Linear Algebra

Linear Transformations

Linear Algebra

- Preliminaries
- Definition and Examples
- Kernel and Range of a Linear Transformation
- Matrix of a Linear Transformation
- Vector Spaces of Matrices and Linear Transformations
- Similarity
- Homogeneous Coordinates

Linear Algebra

- Preliminaries
- Definition and Examples
- Kernel and Range of a Linear Transformation
- Matrix of a Linear Transformation
- Vector Spaces of Matrices and Linear Transformations
- Similarity
- Homogeneous Coordinates

Linear Algebra

- Have pursued the following generalizations

Vectors in $\mathrm{R}^{2} \& \mathrm{R}^{3} \Rightarrow$ Vector Spaces
Dot Product in $\mathrm{R}^{2} \& \mathrm{R}^{3} \Rightarrow$ Inner Product

- Will now look at another generalization

Matrices \Rightarrow Linear Transformations

Linear Algebra

- Preliminaries
- Definition and Examples
- Kernel and Range of a Linear Transformation
- Matrix of a Linear Transformation
- Vector Spaces of Matrices and Linear Transformations
- Similarity
- Homogeneous Coordinates

Linear Algebra

- Defn - Let V and W be vector spaces. A function $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ is called a linear transformation of V into W if
a) $\mathrm{L}(\mathbf{u}+\mathbf{v})=\mathrm{L}(\mathbf{u})+\mathrm{L}(\mathbf{v})$
b) $\mathrm{L}(c \mathbf{u})=c \mathrm{~L}(\mathbf{u})$ for $\mathbf{u} \in \mathrm{V}$ and real c
- If $\mathrm{V}=\mathrm{W}$, then L is called a linear operator
- Note: An $m \times n$ matrix takes a vector in R^{n} and maps it to a vector in R^{m}, so it can be viewed as a function from R^{n} to R^{m}

Linear Algebra

Example

To verify, let $\mathbf{u}=u_{2}, \mathbf{v}=v_{2}$ be arbitrary
$\mathrm{L}(\mathbf{u}+\mathbf{v})=\mathrm{L}\left(\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]+\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]\right)=\mathrm{L}\left(\left[\begin{array}{l}u_{1}+v_{1} \\ u_{2}+v_{2} \\ u_{3}+v_{3}\end{array}\right]\right)=\left[\begin{array}{l}u_{1}+v_{1} \\ u_{2}+v_{2}\end{array}\right]=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]+\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$
$\mathrm{L}(c \mathbf{u})=\mathrm{L}\left(c\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]\right)=\mathrm{L}\left(\left[\begin{array}{l}c u_{1} \\ c u_{2} \\ c u_{3}\end{array}\right]\right)=\left[\begin{array}{l}c u_{1} \\ c u_{2}\end{array}\right]=c\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]=\mathrm{L}(\mathbf{u})+\mathrm{L}(\mathbf{v})$

Linear Algebra

Example

- Let $K(x, y)$ be continuous in x and y for $0 \leq x \leq 1$ and $0 \leq y \leq 1$. Define L: $\mathrm{C}[0,1] \rightarrow \mathrm{C}[0,1]$ as

$$
\mathrm{L}(f)=\int_{0}^{1} K(x, y) f(y) d y
$$

From the properties of integrals, conditions (a) and (b) hold

Linear Algebra

Example

- Define a mapping $L: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ as L

L is a linear operator on R^{3}. If $r>1$, it is called a dilation. If $0<r<1$, it is called a contraction.
General term is scaling

Linear Algebra

Example

- Consider the vector space $\mathrm{C}^{\infty}[0,1]$ of infinitely differentiable functions defined on the interval [0,1]. Define a mapping L: $\mathrm{C}^{\infty}[0,1] \rightarrow \mathrm{C}^{\infty}[0,1]$ by

$$
\mathrm{L}(f)=f^{\prime}
$$

L is a linear operator on $\mathrm{C}^{\infty}[0,1]$

Linear Algebra

Example

- Define a mapping $L: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ as

$$
\mathrm{L}\left(\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]\right)=\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

L is a linear transformation. More generally, if \mathbf{A} is an $m \times n$ matrix, then $\mathrm{L}(\mathbf{x})=\mathbf{A x}$ is a linear transformation from R^{n} to R^{m}

Linear Algebra

Example

- Define a mapping $\mathrm{L}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ as $\mathrm{L}\left(\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]\right)=\left[\begin{array}{r}a_{1} \\ -a_{2}\end{array}\right]$

This is a linear operator, which is called a reflection in the x-axis

Linear Algebra

Example

- Define a mapping L: $\mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ as

$$
\mathrm{L}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{rr}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

L is a linear transformation. It is a counter-clockwise rotation by the angle ϕ

Linear Algebra

Example

$$
\left.\left.\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
a_{1}+1 \\
2 a_{2} \\
a_{3}
\end{array}\right]
$$

- Define a mapping $\mathrm{L}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ as $\mathrm{L}\left(\left[\begin{array}{l}v_{1} \\ a_{2} \\ a_{3}\end{array}\right]\right)=\left[\begin{array}{c}2 a_{2} \\ a_{3}\end{array}\right]$

$$
\text { Let } \mathbf{u}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right], \mathbf{v}=\left[\begin{array}{l}
v_{1} \\
v_{1}
\end{array}\right] \quad\left(\left\lfloor a_{3}^{2}\right\rfloor\right)\left[a_{3}^{2}\right]
$$

$$
\text { Let } \mathbf{u}=\left[\begin{array}{l}
u_{2} \\
u_{3}
\end{array}\right], \mathbf{v}=\left[\begin{array}{l}
v_{2} \\
v_{3}
\end{array}\right]
$$

Linear Algebra

Example

- Define a mapping $\mathrm{L}: \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}$ as $\mathrm{L}\left(\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]\right)=\left[\begin{array}{ll}a_{1}^{2} & 2 a_{2}\end{array}\right]$

Let $\mathbf{u}=\left[\begin{array}{ll}u_{1} & u_{2}\end{array}\right], \mathbf{v}=\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]$ be in R_{2}
$\mathrm{L}(\mathbf{u}+\mathbf{v})=\mathrm{L}\left(\left[\begin{array}{ll}\left(u_{1}+v_{1}\right) & \left(u_{2}+v_{2}\right)\end{array}\right]\right)=\left[\begin{array}{ll}\left(u_{1}+v_{1}\right)^{2} & 2\left(u_{2}+v_{2}\right)\end{array}\right]$
$\mathrm{L}(\mathbf{u})+\mathrm{L}(\mathbf{v})=\left[\begin{array}{ll}u_{1}^{2} & 2 u_{2}\end{array}\right]+\left[\begin{array}{ll}v_{1}^{2} & 2 v_{2}\end{array}\right]=\left[\begin{array}{ll}\left(u_{1}^{2}+v_{1}^{2}\right) & 2\left(u_{2}+v_{2}\right)\end{array}\right]$

$$
\mathrm{L}(\mathbf{u}+\mathbf{v}) \neq \mathrm{L}(\mathbf{u})+\mathrm{L}(\mathbf{v})
$$

So L is not a linear transformation

Linear Algebra

- Theorem - Let $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation of an n dimensional vector space V into a vector space W . Let $\mathrm{S}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$ be a basis for V . If \mathbf{v} is any vector in V , then $\mathrm{L}(\mathbf{v})$ is completely determined by the set of vectors $\left\{\mathrm{L}\left(\mathbf{u}_{1}\right), \mathrm{L}\left(\mathbf{u}_{2}\right), \ldots, \mathrm{L}\left(\mathbf{u}_{n}\right)\right\}$
- Proof - Since S is a basis for V, can express \mathbf{v} as $\mathbf{v}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+\cdots+a_{n} \mathbf{u}_{n}$. Then

$$
\begin{aligned}
\mathrm{L}(\mathbf{v}) & =\mathrm{L}\left(a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+\cdots+a_{n} \mathbf{u}_{n}\right) \\
& =\mathrm{L}\left(a_{1} \mathbf{u}_{1}\right)+\mathrm{L}\left(a_{2} \mathbf{u}_{2}\right)+\cdots+\mathrm{L}\left(a_{n} \mathbf{u}_{n}\right) \\
& =a_{1} \mathrm{~L}\left(\mathbf{u}_{1}\right)+a_{2} \mathrm{~L}\left(\mathbf{u}_{2}\right)+\cdots+a_{n} \mathrm{~L}\left(\mathbf{u}_{n}\right)
\end{aligned}
$$

So $\mathrm{L}(\mathbf{v})$ can be expressed as a combination of the vectors $\left\{\mathrm{L}\left(\mathbf{u}_{1}\right), \mathrm{L}\left(\mathbf{u}_{2}\right), \ldots, \mathrm{L}\left(\mathbf{u}_{n}\right)\right\}$

Linear Algebra

- Corollary - Let $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ and $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be linear transformations. Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for V . If $\mathrm{L}\left(\mathbf{v}_{i}\right)=\mathrm{T}\left(\mathbf{v}_{i}\right)$ for $1 \leq i \leq n$, then $\mathrm{L}(\mathbf{v}$ $)=T(\mathbf{v})$ for all $\mathbf{v} \in V$, i.e. L and T are identical linear transformations

Linear Algebra

Example

- Let $L: R^{4} \rightarrow R^{2}$ be a linear transformation and let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ be a basis for R^{4}

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{r}
0 \\
1 \\
-1 \\
2
\end{array}\right] \quad \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
2 \\
2 \\
1
\end{array}\right] \quad \mathbf{v}_{4}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

Let $\mathrm{L}\left(\mathbf{v}_{1}\right)=\left[\begin{array}{l}1 \\ 2\end{array}\right] \quad \mathrm{L}\left(\mathbf{v}_{2}\right)=\left[\begin{array}{l}0 \\ 3\end{array}\right] \quad \mathrm{L}\left(\mathbf{v}_{3}\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad \mathrm{L}\left(\mathbf{v}_{4}\right)=\left[\begin{array}{l}2 \\ 0\end{array}\right]$

Linear Algebra

Example (continued)

$$
\text { Let } \mathbf{v}=\left[\begin{array}{r}
3 \\
-5 \\
-5 \\
0
\end{array}\right]=2 \mathbf{v}_{1}+\mathbf{v}_{2}-3 \mathbf{v}_{3}+\mathbf{v}_{4}
$$

$$
\begin{aligned}
\text { So } \mathrm{L}(\mathbf{v}) & =2 \mathrm{~L}\left(\mathbf{v}_{1}\right)+\mathrm{L}\left(\mathbf{v}_{2}\right)-3 \mathrm{~L}\left(\mathbf{v}_{3}\right)+\mathrm{L}\left(\mathbf{v}_{4}\right) \\
& =2\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
0 \\
3
\end{array}\right]-3\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
4 \\
7
\end{array}\right]
\end{aligned}
$$

Linear Algebra

- Theorem - Let $\mathrm{L}: \mathrm{R}^{n} \rightarrow \mathrm{R}^{m}$ be a linear transformation and \mathbf{A} be the $m \times n$ matrix whose j th column is $\mathrm{L}\left(\mathbf{e}_{j}\right)$, where $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is the natural basis for R^{n}. Then for every $\mathbf{x} \in \mathrm{R}^{n}$, $\mathrm{L}(\mathbf{x})=\mathbf{A x}$. Moreover, \mathbf{A} is the only matrix with this property.
- Proof - Express \mathbf{x} in terms of the natural basis as $\mathbf{x}=\mathrm{x}_{1} \mathbf{e}_{1}+\mathrm{x}_{2} \mathbf{e}_{2}+\cdots+\mathrm{x}_{n} \mathbf{e}_{n}$. By the properties of the linear transformation and the definition of \mathbf{A}

$$
\begin{aligned}
\mathrm{L}(\mathbf{x}) & =\mathrm{L}\left(x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{n} \mathbf{e}_{n}\right) \\
& =x_{1} \mathrm{~L}\left(\mathbf{e}_{1}\right)+x_{2} \mathrm{~L}\left(\mathbf{e}_{2}\right)+\cdots+x_{n} \mathrm{~L}\left(\mathbf{e}_{n}\right) \\
& =\left[\begin{array}{llll}
\mathrm{L}\left(\mathbf{e}_{1}\right) & \mathrm{L}\left(\mathbf{e}_{2}\right) & \cdots & \mathrm{L}\left(\mathbf{e}_{n}\right)
\end{array}\right] \mathbf{x}=\mathbf{A x}
\end{aligned}
$$

Linear Algebra

- Proof (continued) -

To argue uniqueness, suppose that there is a matrix $\mathbf{B} \neq \mathbf{A}$ such that $\mathrm{L}(\mathbf{x})=\mathbf{B x}$ for every $\mathbf{x} \in \mathrm{R}^{n}$. Since $\mathbf{B} \neq \mathbf{A}, \mathbf{A}$ and \mathbf{B} must differ in at least one column, call it j. By the definition of \mathbf{A} and \mathbf{B}, $\mathrm{L}\left(\mathbf{e}_{j}\right)=\mathbf{A} \mathbf{e}_{j}=\mathbf{B} \mathbf{e}_{j} . \mathbf{A} \mathbf{e}_{j}$ is just the j th column of \mathbf{A}, $\mathbf{B e}_{j}$ is just the j th column of \mathbf{B}, so the j th columns of \mathbf{A} and \mathbf{B} are the same, which is a contradiction. Therefore \mathbf{A} is unique.

Linear Algebra

- Theorem - Let $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. Then
a) $L\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W}$
b) $\mathrm{L}(\mathbf{u}-\mathbf{v})=\mathrm{L}(\mathbf{u})-\mathrm{L}(\mathbf{v})$
- Proof -
a) $\mathbf{0}_{\mathrm{V}}=\mathbf{0}_{\mathrm{V}}+\mathbf{0}_{\mathrm{V}}$ then $\mathrm{L}\left(\mathbf{0}_{\mathrm{V}}\right)=\mathrm{L}\left(\mathbf{0}_{\mathrm{V}}\right)+\mathrm{L}\left(\mathbf{0}_{\mathrm{V}}\right)$, $\mathrm{L}\left(\mathbf{0}_{\mathrm{V}}\right)-\mathrm{L}\left(\mathbf{0}_{\mathrm{V}}\right)=\mathrm{L}\left(\mathbf{0}_{\mathrm{V}}\right)+\mathrm{L}\left(\mathbf{0}_{\mathrm{V}}\right)-\mathrm{L}\left(\mathbf{0}_{\mathrm{V}}\right)$. So $\mathbf{0}_{\mathrm{W}}=\mathrm{L}\left(\mathbf{0}_{\mathrm{V}}\right)$ b) $\mathrm{L}(\mathbf{u}-\mathbf{v})=\mathrm{L}(\mathbf{u}+(-1) \mathbf{v})=\mathrm{L}(\mathbf{u})+(-1) \mathrm{L}(\mathbf{v})$
$=\mathrm{L}(\mathbf{u})-\mathrm{L}(\mathbf{v})$

Linear Algebra

- Preliminaries
- Definition and Examples
- Kernel and Range of a Linear Transformation
- Matrix of a Linear Transformation
- Vector Spaces of Matrices and Linear Transformations
- Similarity
- Homogeneous Coordinates

Linear Algebra

- Defn - A linear transformation $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ is one to one if it is a one to one function, i.e. if $\mathbf{v}_{1} \neq \mathbf{v}_{2}$ implies $\mathrm{L}\left(\mathbf{v}_{1}\right) \neq \mathrm{L}\left(\mathbf{v}_{2}\right)$. (Equivalently, L is one to one if $\mathrm{L}\left(\mathbf{v}_{1}\right)=\mathrm{L}\left(\mathbf{v}_{2}\right)$ implies $\mathbf{v}_{1}=\mathbf{v}_{2}$.)
- Defn - Let $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. The kernel of L, ker L, is the subset of V consisting of all $\mathbf{v} \in \mathrm{V}$ such that $\mathrm{L}(\mathbf{v})=\mathbf{0}_{\mathrm{W}}$
- Comment - Since $\mathrm{L}\left(\mathbf{0}_{\mathrm{V}}\right)=\mathbf{0}_{\mathrm{W}}$, ker L is not empty

Linear Algebra

- Theorem - Let $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation
a) ker L is a subspace of V
b) L is one to one if and only if $\operatorname{ker} L=\left\{\mathbf{0}_{V}\right\}$
- Proof -
a) Use the theorem that tests for subspaces.

Specifically, if U is a nonempty subset of V, it is a subspace if $\mathbf{v}+\mathbf{w} \in \mathrm{U}$ and $c \mathbf{v} \in \mathrm{U}$ for all $\mathbf{v}, \mathbf{w} \in \mathrm{U}$ and all real c.
So let $\mathbf{v}, \mathbf{w} \in \operatorname{ker} \mathrm{L}$ be arbitrary. Then $\mathrm{L}(\mathbf{v})=\mathbf{0}_{\mathrm{W}}$ and $\mathrm{L}(\mathbf{w})=\mathbf{0}_{\mathrm{w}}$. Since L is linear,

$$
\mathrm{L}(\mathbf{v}+\mathbf{w})=\mathrm{L}(\mathbf{v})+\mathrm{L}(\mathbf{w})=\mathbf{0}_{\mathrm{W}}+\mathbf{0}_{\mathrm{W}}=\mathbf{0}_{\mathrm{W}}
$$

So $\mathbf{v}+\mathbf{w} \in \operatorname{ker} L$

Linear Algebra

- Proof (continued)

Let $\mathbf{v} \in \operatorname{ker} L$ and real c be arbitrary. Since L is a linear transformation. $\mathrm{L}(c \mathbf{v})=c \mathrm{~L}(\mathbf{v})=c \mathbf{0}_{\mathrm{W}}=\mathbf{0}_{\mathrm{W}}$ So $c \mathbf{v} \in \operatorname{ker} L$
b) $\Rightarrow \perp$ Let L be one to one. Let $\mathbf{v} \in$ ker L be arbitrary. Then $L(v)=\mathbf{0}_{W}$. Also, $L\left(\mathbf{0}_{\mathrm{V}}\right)=\mathbf{0}_{\mathrm{w}}$. Since L is one to one, $\mathrm{L}(\mathbf{v})=\mathrm{L}\left(\mathbf{0}_{\mathrm{V}}\right)$ implies $\mathbf{v}=\mathbf{0}_{\mathrm{V}}$ So $\operatorname{ker} \mathrm{L}=\left\{\mathbf{0}_{\mathrm{V}}\right\}$
$\Leftarrow\rfloor$ Let ker $\mathrm{L}=\left\{\mathbf{0}_{\mathrm{V}}\right\}$ and let $\mathbf{v}, \mathbf{w} \in \mathrm{V}$ be such that $\mathrm{L}(\mathbf{v})=\mathrm{L}(\mathbf{w})$. Need to show $\mathbf{v}=\mathbf{w}$. Since L is linear, $\mathbf{0}_{\mathrm{w}}=\mathrm{L}(\mathbf{v})-\mathrm{L}(\mathbf{w})=\mathrm{L}(\mathbf{v}-\mathbf{w})$. So $\mathbf{v}-\mathbf{w} \in \operatorname{ker} \mathrm{L}$ and $\mathbf{v}-\mathbf{w}=\mathbf{0}_{\mathrm{V}}$ or $\mathbf{v}=\mathbf{w}$. So L is one to one

Linear Algebra

- Note - Part (b) of the preceding theorem can be expressed as: L is one to one if and only if $\operatorname{dim} \operatorname{ker} \mathrm{L}=0$

Linear Algebra

- Corollary - Let L: V $\rightarrow \mathrm{W}$ be a linear transformation. If $\mathrm{L}(\mathbf{x})=\mathbf{b}$ and $\mathrm{L}(\mathbf{y})=\mathbf{b}$, then $\mathbf{x}-\mathbf{y}$ belongs to ker L , i.e. any two solutions to $\mathrm{L}(\mathbf{x})=\mathbf{b}$ differ by an element of the kernel of L .
- Proof - Suppose that $\mathrm{L}(\mathbf{x})=\mathbf{b}$ and $\mathrm{L}(\mathbf{y})=\mathbf{b}$. Then $\mathbf{0}_{\mathrm{W}}=\mathbf{b}-\mathbf{b}=\mathrm{L}(\mathbf{x})-\mathrm{L}(\mathbf{y})=\mathrm{L}(\mathbf{x}-\mathbf{y})$. Therefore, $\mathbf{x}-\mathbf{y}$ belongs to ker L.

Linear Algebra

Example

- Define L: $\mathrm{P}_{2} \rightarrow \mathrm{R}$ as

$$
\mathrm{L}\left(a t^{2}+b t+c\right)=\int_{0}^{1}\left(a t^{2}+b t+c\right) d t
$$

i) Find ker L
ii) Find dim ker L
iii) Determine if L is one to one

$$
\int_{0}^{1}\left(a t^{2}+b t+c\right) d t=\frac{1}{3} a+\frac{1}{2} b+c
$$

Linear Algebra

Example (continued)
i) $\int_{0}^{1}\left(a t^{2}+b t+c\right) d t=0 \Rightarrow \frac{1}{3} a+\frac{1}{2} b+c=0$

$$
\Rightarrow \quad c=-\frac{1}{3} a-\frac{1}{2} b
$$

So ker L consists of polynomials of the form

$$
a t^{2}+b t+\left(-\frac{1}{3} a-\frac{1}{2} b\right)
$$

Linear Algebra

Example (continued)
ii) $a t^{2}+b t+\left(-\frac{1}{3} a-\frac{1}{2} b\right)=a\left(t^{2}-\frac{1}{3}\right)+b\left(t-\frac{1}{2}\right)$

So the vectors $\left(t^{2}-1 / 3\right)$ and $(t-1 / 2)$ span ker L . Can argue that they are linearly independent. So the set $\left\{t^{2}-1 / 3, t-1 / 2\right\}$ is a basis for ker L .
iii) Since $\operatorname{dim} \operatorname{ker} L=2$, L is not one to one

Linear Algebra

- Defn - Let $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. The range of L , or image of V under L , denoted by range L , consists of all vectors $\mathbf{w} \in \mathrm{W}$ such that $\mathbf{w}=\mathrm{L}(\mathbf{v})$ for some $\mathbf{v} \in \mathrm{V}$
- Defn - The linear transformation $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ is onto if range $\mathrm{L}=\mathrm{W}$

Linear Algebra

- Theorem - Let $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. Then range L is a subspace of W .
- Proof - Let $\mathbf{w}_{1}, \mathbf{w}_{2} \in$ range L be arbitrary. Then \mathbf{w}_{1}
$=\mathrm{L}\left(\mathbf{v}_{1}\right)$ and $\mathbf{w}_{2}=\mathrm{L}\left(\mathbf{v}_{2}\right)$ for some $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathrm{~V} . \mathbf{w}_{1}+$ $\mathbf{w}_{2}=\mathrm{L}\left(\mathbf{v}_{1}\right)+\mathrm{L}\left(\mathbf{v}_{2}\right)=\mathrm{L}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)$. So $\quad \mathbf{w}_{1}+$ $\mathbf{w}_{2} \in$ range L
Let $\mathbf{w} \in$ range L be arbitrary. Then $\mathbf{w}=\mathrm{L}(\mathbf{v})$ for some $\mathbf{v} \in \mathrm{V}$. Let c be an arbitrary real number. $c \mathbf{w}=c \mathrm{~L}(\mathbf{v})=\mathrm{L}(c \mathbf{v})$. So $c \mathbf{w} \in$ range L .
\therefore range L is a subspace of W

Linear Algebra

Example

- Consider L: $\mathrm{P}_{2} \rightarrow \mathrm{R}$ defined as
$\mathrm{L}\left(a t^{2}+b t+c\right)=\int_{0}^{1}\left(a t^{2}+b t+c\right) d t=\frac{1}{3} a+\frac{1}{2} b+c$
For an arbitrary real number r, then $0 t^{2}+0 t+r$ maps to r. So L is onto and dim range $\mathrm{L}=1$
- Note that dim ker $L+\operatorname{dim}$ range $L=\operatorname{dim} P_{2}$

Linear Algebra

Example

- Let $\mathrm{L}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ be defined by

$$
\mathrm{L}\left(\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]\right)=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 2 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

a) Is L onto?
b) Find basis for range L
c) Find ker L
d) Is L one to one?

Linear Algebra

Example (continued)
a) Let $\mathbf{w}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \in \mathrm{R}^{3}$ be arbitrary. Find $\mathbf{v}=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right] \in \mathrm{R}^{3}$
such that $\mathrm{L}(\mathbf{v})=\mathbf{w}$
$\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 3\end{array}\right]\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]=\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \Rightarrow\left[\begin{array}{lll:l}1 & 0 & 1 & a \\ 1 & 1 & 2 & b \\ 2 & 1 & 3 & c\end{array}\right] \Rightarrow\left[\begin{array}{ccc:c}1 & 0 & 1 & a \\ 0 & 1 & 1 & b-a \\ 0 & 1 & 1 & c-2 a\end{array}\right]$
$\Rightarrow\left[\begin{array}{ccc:c}1 & 0 & 1 & a \\ 0 & 1 & 1 & b-a \\ 0 & 0 & 0 & c-b-a\end{array}\right] \quad \begin{aligned} & \text { Solution exists on } \\ & c-b-a=0 \\ & \text { So, L is not onto }\end{aligned}$

Linear Algebra

Example (continued)
b) Range of L is the span of $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right]\right\}$

Can show that the first two vectors are linearly independent and the third is the sum of the first two. Alternatively, could take the transpose of the matrix and put it into row echelon form to get a basis for the row space of the transpose. Either way, basis is

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\} \text { or }\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

Linear Algebra

Example (continued)
c) Kernel of L consists of all vectors $\mathbf{v}=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$ such that $\mathrm{L}(\mathbf{v})=\mathbf{0}$

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 2 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Rightarrow \begin{gathered}
a_{1}+a_{3}=0 \\
a_{1}+a_{2}+2 a_{3}=0 \\
2 a_{1}+a_{2}+3 a_{3}=0
\end{gathered}
$$

$$
r\left[\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right]
$$

Set $a_{3}=r$, then $a_{1}=-r$ and $a_{2}=-r$. So, all vectors in the kernel look like Basis for ker L is $\left\{\left[\begin{array}{l}-1 \\ -1 \\ 1\end{array}\right]\right\}$

Linear Algebra

Example (continued)
d) $\left.\begin{array}{l}\text { To see if } \mathrm{L} \text { is one to one, let } \mathbf{v}=\left[\begin{array}{l}v_{2} \\ \text { with } \mathbf{v} \neq \mathbf{w} . \text { Is it possible to have } \\ v_{3}\end{array}\right], \mathbf{w}=\left[\begin{array}{l}w_{2} \\ \mathrm{~L}(\mathbf{v})=\mathrm{L}(\mathbf{w}) \text { ? }\end{array}\right] \\ w_{3}\end{array}\right]$
$\mathrm{L}(\mathbf{v})=\mathrm{L}(\mathbf{w}) \Rightarrow \mathrm{L}(\mathbf{v})-\mathrm{L}(\mathbf{w})=\mathbf{0} \Rightarrow \mathrm{L}(\mathbf{v}-\mathbf{w})=\mathbf{0}$
So, $\mathbf{v}-\mathbf{w} \in \operatorname{ker} \mathrm{L}$ (null space of the matrix) and
$\mathbf{v}-\mathbf{w}=r\left[\begin{array}{r}-1 \\ -1 \\ 1\end{array}\right]$
Since it is possible to have $\mathrm{L}(\mathbf{v})=\mathrm{L}(\mathbf{w})$ when $\mathbf{v} \neq \mathbf{w}$,
L is not one to one

- Note that dim ker $\mathrm{L}+\operatorname{dim}$ range $\mathrm{L}=\operatorname{dim}$ domain L

Linear Algebra

- Theorem - If $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ is a linear transformation of an n-dimensional vector space V into a vector space W , then dim ker $\mathrm{L}+\operatorname{dim}$ range $\mathrm{L}=\operatorname{dim} \mathrm{V}$
- Proof - Let $k=\operatorname{dim}$ ker L. Then $0 \leq k \leq n$. Consider three cases: (1) $k=n$, (2) $1 \leq k<n$, and (3) $k=0$

Case 1-k=n. Since ker L is a subspace of V and $\operatorname{dim} \operatorname{ker} L=\operatorname{dim} V$, every basis for ker L is a basis for V. Since a vector space equals the span of its set of basis vectors, ker $\mathrm{L}=\mathrm{V}$. Now, $\mathrm{L}(\mathbf{v})=\mathbf{0}_{\mathrm{w}}$ for all $\mathbf{v} \in \mathrm{V}$. Consequently, range $\mathrm{L}=\left\{\mathbf{0}_{\mathrm{W}}\right\}$ and dim range $\mathrm{L}=0$

Linear Algebra

- Proof (continued)

Case 2-1 $\leq k<n$. Show that dim range $\mathrm{L}=n-k$. Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be a basis for ker L. This is a linearly independent set in V and can be extended to a basis $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_{n}\right\}$ for V . Strategy is to show that the set of vectors

$$
\mathrm{T}=\left\{\mathrm{L}\left(\mathbf{v}_{k+1}\right), \mathrm{L}\left(\mathbf{v}_{k+2}\right), \ldots, \mathrm{L}\left(\mathbf{v}_{n}\right)\right\}
$$

is a basis for range L .
Specifically, need to show
a) T spans range L
b) T is linearly independent

Linear Algebra

- Proof (continued)
a) Let $\mathbf{w} \in$ range L be arbitrary. There exists a $\mathbf{v} \in \mathrm{V}$ such that $\mathrm{L}(\mathbf{v})=\mathbf{w}$. Express \mathbf{v} in terms of the basis $\mathrm{S} . \mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{n} \mathbf{v}_{n}$. Then

$$
\begin{aligned}
& \mathrm{L}(\mathbf{v})=\mathrm{L}\left(\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\cdots+\alpha_{k} \mathbf{v}_{k}+\alpha_{k+1} \mathbf{v}_{k+1}+\cdots+\alpha_{n} \mathbf{v}_{n}\right) \\
& =\mathrm{L}\left(\alpha_{1} \mathbf{v}_{1}\right)+\mathrm{L}\left(\alpha_{2} \mathbf{v}_{2}\right)+\cdots+\mathrm{L}\left(\alpha_{k} \mathbf{v}_{k}\right)+\mathrm{L}\left(\alpha_{k+1} \mathbf{v}_{k+1}\right)+\cdots+\mathrm{L}\left(\alpha_{n} \mathbf{v}_{n}\right) \\
& =\underbrace{\alpha_{1} \mathrm{~L}\left(\mathbf{v}_{1}\right)+\alpha_{2} \mathrm{~L}\left(\mathbf{v}_{2}\right)+\cdots+\alpha_{k} \mathrm{~L}\left(\mathbf{v}_{k}\right)+\alpha_{k+1} \mathrm{~L}\left(\mathbf{v}_{k+1}\right)+\cdots+\alpha_{n} \mathrm{~L}\left(\mathbf{v}_{n}\right)}_{=0}
\end{aligned}
$$

since $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k} \in \operatorname{ker} \mathrm{~L}$
So $\mathbf{w}=\alpha_{k+1} \mathrm{~L}\left(\mathbf{v}_{k+1}\right)+\alpha_{k+2} \mathrm{~L}\left(\mathbf{v}_{k+2}\right)+\cdots+\alpha_{n} \mathrm{~L}\left(\mathbf{v}_{n}\right)$ and T spans range L

Linear Algebra

- Proof (continued)
b) To show that T is linearly independent, consider
$\mathbf{0}_{\mathrm{W}}=a_{k+1} \mathrm{~L}\left(\mathbf{v}_{k+1}\right)+a_{k+2} \mathrm{~L}\left(\mathbf{v}_{k+2}\right)+\cdots+a_{n} \mathrm{~L}\left(\mathbf{v}_{n}\right)$

$$
\begin{aligned}
& =\mathrm{L}\left(a_{k+1} \mathbf{v}_{k+1}\right)+\mathrm{L}\left(a_{k+2} \mathbf{v}_{k+2}\right)+\cdots+\mathrm{L}\left(a_{n} \mathbf{v}_{n}\right) \\
& =\mathrm{L}\left(a_{k+1} \mathbf{v}_{k+1}+a_{k+2} \mathbf{v}_{k+2}+\cdots+a_{n} \mathbf{v}_{n}\right)
\end{aligned}
$$

So $a_{k+1} \mathbf{v}_{k+1}+a_{k+2} \mathbf{v}_{k+2}+\cdots+a_{n} \mathbf{v}_{n} \in$ ker L and can be written as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ $a_{k+1} \mathbf{v}_{k+1}+\cdots+a_{n} \mathbf{v}_{n}=b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}+\cdots+b_{k} \mathbf{v}_{k}$ $\mathbf{0}=b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}+\cdots+b_{k} \mathbf{v}_{k}-a_{k+1} \mathbf{v}_{k+1}-\cdots-a_{n} \mathbf{v}_{n}$
Since S is linearly independent, the a and b values are all zero. So T is linearly independent

Linear Algebra

- Proof (continued)

Since T is a basis for range L , dim range $\mathrm{L}=n-k$ So $\operatorname{dim} \mathrm{V}=\operatorname{dim}$ ker $\mathrm{L}+\operatorname{dim}$ range L
Case 3-k=0. Since dim ker $\mathrm{L}=0$, ker L has no basis. Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for V. Let $\mathrm{T}=\left\{\mathrm{L}\left(\mathbf{v}_{1}\right), \mathrm{L}\left(\mathbf{v}_{2}\right), \ldots, \mathrm{L}\left(\mathbf{v}_{n}\right)\right\}$. By an argument similar to Case $2, \mathrm{~T}$ is a basis for range L . So, dim range $\mathrm{L}=n=\operatorname{dim} \mathrm{V}$

Linear Algebra

- Corollary - Let $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ and let $\operatorname{dim} \mathrm{V}=\operatorname{dim} \mathrm{W}$. Then
a) If L is one to one, then it is onto
b) If L is onto, then it is one to one
- Defn - A linear transformation $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ is invertible if there exists a function $\mathrm{L}^{-1}: \mathrm{W} \rightarrow \mathrm{V}$ such that $\mathrm{L}^{0} \mathrm{~L}^{-1}=\mathrm{I}_{\mathrm{W}}$ and $\mathrm{L}^{-10} \mathrm{~L}=\mathrm{I}_{\mathrm{V}}$

Linear Algebra

- Theorem - A linear transformation $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ is invertible if and only if L is one to one and onto. Also, L^{-1} is a linear transformation and $\left(\mathrm{L}^{-1}\right)^{-1}=\mathrm{L}$
- Proof $-\Rightarrow$ Let L be invertible. First show that L is one to one. Suppose that $L\left(\mathbf{v}_{1}\right)=L\left(\mathbf{v}_{2}\right)$ for some $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathrm{~V}$. Then $\mathrm{L}^{-1}\left(\mathrm{~L}\left(\mathbf{v}_{1}\right)\right)=\mathrm{L}^{-1}\left(\mathrm{~L}\left(\mathbf{v}_{2}\right)\right)$, implying $\mathbf{v}_{1}=\mathbf{v}_{2}$. So, L is one to one. Now show L is onto. Let $\mathbf{w} \in \mathrm{W}$ be arbitrary. L is invertible, so L^{-1} exists. $\mathbf{v}=$ $\mathrm{L}^{-1}(\mathbf{w}) \in \mathrm{V}$. Then $\mathrm{L}(\mathbf{v})=\mathbf{w}$ and L is onto.
$\Leftarrow\rfloor$ Let L be one to one and onto. By function theory, the inverse function L^{-1} exists.

Linear Algebra

- Proof (continued)

Now show that L^{-1} is a linear transformation.
a) Let $\mathbf{w}_{1}, \mathbf{w}_{2} \in \mathrm{~W}$ be arbitrary. Show that

$$
\mathrm{L}^{-1}\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right)=\mathrm{L}^{-1}\left(\mathbf{w}_{1}\right)+\mathrm{L}^{-1}\left(\mathbf{w}_{2}\right) .
$$

Since L is onto, there exist $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathrm{~V}$ such that $\mathbf{w}_{1}=\mathrm{L}\left(\mathbf{v}_{1}\right)$ and $\mathbf{w}_{2}=\mathrm{L}\left(\mathbf{v}_{2}\right)$. Need to show that $L^{-1}\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right)=\mathbf{v}_{1}+\mathbf{v}_{2}$.
Since L is linear,

$$
\mathrm{L}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=\mathrm{L}\left(\mathbf{v}_{1}\right)+\mathrm{L}\left(\mathbf{v}_{2}\right)=\mathbf{w}_{1}+\mathbf{w}_{2} .
$$

So $L^{-1}\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right)=\mathbf{v}_{1}+\mathbf{v}_{2}$

Linear Algebra

- Proof (continued)
b) Let $\mathbf{w} \in \mathrm{W}$ and $c \neq 0$ be an arbitrary real. Show that $\mathrm{L}^{-1}(c \mathbf{w})=c \mathrm{~L}^{-1}(\mathbf{w})$. Since $c \mathbf{w} \in \mathrm{~W}$, there exists $\mathbf{v} \in \mathrm{V}$ such that $\mathrm{L}(\mathbf{v})=c \mathbf{w}$. Since L is linear, $\mathrm{L}((1 / c) \mathbf{v})=\mathbf{w}$. Then

$$
\begin{aligned}
& \mathrm{L}^{-1}(\mathbf{w})=(1 / c) \mathbf{v}=(1 / c) \mathrm{L}^{-1}(c \mathbf{w}) \\
& \text { So } \mathrm{L}^{-1}(c \mathbf{w})=c \mathrm{~L}^{-1}(\mathbf{w})
\end{aligned}
$$

Thus L^{-1} is a linear transformation.

Linear Algebra

- Theorem - A linear transformation $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ is one to one if and only if the image of every linearly independent set of vectors in V is a linearly independent set of vectors in W
- Proof - Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be a linearly independent set of vectors in V and let $\mathrm{T}=\left\{\mathrm{L}\left(\mathbf{v}_{1}\right), \mathrm{L}\left(\mathbf{v}_{2}\right), \ldots, \mathrm{L}\left(\mathbf{v}_{k}\right)\right\}$
$\Rightarrow\rfloor$ Let L be one to one. Consider $a_{1} \mathrm{~L}\left(\mathbf{v}_{1}\right)+a_{2} \mathrm{~L}\left(\mathbf{v}_{2}\right)+\cdots+a_{k} \mathrm{~L}\left(\mathbf{v}_{k}\right)=\mathbf{0}_{\mathrm{W}}$
Need to argue that $a_{1}=a_{2}=\cdots=a_{k}=0$

Linear Algebra

- Proof (continued)
$a_{1} \mathrm{~L}\left(\mathbf{v}_{1}\right)+a_{2} \mathrm{~L}\left(\mathbf{v}_{2}\right)+\cdots+a_{k} \mathrm{~L}\left(\mathbf{v}_{k}\right)=$
$\mathrm{L}\left(a_{1} \mathbf{v}_{1}\right)+\mathrm{L}\left(a_{2} \mathbf{v}_{2}\right)+\cdots+\mathrm{L}\left(a_{k} \mathbf{v}_{k}\right)=$
$\mathrm{L}\left(a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{k} \mathbf{v}_{k}\right) \quad=\mathbf{0}_{\mathrm{W}}$
Since L is one to one $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{k} \mathbf{v}_{k}=\mathbf{0}_{\mathrm{V}}$. Since S is linearly independent, $a_{1}=a_{2}=\cdots=a_{k}=0$. So T is linearly independent $\Leftarrow\rfloor$ Let the image of every set of linearly independent vectors in V be an independent set of vectors in W. Let $\mathbf{u}, \mathbf{v} \in \mathrm{V}$ with $\mathbf{u} \neq \mathbf{v}$. Need to show that $\mathrm{L}(\mathbf{u}) \neq \mathrm{L}(\mathbf{v})$. Suppose $\mathrm{L}(\mathbf{u})=\mathrm{L}(\mathbf{v})$.

Linear Algebra

- Proof (continued)

Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$ be a basis for V. Can express \mathbf{u} and \mathbf{v} as
$\mathbf{u}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+\cdots+a_{n} \mathbf{u}_{n}$
$\mathbf{v}=b_{1} \mathbf{u}_{1}+b_{2} \mathbf{u}_{2}+\cdots+b_{n} \mathbf{u}_{n}$
$\mathrm{L}(\mathbf{u})=a_{1} \mathrm{~L}\left(\mathbf{u}_{1}\right)+a_{2} \mathrm{~L}\left(\mathbf{u}_{2}\right)+\cdots+a_{n} \mathrm{~L}\left(\mathbf{u}_{n}\right)$
$\mathrm{L}(\mathbf{v})=b_{1} \mathrm{~L}\left(\mathbf{u}_{1}\right)+b_{2} \mathrm{~L}\left(\mathbf{u}_{2}\right)+\cdots+b_{n} \mathrm{~L}\left(\mathbf{u}_{n}\right)$
$\mathbf{0}_{\mathrm{W}}=\mathrm{L}(\mathbf{u})-\mathrm{L}(\mathbf{v})$
$=\left(a_{1}-b_{1}\right) \mathrm{L}\left(\mathbf{u}_{1}\right)+\left(a_{2}-b_{2}\right) \mathrm{L}\left(\mathbf{u}_{2}\right)+\cdots+\left(a_{n}-b_{n}\right) \mathrm{L}\left(\mathbf{u}_{n}\right)$
By hypothesis, T is linearly independent. So $a_{1}=b_{1}$, $a_{2}=b_{2}, \ldots, a_{n}=b_{n}$. So, $\mathbf{u}=\mathbf{v}$, which is a contradiction. Thus $\mathrm{L}(\mathbf{u}) \neq \mathrm{L}(\mathbf{v})$.

Linear Algebra

- Preliminaries
- Definition and Examples
- Kernel and Range of a Linear Transformation
- Matrix of a Linear Transformation
- Vector Spaces of Matrices and Linear Transformations
- Similarity
- Homogeneous Coordinates

Linear Algebra

- Theorem - Let $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation of an n-dimensional vector space V into an m-dimensional vector space $\mathrm{W}(n \neq 0$, $m \neq 0)$ and let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be an ordered basis for V and $\mathrm{T}=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}\right\}$ be an ordered basis for W . Then the $m \times n$ matrix \mathbf{A} whose j th column is the coordinate vector $\left[\mathrm{L}\left(\mathbf{v}_{j}\right)\right]_{\mathrm{T}}$ of $\mathrm{L}\left(\mathbf{v}_{j}\right)$ with respect to T has the following property: If $\mathbf{y}=\mathrm{L}(\mathbf{x})$ for some $\mathbf{x} \in \mathrm{V}$, then $[\mathbf{y}]_{\mathrm{T}}=\mathbf{A}[\mathbf{x}]_{\mathrm{S}}$. Also, \mathbf{A} is unique.

Linear Algebra

- Proof - Consider $\mathrm{L}\left(\mathbf{v}_{j}\right)$ for $1 \leq j \leq n . \mathrm{L}\left(\mathbf{v}_{j}\right) \in \mathrm{W}$, so it can be expanded in terms of T

$$
\begin{gathered}
\text { can be expanded in terms of T } \\
\mathrm{L}\left(\mathbf{v}_{j}\right)=c_{1 j} \mathbf{w}_{1}+c_{2 j} \mathbf{w}_{2}+\cdots+c_{m j} \mathbf{w}_{m} \Rightarrow\left[\mathrm{~L}\left(\mathbf{v}_{j}\right)\right]_{\mathrm{T}}=\left[\begin{array}{c}
c_{1 j} \\
c_{2 j} \\
\vdots \\
c_{m j}
\end{array}\right]
\end{gathered}
$$

Define A as the matrix whose j th column is $\left[\mathrm{L}\left(\mathbf{v}_{j}\right)\right]_{\mathrm{T}}$ Let $\mathbf{x} \in \mathrm{V}$ be arbitrary and let $\mathbf{y}=\mathrm{L}(\mathbf{x})$.

$$
[\mathbf{x}]_{\mathrm{S}}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \quad[\mathbf{y}]_{\mathrm{T}}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Linear Algebra

- Proof (continued)

$$
\begin{aligned}
\mathrm{L}(\mathbf{x}) & =\mathrm{L}\left(a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{n} \mathbf{v}_{n}\right) \\
& =a_{1} \mathrm{~L}\left(\mathbf{v}_{1}\right)+a_{2} \mathrm{~L}\left(\mathbf{v}_{2}\right)+\cdots+a_{n} \mathrm{~L}\left(\mathbf{v}_{n}\right) \\
\mathbf{y}= & b_{1} \mathbf{w}_{1}+b_{2} \mathbf{w}_{2}+\cdots+b_{m} \mathbf{w}_{m}=\mathrm{L}(\mathbf{x})
\end{aligned}
$$

Linear Algebra

- Proof (continued)

$$
\begin{array}{r}
\mathrm{L}(\mathbf{x})=a_{1}\left(c_{11} \mathbf{w}_{1}+c_{21} \mathbf{w}_{2}+\cdots+c_{m 1} \mathbf{w}_{m}\right)+ \\
a_{2}\left(c_{12} \mathbf{w}_{1}+c_{22} \mathbf{w}_{2}+\cdots+c_{m 2} \mathbf{w}_{m}\right)+ \\
\vdots \\
a_{n}\left(c_{1 n} \mathbf{w}_{1}+c_{2 n} \mathbf{w}_{2}+\cdots+c_{m n} \mathbf{w}_{m}\right) \\
=\left(a_{1} c_{11}+a_{2} c_{12}+\cdots+a_{n} c_{1 n}\right) \mathbf{w}_{1}+ \\
\left(a_{1} c_{21}+a_{2} c_{22}+\cdots+a_{n} c_{2 n}\right) \mathbf{w}_{2}+ \\
\vdots \\
\left(a_{1} c_{m 1}+a_{2} c_{m 2}+\cdots+a_{n} c_{m n}\right) \mathbf{w}_{m}
\end{array}
$$

Linear Algebra

- Proof (continued)

Comparing coefficients of the \mathbf{w} vectors gives

$$
\begin{gathered}
b_{1}=a_{1} c_{11}+a_{2} c_{12}+\cdots+a_{n} c_{1 n} \\
b_{2}=a_{1} c_{21}+a_{2} c_{22}+\cdots+a_{n} c_{2 n} \\
\vdots \\
b_{m}=a_{1} c_{m 1}+a_{2} c_{m 2}+\cdots+a_{n} c_{m n}
\end{gathered}
$$

Linear Algebra

- Proof (continued)

In matrix form

$$
\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]=\left[\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{m 1} & c_{m 2} & \cdots & c_{m n}
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

or $[\mathbf{y}]_{T}=\mathbf{A}[\mathbf{x}]_{S}$. So the effect of L may be accomplished by letting \mathbf{A} operate on the coordinate vector of \mathbf{x}

Linear Algebra

- Proof (continued)

To show uniqueness, suppose there is a second matrix $\mathbf{A}^{*}=\left[c_{i j}^{*}\right]$, which has the same properties as \mathbf{A} but $\mathbf{A}^{*} \neq \mathbf{A}$. Since $\mathbf{A}^{*} \neq \mathbf{A}$ some of the elements of \mathbf{A}^{*} are different from the elements of \mathbf{A}. So, suppose some elements in column k are different.

$$
\begin{aligned}
& {\left[\mathrm{L}\left(\mathbf{v}_{k}\right)\right]_{\mathrm{T}}=\mathbf{A}\left[\mathbf{v}_{k}\right]_{\mathrm{S}} \text { and }\left[\mathrm{L}\left(\mathbf{v}_{k}\right)\right]_{\mathrm{T}}=\mathbf{A}^{*}\left[\mathbf{v}_{k}\right]_{\mathrm{S}} . \text { So } \mathbf{A}} \\
& {\left[\mathbf{v}_{k}\right]_{\mathrm{S}}=\mathbf{A}^{*}\left[\mathbf{v}_{k}\right]_{\mathrm{S}}}
\end{aligned}
$$

Linear Algebra

- Proof (continued)
$\left[\mathbf{v}_{k}\right]_{\mathrm{S}}=\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right] \leftarrow k$ th position
$\mathbf{A}\left[\mathbf{v}_{k}\right]_{\mathrm{S}}$ is just the k th column of \mathbf{A}
$\mathbf{A}^{*}\left[\mathbf{v}_{k}\right]_{\mathrm{S}}$ is just the k th column of \mathbf{A}^{*}
Since $\mathbf{A}\left[\mathbf{v}_{k}\right]_{\mathrm{S}}=\mathbf{A}^{*}\left[\mathbf{v}_{k}\right]_{\mathrm{S}}, \mathbf{A}=\mathbf{A}^{*}$ and \mathbf{A} is unique

Linear Algebra

Comments

- Matrix \mathbf{A} is called the representation of L with respect to the ordered bases S and T
- If $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{V}$, can have two bases, S and T , and get a representation of L with respect to S and T . If $S=T$, then L has a representation with respect to S

Linear Algebra

Example

- Let L: $\mathrm{P}_{2} \rightarrow \mathrm{P}_{1}$ be defined by $\mathrm{L}(\mathrm{p}(t))=\mathrm{p}^{\prime}(t)$ and let $\mathrm{S}=\left\{t^{2}, t, 1\right\}$ and $\mathrm{T}=\{t, 1\}$ be bases for P_{2} and P_{1} respectively.
a) Find the matrix \mathbf{A} associated with L
b) If $\mathrm{p}(t)=5 t^{2}-3 t+2$, compute $\mathrm{L}(\mathrm{p}(t))$ using \mathbf{A}

Linear Algebra

Example (continued)

$$
\begin{aligned}
& \text { a) Let } \mathbf{v}_{1}=t^{2}, \mathbf{v}_{2}=t, \mathbf{v}_{3}=1, \mathbf{w}_{1}=t, \mathbf{w}_{2}=1 \\
& \mathrm{~L}\left(\mathbf{v}_{1}\right)=2 t=2 \mathbf{w}_{1} \quad \Rightarrow\left[\mathrm{~L}\left(\mathbf{v}_{1}\right)\right]_{\mathrm{T}}=\left[\begin{array}{l}
2 \\
0
\end{array}\right] \\
& \mathrm{L}\left(\mathbf{v}_{2}\right)=1=\mathbf{w}_{2} \quad \Rightarrow\left[\mathrm{~L}\left(\mathbf{v}_{2}\right)\right]_{\mathrm{T}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \mathrm{L}\left(\mathbf{v}_{3}\right)=\mathbf{0}=0 \mathbf{w}_{1}+0 \mathbf{w}_{2} \Rightarrow\left[\mathrm{~L}\left(\mathbf{v}_{3}\right)\right]_{\mathrm{T}}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \mathbf{A}=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Linear Algebra

Example (continued)

$$
\text { b) } \mathrm{L}(\mathrm{p}(t))=10 t-3
$$

$$
\begin{aligned}
& {[\mathrm{p}(t)]_{\mathrm{S}}=\left[\begin{array}{r}
5 \\
-3 \\
2
\end{array}\right] \quad \mathbf{A}[\mathrm{p}(t)]_{\mathrm{S}}=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{r}
5 \\
-3 \\
2
\end{array}\right]=\left[\begin{array}{c}
10 \\
-3
\end{array}\right]} \\
& \Rightarrow \mathrm{L}(\mathrm{p}(t))=10 \mathbf{w}_{1}+(-3) \mathbf{w}_{2}=10 t+(-3) 1=10 t-3
\end{aligned}
$$

Linear Algebra

Example

$$
\begin{array}{r}
\text { Let } S=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \quad \mathrm{T}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
3
\end{array}\right]\right\} \\
\mathbf{v}_{1} \quad \mathbf{v}_{2} \quad \mathbf{v}_{3}
\end{array}
$$

Linear Algebra

Example (continued)
$\mathrm{L}\left(\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 3\end{array}\right]=3\left[\begin{array}{l}1 \\ 2\end{array}\right]-\left[\begin{array}{l}1 \\ 3\end{array}\right] \Rightarrow\left[\mathrm{L}\left(\mathbf{v}_{1}\right)\right]_{\mathrm{T}}=\left[\begin{array}{r}3 \\ -1\end{array}\right]$
$\mathrm{L}\left(\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 5\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]+\left[\begin{array}{l}1 \\ 3\end{array}\right] \Rightarrow\left[\mathrm{L}\left(\mathbf{v}_{2}\right)\right]_{\mathrm{T}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
$\mathrm{L}\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 3\end{array}\right]=0\left[\begin{array}{l}1 \\ 2\end{array}\right]+\left[\begin{array}{l}1 \\ 3\end{array}\right] \Rightarrow\left[\mathrm{L}\left(\mathbf{v}_{3}\right)\right]_{\mathrm{T}}=\left[\begin{array}{l}0 \\ 1\end{array}\right]_{\mathbf{A}=\left[\begin{array}{rrr}3 & 1 & 0 \\ -1 & 1 & 1\end{array}\right]}$

Linear Algebra

- Preliminaries
- Definition and Examples
- Kernel and Range of a Linear Transformation
- Matrix of a Linear Transformation
- Vector Spaces of Matrices and Linear Transformations
- Similarity
- Homogeneous Coordinates

Linear Algebra

Comments

- Have shown that the set of $m \times n$ matrices ${ }_{m} \mathrm{R}_{n}$ is a vector space
- Want to show that the set U of all linear transformations from V to W forms a vector space
- Need to define the operations for the vector space
a) sum of two linear transformations
b) scalar times a linear transformation

Linear Algebra

- Defn - Let $\mathrm{L}_{1}: \mathrm{V} \rightarrow \mathrm{W}$ and $\mathrm{L}_{2}: \mathrm{V} \rightarrow \mathrm{W}$. Define the sum of L_{1} and $L_{2}, L=L_{1} \oplus L_{2}$ as follows

$$
\mathrm{L}(\mathbf{x})=\mathrm{L}_{1}(\mathbf{x})+\mathrm{L}_{2}(\mathbf{x}) \quad \forall \mathbf{x} \in \mathrm{V}
$$

Note: This is just the definition of the sum of two functions

- Defn - Let $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation and let c be real. Define the scalar multiple of c and $\mathrm{L}, c \circ \mathrm{~L}$, as

$$
(c \circ \mathrm{~L})(\mathbf{x})=c \mathrm{~L}(\mathbf{x}) \quad \forall \mathbf{x} \in \mathrm{V}
$$

Linear Algebra

- Verification of vector space properties for U, the set of all linear transformations from V to W with the operations \oplus and \circ, is straightforward except for
a) zero vector - define $\mathbf{0}(\mathbf{x})=\mathbf{0}_{\mathrm{W}} \quad \forall \mathbf{x} \in \mathrm{V}$
b) additive inverse - Let $L \in U$, define $-L$ as $(-1) \circ L$
- Since U is a vector space, what is its dimension? Answer question via a basis

Linear Algebra

- Defn - Let $S=\left\{\mathrm{L}_{1}, \mathrm{~L}_{2}, \ldots, \mathrm{~L}_{k}\right\}$ be a set of linear transformations. S is linearly dependent if there exist scalars $a_{1}, a_{2}, \ldots, a_{k}$, not all zero, such that

$$
\left(a_{1} \circ \mathbf{L}_{1}\right) \oplus\left(a_{2} \circ \mathbf{L}_{2}\right) \oplus \cdots \oplus\left(a_{k} \circ \mathbf{L}_{k}\right)=\mathbf{0}
$$

where $\mathbf{0}$ is the zero linear transformation

Linear Algebra

Example

- Consider linear transformations $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}$ from R_{2} to R_{3} defined as
$\mathrm{L}_{1}\left(\left[x_{1}, x_{2}\right]\right)=\left[x_{1}+x_{2}, 2 x_{1}, x_{2}\right]$
$\mathrm{L}_{2}\left(\left[x_{1}, x_{2}\right]\right)=\left[x_{2}-x_{1}, 2 x_{1}+x_{2}, x_{1}\right]$
$\mathrm{L}_{3}\left(\left[x_{1}, x_{2}\right]\right)=\left[3 x_{1},-2 x_{2}, x_{1}+2 x_{2}\right]$
Determine if $\mathrm{S}=\left\{\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}\right\}$ is linearly dependent
Suppose $\left(a_{1} \circ \mathrm{~L}_{1}\right) \oplus\left(a_{2} \circ \mathrm{~L}_{2}\right) \oplus\left(a_{3} \circ \mathrm{~L}_{3}\right)=\mathbf{0}$ where a_{1}, a_{2}, a_{3} are real. This equation means

$$
a_{1} \mathrm{~L}_{1}(\mathbf{x})+a_{2} \mathrm{~L}_{2}(\mathbf{x})+a_{3} \mathrm{~L}_{3}(\mathbf{x})=\mathbf{0}_{\mathrm{R}_{3}} \quad \forall \mathbf{x} \in \mathrm{R}_{2}, \mathbf{x}=\left[x_{1}, x_{2}\right]
$$

Linear Algebra

Example (continued)

$$
\begin{aligned}
\mathbf{0}_{\mathrm{R}_{3}}= & {[0,0,0] } \\
= & a_{1} \mathrm{~L}_{1}(\mathbf{x})+a_{2} \mathrm{~L}_{2}(\mathbf{x})+a_{3} \mathrm{~L}_{3}(\mathbf{x}) \\
= & a_{1}\left[x_{1}+x_{2}, 2 x_{1}, x_{2}\right]+a_{2}\left[x_{2}-x_{1}, 2 x_{1}+x_{2}, x_{1}\right]+ \\
& a_{3}\left[3 x_{1},-2 x_{2}, x_{1}+2 x_{2}\right] \\
= & {\left[a_{1}\left(x_{1}+x_{2}\right)+a_{2}\left(x_{2}-x_{1}\right)+a_{3}\left(3 x_{1}\right),\right.} \\
& a_{1}\left(2 x_{1}\right)+a_{2}\left(2 x_{1}+x_{2}\right)+a_{3}\left(-2 x_{2}\right), \\
& \left.a_{1} x_{2}+a_{2} x_{1}+a_{3}\left(x_{1}+2 x_{2}\right)\right]
\end{aligned}
$$

Linear Algebra

Example (continued)

$$
\begin{array}{r}
a_{1}\left(x_{1}+x_{2}\right)+a_{2}\left(x_{2}-x_{1}\right)+3 a_{3} x_{1}=0 \\
2 a_{1} x_{1}+a_{2}\left(2 x_{1}+x_{2}\right)-2 a_{3} x_{2}=0 \\
a_{1} x_{2}+a_{2} x_{1}+a_{3}\left(x_{1}+2 x_{2}\right)=0
\end{array}
$$

This must be true $\forall x_{1}, x_{2}$. Pick particular values $x_{1}=1, x_{2}=0$

$$
\begin{aligned}
a_{1}-a_{2}+3 a_{3} & =0 \\
2 a_{1}+2 a_{2} & =0 \\
a_{2}+a_{3} & =0
\end{aligned}
$$

The only solution is

$$
a_{1}=0, a_{2}=0, a_{3}=0 . \text { So }
$$

$$
S=\left\{L_{1}, L_{2}, L_{3}\right\} \text { is }
$$

linearly independent

Linear Algebra

- Theorem - Let U be the set of all linear transformations of V into W where $\operatorname{dim} \mathrm{V}=n$ and $\operatorname{dim} \mathrm{W}=m, n \neq 0, m \neq 0$, and operations in U are \oplus and $\circ . \mathrm{U}$ is isomorphic to the vector space ${ }_{m} \mathrm{R}_{n}$ of all $m \times n$ matrices
- Proof - Strategy is to pick a basis for V and for W and map L to its matrix representation with respect to these bases. This gives a mapping from U to ${ }_{m} \mathrm{R}_{n}$. Need to show that the mapping

1) is one to one

2) is onto
3) preserves vector operations

Linear Algebra

- Proof (continued)

Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for V and let $\mathrm{T}=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}\right\}$ be a basis for W. Define a mapping M: U $\rightarrow{ }_{m} \mathrm{R}_{n}$ as $\mathrm{M}(\mathrm{L})=$ matrix representing L with respect to S and T .

1) Show M is one to one. Let $L_{1}, L_{2} \in U$ with $L_{1} \neq L_{2}$.

Need to show $M\left(L_{1}\right) \neq M\left(L_{2}\right)$. Since $L_{1} \neq L_{2}$,
$\exists \mathbf{v} \in \mathrm{V}$ such that $\mathrm{L}_{1}(\mathbf{v}) \neq \mathrm{L}_{2}(\mathbf{v}) . \mathbf{v}$ can be expressed as a linear combination of elements of S. So, must have $\mathrm{L}_{1}\left(\mathbf{v}_{j}\right) \neq \mathrm{L}_{2}\left(\mathbf{v}_{j}\right)$ for some $1 \leq j \leq n$. The j th column of $\mathrm{M}\left(\mathrm{L}_{1}\right)$ is $\left[\mathrm{L}_{1}\left(\mathbf{v}_{j}\right)\right]_{\mathrm{T}}$. The j th column of $\mathrm{M}\left(\mathrm{L}_{2}\right)$ is $\left[\mathrm{L}_{2}\left(\mathbf{v}_{j}\right)\right]_{\mathrm{T}}$. Since $\mathrm{L}_{1}\left(\mathbf{v}_{j}\right) \neq \mathrm{L}_{2}\left(\mathbf{v}_{j}\right)$, $\left[\mathrm{L}_{1}\left(\mathbf{v}_{j}\right)\right]_{\mathrm{T}} \neq\left[\mathrm{L}_{2}\left(\mathbf{v}_{j}\right)\right]_{\mathrm{T}}$. So $\mathrm{M}\left(\mathrm{L}_{1}\right) \neq \mathrm{M}\left(\mathrm{L}_{2}\right)$.

Linear Algebra

- Proof (continued)

2) Show M is onto. Let $\mathbf{A}=\left[a_{i j}\right]$ be an arbitrary $m \times n$ matrix. Define a linear transformation
$\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ by $\mathrm{L}\left(\mathbf{v}_{i}\right)=\sum_{k=1}^{m} a_{k i} \mathbf{w}_{k}$ for $1 \leq i \leq n$
Note: it is sufficient to define L on S since for any $\mathbf{x} \in \mathrm{V}, \mathbf{x}=c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}$, then

$$
\mathrm{L}(\mathbf{x})=\sum_{i=1}^{n} c_{i} \mathrm{~L}\left(\mathbf{v}_{i}\right)
$$

L is a linear transformation and the matrix of L with respect to bases S and T is \mathbf{A}. So M is onto

Linear Algebra

- Proof (continued)

3) Show that M preserves vector addition and scalar multiplication. Let $\mathrm{L}_{1}, \mathrm{~L}_{2} \in \mathrm{U}$ be arbitrary. Let $\mathrm{M}\left(\mathrm{L}_{1}\right)=\mathbf{A}=\left[a_{i j}\right]$ and $\mathrm{M}\left(\mathrm{L}_{2}\right)=\mathbf{B}=\left[b_{i j}\right]$. First show that $\mathrm{M}\left(\mathrm{L}_{1} \oplus \mathrm{~L}_{2}\right)=\mathbf{A}+\mathbf{B}$. The j th column of $\mathrm{M}\left(\mathrm{L}_{1} \oplus \mathrm{~L}_{2}\right)$ is

$$
\begin{aligned}
{\left[\left(\mathrm{L}_{1} \oplus \mathrm{~L}_{2}\right)\left(\mathbf{v}_{j}\right)\right]_{\mathrm{T}} } & =\left[\mathrm{L}_{1}\left(\mathbf{v}_{j}\right)+\mathrm{L}_{2}\left(\mathbf{v}_{j}\right)\right]_{\mathrm{T}} \\
& =\left[\mathrm{L}_{1}\left(\mathbf{v}_{j}\right)\right]_{\mathrm{T}}+\left[\mathrm{L}_{2}\left(\mathbf{v}_{j}\right)\right]_{\mathrm{T}}
\end{aligned}
$$

So j th column of $\mathrm{M}\left(\mathrm{L}_{1} \oplus \mathrm{~L}_{2}\right)$ is sum of j th columns of $\mathrm{M}\left(\mathrm{L}_{1}\right)=\mathbf{A}$ and $\mathrm{M}\left(\mathrm{L}_{2}\right)=\mathbf{B}$. So $\mathrm{M}\left(\mathrm{L}_{1} \oplus \mathrm{~L}_{2}\right)=\mathbf{A}+\mathbf{B}$

Linear Algebra

- Proof (continued)

Consider scalar multiplication. Let $\mathrm{M}(\mathrm{L})=\mathbf{A}$ and real c be arbitrary. The j th column of $\mathrm{M}(c \circ \mathrm{~L})$ is

$$
\left[(c \circ \mathrm{~L})\left(\mathbf{v}_{j}\right)\right]_{\mathrm{T}}=\left[c \mathrm{~L}\left(\mathbf{v}_{j}\right)\right]_{\mathrm{T}}=c\left[\mathrm{~L}\left(\mathbf{v}_{j}\right)\right]_{\mathrm{T}}
$$

So $\mathrm{M}(c \circ \mathrm{~L})=c \mathbf{A}$
$\therefore \mathrm{U}$ and ${ }_{m} \mathrm{R}_{n}$ are isomorphic

Linear Algebra

- Corollary - $\operatorname{dim} \mathrm{U}=m n$
- Since linear transformations are just functions, can form composition of those functions. Following theorem shows that matrix of composition is simply related to matrices of individual transformations

Linear Algebra

- Theorem - Let $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ be vector spaces with $\operatorname{dim} \mathrm{V}_{1}=n$, $\operatorname{dim} \mathrm{V}_{2}=m$, $\operatorname{dim} \mathrm{V}_{3}=p$. Let $\mathrm{L}_{1}: \mathrm{V}_{1} \rightarrow \mathrm{~V}_{2}, \mathrm{~L}_{2}: \mathrm{V}_{2} \rightarrow \mathrm{~V}_{3}$ be linear transformations. Let $\mathrm{P}, \mathrm{S}, \mathrm{T}$ be bases for $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ respectively. Then
$M\left(L_{2} \circ L_{1}\right)=M\left(L_{2}\right) W$ (her $)$ is the
composition of functions

Linear Algebra

- Proof - Let $\mathrm{M}\left(\mathrm{L}_{1}\right)=\mathbf{A}$, with respect to bases P and S. Let $M\left(L_{2}\right)=\mathbf{B}$, with respect to bases S and T. Let $\mathbf{x} \in \mathrm{V}_{1}$ be arbitrary. Then $\left[\mathrm{L}_{1}(\mathbf{x})\right]_{\mathrm{S}}=\mathbf{A}[\mathbf{x}]_{\mathrm{P}}$. For any $\mathbf{y} \in \mathrm{V}_{2},\left[\mathrm{~L}_{2}(\mathbf{y})\right]_{\mathrm{T}}=\mathbf{B}[\mathbf{y}]_{\mathrm{S}}$
$\left[\left(\mathrm{L}_{2} \circ \mathrm{~L}_{1}\right)(\mathbf{x})\right]_{\mathrm{T}}=\left[\mathrm{L}_{2}\left(\mathrm{~L}_{1}(\mathbf{x})\right)\right]_{\mathrm{T}}$ $=\mathbf{B}\left[\mathrm{L}_{1}(\mathbf{x})\right]_{\mathrm{S}}=\mathbf{B}\left(\mathbf{A}[\mathbf{x}]_{\mathrm{P}}\right)=(\mathbf{B A})[\mathbf{x}]_{\mathrm{P}}$

Have proved that matrix of a linear transformation with respect to a particular basis is unique. So
$\mathrm{M}\left(\mathrm{L}_{2} \circ \mathrm{~L}_{1}\right)=\mathbf{A B}=\mathrm{M}\left(\mathrm{L}_{2}\right) \mathrm{M}\left(\mathrm{L}_{1}\right)$

Linear Algebra

- Preliminaries
- Definition and Examples
- Kernel and Range of a Linear Transformation
- Matrix of a Linear Transformation
- Vector Spaces of Matrices and Linear Transformations
- Similarity
- Homogeneous Coordinates

Comments

- Let $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation, where $\operatorname{dim} \mathrm{V}=n \neq 0$ and $\operatorname{dim} \mathrm{W}=m \neq 0$ and the spaces have ordered bases $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ for V and $T=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}\right\}$ for W. Have seen how to construct a matrix \mathbf{A} that represents L with respect to these bases. Specifically, the j th column of \mathbf{A} is $\left[\mathrm{L}\left(\mathbf{v}_{j}\right)\right]_{\mathrm{T}}$
- Also know that picking a different basis in either V or W gives a different matrix
- Since all of these matrices represent L, they ought to be related, i.e. we ought to be able to get one matrix from another

Linear Algebra

- Theorem - Let $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation, where $\operatorname{dim} \mathrm{V}=n \neq 0$ and $\operatorname{dim} \mathrm{W}=m \neq 0$. Let $\mathrm{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ and $\mathrm{S}^{\prime}=\left\{\mathbf{v}_{1}^{\prime}, \mathbf{v}_{2}^{\prime}, \ldots, \mathbf{v}_{n}^{\prime}\right\}$ be ordered bases for V with transition matrix \mathbf{P} from S^{\prime} to S . Let $\mathrm{T}=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}\right\}$ and $\mathrm{T}^{\prime}=\left\{\mathbf{w}_{1}^{\prime}, \mathbf{w}_{2}^{\prime}, \ldots, \mathbf{w}_{m}^{\prime}\right\}$ be ordered bases for W with transition matrix \mathbf{Q} from T^{\prime} to T . If \mathbf{A} is the representation of L with respect to S and T, then $\mathbf{Q}^{-1} \mathbf{A P}$ is the representation of L with respect to S^{\prime} and T^{\prime}

Linear Algebra

Similarity

- Proof - Recall the definition of the transition matrices:

$$
\begin{array}{ll}
{[\mathbf{x}]_{\mathrm{S}}=\mathbf{P}[\mathbf{x}]_{\mathrm{S}^{\prime}}} & \forall \mathbf{x} \in \mathrm{V} \\
{[\mathbf{y}]_{\mathrm{T}}=\mathbf{Q}[\mathbf{y}]_{\mathrm{T}^{\prime}}} & \forall \mathbf{y} \in \mathrm{W}
\end{array}
$$

j th column of \mathbf{P} is coordinate vector $\left[\mathbf{v}_{j}^{\prime}\right]_{\mathrm{S}}$ of $\mathbf{v}^{\prime}{ }_{j}$ with respect to S
j th column of \mathbf{Q} is coordinate vector $\left[\mathbf{w}_{j}^{\prime}\right]_{\mathrm{T}}$ of \mathbf{w}_{j}^{\prime} with respect to T

Linear Algebra

- Proof (continued)

Let \mathbf{A} be the representation of L with respect to S and T , then $[\mathrm{L}(\mathbf{x})]_{\mathrm{T}}=\mathbf{A}[\mathbf{x}]_{\mathrm{S}}$.
Also,

$$
\begin{aligned}
& {[\mathrm{L}(\mathbf{x})]_{\mathrm{T}}=\mathbf{Q}[\mathrm{L}(\mathbf{x})]_{\mathrm{T}^{\prime}}, \quad[\mathbf{x}]_{\mathrm{S}}=\mathbf{P}[\mathbf{x}]_{\mathrm{S}^{\prime}} } \\
\Rightarrow & \mathbf{Q}[\mathrm{L}(\mathbf{x})]_{\mathrm{T}^{\prime}}=\mathbf{A P}[\mathbf{x}]_{\mathrm{S}^{\prime}} \Rightarrow[\mathrm{L}(\mathbf{x})]_{\mathrm{T}^{\prime}}=\mathbf{Q}^{-1} \mathbf{A} \mathbf{P}[\mathbf{x}]_{\mathrm{S}^{\prime}}
\end{aligned}
$$

So $\mathbf{Q}^{-1} \mathbf{A P}$ is the representation of L with respect to S^{\prime} and T^{\prime}

Linear Algebra

Similarity
Comments

- Let $\mathbf{B}=\mathbf{Q}^{-1} \mathbf{A P}$. Can calculate the effect of L on $\mathbf{x} \in \mathrm{V}$ two ways in terms of S^{\prime} and T^{\prime}

- Note that \mathbf{A} and \mathbf{B} are equivalent matrices

Linear Algebra

Example

- Define $\mathrm{L}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{2}$ by $\mathrm{L}\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{l}x_{1}+x_{3} \\ x_{2}-x_{3}\end{array}\right]$
$\begin{aligned} \text { Bases for } \mathrm{R}^{3} \mathrm{~S}\end{aligned}=\left\{\begin{array}{l}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\} \\ \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3}\end{array}\right.$
Bases for $\mathrm{R}^{2} \mathrm{~T}=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\} \quad \mathrm{T}^{\prime}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}$

$$
\begin{array}{llll}
\mathbf{w}_{1} & \mathbf{w}_{2} & \mathbf{w}_{1}^{\prime} & \mathbf{w}_{2}^{\prime}
\end{array}
$$

Linear Algebra

Example (continued)

$$
\mathbf{A}=\left[\left[\mathrm{L}\left(\mathbf{v}_{1}\right)\right]_{\mathrm{T}}\left[\begin{array}{lll}
\left.\mathrm{L}\left(\mathbf{v}_{2}\right)\right]_{\mathrm{T}} & {\left[\mathrm{~L}\left(\mathbf{v}_{3}\right)\right]_{\mathrm{T}}}
\end{array}\right]\right.
$$

$\mathrm{L}\left(\mathbf{v}_{1}\right)=\left[\begin{array}{l}1 \\ 0\end{array}\right] \Rightarrow\left[\mathrm{L}\left(\mathbf{v}_{1}\right)\right]_{\mathrm{T}}=\left[\begin{array}{l}1 \\ 0\end{array}\right] \quad$ Since T is the natural basis
$\mathrm{L}\left(\mathbf{v}_{2}\right)=\left[\begin{array}{l}0 \\ 1\end{array}\right] \Rightarrow\left[\mathrm{L}\left(\mathbf{v}_{2}\right)\right]_{\mathrm{T}}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \quad$ Since T is the natural basis
$\mathrm{L}\left(\mathbf{v}_{3}\right)=\left[\begin{array}{r}1 \\ -1\end{array}\right] \Rightarrow\left[\mathrm{L}\left(\mathbf{v}_{3}\right)\right]_{\mathrm{T}}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ Since T is the natural basis
$\mathbf{A}=\left[\begin{array}{rrr}1 & 0 & 1 \\ 0 & 1 & -1\end{array}\right]$

Linear Algebra

Example (continued)
Calculate representation of L with respect to S^{\prime} and T^{\prime} two ways
Calculate \mathbf{P} - Columns of \mathbf{P} are $\left[\mathbf{v}_{1}^{\prime}\right]_{\mathrm{S}}, \quad\left[\mathbf{v}_{2}^{\prime}\right]_{\mathrm{S}}, \quad\left[\mathbf{v}_{3}^{\prime}\right]_{\mathrm{S}}$
Since S is a natural basis $\mathbf{P}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$
Calculate \mathbf{Q} - Columns of \mathbf{Q} are $\left[\mathbf{w}_{1}^{\prime}\right]_{\mathrm{T}}, \quad\left[\mathbf{w}_{2}^{\prime}\right]_{\mathrm{T}}$
Since T is a natural basis $\mathbf{Q}=\left[\begin{array}{ll}1 & 1 \\ 1 & 3\end{array}\right]$

Linear Algebra

Similarity
Example (continued)

$$
\mathbf{Q}^{-1}=\left[\begin{array}{rr}
3 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right]
$$

$$
\mathbf{B}=\mathbf{Q}^{-1} \mathbf{A} \mathbf{P}=\left[\begin{array}{rr}
3 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{rrr}
1 & 3 / 2 & 2 \\
0 & -1 / 2 & -1
\end{array}\right]
$$

Linear Algebra

Example (continued)
Compute \mathbf{B} directly
Columns of \mathbf{B} are $\left[\mathrm{L}\left(\mathbf{v}_{1}^{\prime}\right)\right]_{\mathrm{T}^{\prime}}, \quad\left[\mathrm{L}\left(\mathbf{v}_{2}^{\prime}\right)\right]_{\mathrm{T}^{\prime}}, \quad\left[\mathrm{L}\left(\mathbf{v}_{3}^{\prime}\right)\right]_{\mathrm{T}^{\prime}}$
$\mathrm{L}\left(\mathbf{v}_{1}^{\prime}\right)=\left[\begin{array}{l}1 \\ 1\end{array}\right]=1\left[\begin{array}{l}1 \\ 1\end{array}\right]+0\left[\begin{array}{l}1 \\ 3\end{array}\right] \quad\left[\mathrm{L}\left(\mathbf{v}_{1}^{\prime}\right)\right]_{\mathrm{T}^{\prime}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
$\mathrm{L}\left(\mathbf{v}_{2}^{\prime}\right)=\left[\begin{array}{l}1 \\ 0\end{array}\right]=\frac{3}{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}1 \\ 3\end{array}\right]\left[\mathrm{L}\left(\mathbf{v}_{2}^{\prime}\right)\right]_{\mathrm{T}^{\prime}}=\left[\begin{array}{r}3 / 2 \\ -1 / 2\end{array}\right]$
$\mathrm{L}\left(\mathbf{v}_{3}^{\prime}\right)=\left[\begin{array}{r}1 \\ -1\end{array}\right]=2\left[\begin{array}{l}1 \\ 1\end{array}\right]-1\left[\begin{array}{l}1 \\ 3\end{array}\right]\left[\mathrm{L}\left(\mathbf{v}_{3}^{\prime}\right)\right]_{\mathrm{T}^{\prime}}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$
$\mathbf{B}=\left[\begin{array}{rrr}1 & 3 / 2 & 2 \\ 0 & -1 / 2 & -1\end{array}\right]$

Linear Algebra

- Corollary - Let $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear operator on an n-dimensional vector space V . Let $\mathrm{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ and $\mathrm{S}^{\prime}=\left\{\mathbf{v}_{1}^{\prime}, \mathbf{v}_{2}^{\prime}, \ldots, \mathbf{v}_{n}^{\prime}\right\}$ be ordered bases for V , with \mathbf{P} being the transition matrix from S^{\prime} to S. If \mathbf{A} is the representation of L with respect to S, then $\mathbf{P}^{-1} \mathbf{A P}$ is the representation of L with respect to S^{\prime}

Linear Algebra

- Defn - The rank of $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$, notation rank L , is the rank of any matrix representing L
- Note: rank L is well defined since any two matrices representing L are equivalent and thus have the same rank

Linear Algebra

- Theorem - Let $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. Then rank $\mathrm{L}=\operatorname{dim}$ range L
- Proof - Let $\operatorname{dim} \mathrm{V}=n, \operatorname{dim} \mathrm{~W}=m$ and dim range $\mathrm{L}=r$. We have proved a theorem that says $\operatorname{dim} \operatorname{ker} \mathrm{L}+\operatorname{dim}$ range $\mathrm{L}=n$. Then $\operatorname{dim} \operatorname{ker} \mathrm{L}=n-r$. Let $\mathbf{v}_{r+1}, \mathbf{v}_{\mathrm{r}+2}, \ldots, \mathbf{v}_{n}$ be a basis for ker L. This can be extended to a basis $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}, \mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}\right\}$ for V.
The vectors $\mathbf{w}_{1}=\mathrm{L}\left(\mathbf{v}_{1}\right), \mathbf{w}_{2}=\mathrm{L}\left(\mathbf{v}_{2}\right), \ldots, \mathbf{w}_{r}=\mathrm{L}\left(\mathbf{v}_{r}\right)$ span range L . Since there are $r=\operatorname{dim}$ range L of them, they form a basis for range L . This can be extended to a basis $\mathrm{T}=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{r}, \mathbf{w}_{r+1}, \ldots, \mathbf{w}_{m}\right\}$ for W .

Linear Algebra

Similarity

- Proof (continued)

Now let \mathbf{A} be the matrix that represents L with respect to S and T . The columns of \mathbf{A} are
$\left[\mathrm{L}\left(\mathbf{v}_{i}\right)\right]_{\mathrm{T}}=\left[\mathbf{w}_{i}\right]=\mathbf{e}_{i} \quad i=1,2, \ldots, r$
$\left[\mathrm{L}\left(\mathbf{v}_{i}\right)\right]_{\mathrm{T}}=\left[\mathbf{0}_{\mathrm{W}}\right]_{\mathrm{T}}=\mathbf{0}_{\mathrm{R}^{m}} \quad i=r+1, r+2, \ldots, n$
So $\mathbf{A}=\left[\begin{array}{ll}\mathbf{I}_{r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right]$
Thus rank $\mathrm{L}=\operatorname{rank} \mathbf{A}=r=\operatorname{dim}$ range L

Linear Algebra

- Defn - If \mathbf{A} and \mathbf{B} are are $n \times n$ matrices, then \mathbf{B} is similar to A if there is a nonsingular matrix \mathbf{P} such that $\mathbf{B}=\mathbf{P}^{-1} \mathbf{A P}$

Linear Algebra

- Theorem - Let V be any n-dimensional vector space and let \mathbf{A} and \mathbf{B} be any $n \times n$ matrices. Then \mathbf{A} and \mathbf{B} are similar if and only if \mathbf{A} and \mathbf{B} represent the same linear transformation $\mathrm{L}: \mathrm{V} \rightarrow \mathrm{V}$ with respect to two ordered bases for V .
- Proof $-\Rightarrow\rfloor$ Let \mathbf{A} and \mathbf{B} be similar. Then there is a nonsingular matrix $\mathbf{P}=\left[p_{i j}\right]$ such that $\mathbf{B}=\mathbf{P}^{-1} \mathbf{A P}$. Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be an ordered basis for V and define a linear transformation on V by $[\mathrm{L}(\mathbf{x})]_{\mathrm{S}}=\mathbf{A}[\mathbf{x}]_{\mathrm{S}}$ for all \mathbf{x} in V .
Now define a new basis for V by taking appropriate linear combinations of vectors in S .

Linear Algebra

- Proof (continued) -

Define a set of vectors $\mathrm{T}=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}\right\}$ as $\mathbf{w}_{j}=\sum_{i=1}^{n} p_{i j} \mathbf{v}_{i}, \quad 1 \leq j \leq n$, and show that T is a basis for V by showing that it is linearly independent and appealing to an earlier theorem that says that a set of n linearly independent vectors in an n-dimensional space is a basis.
Consider

$$
\begin{aligned}
\mathbf{0} & =a_{1} \mathbf{w}_{1}+a_{2} \mathbf{w}_{2}+\cdots+a_{n} \mathbf{w}_{n} \\
& =a_{1} \sum_{i=1}^{n} p_{i 1} \mathbf{v}_{i}+a_{2} \sum_{i=1}^{n} p_{i 2} \mathbf{v}_{i}+\cdots+a_{n} \sum_{i=1}^{n} p_{i n} \mathbf{v}_{i} \\
& =\left(\sum_{j=1}^{n} p_{1 j} a_{j}\right) \mathbf{v}_{1}+\left(\sum_{j=1}^{n} p_{2 j} a_{j}\right) \mathbf{v}_{2}+\cdots+\left(\sum_{j=1}^{n} p_{n j} a_{j}\right) \mathbf{v}_{n}
\end{aligned}
$$

Linear Algebra

- Proof (continued) -

Since S is linearly independent $\left(\sum_{j=1}^{n} p_{i j} a_{j}\right)=0, \quad 1 \leq i \leq n$ or equivalently $\mathbf{P a}=\mathbf{0}$, where $\mathbf{a}=\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]^{\mathrm{T}}$. Since \mathbf{P} is nonsingular, the only solution is $\mathbf{a}=\mathbf{0}$. Thus T is linearly independent and is a basis for V . The definition of T, $\mathbf{w}_{j}=\sum_{i=1}^{n} p_{i j} \mathbf{v}_{i}, \quad 1 \leq j \leq n i m p l i e s$ that \mathbf{P} is the transition matrix from T to S , i.e. $[\mathbf{y}]_{\mathrm{S}}=$ $\mathbf{P}[\mathbf{y}]_{T}$. Then, recalling the definition of L,

$$
\begin{aligned}
& {[\mathrm{L}(\mathbf{x})]_{\mathrm{S}}=\mathbf{P}[\mathrm{L}(\mathbf{x})]_{\mathrm{T}} \rightarrow \mathbf{A}[\mathbf{x}]_{\mathrm{S}}=\mathbf{P}[\mathrm{L}(\mathbf{x})]_{\mathrm{T}} \rightarrow} \\
& {[\mathrm{~L}(\mathbf{x})]_{\mathrm{T}}=\mathbf{P}^{-1} \mathbf{A}[\mathbf{x}]_{\mathrm{S}}=\mathbf{P}^{-1} \mathbf{A P}[\mathbf{x}]_{\mathrm{T}}}
\end{aligned}
$$

So, the matrix of L with respect to T is $\mathbf{P}^{-1} \mathbf{A P}=\mathbf{B}$

Linear Algebra

- Proof (continued) -
$\Leftarrow\rfloor$ By the preceding corollary, any two matrix representations of a linear transformation are similar.

QED

Linear Algebra

- Theorem - If \mathbf{A} and \mathbf{B} are similar $n \times n$ matrices, then $\operatorname{rank} \mathbf{A}=\operatorname{rank} \mathbf{B}$.
- Proof - By the preceding theorem, \mathbf{A} and \mathbf{B} represent the same linear transformation $\mathrm{L}: \mathrm{R}^{n} \rightarrow \mathrm{R}^{n}$ with respect to different bases. Since the rank of L is defined uniquely as the rank of any matrix representing it, $\operatorname{rank} \mathbf{A}=\operatorname{rank} \mathrm{L}=\operatorname{rank} \mathbf{B}$.

Linear Algebra

- Preliminaries
- Definition and Examples
- Kernel and Range of a Linear Transformation
- Matrix of a Linear Transformation
- Vector Spaces of Matrices and Linear Transformations
- Similarity
- Homogeneous Coordinates

Linear Algebra

- A commonly used technique in computer graphics is the homogeneous coordinate transformation, which combines a sequence of translations, scalings and rotations into a single matrix which is then applied to the vertices of a geometric object.
- This allows a compact representation of the combined operations that is easy to apply.
- Also, the individual transformations can be implemented in hardware in a high-end workstation to permit the rotation of an object on the screen by means of turning a knob.

Linear Algebra

Motivating Example

- Rotate the cube about an axis parallel to the z axis passing through the point $(1,2,3)$, by angles of $\Delta \theta, 2 \Delta \theta, 3 \Delta \theta$, etc. from its original position (i.e. successive rotations by angles of $\Delta \theta$). After each rotation, display the rotated cube to give the visual effect of a
 spinning cube.

y Vertices at ($1 \pm 1,2 \pm 1,3 \pm 1$). Cube's faces are parallel to coordinate planes

Linear Algebra

Basic Coordinate Operations

- The application of any of these operations to a cube is accomplished by applying the operation to each vertex of the cube.
- Translation: The translation of (x, y, z) by the translation vector $\left(t_{x}, t_{y}, t_{z}\right)$ yields the point whose coordinates are $\left(x+t_{x}, y+t_{y}, z+t_{z}\right)$, i.e. (x, y, z) is moved to $\left(x+t_{x}, y+t_{y}, z+t_{z}\right)$.
- Scaling: The scaling of (x, y, z) by the scaling vector $\left(s_{x}, s_{y}, s_{z}\right)$, with $s_{x}>0, s_{y}>0$ and $s_{z}>0$, yields the point with coordinates ($x s_{x}, y s_{y}, z s_{z}$), i.e. the point's coordinates are scaled by these amounts.

Linear Algebra

Basic Coordinate Operations

- Rotation: Simple rotations are done about the x-axis, y-axis and z-axis.
- x-axis: If (x, y, z) is rotated about the x-axis by an angle θ to a new point $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$, the coordinates are related by

$$
\begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=y \cos \theta-z \sin \theta \\
& z^{\prime}=y \sin \theta+z \cos \theta
\end{aligned}
$$

- y-axis: If (x, y, z) is rotated about the y-axis by an angle θ to a new point $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$, the coordinates are related by

$$
\begin{aligned}
& x^{\prime}=z \sin \theta+x \cos \theta \\
& y^{\prime}=y \\
& z^{\prime}=z \cos \theta-x \sin \theta
\end{aligned}
$$

Linear Algebra

Basic Coordinate Operations

- z-axis: If (x, y, z) is rotated about the x-axis by an angle θ to a new point $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$, the coordinates are related by

$$
\begin{aligned}
x^{\prime} & =x \cos \theta-y \sin \theta \\
y^{\prime} & =x \sin \theta+y \cos \theta \\
z^{\prime} & =z
\end{aligned}
$$

Linear Algebra

- In the motivating example, rotation of the cube by $\Delta \theta$ about a line through ($1,2,3$) parallel to the z-axis can be expressed in terms of the coordinate operations defined on the previous slides
(1) Translate each vertex by $(-1,-2,-3)$ to place the center of the cube at the origin and cause the axis of rotation to coincide with the z-axis.
(2) Rotate the cube about the z-axis by an angle of $\Delta \theta$
(3) Translate the rotated cube by ($1,2,3$) to put it back in position.
- The three steps above will perform the rotation and successive applications of the process will perform subsequent rotations.

Linear Algebra

Matrix Procedure

- Represent the point (x, y, z) as a 4×1 matrix $\mathbf{X}=$
- Translation: Translation by $\left(t_{x}, t_{y}, t_{z}\right)$ can be accomplished as

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t_{x} \\
y+t_{y} \\
z+t_{z} \\
1
\end{array}\right] \Rightarrow \mathbf{T}\left(t_{x}, t_{y}, t_{z}\right) \mathbf{X}=\mathbf{X}^{\prime}
$$

Linear Algebra

Matrix Procedure

- Scaling: Scaling by $\left(s_{x}, s_{y}, s_{z}\right)$ can be accomplished as

$$
\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x s_{x} \\
y s_{y} \\
z s_{z} \\
1
\end{array}\right] \Rightarrow \mathbf{S}\left(s_{x}, s_{y}, s_{z}\right) \mathbf{X}=\mathbf{X}^{\prime}
$$

Linear Algebra

Matrix Procedure

- Rotation: Rotation about the x-axis by θ can be accomplished as

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \cos \theta-z \sin \theta \\
y \sin \theta+z \cos \theta \\
1
\end{array}\right]} \\
& \Rightarrow \mathbf{R}_{x}(\theta) \mathbf{X}=\mathbf{X}^{\prime}
\end{aligned}
$$

Linear Algebra

Matrix Procedure

- Rotation: Rotation about the y-axis by θ can be accomplished as

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \cos \theta+z \sin \theta \\
y \\
-x \sin \theta+z \cos \theta \\
1
\end{array}\right]} \\
& \Rightarrow \mathbf{R}_{y}(\theta) \mathbf{X}=\mathbf{X}^{\prime}
\end{aligned}
$$

Linear Algebra

Matrix Procedure

- Rotation: Rotation about the z-axis by θ can be accomplished as

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \cos \theta-y \sin \theta \\
x \sin \theta+y \cos \theta \\
z \\
1
\end{array}\right]} \\
& \Rightarrow \mathbf{R}_{z}(\theta) \mathbf{X}=\mathbf{X}^{\prime}
\end{aligned}
$$

Linear Algebra

Matrix Procedure

- Inverses of the matrices are easy to compute

$$
\begin{aligned}
& \mathbf{T}^{-1}\left(t_{x}, t_{y}, t_{z}\right)=\mathbf{T}\left(-t_{x},-t_{y},-t_{z}\right) \\
& \mathbf{S}^{-1}\left(s_{x}, s_{y}, s_{z}\right)=\mathbf{S}\left(1 / s_{x}, 1 / s_{y}, 1 / s_{z}\right) \\
& \mathbf{R}_{x}^{-1}(\theta)=\mathbf{R}_{x}(-\theta) \\
& \mathbf{R}_{y}^{-1}(\theta)=\mathbf{R}_{y}(-\theta) \\
& \mathbf{R}_{z}^{-1}(\theta)=\mathbf{R}_{z}(-\theta)
\end{aligned}
$$

Linear Algebra

Matrix Procedure

- Note that any sequence of coordinate operations may be performed by multiplying by the appropriate matrices
- The sequence of operations may be inverted by multiplying by the inverse matrices in reverse order

Linear Algebra

Motivating Example (continued)

- The operations in the example can be accomplished as
(1) Translate by $(-1,-2,-3) \rightarrow \mathbf{T}(-1,-2,-3)$
(2) Rotate about the z-axis by $\Delta \theta \rightarrow \mathbf{R}_{z}(\Delta \theta)$
(3) Translate by (1, 2, 3) $\rightarrow \mathbf{T}(1,2,3)$

Linear Algebra

Motivating Example (continued)

- Define $\mathbf{M}(\Delta \theta)$ as
$\mathbf{M}(\Delta \theta)=\mathbf{T}(1,2,3) \mathbf{R}_{z}(\Delta \theta) \mathbf{T}(-1,-2,-3)$
$=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}\cos (\Delta \theta) & -\sin (\Delta \theta) & 0 & 0 \\ \sin (\Delta \theta) & \cos (\Delta \theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1\end{array}\right]$

Linear Algebra

Motivating Example (continued)

$$
=\mathbf{T}(1,2,3) \mathbf{R}_{z}(\Delta \theta) \mathbf{T}(-1,-2,-3) \mathbf{T}(1,2,3) \mathbf{R}_{z}(\Delta \theta) \mathbf{T}(-1,-2,-3)
$$

$$
=\mathbf{T}(1,2,3) \mathbf{R}_{z}(\Delta \theta) \mathbf{R}_{z}(\Delta \theta) \mathbf{T}(-1,-2,-3)
$$

$$
=\mathbf{T}(1,2,3) \mathbf{R}_{z}^{2}(\Delta \theta) \mathbf{T}(-1,-2,-3)
$$

$$
=\mathbf{T}(1,2,3) \mathbf{R}_{z}(2 \Delta \theta) \mathbf{T}(-1,-2,-3)
$$

By an inductive argument, can show
$\mathbf{M}^{n}(\Delta \theta)=\mathbf{T}(1,2,3) \mathbf{R}_{z}(n \Delta \theta) \mathbf{T}(-1,-2,-3)=\mathbf{M}(n \Delta \theta)$

Linear Algebra

Another Example

- Consider problem of rotating the cube by $\Delta \theta$ about an axis passing through the vertices $(0,1,2)$ and $(2,3,4)$

Linear Algebra

Another Example (continued)

- Other than simplifying the discussion, there is nothing special about the points $(0,1,2)$ and $(2,3,4)$ or the fact that they are vertices of the cube. One could just as readily talk about rotation about an axis through the points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$
- It does make a difference whether one considers the axis of rotation as going from $(0,1,2)$ to $(2,3,4)$ or from $(2,3,4)$ to $(0,1,2)$. The second choice reverses the sense of the rotation from the first choice.

Linear Algebra

Another Example (continued)

- Procedure is
(1) Translate the cube by the translation vector ($-1,-2,-3$) This places the points which determine the rotation axis at $(-1,-1,-1)$ and $(1,1,1)$
(2) Rotate the axis of rotation into the z-axis by the following steps
(a) Rotate by $\pi / 4$ about the z-axis to put
$(1,1,1)$ and $(-1,-1,-1)$ in the $y z$-plane

Linear Algebra

Another Example (continued)

(b) Rotate by $\arctan (\sqrt{ } 2)$ about the x-axis to put $(1,1,1)$ and $((-1,-1,-1)$ onto the z-axis
(3) Rotate about the z axis by $\Delta \theta$
(4) Undo steps 1 and 2

- The matrix $\mathbf{M}(\Delta \theta)$ to do this is

$\mathbf{M}(\Delta \theta)=$

$\mathbf{T}^{-1}(-1,-2,-3) \mathbf{R}_{z}^{-1}(\pi / 4) \mathbf{R}_{x}^{-1}(\arctan \sqrt{2}) \mathbf{R}_{z}(\Delta \theta) \mathbf{R}_{x}(\arctan \sqrt{2}) \mathbf{R}_{z}(\pi / 4) \mathbf{T}(-1,-2,-3)$
$=\mathbf{T}(1,2,3) \mathbf{R}_{z}(-\pi / 4) \mathbf{R}_{x}(-\arctan \sqrt{2}) \mathbf{R}_{z}(\Delta \theta) \mathbf{R}_{x}(\arctan \sqrt{2}) \mathbf{R}_{z}(\pi / 4) \mathbf{T}(-1,-2,-3)$

