrices are denoted by capital roman letters such as A,
and have as entries the corresponding lower case letter. So A = (ai j). A is an m×n
matrix if it has m rows and n columns, so 1 ≤ i ≤ m and 1 ≤ j ≤ n. We write the
columns of A as a j and the rows as ai.

If b1, . . . , bn is any collection of m-vectors, then(
b1 b2 . . . bn

)
is the m×n matrix whose j-th column is b j.

This implies that if, as always, the ai are the rows of the m×n matrix A, then the
n×m matrix

(
a1 a2 . . . am

)
is At , the transpose of the matrix A. This is because the

vectors ai are considered as column vectors.
D(d1,d2, . . . ,dn) is the n×n diagonal matrix
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d1 0 0 . . . 0
0 d2 0 . . . 0
0 0 d2 . . . 0
...

...
...

. . .
...

0 0 0 . . . dn


where the only non-zero terms are along the principal diagonal where the row
and column indices are equal. In or just I stands for the n× n identity matrix
D(1,1, . . . ,1).

A.4 Linear Transformations

If A is an m× n matrix, LA is the linear transformation from Fm to Fn given by
LA(x) = Ax, the matrix product of A by the n-column vector x. The nullspace of TA
is written N (A), and its range R(A).
A linear operator is a linear transformation from a vector space to itself.





Appendix B
Math Review

Abstract We review some basic mathematics results that will be used throughout
the book: sets, mappings and equivalence relations. There is then a longer section
on complex numbers.

B.1 Sets and Maps

Before getting starting we need to set up some terminology concerning sets and
maps. If S and T are two sets, then S∪T is their union, and S∩T their intersection.
If the intersection is empty, we write S∩T = /0. If S is a subset of T , we write S⊂ T .
The elements of the set T that are not in S is denoted T rS.

Some important sets for us are N, the natural numbers, namely the positive in-
tegers; Z the integers; Q the rational numbers; R the real numbers; C the complex
numbers. If α ∈ C, so it can be written a+ ib, for a ∈ R and b ∈ R, then α is the
complex conjugate of α , namely a− ib. Here, as usual i is the imaginary number
such that i2 =−1.

We can build a new set S×T from two sets S and T . It is the cartesian product of
S and T : the set of all pairs (s, t), for s∈ S and t ∈ T . If S and T are the same set, then
we write S2 for the cartesian product. Note that if s1 6= s2, then the element (s1,s2)
if different from the element (s2,s1), which is why the product is often called the
ordered product. You are certainly familiar with this notation for the sets R2, and
C2.

Exercise B.1.1. Explain how to build sets Rn, and Cn, for any n ∈ N.

Let f : S→ T be a map between two sets S and T . This simply means that to each
s ∈ S, the map f assigns a well-defined element f (s) ∈ T . The map f is injective
if whenever f (s1) = f (s2), then s1 = s2. The map f is surjective (or onto) if for all
t ∈ T there is a s ∈ S such that f (s) = t. Finally f is an isomorphism if it is both
injective and surjective.
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Here is another way of saying this. The inverse image of an element t ∈ T is the
set St of s ∈ S such that f (s) = t. For a general f , St could be empty. Then

• f is injective if and only if for all t ∈ T , St is either empty or a single element;
• f is surjective is for all t ∈ T , St is not empty.

If f is a map from a set S to itself, then it is called the identity map if for all s∈ S,
f (s) = s.

If f is a map from S to T , and g a map from T to U , then we may define the
composite map g◦ f from S to U by setting

(g◦ f )(s) = g( f (s).

Note that the right hand side makes sense because f (s) ∈ T .
We say that the map g : T → S is the inverse of f if the two composite maps:

g◦ f : S→ S and f ◦g : T → T

are both the identity map.

Exercise B.1.2. If f : S→ T is both injective and surjective, it has an inverse.

The following exercises show how this depends on the definition of the domain
and the range of f .

Exercise B.1.3. Let S be the non-negative real numbers, and let f be the map from
S to itself taking s to s2. Show that f is invertible.

Exercise B.1.4. Let S be the real numbers and T the positive numbers. Let f be the
exponential map, associating to any real number s its exponential es. Then f is an
isomorphism from S to T . What is its inverse?

Finally we record a simple fact that is known as the associativity of maps. Sup-
pose we have a third map h : U→W . The we can form the composite: h◦g◦ f : S→
W . This could potentially depend on the order in which the maps are evaluated:
h◦ (g◦ f ) versus (h◦g)◦ f .

Theorem B.1.5. Composition of maps is associatve, so h ◦ (g ◦ f ) is the same map
as (h◦g)◦ f .

Proof. We need to show that for all s ∈ S, the value is the same, regardless of the
order of evaluation. Just one line.

h◦ (g◦ f )(s) = h((g◦ f )(s)) = h(g( f (s))) = (h◦g)( f (s)) = (h◦g)◦ ( f )(s)).

ut

Definition B.1.6 (Kronecker Delta). One simple but useful function from N×N
which takes the values 0 or 1 is the Kroncker delta, always written δi j, for i, j ∈ N
where δi j = 1 if i = j and 0 otherwise. The Kronecker delta is very useful when
dealing with two indices i and j, and since double indices are rampant in linear
algebra, this function with be very useful for us.
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B.2 Equivalence Relations

In Chapter 1 we establish an equivalence relation between systems of linear equa-
tions in the same variables. We establish relationships between matrices later in this
course by introducing equivalence relations. So let us review equivalence relations
here.

If S is a set, a binary relation compares two elements of S. This means that we
compare any two elements s and t of S, and associate a binary outcome to the com-
parison. By convention we say that the outcome is either true or false (we could also
have said 1 or 0). it is traditional to express that the outcome is true by writing s∼ t.

We are only interested in a specific kind of binary relation, called an equivalence
relation. It has three properties: it is reflexive, symmetric and transitive:

Definition B.2.1. Let ∼ be a binary relation on a set S. Then

1. ∼ is reflexive when s∼ s for all s ∈ S.
2. ∼ is symmetric when s∼ t implies t ∼ s.
3. ∼ is transitive when s∼ t and t ∼ u imply s∼ u.

Read “s ∼ t” as “s is equivalent to t”. The most familiar example of an equiva-
lence relation is probably congruence:

Example B.2.2. Congruence modulo a positive integer k is an equivalence relation
on the set of integers Z, defined as follows: Two integers a and b are congruent
modulo k, if they have the same remainder under division by k. Each equivalence
class contains all the integers whose remainder modulo division by k is a fixed in-
teger. Thus there are k equivalence classes, often denoted 0̃, 1̃, . . . , k̃−1. Thus the
equivalence class 0̄ contains all the multiples of k:

. . . ,−2k,−k,0,k,2k, . . .

A key fact about an equivalence relation on a set S is that it partitions S into
non-overlapping equivalence classes.

Definition B.2.3. A partition of a set S is a collection of non-overlapping subsets
Si, called equivalence classes, whose union is S. Thus for any two i and j in I, the
intersection Si∩S j is empty, and the union ∪i∈ISi = S.

Proposition B.2.4. A partition {Si, i∈ I} defines an equivalence relation P on S×S,
whose domain and range is all of S: sPt if s and t are in the same subset Si. Con-
versely any equivalence relation R defines a partition of S, where each equivalence
class Ss consists of the elements t ∈ S that are equivalent to a given element s.

Proof. It is easy to show that P satisfies the three properties of an equivalence re-
lation. For the converse, just show that the sets Ss are either the same, or disjoint.
Their union is obviously S. ut
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B.3 Algorithms and Methods of Proof

Algorithms.
Proof by contradiction.
Proof by induction.

B.4 Dual Maps

Suppose we have sets S and T , and a fixed map L : S→ T between them. Now take
another set R, and consider the set Mor(S,R) of all maps f : S→ R, and the set
Mor(T,R) of all maps g : T → R. For simplicity of notation, since R is fixed, we
write S∗ for Mor(S,R), and T ∗ for Mor(T,R).

Then we get a map L∗ : T ∗→ S∗ which associates to a map g : T → R the com-
posite map g◦L : S→ R.

Need a diagram here.

S L−−−−→ T
g−−−−→ R

S∗ L∗←−−−− T ∗

g◦L ∈ S∗ L∗←−−−− g ∈ T ∗

Furthermore if we have a second fixed map M : T →U , and we also consider the
set U∗ = Mor(U,R). So we can form M∗ : U∗→ T ∗ as before. Next we consider the
composite M ◦L : S→U , and we claim:

(M ◦L)∗ = L∗ ◦M∗.

Another diagram here.

S L−−−−→ T M−−−−→ U h−−−−→ R

S∗ L∗←−−−− T ∗ M∗←−−−− U∗

h◦M ◦L ∈ S∗ L∗←−−−− h◦M ∈ T ∗ M∗←−−−− h ∈U∗

We will use this material in §6.6, in the linear algebra situation where the sets are
vector spaces and the maps linear maps. It is useful to see that the results are true in
the most general situation possible.
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B.5 Review of Complex Numbers

We now review some properties of complex numbers. Recall that every complex
number α can be written uniquely as a+ bi, where a and b are real numbers and i
is the imaginary number whose square is −1. If b = 0 then α is real, and if a = 0
α is called imaginary. You know how to add and multiply complex numbers: if
β = c+di is a second complex number, then

α +β = (a+ c)+(b+d)i and αβ = (ac−bd)+(ad +bc)i. (B.1)

Remark B.5.1. If α and β are both real, then their sum and product as complex
numbers are the same as their sum and product as real numbers. Check this.

Every complex number a+bi has the additive inverse−a−bi, meaning that their
sum gives 0. Every complex number a+bi other than 0 has a multiplicative inverse,
meaning a number c+di such that

(a+bi)(c+di) = 1.

Finding the multiplicative inverse is a good exercise in solving two linear equa-
tions in two variables. Indeed, if the inverse of a+bi is x+yi, then we have the two
equations (for the real and imaginary parts):

ax−by = 1
bx+ay = 0

Now a and b are not both 0, so we can eliminate x by multiplying the first equation
by b, the second by a, and subtracting, We get y =−b/(a2 +b2), so by substituting
this value into the other equation we get x = a/(a2 +b2). We write the inverse of α

as α−1.
It is very useful to plot complex numbers in the plane. As you know, it is tradi-

tional to plot the real part along the horizontal axis and the imaginary part along the
vertical axis, with the numbers 1 and i as units.

The number r =
√

a2 +b2 is called the modulus of the complex number a+ bi.
Notice that in the coordinate system we just set up, it is the distance of the complex
number from the origin.

Exercise B.5.2. Show that the modulus of the multiplicative inverse of a non-zero
complex number α is 1/r, if r is the modulus of α .

We now define the complex conjugate of a complex number α = a+ bi: it is
α = a−bi. So the complex conjugate of a real number is itself. Note that the product
of a complex number with its conjugate is

αα = a2 +b2. (B.2)

In particular this product is real, which motivates many of the definitions made in
linear algebra. The multiplicative inverse of the non-zero α can be written
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α

a2 +b2

confirming what we found above.

Exercise B.5.3. Writing the complex numbers α and β in terms of their real and
imaginary parts, show by direct computation that:

1. The complex conjugate of a sum is the sum of the complex conjugates:

α +β = α +β .

2. The complex conjugate of a product is the product of the complex conjugates:

αβ = αβ . (B.3)

We can write a non-zero complex number α = a+bi using the complex exponen-
tial function ez as α = reiθ . Here eiθ = cosθ + i sinθ , where θ is the angle whose
tangent is b/a. The angle θ is called its argument. The advantage of this represen-
tation is that the multiplicative inverse of reiθ , when r 6= 0, is

1
r

e−iθ .

Exercise B.5.4. Verify all these statements. For the last one you need the trigono-
metric identities called the addition formulas:

cos(θ1 +θ2) = cosθ1 cosθ2− sinθ1 sinθ2

sin(θ1 +θ2) = sinθ1 cosθ2 + cosθ1 sinθ2

Every polynomial over C factors as a product of linear polynomials. We state this
result, known as the Fundamental Theorem of Algebra, in §C.6.



Appendix C
Polynomials

Abstract This appendix present the basic results on polynomials in one variable
over a field F necessary for finding the invariants factors of a linear operator. Many
readers will have already seen these elementary results.

C.1 Polynomials: Definitions

As always, F is a field, either R or C. A polynomial f (x) over F is an expression of
the form

anxn +an−1xn−1 + · · ·+a1x+a0, (C.1)

where the ai, called the coefficients of the polynomial are in the field F , and x is a
variable, also called an unknown. The xi are powers of x. For each i the expression
aixi is called a term of the polynomial, or a monomial.

So f (x) = 2x2−1/5 is a polynomial over R and even over the rational numbers
Q.

The largest m such that am 6= 0 is called the degree of the polynomial, amxm is
called the leading term, and am the leading coefficient. If the leading coefficient is 1,
the polynomial is monic. There is one exception to this definition of the degree: if all
the coefficients of f (x) are 0, then we say its degree is −∞. There is only one such
polynomial, the polynomial 0. Polynomials of degree 0 are of the form c, where c is
a non-zero element of F .

We can multiply a polynomial f (x) by a constant c ∈ F :

c f (x) = canxn + can−1xn−1 + · · ·+ ca1x+ ca0.

Unless c = 0, c f (x) has the same degree as f (x).
We can add two polynomials: the polynomial f (x) and the polynomial

g(x) = bmxm +bm−1xm−1 + · · ·+b1x1 +b0 (C.2)
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by just adding the coefficients. If a term does not appear in one of the polynomials,
we just take its coefficients of that term to be 0. Then, if n≥ m,

f (x)+g(x) = (an +bn)xn + · · ·+

What is the degree of f (x)+g(x)? If the degree of f (x) and g(x) are different, then
the degree of the sum is just the maximum of the degrees.

However, if the degrees are the same, then the degree of f (x)+ g(x) is can be
smaller than the common degree n of f (x) and g(x): namely when if an +bn = 0.

Note that these definitions imply that the collection of all polynomials over F ,
which we write F [x], is a vector space over F . However it is not finite-dimensional.
It is clear that the polynomials xi, 0≤ i, form a basis for F [x].

On the other hand, for any integer n, the collection of polynomials of degree at
most n forms a vector space of dimension n+1.

The most interesting fact about K[x] is that it also has a multiplication. The prod-
uct of the polynomials f and g given in (C.1) and (C.2), of degrees n and m respec-
tively, is a polynomial

h(x) = cpxp + cp−1xp−1 + · · ·+ c1x+ c0,

where the coefficients are given by the following formula:

ck = a0bk +a1bk−1 +a2bk−2 + · · ·+akb0. (C.3)

This is sometimes called the convolution product of the vector an an−1 . . . a0 by the
vector bm bm−1 . . . b0 From this formula it is easy to see that h has degree p= n+m
and that the coefficient of the leading term is anbm

Example C.1.1. Numerical example of the product of degree 2 by degree 3.

Exercise C.1.2. Show that F [t] satisfies all the axioms of a field, except that it is not
true that all elements other than 0 have a multiplicative inverse.

Exercise C.1.3. Show that the only polynomials f (t) as in (C.1) that have a multi-
plicative inverse have a0 6= 0. The next exercise shows that this is a necessary, but
not a sufficient condition.

Exercise C.1.4. Show that the polynomial t + 1 does not have a multiplicative in-
verse in F [t] by assuming it has an inverse and then solving for ai for increasing
values of i.

Exercise C.1.5. Instead of taking polynomials, we could instead take for the scalars
the integers, which we denote N. Show that they fail being a field in exactly the
same way as polynomials: elements other than 0 fail to have multiplicative inverses
in the integers. We can enlarge the integers to the rational numbers Q to remedy this
problem, so Q is a field, contained in the real numbers, with is itself contained in
the complex numbers.
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C.2 The Euclidean Algorithm

The Euclidean algorithm is one of the most famous algorithms of mathematics. We
need it for polynomials; you have certainly seen it not only for polynomials but
also for integers. Its goal is to find the greatest common divisor of two polynomials
f (x) and g(x). This is a polynomial of largest degree dividing both f (x) and g(x).
We do this by first explaining how to do long division of a polynomial f (x) by a
polynomial g(x) of degree at most that of f (x). The condition on the degree of g(x)
in the statement only excludes the polynomial g(x) that is identically 0, to avoid
division by 0.

Theorem C.2.1 (Euclidean Algorithm). Given a polynomial f (x) and a polyno-
mial g(x) of degree at least 0, there are polynomials q(x) and r(x) such that

f (x) = q(x)g(x)+ r(x) with degr(x)< degg(x). (C.4)

The polynomial q(x) is the quotient and r(x) is the remainder.

Proof. We do this by finding the coefficients of one power of x for both of both q(x)
and r(x) at a time. Start with the polynomials f (x) and g(x) of (C.1) and (C.2), with
n≥ m. Then we form the polynomial f1(x) given by

f1(x) = f (x)− an

bm
xn−mg(x).

By construction the degree n1 of f1 is less than the degree of f . If n1 is still greater
than or equal to m, we form

f2(x) = f1−
a1

n1

bm
xn1−mg(x),

where a1
n1

is the leading coefficient of f1. We repeat this process until the degree nk
of fk(x) is less than m. So we have, for suitable scalars c1

f1 = f − c0xn−mg,

f2 = f1− c1xn1−mg

f3 = f2− c2xn2−mg

. . .= . . .

fk = fk−1− ck−1xnk−1−mg

Then backsubstituting into the last equation, we get

fk(x) = f −
(
c0xn−m + c1xn1−m + c2xn2−m + · · ·+ ck−1xnk−1−m)g(x).

Write q(x) for polynomial multiplying g, and r(x) for fk(x), we have proved that

f (x) = q(x)g(x)+ r(x)
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for a polynomial r of degree less than that of g. ut

This process is algorithmic, meaning that what we do at each step is uniquely
determined. Still, the proof that the conclusion of the theorem is uniquely defined is
interesting.

Theorem C.2.2. With the hypotheses of the Euclidean algorithm, the polynomials
q(x) and r(x) are uniquely defined.

Proof. Suppose we have a second representation f (x) = q1(x)g(x)+ r1(x), where
the degree of r1(x) is still less than the degree of g. Taking the difference of the two
representations, we get(

r1(x)− r(x)
)
=
(
q(x)−q1(x)

)
g(x).

The polynomial on the right hand side has degree at least m unless q(x) = q1(x), in
which case we get the 0 polynomial. The left hand side has degree at most m− 1
since it is the difference of two remainders. So the only possibility is q(x) = q1(x).
Then, since the right hand side is 0, r1(x) = r(x). ut

Definition C.2.3. If r(x) is the zero polynomial, we say g(x) divides f (x).

Remark C.2.4. If you do not care about how to compute q(x) and r(x), it is easy to
produce an existence proof of the representation (C.4). We know that we can always
write f (x) = q(x)g(x)+ r(x) for some polynomials q(x) and r(x): for example take
q(x) = 0 and r(x) = f (x). We need to show that we can find such a representation
with degr(x)< degg(x). So take the representation f (x) = q(x)g(x)+r(x) with r(x)
of smallest degree, and assume that degr(x)≥ degg(x). Let the leading term of r(x)
be rm+exm+e. Then adding to q(x) the term rm+e

bm
xe decreases the degree of r(x), a

contradiction. Notice that this is just one step of the Euclidean algorithm.

Exercise C.2.5. Write down long division of integers, represented in base 10, in the
high school way.

Exercise C.2.6. Replacing the powers of 10 by powers of x, make the same repre-
sentation of the Euclidean algorithm for polynomials, and show that it is exactly
what we did above.

C.3 Roots of Polynomials

Definition C.3.1. Let f (x) be the polynomial of (C.1). Substitute a ∈ K in for the
variable x: if

f (a) = anan +an−1an−1 + · · ·+a1a+a0 = 0

then a is a root of f (x).
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Now apply the Euclidean algorithm to f and the polynomial x−a, a polynomial
of degree 1. Then

f (x) = q(x)(x−a)+ r,

where r is a constant. If a is a root of f , evaluating the expression at x = a shows
that r = 0, so x−a divides f (x).

So we have proved

Theorem C.3.2. If a is a root of the polynomial f (x) of degree n, then there is a
polynomial q(x) of degree n− 1 such that f (x) = q(x)(x− a). Thus x− a divides
f (x).

Corollary C.3.3. A polynomial of degree n has at most n distinct roots.

Proof. Otherwise f would have a number of factors greater than its degree, which
is impossible. ut

The number of roots depends on the field K. For example the polynomial x2 +1
has no roots over R, while it has roots i and −i over C.

Explain that every polynomial in C factors as a product of linear factors. Put
proof in appendix?

Explain that every polynomial in R factors as a product of linear and quadratic
factors. Which are the quadratics that cannot be factored over R? Quadratic formula

Suppose we have a polynomial of degree exactly n, written as in (C.1). Then we
can divide by the leading coefficient an to make the polynomial monic. We call it
f (x), which is therefore written

f (x) = xn +an−1xn−1 + · · ·+a1x+a0.

Also assume that f (x) factors as a product of linear factors, so it has n roots

f (x) = (x−u1)(x−u2) . . .(x−un).

As we just noted, this can always be done over C. Then we can ask: what is the
relationship between the ai and the ui, 1≤ i≤ n?

To express the answer we need to define the elementary symmetric functions of
the ai.

Definition C.3.4. The n elementary symmetric functions si of the n quantities ui,
1≤ i≤ n are

s1 = u1 +u2 + · · ·+un;
s2 = u1u2 +u1u3 + · · ·+u1un +u2u3 + · · ·+u2un + . . .un−1un;
. . .= . . . ;

sk = ∑
1≤ii<i2<···<ik≤n

ui1u12 . . .uik ;

. . .= . . . ;
sn = u1u2 . . .un.
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These functions are called symmetric functions, because given any permutation σ

of [1, . . . ,n] acting by permuting the indices, so that for example

σ(s1) = uσ(1)+uσ(2)+ · · ·+uσ(n).

then σ(si) = si.

The classic result about polynomials is

Theorem C.3.5. If the polynomial f (x) = (x− u1)(x− u2) . . .(x− un), then it can
be written

f (x) = xn− s1xn−1 + s2xn−2−·· ·± sn

where the si are the elementary symmetric functions of the roots ui.

Proof. This is easily proved by induction on n. For n = 1 it is obvious. Assume it is
true for n−1 and write the symmetric functions of the n−1 roots of the polynomial
g(x) as s1, . . . , sn−1, so that we may assume

g(x) = xn−1− s1xn−2 + s2xn−3−·· ·± sn−1

Now multiply g(x) by (x−un) and write the product f (x). Let ti be the elementary
symmetric functions of the n roots u1, . . . , un. So g(x)(x−un) can be written

f (x) = g(x)(x−un) = xn− s1xn−1 + s2xn−2−·· ·± sn−1x

−unxn−1 +uns1xn−2−uns2xn−3−·· ·∓unsn−1 (C.5)

So the coefficients of f (x) are, up to alternation of sign, t1 = s1 +un, t2 = s2 +uns1,
. . . , tn−1 = sn−1 + unsn, tn = unsn− 1. These are easily seen to be the symmetric
functions in the n roots, so we are done. ut

We will use this result when we study the characteristic polynomial in Chap-
ter 12.

C.4 Great Common Divisors

As always, let f (x) and g(x) be two polynomials, where n ≥ m. First we recall the
definition of the greatest common divisor of f (x) and g(x).

Definition C.4.1. A polynomial d(x) is the greatest common divisor (gcd) of f (x)
and g(x) if it divides both of them, and if any other divisor of f (x) and g(x) divides
d(x).

It is not obvious that the gcd exists. We can make it unique by requiring that it also
be a monic polynomial, so its leading coefficient is 1. We construct the gcd using
the Euclidean algorithm. Do long division to obtain
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f = q0g+ r0 (0)

where degr0 < degg. Now divide g by r0 to get

g = q1r0 + r1 (1)

where degr1 < degr0. Continue in this way, so that degri+1 < degri:

r0 = q2r1 + r2 (2)
r1 = q3r2 + r3 (3)
. . .= . . .

rk−3 = qk−1rk−2 + rk−1 (k)
rk−2 = qkrk−1 + rk (k+1)
rk−1 = qk+1rk + rk+1 (k+2)

until you get to a remainder (say rk+1) that is the zero polynomial 0. We must always
get to 0 since the degrees of the ri are strictly decreasing. Thus equation (k+2) is
actually: rk−1 = qk+1rk, so that rk divides rk−1. Using equation (k+1) we can express
rk as a linear combination of two terms with lower indices:

rk = rk−2−qkrk−1, (C.6)

so rk divides rk−2. Now that we have established that rk divides two previous ri with
consecutive indices, our list of equation shows it divides all of them, and also g(x)
and f (x). So rk is a common divisor of the two polynomials we started with.

Next we establish it is the greatest common divisor. We do this by first establish-
ing (C.9) below.

Equation (k), written as

rk−1 = rk−3−qk−1rk−2 (C.7)

shows that we can rewrite (C.6) as

rk = rk−2−qk
(
rk−3−qk−1rk−2

)
= (1+qkqk−1)rk−2−qkrk−3. (C.8)

Equation (k-1) allows the elimination of rk−2, and at each step we can write rk as a
linear combination of two previous remainders with consecutive and lower indices.
Continuing in this way, we see that rk can be written as a linear combination of f
and g.

rk(x) = c1(x) f (x)+ c2(x)g(x) (C.9)

for certain polynomials c1(x) and c2(x) that can be computed algorithmically from
the qi..

Theorem C.4.2. The polynomial rk(x) is the greatest common divisor of f (x) and
g(x). Let c = degrk(x). Then there is no common divisor of f (x) and g(x) of degree
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greater than c, and the only common divisors of degree c are scalar multiples of
rk(x).

Proof. Let h(x) be a common divisor of f (x) and g(x), so there are polynomials
d1(x) and d2(x) such that f (x) = d1(x)h(x) and g(x) = d2(x)h(x). Substitute these
two expression into (C.9), getting

rk(x) = c1(x)d1(x)h(x)+ c2(x)d2(x)h(x) =
(
c1(x)d1(x)+ c2(x)d2(x)

)
h(x)

which shows that h(x) divides rk(x). So degh(x) ≤ degrk(x), with equality only if
h(x) is a scalar multiple of rk(x). ut

Definition C.4.3. Two polynomials whose greatest common divisor is 1 are rela-
tively prime.

Corollary C.4.4. If two polynomials f (x) and g(x) are relatively prime, then there
are polynomials c1(x) and c2(x) such that 1 = c1(x) f (x)+ c2(x)g(x). The polyno-
mials can be chosen so that degc1(x)< degg(x) and degc2(x)< deg f (x), and then
the representation is unique.

Proof. The first statement is just (C.9). For the next statement, first note that
deg(c1(x) f (x))= deg(c2(x)g(x)), since the lead terms of both must agree to produce
a polynomial of degree 0 on the left hand side. If degc1(x)> degg(x), just do long
division: c1(x) = q1(x)g(x)+ r1(x). By our first remark, then degc2(x) > deg f (x),
so also do long division : c2(x) = q2(x) f (x)+ r2(x). Then we have

1 =
(
q1(x)g(x)+ r1(x)

)
f (x)+

(
q2(x) f (x)+ r2(x)

)
g(x)

=
(
q1(x)+q2(x)

)
f (x)g(x)+ r1(x)

)
f (x)+ r2(x)

)
g(x)

Then, since the last two terms have lower degree than the first term, the leading
coefficient of q1(x) and q2(x) must cancel. We can continue the argument until we
get to the situation where degc1(x)< degg(x) and degc2(x)< deg f (x), as claimed.
Now suppose there are two expressions with the same restriction on the degrees of
d1(x) and d2(x):

1 = c1(x) f (x)+ c2(x)g(x)

1 = d1(x) f (x)+d2(x)g(x)

Subtract to get

0 =
(
c1(x)−d1(x)

)
f (x)+

(
c2(x)−d2(x)

)
g(x)

Because f and g are relatively prime, f must divide c2(x)−d2(x) and g must divide
c1(x)−d1(x). But the degrees are too small, so c1(x)−d1(x) and c2(x) = d2(x). We
are done. ut

We can generalize this to
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Theorem C.4.5. Given k polynomials f1, . . . , fk, they have a greatest common divi-
sor r(x), and r(x) can be expressed as a linear combination of the fi:

r(x) = c1(x) f1(x)+ · · ·+ ck(x) fk(x)

Proof. We do this by first replacing f1 and f2 by their greatest common divisor d1,
and then working with the collection d1(x), f3(x), . . . , fk(x), and using the fact that
d1 can be written as a linear combinations of f1 and f2. Then work with d1 and f3
to get their greatest common divisor d2(x), and continue in this way. ut

Remark C.4.6. If you are familiar with the notion of ideal in a ring, that the results of
this section can be obtained more quickly. Still the technique of proof given above
is algorithmic, and allows the computation of the gcd.

C.5 Unique Factorization

Definition C.5.1. A polynomial over a field F is irreducible if its only divisors
(polynomials in K[x] are 1 and itself.

Irreducible polynomials are the analog of prime numbers for the factorization of
integers.

It is important to understand that the notion of irreducibility depends on the field.
For example there are different irreducible polynomials in R[x] than in C[x].

The key result that gives us unique factorization is:

Theorem C.5.2. If an irreducible polynomial p(x) divides the product of two poly-
nomials f (x)g(x), then it actually divides one of the two.

Proof. Our hypothesis is that f (x)g(x) = p(x)h(x) for some polynomial h(x). As-
sume that p(x) does not divide f (x). Because p(x) is irreducible, this forces the
greatest common divisor of p(x) and f (x) to be 1. So by Corollary C.4.4 there are
polynomials c1(x) and c2(x) that give

1 = c1(x) f (x)+ c2(x)p(x).

Multiply this expression by g(x):

g(x) = c1(x) f (x)g(x)+ c2(x)p(x)g(x)

= c1(x)p(x)h(x)+ c2(x)p(x)g(x) = p(x)
(
c1(x)h(x)+ c2(x)g(x)

)
by our hypothesis. This says that p(x) divides g(x), so we are done. ut

The main theorem is

Theorem C.5.3. Any polynomial f (x) in K[x] can be factored as a product of irre-
ducible polynomials pi ∈ K[x], each raised to a positive power mi:
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f (x) = p1(x)m1 p2(x)m2 . . . pk(x)mk =
k

∏
i=1

pi(x)mi

and the irreducible polynomials pi are uniquely defined up to a constant factor and
up to order.

Write the proof.

Definition C.5.4. A polynomial f (x)= p(x)m, where p(x) is irreducible, and m is an
integer greater than or equal to 2, is called primary. When the irreducible polynomial
p(x) needs to be made explicit, f (x) is called p-primary.

Example here about what uniqueness means.

C.6 The Fundamental Theorem of Algebra

Theorem C.6.1. Any polynomial with coefficients in C factors over C as a product
of polynomials of degree one (linear polynomials).

We also have

Theorem C.6.2. Any polynomial with coefficients in R factors over R as a product
of irreducible polynomials of degree at most 2. The irreducible factors of degree 2
factor over C as (x−α)(x−α), where α is a complex number that is not real, and
α is its complex conjugate.

It would take us too far afield to prove the first theorem. Using it, it is not hard to
prove the second one.

Proof. Indeed take a polynomial

f (x) = cmxm + cm−1xm−1 + · · ·+ c1x1 + c0

with real coefficients ci. By the Fundamental Theorem of Algebra, f (x) factors in
linear factors over C. Assume that a complex number α = a+ bi, b 6= 0 is a root.
If there is no such root, then all the roots are real. We first show that the complex
conjugate α = a−bi is also a root.

By (B.3), if αk = ak +bki, then αk = ak−bki. Then, since the ci are real and α

is a root, the imaginary part of f (α) must vanish. So

cmbm + cm−1bm−1 + · · ·+ c1b1 + c0 = 0.

Since this is also the imaginary part of f (α), α is also a root. Therefore the product
(x−α)(x−α) divides f (x). Now if α = a+bi,

(x−α)(x−α) = x2−2ax+a2 +b2,
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a real polynomial that does not factor over R since its roots are not real. Thus it is
irreducible. ut

Exercise C.6.3. Use the quadratic formula to confirm that the roots of x2− 2ax+
a2 +b2 are a±

√
−b2 = a±bi.

Example of different factorizations over R and C.





Appendix D
Matrices, Spreadsheets and Computer Systems

Abstract Avoiding hand computations. These notes first describe how matrix op-
erations can be implemented in spreadsheets, especially Excel. In a second section
they show how to do certain linear algebra computations in MatLab.

D.1 Matrices and Spreadsheets

We describe how matrix operations can be implemented in spreadsheets. I use Excel.
These notes are probably too concise unless you already know the basics of Excel. I
illustrate this using the Macintosh version of Excel. There may be changes required
for other platforms.

In the world of spreadsheets the word matrix is never used. One only speaks
of arrays, which means the same thing. The indexing of rows and columns is re-
versed: the columns, which are enumerated by letters, comes first, while the rows,
enumerated by integers, come second. The entries of the array are called cells. So
D3 represents the cell in the D-th column and the third row.

Example D.1.1. Here is the left-top corner of a spreadsheet, with a 3×4 array in it.

A B C D E
1 1 2 4 −8
2 4 5 6 −1
3 7 8 9 2
4

So cell A1 contains the number 1, while cell C2 contains the number 6.

339
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D.1.1 Row Operations

The easiest matrix operations to do in spreadsheets are elementary row operations,
since no special Excel operations are required. They are less powerful and require
more cutting and pasting than the Excel matrix functions of the next section.

Row swap On the example above, suppose you want to swap rows 2 and 3 of the
matrix. First just copy row 2 of the array to somewhere else, for example in row 4 of
the spreadsheet. Then paste row 3 where row 2 used to be. Finally copy the moved
row 2 into row 3.

Subtract a multiple of a row from another row
Suppose we want to subtract 4 times row 1 from row 4 in the example. First make

a copy of the matrix, and paste it, for example going from A5 to D7. Then in cell
A6 write the expression

= A2 - $A$2 * A1

This formula means put into cell A6 the content of A2 minus the content of A2
times the content of A1. Then press Enter. A 0 should appear in cell A6. Now use
the mouse to select all the array entries in row 6 of the spreadsheet. Go to the menu
Edit and select the item Fill, at which point a submenu will appear: pick Right. All
the entries of the matrix will be converted correctly: in cell B6 you will get

B2 - $A$2 * B1

The reason A2 did not get converted to B2 in this new formula, like the other two
cells references, is that the $ signs make the cell reference into an absolute reference
rather than a reference relative to the cell that is being considered.

Divide a row by a non-zero scalar After the row operation just performed we
have the matrix

A B C D E
7
8 1 2 4 −8
9 0 −3 −10 31

10 7 8 9 2
11

We might want to divide the second row by −3 to make the next pivot 1. As before
copy the array again, but this time do a Paste Special, choosing Values: you do not
want the formulas in the cells, just the values. Imagine the array goes from A17 to
D19, for example. Then in cell B18 type

= B9 /$B$9.

After pressing Enter, a 1 should appear in cell B18. Then select the element of the
array in row 18 from B18 to D18. Then do a Fill Right as before. You are done.

Continuing in this way, you can put a matrix in upper triangular or RREF form
easily.
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Example D.1.2. You should compute the RREF of the augmented matrix in the ex-
ample above. Once you master the spreadsheet tools in the nest section, you can
conclude that the the matrix of the first three columns is the identity matrix, because
it is invertible, and the last column is the vector 2

3
−4


Why?

D.1.2 Matrix Algebra

Now we turn to the built-in matrix functions that even everyday users of Excel may
not be familiar with.

Giving names
The first thing to do is to name an array in the spreadsheet. Type in numerical

values into the cells of the array, then select the entire array. Go to the Insert menu,
and select the item Name. A submenu appears: check Define. Then a dialog box
called Define Name appears, and just type in a name, say mfm. The computer then
tells you that you have assigned the name mfm to:

=Sheet1!$A$1:$C$3

Note how the array is specified by its upper left hand corner

$A$1

and its lower right hand corner

$C$3

separated by a colon indicating the range. The dollar signs indicate, as before, that
this is an absolute reference. A common mistake is to use a name that could be a cell
reference: letters followed by digits. So for example you would get an error message
if you named your array mfm2.

Addition
To add two matrices of size 3× 3 on the same sheet of the spreadsheet, now

create a second matrix, call it msm, of the same size. Then select an empty 3× 3
array in the spreadsheet, type in

=mfm+msm

and then hit command-shift-return simultaneously. The computer then returns the
sum of the matrices in one operation. Common mistakes are to select a region of the
wrong size or to forget to hit command-shift-return simultaneously
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Scalar Multiplication Suppose you want to multiply mfm by 10, say. Choose
an array of the size of mfm, type

=10*mfm

and then hit command-shift-enter simultaneously.
Matrix multiplication Follow the same steps as for addition, but this time let

the first array, call it lefta, be a n×m array, and the second one, called righta be a
m× p array. In other words the number of columns of lefta must be the same of the
number of rows of righta, so that multiplication is possible. Next select an unused
array in the spreadsheet of size n× p, select it, and type

=MMULT(lefta, righta)

Then hit command-shift-return simultaneously.
Transposition After entering and naming a first matrix mfm of size n×m, pick

a region of the size m×n, and type in

=TRANSPOSE(mfm)

and as always hit command-shift-return simultaneously. Here is another way of
doing this, known as swapping rows and columns: 1) Select the array of size n×m
called mfm in the spreadsheet and Copy. 2) Go to a free area of the spreadsheet of
size m×n, go to the Edit Menu, choose the paste special item and click on the box
marked Transpose. The transposed matrix will appear.

Determinant Start with a square matrix, called mfm for instance. Pick a single
cell and type

=MDETERM(mfm)

The determinant appears after you press command-shift-enter simultaneously. If
it is 0, the matrix does not have an inverse, as we will learn.

Example D.1.3. Compute the determinant of the 3×3 coefficient matrix of Example
D.1.1, meaning the array A1 : C3. You should get −3.

Matrix inverse Start with a square matrix, called mfm for instance. Then select
a unused region of the same size as mfm in the spreadsheet and type in

=MINVERSE(mfm)

As always hit command-shift-enter simultaneously. The inverse will appear, un-
less the matrix has determinant 0 or close enough to 0 that Excel cannot do the
computation.

Example D.1.4. Now compute the inverse of the 3×3 coefficient matrix of Example
D.1.1. You should get  1 −4.666667 2.666667

−2 6.333333 −3.333333
1 −2 1


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The fractions are just the representation of numbers such at 2+ 2/3 and the like.
Why 3 in the denominator? As we will see later in the course, this is because the
determinant is −3.

Solve a square system of equations If you have a n× n system of linear equa-
tions Ax = b, you can find the unique solution to the system if the determinant is
non-zero: first compute the inverse B = A−1 of A using the MINVERSE command,
and then compute the product Bb using the MMULT command

=MMULT(B, b)

Notice that you only need to select an array of size n×1 to store the answer b.

Example D.1.5. If you do this with the augmented matrix of Example D.1.1, using
the inverse computed in the previous example, you get the column vector 2

3
−4


How to you check that this is correct? Just multiply the original coefficient matrix

by this column vector using the MMULT command: you should get the right-most
column of the original matrix, and you do.

LU form
Start out with a square matrix A of size n. We want to put it in LU form, meaning

that we want to write A = LU , where L is a lower triangular matrix and U an upper
triangular matrix. This is not always possible, because row operations may not give
us the expected pivots. When it is, it is a way of replacing the row operations of
§D.1.1 by matrix multiplications. Put the square matrix of size n you are interested
in the cells in the upper-left hand corner of the matrix. For concreteness assume
n = 3: Here is an example:

A B C D E
1 2 1 1
2 4 5 3
3 6 9 9
4

Then enter the matrix  1 0 0
−A2/A1 1 0
−A2/A1 0 1

 (D.1)

in cells A5 to C7, give it a name, and the multiply, using MMULT this matrix by the
original matrix, putting the product in cells A8 to C10, for example. You get2 1 1

0 3 1
0 6 6


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Because the element in the second row and second column of this new matrix is not
zero, it is the next pivot, ands multiply on the left by1 0 0

0 1 0
0 −B10/B9 1

 (D.2)

You get the matrix 2 1 1
0 3 1
0 0 4

 (D.3)

which is upper triangular, as required. The lower triangular matrix you want is the
inverse of the product of the matrix (D.2) by the matrix (D.1). First we compute the
product  1 0 0

−2 1 0
1 −2 1


and then take its inverse 1 0 0

2 1 0
3 2 1


Finally just check that this matrix times matrix (D.3) is the original matrix.

Diagonalization of symmetric matrices
Suppose the square matrix A you start with is symmetric: A = AT . By what we

just did we can find a matrix L such that LA is upper triangular. L is invertible and its
transpose LT is upper triangular. So the product LALT is symmetric. this matrix is
both upper triangular and lower triangular, so it is symmetric. Thus we can just use
the computation of §D.1.2 to diagonalize a symmetric matrix when all the pivots are
non zero. An interesting question is: when does that occur?

D.2 Matrices in MatLab

Here is an involved example using MatLab. In these notes I work some examples of
approximation of polynomials using orthogonal projections techniques.

First we establish a result called the interpolation of points by a polynomial. Take
n+1 point in the plane, of the form (xi,yi), 0≤ i≤ n, where the xi are distinct. Then
these points lie on the graph of a unique polynomial f (t) of degree at most n. We
will discuss how the polynomials is determined.

Next, given the same n + 1 points (xi,yi), we ask for the polynomial g(t) of
degree n− 1 whose values zi = g(xi) are as close as possible to values yi = f (xi).
By as close as possible we mean that
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n

∑
i=0

(yi− zi)
2

is minimal over all all polynomials g(t) of degree n−1. By the Pythagorean Theo-
rem g(t) is uniquely determined. Here we construct it. The key idea involves orthog-
onality. The (yi) associated to polynomials of degree ≤ n form a vector space Rn+1

with a natural basis, while the (zi) associated to polynomials of degree≤ n−1 span
a subspace H of dimension n. Using the standard inner product on Rn+1, we can
project the points to H. Since we have n+ 1 points in a vector space of dimension
n, they are linearly dependent.

Then we make the same approximation, but using a different inner product, call
the L2 inner product on the vector space Pn of polynomials of degree n: For polyno-
mials f (x) and g(x) it is defined by∫ 1

−1
f (x)g(x)dx.

. In these notes we only integrate over the interval [−1,1], but we could integrate
over any finite interval of our choice.

An important purpose of these notices is to work an explicit example of both
methods, explaining how to do the computations using MatLab.

A project for those who want to learn how to use MatLab is to work the exercise
given in the last section.

D.2.1 Polynomials Passing Through Points

Suppose you are given n+ 1 points in the plane: (xi,yi), 0 ≤ i ≤ n. We want to
find a polynomial f (t) of degree n passing through these points, where the xi are
distinct. If you write f (t) as cntn + . . . ,c1t + c0, this means solving the system of
linear equations of n+1 equations in n+1 variables:

Ac = y, (D.4)

where A is the (n+1)× (n+1) matrix with ai j = x j
i , 0≤ i, j≤ n. In other words the

map that associates to a polynomial f (x) of degree n the vector [ f (x0, f (x1), . . . , f (xn)]∈
Rn+1 is a linear transformation TA between two vector spaces of dimension n+ 1.
The kernel of this transformation only contains the zero polynomial, since a non-
trivial polynomial of degree ≤ n has at most n zeroes. Therefore TA is an isomor-
phism. Notice that the first equation in (D.4) is

c0 + c1x0 + c2x2
2 + · · ·+ xn

0 = y0.

The matrix A is known as the Vandermonde matrix at x0,x1, . . . ,xn, so we have
shown in a second way that it is invertible. We will show directly that is invertible if



346 D Matrices, Spreadsheets and Computer Systems

and only if the values xi are distinct, when we study determinants. When n = 2 the
Vandermonde matrix is 1 x0 x2

0
1 x1 x2

1
1 x2 x2

2


Since A is invertible by (D.4) we can solve for c: c = A−1y. In particular the coef-

ficients ci of the polynomial are uniquely determined by the points (xi,yi), showing
that there is exactly one n-th degree polynomial going through n+1 points.

Example D.2.1. Here is an example that you would not want to do by hand. Take
the four points (−1,1), (−1/2,−1), (0,−3/2), (1,0). The Vandermonde matrix for
them is

A =


1 −1 1 −1
1 −1/2 1/4 −1/8
1 0 0 0
1 1 1 1

 .

They are on the unique cubic

−2
3

t3 +2t2 +
1
6

t− 3
2
. (D.5)

as I now prove using a MatLab computation.
As we have already noted, to find the coefficients of the polynomial just solve

the linear system Ac = y. Using MatLab, we compute the inverse of A:

A−1 =


4/3 −4 4 −4/3
2 −4 2 0

2/3 1 −2 1/3
0 0 1 0

 .

Since y is the column vector (1,−1,−3/2,−1) the coefficients c are

A−1y = (−3/2,1/6,2,−2/3).

Warning: MatLab has a vander[x] command that produces the Vandermonde
matrix at the points x, but it reverses the standard ordering of the columns: it goes
from highest power to 0-th power. So in the example above, to get the Vandermonde
matrix, first enter the vector of points at which you want to evaluate, and then use
the function:

v = [-1 -1/2 0 1];
A = vander(v)

-1.0000 1.0000 -1.0000 1.0000
-0.1250 0.2500 -0.5000 1.0000
0 0 0 1.0000
1.0000 1.0000 1.0000 1.0000
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To get the inverse of A:

Ainv = inv(A)
-1.0000 2.6667 -2.0000 0.3333

0.5000 0 -1.0000 0.5000
0.5000 -2.6667 2.0000 0.1667
0 0 1.0000 0

To get the column vector y just enter

y = [1;-1; -3/2; 0]

and then multiply to get

c= Ainv* y
-0.6667
2.0000
0.1667

-1.5000

remembering that the order of the coefficients is reversed. This confirms (D.5).

D.2.2 Orthogonal Projections

Next we want to find the polynomial of degree n−1 that passes as close as possible
to the same n+ 1 points, in the least squares sense. How do you describe all poly-
nomials of degree n1, to be evaluated at n+ 1 points? Just take the first n columns
of the matrix A. So D is a n+1×n matrix. Then the values of the polynomial of de-
gree n−1 whose coefficients are c0, . . . . cn−1 at the points x are given by Dc. As the
polynomial with coefficients c varies over all polynomials of degree n−1, its output
varies in a subspace H of dimension n We want to project orthogonally the n+ 1
points bi = (xi,yi) to points pi in the image of multiplication by D: therefore the
values of the n-first monomials c0, c1, . . . , cn−1 of the polynomial in t evaluated at
the n+1 scalars xi: z = Dc. The points under projection are of the form pi = (xi,zi)
so that only the second coordinate of each point changes under projection. Because
A is invertible, the columns of D are linearly independent. In that case we know that
the projection is given by the (n+1)× (n+1) invertible matrix P = D(DtD)−1Dt .
Then c = (DtD)−1Dty. So we should compute the (n+ 1)× n matrix (DtD)−1Dt

first; then evaluate it at y to get the coefficients c, which we then multiply by D to
get the zi.
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Example D.2.2. Here is the computation for Example D.2.1. D is just the first three
columns of

D =


1 −1 1
1 −1/2 1/4
1 0 0
1 1 1

 .

so

DtD =

 4 −1 3/2
−1 3/2 −1
3/2 −1 9/8

 ,

A symmetric matrix as expected. Next we need the inverse

(DtD)−1 =

0.55 −0.3 −1
−0.3 1.8 2
−1 2 4

 ,

which is also symmetric. Next we compute

D1 = (DtD)−1Dt =

−0.15 0.45 0.55 0.15
−0.1 −0.7 0.3 1.1

1 −1 −1 1

 .

Here is the MatLab computation:

D = [ 1.0000 -1.0000 1.0000;
0.2500 -0.5000 1.0000;
0 0 1.0000;
1.0000 1.0000 1.0000]

Dtrans = transpose(D);
DtD = Dtrans*D;
DtDinv = inv(DtD)
DtDinv =

1.2727 -0.0909 -0.7273
-0.0909 0.4636 0.1091
-0.7273 0.1091 0.6727

D1 = DtDinv*Dtrans
D1 =

0.6364 -0.3636 -0.7273 0.4545
-0.4455 -0.1455 0.1091 0.4818
-0.1636 0.4364 0.6727 0.0545

y = [1;-1; -3/2; 0]
y =

1.0000
-1.0000
-1.5000
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0
c= D1*y

c =
2.0909
-0.4636
-1.6091

proj = D*c
proj =

0.9455
-0.8545
-1.6091
0.0182

So the coefficients of the quadric that passes as close as possible to the original
points are

c = D1y = (−1.6091, −0.4636, 2.0909),

meaning that the quadric is 2.0909t2−0.4636t−1.6091. Finally the second coordi-
nate of the projected points are

Dc = (0.9455, −0.8545, −1.6091, 0.0182).

Notice that they are close to the second coordinates of the original points: y =
(1,−1,−1.5,0). This is expected, since it is the sum of the squares of the differ-
ences that we are minimizing.

Below is a graph of the cubic and the quadric of the example on the interval
[−1,1]. The four points of approximation are between −1 and 1. First the code that
produced it:

x = linspace(-1, 1, 100);
y1 = -(2/3)*x.ˆ3 +2*x.ˆ2 +(1/6)*x -3/2;
y2 = 2.0909*x.ˆ2 -0.4636*x -1.6091;
plot(x, y1,’--’, x, y2, ’:’)

D.2.3 A Different Approximation

Once again start with a polynomial f (t) of degree n. We want a way of measuring its
distance in a difference sense, from a polynomial g(t) of degree n−1 on the interval
[−1,1], for example. For that we need a new inner product on the vector space Pn of
polynomials of degree n. Here is one such:

〈 f (t),h(t)〉=
∫ 1

−1
f (t)h(t)dt.
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Fig. D.1 The Cubic and the Quadric

We already know that this is an inner product, because any polynomial is contin-
uous. This inner product gives us a notion of distance between polynomials. It is,
as always,

√
〈 f (t)−h(t), f (t)−h(t)〉 which can be written as an integral as given

below.
Using it we want to project orthogonally any polynomial f (t) of degree n to the

subspace Pn−1 of polynomials of degree n−1. Pn−1 has dimension one less that the
dimension of Pn. As we know by the Pythagorean Theorem, the orthogonal projec-
tion g(t) is the point in Pn−1 whose distance from f (t) is smallest. This distance
is ∫ 1

−1
( f (t)−g(t))2dt.

This is a generalization of what we did in the previous section, but where instead of
using 4 points, we use all the points on the interval [−1,1].
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To make the orthogonal projection we need an orthogonal basis for the vec-
tor space of polynomials of degree n. We get it from the ordinary basis B =
{1, t, t2, . . . , tn} of P(n) by the Gram-Schmidt process. The polynomials in the or-
thogonal basis are called the Legendre polynomials.

Definition D.2.3. The formula for the Legendre polynomial of degree n is

fn(t) =
1

2nn!
dn

dtn (t
2−1)n

We only use this amazing formula in the case n = 3, where the computations can be
done by hand if you choose.

The first four Legendre polynomials are

le0 = 1;
le1 = t;

le2 =
3t2−1

2
;

le3 =
5t3−3t

2
.

The square of their lengths, meaning

〈 fi(t), fi(t)〉=
∫ 1

−1
fi(t)2dt,

are 2, 2/3, 2/5, 2/7. For example let’s compute the square of the length of le2
in MatLab. First we need to square the polynomial. This is a little tricky: MatLab
stores the polynomial as the vector of its coefficients, so in our case as [3/2 0 −
1/2]. Note that the coefficients are given in decreasing order of the power of the
variable. To find the coefficients of its square use the convolution function conv(·, ·).
It is useful to see that convolution on the coefficients of two polynomials gives the
coefficients of the product polynomial. Then transform the convolution back to a
polynomial using the poly2sym(q, t), where q is the vector of coefficients returned
by the convolution function and t is the name of the variable.

p = [3/2 0 -1/2];
q = conv(p,p)
syms t;
p2 = poly2sym(q, t)

This returns as output

ans = (9*tˆ4)/4 - (3*tˆ2)/2 + 1/4

Now a kludge: add dots before each power sign by hand:

(9*t.ˆ4)/4 - (3*t.ˆ2)/2 + 1/4

Finally integrate numerically over the interval [−1,1]:
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syms t
integral(@(t) (9*t.ˆ4)/4 - (3*t.ˆ2)/2 + 1/4, -1, 1)

ans = 0.4000

which is indeed 2/5.
Thus these functions are not orthonormal: it would be easy enough to normalize

them, but it is the tradition to write them as above, to get the beautiful Definition
D.2.3. Let’s check at least that two are orthogonal: for example le2 and le3. We just
repeat the same code:

p = [3/2 0 -1/2];
q = [5/2 0 -3/2 0];
pq = conv(p,q);
syms t;
p2 = poly2sym(pq, t)

(15*tˆ5)/4 - (7*tˆ3)/2 + (3*t)/4
integral(@(t) (15*t.ˆ5)/4 - (7*t.ˆ3)/2 + (3*t)/4, -1, 1)

ans = 2.7756e-17

which is effectively 0. We of course knew that the answer is 0, since we are inte-
grating an odd function over an interval symmetric around the origin.

By the usual projection formula, the projection of f (t), a polynomial of degree
n, is

g(t) =
n−1

∑
i=0

〈 f , fi〉
〈 fi, fi〉

fi.

Here fi = lei−1. By construction g is a polynomial of degree at most n−1. Therefore
this involves computing a series of definite integrals of polynomials.

Example D.2.4. We start with the cubic f (t) = − 2
3 t3 + 2t2 + 1

6 t − 3
2 of the earlier

examples D.2.1 and D.2.2. We represent f (t) in MatLab as:

ourp = [-2/3, 2, 1/6, -3/2];
syms t;
ourp2 = poly2sym(ourp, t)

- (2*tˆ3)/3 + 2*tˆ2 + t/6 - 3/2
integral(@(t) - (2*t.ˆ3)/3 + 2*t.ˆ2 + t/6 - 3/2, -1, 1)

ans = -1.6667

So the inner product with the constant term is just the definite integral of the cubic
over the interval [−1,1] divided by 2, giving −5/6.

The inner product with the linear term has coefficient

3/2
∫ 1

−1
−2

3
t4 +2t3 +

1
6

t2− 3
2

t =−0.2333

Use the MatLab code



D.2 Matrices in MatLab 353

syms t;
integral(@(t)3/2*(-2/3*t.ˆ4 + 2*t.ˆ3 + 1/6*t.ˆ2-3/2*t), -1, 1)

to compute it.
The inner product with the quadratic term is computed by

integral(@(t) 5/2*(- t.ˆ5 + 3*t.ˆ4 + (7*t.ˆ3)/12
- (13*t.ˆ2)/4 - t/12 + 3/4), -1, 1)

ans = 1.3333

which is 4/3. This tells us that the quadric that best approximates our cubic in this
inner product is

−5/6−0.2333t +1.3333(3/2t2−1/2) = 2t2−5/12t−3/2

Here is how to make the comparison graph in MatLab:

t = linspace(-1, 1, 100);
y1 = -(2/3)*t.ˆ3 +2*t.ˆ2 +(1/6)*t -3/2;
y2 = 2*t.ˆ2 -5/12 *t -3/2;
plot(t, y1,’--’, t, y2, ’:’)

The graph is given below. You should compare the two graphs.

D.2.4 Comparison

Finally we compare the two quadrics that are the two approximations of our cubic
using different inner products.

Example D.2.5. Our original cubic is C =− 2
3 t3 +2t2 + 1

6 t− 3
2 .

The first quadric computed in §D.2.2 is Q1 = 2.090t2−0.4636t−1.6091
By definition the quadric Q2 = 2t2−5/12t−3/2 computed in §D.2.3 is further

away from C than Q1 in the inner product used there. Let’s check that. What are the
points. 0n Q2 for the 4 points used there: they are (−1,11/12), (−1/2,−19/24),
(0,−3/2), (1,1/12). To compute the square of the distance of Q1 from the cubic

q1= [2.0909 -0.4636 -1.6091];
val1 = [polyval(q1,-1) polyval(q1,-1/2) polyval(q1,0) polyval(q1,1)]

val1 =0.9454 -0.8546 -1.6091 0.0182
Cval = [1 -1 -3/2 0];
dif1 = val1 - Cval

dif1 = -0.0546 0.1454 -0.1091 0.0182
dif1trans = transpose(dif1);
norm1 = dif1*dit1trans

norm1 = 0.0364

So this is the distance squared between the cubic and the first quadric.
Now we repeat for the quadric Q2
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Fig. D.2 L2 norm approximation

q2 = [2 -5/12 -3/2]
val2 = [polyval(q2,-1) polyval(q2,-1/2) polyval(q2,0) polyval(q2,1)]

val2 = 0.9167 -0.7917 -1.5000 0.0833
dif2 = val1 - Cval

dif2 = -0.9167 -0.2083 0 0.9167
dif2trans = transpose(dif2);
norm2 = dif2*dif2trans

norm2 = 0.0573

So the distance of Q2 from the original cubic in the first inner product is greater than
that of Q1, as it must be.

Now we compute in the second inner product:
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q2 = [0 2 -5/12 -3/2];
C = [-2/3 2 1/6 -3/2];
diff2 = C - q2

diff2 =-0.6667 0 0.5833 0
innerproddiff= conv(diff2, diff2)

innerproddiff =0.4444 0 -0.7778 0 0.3403 0 0
syms t;
ourp2 = poly2sym(innerproddiff,t)

ourp2 = 4*tˆ6)/9 - (7*tˆ4)/9 + (49*tˆ2)/144
integral(@(t) (4*t.ˆ6)/9 - (7*t.ˆ4)/9 + (49*t.ˆ2)/144, -1, 1)

ans = 0.0427

That is the answer for Q2. We repeat for Q1:

q1= [2.0909 -0.4636 -1.6091];
C = [-2/3 2 1/6 -3/2];
diff1 = C - q1

diff1 = -0.6667 -0.0909 0.6303 0.1091
innerproddiff1= conv(diff1, diff1)

innerproddiff1 =
0.4444 0.1212 -0.8321 -0.2600 0.3774 0.1375 0.0119

syms t;
ourp1 = poly2sym(innerproddiff1,t)

ourp1 =
(4*tˆ6)/9 + (303*tˆ5)/2500 - (3747412578821693*tˆ4)/4503599627370496
- (4684628960104061*tˆ3)/18014398509481984
+ (6798664461827979*tˆ2)/18014398509481984
+ (4954831006611443*t)/36028797018963968
+ 6861502807124709/576460752303423488

integral(@(t) (4*t.ˆ6)/9 + (303*t.ˆ5)/2500
- (3747412578821693*t.ˆ4)/4503599627370496
- (4684628960104061*t.ˆ3)/18014398509481984
+ (6798664461827979*t.ˆ2)/18014398509481984
+ (4954831006611443*t)/36028797018963968
+ 6861502807124709/576460752303423488, -1, 1)

ans = 0.0696

So indeed the distance of Q1 from C is greater than that of Q2 in this norm.
How should we compare the best approximation in the two norms: in the pictures,

which of the two quadrics looks closer? Clearly Q2 looks like a better approximation
than Q1.
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D.2.5 Exercise

Take the four points (−1,0), (−1/3,−1/2), (1/3,0), (1,1.5), and find the cubic
that goes through them, and then the two quadrics that give the best approximations
in the two norms.

D.2.6 Computing the Interpolation Polynomial

Assume given n+ 1 points (xi,yi). where the xi are distinct. in the plane. Let A be
the Vandermonde matrix A of (D.2.1), evaluated at the xi then finding the unique
polynomial p(x) of degree n, with coefficients c0, c1, . . . , cn just means solving
the system Ac = y. So the problem is solved by finding the inverse of A, for which
there is a formula, albeit complicated. Inverting a large matrix is time consuming
so this is not how the computation is actually done. Instead one finds a basis for
the polynomials of degree V n that is well suited for this problem. This is known as
Newton interpolation. The basis is

N= {n0 = 1,n1 = x− x0,n2 = (x− x0)(x− x0), . . . ,nn =
n

∏
i=0

(x− xi)}.

It is clear that this is a basis because the polynomials are of different degrees. The
goal, therefore, is to find the expression of the Vandermonde equation in this basis,
i.e. find the coefficients ci such that

p(x) = c0n0 + c1n1 + . . .cnnn.

The advantage of this basis is that the interpolating matrix A is upper triangular in
it, and that it is easy to increment the computation if a new point is added.

To do this we need to defined the divided difference of {x0,x1, . . . ,xn} and
{y0,y1, . . . ,yn} . We write these with square brackets. Then

f [xi] = yi,

f [xi,xi+1] =
yi+1− yi

xi+1− xi
,

. . .= . . .

f [xi, . . . ,xi+k] =
f [xi+1, . . . ,xi+k]− f [xi, . . . ,xi+k−1]

xi+k− xi

Thus any divided difference with k variables involves two divided differences with
k−1 variables, so they can be computed recursively.

Theorem D.2.6. The coefficients ci of the interpolating polynomials in the Newton
basis are
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c j = f [x0, . . . ,x j]
Proof. ut

D.2.7 The kernel of the rectangular Vandermonde determinant

Take the transpose of the Vandermonde matrix V , and remove its last row. This is
the matrix we call D above. It is a n×(n+1) matrix of maximum rank: therefore its
nullspace has dimension 1. It is of some interest to find a generator in the nullspace.
it the case n = 2 it is easily seen to be(

1
(x0−x1)(x0−x2)

1
(x1−x0)(x1−x2)

1
(x2−x0)(x2−x1)

)
In the general case:

Proposition D.2.7. The i-th coordinate of a generator of the kernel can be written

1
(xi− x1) . . .(xi− xi−1)(xi− xi+1) . . .(xi− xn)

Find a direct proof.
The interesting fact about this generator is that all its coordinates are non-zero. I

want to show that this implies that the unique relation between the projected points
p0, p1, . . . , pn in Rn has all its coefficients non-zero. That is clear because in the
project one first applies D and later its transpose. The kernel and the linear combi-
nation of the projected points are given by the same vector.
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