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Linear Algebra

Linear Transformations Preliminaries

• Have pursued the following generalizations 

Vectors in R2 & R3  Vector Spaces

Dot Product in R2 & R3  Inner Product 

• Will now look at another generalization 

Matrices  Linear Transformations
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Linear Algebra

Linear Transformations Definition and Examples

• Defn - Let V and W be vector spaces. A function 
L:V  W is called a linear transformation of V 

into W if 

a) L(u + v) = L(u) + L(v) 

b) L(cu) = cL(u) for u  V and real c

• If V = W, then L is called a linear operator

• Note: An m x n matrix takes a vector in Rn and 

maps it to a vector in Rm, so it can be viewed as a 

function from Rn to Rm



Linear Algebra

Linear Transformations Definition and Examples

Example 

• Define a mapping L: R3  R2 as 

To verify, let be arbitrary 
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Linear Algebra

Linear Transformations Definition and Examples

Example 

• Let K( x,y ) be continuous in x and y for 0 ≤ x ≤ 1 
and 0 ≤ y ≤ 1. Define L: C [0,1]  C [0,1] as 

From the properties of integrals, conditions  (a) 

and (b) hold

     
1

0

L ,f K x y f y dy 



Linear Algebra

Linear Transformations Definition and Examples

Example 

• Define a mapping L: R3  R3 as

L is a linear operator on R3. If r > 1, it is called a 

dilation. If 0 < r < 1, it is called a contraction. 

General term is scaling

1 1

2 2

3 3

L

a a

a r a

a a

    
    
    
     
    





Linear Algebra

Linear Transformations Definition and Examples

Example 

• Consider the vector space C∞ [0,1] of infinitely 

differentiable functions defined on the interval [0,1]. 
Define a mapping L: C∞ [0,1]  C∞ [0,1] by 

L is a linear operator on C∞ [0,1] 

 L f f 



Linear Algebra

Linear Transformations Definition and Examples

Example 

• Define a mapping L: R3  R3 as

L is a linear transformation. More generally, if A

is an mxn matrix, then L(x)= Ax is a linear 

transformation from Rn to Rm
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Linear Algebra

Linear Transformations Definition and Examples

Example 

• Define a mapping L: R2  R2 as 

This is a linear operator, which is called a 

reflection in the x-axis
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Linear Transformations Definition and Examples

Example 

• Define a mapping L: R2  R2 as 

L is a linear transformation. It is a counter-clockwise 
rotation by the angle f

cos sin
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y y
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Linear Transformations Definition and Examples

Example 

• Define a mapping L: R3  R3 as 

Let 
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Linear Algebra

Linear Transformations Definition and Examples

Example 

• Define a mapping L: R2  R2 as 

Let u = [ u1 u2 ], v = [ v1 v2 ] be in R2
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So L is not a linear transformation



Linear Algebra

Linear Transformations Definition and Examples

• Theorem - Let L: V W be a linear 

transformation of an n dimensional vector space V 
into a vector space W. Let S = { u1, u2, K, un } be 

a basis for V. If v is any vector in V, then L(v) is 
completely determined by the set of vectors 
{ L(u1), L(u2), K, L(un) } 

• Proof - Since S is a basis for V, can express v as   
v = a1u1 + a2u2 + L + anun . Then 

L(v)  = L( a1u1 + a2u2 + L + anun )

= L(a1u1) + L(a2u2) + L + L(anun) 

= a1L(u1) + a2L(u2) + L + anL(un ) 

So L(v) can be expressed as a combination of the 
vectors { L(u1), L(u2), K, L(un) } 

QED



Linear Algebra

Linear Transformations Definition and Examples

• Corollary - Let L: V W and T: V W be linear 

transformations. Let S = { v1, v2, K, vn } be a 

basis for V. If L(vi) = T(vi) for 1≤ i ≤ n, then  L(v

) = T(v) for all v V, i.e. L and T are identical 

linear transformations



Linear Algebra

Linear Transformations Definition and Examples

Example 

• Let L: R4  R2 be a linear transformation and let  

S = { v1, v2, v3, v4 } be a basis for R4
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Linear Transformations Definition and Examples

Example (continued)
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Linear Algebra

Linear Transformations Definition and Examples

• Theorem - Let L:Rn → Rm be a linear 

transformation and A be the m x n matrix whose 

jth column is L(ej), where { e1, e2, …, en } is the 
natural basis for Rn. Then for every x  Rn, 

L(x) = Ax. Moreover, A is the only matrix with 

this property.

• Proof - Express x in terms of the natural basis as   
x = x1e1 + x2e2 + L + xnen. By the properties of 

the linear transformation and the definition of A
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Linear Algebra

Linear Transformations Definition and Examples

• Proof (continued) -

To argue uniqueness, suppose that there is a matrix 
B ≠ A such that L(x) = Bx for every x  Rn. Since   

B ≠ A, A and B must differ in at least one column, 

call it j. By the definition of A and B,                  

L(ej) = Aej = Bej . Aej is just the jth column of A, 

Bej is just the jth column of B, so the jth columns of 

A and B are the same, which is a contradiction. 

Therefore A is unique.  

QED



Linear Algebra

Linear Transformations Definition and Examples

• Theorem - Let L: V W be a linear 

transformation. Then

a) L(0V) = 0W

b) L(u - v) = L(u) - L(v) 

• Proof -

a) 0V = 0V + 0V then L(0V) = L(0V) + L(0V),
L(0V) - L(0V) = L(0V) + L(0V) - L(0V). So    

0W = L(0V)

b) L(u - v) = L(u + (-1)v) = L(u) + (-1)L(v) 

= L(u) - L(v) 

QED
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Linear Algebra

Linear Transformations Kernel and Range of a Linear Transformation

• Defn - A linear transformation L: V W is one to 

one if it is a one to one function, i.e. if v1 ≠ v2

implies L(v1) ≠ L(v2). (Equivalently, L is one to 

one if L(v1) = L(v2) implies v1 = v2.)

• Defn - Let L: V W be a linear transformation. 

The kernel of L, ker L, is the subset of V 

consisting of all v  V such that L(v) = 0W

• Comment - Since L(0V) = 0W , ker L is not empty



Linear Algebra

Linear Transformations Kernel and Range of a Linear Transformation

• Theorem - Let L: V W be a linear 

transformation 
a) ker L is a subspace of V
b) L is one to one if and only if ker L = { 0V }

• Proof -

a) Use the theorem that tests for subspaces. 
Specifically, if U is a nonempty subset of V, it is a 
subspace if v + w  U and cv  U for all v, w  U 
and all real c.
So let v, w  ker L be arbitrary. Then L(v) = 0W

and L(w) = 0W. Since L is linear, 
L(v + w) = L(v) + L(w) = 0W + 0W = 0W

So v + w  ker L 



Linear Algebra

Linear Transformations Kernel and Range of a Linear Transformation

• Proof (continued) 
Let v  ker L and real c be arbitrary. Since L is a 
linear transformation. L(cv) = cL(v) = c0W = 0W

So cv ker L 

b)  Let L be one to one. Let v  ker L be 
arbitrary. Then L(v) = 0W. Also, L(0V) = 0W . Since 
L is one to one, L(v) = L(0V) implies v = 0V So 
ker L = { 0V } 

 Let ker L = { 0V } and let v, w  V be such that 
L(v) = L(w). Need to show v = w. Since L is 
linear, 0W = L(v) - L(w) = L(v- w). So 
v- w  ker L and v- w = 0V or v = w. So L is one 

to one 
QED



Linear Algebra

Linear Transformations Kernel and Range of a Linear Transformation

• Note - Part (b) of the preceding theorem can be 

expressed as: L is one to one if and only if        

dim ker L = 0 



Linear Algebra

Linear Transformations Kernel and Range of a Linear Transformation

• Corollary - Let L: V W be a linear 

transformation. If L(x) = b and L(y) = b, then       

x − y belongs to ker L, i.e. any two solutions to 

L(x) = b differ by an element of the kernel of L.

• Proof - Suppose that L(x) = b and L(y) = b. Then 

0W = b − b = L(x) − L(y) = L(x − y). Therefore,   

x − y belongs to ker L.

QED



Linear Algebra

Linear Transformations Kernel and Range of a Linear Transformation

Example 

• Define L: P2  R as 

i) Find ker L

ii) Find dim ker L 

iii) Determine if L is one to one

   
1

2 2

0

L at bt c at bt c dt    

 
1
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Linear Transformations Kernel and Range of a Linear Transformation

Example (continued)

i) 

So ker L consists of polynomials of the form 

 
1

2

0

1 1
0 0

3 2

1 1
3 2

at bt c dt a b c

c a b

      

  
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2 1 1
3 2

at bt a b
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 
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   



Linear Algebra

Linear Transformations Kernel and Range of a Linear Transformation

Example (continued) 

ii) 

So the vectors ( t2 - 1/3 ) and ( t - 1/2 ) span ker L. 

Can argue that they are linearly independent. So the 
set { t2 - 1/3, t - 1/2 } is a basis for ker L.

iii) Since dim ker L = 2, L is not one to one

2 21 1 1 1
3 2 3 2

at bt a b a t b t
     
     
     

       



Linear Algebra

Linear Transformations Kernel and Range of a Linear Transformation

• Defn - Let L: V W be a linear transformation. 

The range of L, or image of V under L, denoted by 

range L, consists of all vectors w  W such that   

w = L(v) for some v  V

• Defn - The linear transformation L: V  W is 

onto if range L = W



Linear Algebra

Linear Transformations Kernel and Range of a Linear Transformation

• Theorem - Let L: V W be a linear 

transformation. Then range L is a subspace of W. 

• Proof - Let w1, w2  range L be arbitrary. Then  w1

= L(v1) and w2 = L(v2) for some v1, v2  V. w1 + 

w2 = L(v1) + L(v2) = L(v1 + v2). So          w1 + 

w2  range L 

Let w  range L be arbitrary. Then w = L(v) for 

some v  V. Let c be an arbitrary real number. 

cw = cL(v) = L(cv). So cw  range L.

 range L is a subspace of W

QED



Linear Algebra

Linear Transformations Kernel and Range of a Linear Transformation

Example 

• Consider L: P2  R defined as

For an arbitrary real number r, then 0 t2 + 0 t + r

maps to r. So L is onto and dim range L = 1

• Note that dim ker L + dim range L = dim P2

   
1

2 2

0

1 1
L

3 2
at bt c at bt c dt a b c       
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Linear Transformations Kernel and Range of a Linear Transformation

Example

• Let L: R3  R3 be defined by 

a) Is L onto?

b) Find basis for range L

c) Find ker L

d) Is L one to one?

1 1

2 2

3 3

1 0 1

L 1 1 2

2 1 3

a a

a a

a a

     
     
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Linear Transformations Kernel and Range of a Linear Transformation

Example (continued)

a) Let                        be arbitrary. Find 

such that L(v) = w

1

2

3

1 0 1 1 0 1 1 0 1

1 1 2 1 1 2 0 1 1

2 1 3 2 1 3 0 1 1 2

1 0 1

0 1 1

0 0 0

a a a a

a b b b a

a c c c a

a

b a

c b a
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b

c
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a
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 
 
  

 v

Solution exists only if  

c – b – a = 0

So, L is not onto
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Linear Transformations Kernel and Range of a Linear Transformation

Example (continued)

b) Range of L is the span of 

Can show that the first two vectors are linearly 

independent and the third is the sum of the first 

two. Alternatively, could take the transpose of the 

matrix and put it into row echelon form to get a 

basis for the row space of the transpose. Either 

way, basis is 

1 0 1

1 , 1 , 2

2 1 3

      
      
      
      
      

1 0 1 0

1 , 1  or 0 , 1

2 1 1 1

          
          
          
          
          
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Example (continued)

c) Kernel of L consists of all vectors such 

that L(v) = 0

1

2

3

a

a

a

 
 
 
 
 

v

1 3

1 2 3

1 2 3

1

2

3

1 0 1 0 0

1 1 2 0 2 0

2 1 3 0 2 3 0

a a a

a a a a

a a a a

    
    
    
    

    

 

    

  

Set a3 = r, then a1 = – r and a2 = – r.

So, all vectors in the kernel look like 

1

1

1

r

 
 
 
 
 




1

1

1

  
   
  
  
   



Basis for ker L is
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Linear Transformations Kernel and Range of a Linear Transformation

Example (continued)

d) To see if L is one to one, let 
with v ≠ w. Is it possible to have 
L(v) = L(w)? 

L(v) = L(w)  L(v)  L(w) = 0  L(v  w) = 0

So, v  w  ker L (null space of the matrix) and 

• Note that dim ker L + dim range L = dim domain L 

1 1

2 2

3 3

,

v w

v w

v w

   
   
   
   
   

 v w

1

1

1

r

 
 
 
 
 



  v w
Since it is possible to have   

L(v) = L(w) when v ≠ w,     

L is not one to one
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Linear Transformations Kernel and Range of a Linear Transformation

• Theorem - If L: V W is a linear transformation 

of an n-dimensional vector space V into a vector 

space W, then dim ker L + dim range L = dim V

• Proof - Let k = dim ker L. Then 0 ≤ k ≤ n.

Consider three cases: (1) k = n, (2) 1 ≤ k < n, and 

(3) k = 0 

Case 1 - k = n. Since ker L is a subspace of V and 

dim ker L = dim V, every basis for ker L is a basis 

for V. Since a vector space equals the span of its 

set of basis vectors, ker L = V. Now, L(v) = 0W

for all v  V. Consequently, range L = { 0W } and 

dim range L = 0 
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Linear Transformations Kernel and Range of a Linear Transformation

• Proof (continued)

Case 2 - 1 ≤ k < n. Show that dim range L = n - k. 

Let { v1, v2, K, vk } be a basis for ker L. This is a 

linearly independent set in V and can be extended 
to a basis S = { v1, v2, K, vk , vk+1 , K, vn } for V. 

Strategy is to show that the set of vectors
T = { L(vk+1), L(vk+2), K, L(vn) }

is a basis for range L. 

Specifically, need to show

a) T spans range L

b) T is linearly independent 
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Linear Transformations Kernel and Range of a Linear Transformation

• Proof (continued)

a) Let w  range L be arbitrary. There exists a 

v  V such that L(v) = w. Express v in terms of 

the basis S. v = a1v1 + a2v2 + L + anvn . Then 

   

         

         

1 1 2 2 1 1

1 1 2 2 1 1

1 1 2 2 1 1

L L

L L L L L

L L L L L

n nk k k k

n nk k k k

n nk k k k

a a a a a

a a a a a

a a a a a

 

 

 

      

      

      

v v v v v v

v v v v v

v v v v v

So w = ak+1L(vk+1) + ak+2L(vk+2) + L + anL(vn ) 

and T spans range L

1 2

 
since , , ,  ker L 

k




0
v v v
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• Proof (continued)

b) To show that T is linearly independent, consider 

0W = ak+1L(vk+1) + ak+2L(vk+2) + L + anL(vn ) 

= L(ak+1vk+1) + L(ak+2vk+2) + L + L(anvn) 

= L(ak+1vk+1 + ak+2vk+2 + L + anvn) 

So ak+1vk+1 + ak+2vk+2 + L + anvn  ker L and can 

be written as a linear combination of v1, v2, K, vk

1 1 2 21 1

1 1 2 2 1 1

n nk k k k

n nk k k k

a a b b b

b b b a a
 

 

     

      

v v v v v

0 v v v v v

Since S is linearly independent, the a and b values 

are all zero. So T is linearly independent
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• Proof (continued)

Since T is a basis for range L, dim range L = n  k 

So dim V = dim ker L + dim range L 

Case 3 - k = 0. Since dim ker L = 0, ker L has no 
basis. Let S = { v1, v2, K, vn } be a basis for V. Let 

T = { L(v1), L(v2), K, L(vn) }. By an argument 

similar to Case 2, T is a basis for range L. So, 

dim range L = n = dim V

QED
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Linear Transformations Kernel and Range of a Linear Transformation

• Corollary - Let L: V W and let dim V = dim W. 

Then 

a) If L is one to one, then it is onto

b) If L is onto, then it is one to one

• Defn - A linear transformation L: V W is 

invertible if there exists a function L1: W  V 

such that L o L1 = IW and L1 o L = IV
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• Theorem - A linear transformation L: V W is 

invertible if and only if L is one to one and onto. 

Also, L1 is a linear transformation and (L1) 1 = L

• Proof -  Let L be invertible. First show that L is 

one to one. Suppose that L(v1) = L(v2) for some    

v1, v2 V. Then L1(L(v1)) = L1(L(v2)), implying 

v1 = v2. So, L is one to one. Now show L is onto. Let 

w  W be arbitrary. L is invertible, so L1 exists. v =

L1 (w)  V. Then L(v) = w and L is onto.

 Let L be one to one and onto. By function 

theory, the inverse function L1 exists. 
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• Proof (continued) 

Now show that L1 is a linear transformation. 

a) Let w1, w2  W be arbitrary. Show that 

L1(w1 + w2 ) = L1(w1 ) + L1(w2 ).           

Since L is onto, there exist v1, v2  V such that   

w1 = L(v1) and w2 = L(v2). Need to show that 

L1(w1 + w2 )  = v1 + v2. 

Since L is linear, 

L(v1+v2) = L(v1) + L(v2) = w1 + w2. 

So L1(w1 + w2 )  = v1 + v2
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• Proof (continued)

b) Let w  W and c ≠ 0 be an arbitrary real . Show 

that L1(cw) = cL1(w). Since cw  W, there 

exists  v  V such that L(v) = cw. Since L is 

linear, L((1/c)v) = w. Then 

L1(w) = (1/c)v = (1/c)L1(cw). 

So L1(cw) = cL1(w). 

Thus L1 is a linear transformation. 

QED
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• Theorem - A linear transformation L: V W is 

one to one if and only if the image of every 

linearly independent set of vectors in V is a 

linearly independent set of vectors in W

• Proof - Let S = { v1, v2, K, vk } be a linearly 

independent set of vectors in V and let 
T = { L(v1), L(v2), K, L(vk) }

 Let L be one to one. Consider 

a1L(v1) + a2L(v2) + L + ak L(vk) = 0W

Need to argue that a1 = a2 = L = ak = 0
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• Proof (continued) 

a1L(v1) + a2L(v2) + L + ak L(vk) = 

L(a1v1) + L(a2v2) + L + L(akvk)  =

L (a1v1+ a2v2 + L + akvk ) = 0W

Since L is one to one a1v1+ a2v2 + L + akvk = 0V. 

Since S is linearly independent, 

a1 = a2 = L = ak = 0. So T is linearly independent 

 Let the image of every set of linearly 

independent vectors in V be an independent set of 

vectors in W. Let u, v  V with u ≠ v . Need to 

show that L(u) ≠ L(v). Suppose L(u) = L(v). 
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• Proof (continued)

Let { u1, u2, K, un } be a basis for V. Can express u

and v as 

u = a1u1 + a2u2 + L + anun

v = b1u1 + b2u2 + L + bnun

L(u) = a1L(u1) + a2 L(u2) + L + an L(un) 

L(v) = b1L(u1) + b2 L(u2) + L + bn L(un) 

0W = L(u) - L(v)

= (a1-b1)L(u1) + (a2-b2)L(u2) + L + (an-bn)L(un) 

By hypothesis, T is linearly independent. So a1  b1 , 
a2  b2 , K , an  bn . So, u = v, which is a 

contradiction. Thus L(u) ≠ L(v). QED
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• Preliminaries
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• Matrix of a Linear Transformation

• Vector Spaces of Matrices and Linear 

Transformations
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• Homogeneous Coordinates



Linear Algebra

Linear Transformations Matrix of a Linear Transformation

• Theorem - Let L: V W be a linear 

transformation of an n-dimensional vector space V 

into an m-dimensional vector space W (n ≠ 0, 
m ≠ 0) and let S = { v1, v2, K, vn } be an ordered 

basis for V and T = { w1, w2, K, wm } be an 

ordered basis for W. Then the mxn matrix A

whose jth column is the coordinate vector [L(vj)]T

of L(vj) with respect to T has the following 

property: If y = L(x) for some x  V, then  

[y]T = A[x]S . Also, A is unique.
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Linear Transformations Matrix of a Linear Transformation

• Proof - Consider L(vj) for 1 ≤ j ≤ n. L(vj)  W, so it 

can be expanded in terms of T 

Define A as the matrix whose jth column is [L(vj)]T

Let x  V be arbitrary and let y = L(x).

   

1

2

1 1 2 2
T

L L

j

j
mj mj jj j

mj

c

c
c c c

c

 
 
  
     
 
  

     v w w w v

1 1

2 2
S T

n m

a b

a b

a b

  
  
           
  
     

 x y
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• Proof (continued) 



   

     

1 1 2 2

1 1 2 2

L L

L L L

n n

n n

a a a

a a a

   

   

x v v v

v v v

 1 1 2 2
Lm mb b b    y w w w x
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Linear Transformations Matrix of a Linear Transformation

• Proof (continued) 

   

 

 

 

 

 

1 11 1 21 2 1

2 12 1 22 2 2

1 1 2 2

1 11 2 12 1 1

1 21 2 22 2 2

1 1 2 2

L mm

mm

n mn mn n

n n

n n

n mn mm m

a c c c

a c c c

a c c c

a c a c a c

a c a c a c

a c a c a c

    

   

  

    

   

  

x w w w

w w w

w w w

w

w

w
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Linear Transformations Matrix of a Linear Transformation

• Proof (continued) 

Comparing coefficients of the w vectors gives

1

2

1 11 2 12 1

1 21 2 22 2

1 1 2 2m

n n

n n

n mnm m

b a c a c a c

b a c a c a c

b a c a c a c

   

   

   
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Linear Transformations Matrix of a Linear Transformation

• Proof (continued)

In matrix form  

11 12 1 11

21 22 2 22

1 2

n

n

mn nm m m

c c c ab
c c c ab

c c c ab

    
    
    
    
    
        



or [y]T = A[x]S . So the effect of L may be 

accomplished by letting A operate on the coordinate 

vector of x
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Linear Transformations Matrix of a Linear Transformation

• Proof (continued) 

To show uniqueness, suppose there is a second 

matrix , which has the same properties as 

A but A*≠ A. Since A*≠ A some of the elements 

of A* are different from the elements of A. So, 

suppose some elements in column k are different.  

[L(vk)]T = A [vk]S and [L(vk)]T = A* [vk]S . So A

[vk]S = A* [vk]S

* *
ijc 

 
A
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• Proof (continued) 

S

0

0

 th position1

0

0

k
k

 
 
 
 
 

    
 
 
 
 
  

 v

A [vk]S is just the kth column of A

A* [vk]S is just the kth column of A*

Since A [vk]S = A* [vk]S , A = A* and A is unique
QED
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Linear Transformations Matrix of a Linear Transformation

Comments

• Matrix A is called the representation of L with 

respect to the ordered bases S and T

• If L: V  V, can have two bases, S and T, and get a 

representation of L with respect to S and T. If 

S = T, then L has a representation with respect to S
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Linear Transformations Matrix of a Linear Transformation

Example 

• Let L: P2  P1 be defined by                         and let 

S = { t 2, t, 1 } and T = { t, 1 } be bases for P2 and 

P1 respectively.

a) Find the matrix A associated with L 

b) If p( t) = 5t 2 - 3t + 2, compute L(p( t)) using A

    L p pt t 
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Linear Transformations Matrix of a Linear Transformation

Example (continued)

a) Let v1 = t 2, v2 = t, v3 = 1, w1 = t, w2 = 1

   

   

   

1 1 1
T

2 2 2
T

3 1 2 3
T

2
L 2 2 L

0

0
L 1 L

1

0
L 0 0 L

0

t
 

 
  
 

 
 

  
 

 
 

   
 

   

   

    

v w v

v w v

v 0 w w v

2 0 0

0 1 0

 
 
 

A
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Example (continued)

b) L(p( t)) = 10t  3

   

   1 2

S S

5 5
2 0 0 10

p 3 p 3
0 1 0 3

2 2

L p 10 ( 3) 10 ( 3)1 10 3

t t

t t t

   
                   
      

   

    


        

A

w w
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Example

• Let L: R3  R2 be defined as 

Let 

1 1

2 2

3 3

1 1 1
L

1 2 3

x x

x x

x x

    
      
      
       
    



1 0 0
1 1

S 1 , 1 , 0 T ,
2 3

0 1 1

      
            

           
            

      

 

1v
2v 3v

1w 2w
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Example (continued)

 

 

 

1
T

2
T

3

1
2 1 1 3

L 1 3 L
3 2 3 1

0

0
2 1 1 1

L 1 L
5 2 3 1

1

0
1 1 1

L 0 0 L
3 2 3

1

  
            
            

         
  

  
            
            

         
  

  
          
         

       
  

    


    

   

v

v

v
T

0

1

 
 
 


3 1 0

1 1 1

 
 
 




A
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Linear Transformations Vector Spaces of Matrices and Linear Transformations

Comments

• Have shown that the set of mxn matrices mRn is a 

vector space 

• Want to show that the set U of all linear 

transformations from V to W forms a vector space

• Need to define the operations for the vector space 

a) sum of two linear transformations

b) scalar times a linear transformation 



Linear Algebra

Linear Transformations Vector Spaces of Matrices and Linear Transformations

• Defn - Let L1: V W and L2: V W. Define the 

sum of L1 and L2 , as follows

Note: This is just the definition of the sum of two 

functions

• Defn - Let L: V W be a linear transformation 

and let c be real. Define the scalar multiple of c

and L,          , as 

1 2
L L L 

     1 2
L L L V   x x x x

Lc

    L L Vc c  x x x
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Linear Transformations Vector Spaces of Matrices and Linear Transformations

• Verification of vector space properties for U, the 

set of all linear transformations from V to W with 

the operations      and     , is straightforward except 

for 

a) zero vector - define 0(x) = 0W  x  V

b) additive inverse - Let L  U, define L as 

• Since U is a vector space, what is its dimension? 

Answer question via a basis



 1 L
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Linear Transformations Vector Spaces of Matrices and Linear Transformations

• Defn - Let S = { L1, L2, K, Lk } be a set of linear 

transformations. S is linearly dependent if there 

exist scalars a1, a2, …, ak, not all zero, such that 

where 0 is the zero linear transformation 

     1 1 2 2
L L L

k k
a a a   0
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Linear Transformations Vector Spaces of Matrices and Linear Transformations

Example

• Consider linear transformations L1, L2, L3 from R2

to R3 defined as 

L1([x1, x2]) = [ x1 + x2 , 2x1 , x2 ]

L2([x1, x2]) = [ x2  x1 , 2x1 + x2 , x1 ]

L3([x1, x2]) = [ 3x1 ,  2x2 , x1 + 2x2 ]

Determine if S = { L1 , L2 , L3 } is linearly 

dependent 

Suppose where 

a1, a2, a3 are real. This equation means 
     1 1 2 2 3 3

L L La a a  0

      2
3R1 1 2 2 3 3 1 2

L L L R , ,a a a x x 
 

     x x x 0 x x
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Linear Transformations Vector Spaces of Matrices and Linear Transformations

Example (continued)

     

     

     

 1

3R

1 1 2 2 3 3

1 1 2 1 2 2 2 1 1 2 1

3 1 2 1 2

1 1 2 2 2 1 3 1

1 1 2 1 2 3 2

1 2 2 1 3 2

0,0,0

L L L

,2 , ,2 ,

3 , 2 , 2

3 ,

2 2 2 ,

2

a a a

a x x x x a x x x x x

a x x x x

a x x a x x a x

a x a x x a x

a x a x a x x

 
 

   
   

 
 









  

     

 

    

   

  

0

x x x
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Example (continued)

   

 

 

1 1 2 2 2 1 3 1

1 1 2 1 2 3 2

1 2 2 1 3 1 2

3 0

2 2 2 0

2 0

a x x a x x a x

a x a x x a x

a x a x a x x

    

   

   

This must be true  x1, x2. Pick particular values 

x1 = 1, x2 = 0

1 2 3

1 2

2 3

3 0

2 2 0

0

a a a

a a

a a

  

 

 

The only solution is         

a1 = 0, a2 = 0, a3 = 0. So 

S = { L1 , L2 , L3 } is 

linearly independent
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Linear Transformations Vector Spaces of Matrices and Linear Transformations

• Theorem - Let U be the set of all linear 

transformations of V into W where dim V = n and 

dim W = m, n ≠ 0, m ≠ 0, and operations in U are   

and    . U is isomorphic to the vector space mRn of 

all mxn matrices

• Proof - Strategy is to pick a basis for V and for W 

and map L to its matrix representation with respect 

to these bases. This gives a mapping from U to 

mRn. Need to show that the mapping 

1) is one to one

2) is onto

3) preserves vector operations


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Linear Transformations Vector Spaces of Matrices and Linear Transformations

• Proof (continued)

Let S = { v1, v2, K, vn } be a basis for V and let        
T = { w1, w2, K, wm } be a basis for W. Define a 
mapping M: U  mRn as M(L) = matrix representing 

L with respect to S and T. 

1) Show M is one to one. Let L1, L2  U with L1 ≠ L2. 
Need to show M(L1) ≠ M(L2). Since L1 ≠ L2, 
$v  V such that L1(v) ≠ L2(v). v can be expressed 
as a linear combination of elements of S. So, must 
have L1(vj) ≠ L2(vj) for some 1 ≤ j ≤ n. The jth 
column of M(L1) is [L1(vj)]T . The jth column of   
M(L2) is [L2(vj)]T . Since L1(vj) ≠ L2(vj), 
[L1(vj)]T ≠ [L2(vj)]T . So M(L1) ≠ M(L2). 
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Linear Transformations Vector Spaces of Matrices and Linear Transformations

• Proof (continued)

2) Show M is onto. Let A = [ aij ] be an arbitrary 

mxn matrix. Define a linear transformation 

L: V  W by

Note: it is sufficient to define L on S since for any 
x  V, x = c1v1+ L + cnvn, then 

 
1

L   for 1
m

i ki k
k

a i n


  v w

   
1

L L
n

i i
i

c


x v

L is a linear transformation and the matrix of L with 

respect to bases S and T is A. So M is onto
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Linear Transformations Vector Spaces of Matrices and Linear Transformations

• Proof (continued)

3) Show that M preserves vector addition and 

scalar multiplication. Let L1, L2  U be arbitrary. 

Let M(L1) = A = [ aij ] and M(L2) = B = [ bij ]. 

First show that . The j th 

column of is 
 1 2

M L L  A B

 1 2
M L L

      

   

1 2 1 2
T T

1 2
T T

L L L L

L L

j j j

j j

   
      

   
      

  

 

v v v

v v

So j th column of is sum of j th columns   

of  M(L1) = A and M(L2) = B. So 
 1 2

M L L

 1 2
M L L  A B
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• Proof (continued)

Consider scalar multiplication. Let M(L) = A and 

real c be arbitrary. The j th column of is 

So 

 U and mRn are isomorphic

 M Lc

      
T T T

L L Lj j jc c c     
          

 v v v

 M Lc c A

QED
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Linear Transformations Vector Spaces of Matrices and Linear Transformations

• Corollary - dim U = mn

• Since linear transformations are just functions, can 

form composition of those functions. Following 

theorem shows that matrix of composition is 

simply related to matrices of individual 

transformations
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Linear Transformations Vector Spaces of Matrices and Linear Transformations

• Theorem - Let V1, V2, V3 be vector spaces with 

dim V1 = n, dim V2 = m, dim V3 = p. Let 
L1: V1  V2, L2: V2  V3 be linear transformations. 

Let P, S, T be bases for V1, V2, V3 respectively. Then 

where    is the 

composition of functions
     2 1 2 1

M L L M L M L
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• Proof - Let M(L1) = A, with respect to bases P and 

S. Let M(L2) = B, with respect to bases S and T. Let 

x  V1 be arbitrary. Then [L1(x)]S = A[x]P . For any 

y  V2 , [L2(y)]T = B[y]S

     

     

2 1 2 1T T

1 P PS

L L L L

L

  
   

          



 

x x

B x B A x BA x

     2 1 2 1
M L L M L M L AB

QED

Have proved that matrix of a linear transformation 
with respect to a particular basis is unique. So
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Comments

• Let L: V  W be a linear transformation, where 

dim V = n ≠ 0 and dim W = m ≠ 0 and the spaces 
have ordered bases S = { v1, v2, K, vn } for V and 
T = { w1, w2, K, wm } for W. Have seen how to 

construct a matrix A that represents L with respect 
to these bases. Specifically, the j th column of A is 
[L(vj)]T

• Also know that picking a different basis in either 
V or W gives a different matrix

• Since all of these matrices represent L, they ought 
to be related, i.e. we ought to be able to get one 
matrix from another



Linear Algebra

Linear Transformations Similarity

• Theorem - Let L: V W be a linear transformation, 

where dim V = n ≠ 0 and dim W = m ≠ 0. Let 
S = { v1, v2, K, vn } and be 

ordered bases for V with transition matrix P from S 

to S. Let T = {w1, w2, K, wm} and 

be ordered bases for W with transition matrix Q

from T  to T. If A is the representation of L with 

respect to S and T, then Q1AP is the representation 

of L with respect to S  and T 

 1 2
S , , , n   v v v

 1 2
T , , , m   w w w
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Linear Transformations Similarity

• Proof - Recall the definition of the transition 

matrices: 

j th column of P is coordinate vector         of     

with respect to S

j th column of Q is coordinate vector            of     

with respect to T

S S

T T

V

W




      

      

  

  

x P x x

y Q y y

jv
S

j
 
 
v

T
j

 
 
w

jw
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Linear Transformations Similarity

• Proof (continued)

Let A be the representation of L with respect to S 

and T, then [L(x)]T = A[x]S . 

Also, 

So Q1AP is the representation of L with respect 

to S  and T 

   

   

S ST T

1
S ST T

L L ,

L L





  

             

            

 

   

x Q x x P x

Q x AP x x Q AP x

QED
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Comments

• Let B = Q1AP. Can calculate the effect of L on   

x  V two ways in terms of S  and T 

• Note that A and B are equivalent matrices
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Example 

• Define L: R3  R2 by   

Bases for R3

Bases for R2

1
1 3

2
2 3

3

L

x
x x

x
x x

x

  
    
    

      
  






1 0 0 1 0 0

S 0 , 1 , 0 S 1 , 1 , 0

0 0 1 0 1 1

              
              
              
              
              

 

1v 2v 3v

1w 2w

1v 2v 3v

1 0 1 1
T , T ,

0 1 1 3

             
          
             

 

1w 2w
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Example (continued)

     1 2 3
T T T

L L L     
        

A v v v

   

   

   

1 1
T

2 2
T

3 3
T

1 1
L L

0 0

0 0
L L

1 1

1 1
L L

1 1

   
 

    
   

   
 

    
   

   
 

     
   

  

  

  
 

v v

v v

v v

1 0 1

0 1 1

 
 
 




A

Since T is the natural basis

Since T is the natural basis

Since T is the natural basis
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Example (continued)

Calculate representation of L with respect to S  and T 

two ways

Calculate P - Columns of P are 

Since S is a natural basis

Calculate Q - Columns of Q are 

Since T is a natural basis  

1 2 3S S S
, ,     

       v v v

1 0 0

1 1 0

0 1 1

 
 
 
 
 

P

1 2T T
,   

    w w

1 1

1 3

 
 
 

Q
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Example (continued)

1

1 0 0
3 2 1 2 1 0 1

1 1 0
1 2 1 2 0 1 1

0 1 1

1 3 2 2

0 1 2 1



 
     
     
     

 

 
 
 


 

 


 

B Q AP

1 3 2 1 2

1 2 1 2
  

 
 





Q
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Example (continued)

Compute B directly

Columns of B are      1 2 3
T T T

L , L , L
  

    
      

  v v v

   

   

   

1 1
T

2 2
T

3 3
T

1 1 1 1
L 1 0 L

1 1 3 0

1 1 1 3 23 1
L L

2 20 1 3 1 2

1 1 1 2
L 2 1 L

1 1 3 1







       
 

        
       

       
 

        
       

       
 

         
       

    

    


    
 

v v

v v

v v

1 3 2 2

0 1 2 1

 
 
 


 

B
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• Corollary - Let L: V  V be a linear operator on 

an n-dimensional vector space V. Let 
S = { v1, v2, K, vn } and be 

ordered bases for V, with P being the transition 

matrix from S  to S. If A is the representation of L 

with respect to S, then P1AP is the representation 

of L with respect to S 

 1 2
S , , , n   v v v
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Linear Transformations Similarity

• Defn - The rank of L: V  W, notation rank L, is 

the rank of any matrix representing L

• Note: rank L is well defined since any two 

matrices representing L are equivalent and thus 

have the same rank
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Linear Transformations Similarity

• Theorem - Let L: V W be a linear transformation. 

Then rank L = dim range L

• Proof - Let dim V = n, dim W = m and 

dim range L = r. We have proved a theorem that says 
dim ker L + dim range L = n. Then dim ker L = n - r.

Let vr+1, vr+2, …, vn be a basis for ker L. This can be 
extended to a basis  S = { v1, v2, K, vr , vr+1, K, vn } 

for V. 

The vectors w1 = L( v1 ), w2 = L( v2 ), …, wr = L( vr ) 

span range L. Since there are r = dim range L of them, 

they form a basis for range L. This can be extended to a 
basis T = {w1, w2, K, wr, wr+1, K, wm} for W.
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Linear Transformations Similarity

• Proof (continued)

Now let A be the matrix that represents L with 

respect to S and T. The columns of A are 

So

Thus rank L = rank A = r = dim range L  

 

 
T

W RTT

L 1,2, ,

L 1, 2, ,m

i i i

i

i r

i r r n

   
  

   
  

  

    

v w e

v 0 0

r 
 
 


I 0

A
0 0

QED
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Linear Transformations Similarity

• Defn - If A and B are are nxn matrices, then B is 

similar to A if there is a nonsingular matrix P such 

that B = P1AP
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Linear Transformations Similarity

• Theorem - Let V be any n-dimensional vector 
space and let A and B be any nxn matrices. Then 
A and B are similar if and only if A and B
represent the same linear transformation L:V → V 
with respect to two ordered bases for V.

• Proof -  Let A and B be similar. Then there is a 
nonsingular matrix P = [ pij ] such that B = P1AP. 
Let S = {v1, v2, . . . , vn} be an ordered basis for V 
and define a linear transformation on V by 
[L(x)]S = A[x]S for all x in V. 

Now define a new basis for V by taking 
appropriate linear combinations of vectors in S.



Linear Algebra

Linear Transformations Similarity

• Proof (continued) -

Define a set of vectors T = { w1, w2, …, wn } as 

and show that T is a 

basis for V by showing that it is linearly 

independent and appealing to an earlier theorem 

that says that a set of n linearly independent 

vectors in an n-dimensional space is a basis. 

Consider 

1
, 1 ,

n

j ij ii
p j n


  w v

     

1 1 2 2

1 1 2 21 1 1

1 1 2 21 1 1

n n

n n n

i i n in ii ii i i

n n n

j j nj j nj jj j j

a a a

a p a p a p

p a p a p a

  

  

   

   

   

  

  

0 w w w

v v v

v v v



Linear Algebra

Linear Transformations Similarity

• Proof (continued) -

Since S is linearly independent 

or equivalently Pa = 0, where a = [ a1 a2 …  an ]T. 

Since P is nonsingular, the only solution is a = 0. 

Thus T is linearly independent and is a basis for V.

The definition of T,                                        implies 

that P is the transition matrix from T to S, i.e. [y]S = 

P[y]T . Then, recalling the definition of L, 

 1
0, 1

n

ij jj
i np a


  

1
, 1 ,

n

j ij ii
p j n


  w v

     

 

SS T T

1 1

S TT

L L L

L  

            

         

   

 

x P x A x P x

x P A x P AP x

So, the matrix of L with respect to T is P–1AP = B



Linear Algebra

Linear Transformations Similarity

• Proof (continued) -

 By the preceding corollary, any two matrix 

representations of a linear transformation are 

similar. 

QED



Linear Algebra

Linear Transformations Similarity

• Theorem - If A and B are similar nxn matrices, then 

rank A = rank B.

• Proof - By the preceding theorem, A and B

represent the same linear transformation L: Rn → Rn

with respect to different bases. Since the rank of L is 

defined uniquely as the rank of any matrix 

representing it, rank A = rank L = rank B.

QED



Linear Algebra

Linear Transformations Topics

• Preliminaries

• Definition and Examples

• Kernel and Range of a Linear Transformation

• Matrix of a Linear Transformation

• Vector Spaces of Matrices and Linear 

Transformations

• Similarity

• Homogeneous Coordinates



Linear Algebra

Linear Transformations Homogeneous Coordinates

• A commonly used technique in computer graphics 

is the homogeneous coordinate transformation, 

which combines a sequence of translations, 

scalings and rotations into a single matrix which is 

then applied to the vertices of a geometric object.

– This allows a compact representation of the combined 

operations that is easy to apply. 

– Also, the individual transformations can be 

implemented in hardware in a high-end workstation to 

permit the rotation of an object on the screen by means 

of turning a knob.



Linear Algebra

Linear Transformations Homogeneous Coordinates

Motivating Example

• Rotate the cube about an axis 

parallel to the z axis passing 

through the point (1, 2, 3), by 
angles of Dq, 2Dq, 3Dq, etc. 

from its original position 

(i.e. successive rotations by 
angles of Dq). After each 

rotation, display the rotated cube 

to give the visual effect of a 

spinning cube. 
Vertices at (1±1, 2±1, 3±1). Cube's 

faces are parallel to coordinate planes



Linear Algebra

Linear Transformations Homogeneous Coordinates

Basic Coordinate Operations

• The application of any of these operations to a 
cube is accomplished by applying the operation to 
each vertex of the cube.

• Translation: The translation of ( x, y, z ) by the 
translation vector ( tx, ty, tz ) yields the point whose 
coordinates are ( x + tx, y + ty, z + tz ), i.e. ( x, y, z ) 
is moved to ( x + tx, y + ty, z + tz ).

• Scaling: The scaling of ( x, y, z ) by the scaling 
vector ( sx, sy, sz ), with sx > 0, sy > 0 and sz > 0, 
yields the point with coordinates ( xsx, ysy, zsz ), 
i.e. the point's coordinates are scaled by these 
amounts.



Linear Algebra

Linear Transformations Homogeneous Coordinates

Basic Coordinate Operations

• Rotation: Simple rotations are done about the x-axis, 
y-axis and z-axis.
– x-axis: If ( x, y, z ) is rotated about the x-axis by an angle q

to a new point ( x, y, z ), the coordinates are related by

x = x

y = y cos q – z sin q
z = y sin q + z cos q

– y-axis: If ( x, y, z ) is rotated about the y-axis by an angle q
to a new point ( x, y, z ), the coordinates are related by

x = z sin q + x cos q
y = y

z = z cos q – x sin q



Linear Algebra

Linear Transformations Homogeneous Coordinates

Basic Coordinate Operations
– z-axis: If ( x, y, z ) is rotated about the x-axis by an angle q

to a new point ( x, y, z ), the coordinates are related by

x = x cos q – y sin q
y = x sin q + y cos q
z = z



Linear Algebra

Linear Transformations Homogeneous Coordinates

• In the motivating example, rotation of the cube by Dq
about a line through ( 1, 2, 3 ) parallel to the z-axis 
can be expressed in terms of the coordinate 
operations defined on the previous slides

(1) Translate each vertex by ( –1, –2, –3 ) to place the 
center of the cube at the origin and cause the axis of 
rotation to coincide with the z-axis.

(2) Rotate the cube about the z-axis by an angle of Dq
(3) Translate the rotated cube by ( 1, 2, 3 ) to put it 
back in position.

• The three steps above will perform the rotation and 
successive applications of the process will perform 
subsequent rotations.



Linear Algebra

Linear Transformations Homogeneous Coordinates

Matrix Procedure

• Represent the point (x, y, z) as a 4 x 1 matrix

• Translation: Translation by ( tx, ty, tz ) can be 

accomplished as 

1

x

y

z

 
 
 
 
 
 

X

 

1 0 0

0 1 0
, ,

0 0 1
1 10 0 0 1

xx

yy
x y z

zz

x tt x
y tt y

t t t
z z tt

    
    
    
    
    
       




   


T X X
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Linear Transformations Homogeneous Coordinates

Matrix Procedure

• Scaling: Scaling by ( sx, sy, sz ) can be 

accomplished as   

 

0 0 0

0 0 0
, ,

0 0 0
1 10 0 0 1

xx

yy
x y z

zz

xss x
yss y

s s s
z zss

    
    
    
    
    
       

   S X X
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Linear Transformations Homogeneous Coordinates

Matrix Procedure

• Rotation: Rotation about the x-axis by q can be 

accomplished as 

 

1 0 0 0

cos sin0 cos sin 0

sin cos0 sin cos 0

1 10 0 0 1

x

x x

y y z

z y z

  
  



     
     
     
     
     
      






  R X X
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Linear Transformations Homogeneous Coordinates

Matrix Procedure

• Rotation: Rotation about the y-axis by q can be 

accomplished as 

 

cos 0 sin 0 cos sin

0 1 0 0

sin 0 cos 0 sin cos

10 0 0 1 1

y

x x z

y y

z x z

   

   



    
    
    
    
    
       




  

  R X X



Linear Algebra

Linear Transformations Homogeneous Coordinates

Matrix Procedure

• Rotation: Rotation about the z-axis by q can be 

accomplished as 

 

cos sin 0 0 cos sin

sin cos 0 0 sin cos

0 0 1 0

10 0 0 1 1

z

x x y

y x y

z z

   

   



    
    
    
    
    
       

 




  R X X
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Linear Transformations Homogeneous Coordinates

Matrix Procedure

• Inverses of the matrices are easy to compute

   

   
   

   

   

1

1

1

1

1

, , , ,

, , 1 ,1 ,1

x y z x y z

x y z x y z

x x

y y

z z

t t t t t t

s s s s s s

 

 

 











   



 

 

 

T T

S S

R R

R R

R R



Linear Algebra

Linear Transformations Homogeneous Coordinates

Matrix Procedure

• Note that any sequence of coordinate operations 

may be performed by multiplying by the 

appropriate matrices

• The sequence of operations may be inverted by 

multiplying by the inverse matrices in reverse 

order



Linear Algebra

Linear Transformations Homogeneous Coordinates

Motivating Example (continued)

• The operations in the example can be 

accomplished as  

(1) Translate by ( –1, –2, –3 )  T( –1, –2, –3 ) 

(2) Rotate about the z-axis by Dq Rz(Dq)

(3) Translate by ( 1, 2, 3 )  T( 1, 2, 3 ) 



Linear Algebra

Linear Transformations Homogeneous Coordinates

Motivating Example (continued)

• Define M(Dq) as  

       

   

   

1,2,3 1, 2, 3

cos sin 0 01 0 0 1 1 0 0 1

0 1 0 2 0 1 0 2sin cos 0 0
0 0 1 3 0 0 1 30 0 1 0
0 0 0 1 0 0 0 10 0 0 1

z 

 

 

 
   

 
   

 
   

 
   

 
   

         

     

   

 


M T R T
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Linear Transformations Homogeneous Coordinates

Motivating Example (continued)

 

           

       

     

     

2

2

1,2,3 1, 2, 3 1,2,3 1, 2, 3

1,2,3 1, 2, 3

1,2,3 1, 2, 3

1,2,3 2 1, 2, 3

z z

z z

z

z



 

 







        

     

    

    

M

T R T T R T

T R R T

T R T

T R T

         1,2,3 1, 2, 3n
z n n         M T R T M

By an inductive argument, can show 
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Linear Transformations Homogeneous Coordinates

Another Example

• Consider problem of rotating the cube by Dq about 

an axis passing through the vertices (0, 1, 2) and    
(2, 3, 4)



Linear Algebra

Linear Transformations Homogeneous Coordinates

Another Example (continued)

• Other than simplifying the discussion, there is 

nothing special about the points (0, 1, 2) and (2, 3, 4) 

or the fact that they are vertices of the cube. One 

could just as readily talk about rotation about an axis 

through the points (x1, y1, z1) and (x2, y2, z2)

• It does make a difference whether one considers the 

axis of rotation as going from (0, 1, 2) to (2, 3, 4) or 

from (2, 3, 4) to (0, 1, 2). The second choice reverses 

the sense of the rotation from the first choice.
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Linear Transformations Homogeneous Coordinates

Another Example (continued)

• Procedure is 

(1) Translate the cube by the translation vector 

( –1,–2,–3 ) This places the points which 

determine the rotation axis at (–1,–1,–1) and 

(1,1,1) 

(2) Rotate the axis of rotation into the 

z-axis by the following steps

(a) Rotate by p/4 about the z-axis to put 

(1,1,1) and (–1,–1,–1) in the yz-plane 
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Linear Transformations Homogeneous Coordinates

Another Example (continued)

(b) Rotate by arctan(2) about the x-axis to put (1, 1, 1) 

and ((–1,–1,–1) onto the z-axis

(3) Rotate about the z axis by Dq

(4) Undo steps 1 and 2

• The matrix M(Dq) to do this is 

 

             

             

1 1 1

1, 2, 3 4 arctan 2 arctan 2 4 1, 2, 3

1, 2,3 4 arctan 2 arctan 2 4 1, 2, 3

z x z x z

z x z x z



p  p

p  p

  

 

      

      

M

T R R R R R T

T R R R R R T

3

2


