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Abstract. These are the lecture notes for the course MTH 415, Applied Linear Algebra,
a one semester class taught in 2009-2012. These notes present a basic introduction to
linear algebra with emphasis on few applications. Chapter 1 introduces systems of linear
equations, the Gauss-Jordan method to find solutions of these systems which transforms
the augmented matrix associated with a linear system into reduced echelon form, where
the solutions of the linear system are simple to obtain. We end the Chapter with two ap-
plications of linear systems: First, to find approximate solutions to differential equations
using the method of finite differences; second, to solve linear systems using floating-point
numbers, as happens in a computer. Chapter 2 reviews matrix algebra, that is, we in-
troduce the linear combination of matrices, the multiplication of appropriate matrices,
and the inverse of a square matrix. We end the Chapter with the LU-factorization of a
matrix. Chapter 3 reviews the determinant of a square matrix, the relation between a
non-zero determinant and the existence of the inverse matrix, a formula for the inverse
matrix using the matrix of cofactors, and the Cramer rule for the formula of the solu-
tion of a linear system with an invertible matrix of coefficients. The advanced part of
the course really starts in Chapter 4 with the definition of vector spaces, subspaces, the
linear dependence or independence of a set of vectors, bases and dimensions of vector
spaces. Both finite and infinite dimensional vector spaces are presented, however finite
dimensional vector spaces are the main interest in this notes. Chapter 5 presents linear
transformations between vector spaces, the components of a linear transformation in a
basis, and the formulas for the change of basis for both vector components and transfor-
mation components. Chapter 6 introduces a new structure on a vector space, called an
inner product. The definition of an inner product is based on the properties of the dot
product in Rn. We study the notion of orthogonal vectors, orthogonal projections, best
approximations of a vector on a subspace, and the Gram-Schmidt orthonormalization
procedure. The central application of these ideas is the method of least-squares to find
approximate solutions to inconsistent linear systems. One application is to find the best
polynomial fit to a curve on a plane. Chapter 8 introduces the notion of a normed space,
which is a vector space with a norm function which does not necessarily comes from an
inner product. We study the main properties of the p-norms on Rn or Cn, which are
useful norms in functional analysis. We briefly discuss induced operator norms. The last
Section is an application of matrix norms. It discusses the condition number of a matrix
and how to use this information to determine ill-conditioned linear systems. Finally,
Chapter 9 introduces the notion of eigenvalue and eigenvector of a linear operator. We
study diagonalizable operators, which are operators with diagonal matrix components
in a basis of its eigenvectors. We also study functions of diagonalizable operators, with
the exponential function as a main example. We also discuss how to apply these ideas
to find solution of linear systems of ordinary differential equations.
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Overview

Linear algebra is a collection of ideas involving algebraic systems of linear equations,
vectors and vector spaces, and linear transformations between vector spaces.

Algebraic equations are called a system when there is more than one equation, and they
are called linear when the unknown appears as a multiplicative factor with power zero or one.
An example of a linear system of two equations in two unknowns is given in Eqs. (1.3)-(1.4)
below. Systems of linear equations are the main subject of Chapter 1.

Examples of vectors are oriented segments on a line, plane, or space. An oriented segment
is an ordered pair of points in these sets. Such ordered pair can be drawn as an arrow that
starts on the first point and ends on the second point. Fix a preferred point in the line, plane
or space, called the origin point, and then there exists a one-to-one correspondence between
points in these sets and arrows that start at the origin point. The set of oriented segments
with common origin in a line, plane, and space are called R, R2 and R3, respectively.
A sketch of vectors in these sets can be seen in Fig. 1. Two operations are defined on
oriented segments with common origin point: An oriented segment can be stretched or
compressed; and two oriented segments with the same origin point can be added using the
parallelogram law. An addition of several stretched or compressed vectors is called a linear
combination. The set of all oriented segments with common origin point together with this
operation of linear combination is the essential structure called vector space. The origin of
the word “space” in the term “vector space” originates precisely in these examples, which
were associated with the physical space.

0 0 0

Figure 1. Example of vectors in the line, plane, and space, respectively.

Linear transformations are a particular type of functions between vector spaces that
preserve the operation of linear combination. An example of a linear transformation is a
2×2 matrix A =

[
1 2
3 4

]
together with a matrix-vector product that specifies how this matrix

transforms a vector on the plane into another vector on the plane. The result is thus a
function A : R2 → R2.

These notes try to be an elementary introduction to linear algebra with few applications.

Notation and conventions. We use the notation F ∈ {R,C} to mean that F = R or
F = C. Vectors will be denoted by boldface letters, like u and v. The exception are a
column vectors in Fn which are denoted in sanserif, like u and v. This notation permits
to differentiate between a vector and its components on a basis. In a similar way, linear
transformations between vector spaces are denoted by boldface capital letters, like T and
S. The exception are matrices in Fm,n which are denoted by capital sanserif letters like A
and B. Again, this notation is useful to differentiate between a linear transformation and its
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components on two bases. Below is a list of few mathematical symbols used in these notes:

R Set of real numbers, Q Set of rational numbers,
Z Set of integer numbers, N Set of positive integers,

{0} Zero set, ∅ Empty set,
∪ Union of sets, ∩ Intersection of sets,

:= Definition, ⇒ Implies,
∀ For all, ∃ There exists,

Proof Beginning of a proof, ¤ End of a proof,
Example Beginning of an example, C End of an example.

Acknowledgments. I thanks all my students for pointing out several misprints and for
helping make these notes more readable. I am specially grateful to Zhuo Wang and Wenning
Feng.
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Chapter 1. Linear systems

1.1. Row and column pictures

1.1.1. Row picture. A central problem in linear algebra is to find solutions of a system of
linear equations. A 2 × 2 linear system consists of two linear equations in two unknowns.
More precisely, given the real numbers A11, A12, A21, A22, b1, and b2, find all numbers x
and y solutions of both equations

A11x + A12y = b1, (1.1)

A21x + A22y = b2. (1.2)

These equations are called a system because there is more than one equation, and they are
called linear because the unknowns, x and y, appear as multiplicative factors with power
zero or one (for example, there is no term proportional to x2 or to y3). The row picture of
a linear system is the method of finding solutions to this system as the intersection of all
solutions to every single equation in the system. The individual equations are called row
equations, or simply rows of the system.

Example 1.1.1: Find all the numbers x and y solutions of the 2× 2 linear system

2x− y = 0, (1.3)

−x + 2y = 3. (1.4)

Solution: The solution to each row of the system above is found geometrically in Fig. 2.

2y = x+3

−3

(1,2)

y = 2x
2

1 x

first row

y second row

Figure 2. The solution of a 2 × 2 linear system in the row picture is the
intersection of the two lines, which are the solutions of each row equation.

Analytically, the solution can be found by substitution:

2x− y = 0 ⇒ y = 2x ⇒ −x + 4x = 3 ⇒
{

x = 1,

y = 2.

C

An interesting property of the solutions to any 2 × 2 linear system is simple to prove
using the row picture, and it is the following result.

Theorem 1.1.1. Given any 2×2 linear system, only one of the following statements holds:
(i) There exists a unique solution;
(ii) There exist infinitely many solutions;
(iii) There exists no solution.
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It is interesting to remark what cannot happen, for example there is no 2×2 linear system
having only two solutions. Unlike the quadratic equation x2 − 5x + 6 = 0, which has two
solutions given by x = 2 and x = 3, a 2× 2 linear system has only one solution, or infinitely
many solutions, or no solution at all. Examples of these three cases, respectively, are given
in Fig. 3.

x

y

x

y

x

y

Figure 3. An example of the cases given in Theorem 1.1.1, cases (i)-(iii).

Proof of Theorem 1.1.1: The solutions of each equation in a 2×2 linear system represents
a line in R2. Two lines in R2 can intersect at a point, or can be coincident, or can be parallel
but not coincident. These are the cases given in (i)-(iii). This establishes the Theorem. ¤

We now generalize the definition of a 2 × 2 linear system given in the Example 1.1.1 to
m equations of n unknowns.

Definition 1.1.2. An m × n linear system is a set of m > 1 linear equations in n > 1
unknowns is the following: Given the coefficients numbers Aij and the source numbers bi,
with i = 1, · · · ,m and j = 1, · · ·n, find the real numbers xj solutions of

A11x1 + · · ·+ A1nxn = b1

...
Am1x1 + · · ·+ Amnxn = bm.

Furthermore, an m × n linear system is called consistent iff it has a solution, and it is
called inconsistent iff it has no solutions.

Example 1.1.2: Find all numbers x1, x2 and x3 solutions of the 2× 3 linear system
x1 + 2x2 + x3 = 1

−3x1 − x2 − 8x3 = 2
(1.5)

Solution: Compute x1 from the first equation, x1 = 1− 2x2 − x3, and substitute it in the
second equation,

−3 (1− 2x2 − x3)− x2 − 8x3 = 2 ⇒ 5x2 − 5x3 = 5 ⇒ x2 = 1 + x3.

Substitute the expression for x2 in the equation above for x1, and we obtain

x1 = 1− 2 (1 + x3)− x3 = 1− 2− 2x3 − x3 ⇒ x1 = −1− 3x3.

Since there is no condition on x3, the system above has infinitely many solutions paramet-
rized by the number x3. We conclude that x1 = −1− 3x3, and x2 = 1+x3, while x3 is free.
C

Example 1.1.3: Find all numbers x1, x2 and x3 solutions of the 3× 3 linear system
2x1 + x2 + x3 = 2
−x1 + 2x2 = 1

x1 − x2 + 2x3 = −2.

(1.6)
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Solution: While the row picture is appropriate to solve small systems of linear equations,
it becomes difficult to carry out on 3× 3 and bigger linear systems. The solution x1, x2, x3

of the system above can be found as follows: Substitute the second equation into the first,

x1 = −1 + 2x2 ⇒ x3 = 2− 2x1 − x2 = 2 + 2− 4x2 − x2 ⇒ x3 = 4− 5x2;

then, substitute the second equation and x3 = 4− 5x2 into the third equation,

(−1 + 2x2)− x2 + 2(4− 5x2) = −2 ⇒ x2 = 1,

and then, substituting backwards, x1 = 1 and x3 = −1. We conclude that the solution is a
single point in space given by (1, 1,−1). C

The solution of each separate equation in the examples above represents a plane in R3. A
solution to the whole system is a point that belongs to the three planes. In the 3×3 system
in Example 1.1.3 above there is a unique solution, the point (1, 1,−1), which means that the
three planes intersect at a single point. In the general case, a 3×3 system can have a unique
solution, infinitely many solutions or no solutions at all, depending on how the three planes
in space intersect among them. The case with unique solution was represented in Fig. 4,
while two possible situations corresponding to no solution are given in Fig. 5. Finally, two
cases of 3× 3 linear system having infinitely many solutions are pictured in Fig 6, where in
the first case the solutions form a line, and in the second case the solutions form a plane
because the three planes coincide.

Figure 4. Planes representing the solutions of each row equation in a 3×3
linear system having a unique solution.

Figure 5. Two cases of planes representing the solutions of each row equa-
tion in 3× 3 linear systems having no solutions.

Solutions of linear systems with more than three unknowns can not be represented in the
three dimensional space. Besides, the substitution method becomes more involved to solve.
As a consequence, alternative ideas are needed to solve such systems. We now discuss one
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Figure 6. Two cases of planes representing the solutions of each row equa-
tion in 3× 3 linear systems having infinitely many solutions.

of such ideas, the use of vectors to interpret and find solutions of linear systems. In the next
Section we introduce another idea, the use of matrices and vectors to solve linear systems
following the Gauss-Jordan method. This latter procedure is suitable to solve large systems
of linear equations in an efficient way.

1.1.2. Column picture. Consider again the linear system in Eqs. (1.3)-(1.4) and introduce
a change in the names of the unknowns, calling them x1 and x2 instead of x and y. The
problem is to find the numbers x1, and x2 solutions of

2x1 − x2 = 0, (1.7)

−x1 + 2x2 = 3. (1.8)

We know that the answer is x1 = 1, x2 = 2. The row picture consisted in solving each row
separately. The main idea in the column picture is to interpret the 2 × 2 linear system as
an addition of new objects, column vectors, in the following way,[

2
−1

]
x1 +

[−1
2

]
x2 =

[
0
3

]
. (1.9)

The new objects are called column vectors and they are denoted as follows,

A1 =
[

2
−1

]
, A2 =

[−1
2

]
, b =

[
0
3

]
.

We can represent these vectors in the plane, as it is shown in Fig. 7.

x

−1

−1

b

2A

A1

x1
2

2

3

2

Figure 7. Graphical representation of column vectors in the plane.

The column vector interpretation of a 2 × 2 linear system determines an addition law
of vectors and a multiplication law of a vector by a number. In the example above, we
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know that the solution is given by x1 = 1 and x2 = 2, therefore in the column picture
interpretation the following equation must hold[

2
−1

]
+

[−1
2

]
2 =

[
0
3

]
.

The study of this example suggests that the multiplication law of a vector by numbers and
the addition law of two vectors can be defined by the following equations, respectively,[−1

2

]
2 =

[
(−1)2
(2)2

]
,

[
2
−1

]
+

[−2
4

]
=

[
2− 2
−1 + 4

]
.

The study of several examples of 2× 2 linear systems in the column picture determines the
following definition.

Definition 1.1.3. The linear combination of the 2-vectors u =
[
u1

u2

]
and v =

[
v1

v2

]
, with

the real numbers a and b, is defined as follows,

a

[
u1

u2

]
+ b

[
v1

v2

]
=

[
au1 + bv1

au2 + bv2

]
.

A linear combination includes the particular cases of addition (a = b = 1), and multipli-
cation of a vector by a number (b = 0), respectively given by,[

u1

u2

]
+

[
v1

v2

]
=

[
u1 + v1

u2 + v2

]
, a

[
u1

u2

]
=

[
au1

au2

]
.

The addition law in terms of components is represented graphically by the parallelogram
law, as it can be seen in Fig. 8. The multiplication of a vector by a number a affects the
length and direction of the vector. The product au stretches the vector u when a > 1 and
it compresses u when 0 < a < 1. If a < 0 then it reverses the direction of u and it stretches
when a < −1 and compresses when −1 < a < 0. Fig. 8 represents some of these possibilities.
Notice that the difference of two vectors is a particular case of the parallelogram law, as it
can be seen in Fig. 9.

V
v

wv

w

2

2

1 1

1

2x

(v+w)

x 1

(v+w)
2

V+W

W

a > 1

V

− V

a = −1

0 < a < 1

Va

Va

Figure 8. The addition of vectors can be computed with the parallelogram
law. The multiplication of a vector by a number stretches or compresses
the vector, and changes it direction in the case that the number is negative.

The column picture interpretation of a general 2×2 linear system given in Eqs. (1.1)-(1.2)
is the following: Introduce the coefficient and source column vectors

A1 =
[
A11

A21

]
, A2 =

[
A12

A22

]
, b =

[
b1

b2

]
, (1.10)
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− WW

V

V − W V + W
V

W

V + ( − W )

Figure 9. The difference of two vectors is a particular case of the paral-
lelogram law of addition of vectors.

and then find the coefficients x1 and x2 that change the length of the coefficient column
vectors A1 and A2 such that they add up to the source column vector b, that is,

A1 x1 + A2 x2 = b.

For example, the column picture of the linear system in Eqs. (1.7)-(1.8) is given in Eq. (1.9).
The solution of this system are the numbers x1 = 1 and x2 = 2, and this solution is
represented in Fig. 10.

x

b

2A2

A 1

x1

4

2−2

−1

2 2

2A

2A2

4

2

−1−2 x1

x

Figure 10. Representation of the solution of a 2× 2 linear system in the
column picture.

The existence and uniqueness of solutions in the case of 2 × 2 systems can be studied
geometrically in the column picture as it was done in the row picture. In the latter case we
have seen that all possible 2× 2 systems fall into one of these three cases, unique solution,
infinitely many solutions and no solutions at all. The proof was to study all possible ways
two lines can intersect on the plane. The same existence and uniqueness statement can
be proved in the column picture. In Fig. 11 we present these three cases in both row and
column pictures. In the latter case the proof is to study all possible relative positions of the
column vectors A1, A2, and b on the plane.

We see in Fig. 11 that the first case corresponds to a system with unique solution. There
is only one linear combination of the coefficient vectors A1 and A2 which adds up to b. The
reason is that the coefficient vectors are not proportional to each other. The second case
corresponds to the case of infinitely many solutions. The coefficient vectors are proportional
to each other and the source vector b is also proportional to them. So, there are infinitely
many linear combinations of the coefficient vectors that add up to the source vector. The last
case corresponds to the case of no solutions. While the coefficient vectors are proportional to
each other, the source vector is not proportional to them. So, there is no linear combination
of the coefficient vectors that add up to the source vector.
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x

y

x

y

x

y

b2

A

2x

A

1

x 1

b

2x

A 1

x 1

b

2A

2x

x 1

A 1

A 2

Figure 11. Examples of a solutions of general 2× 2 linear systems having
a unique, infinitely many, and no solution, represented in the row picture
and in the column picture.

The ideas in the column picture can be generalized to m×n linear equations, which gives
rise to the generalization to m-vectors of the definitions of linear combination presented
above.

Definition 1.1.4. The linear combination of the m-vectors u =




u1

...
um


 and v =




v1

...
vm




with the real numbers a, b is defined as follows

a




u1

...
um


 + b




v1

...
vm


 =




au1 + bv1

...
aum + bvm


 .

This definition can be generalized to an arbitrary number of vectors. Column vectors
provide a new way to denote an m× n system of linear equations.

Definition 1.1.5. An m×n linear system of m > 1 linear equations in n > 1 unknowns
is the following: Given the coefficient m-vectors A1, · · · , An and the source m-vector b, find
the real numbers x1, · · · , xn solution of the linear combination

A1x1 + · · ·+ Anxn = b.

For example, recall the 3×3 system given as the second system in Eq. (1.6). This system
in the column picture is the following: Find numbers x1, x2 and x3 such that


2
−1
1


 x1 +




1
2
−1


x2 +




1
0
2


 x3 =




2
1
−2


 . (1.11)

These are the main ideas in the column picture. We will see later that linear algebra
emerges from the column picture. In the next Section we introduce the Gauss-Jordan
method, which is a procedure to solve large systems of linear equations in an efficient way.

Further reading. For more details on the row picture see Section 1.1 in Lay’s book [2].
There is a clear explanation of the column picture in Section 1.3 in Lay’s book [2]. See also
Section 1.2 in Strang’s book [4] for a shorter summary of both the row and column pictures.
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1.1.3. Exercises.

1.1.1.- Use the substitution method to find
the solutions to the 2× 2 linear system

2x− y = 1,

x + y = 5.

1.1.2.- Sketch the three lines solution of
each row in the system

x + 2y = 2

x− y = 2

y = 1.

Is this linear system consistent?

1.1.3.- Sketch a graph representing the so-
lutions of each row in the following non-
linear system, and decide whether it
has solutions or not,

x2 + y2 = 4

x− y = 0.

1.1.4.- Graph on the plane the solution of
each individual equation of the 3×2 lin-
ear system system

3x− y = 0,

x + 2y = 4,

−x + y = −2,

and determine whether the system is
consistent or inconsistent.

1.1.5.- Show that the 3× 3 linear system

x + y + z = 2,

x + 2y + 3z = 1,

y + 2z = 0,

is inconsistent, by finding a combination
of the three equations that ads up to the
equation 0 = 1.

1.1.6.- Find all values of the constant k
such that there exists infinitely many
solutions to the 2× 2 linear system

kx + 2y = 0,

x +
k

2
y = 0.

1.1.7.- Sketch a graph of the vectors

A1 =

»
1
2

–
, A2 =

»
2
1

–
, b =

»
1
−1

–
.

Is the linear system A1x1 + A2x2 = b
consistent? If the answer is “yes,” find
the solution.

1.1.8.- Consider the vectors

A1 =

»
4
2

–
, A2 =

»−2
−1

–
, b =

»
2
0

–
.

(a) Graph the vectors A1, A2 and b on
the plane.

(b) Is the linear system A1x1+A2x2 = b
consistent?

(c) Given the vector c =

»
6
3

–
, is the

linear system A1x1 + A2x2 = c con-
sistent? If the answer is “yes,” is
the solution unique?

1.1.9.- Consider the vectors

A1 =

»
4
2

–
, A2 =

»−2
−1

–
,

and given a real number h, set c =
ˆ

2
h

˜
.

Find all values of h such that the system
A1x1 + A2x2 = c is consistent.

1.1.10.- Show that the three vectors below
lie on the same plane, by expressing the
third vector as a linear combination of
the first two, where

A1 =

2
4

1
1
0

3
5 , A2 =

2
4

1
2
1

3
5 , A3 =

2
4

1
3
2

3
5 .

Is the linear system

A1x1 + A2x2 + A3x3 = 0

consistent? If the answer is “yes,” is the
solution unique?
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1.2. Gauss-Jordan method

1.2.1. The augmented matrix. Solutions to m × n linear systems can be obtained in
an efficient way using the Gauss-Jordan method. Efficient here means to perform as few
algebraic operations as possible either to find the solution or to show that the solution does
not exist. Before introducing this method, we need several definitions.

Definition 1.2.1. The coefficients matrix, the source vector, and the augmented
matrix of the m× n linear system

A11x1 + · · ·+ A1nxn = b1

...
Am1x1 + · · ·+ Amnxn = bm,

are given by, respectively,

A =




A11 · · · A1n

...
...

Am1 · · · Amn


 , b =




b1

...
bm


 ,

[
A|b]

=




A11 · · · A1n

∣∣∣∣ b1

...
...

∣∣∣∣
...

Am1 · · · Amn

∣∣∣ bm




.

We call A an m × n matrix, with m the number of rows and n the number of columns.
The source vector b is a particular case of an m × 1 matrix. The augmented matrix of an
m×n linear system is given by the coefficient matrix and the source vector together, hence
it is an m× (n + 1) matrix.

Example 1.2.1: Find the coefficient matrix, the source vector and the augmented matrix
of the 2× 2 linear system

2x1 − x2 = 0, (1.12)

−x1 + 2x2 = 3. (1.13)

Solution: The coefficient matrix is 2 × 2, the source vector is 2 × 1, and the augmented
matrix is 2× 3, given respectively by

A =
[

2 −1
−1 2

]
, b =

[
0
3

]
, [A|b] =

[
2 −1

∣∣ 0
−1 2

∣∣ 3

]
. (1.14)

C

Example 1.2.2: Find the coefficient matrix, the source vector and the augmented matrix
of the 2× 3 linear system

2x1 − x2 = 0,

−x1 + 2x2 + 3x3 = 0.

Solution: The coefficient matrix is 2 × 3, the source vector is 2 × 1, and the augmented
matrix is 2× 4, given respectively by

A =
[

2 −1 0
−1 2 3

]
, b =

[
0
0

]
, [A|b] =

[
2 −1 0

∣∣ 0
−1 2 3

∣∣ 0

]
.

Notice that the coefficent matrix in this example is equal to the augmented matrix in the
previous Example. This means that the vertical separator in the definition of the augmented
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matrix is important. If one does not write down the vertical separator in Example 1.2.1,
then one is actually working on the system in Example 1.2.2. C

We also use the alternative notation A = [Aij ] to denote a matrix with components Aij ,
and b = [bi] to denote a vector with components bi, where i = 1, · · · ,m and j = 1, · · · , n.

Definition 1.2.2. The diagonal of an m× n matrix A = [Aij ] is the set of all coefficients
Aii for i = 1, · · · ,m. A matrix is upper triangular iff every coefficient below the diagonal
vanishes, and lower triangular iff every coefficient above the diagonal vanishes.

Example 1.2.3: Highlight the diagonal coefficients in 3× 3, 2× 3 and 3× 2 matrices.

Solution: The diagonal coefficients in the 3 × 3, 2 × 3 and 3 × 2 matrices below are
highlighted in green, where the coefficients with ∗ denote non-diagonal coefficients:


A11 ∗ ∗
∗ A22 ∗
∗ ∗ A33


 ,

[
A11 ∗ ∗
∗ A22 ∗

]
,




A11 ∗
∗ A22

∗ ∗


 .

C

Example 1.2.4: Write down the most general 3 × 3, 2 × 3 and 3 × 2 upper triangular
matrices, highlighting the diagonal elements.

Solution: The following matrices are upper triangular:


A11 ∗ ∗
0 A22 ∗
0 0 A33


 ,

[
A11 ∗ ∗
0 A22 ∗

]
,




A11 ∗
0 A22

0 0


 .

C

1.2.2. Gauss elimination operations. The Gauss-Jordan Method is a procedure per-
formed on the augmented matrix of a linear system. It consists on a sequence of operations,
called Gauss elimination operations, that change the augmented matrix of the system but
they do not change the solutions of the system. The Gauss elimination operations were
already known in China around 200 BC. We call them after Carl Friedrich Gauss, since he
made them very popular around 1810, when he used them to study the orbit of the asteroid
Pallas, giving a systematic method to solve a 6× 6 algebraic linear system.

Definition 1.2.3. The Gauss elimination operations are three operations on a matrix:
(i) To add a multiple of one row to another row;
(ii) To interchange two rows;
(iii) To multiply a row by a non-zero number.
These operations are respectively represented by the symbols given in Fig. 12.

a
a = 0

Figure 12. A representation of the Gauss elimination operations (i), (ii)
and (iii), respectively.

Remark: If the factor in operation (iii) is allowed to be zero, then multiplying an equation
by zero modifies the solutions of the original system, since such operation on an equation is
equivalent to erase that equation from the system. This explains why the factor in operation
(iii) is constrained to be non-zero.
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The Gauss elimination operations change the coefficients of the augmented matrix of a
system but do not change its solution. Two systems of linear equations having the same
solutions are called equivalent. The Gauss-Jordan Method is an algorithm using these
operations that transforms any linear system into an equivalent system where the solutions
are given explicitly. We describe the Gauss-Jordan Method only through examples.

Example 1.2.5: Find the solution of the 2× 2 linear system with augmented matrix given
in Eq. (1.14) using Gauss operations.

Solution: [
2 −1

∣∣ 0
−1 2

∣∣ 3

]
→

[
2 −1

∣∣ 0
−2 4

∣∣ 6

]
→

[
2 −1

∣∣ 0
0 3

∣∣ 6

]
→

[
2 −1

∣∣ 0
0 1

∣∣ 2

]
→

[
2 0

∣∣ 2
0 1

∣∣ 2

]
→

[
1 0

∣∣ 1
0 1

∣∣ 2

]
.

The Gauss operations have changed the augmented matrix of the original system as follows:[
2 −1

∣∣ 0
−1 2

∣∣ 3

]
→

[
1 0

∣∣ 1
0 1

∣∣ 2

]
.

Since the Gauss operations do not change the solution of the associated linear systems,
the augmented matrices above imply that the following two linear systems have the same
solutions,

2x1 − x2 = 0,

−x1 + 2x2 = 3.

}
⇔

{
x1 = 1,

x2 = 2.

On the last system the solution is given explicitly, x1 = 1, x2 = 2, since no additional
algebraic operations are needed to find the solution. C

A precise way to define the notion of an augmented matrix corresponding to a linear
system with solutions “easy to read” is captured in the notions of echelon form of a matrix,
and reduced echelon form of a matrix. Next Section is dedicated to present these notions
in some detail.

1.2.3. Square systems. In the rest of this Section we study a particular type of linear
systems having the same number of equations and unknowns.

Definition 1.2.4. An m×n linear system is called a square system iff holds that m = n.

An example of a square system is the 2 × 2 linear system in Eqs. (1.12)-(1.13). In the
rest of this Section we introduce the Gauss operations and back substitution method to find
solutions to square linear systems. We later on compare this method with the Gauss-Jordan
Method restricted to square linear systems.

We start using Gauss operations and back substitution to find solutions to square n × n
linear systems. This method has two main parts: First, use Gauss operations to transform
the augmented matrix of the system into an upper triangular form. Second, use back
substitution to compute the solution to the system.

Example 1.2.6: Use the Gauss operations and back substitution to solve the 3× 3 system

2x1 + x2 + x3 = 2
−x1 + 2x2 = 1

x1 − x2 + 2x3 = −2.

Solution: We have already seen in Example 1.1.3 that the solution of this system is given
by x1 = x2 = 1, x3 = −1. Let us find that solution using Gauss operations with back
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substitution. First transform the augmented matrix of the system into upper triangular
form: 


2 1 1

∣∣ 2
−1 2 0

∣∣ 1
1 −1 2

∣∣ −2


→




1 −1 2
∣∣ −2

−1 2 0
∣∣ 1

2 1 1
∣∣ 2


→




1 −1 2
∣∣ −2

0 1 2
∣∣ −1

0 3 −3
∣∣ 6







1 −1 2
∣∣ −2

0 1 2
∣∣ −1

0 0 −9
∣∣ 9


→




1 −1 2
∣∣ −2

0 1 2
∣∣ −1

0 0 1
∣∣ −1


 .

We now write the linear system corresponding to the last augmented matrix,

2x1 − x2 + 2x3 = −2
x2 + 2x3 = −1

x3 = −1.

We now use the back substitution to obtain the solution, that is, introduce x3 = −1 into
the second equation, which gives us x2 = 1. Then, substitute x3 = −1 and x2 = 1 into the
first equation, which gives us x1 = 1. C

We now use the Gauss-Jordan Method to find solutions to square n × n linear systems.
This is a minor modification of the Gauss operations and back substitution method. The
difference is that now we do not stop doing Gauss operations when the augmented matrix
becomes upper triangular. We keep doing Gauss operations in order to make zeros above
the diagonal. Then, back substitution will no be needed to find the solution of the linear
system. The solution will be given explicitly at the end of the procedure.

Example 1.2.7: Use the Gauss-Jordan method to solve the same 3× 3 linear system as in
Example 1.2.6, that is,

2x1 + x2 + x3 = 2
−x1 + 2x2 = 1

x1 − x2 + 2x3 = −2.

Solution: In Example 1.2.6 we performed Gauss operations on the augmented matrix of
the system above until we obtained an upper triangular matrix, that is,


2 1 1

∣∣ 2
−1 2 0

∣∣ 1
1 −1 2

∣∣ −2


→




1 −1 2
∣∣ −2

0 1 2
∣∣ −1

0 0 1
∣∣ −1


 .

The idea now is to continue with Gauss operations, as follows:



1 −1 2
∣∣ −2

0 1 2
∣∣ −1

0 0 1
∣∣ −1


→




1 0 4
∣∣ −3

0 1 2
∣∣ −1

0 0 1
∣∣ −1


→




1 0 0
∣∣ 1

0 1 0
∣∣ 1

0 0 1
∣∣ −1


 ⇒





x1 = 1,

x2 = 1,

x3 = −1.

In the last step we do not need to do back substitution to compute the solution. It is
obtained without doing any further algebraic operation. C

Further reading. Almost every linear algebra book describes the Gauss-Jordan method.
See Section 1.2 in Lay’s book [2] for a summary of echelon forms and the Gauss-Jordan
method. See Sections 1.2 and 1.3 in Meyer’s book [3] for more details on Gauss elimination
operations and back substitution. Also see Section 1.3 in Strang’s book [4].
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1.2.4. Exercises.

1.2.1.- Use Gauss operations and
back substitution to find the
solution of the 3×3 linear sys-
tem

x1 + x2 + x3 = 1,

x1 + 2x2 + 2x3 = 1,

x1 + 2x2 + 3x3 = 1.

1.2.2.- Use Gauss operations and
back substitution to find the
solution of the 3×3 linear sys-
tem

2x1 − 3x2 = 3,

4x1 − 5x2 + x3 = 7,

2x1 − x2 − 3x3 = 5.

1.2.3.- Find the solution of the
following linear system with
Gauss-Jordan’s method,

4x2 − 3x3 = 3,

−x1 + 7x2 − 5x3 = 4,

−x1 + 8x2 − 6x3 = 5.

1.2.4.- Find the solutions to the following two linear
systems, which have the same matrix of coefficient
A but different source vectors b1 and b2, given
respectively by,

4x1 − 8x2 + 5x3 = 1,

4x1 − 7x2 + 4x3 = 0,

3x1 − 4x2 + 2x3 = 0,

4x1 − 8x2 + 5x3 = 0,

4x1 − 7x2 + 4x3 = 1,

3x1 − 4x2 + 2x3 = 0.

Solve these two systems at one time using the
Gauss-Jordan method on an augmented matrix
of the form [A|b1|b2].

1.2.5.- Use the Gauss-Jordan method to solve the fol-
lowing three linear systems at the same time,

2x1 − x2 = 1, = 0, = 0,

−x1 + 2x2 − x3 = 0, = 1, = 0,

−x2 + x3 = 0, = 0, = 1.
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1.3. Echelon forms

1.3.1. Echelon and reduced echelon forms. The Gauss-Jordan method is a procedure
that uses Gauss operations to transform the augmented matrix of an m × n linear system
into the augmented matrix of an equivalent system whose solutions can be found without
performing further algebraic operations. A precise way to define the notion of a linear system
with solutions that can be found without doing further algebraic operations is captured in
the notions of echelon form and reduced echelon form of its augmented matrix.

Definition 1.3.1. An m× n matrix is in echelon form iff the following conditions hold:

(i) The zero rows are located at the bottom rows of the matrix;
(ii) The first non-zero coefficient on a row is always to the right of the first non-zero

coefficient of the row above it.

The pivot coefficient is the first non-zero coefficient on every non-zero row in a matrix in
echelon form.

Example 1.3.1: The 6× 8, 3× 5 and 3× 3 matrices given below are in echelon form, where
pivots are highlighted and the ∗ means any non-zero number.




∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




,




∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 0 0


 ,




∗ ∗ ∗
0 ∗ ∗
0 0 ∗


 .

C

Example 1.3.2: The following matrices are in echelon form, with pivots highlighted:

[
1 3
0 1

]
,

[
2 3 2
0 4 −2

]
,



2 1 1
0 3 4
0 0 0


 .

C

Definition 1.3.2. An m×n matrix is in reduced echelon form iff the matrix is in echelon
form and the following two conditions hold:

(i) The pivot coefficient is equal to 1;
(ii) The pivot coefficient is the only non-zero coefficient in that column.

We denote by EA a reduced echelon form of a matrix A.

Example 1.3.3: The 6× 8, 3× 5 and 3× 3 matrices given below are in echelon form, where
pivots are highlighted and the ∗ means any non-zero number.




1 ∗ 0 0 ∗ ∗ 0 ∗
0 0 1 0 ∗ ∗ 0 ∗
0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




,



1 ∗ 0 ∗ ∗
0 0 1 ∗ ∗
0 0 0 0 0


 ,



1 0 0
0 1 0
0 0 1


 .

C
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Example 1.3.4: And the following matrices are not only in echelon form but also in reduced
echelon form; again, pivot coefficients are highlighted:

[
1 0
0 1

]
,

[
1 0 4
0 1 5

]
,



1 0 0
0 1 0
0 0 0


 .

C

Summarizing, the Gauss-Jordan method uses Gauss operations to transform the aug-
mented matrix of a linear system into reduced echelon form. Then, the solutions of the
linear system can be obtained without doing further algebraic operations.

Example 1.3.5: Consider a 3 × 3 linear system with augmented matrix having a reduced
echelon form given below. Then, the solution of this linear system is simple to obtain:




1 0 0
∣∣ −1

0 1 0
∣∣ 3

0 0 1
∣∣ 2


 ⇒





x1 = −1
x2 = 3
x3 = 2.

C

We use the notation EA for a reduced echelon form of an m×n matrix A, since a reduced
echelon form of a matrix has an important property: It is unique. We state this property
in Proposition 1.3.3 below. Since the proof is somehow involved, after the proof we show a
different proof for the particular case of 2× 2 matrices.

Proposition 1.3.3. The reduced echelon EA form of an m× n matrix A is unique.

Proof of Proposition 1.3.3: We assume that there exists an m× n matrix A having two
reduced echelon forms EA and ÊA, and we will show that EA = ÊA. Introduce the column
vector notation for matrices (see Sect. 1.4) and for vectors (see Sect. 1.4), respectively,

A =
[
A1, · · · , An

]
, EA =

[
E1, · · · , En

]
, ÊA =

[
Ê1, · · · , Ên

]
, x =




x1

...
xn


 .

If the reduced echelon forms EA and ÊA were different, then they should start differing at a
particular column, say column i, with 1 6 i 6 n. That is, there would be vectors Ei and Êi

satisfying Ei 6= Êi and Ej = Êj for j = 1, · · · , (i− 1). The proof of Proposition 1.3.3 reduces
to show that this is not the case, by studying the following two cases:
(a) The vector of one of the reduced echelon form matrices, say the column vector Ei of EA,

does not contain a pivot coefficient.
(b) Both vectors Ei and Êi do contain a pivot coefficient.

Consider the case in (a). The definition of reduced echelon form implies that the vector
Ei = [ej ] has non-zero components among the first k components, with 0 6 k < i, hence,
ej = 0 for j = (k + 1), · · · , n. Furthermore, the definition of reduced echelon form also
implies that there are k columns to the left of vector Ei with pivot coefficients. Let us
denote these columns by Epj , for j = 1, · · · , k. We use a new subindex pj , since the k
columns need not be the first k columns. This information about the reduced echelon form
matrix EA can be translated into a vector x solution of the linear system with augmented
matrix

[
EA

∣∣0]
. This solution is the vector x = [xj ] with non-zero components xpj = ej for

j = 1, · · · , k, and xi = −1, while the rest of the components vanish, since the following
equations hold,

e1Ep1 + · · ·+ ekEpk
+ (−1)Ei = 0 ⇔ xp1Ep1 + · · ·+ xpk

Epk
+ xiEi = 0.
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Recall now that the solution of a linear system is not changed when Gauss operations are
performed on the coefficient matrix. Since Gauss operations change EA → A → ÊA, the
same vector x above is solution of the linear system with augmented matrix

[
ÊA

∣∣0]
, that is,

xp1 Êp1 + · · ·+ xpk
Êpk

+ xiÊi = 0 ⇔ e1Êp1 + · · ·+ ekÊpk
+ (−1)Êi = 0.

Since Ej = Êj for j = 1, · · · , k, the second equation above implies that Ei = Êi also holds.
We conclude that the first vector in EA that differs from a vector in ÊA cannot be a vector
without pivot coefficients.

Consider the case in (b), that is, if Ei and Êi are the first vectors from EA and ÊA,
respectively, which are different, then both vectors have pivot coefficients. (If only one of
these vectors had a pivot coefficient, then the argument in case (a) on the vector without
pivot coefficient would imply that the first vector could not have a pivot coefficient.) Suppose
that the vector Ei = [ej ] has the pivot coefficient at the position k0, that is, ej = 0 for j 6= k)

and ek0 = 1. Similarly, suppose that the vector Êi = [êj ] has the pivot coefficient at the
position k1, that is, êj = 0 for j 6= k) and êk1 = 1. By definition of reduced echelon form
all rows in EA above the k0 row have pivots columns to the left of Ei. This statement also
applies to matrix ÊA, since Êi is the first column that differs from EA. Therefore k0 6 k1.
The exactly same argument also applies to matrix ÊA concluding that k1 6 k0. Therefore,
k0 = k1, and so, Ei = Êi. We conclude that the first vector in EA that differs from a vector
in ÊA cannot be a vector with pivot a coefficient. Therefore, parts (a) and (b) establish the
Proposition. ¤

The proof above is not straightforward to understand, so it might be a good idea to
present a simpler proof for the particular case of 2× 2 matrices.
Alternative proof of Proposition 1.3.3 in the case of 2 × 2 matrices: We start
recalling once again the following observation that holds for any m × n matrix A: Since
Gauss operations do not change the solutions of the homogeneous system [A|0], if a matrix
A has two different reduced echelon forms, EA and ẼA, then the set of solutions of the systems
[EA|0] and [ẼA|0] must coincide with the solutions of the system [A|0]. What we are going to
show now is the following: All possible 2× 2 reduced echelon form matrices E have different
solutions to the homogeneous equation [E|0]. This property then establishes that every 2×2
matrix A has a unique reduced echelon form.

Given any 2× 2 matrix A, all possible reduced echelon forms are the following:

EA =
[
1 c
0 0

]
, c ∈ R, EA =

[
0 1
0 0

]
, EA =

[
1 0
0 1

]
.

We claim that all these matrices determine different sets of solutions to the equation [EA|0].
In the first case, the set of solutions are lines given by

x1 = −c x2, c ∈ R. (1.15)

In the second case, the set of solutions is a single line given by

x2 = 0, x1 ∈ R.

Notice that this line does not belong to the set given in Eq. (1.15). In the third case, the
solution is a single point

x1 = 0, x2 = 0.

Since all these sets of solutions are different, and only one corresponds to the equation
[A|0], then there is only one reduced echelon form EA for matrix A. This establishes the
Proposition for 2× 2 matrices. ¤
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While the reduced echelon form of a matrix is unique, a matrix may have many different
echelon forms. Also notice that given a matrix A, there are many different sequences of
Gauss operations that produce the reduced echelon form EA, as it is sketched in Fig. 13.

A EA

Different Gauss operation

schemes

Figure 13. The reduced echelon form of a matrix can be obtained in many
different ways.

Example 1.3.6: Use two different sequences of Gauss operations to find the reduced echelon
form of matrix

A =
[
2 4 10
1 3 7

]

Solution: Here are two different sequences of Gauss operations to find EA:

A =
[
2 4 10
1 3 7

]
→

[
1 2 5
1 3 7

]
→

[
1 2 5
0 1 2

]
→

[
1 0 1
0 1 2

]
= EA,

A =
[
2 4 10
1 3 7

]
→

[
1 3 7
2 4 10

]
→

[
1 2 5
0 −2 −4

]
→

[
1 2 5
0 1 2

]
→

[
1 0 1
0 1 2

]
= EA.

The matrix EA is the same using the two Gauss operation sequences above. C

1.3.2. The rank of a matrix. Since the reduced echelon form EA of an m × n matrix A
is unique, any property of matrix EA is indeed a property of matrix A. In particular, the
uniqueness of EA implies that the number of pivots of EA is also unique. This number is a
property of matrix A, and we give that number a name, since it will be important later on.

Definition 1.3.4. The rank of an m× n matrix A, denoted as rank(A), is the number of
pivots in its reduced echelon form EA.

Example 1.3.7: Find the rank of the coefficient matrix and all solutions of the linear system

x1 + 3x3 = −1
x2 − 2x3 = 3

2x1 + x2 + 4x3 = 1.

Solution: The 3× 3 system has an augmented matrix with reduced echelon form



1 0 3
∣∣ −1

0 1 −2
∣∣ 3

2 1 4
∣∣ 1


→




1 0 3
∣∣ −1

0 1 −2
∣∣ 3

0 0 0
∣∣ 0




Since the reduced echelon form of the coefficient matrix has two pivots, we obtain that the
coefficient matrix has rank two. The solutions of the linear system can be obtained without
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any further calculations, since the coefficient matrix is already in reduced echelon form.
These solutions are the following,




1 0 3
∣∣ −1

0 1 −2
∣∣ 3

0 0 0
∣∣ 0


 ⇒





x1 = −1− 3x3,

x2 = 3 + 2x3,

x3 : free variable.

We call x3 a free variable, since there is a solution for every value of this variable. C

Definition 1.3.5. A variable in a linear system is called a free variable iff there is a
solution of the linear system for every value of that variable.

In Example 1.3.7 the free variable is x3, since for every value of x3 the other two variables
x1 and x2 are fixed by the system. Notice that only the number of free variables is relevant,
but not which particular variable is the free one. In the following example we express the
solutions in Example 1.3.7 in terms of x1 as a free variable.

Example 1.3.8: Express the solutions in Example 1.3.7 in terms of x1 as a free variable.

Solution: The solutions given in Example 1.3.7 can also be expressed as

x1 : free variable,

x2 = 3 +
2
3

(−1− x1),

x3 =
1
3

(−1− x1).

C

As the reader may have noticed there is a relation between the rank of the coefficient
matrix and the number of free variables in the solution of the linear system.

Theorem 1.3.6. The number of free variables in the solutions of an m×n consistent linear
system with augmented matrix [A|b] is given by

(
n− rank(A)

)
.

Proof of Theorem 1.3.6: The number of non-pivots columns in EA is actually the number
of variables not fixed by the linear system with augmented matrix [A|b]. The number of non-
pivot columns is the total number of columns minus the pivot columns, that is,

(
n−rank(A)

)
.

This establishes the Theorem. ¤
We saw in Example 1.3.7 that the 3 × 3 coefficient matrix has rank(A) = 2. Since the

system has n = 3 variables, we conclude, without actually computing the solution, that the
solution has n− rank(A) = 3 = 2 = 1 free variable. The free variable can be any variable in
the system. The relevant information is that there is one free variable.

Example 1.3.9: We now present three examples of consistent linear systems.
(i) Show that the 2 × 2 linear system below is consistent with coefficient matrix having

rank one and solutions having one free variable,

2x1 − x2 = 1

−1
2

x1 +
1
4

x1 = −1
4
.

Solution: Gauss operations transform the augmented matrix of the system as follows,[
2 −1

∣∣ 1
−1/2 1/4

∣∣ −1/4

]
→

[
2 −1

∣∣ 1
0 0

∣∣ 0

]
.

The system is consistent, has rank one, and has a free variable, hence the system has
infinitely many solutions.
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(ii) Show that the 2 × 3 linear system below is consistent with coefficient matrix having
rank two and solution having one free variable,

x1 + 2x2 + 3x3 = 1,

3x1 + 5x2 + 2x3 = 2.

Solution: Perform the following Gauss operations on the augmented matrix,
[
1 2 3

∣∣ 1
3 5 2

∣∣ 2

]
→

[
1 2 3

∣∣ 1
0 −1 −7

∣∣ −1

]
→

[
1 0 −11

∣∣ −1
0 1 7

∣∣ 1

]
.

We see that the 2× 3 system has rank two, hence one free variable.
(iii) Show that the 3 × 2 linear system below is consistent with coefficient matrix having

rank two and solution having no free variables,

x1 + 3x2 = 2,

2x1 + 2x2 = 0,

3x1 + x2 = −2.

Solution: Perform the following Gauss operations on the augmented matrix,



1 3
∣∣ 2

2 2
∣∣ 0

3 1
∣∣ −2


→




1 3
∣∣ 2

0 −4
∣∣ −4

0 −8
∣∣ −8


→




1 0
∣∣ −1

0 1
∣∣ 1

0 0
∣∣ 0


 .

We see that the 3× 2 system has rank two, hence no free variables. C

1.3.3. Inconsistent linear systems. Not every linear system has solutions. We now use
both the reduced echelon form of the coefficent matrix and of the augmented matrix to
characterize inconsistent linear systems. We start with an example.

Example 1.3.10: Show that the following 2× 2 linear system has no solutions,

2x1 − x2 = 0 (1.16)

−1
2

x1 +
1
4

x1 = −1
4
. (1.17)

Solution: One way to see that there is no solution is the following: Multiplying the second
equation by −4 one obtains the equation

2x1 − x2 = 1,

whose solutions form a parallel line to the line given in Eq. (1.16). Therefore, the system
in Eqs. (1.16)-(1.17) has no solution. A second way to see that the system above has no
solution is using Gauss operations. The system above has augmented matrix

[
2 −1

∣∣ 0
− 1

2
1
4

∣∣ − 1
4

]
→

[
2 −1

∣∣ 0
0 0

∣∣ 1

]
.

The echelon form above corresponds to the linear system

2x1 − x2 = 0
0 = 1.

The solutions of this second system coincide with the solutions of Eqs. (1.16)-(1.17). Since
the second system has no solution, the system in Eqs. (1.16)-(1.17) has no solution. C

This example is a particular cases of the following result.
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Theorem 1.3.7. An m × n linear system with augmented matrix [A|b] is inconsistent iff
the reduced echelon form of its augmented matrix contains a row of the form [0, · · · , 0 | 1];
equivalently rank(A) < rank(A|b). Furthermore, a consistent system contains:

(i) A unique solution iff it has no free variables; equivalently rank(A) = n.
(ii) Infinitely many solutions iff it has at least one free variable; equivalently rank(A) < n.

This Theorem says that a system is inconsistent iff its augmented matrix has a pivot in the
source vector column, which is the last column in an augmented matrix. In that case the
system includes an equation of the form 0 = 1, which has no solution.

The idea of the proof if this Theorem is to study all possible reduced echelon forms EA of
an arbitrary matrix A, and then to study all possible augmented matrices [EA|c]. One then
concludes that there are three main cases, no solutions, unique solutions, or infinitely many
solutions.
Proof of Theorem 1.3.7: We only give the proof in the case of 3× 3 linear systems. The
reduced echelon form EA of a 3 × 3 matrix A determines a 3 × 4 augmented matrix [EA|c].
There are 14 possible forms for this matrix. We start with the case of three pivots:




1 0 0
∣∣ ∗

0 1 0
∣∣ ∗

0 0 1
∣∣ ∗


 ,




1 0 ∗ ∣∣ ∗
0 1 ∗ ∣∣ ∗
0 0 0

∣∣ 1


 ,



1 ∗ 0

∣∣ ∗
0 0 1

∣∣ ∗
0 0 0

∣∣ 1


 ,




0 1 0
∣∣ ∗

0 0 1
∣∣ ∗

0 0 0
∣∣ 1


 .

In the first case we have a unique solution, and rank(A) = 3. The other three cases cor-
respond to no solutions. We now continue with the case of two pivots, which contains six
possibilities, with the first three given by




1 0 ∗
∣∣ ∗

0 1 ∗
∣∣ ∗

0 0 0
∣∣ 0


 ,




1 ∗ 0
∣∣ ∗

0 0 1
∣∣ ∗

0 0 0
∣∣ 0


 ,




0 1 0
∣∣ ∗

0 0 1
∣∣ ∗

0 0 0
∣∣ 0


 ,

which correspond to infinitely many solutions, with one free variable, rank(A) = 2. The
other three possibilities are given by




1 ∗ ∗ ∣∣ ∗
0 0 0

∣∣ 1
0 0 0

∣∣ 0


 ,




0 1 ∗ ∣∣ ∗
0 0 0

∣∣ 1
0 0 0

∣∣ 0


 ,




0 0 1
∣∣ ∗

0 0 0
∣∣ 1

0 0 0
∣∣ 0


 ;

which correspond to no solution. Finally, we have the case of one pivot. It contains four
possibilities, the first three of them are given by




1 ∗ ∗ ∣∣ ∗
0 0 0

∣∣ 0
0 0 0

∣∣ 0


 ,




0 1 ∗ ∣∣ ∗
0 0 0

∣∣ 0
0 0 0

∣∣ 0


 ,




0 0 1
∣∣ ∗

0 0 0
∣∣ 0

0 0 0
∣∣ 0


 ;

which correspond to infinitely many solutions, with two free variables and rank(A) = 1. The
last possibility is the trivial case




0 0 0
∣∣ 1

0 0 0
∣∣ 0

0 0 0
∣∣ 0


 ,

which has no solutions. This establishes the Theorem for 3× 3 linear systems. ¤

Example 1.3.11: Sow that the 2× 2 linear system below is inconsistent:

2x1 − x2 = 1

−1
2

x1 +
1
4

x1 = −1
4
.
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Solution: The proof of the statement above is the following: Gauss-Jordan operations
transform the augmented matrix of the system as follows,[

2 −1
∣∣ 0

− 1
2

1
4

∣∣ − 1
4

]
→

[
2 −1

∣∣ 0
0 0

∣∣ − 1
4

]
→

[
2 −1

∣∣ 0
0 0

∣∣ 1

]
.

Since there is a line of the form [0, 0|1], the system is inconsistent. We can also say that the
coefficient matrix has rank one, but the definition of free variables does not apply, since the
system is inconsistent. C

Example 1.3.12: Find all numbers h and k such that the system below has only one, many,
or no solutions,

x1 + hx2 = 1
x1 + 2x2 = k.

Solution: Start finding the associated augmented matrix and reducing it into echelon form,[
1 h

∣∣ 1
1 2

∣∣ k

]
→

[
1 h

∣∣ 1
0 2− h

∣∣ k − 1

]
.

Suppose h 6= 2, for example set h = 1, then[
1 1

∣∣ 1
0 1

∣∣ k − 1

]
→

[
1 0

∣∣ 2− k
0 1

∣∣ k − 1

]
,

so the system has a unique solution for all values of k. (The same conclusion holds if one
sets h to any number different of 2.) Suppose now that h = 2, then,[

1 2
∣∣ 1

0 0
∣∣ k − 1

]
.

If k = 1 then [
1 2

∣∣ 1
0 0

∣∣ 0

]
⇒

{
x1 = 1− 2x2,

x2 : free variable.
so there are infinitely many solutions. If k 6= 1, the system is inconsistent, since[

1 2
∣∣ 1,

0 0
∣∣ k − 1 6= 0.

]

Summarizing, for h 6= 2 the system has a unique solution for every k. If h = 2 and k = 1
the system has infinitely many solutions, if h = 2 and k 6= 1 the system has no solution. C

Further reading. See Sections 2.1, 2.2 and 2.3 in Meyer’s book [3] for a detailed discussion
on echelon forms and rank, reduced echelon forms and inconsistent systems, respectively.
Again, see Section 1.2 in Lay’s book [2] for a summary of echelon forms and the Gauss-
Jordan method. Section 1.3 in Strang’s book [4] also helps.
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1.3.4. Exercises.

1.3.1.- Find the rank and the pivot columns
of the matrix

A =

2
4

1 2 1 1
2 4 2 2
3 6 3 4

3
5 .

1.3.2.- Find all the solutions x of the linear
system Ax = 0, where the matrix A is
given by

A =

2
4

1 2 1 3
2 1 −1 0
1 0 0 1

3
5

1.3.3.- Find all the solutions x of the linear
system Ax = b, where the matrix A and
the vector b are given by

A =

2
4

1 2 4
2 −1 −7
3 2 0

3
5 , b =

2
4

3
−4
1

3
5 .

1.3.4.- Construct a 3 × 4 matrix A and 3-
vectors b, c, such that [A|b] is the aug-
mented matrix of a consistent system
and [A|c] is the augmented matrix of an
inconsistent system.

1.3.5.- Let A be an m × n matrix having
rank(A) = m. Explain why the system
with augmented matrix [A|b] is consis-
tent for every m-vector b.

1.3.6.- Consider the following system of lin-
ear equations, where k represents any
real number,

2x1 + kx2 = 1,

−4x1 + 2x2 = 4.

(a) Find all possible values of the num-
ber k such that the system above is
inconsistent.

(b) Set k = 2. In this case, find the

solution x =

»
x1

x2

–
.
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1.4. Non-homogeneous equations

In this Section we introduce the definitions of homogeneous and non-homogeneous linear
systems and discuss few relations between their solutions. We start, however, introducing
new notation. We first define a vector form for the solution of a linear system and we then
introduce a matrix-vector product in order to express a linear system in a compact way. One
advantage of this notation appears in this Section: It is simple to realize that solutions of a
non-homogeneous linear system are translations of solutions of the associated homogeneous
system. A somehow deeper insight on the relation between matrices and vectors can be
obtained from the matrix-vector product, which will be discussed in the next Chapter. Here
we can summarize this insight as follows: A matrix can be thought as a function acting on
the space of vectors.

1.4.1. Matrix-vector product. We start generalizing the vector notation to include the
unknowns of a linear system. First, recall that given an m× n linear system

A11x1 + · · ·+ A1nxn = b1, (1.18)
...

Am1x1 + · · ·+ Amnxn = bm, (1.19)

we have introduced the m×n coefficients matrix A = [Aij ] and the source m-vector b = [bi],
where i = 1, · · · ,m and j = 1, · · · , n. Now, introduce the unknown n-vector x = [xj ]. The
matrix A and the vectors b, x can be used to express a linear system if we introduce an
operation between a matrix and a vector. The result of this operation must be the left-hand
side in Eqs. (1.18)-(1.19).

Definition 1.4.1. The matrix-vector product of an m × n matrix A = [Aij ] and an
n-vector x = [xj ], where i = 1, · · · , m an j = 1, · · · , n, is the m-vector

Ax =




A11 · · · A1n

...
...

An1 · · · Ann







x1

...
xn


 =




A11x1 + · · ·+ A1nxn

...
Am1x1 + · · ·+ Amnxn


 .

We now use the matrix, vectors above together with the matrix-vector product to express
a linear system in a compact notation.

Theorem 1.4.2. Given the algebraic linear system in Eqs. (1.18)-(1.19), introduce the
coefficient matrix A, the unknown vector x, and the source vector b, as follows,

A =




A11 · · · A1n

...
...

An1 · · · Ann


 , x =




x1

...
xn


 , b =




b1

...
bn


 .

Then, the algebraic linear system can be written as

Ax = b.

Proof of Theorem 1.4.2: From the definition of the matrix-vector product we have that

Ax =




A11 · · · A1n

...
...

An1 · · · Ann







x1

...
xn


 =




A11x1 + · · ·+ A1nxn

...
An1x1 + · · ·+ A1nxn


 .
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Then, we conclude that
A11x1 + · · ·+ A1nxn = b1,

...
An1x1 + · · ·+ Annxn = bn,





⇔




A11x1 + · · ·+ a1nxn

...
An1x1 + · · ·+ A1nxn


 =




b1

...
bn


 ⇔ Ax = b.

¤
Therefore, an m × n linear system with augmented matrix [A|b] can now be expressed

as using the matrix-vector product as Ax = b, where x is the variable n-vector and b is the
usual source m-vector.

Example 1.4.1: Use the matrix-vector product to express the linear system

2x1 − x2 = 3,

−x1 + 2x2 = 0.

Solution: The matrix of coefficient A, the variable vector x and the source vector b are
respectively given by

A =
[

2 −1
−1 2

]
, x =

[
x1

x2

]
, b =

[
3
0

]
.

The coefficient matrix can be written as

A =
[

2 −1
−1 2

]
=

[
A:1, A:2

]
, A:1 =

[
2
−1

]
, A:2 =

[−1
2

]
.

The linear system above can be written in the compact way Ax = b, that is,[
2 −1
−1 2

] [
x1

x2

]
=

[
3
0

]
.

We now verify that the notation above actually represents the original linear system:[
3
0

]
=

[
2 −1
−1 2

] [
x1

x2

]
=

[
2
−1

]
x1 +

[−1
2

]
x2 =

[
2x1

−x1

]
+

[−x2

2x2

]
=

[
2x1 − x2

−x1 + 2x2

]
,

which indeed is the original linear system. C

Example 1.4.2: Use the matrix-vector product to express the 2× 3 linear system

2x1 − 2x2 + 4x3 = 6,

x1 + 3x2 + 2x3 = 10.

Solution: The matrix of coefficients A, variable vector x and source vector b are given by

A =
[
2 −2 4
1 3 2

]
, x =




x1

x2

x3


 , b =

[
6
10

]
.

Therefore, the linear system above can be written as Ax = b, that is,
[
2 −2 4
1 3 2

] 


x1

x2

x3


 =

[
6
10

]
.

We now verify that this notation reproduces the linear system above:
[

6
10

]
=

[
2 −2 4
1 3 2

] 


x1

x2

x3


 =

[
2
1

]
x1 +

[−2
3

]
x2 +

[
4
2

]
x3 =

[
2x1 − 2x2 + 4x3

x1 + 3x2 + 2x3

]
,
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which indeed is the linear system above. C

Example 1.4.3: Use the matrix-vector product to express the 3× 2 linear system

x1 − x2 = 0,

−x1 + x2 = 2,

x1 + x2 = 0.

Solution: Using the matrix-vector product we get



1 −1
−1 1
1 1




[
x1

x2

]
=



0
2
0


 .

We now verify that the notation above actually represents the original linear system:



0
2
0


 =




1 −1
−1 1
1 1




[
x1

x2

]
=




1
−1
1


 x1 +



−1
1
1


 x2 =




x1 − x2

−x1 + x2

x1 + x2


 ,

which is indeed the linear system above. C

1.4.2. Linearity of matrix-vector product. Introduce a column-vector notation for the
coefficient matrix, that is,

A =




A11 · · · A1n

...
...

Am1 · · · Amn


 =

[
A:1, · · · ,A:n

]
,

where A:j is the j-th column of the coefficient matrix A. Using this notation we can rewrite
a matrix-vector product as a linear combination of the matrix column vectors A:j . This is
our first result.

Theorem 1.4.3. The matrix-vector product of an m×n matrix A =
[
A:1, · · · , A:n

]
and an

n-vector x = [xi] can be written as follows,

Ax = A:1x1 + · · ·+ A:nxn.

Proof of Theorem 1.4.3: Write down the matrix-vector product of the m × n matrix
A = [Aij ] and the n-vector x = [xj ], that is,

Ax =




A11 · · · A1n

...
...

Am1 · · · Amn







x1

...
xn


 =




A11x1 + · · ·+ A1nxn

...
Am1x1 + · · ·+ Amnxn


 =




A11x1

...
Am1x1


+ · · ·+




A1nxn

...
Amnxn


 .

The expression on the far right can be rewritten as

Ax =




A11

...
Am1


 x1 + · · ·+




A1n

...
Amn


 xn ⇒ Ax = A:1x1 + · · ·+ A:nxn.

This establishes the Theorem. ¤
We are now ready to show that the matrix-vector product has an important property: It

preserves the linear combination of vectors. We say that the matrix-vector vector is a linear
operation. This property is summarized below.
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Theorem 1.4.4. For every m× n matrix A, every n-vectors x, y and for every numbers a,
b, the matrix-vector product satisfies that

A(ax + by) = aAx + bAy.

In words, the Theorem says that the matrix-vector product of a linear combination of vectors
is the linear combination of the matrix-vector products. The expression above contains the
particular cases a = b = 1 and b = 0, which are respectively given by

A(x + y) = Ax + Ay, A(ax) = aAx.

Proof of Theorem 1.4.4: From the definition of the matrix-vector product we see that:

A(ax + by) = [A:1, · · · , A:n]




ax1 + by1

...
axn + byn


 = A:1(ax1 + by1) + · · ·+ A:n(axn + byn).

Reorder terms in the expression above to get,

A(ax + by) = a
(
A:1x1 + · · ·+ A:nxn

)
+ b

(
A:1y1 + · · ·+ A:nyn

)
= a Ax + b Ay.

This establishes the Theorem. ¤

1.4.3. Homogeneous linear systems. All possible linear systems can be classified into
two main classes, homogeneous and non-homogeneous, depending whether the source vector
vanishes or not. This classification will be useful to express solutions of non-homogeneous
systems in terms of solutions of the associated homogeneous system.

Definition 1.4.5. The m×n linear system Ax = b is called homogeneous iff it holds that
b = 0; and is called non-homogeneous iff it holds that b 6= 0.

Every m × n homogeneous linear system has at least one solution, given by x = 0,
called the trivial solution of the homogeneous system. The following example shows that
homogeneous linear systems can also have non-trivial solutions.

Example 1.4.4: Find all solutions of the system Ax = 0, with coefficient matrix

A =
[−2 4

1 −2

]
.

Solution: The linear system above can be written in the usual way as follows,

−2x1 + 4x2 = 0, (1.20)

x1 − 2x2 = 0. (1.21)

The solution of this system can be found performing the Gauss elimination operations
[−2 4

1 −2

]
→

[−2 4
0 0

]
→

[
1 −2
0 0

]
⇒

{
x1 = 2x2,

x2 : free variable.

We see above that the coefficient matrix of this system has rank one, so the solutions have
one free variable. The set of all solutions of the linear system above is given by

x =
[
x1

x2

]
=

[
2x2

x2

]
=

[
2
1

]
x2, x2 ∈ R.

We conclude that the set of all solutions of this linear system can be identified with the set
of points that belong to the line shown in Fig. 14. C

It is also possible that an homogeneous linear system has only the trivial solution, like
the following example shows.
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1
2

1

2
1

2x

x

Figure 14. We plot the solutions of the homogeneous linear system given
in Eqs. (1.20)-(1.21).

Example 1.4.5: Find all solutions of the system Ax = 0 with coefficient matrix

A =
[

2 −1
−1 2

]
.

Solution: The linear system above can be written in the usual way as follows,

2x1 − x2 = 0,

−x1 + 2x2 = 0.

The solutions of this system can be found performing the Gauss elimination operations
[

2 −1
−1 2

]
→

[
1 −2
2 −1

]
→

[
1 −2
0 3

]
→

[
1 0
0 1

]
⇒

{
x1 = 0,

x2 = 0.

We see that the coefficient matrix of this system has rank two, so the solutions have no free
variable. The solution is unique and is the trivial solution x = 0. C

Examples 1.4.4 and 1.4.5 are particular cases of the following statement: An m × n
homogeneous linear system has non-trivial solutions iff the system has at least one free
variable. We show more examples of this statement.

Example 1.4.6: Find all solutions of the 2 × 3 homogeneous linear system Ax = 0 with
coefficient matrix

A =
[
2 −2 4
1 3 2

]
.

Solution: The linear system above can be written in the usual way as follows,

2x1 − 2x2 + 4x3 = 0, (1.22)

x1 + 3x2 + 2x3 = 0. (1.23)

The solutions of system above can be obtained through the Gauss elimination operations

[
1 3 2
2 −2 4

]
→

[
1 3 2
0 −8 0

]
→

[
1 0 2
0 1 0

]
⇒





x1 = −2x3,

x2 = 0,

x3 : free variable.

The set of all solutions of the linear system above can be written in vector notation,

x =




x1

x2

x3


 =



−2x3

0
x3


 =



−2
0
1


 x3, x3 ∈ R.
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In Fig. 15 we emphasize that the solution vector x belongs to the space R3, while the column
vectors of the coefficient matrix of this same system belong to the space R2. C

−2

x

x

3x

2

1

x1

221

A1

3

1

2

3

1 2 3 4 1

A

−2 −1 y

2
y

2A

Figure 15. The picture on the left represents the solutions of the ho-
mogeneous linear system given in Eq. (1.22)-(1.23), which are 3-vectors,
elements in R3. The picture on the right represents the column vectors of
the coefficient matrix in this system which are 2-vectors, elements in R2.

Example 1.4.7: Find all solutions to the linear system Ax = 0, with coefficient matrix

A =
[
1 3 4
2 6 8

]
.

Solution: We only need to use the Gauss-Jordan method on the coefficient matrix
[
1 3 4
2 6 8

]
→

[
1 3 4
0 0 0

]
⇒

{
x1 = −3x2 − 4x3

x2, x3 : free variables.

In this case the solution can be expressed in vector notation as follows

x =




x1

x2

x3


 =



−3x2 − 4x3

x2

x3


 =



−3
1
0


 x2 +



−4
0
1


 x3.

We conclude that all solutions of the homogeneous linear system above are all possible linear
combinations of the vectors

u1 =



−3
1
0


 , u2 =



−4
0
1


 .

C

1.4.4. The span of vector sets. From Examples 1.4.4-1.4.7 above we see that solutions of
homogeneous linear systems can be expressed as the sets of all possible linear combinations
of particular vectors. Since this type of set will appear very often in our studies, it is
convenient to give such sets a name. We introduce the span of a finite set of vectors as the
infinite set of all possible linear combinations of this finite set of vectors.

Definition 1.4.6. The span of a finite set U = {u1, · · · , uk} ⊂ Rn, with k > 1, denoted as
Span(U), is the set given by

Span(U) = {x ∈ Rn : x = x1u1 + · · ·+ xnun, ∀ x1, · · · , xn ∈ R}
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Recall that the symbol “ ∀ ” means “for all”. Using this definition we express the solutions
of Ax = 0 in Example 1.4.7 as

x ∈ Span
({

u1 =



−3
1
0


 , u2 =



−4
0
1




})
.

In this case, the set of all solutions forms a plane in R3, which contains the vectors u1 and
u2. In the case of Example 1.4.4 the solutions x belong to a line in R2 given by

x ∈ Span
({[

2
1

]})
.

Example 1.4.8: Find the set S = Span
({[

1
2

]
,

[
1
4

]})
⊂ R2.

Solution: Since the vectors are not proportional to each other, the set of all linear combi-
nations of these vectors is the whole plane. We conclude that S = R2. C

Example 1.4.9: Find the set S = Span
({[

1
2

]
,

[−1
−2

]})
⊂ R2.

Solution: Since the vectors lay on a line, the set of all linear combinations of these vectors

also belongs to the same line. We conclude that S =
{

a

[
1
2

]
, a ∈ R

}
. C

1.4.5. Non-homogeneous linear systems. Spans of vector sets are not only useful to
express solution sets to homogeneous equations, they are also useful to characterize when a
non-homogeneous linear system is consistent.

Theorem 1.4.7. An m×n linear system Ax = b, with coefficient matrix A =
[
A:1, · · · , A:n

]
,

is consistent iff b ∈ Span
({

A:1, · · · , A:n

})
.

In words, a non-homogeneous linear system is consisten iff the source vector belongs to the
Span of the coefficient matrix column vectors.
Proof of Theorem 1.4.7:

(⇒) Suppose that x = [xi] is any solution of the linear system Ax = b. Using the column
vector notation for matrix A we get that

b = Ax = A:1x1 + · · ·+ A:nxn.

This last expression says that b ∈ Span
({

A:1, · · · , A:n

})
.

(⇐) If b ∈ Span
({

A:1, · · · , A:n

})
, then there exists constants c1, · · · , cn such that

b = A:1c1 + · · ·+ A:ncn = Ac, c = [ci].

This last equation says that the vector x = c is a solution of the linear system Ax = b, so
the system is consistent. This establishes the Theorem. ¤

Knowing the solutions of an homogeneous linear system provides important information
about the solutions of an inhomogeneous linear system with the same coefficient matrix.
The next result establishes this relation in a precise way.

Theorem 1.4.8. If the m × n linear system Ax = b is consistent and the vector xp is one
particular solution of this linear system, then any solution x to this system can be decomposed
as x = xp + xh, where the vector xh is a solution of the homogeneous linear system Axh = 0.
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Proof of Theorem 1.4.8: We know that the vector xp is a solution of the linear system,
that is, Axp = b. Suppose that there is any other solution x of the same system, Ax = b.
Then, their difference xh = x− xp satisfies the homogeneous equation Axh = 0, since

Axh = A(x− xp) = Ax− Axp = b− b = 0,

where the linearity of the matrix-vector product, proven in Theorem 1.4.4, is used in the
step A(x− xp) = Ax− Axp. We have shown that xh = x− xp, that is, any solution x of the
non-homogeneous system can be written as x = xp + xh. This establishes the Theorem. ¤

We say that the solution to a non-homogeneous linear system is written in vector form
or in parametric form when it is expressed as in Theorem 1.4.8, that is, as x = xp + xh,
where the vector xh is a solution of the homogeneous linear system, and the vector xp is any
solution of the non-homogeneous linear system.

Example 1.4.10: Find all solutions of the linear system and write them in parametric form,
[
2 −4
1 −2

] [
x1

x2

]
=

[
6
3

]
. (1.24)

Solution: We first find the solutions of this non-homogeneous linear system using Gauss
elimination operations,

[
1 −2

∣∣ 3
2 −4

∣∣ 6

]
→

[
1 −2

∣∣ 3
0 0

∣∣ 0

]
⇒

{
x1 = 2x2 + 3,

x2 : free variable.

Therefore, the set of all solutions of the linear system above is given by

x =
[
x1

x2

]
=

[
2x2 + 3

x2

]
⇒ x =

[
2
1

]
x2 +

[
3
0

]
.

In this case we see that

xp =
[
3
0

]
(by choosing x2 = 0), and xh =

[
2
1

]
x2.

The vector xp is the particular solution to the non-homogeneous system given by x2 = 0,
while it is not difficult to check that xh above is solution of the homogeneous equation Axh =
0. In Fig. 16 we plot these solutions on the plane. The solution of the non-homogeneous
system is the translation by xp of the solutions of the homogeneous system. C

p

−1

1

2

x

x

2

1
21 3

x
x

x h

Figure 16. The blue line represents solutions to the homogeneous sys-
tem in Eq. (1.24). The green line represents the solutions to the non-
homogeneous system in Eq. (1.24), which is the translation by xp of the
line passing by the origin.
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Further reading. See Sections 2.4 and 2.5 in Meyer’s book [3] for a detailed discussion on
homogeneous and non-homogeneous linear systems, respectively. See Section 1.4 in Lay’s
book [2] for a detailed discussion of the matrix-vector product, and Section 1.5 for detailed
discussions on homogeneous and non-homogeneous linear systems.



34 G. NAGY – LINEAR ALGEBRA july 15, 2012

1.4.6. Exercises.

1.4.1.- Find the general solution of the ho-
mogeneous linear system

x1 + 2x2 + x3 + 2x4 = 0

2x1 + 4x2 + x3 + 3x4 = 0

3x1 + 6x2 + x3 + 4x4 = 0.

1.4.2.- Find all the solutions x of the linear
system Ax = b, where A and b are given
by

A =

2
4

1 −2 −1
2 1 8
1 −1 1

3
5 , b =

2
4

1
2
1

3
5 ,

and write these solutions in parametric
form, that is, in terms of column vec-
tors.

1.4.3.- Prove the following statement: If
the vectors c and d are solutions of
the homogeneous linear system Ax = 0,
then c + d is also a solution.

1.4.4.- Find the general solution of the non-
homogeneous linear system

x1 + 2x2 + x3 + 2x4 = 3

2x1 + 4x2 + x3 + 3x4 = 4

3x1 + 6x2 + x3 + 4x4 = 5.

1.4.5.- Suppose that the solution to a sys-
tem of linear equation is given by

x1 = 5 + 4x3

x2 = −2− 7x3

x3 free.

Use column vectors to describe this set
as a line in R3.

1.4.6.- Suppose that the solution to a sys-
tem of linear equation is given by

x1 = 3x4

x2 = 8 + 4x4

x3 = 2− 5x4

x4 free.

Use column vectors to describe this set
as a line in R4.

1.4.7.- Consider the following system of lin-
ear equations, where k represents any
real number,2

4
2 2 3
4 8 12
6 2 k

3
5
2
4

x1

x2

x3

3
5 =

2
4

0
−4
4

3
5 .

(a) Find all possible values of the num-
ber k such that the system above
has a unique solution.

(b) Find all possible values of the num-
ber k such that the system above
has infinitely many solutions, and
express those solutions in paramet-
ric form.
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1.5. Floating-point numbers

1.5.1. Main definitions. Floating-point numbers are a finite subset of the rational num-
bers. Many different types of floating-point numbers exist, all of them are characterized by
having a finite number of digits when written in a particular base. Digital computers use
floating-point numbers to carry out almost every arithmetic operation. When an m × n
algebraic linear system is solved using a computer, every Gauss operations is performed in
a particular set of floating-point numbers. In this Section we study what type of approxi-
mations occur in this process.

Definition 1.5.1. A non-zero rational number x is a floating-point number in base
b ∈ N, of precision p ∈ N, with exponent n ∈ Z in the range −N 6 n 6 N ∈ N, iff there
exist integers di, for i = 1, · · · , p, satisfying 0 6 di 6 b−1 and d1 6= 0, such that the number
x has the form

x = ±0.d1 · · · dp × bn. (1.25)

We call p the precision, b the base and N the exponent range of the floating point number
x. We denote by Fp,b,N the set of all floating-point numbers of fixed precision p, base b and
exponent range N .

In this notes we always work in base b = 10. Computers usually work with base b = 2,
but also with base b = 16, and they present their results with base b = 10.

Example 1.5.1: The following numbers belong to the set F3,10,3,

210 = 0.210× 103, 1 = 0.100× 10, −0.02 = −0.200× 10−1,
215
106

= 0.215× 10−3.

The set F3,10,3 is a finite subset of the rational numbers. The biggest number and the
smallest number in absolute value are the following, respectively,

0.999× 103 = 999 0.100× 10−3 = 0.0001.

Any number bigger 999 or closer to 0 than 0.0001 does not belong to F3,10,3. Here are other
examples of numbers that do not belong to F3,10,3,

1000 = 0.100×104 210.3 = 0.2103×103, 1.001 = 0.1001×10, 0.000027 = 0.270×10−4.

In the first case the number is too big, we need an exponent n = 4 to specify it. In the
second and third cases we need a precision p = 4 to specify those numbers. In the last case
the number is too close to zero, we need an exponent n = −4 to specify it. C

Example 1.5.2: The set of floating-point numbers F1,10,1 is small enough to picture it on
the real line. The set of all positive elements in F1,10,1 is shown on Fig. 17, and this is the
union of the following three sets,

{0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09} = {0.i× 10−1}9i=1;

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} = {0.i× 100}9i=1;

{1, 2, 3, 4, 5, 6, 7, 8, 9} = {0.i× 101}9i=1.

One can see in this example that the elements on F1,10,1 are not homogeneously distributed
on the interval [0, 10]. The irregular distribution of the floating-point numbers plays an
important role when one computes the addition of a small number to a big number. C

Example 1.5.3: In Table 1 we show the main set of floating-point numbers used nowadays
in computers. For example, the format called Binary64 represents all floating-point numbers
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0 2 3 4 5 6 7 8 9

0.90.80.70.60.50.40.30.20.1

1

10

Figure 17. All the positive elements in F1,10,1.

in the set F53,2,1024. One of the bigger numbers in this set is 21023. To have an idea how
big is this number, let us rewrite it as 10x, that is,

21023 = 10x ⇔ 1023 ln(2) = x ln(10) ⇔ x = 307.95...

So the biggest number in F53,2,1024 is close to 10308. C

Format name Base Digits Max. exp.
b p N

Binary 32 2 24 128

Binary 64 2 53 1024

Binary 128 2 113 16384

Decimal l64 10 16 385

Decimal 128 10 34 6145

Table 1. List of the parameters b, p and N that determine the floating-
point sets Fp,b,N , which are most used in computers. The first column
presents a standard name given in the scientific computing community to
these floating-point formats.

We say that a set A ⊂ R is closed under addition iff for every two elements in A the
sum of these two numbers also belongs to A. The definition of a set A ⊂ R being closed
under multiplication is similar. The sets of floating-point numbers Fp,b,N ⊂ R are not closed
under addition or multiplication. This means that the sum of two numbers in Fp,b,N might
not belong to Fp,b,N . And the multiplication of two numbers in Fp,b,N might not belong to
Fp,b,N . Here are some examples.

Example 1.5.4: Consider the set F2,10,2. It is not difficult to see that F2,10,2 is not closed
under multiplication, as the first line below shows. The rest of the example below shows
that the sum of two numbers in F2,10,2 does not belong to that set.

x = 10−3 = 0.10× 10−2 ∈ F2,10,2 ⇒ x2 = 10−6 = 0.0001× 10−2 /∈ F2,10,2,

x = 10−3 = 0.10× 10−2 ∈ F2,10,2,

y = 1 = 0.10× 101 ∈ F2,10,2,

}
⇒ x + y = 0.001 + 1,
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x + y = 1.001 ⇒ x + y = 0.1001× 10 /∈ F2,10,2.

C

1.5.2. The rounding function. Since the set Fp,b,N is not closed under addition or mul-
tiplication, not every arithmetic calculation involving real numbers can be performed in
Fp.,b,N . A way to perform a sequence of arithmetic operations in Fp,b,N is first, to project
the real numbers into the floating-point numbers, and then to perform the calculation. Since
the result might not be in the set Fp,b,N , one must project again the result onto Fp,b,N . The
action to project a real number into the floating-point set is called to round-off the real
number. There are many different ways to do this. We now present a common round-off
function.

Definition 1.5.2. Given the floating-point number set Fp,b,N , let xN = 0.9 · · · 9× bN be the
biggest number in Fp,b,N . The rounding function f` : R ∩ [−xN , xN ] → Fp,b,N is defined
as follow: Given x ∈ R ∩ [−xN , xN ], with x = ±0.d1 · · · dpdp+1 · · · × bn and −N 6 n 6 N ,
holds

f`(x) =

{ ± 0.d1 · · · dp × bn if dp+1 < 5,

± (0.d1 · · · dp + b−p)× bn if dp+1 > 5.

Example 1.5.5: We now present few numbers not in F3,10,3 and their respective round-offs

x = 0.2103× 103, f`(x) = 0.210× 103,

x = 0.21037× 103, f`(x) = 0.210× 103,

x = 0.2105× 103, f`(x) = 0.211× 103,

x = 0.21051× 103, f`(x) = 0.211× 103.

C

The rounding function has the following properties:

Proposition 1.5.3. Given Fp,b,N there always exist x, y ∈ R such that

f`

[
f`(x) + f`(y)

] 6= f`(x + y), f`

[
f`(x)f`(y)

] 6= f`(xy).

We do not prove this Proposition, we only provide a particular example, in the case that
the floating-point number is F2,10,2.

Example 1.5.6: The real numbers x = 21/2 and y = 11/2 add up to x + y = 16. Only one
of them belongs to F2,10,2, since

x = 0.105× 102 /∈ F2,10,2 ⇒ f`(x) = 0.11× 102,

y = 0.55× 10 ∈ F2,10,2 ⇒ f`(y) = 0.55× 10 = y.

We now verify that for these numbers holds that f`

[
f`(x) + f`(y)

] 6= f`(x + y), since

x + y = 0.16× 102 ∈ F2,10,2 ⇒ f`(x + y) = 0.16× 102 = x + y,

f`

[
f`(x) + f`(y)

]
= f`(0.11× 102 + 0.55× 10) = f`(0.165× 102) = 0.17× 102.

Therefore, we conclude that

17 = f`

[
f`(x) + f`(y)

] 6= f`(x + y) = 16.

C
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1.5.3. Solving linear systems. Arithmetic operations are, in general, not possible in
Fp.b.N , since this set is not closed under these operations. Rounding after each arithmetic
operation is a procedure that determines numbers in Fp,b,N which are close to the result
of the arithmetic operations. The difference between these two numbers is the error of the
procedure, is the error of making calculations in a finite set of numbers. One could think
that the Gauss-Jordan method could be carried out in the set Fp,b,N , if one round-off each
intermediate calculation. This Subsection presents an example that this is not the case.
The Gauss-Jordan method is, in general, not possible in any set Fp,b,N using rounding after
each arithmetic operation.

Example 1.5.7: Use the floating-point set F3,10,3 and Gauss operations to find the solution
of the 2× 2 linear system

5 x1 + x2 = 6,

9.43x1 + 1.57 x2 = 11.

Solution: Note that the solution is x1 = 1, x2 = 1. The calculation we do now shows
that the Gauss-Jordan method is not possible in the set F3,10,3 using round-off functions;
the Gauss-Jordan method does not work in this example. The fist step in the Gauss-Jordan
method is to compute the augmented matrix of the system and perform a Gauss operation
to make the coefficient in the position of a21 vanish, that is,

[
5 1

∣∣ 6
9.43 1.57

∣∣ 11

]
→

[
5 1

∣∣ 6
0 −0.316

∣∣ −0.316

]
.

This operation cannot be performed in the set F3,10,3 using rounding. In order to understand
this, let us review what we did in the calculation above. We multiplied the first row by
−9.43/5 and add that result to the second row. The result using real numbers is that the
new coefficient obtained after this calculation is ã21 = 0. If we do this calculation in the set
F3,10,3 using rounding, we have to do the following calculation:

ã21 = f`

(
9.43− f`

[
f`(5) f`

(9.43
5

)])
,

that is, we round the quotient −9.43/5, then we multiply by 5, we round again, then we
subtract that from 9.43, and we finally round the result:

ã21 = f`

(
9.43− f`

[
5 f`(1.886)

])

= f`

(
9.43− f`

[
5 (1.89)

])

= f`

[
9.43− f`(9.45)

]

= f`

[
9.43− 9.45

]

= f`(−0.02)
= −0.02.

Therefore, with this Gauss operation on F3,10,3 using rounding one obtains ã21 = −0.02 6= 0.
The same type of calculation on the other coefficients ã22, b̃2, produces the following new
augmented matrix

[
5 1

∣∣ 6
9.43 1.57

∣∣ 11

]
→

[
5 1

∣∣ 6
−0.02 −0.32

∣∣ −0.3

]
.

The Gauss-Jordan method cannot follow unless the coefficient ã21 = 0. But this is not
possible in our example. A usual procedure used in scientific computation is to modify
the Gauss-Jordan method. The modification introduces further approximation errors in
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the calculation. The modification in our example is the following: Replace the coefficient
ã21 = −0.02 by ã21 = 0. The modified Gauss-Jordan method in our example is given by

[
5 1

∣∣ 6
9.43 1.57

∣∣ 11

]
→

[
5 1

∣∣ 6
0 −0.32

∣∣ −0.3

]
. (1.26)

What we have done here is not a rounding error. It is a modification of the Gauss-Jordan
method to find an approximate solution of the linear system in the set F3,10,3. The rest of
the calculation to find the solution of the linear system is the following:

[
5 1

∣∣ 6
0 −0.32

∣∣ −0.3

]
→

[
5 1

∣∣ 6
0 1

∣∣∣ f`

(
0.3
0.32

)
]

;

since

f`

( 0.3
0.32

)
= f`(0.9375) = 0.938,

we have that
[
5 1

∣∣ 6
0 1

∣∣∣ f`

(
0.3
0.32

)
]
→

[
5 1

∣∣ 6
0 1

∣∣ 0.938

]
→

[
5 0

∣∣ f`(6− 0.938)
0 1

∣∣ 0.938

]
;

since

f)`(6− 0.938) = f`(5.062) = 5.06,

we also have that
[
5 0

∣∣ 5.06
0 1

∣∣ 0.938

]
→

[
1 0

∣∣∣ f`

(
5.06
5

)

0 1
∣∣ 0.938

]
;

since

f`

(5.06
5

)
= f`(1.012) = 1.01,

we conclude that [
1 0

∣∣ 1.01
0 1

∣∣ 0.938

]
⇒

x1 = 0.101× 10,

x2 = 0.938.
.

We conclude that the solution in the set F3,10,3 differs from the exact solution x1 = 1,
x2 = 1. The errors in the result are produced by rounding errors and by the modification
of the Gauss-Jordan method discussed in Eq. (1.26). C

We finally comment that the round-off error becomes important when adding a small
number to a big number, or when dividing by a small number. Here is an example of the
former case.

Example 1.5.8: Add together the numbers x = 103 and y = 4 in the set F3,10,4.

Solution: Since x = 0.100× 104 and y = 0.400× 10, both numbers belong to F3,10,4 and
so f`(x) = x, f`(y) = y. Therefore, their addition is the following,

f`(x + y) = f`(1000 + 4) = f`(0.1004× 103) = 1× 103 = x.

That is, f(x + y) = x, and the information of y is completely lost. C
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1.5.4. Reducing rounding errors. We have seen that solving an algebraic linear system
in a floating-point number set Fp,b,N introduces rounding errors in the solution. There
are several techniques that help keep these errors from becoming an important part of the
solution. We comment here on four of these techniques. We present these techniques without
any proof.

The first two techniques are implemented before one start to solve the linear system.
They are called column scaling and row scaling. The column scaling consists in multiplying
by a same scale factor a whole column in the linear system. One performs a column scaling
when one column of a linear system has coefficients that are far bigger or far smaller than
the rest of the matrix. The factor in the column scaling is chosen in order that all the
coefficients in the linear system are similar in size. One can interpret the column scaling
on the column i of a linear system as changing the physical units of the unknown xi. The
row scaling consists in multiplying by the same scale factor a whole equation of the system.
One performs a row scaling when one row of the linear system has coefficients that are far
bigger or far smaller than the rest of the system. Like in the column scaling, one chooses
the scaling factor in order that all the coefficients of the linear system are similar in size.

The last two techniques refer to what sequence of Gauss operations is more efficient in
reducing rounding errors. It is well-known that there are many different ways to solve a
linear system using Gauss operations in the set of the real numbers R. For example, we now
solve the linear system below using two different sequences of Gauss operations:

[
2 4

∣∣ 10
1 3

∣∣ 7

]
→

[
1 2

∣∣ 5
1 3

∣∣ 7

]
→

[
1 2

∣∣ 5
0 1

∣∣ 2

]
→

[
1 0

∣∣ 1
0 1

∣∣ 2

]
,

[
2 4

∣∣ 10
1 3

∣∣ 7

]
→

[
1 3

∣∣ 7
2 4

∣∣ 10

]
→

[
1 2

∣∣ 5
0 −2

∣∣ −4

]
→

[
1 2

∣∣ 5
0 1

∣∣ 2

]
→

[
1 0

∣∣ 1
0 1

∣∣ 2

]
.

The solution obtained is independent of the sequences of Gauss operations used to find them.
This property does not hold in the floating-point number set Fp,b,N . Two different sequences
of Gauss operations on the same augmented matrix might produce different approximate
solutions when they are performed in Fp,b,N . The main idea behind the last two techniques
we now present to solve linear systems using floating-point numbers is the following: To
find the sequence of Gauss operations that minimize the rounding errors in the approximate
solution. The last two techniques are called partial pivoting and complete pivoting.

The partial pivoting is the row interchange in a matrix in order to have the biggest
coefficient in that column as pivot. Here below we do a partial pivoting for the pivot on the
first column: 


10−2 2 1

1 103 102

10 4 1


→




10 4 1
1 103 102

10−2 2 1


 ,

that is, use a pivot for the first column the coefficient with 10 instead of the coefficient with
10−2 or the coefficient with 1. Now proceed in the usual way:




10 4 1
1 103 102

10−2 2 1


→




1 0.4 0.1
1 103 102

10−2 2 1


→




1 0.4 0.1
0 999.6 99.9
0 1.996 0.999


 .

The next step is again to use as pivot the biggest coefficient in the second column. In this
case it is the coefficient 999.6, so no further row interchanges are necessary. Repeat this
procedure till the last column.

The complete pivoting is the row and column interchange in a matrix in order to have as
pivot the biggest coefficient in the lower-right block from the pivot position. Here below we
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do a complete pivoting for the pivot on the first column:


10−2 2 1
1 103 102

10 4 1


→




1 103 102

10−2 2 1
10 4 1


→




103 1 102

2 10−2 1
4 10 1


 .

For the first pivot, the lower-right part of the matrix is the whole matrix. In the example
above we used as pivot for the first column the coefficient 103 in position (2, 2). We needed
to do a a row interchange and then a column interchange. Now proceed in the usual way:


103 1 102

2 10−2 1
4 10 1


→




1 10−3 10−1

2 10−2 1
4 10 1


→




1 0.001 0.1
0 0.008 0.8
0 9.996 0.6


 .

The next step in complete pivoting is to choose the coefficient for the pivot position (2, 2).
We have to look in the lower-right block from the pivot position, that is, in the block[

0.008 0.8
9.996 0.6

]
.

The biggest coefficient in that block is 9.996, so we have to do a row interchange but we do
not need to do column interchanges, that is,


1 0.001 0.1
0 0.008 0.8
0 9.996 0.6


→




1 0.001 0.1
0 9.996 0.6
0 0.008 0.8


 .

Repeat this procedure till the last column.

Further reading. See Section 1.5 in in Meyer’s book [3] for a detailed discussion on solving
linear systems using floating point numbers.



42 G. NAGY – LINEAR ALGEBRA july 15, 2012

1.5.5. Exercises.

1.5.1.- Consider the following system:

10−3 x1 − x2 = 1,

x1 + x2 = 0.

(a) Solve this system in F3,10,6 with
rounding, but without partial or
complete pivoting.

(b) Find the system that is exactly sat-
isfied by your solution in (a), and
note how close is this system to the
original system.

(c) Use partial pivoting to solve this
system in F3,10,5 with rounding.

(d) Find the system that is exactly sat-
isfied by your solution in (c), and
note how close is this system to the
original system.

(e) Solve this system in R without par-
tial or complete pivoting, and com-
pare this exact solution with the so-
lutions in (a) and (c).

(f) Round the exact solution up to
three digits, an compare it with the
results from (a) and (c).

1.5.2.- Consider the following system:

x1 + x2 = 3,

−10 x1 + 105 x2 = 105.

(a) Solve this system in F4,10,6 with
partial pivoting but no scaling.

(b) Solve this system in F4,10,6 with
complete pivoting but no scaling.

(c) Use partial pivoting to solve this
system in F3,10,5 with rounding.

(d) This time row scale the original sys-
tem, and then solve it in F4,10,6 with
partial pivoting.

(e) Solve this system in R and compare
this exact solution with the solu-
tions in (a)-(d).

1.5.3.- Consider the linear system

−3 x1 + x2 = −2,

10 x1 − 3 x2 = 7.

Solve this system in F3,10,6 without par-
tial pivoting, and then solve it again
with partial pivoting. Compare your re-
sults with the exact solution.
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Chapter 2. Matrix algebra

2.1. Linear transformations

In Sect. 1.4 we introduced the matrix-vector product because it provided a convenient
notation to express a system of linear equations in a compact way. Here we study a deeper
meaning of the matrix-vector product. It is the key to interpret a matrix as a function acting
on vectors. We will see that a matrix is a particular type of function, called linear function
or linear transformation. We also show examples of functions determined by matrices.

From now on we consider both real-valued and complex-valued matrices and vectors. We
use the notation F ∈ {R,C} to mean that F can be either F = R or F = C. Elements in F
are called scalars. So a scalar is a real number or a complex number. We denote by Fn the
set of all n-vectors x = [xi] with components xi ∈ F, where i = 1, · · · , n. Finally we denote
by Fm,n the set of all m×n matrices A = [Aij ] with components Aij ∈ F, where i = 1 · · ·m
and j = 1, · · · , n.

2.1.1. A matrix is a function. The matrix-vector product provides a new interpretation
for a matrix. A matrix is not only an artifact for a compact notation, it defines a function
on the set of vectors. Here is a precise definition.

Definition 2.1.1. Every m× n matrix A ∈ Fm,n defines the function A : Fn → Fm, where
the image of an n-vector x is the m-vector y = Ax, the matrix-vector product of A and x.

Example 2.1.1: Compute the function defined by the 2× 3 matrix A =
[
2 −2 4
1 3 2

]
.

Solution: The matrix A defines a function A : R3 → R2, since for every x ∈ R3 holds,

x =




x1

x2

x3


 , Ax =

[
2 −2 4
1 3 2

] 


x1

x2

x3


 ⇒ y = Ax =

[
2x1 − 2x2 + 4x3

x1 + 3x2 + 2x3

]
∈ R2.

For example, given x =




1
1
1


 ∈ R3, then y = Ax =

[
2 −2 4
1 3 2

] 


1
1
1


 =

[
4
6

]
∈ R2. C

Example 2.1.2: Describe the function defined by the 2× 2 matrix A =
[
1 0
0 −1

]
.

Solution: The matrix A defines a function A : R2 → R2, which can be interpreted as
a reflection along the horizontal line. Indeed, the action of the matrix A on an arbitrary
element in x ∈ R2 is the following,

Ax =
[
1 0
0 −1

] [
x1

x2

]
=

[
x1

−x2

]
.

Here are particular cases, represented in Fig. 18,

A

[
2
1

]
=

[
2
−1

]
, A

[−1
−3

]
=

[−1
3

]
, A

[
1
0

]
=

[
1
0

]
. (2.1)

C

Example 2.1.3: Describe the function defined by the 2× 2 matrix A =
[
0 1
1 0

]
.
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x

v

2

1

−1

−1

A v

u

A u

1
Aw=w

x

Figure 18. We sketch the action of matrix A in Example 2.1.2 on the
vectors given in Eq. (2.1), which we called u, v, and w, respectively. Since
A : R2 → R2, we used the same plane to plot both u and Au.

Solution: The matrix A defines a function A : R2 → R2, which can be interpreted as a
reflection along the line x1 = x2, see Fig. 19. Indeed, the action of the matrix A on an
arbitrary element in x ∈ R2 is the following,

Ax =
[
0 1
1 0

] [
x1

x2

]
=

[
x2

x1

]
.

Here are particular cases, represented in Fig. 19,

A

[
2
1

]
=

[
1
2

]
, A

[−3
−1

]
=

[−1
−3

]
, A

[
2
2

]
=

[
2
2

]
. (2.2)

C

u

1

x  = x

v

21

1

−1

−1

x

2x

A

A w = w

v

A u

Figure 19. We sketch the action of matrix A in Example 2.1.3 on the
vectors given in Eq. (2.2), which we called u, v, and w, respectively. Since
A : R2 → R2, we used the same plane to plot both u and Au.

Example 2.1.4: Describe the function defined by the 2× 2 matrix A =
[
0 −1
1 0

]
.
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Solution: The matrix A defines a function A : R2 → R2, that can be interpreted as a
rotation by an angle π/2 counterclockwise, see Fig. 20. Indeed, the action of the matrix A
on an arbitrary element in x ∈ R2 is the following,

Ax =
[
0 −1
1 0

] [
x1

x2

]
=

[−x2

x1

]
.

Here are particular cases, represented in Fig. 20,

A

[
2
1

]
=

[−1
2

]
, A

[−3
1

]
=

[−1
−3

]
, A

[
2
2

]
=

[−2
2

]
. (2.3)

C

1

1

−1

−1

x 2

A

v u

uA
w

wA

v

x

Figure 20. We sketch the action of matrix A in Example 2.1.3 on the
vectors given in Eq. (2.2), which we called u, v, and w, respectively. Since
A : R2 → R2, we used the same plane to plot both u and Au.

Example 2.1.5: Describe the function defined by the 2× 2 matrix A =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
,

where θ is a fixed real number.

Solution: The matrix A defines a function A : R2 → R2, that can be interpreted as
a rotation by an angle θ counterclockwise. To verify this, first compute y = Ax for an
arbitrary vector x, and then check that vector y is the counterclockwise rotation by θ of
vector x.
[
y1

y2

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x1

x2

]
=

[
x1 cos(θ)− x2 sin(θ)
x1 sin(θ) + x2 cos(θ)

]
⇒

{
y1 = x1 cos(θ)− x2 sin(θ),

y2 = x1 sin(θ) + x2 cos(θ).

We now show that the components y1 and y2 above are precisely the counterclockwise
rotation by θ of the vector x. From Fig. 21 we see that the following relation holds:

y1 = cos(θ + φ) ‖y‖, y2 = sin(θ + φ) ‖y‖,
where ‖y‖ is the magnitude of the vector y. Since a rotation does not change the magnitude
of the vector, then ‖y‖ = ‖x‖ and so,

y1 = cos(θ + φ) ‖x‖, y2 = sin(θ + φ) ‖x‖.
Recalling now the formulas for the cosine and the sine of a sum of two angles,

cos(θ + φ) = cos(θ) cos(φ)− sin(θ) sin(φ),

sin(θ + φ) = sin(θ) cos(φ) + cos(θ) sin(φ),
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we obtain that

y1 = cos(θ) cos(φ) ‖x‖ − sin(θ) sin(φ) ‖x‖,
y2 = sin(θ) cos(φ) ‖x‖+ cos(θ) sin(φ) ‖x‖.

Recalling that

x1 = cos(φ) ‖x‖, x2 = sin(φ) ‖x‖,
we obtain the formula

y1 = cos(θ)x1 − sin(θ)x2,

y2 = sin(θ) x1 + sin(θ) x2.

This is precisely the expression that defines matrix A. Therefore, the action of the matrix
A above is a rotation by θ counterclockwise. C

x

0

0

2x

x 1

y =      xA

Figure 21. The vector y is the rotation by an angle θ counterclockwise of
the vector x.

Example 2.1.6: Describe the function defined by the 2× 2 matrix A =
[
2 0
0 2

]
.

Solution: The matrix A defines a function A : R2 → R2, which can be interpreted as a
dilation, see Fig. 22. Indeed, the action of the matrix A on an arbitrary element in x ∈ R2

is the following, Ax = 2x. C

Example 2.1.7: Describe the function defined by the 2× 2 matrix A =
[
2 0
0 1

]
.

Solution: The matrix A defines a function A : R2 → R2, which can be interpreted as a
shear, see Fig. 23. Indeed, the action of the matrix A on an arbitrary element in x ∈ R2 is
the following,

Ax =
[
2 0
0 1

] [
x1

x2

]
=

[
2x1

x2

]
.

C
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21

2x

x 1

Figure 22. We sketch the action of matrix A in Example 2.1.6. Given any
vector x with end point on the circle of radius one, the vector Ax = 2x is a
vector parallel to x and with end point on the dashed circle of radius two.

x

1 2 x 1

2

Figure 23. We sketch the action of matrix A in Example 2.1.7. Given any
vector x with end point on the circle of radius one, the vector Ax = 2x is a
vector parallel to x and with end point on the dashed curve.

2.1.2. A matrix is a linear function. We have seen several examples of functions given
by matrices. All these functions are defined using the matrix-vector product. We have seen
in Theorem 1.4.4 that the matrix-vector product is a linear operation. That is, given any
m× n matrix A, for all vectors x, y ∈ Fn and all scalars a, b ∈ F holds that

A(ax + by) = a Ax + b Ay

This property of the function defined by a matrix will be important later on, so any function
with this property will be given a particular name.

Definition 2.1.2. A function T : Fn → Fm is called a linear transformation iff for all
vectors x, y ∈ Fn and for all scalars a, b ∈ F holds

T (ax + by) = aT (x) + b T (y).

The expression above contains the particular cases a = b = 1 and b = 0, which are respec-
tively given by

T (x + y) = T (x) + T (y), T (ax) = aT (x).
We will also use the name linear function for a linear transformation. At the end of Sec-
tion 2.2 we generalize the definition of a linear transformation to include functions on the
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space of matrices. We will present two examples of linear functions on the space of matrices,
the transpose and the trace functions. In this Section we present simpler examples of linear
functions.

Example 2.1.8: Show that the only linear transformations T : R → R are straight lines
through the origin.

Solution: Since y = T (x) is linear and x ∈ R, we have that

y = T (x) = T (x× 1) = xT (1).

If we denote T (1) = m, we then conclude that a linear transformation T : R→ R must be

y = mx,

which is a straight line through the origin with slope m. C

Example 2.1.9: Any m× n matrix A ∈ Fm,n defines a linear transformation T : Fn → Fm

by the equation T (x) = Ax. In particular, all the functions defined in Examples 2.1.1-2.1.7
are linear transformations. Consider the most general 2× 2 matrix,

A =
[
A11 A12

A21 A22

]
∈ F2,2

and explicitly show that the function T (x) = Ax is a linear transformation.

Solution: The explicit form of the function T : F2 → F2 given by T (x) = Ax is

T
([

x1

x2

])
=

[
A11 A12

A21 A22

] [
x1

x2

]
⇒ T

([
x1

x2

])
=

[
A11x1 + A12x2

A21x1 + A22x2

]
.

This function is linear, as it can be seen from the following explicit computation,

T (cx + dy) = T
(
c

[
x1

x2

]
+ d

[
y1

y2

])

= T
([

cx1 + dy1

cx2 + dy2

])

=
[
A11(cx1 + dy1) + A12(cx2 + dy2)
A21(cx1 + dy1) + A22(cx2 + dy2)

]

=
[
A11cx1 + A12cx2

A21cx1 + A22cx2

]
+

[
A11dy1 + A12dy2

A21dy1 + A22dy2

]

= c

[
A11x1 + A12x2

A21x1 + A22x2

]
+ d

[
A11y1 + A12y2

A21y1 + A22y2

]

= c T (x) + d T (y).

This establishes that T is a linear transformation. Notice that this proof is just a repetition
of the Theorem 1.4.4 proof in the case of 2× 2 matrices. C

Example 2.1.10: Find a function T : R2 → R2 that projects a vector onto the line x1 = x2,
see Fig. 24. Show that this function is linear. Finally, find a matrix A such that T (x) = Ax.

Solution: From Fig. 24 one can see that a possible way to compute the projection of a
vector x onto the line x1 = x2 is the following: Add to the vector x its reflection along the
line x1 = x2, and divide the result by two, that is,

T
([

x1

x2

])
=

1
2

([
x1

x2

]
+

[
x2

x1

])
⇒ T

([
x1

x2

])
=

(x1 + x2)
2

[
1
1

]
.
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We have obtained the projection function T . We now show that this function is linear:
Indeed

T (ax + by) = T
(
a

[
x1

x2

]
+ b

[
y1

y2

])

= T
([

ax1 + by1

ax2 + by2

])

=
(ax1 + by1 + ax2 + by2)

2

[
1
1

]

=
(ax1 + ax2)

2

[
1
1

]
+

(by1 + by2)
2

[
1
1

]

= aT (x) + b T (y).

This shows that T is linear. We now find a matrix A such that T (x) = Ax, as follows

T
([

x1

x2

])
=

(x1 + x2)
2

[
1
1

]

=
1
2

[
x1 + x2

x1 + x2

]

=
1
2

[
1 1
1 1

] [
x1

x2

]
⇒ A =

1
2

[
1 1
1 1

]
.

This matrix projects vectors onto the line x1 = x2. C

f (x)

2x

x 1

x  = x 21

x

Figure 24. The function T projects the vector x onto the line x1 = x2.

Further reading. See Sections 1.8 and 1.9 in Lay’s book [2]. Also Sections 3.3 and 3.4 in
Meyer’s book [3].
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2.1.3. Exercises.

2.1.1.- Determine which of the following
functions T : R2 → R2 is linear:

(a)

T
“»x1

x2

–”
=

»
3x2

2 + x1

–
.

(b)

T
“»x1

x2

–”
=

»
x1 + x2

x1 − x2

–
.

(c)

T
“»x1

x2

–”
=

»
x1x2

0

–
.

2.1.2.- Let T : R2 → R2 be the linear trans-
formation given by T (x) = Ax, where

A =

»
1 2
2 3

–
.

Find x ∈ R2 such that T (x) =

»
5
7

–
.

2.1.3.- Given the matrix and vector

A =

»
1 −5 −7
−3 7 5

–
, b =

»−2
−2

–
,

define the function T : R3 → R2 as
T (x) = Ax, and then find all vectors x
such that T (x) = b.

2.1.4.- Let T : R2 → R2 be a linear trans-
formation such that

T
“»1

0

–”
=

»
3
1

–
, T

“»0
1

–”
=

»
1
3

–
.

Find the values of T
“»x1

x2

–”
for any vec-

tor

»
x1

x2

–
= x1

»
1
0

–
+ x2

»
0
1

–
∈ R2.

2.1.5.- Describe geometrically what is the
action of T over a vector x ∈ R2, where

(a) T (x) =

»−1 0
0 −1

– »
x1

x2

–
;

(b) T (x) =

»
2 0
0 2

– »
x1

x2

–
;

(c) T (x) =

»
0 0
0 1

– »
x1

x2

–
;

(d) T (x) =

»
0 1
1 0

– »
x1

x2

–
.

2.1.6.- Let x =

»
x1

x2

–
, v =

»−2
5

–
, u =

»
7
−3

–
,

and let T : R2 → R2 be the linear trans-
formation T (x) = x1v + x2u. Find a
matrix A such that T (x) = Ax for all
x ∈ R2.
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2.2. Linear combinations

One could say that the idea to introduce matrix operations originates from the interpre-
tation of a matrix as a function. A matrix A ∈ Fm,n determines a function A : Fn → Fm.
Such functions are generalizations of scalar valued functions of a single variable, f : R→ R.
It is well-known how to compute the linear combination of two functions f , g : R→ R and,
when possible, how to compute their composition and their inverses. Matrices determine
a particular generalizations of scalar functions where the operations mentioned above on
scalar functions can be defined on matrices. The result is called the linear combination of
matrices, and when possible, the product of matrices and the inverse of a matrix. Since
matrices are generalizations of scalar valued functions, there are few operations on matri-
ces that reduce to the identity operation in the the case of scalar functions. Among such
operations belong the transpose of a matrix and the trace of a matrix.

2.2.1. Linear combination of matrices. The addition of two matrices and the multipli-
cation of a matrix by scalar are defined component by component.

Definition 2.2.1. Let A = [Aij ] and B = [Bij ] be m × n matrices in Fm,n and a, b ∈ F
be any scalars. The linear combination of A and B is also and m × n matrix in Fm,n,
denoted as a A + b B, and given by

aA + b B = [a Aij + bBij ].

Recall that the notation aA + bB = [(aA + bB)ij ] means that the numbers (aA + bB)ij

are the components of the matrix aA + bB. Using this notation the definition above can be
expressed in terms of matrix components as follows

(aA + bB)ij = aAij + bBij .

This definition contains the particular cases a = b = 1 and b = 0, given by, respectively,

(A + B)ij = Aij + Bij , (aA)ij = aAij .

Example 2.2.1: Consider the matrices

A =
[

2 −1
−1 2

]
B =

[
3 0
2 −1

]
.

(a) Find the matrix A + B and 3A.
(b) Find a matrix C such that 2C + 6A = 4B.

Solution:
Part (a): The definition above gives,

A + B =
[

2 −1
−1 2

]
+

[
3 0
2 −1

]
⇒ A + B =

[
5 −1
1 1

]
, 3A =

[
6 −3
−3 6

]
.

Part (b): Matrix C is given by

C =
1
2
(
4B− 6A

)

The definition above implies that

C = 2B− 3A = 2
[
3 0
2 −1

]
− 3

[
2 −1
−1 2

]
=

[
6 0
4 −2

]
− 3

[
6 −3
−3 6

]
,

therefore, we conclude that

C =
[
0 3
7 −8

]
.

C
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We now summarize the main properties of the matrix linear combination.

Theorem 2.2.2. For all matrices A, B ∈ Fm,n and all scalars a, b ∈ F, hold:
(a) (ab)A = a(bA), (associativity);
(b) a(A + B) = aA + aB, (distributivity);
(c) (a + b)A = aA + bA, (distributivity);
(d) 1 A = A, (1 ∈ R is the identity).

The definition of linear combination of matrices is defined as the linear combination of their
components, which are real of complex numbers. Therefore, all properties in Theorem 2.2.2
on linear combinations of matrices are obtained from the analogous properties on the linear
combination of real or complex numbers.
Proof of Theorem 2.2.2: We use components notation.

(a): [
(ab)A

]
ij

= (ab)Aij = a(bAij) = a(bA)ij =
[
a(bA)

]
ij

.

(b):[
a(A + B)

]
ij

= a(A + B)ij = a(Aij + Bij) = aAij + aBij = (aA)ij + (aB)ij =
[
aA + aB

]
ij

.

(c): [
(a + b)A

]
ij

= (a + b)Aij = aAij + bAij = (aA)ij + (bA)ij =
[
aA + bA

]
ij

.

(d):
(1A)ij = 1 Aij = Aij .

¤
2.2.2. The transpose, adjoint, and trace of a matrix. Since matrices are generaliza-
tions of scalar-valued functions, one can define operations on matrices that, unlike linear
combinations, have no analogue on scalar-valued functions. One of such operations is the
transpose of a matrix, which is a new matrix with the rows and columns interchanged.

Definition 2.2.3. The transpose of a matrix A = [Aij ] ∈ Fm,n is the matrix denoted as
AT =

[
(AT )kl

] ∈ Fn,m, with its components given by
(
AT

)
kl

= Alk.

Example 2.2.2: Find the transpose of the 2× 3 matrix A =
[
1 3 5
2 4 6

]
.

Solution: Matrix A has components Aij with i = 1, 2 and j = 1, 2, 3. Therefore, its
transpose has components (AT )ji = Aij , that is, AT has three rows and two columns,

AT =




1 2
3 4
5 6


 .

C

Example 2.2.3: Show that the transpose operation satisfies (AT )T = A.

Solution: The proof is: [
(AT )T

]
ij

= (AT )ji = Aij .

An example of this property is the following: In Example 2.2.2 we showed that
[
1 3 5
2 4 6

]T

=




1 2
3 4
5 6


 .
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Therefore,
([

1 3 5
2 4 6

]T
)T

=




1 2
3 4
5 6




T

=
[
1 3 5
2 4 6

]
.

C

If a matrix has complex-valued coefficients, then the complex conjugate of a matrix, also
called the conjugate, is defined as the conjugate of each component.

Definition 2.2.4. The complex conjugate of a matrix A = [Aij ] ∈ Fm,n is the matrix

A =
[
Aij

] ∈ Fm,n.

Example 2.2.4: Find the conjugate if matrix A =
[

1 2 + i
−i 3− 4i

]
.

Solution: We have to conjugate each component of matrix A, that is,

A =
[
1 2− i
i 3 + 4i

]
.

C

Example 2.2.5: Show that a matrix A has real coefficients iff A = A; and a matrix has
purely imaginary coefficients iff A = −A. Show one example of each case.

Solution: The first condition is A = A, that is, Aij = Aij holds for every matrix component,
which implies 2i Im(Aij) = Aij − Aij = 0. Therefore, every matrix component Aij is real.
The second condition is A = −A, that is, Aij = −Aij holds for every matrix component,
which implies 2Re(Aij) = Aij + Aij = 0. Therefore, every matrix component Aij is purely
imaginary. Here are examples of these two situations:

A =
[
1 2
3 4

]
⇒ A =

[
1 2
3 4

]
= A;

A =
[

i 2i
3i 4i

]
⇒ A =

[ −i −2i
−3i −4i

]
= −A.

C

Definition 2.2.5. The adjoint of a matrix A ∈ Fm,n is the matrix A∗ = A
T ∈ Fn,m.

It is not difficult to show, using components, that
(
A

)T = (AT ), that is, the order of the
transpose an conjugate operation does not change the resulting matrix. This property is
the reason why there is no parenthesis in the definition of A∗.

Example 2.2.6: Find the adjoint of matrix A =
[

1 2 + i
−i 3− 4i

]
.

Solution: We need to switch rows with columns and complex conjugate the result, that is,

A∗ =
[

1 i
2− i 3 + 4i

]
.

C

The transpose, conjugate and adjoint operations are useful to specify different matrix classes
having particular symmetries. These matrix classes are the symmetric, the skew-symmetric,
the Hermitian, and the skew-Hermitian matrices. Here is a precise definition.
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Definition 2.2.6. An n× n matrix A is called:
(a) symmetric iff holds A = AT ;
(b) skew-symmetric iff holds A = −AT ;
(c) Hermitian iff holds A = A∗;
(d) skew-Hermitian iff holds A = −A∗.

Example 2.2.7: We present examples of each of the classes introduced in Def. 2.2.6.
Part (a): Matrices A and B are symmetric. Notice that A is also Hermitian, while B is

not Hermitian,

A =




1 2 3
2 7 4
3 4 8


 = AT , B =




1 2 + 3i 3
2 + 3i 7 4i

3 4i 8


 = BT .

Part (b): Matrix C is skew-symmetric,

C =




0 −2 3
2 0 −4
−3 4 0


 ⇒ CT =




0 2 −3
−2 0 4
3 −4 0


 = −C.

Notice that the diagonal elements in a skew-symmetric matrix must vanish, since Cij = −Cji

in the case i = j means Cii = −Cii, that is, Cii = 0.
Part (c): Matrix D is Hermitian but is not symmetric:

D =




1 2 + i 3
2− i 7 4 + i

3 4− i 8


 ⇒ DT =




1 2− i 3
2 + i 7 4− i

3 4 + i 8


 6= D,

however,

D∗ = D
T

=




1 2 + i 3
2− i 7 4 + i

3 4− i 8


 = D.

Notice that the diagonal elements in a Hermitian matrix must be real numbers, since the
condition Aij = Aji in the case i = j implies Aii = Aii, that is, 2iIm(Aii) = Aii − Aii = 0.
We can also verify what we said in part (a), matrix A is Hermitian since A∗ = A

T
= AT = A.

Part (d): The following matrix E is skew-Hermitian:

E =




i 2 + i −3
−2 + i 7i 4 + i

3 −4 + i 8i


 ⇒ ET =




i −2 + i 3
2 + i 7i −4 + i
−3 4 + i 8i




therefore,

E∗ = E
T



−i −2− i 3

2− i −7i −4− i
−3 4− i −8i


 = −E.

A skew-Hermitian matrix has purely imaginary elements in its diagonal, and the off diagonal
elements have skew-symmetric real parts with symmetric imaginary parts. C

The trace of a square matrix is a number, the sum of all the diagonal matrix coefficients.

Definition 2.2.7. The trace of a square matrix A =
[
Aij

] ∈ Fn,n, denoted as tr (A) ∈ F,
is the scalar given by

tr (A) = A11 + · · ·+ Ann.
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Example 2.2.8: Find the trace of the matrix A =




1 2 3
4 5 6
7 8 9


.

Solution: We add up the diagonal elements: tr (A) = 1 + 5 + 9, that is, tr (A) = 15. C

2.2.3. Linear transformations on matrices. The operation of computing the transpose
matrix can be thought as function on the set of all m×n matrices. The transpose operation
is in fact a function T : Fm,n → Fn,m given by T (A) = AT . In a similar way, the operation
of computing the trace of a square matrix can be thought as a function on the set of all
square matrices. The trace is a function tr : Fn,n → F, where tr (A) = A11 + · · ·+Ann. One
can verify that transpose function T and the trace function tr are indeed linear functions.

Theorem 2.2.8. Both the transpose function T : Fm,n → Fn,m, given by T(A) = AT , and
the trace function tr : Fn,n → F, given by tr (A) = A11 + · · ·+ Ann, are linear functions.

Proof of Theorem 2.2.8: We start with the transpose function T (A) = AT , which in
matrix components has the form

(
T (A)

)
ij

= Aji. Therefore, given two matrices A, B ∈ Fm,n

and arbitrary scalars a, b ∈ F, holds.(
T (aA + bB)

)
ij

=
(
aA + bB

)
ji

= a Aji + bBji

= a
(
T (A)

)
ij

+ b
(
T (B)

)
ij

,

so we conclude that
T (aA + bB) = aT (A) + b T (B),

showing that the transpose operation is a linear function. We now consider the trace func-
tion. Given any two matrices all A, B ∈ Fn,n and arbitrary scalars a, b ∈ F, holds,

tr (aA + bB) =
n∑

i=1

(
aA + bB

)
ii

=
n∑

i=1

(
aAii + bBii

)

= a

n∑

i=1

Aii + b

n∑

i=1

Bii

= a tr (A) + b tr (B).

This shows that the trace is a linear function. This establishes the Theorem. ¤
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2.2.4. Exercises.

2.2.1.- Construct an example of a 3×3 ma-
trix satisfying:

(a) Is symmetric and skew-symmetric.
(b) Is Hermitian and symmetric.
(c) Is Hermitian but not symmetric.

2.2.2.- Find the numbers x, y, z solution of
the equation

2

»
x + 2 y + 3

3 0

–
=

»
3 6
y z

–T

2.2.3.- Given any square matrix A show
that A+AT is a symmetric matrix, while
A− AT is a skew-symmetric matrix.

2.2.4.- Prove that there is only one way
to express a matrix A ∈ Fn,n as a
sum of a symmetric matrix and a skew-
symmetric matrix.

2.2.5.- Prove the following statements:

(a) If A = [Aij ] is a skew-symmetric
matrix, then holds Aii = 0.

(b) If A = [Aij ] is a skew-Hermitian
matrix, then the non-zero coeffi-
cients Aii are purely imaginary.

(c) If A is a real and symmetric matrix,
then B = iA is skew-Hermitian.

2.2.6.- Prove that for all A, B ∈ Fm,n and
all a, b ∈ F holds

(aA + bB)∗ = a A∗ + b B∗.

2.2.7.- Prove that the transpose function
T : Fm,n → Fn,m and trace function
tr : Fn,n → F are linear functions.



G. NAGY – LINEAR ALGEBRA July 15, 2012 57

2.3. Matrix multiplication

The operation of matrix multiplication originates in the composition of functions. We
call this operation a multiplication since it reduces to the multiplication of real numbers in
the case of 1 × 1 real matrices. Unlike the multiplication of real numbers, the product of
general matrices is not commutative, that is, AB 6= BA in the general case. This property
reflects the fact that the composition of two functions is a non-commutative operation. In
this Subsection we first introduce the multiplication of two matrices using the matrix vector
product. We then introduce the formula for the components of the product of two matrices.
Finally we show that the composition of two matrices is their matrix product.

2.3.1. Algebraic definition. Matrix multiplication is defined using the matrix-vector prod-
uct. The product of two matrices is the matrix-vector product of one matrix with each
column of the other matrix.

Definition 2.3.1. The matrix multiplication of the m×n matrix A with the n×` matrix
B =

[
B:1, · · · , B:`

]
, denoted by AB, is the m× ` matrix given by AB =

[
AB:1, · · · ,AB:`

]
.

The product is not defined for two arbitrary matrices, since the size of the matrices is
important: The numbers of columns in the first matrix must match the numbers of rows in
the second matrix,

A
m× n

times B
n× `

defines AB
m× `

We assign a name to matrices satisfying this property.

Definition 2.3.2. Matrices A and B are called conformable in the order A, B, iff the
product AB is well defined.

Example 2.3.1: Compute the product of the matrices A and B below, which are conformable
in both orders AB and BA, where

A =
[

2 −1
−1 2

]
, B =

[
3 0
2 −1

]
.

Solution: Following the definition above we compute the product in the order AB, namely,

AB =
[
AB:1,AB:2

]
=

[
A

[
3
2

]
,A

[
0
−1

]]
=

[[
6− 2
−3 + 4

]
,

[
0 + 1
0− 2

]]
⇒ AB =

[
4 1
1 −2

]
.

Using the same definition we can compute the product in the opposite order, that is,

BA =
[
BA:1, BA:2

]
=

[
B

[
2
−1

]
, B

[−1
2

]]
=

[[
6− 0
4 + 1

]
,

[−3 + 0
−2− 2

]]
⇒ BA =

[
6 −3
5 −4

]
.

This is an example where we have that AB 6= BA. C

The following result gives a formula to compute the components of the product matrix
in terms of the components of the individual matrices.

Theorem 2.3.3. Consider the m × n matrix A = [Aij ] and the n × ` matrix B = [Bjk],
where the indices take values as follows: i = 1, · · · ,m, j = 1, · · · , n and k = 1, · · · , `. The
components of the product matrix AB are given by

(AB)ik =
n∑

j=1

AijBjk. (2.4)
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We recall that the symbol
∑n

j=1 in Eq. (2.4) means to add up all the terms having the
index j starting from j = 1 until j = n, that is,

n∑

j=1

AijBjk = Ai1B1k + Ai2B2k + · · ·+ AinBnk.

Proof of Theorem 2.3.3: The column k of the product AB is given by the column vector
AB:k. This is a vector with m components,

AB:k =




∑n
j=1 A1jBjk

...∑n
j=1 AmjBjk


 ,

therefore the i-th component of this vector is given by

(AB)ik =
n∑

j=1

AijBjk.

This establishes the Theorem. ¤
Example 2.3.2: We now use Eq. (2.4) to find the product of matrices A and B in Exam-
ple 2.3.1. The component (AB)11 = 4 is obtained from the first row in matrix A and the
first column in matrix B as follows:[

2 −1
−1 2

] [
3 0
2 −1

]
=

[
4 1
1 −2

]
, (2)(3) + (−1)(2) = 4;

The component (AB)12 = −1 is obtained as follows:[
2 −1
−1 2

] [
3 0
2 −1

]
=

[
4 1
1 −2

]
, (2)(0) + (−1)(1) = −1;

The component (AB)21 = 1 is obtained as follows:[
2 −1
−1 2

] [
3 0
2 −1

]
=

[
4 1
1 −2

]
, (−1)(3) + (2)(2) = 1;

And finally the component (AB)22 = −2 is obtained as follows:[
2 −1
−1 2

] [
3 0
2 −1

]
=

[
4 1
1 −2

]
, (−1)(0) + (2)(−1) = −2.

C

We have seen in Example 2.3.1 that the matrix product is not commutative, since in that
example AB 6= BA. In that example the matrices were conformable in both orders AB and
BA, although their products do not match. It can also be possible that two matrices A and
B are conformable in the order AB but they are not conformable in the opposite order. That
is, the matrix product is possible in one order but not in the other order.

Example 2.3.3: Consider the matrices

A =
[
4 3
2 1

]
B =

[
1 2 3
4 5 6

]

These matrices are conformable in the order AB but not in the order BA. In the first case
we obtain

AB =
[
4 3
2 1

] [
1 2 3
4 5 6

]
⇒ AB =

[
16 23 30
6 9 12

]
.

The product BA is not possible. C



G. NAGY – LINEAR ALGEBRA July 15, 2012 59

Example 2.3.4: Column vectors and row vectors are particular cases of matrices, they are
n × 1 and 1 × n matrices, respectively. We denote row vectors as transpose of a column
vector. Using this notation and the matrix product, compute both products vT u and u vT ,
where the vectors are given by

u =
[
2
3

]
, v =

[
5
1

]
.

Solution: In the first case we multiply the matrices 1× 2 and 2× 1, so the result is a 1× 1
matrix, a real number, given by,

vT u =
[
5 1

] [
2
3

]
⇒ vT u = 13.

In the second case we multiply the matrices 2× 1 and 1× 2, so the result is a 2× 2 matrix,

u vT =
[
2
3

] [
5 1

] ⇒ u vT =
[
10 2
15 3

]
.

C

It is well-known that the product of two numbers is zero, then one of them must be zero.
This property is not true in the case of matrix multiplication, as it can be seen below.

Example 2.3.5: Compute the product AB where A =
[

1 −1
−1 1

]
and B =

[
1 −1
1 −1

]
.

Solution: It is simple to check that

AB =
[

1 −1
−1 1

] [
1 −1
1 −1

]
=

[
0 0
0 0

]
⇒ AB = 0.

The product is the zero matrix, although A 6= 0 and B 6= 0. C

2.3.2. Matrix composition. The product of two matrices originates in the composition
of the linear functions defined by the matrices. This can seen in the following result.

Theorem 2.3.4. Given the m× n matrix A : Fn → Fm and the n× ` matrix B : F` → Fn,
their composition is a function

A ◦ B : F` B−→ Fn A−→ Fm,

which is an m× ` matrix given by the matrix product of A and B, that is, A ◦ B = AB.

Proof of Theorem 2.3.4: The composition of the function A and B is defined for all x ∈ F`

as follows
(A ◦ B)x = A(Bx).

Introduce the usual notation B = [B:1, · · · , B:`]. Then, the composition A ◦ B can be re-
expressed as follows,

(A ◦ B)x = A
([

B:1, · · · , B:`

]



x1

...
x`




)
= A

(
B:1x1 + · · ·+ B:`x`

)
.

Since the matrix-vector product is a linear operation, we get

(A ◦ B)x = A
(
B:1x1

)
+ · · ·+ A

(
B:`x`

)
=

(
AB:1

)
x1 + · · ·+ (

AB:`

)
x`
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where the second equation comes from the definition of matrix multiplication. Then, using
again the definition of matrix-vector product,

(A ◦ B)x =
[
AB:1, · · · , AB:`

]



x1

...
x`


 ⇒ (A ◦ B)x = (AB)x.

This establishes the Theorem. ¤
Example 2.3.6: Find the matrix T : R2 → R2 that produces a rotation by an angle θ1

counterclockwise and then another rotation by an angle θ2 counterclockwise.

Solution: Let us denote by Rθ the matrix that performs a rotation on the plane by an
angle θ counterclockwise, that is,

Rθ =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

The matrix T is the the composition T = Rθ2 ◦ Rθ1 . Since the matrix of a composition of
these two rotations can be obtained computing the matrix product of them, then we obtain

T = Rθ2Rθ1 =
[
cos(θ2) − sin(θ2)
sin(θ2) cos(θ2)

] [
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

]
.

The product above is given by

T =
[
cos(θ2) cos(θ1)− sin(θ2) sin(θ1) −[

sin(θ1) cos(θ2) + sin(θ2) cos(θ1)
]

sin(θ1) cos(θ2) + sin(θ2) cos(θ1) − sin(θ2) sin(θ1) + cos(θ2) cos(θ1)

]
.

The formulas

cos(θ1 + θ2) = cos(θ2) cos(θ1)− sin(θ2) sin(θ1)

sin(θ1 + θ2) = sin(θ1) cos(θ2) + sin(θ2) cos(θ1),

imply that

T =
[
cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

]
.

Notice that we have obtained a result that it is intuitively clear: Two consecutive rotations
on the plane is equivalent to a single rotation by an angle that is the sum of the individual
rotations, that is,

Rθ2Rθ1 = Rθ2+θ1 .

In particular, notice that the matrix multiplication when restricted to the set of all rotation
matrices on the plane is a commutative operation, that is,

Rθ2Rθ1 = Rθ1Rθ2 , θ1, θ2 ∈ R.

C

In Examples 2.3.7 and 2.3.8 below we show that the order of the functions in a composition
change the resulting function. This is essentially the reason behind the non-commutativity
of the matrix multiplication.

Example 2.3.7: Find the matrix T : R2 → R2 that first performs a rotation by an angle
π/2 counterclockwise and then performs a reflection along the x1 = x2 line on the plane.

Solution: The matrix T is the composition the rotation Rπ/2 with the reflection function
A, given by

Rπ/2 =
[
0 −1
1 0

]
, A =

[
0 1
1 0

]
.
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The matrix T is given by

T = ARπ/2 =
[
0 1
1 0

] [
0 −1
1 0

]
⇒ T =

[
1 0
0 −1

]
.

Therefore, the function T is a reflection along the horizontal line x2 = 0. C

Example 2.3.8: Find the matrix S : R2 → R2 that first performs a reflection along the
x1 = x2 line on the plane an then performs a rotation by an angle π/2 counterclockwise.

Solution: The matrix S is the composition the reflection function A and then the rotation
Rπ/2, given in the previous Example 2.3.7. The matrix S is the given by

S = Rπ/2A =
[
0 −1
1 0

] [
0 1
1 0

]
⇒ S =

[−1 0
0 1

]
.

Therefore, the function S is a reflection along the vertical line x1 = 0. C

2.3.3. Main properties. We summarize the main properties of the matrix multiplication.

Theorem 2.3.5. The following properties hold for all m × n matrix A, n ×m matrix B,
n× ` matrices C, D, and `× k matrix E:

(a) AB 6= BA in the general case, so the product is non-commutative;
(b) A(C + D) = AC + AD, and (C + D)E = CE + DE;
(c) A(CE) = (AC)E, associativity;
(d) ImA = AIn = A;
(e) (AC)T = CT AT , and (AC)∗ = C∗A∗.
(f) tr (AB) = tr (BA).

Proof of Theorem 2.3.5:
Part (a): When m 6= n the matrix AB is m ×m while BA is n × n, so they cannot be

equal. When m = n, the matrices in Example 2.3.4 and 2.3.5 show that this product is not
commutative.

Part (b): This property can be shown as follows:

A(C + D) = A
([

C:1, · · · , C:`

]
+

[
D:1, · · · , D:`

])

= A
[
(C:1 + D:1), · · · , (C:` + D:`)

]

=
[
A(C:1 + D:1), · · · , A(C:` + D:`)

]

=
[
(AC:1 + AD:1), · · · , (AC:` + AD:`)

]

=
[
AC:1, · · · , AC:`

]
+

[
AD:1, · · · ,AD:`

]

= AC + AD.

The other equation is proven in a similar way.
Part (c): This property is proven using the component expression for the matrix product:

[
A(CE)

]
ij

=
n∑

k=1

Aik(CE)kj =
n∑

k=1

Aik

(∑̀

l=1

CklElj

)
;

however, the order of the sums can be interchanged,

n∑

k=1

Aik

(∑̀

l=1

CklElj

)
=

∑̀

l=1

( n∑

k=1

AikCkl

)
Elj ;
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So, from this last expression is not difficult to show that:

∑̀

l=1

( n∑

k=1

AikCkl

)
Elj =

∑̀

l=1

(AC)ilElj =
[
(AC)E

]
ij

;

We have just proved that [
A(CE)

]
ij

=
[
(AC)E

]
ij

.

Part (d): We can use components again, recalling that the components of Im are given
by (Im)ij = 0 if i 6= j and is (Im)ii = 1. Therefore,

(ImA)ij =
m∑

k=1

(Im)ikAkj = (Im)iiAij = Aij .

Analogously,

(AIn)ij =
n∑

k=1

Aik(In)kj = Aij(In)jj = Aij .

Part (e): Use components once more:

[
(AC)T

]
ij

= (AC)ji =
n∑

k=1

AjkCki =
n∑

k=1

(AT )kj(CT )ik =
n∑

k=1

(CT )ik(AT )kj =
[
CT AT

]
ij

.

The second equation follows from the proof above and the property of the complex conjugate:

(AC) = A C.

Indeed

(AC)∗ = (AC)T = CT AT = CT AT = C∗A∗.

Part (f): Recall that the trace of a matrix A is given by

tr (A) = A11 + · · ·+ Ann =
n∑

i=1

Aii.

Then it is simple to see that

tr (AB) =
m∑

i=1

( n∑

j=1

AijBji

)
=

m∑

i=1

( n∑

j=1

BjiAij

)
=

n∑

j=1

( m∑

i=1

BjiAij

)
= tr (BA).

This establishes the Theorem. ¤
We use the notation A2 = AA, A3 = A2A, and An = An−1A. Notice that the matrix

product is not commutative, so the formula (a + b)2 = a2 + 2ab + b2 does not hold for
matrices. Instead we have:

(A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2.

2.3.4. Block multiplication. The multiplication of two large matrices can be simplified
in the case that each matrix can be subdivided in appropriate blocks. If these matrix blocks
are conformable the multiplication of the original matrices reduces to the multiplication of
the smaller matrix blocks. The next result is presents a simple case.
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Theorem 2.3.6. If A is an m × n matrix and B is an n × ` matrix having the following
block decomposition,

A =




A11

... A12

. . . . . . . . . . . .

A21

... A22


 , A =




m1 × n1

... m1 × n2

. . . . . . . . . . . . . . . . . . . . .

m2 × n1

... m2 × n2


 ,

B =




B11

... B12

. . . . . . . . . . . .

B21

... B22


 , B =




n1 × `1
... n1 × `2

. . . . . . . . . . . . . . . . . . .

n2 × `1
... n2 × `2


 ,

where m1 + m2 = m, n1 + n2 = n and `1 + `2 = `, then the product AB has the form

AB =




A11B11 + A12B21

... A11B12 + A12B22

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A21B11 + A22B21

... A21B12 + A22B22


 , AB =




m1 × `1
... m1 × `2

. . . . . . . . . . . . . . . . . . . .

m2 × `1
... m2 × `2


 .

The proof is a straightforward computation, so we omit it. This type of block decomposi-
tion is useful when several blocks are repeated inside the matrices A and B. This situation
appears in the following example.

Example 2.3.9: Use block multiplication to find the matrix AB, where

A =




1 2 1 0
3 4 0 1
1 0 0 0
0 1 0 0


 , B =




1 0 1 2
0 1 3 4
0 0 1 2
0 0 3 4


 .

Solution: These matrices have the following block structure:

A =




1 2
... 1 0

3 4
... 0 1

. . . . . . . . . . . . . .

1 0
... 0 0

0 1
... 0 0




, B =




1 0
... 1 2

0 1
... 3 4

. . . . . . . . . . . . . .

0 0
... 1 2

0 0
... 3 4




,

so, introduce the matrices

I =
[
1 0
0 1

]
, C =

[
1 2
3 4

]
, 0 =

[
0 0
0 0

]
,

then, the original matrices have the block form

A =




C
... I

. . . . . . . .

I
... 0


 , B =




I
... C

. . . . . . . .

0
... C


 .

Then, the matrix AB has the form

AB =




C
... C2 + C

. . . . . . . . . . . . .

I
... C


 .
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So, the only calculation we need to do is the matrix C2 + C, which is given by

C2 + C =
[

8 12
18 26

]
.

If we put all the information above together, we get

AB =




1 2
... 8 12

3 4
... 18 26

. . . . . . . . . . . . . . . .

1 0
... 1 2

0 1
... 3 4




⇔ AB =




1 2 8 12
3 4 18 26
1 0 1 2
0 1 3 4


 .

C

Example 2.3.10: Given arbitrary matrices A, that is n× k, and B, that is k×n, show that
the (k + n)× (k + n) matrix C below satisfies C2 = In+k, where

C =




Ik − BA
... B

. . . . . . . . . . . . . . . . . . . . . .

2A− ABA
... AB− In




Solution: Notice that AB is an n×n matrix, while BA is an k×k matrix, so the definition
of C implies that

C =




k × k
... k × n

. . . . . . . . . . . . . . . .

n× k
... n× n


 .

Using block multiplication we obtain:

C2 =




(Ik − BA)
... B

. . . . . . . . . . . . . . . . . . . . . . . . . .

(2A− ABA)
... (AB− In)







(Ik − BA)
... B

. . . . . . . . . . . . . . . . . . . . . . . . . .

(2A− ABA)
... (AB− In)


 =




(Ik − BA)(Ik − BA) + B(2A− ABA)
... (Ik − BA)B + B(AB− In)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(2A− ABA)(Ik − BA) + (AB− In)(2A− ABA)
... (2A− ABA)B + (AB− In)(AB− In)




Now, notice that the block (1, 1) above is:

(Ik − BA)(Ik − BA) + B(2A− ABA) = Ik − BA− BA + BABA + 2BA− BABA = Ik.

The block (1, 2) is:

(Ik − BA)B + B(AB− In) = B− BAB + BAB− B = 0.

The block (2, 1) is:

(2A− ABA)(Ik − BA) + (AB− In)(2A− ABA) =

2A− 2ABA− ABA + ABABA + 2ABA− ABABA− 2A + ABA = 0.

Finally, the block (2, 2) is:

(2A− ABA)B + (AB− In)(AB− In) = 2AB− ABAB + ABAB− AB− AB + In = In.
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Therefore, we have shown that: C2 =




Ik
... 0

. . . . . . . . .

0
... In


 = Ik+n. C

2.3.5. Matrix commutators. Matrix multiplication is in general not commutative. Given
two n× n matrices A and B, their product AB is in general different from BA. We call the
difference between these two matrices the commutator of A and B.

Definition 2.3.7. The commutator of two n× n matrices A and B, is the matrix

[A, B] = AB− BA.

Furthermore, we say that the square matrices A, B commute iff holds [A,B] = 0.

Therefore, the symbol [A, B] denotes an n × n matrix, the commutator of A and B. The
commutator of two operators defined on an inner product space is an important concept
in quantum mechanics. When we say an operator, we should think in something like a
matrix, and when we say an inner product space, we should think in something like Fn. An
observation of a physical property, like position or momentum, of a quantum mechanical
system, like an electron, is described by an operator acting on a vector, the latter describing
the state of the quantum mechanical system. By observing nature, one discovers that two
properties can be simultaneously measured without limit in the measurement precision iff
the associated operators commute. If the operators do not commute, then their commutator
determines the maximum precision of their simultaneous observation. This is the physical
content of the Heisenberg uncertainty principle.

Example 2.3.11: We have seen in Example 2.3.6 that two rotation matrices R(θ1) and R(θ2)
commute for all θ1, θ2 ∈ R, that is,

[R(θ1),R(θ2)] = R(θ1)R(θ2)− R(θ2)R(θ1) ⇒ [R(θ1), R(θ2)] = 0. C

Theorem 2.3.8. For all matrices A, B, C ∈ Fn,n and scalars a, b, c ∈ F holds:
(a) [A, B] = −[B, A], (antisymmetry);
(b) [aA, bB] = ab [A, B], (linearity);
(c) [A, B + C] = [A, B] + [A, C], (linearity on the right entry);
(d) [A + B,C] = [A, C] + [B,C], (linearity on the left entry);
(e) [A, BC] = [A,B]C + B[A, C], (right derivation property);
(f) [AB, C] = [A,C]B + A[B, C], (left derivation property);
(g)

[
[A, B],C

]
+

[
[C, A], B

]
+

[
[B,C], A

]
= 0, (Jacobi property).

Proof of Theorem 2.3.8: All properties are simple to show.
Part (a):

[A, B] = AB− BA = −(
BA− AB

)
= −[B, A].

Part (b):
[aA, bB] = aAbB− bBaA = ab

(
AB− BA

)
= ab [A, B].

Part (c):

[A, B + C] = A(B + C)− (B + C)A = AB + AC− BA− CA = [A, B] + [A,C].

Part (d): The proof is similar to the previous calculation.
Part (e):

[A, BC] = A(BC)− (BC)A = ABC + (BAC− BAC)− BCA = [A, B]C + B[A,C].

Part (f): The proof is similar to the previous calculation.
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Part (g): We write down each term and we verify that they all add up to zero:[
[A, B],C

]
= (AB− BA)C− C(AB− BA);

[
[C,A], B

]
= (CA− AC)B− B(CA− AC);[

[B, C], A
]

= (BC− CB)A− A(BC− CB).

These three equations add up to the zero matrix. This establishes the Theorem. ¤
We finally highlight that these properties implies that [A,Am] = 0 holds for all m ∈ N.

Further reading. Almost every book in linear algebra explains matrix multiplication. See
Section 3.5 in Meyer’s book [3], and Section 3.6 for block multiplication. Also Strang’s
book [4]. The definition of commutators can be found in Section 2.3.1 in Hassani’s book [1].
Commutators play an important role in the Spectral Theorem, which we study in Chapter 9.
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2.3.6. Exercises.

2.3.1.- Given the matrices

A =

2
4

1 −2 3
0 −5 4
4 −3 8

3
5 , B =

2
4

1 2
0 4
3 7

3
5 ,

and the vector C =

2
4

1
2
3

3
5, compute the

following products, if possible:

(a) AB, BA, CB and CT B.
(b) A2, B2, CT C and CCT .

2.3.2.- Consider the matrices

A =

»
2 1
3 1

–
, B =

»
1 1
3 0

–
, C =

»
1 4
2 3

–
.

(a) Compute [A, B].
(b) Find the product ABC.

2.3.3.- Find A2 and A3 for the matrix

A =

2
4

0 1 1
0 0 1
0 0 0

3
5 .

2.3.4.- Given a real number a find the ma-
trix An, where n is any positive integer
and

A =

»
1 a
0 1

–
.

2.3.5.- Given any square matrices A, B,
prove that

(A+B)2 = A2+2AB+B2 ⇔ [A, B] = 0.

2.3.6.- Given a = 1/3, divide the matrix

A =

2
6666664

1 0 0 a a a
0 1 0 a a a
0 0 1 a a a
0 0 0 a a a
0 0 0 a a a
0 0 0 a a a

3
7777775

into appropriate blocks, and using block
multiplication find the matrix A300.

2.3.7.- Prove that for all matrices A ∈ Fn,m

and B ∈ Fm,n holds

tr (AB) = tr (BA).

2.3.8.- Let A be an m × n matrix. Show
that tr

`
AT A

´
= 0 iff A = 0.

2.3.9.- Prove that: If A, B ∈ Fn,n are
symmetric matrices and commute, then
their product AB is also a symmetric
matrix.

2.3.10.- Let A be an arbitrary n × n ma-
trix. Use the trace function to show
that there exists no n× n matrix X so-
lution of the matrix equation

[A, X] = In.
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2.4. Inverse matrix

In this Section we introduce the concept of the inverse of a square matrix. Not every
square matrix is invertible. In the case of 2 × 2 matrices we present a condition on the
matrix coefficients that is equivalent to the invertibility of the matrix, and we also present
a formula for the inverse matrix. Later on in Section 3.2 we generalize this formula for
n× n matrices. The inverse of a matrix is useful to compute solutions to systems of linear
equations.

2.4.1. Main definition. We start recalling that the matrix In ∈ Fn,n is called the identity
matrix iff holds that Inx = x for all x ∈ Fn. Choosing the vector x = ei, consisting of a 1 in
the row i and zero every where else, it is simple to see that the components of the identity
matrix are given by

In = [Iij ] with
{

Iii = 1,

Iij = 0, i 6= j.

The cases n = 2 and n = 3 are shown below,

I2 =
[
1 0
0 1

]
, I3 =




1 0 0
0 1 0
0 0 1


 .

We also use the column vector notation for the identity matrix,

In = [e1, · · · , en],

that is, we denote the identity column vectors I:i = ei for i = 1, · · · , n. For example, in the
case of I3 we have that

I3 = [e1, e2, e3] =




1 0 0
0 1 0
0 0 1


 ⇒ e1 =




1
0
0


 , e2 =




0
1
0


 , e3 =




0
0
1


 .

We are now ready to introduce the notion of the inverse matrix.

Definition 2.4.1. A matrix A ∈ Fn,n is called invertible iff there exists a matrix, denoted
as A−1, such that

(
A−1

)
A = In and A

(
A−1

)
= In.

Since the matrix product is non-commutative, the products A
(
A−1

)
= In and

(
A−1

)
A =

In must be specified in the definition above. Notice that we do not need to assume that the
inverse matrix belongs to Fn,n, since both products A

(
A−1

)
and

(
A−1

)
A are well-defined,

we conclude that the inverse matrix must be n× n.

Example 2.4.1: Verify that the matrix and its inverse are given by

A =
[
2 2
1 3

]
, A−1 =

1
4

[
3 −2
−1 2

]
.

Solution: We have to compute the products,

A
(
A−1

)
=

[
2 2
1 3

]
1
4

[
3 −2
−1 2

]
=

1
4

[
4 0
0 4

]
⇒ A

(
A−1

)
= I2.

It is simple to check that the equation
(
A−1

)
A = I2 also holds. C

Example 2.4.2: The only real numbers that are equal to is own inverses are a = 1 and
a = −1. This is not true in the case of matrices. Verify that the matrix A below is its own
inverse, that is,

A =
[
1 1
0 −1

]
= A−1.
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Solution: We have to compute the products,

A
(
A−1

)
=

[
1 1
0 −1

] [
1 1
0 −1

]
=

[
1 0
0 1

]
⇒ A

(
A−1

)
= I2.

It is simple to check that the equation
(
A−1

)
A = I2 also holds. C

Not every square matrix is invertible. The following Example show a 2× 2 matrix with no
inverse.

Example 2.4.3: Show that matrix A =
[
1 2
3 6

]
has no inverse.

Solution: Suppose there exists the inverse matrix

A−1 =
[
a b
c d

]

Then, the following equation holds,

A
(
A−1

)
= I2 ⇔

[
1 2
3 6

] [
a b
c d

]
=

[
1 0
0 1

]
.

The last equation implies
a + 2c = 1,

3(a + 2c) = 0,

b + 2d = 0,

3(b + 2d) = 1.

However, both systems are inconsistent, so the inverse matrix A−1 does not exist. C

In the case of 2 × 2 matrices there is a simple way to find out whether a matrix has
inverse or not. If the 2×2 matrix is invertible, then there is a simple formula for the inverse
matrix. This is summarized in the following result.

Theorem 2.4.2. Given a 2 × 2 matrix A =
[
a b
c d

]
, introduce the number ∆ = ad − bc.

The matrix A is invertible iff ∆ 6= 0. Furthermore, if A is invertible, its inverse is given by

A−1 =
1
∆

[
d −b
−c a

]
. (2.5)

The number ∆ is called the determinant of A, since it is the number that determines whether
A is invertible or not, and soon we will see that it is the number that determines whether
a system of linear equations has a unique solution or not. Also later on we will study
generalizations to n× n matrices of the Theorem above. That will require a generalization
to n× n matrices of the determinant ∆ of a matrix.

Example 2.4.4: Compute the inverse of matrix A =
[
2 2
1 3

]
, given in Example 2.4.1.

Solution: Following Theorem 2.4.2 we first compute ∆ = 6 − 4 = 4. Since ∆ 6= 0, then
A−1 exists and it is given by

A−1 =
1
4

[
3 −2
−1 2

]
.

C

Example 2.4.5: Theorem 2.4.2 says that the matrix in Example 2.4.3 is not invertible, since

A =
[
1 2
3 6

]
⇒ ∆ = 6− (3)(2) ⇒ ∆ = 0.

C
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Proof of Theorem 2.4.2: If the matrix A−1 exists, from the definition of inverse matrix
it follows that A−1 must be 2× 2. Suppose that the inverse of matrix A is given by

A−1 =
[
x1 y1

x2 y2

]
.

We first show that A−1 exists iff ∆ 6= 0.
The 2 × 2 matrix A−1 exists iff the equation A

(
A−1

)
= I2, which is equivalent to the

systems
[
a b
c d

] [
x1 y1

x2 y2

]
=

[
1 0
0 1

]
⇔

ax1 + bx2 = 1,

cx1 + dx2 = 0,

ay1 + by2 = 0,

cy1 + dy2 = 1.
(2.6)

Consider now the particular case a = 0 and c = 0, which imply that ∆ = 0. In this case the
equations above reduce to:

bx2 = 1,

dx2 = 0,

by2 = 0,

dy2 = 1.

These systems have no solution, since from the first equation on the left b 6= 0, and from the
first equation on the right we obtain that y2 = 0. But this contradicts the second equation
on the right, since dy2 is zero and so can never be equal to one. We then conclude there is
no inverse matrix in this case.

Assume now that at least one of the coefficients a or c is non-zero, and let us return to
Eqs. (2.6). Both systems can be solved using the following augmented matrix

[
a b

∣∣ 1 0
c d

∣∣ 0 1

]

Now, perform the following Gauss operations:[
ac bc

∣∣ c 0
ac ad

∣∣ 0 a

]
→

[
ac bc

∣∣ c 0
0 ad− bc

∣∣ −c a

]
=

[
ac bc

∣∣ c 0
0 ∆

∣∣ −c a

]

At least one of the source coefficients in the second row above is non-zero. Therefore, the
system above is consistent iff ∆ 6= 0. This establishes the first part of the Theorem.

In order to prove the furthermore part, one can continue with the calculation above, and
find the formula for the inverse matrix. This is a long calculation, since one has to study
three different cases: the case a = 0 and c 6= 0, the case a 6= 0 and c = 0, and the case
where both a and c are non-zero. It is faster to check that the expression in the Theorem
is indeed the inverse of A. Since ∆ 6= 0, the matrix in Eq. (2.5) is well-defined. Then, the
straightforward calculation

A
(
A−1

)
=

[
a b
c d

]
1
∆

[
d −b
−c a

]
=

1
∆

[
∆ −ab + ba

cd− dc ∆

]
= I2.

It is not difficult to see that the second condition
(
A−1

)
A = I2 is also satisfied. This

establishes the Theorem. ¤
There are many different ways to characterize n×n invertible matrices. One possibility is

to relate the existence of the inverse matrix to the solution of appropriate systems of linear
equations. The following result summarizes a few of these characterizations.

Theorem 2.4.3. Given a matrix A ∈ Fn,n, the following statements are equivalent:
(a) The matrix A−1 exists;
(b) rank(A) = n;
(c) EA = In;
(d) The homogeneous equation Ax = 0 has a unique solution x = 0;
(e) The non-homogeneous equation Ax = b has a unique solution for every source b ∈ Fn.
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Proof of Theorem 2.4.3: It is clear that properties (b)-(d) are all equivalent. Here we
only show that (a) is equivalent to (b).

We start with (a)⇒ (b): Since A−1 exists, the homogeneous equation Ax = 0 has a unique
solution x = 0. (Proof: Assume there are two solutions x1 and x2, then A(x2 − x1) = 0, and
so (x2 − x1) = A−1A(x2 − x1) = A−10 = 0, and so x2 = x1.) But this implies there are no
free variables in the solutions of Ax = 0, that is, EA = In, that is, rank(A) = n.

We finish with (b) ⇒ (a): Since rank(A) = n, the non-homogeneous equation Ax = b has
a unique solution x for every source vector b ∈ Rn. In particular, there exist unique vectors
x1, · · · , xn solutions of

Ax1 = e1, · · · Axn = en.

where ei is the i-th column of the identity matrix In. This is equivalent to say that the
matrix X =

[
x1, · · · , xn

]
satisfies the equation

AX = In.

This matrix X = A−1 since X also satisfies the equation XA = In. (Proof: Consider the
identities

A− A = 0 ⇔ AXA− A = 0 ⇔ A(XA− In) = 0;
The last equation is equivalent to the n systems of equations Ayi = 0, where yi is the i-th
column of the matrix (XA − In); Since rank(A) = n, each of these systems has a unique
solution yi = 0, that is, XA = In.) This establishes the Theorem. ¤

It is simple to see from Theorem 2.4.3 that an invertible matrix has a unique inverse.

Corollary 2.4.4. An invertible matrix has a unique inverse.

Proof of Corollary 2.4.4: Suppose that matrices X and Y are two inverses of an n × n
matrix A. Then, AX = In and AY = In, hence A(X − Y) = 0. The latter are n systems of
linear equations, one for each column vector in (X−Y). From Theorem 2.4.3 we know that
rank(A) = n, so the only solution to these equations is the trivial solution, so each column
vector vanishes, therefore X = Y. ¤
2.4.2. Properties of invertible matrices. They are summarized below.

Theorem 2.4.5. If A and B are n× n invertible matrices, then holds:

(a)
(
A−1

)−1 = A;
(b)

(
AB

)−1 = B−1A−1;
(c)

(
AT

)−1 =
(
A−1

)T .

Proof of Theorem 2.4.5: Since an invertible matrix is unique, we only have to verify
these equations in (a)-(c).

Part (a): The inverse of A−1 is a matrix
(
A−1

)−1 satisfying the equations
[(

A−1
)−1

](
A−1

)
= In,

(
A−1

)[(
A−1

)−1
]

= In.

But matrix A satisfies precisely these equations, and recalling that the inverse of a matrix
is unique, then A =

(
A−1

)−1.
Part (b): The proof is similar to the previous one. We verify that matrix

(
B−1

)
(
(
A−1

)
satisfies the equations that (AB)−1 must satisfy. Then, they must be the same, since the
inverse matrix is unique. Notice that,(

B−1A−1
)
(AB) = B−1

(
A−1A

)
B,

=
(
B−1

)
B,

= In;

(AB)
(
B−1A−1

)
= A

(
BB−1

)
A−1,

= A
(
A−1

)
,

= In.
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We then conclude that
(
AB

)−1 = B−1A−1.
Part (c): Recall that (AB)T = BT AT , therefore,

(
A−1

)
A = In ⇔ [(

A−1
)
A

]T = ITn ⇔ AT
(
A−1

)T = In,

A
(
A−1

)
= In ⇔ [

A
(
A−1

)]T = ITn ⇔ (
A−1

)T
AT = In.

Therefore,
(
A−1

)T =
(
AT

)−1. This establishes the Theorem. ¤
The properties presented above are useful to solve equations involving matrices.

Example 2.4.6: Find a matrix C solution of the equation (BC)T − A = 0, where

A =




1 2
3 4
−1 −1


 , B =

[
1 −1
1 2

]
.

Solution: The matrix B is invertible, since ∆(B) = 3, and its inverse is given by

B−1 =
1
3

[
2 1
−1 1

]
.

Therefore, matrix C is given by

(BC)T = A ⇔ BC = AT ⇔ C = B−1AT ,

that is,

C =
1
3

[
2 1
−1 1

] [
1 3 −2
2 4 −1

]
⇒ C =

1
3

[
4 10 −5
1 1 1

]
.

C

Example 2.4.7: The (n + k)× (n + k) matrix C introduced in Example 2.3.10 satisfies the
equation C2 = In+k. Therefore, matrix C is its own inverse, that is, C−1 = C. C

2.4.3. Computing the inverse matrix. We now show how to use Gauss operations to find
the inverse matrix in the case that such inverse exists. The main idea needed to compute the
inverse of an n×n matrix is summarized in the following Theorem. We emphasize that this
is not a new result. We are just highlighting the main part of the proof in Theorem 2.4.3,
(b) ⇒ (a).

Theorem 2.4.6. Let A be an n× n matrix. If the n systems of linear equations

Ax1 = e1, · · · Axn = en, (2.7)

are all consistent, then the matrix A is invertible and its inverse is given by

A−1 =
[
x1, · · · , xn

]
.

If at least one system in Eq. (2.7) is inconsistent, then matrix A is not invertible.

Proof of Theorem 2.4.6: We first show that the consistency of all systems in Eq. (2.7)
implies that matrix A is invertible. Indeed, if all systems in Eq. (2.7) are consistent, then
the system Ax = b is also consistent for all b ∈ Rn (Proof: The solution for the source
b = b1e1 + · · · + bnen is simply x = b1x1 + · · · + bnxn.) Therefore, rank(A) > n. Since A is
an n× n matrix, we conclude that rank(A) = n. Then, Theorem 2.4.3 implies that matrix
A is invertible.

We now introduce the matrix X =
[
x1, · · · , xn

]
and we show that A−1 = X. From the

definition of X we see that AX = In. Since rank(A) = n, the same argument given in the
proof of Theorem 2.4.3 shows that XA = In. Since the inverse of a matrix is unique, we
conclude that A−1 = X. This establishes the Theorem. ¤
This Theorem provides a method to find the inverse of a matrix.
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Corollary 2.4.7. The inverse of an invertible n× n matrix A is computed with the Gauss
operations such that

[
A

∣∣In
] −→ [

In
∣∣A−1

]
.

Proof of Corollary 2.4.7: One solves the n linear systems in Eq. (2.7). Since all these
systems share the same coefficient matrix, matrix A, one can solve them all at the same
time, introducing the augmented matrix[

A
∣∣e1, · · · , en

]
=

[
A

∣∣In
]
.

In the proof of Theorem 2.4.6 we show that rank(A) = n. Therefore, its reduced echelon
form is EA = In, so the Gauss method implies that[

A
∣∣In

]
=

[
A

∣∣e1, · · · , en

]→ [
EA

∣∣x1, · · · , xn

]
=

[
In

∣∣A−1
] ⇔ [

A
∣∣In

] −→ [
In

∣∣A−1
]
.

This establishes the Corollary. ¤

Example 2.4.8: Find the inverse of the matrix A =
[
2 4
1 3

]
.

Solution: We have to solve the two systems of equations Ax1 = e1 and Ax2 = e2, that is,[
2 4
1 3

] [
x1

x2

]
=

[
1
0

] [
2 4
1 3

] [
y1

y2

]
=

[
0
1

]
.

We solve both systems at the same time using the Gauss method on the augmented matrix[
2 4

∣∣ 1 0
1 3

∣∣ 0 1

]
→

[
1 2

∣∣ 1/2 0
1 3

∣∣ 0 1

]
→

[
1 2

∣∣ 1/2 0
0 1

∣∣ −1/2 1

]
→

[
1 0

∣∣ 3/2 −2
0 1

∣∣ −1/2 1

]

therefore, A−1 = 1
2

[
3 −4
−1 2

]
. C

Example 2.4.9: Find the inverse of the matrix A =




1 2 3
2 5 7
3 7 9


.

Solution: We compute the inverse matrix as follows:


1 2 3
∣∣ 1 0 0

2 5 7
∣∣ 0 1 0

3 7 9
∣∣ 0 0 1


→




1 2 3
∣∣ 1 0 0

0 1 1
∣∣ −2 1 0

0 1 0
∣∣ −3 0 1


→




1 0 1
∣∣ 5 −2 0

0 1 1
∣∣ −2 1 0

0 0 −1
∣∣ −1 −1 1


→




1 0 0
∣∣ 4 −3 1

0 1 0
∣∣ −3 0 1

0 0 1
∣∣ 1 1 −1


⇒ A−1 =




4 −3 1
−3 0 1
1 1 −1


 .

C

Example 2.4.10: Is matrix A =
[
1 2
2 4

]
invertible?

Solution: No, since
[
1 2

∣∣ 1 0
2 4

∣∣ 0 1

]
→

[
1 2

∣∣ 1 0
0 0

∣∣ −2 1

]
, are inconsistent. C

Further reading. Almost any book in linear algebra introduces the inverse matrix. See
Sections 3.7 and 3.9 in Meyer’s book [3].
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2.4.4. Exercises.

2.4.1.- When possible, find the inverse of
the following matrices. (Check your an-
swers using matrix multiplication.)

(a)

A =

»
1 2
1 3

–
;

(b)

A =

2
4
−1 −2 1
3 2 −6
1 1 −2

3
5 ;

(c)

A =

2
4

1 2 3
4 5 6
7 8 9

3
5 .

2.4.2.- Find the values of the constant k
such that the matrix A below is not in-
vertible,

A =

2
4

1 1 −1
2 3 k
1 k 3

3
5 .

2.4.3.- Consider the matrix

A =

2
4

0 −1 0
2 0 1
0 1 −1

3
5 ,

(a) Find the inverse of matrix A.
(b) Use the previous part to find a so-

lution to the linear system

Ax = b, b =

2
4

1
−1
3

3
5 .

2.4.4.- Show that for every invertible ma-
trix A holds that [A, A−1] = 0.

2.4.5.- Find a matrix X such that the equa-
tion X = AX + B holds for

A =

2
4

0 −1 0
0 0 −1
0 0 0

3
5 , B =

2
4

1 2
2 1
3 3

3
5 .

2.4.6.- If A is invertible and symmetric,
then show that A−1 is also symmetric.

2.4.7.- Prove that: If the square matrix A
satisfies A2 = 0, then the matrix (I−A)
is invertible.

2.4.8.- Prove that: If the square matrix A
satisfies A3 = 0, then the matrix (I−A)
is invertible.

2.4.9.- Let A be a square matrix. Prove the
following statements:

(a) If A contains a zero column then A
is not invertible;

(b) If one column is multiple of another
column in A, then matrix A is not
invertible.

(c) Use the trace function to prove the
following statement: If A is an m×n
matrix and B is an n × m matrix
such that AB = Im and BA = In,
then m = n.

2.4.10.- Consider the invertible matrices
A ∈ Fr,r, B ∈ Fs,s and the matrix
C ∈ Fr,s. Prove that the inverse of

2
664

A
... C

. . . . . . . . .

0
... B

3
775

is given by
2
664

A−1
... −A−1CB−1

. . . . . . . . . . . . . . . . . . . . .

0
... B−1

3
775 .
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2.5. Null and range spaces

2.5.1. Definition of the spaces. A matrix A ∈ Fm,n defines two functions, A : Fn → Fm

and AT : Fm → Fn, which in turn, determine two sets in Fn and two sets in Fm. In this
Section we define these sets, we call them null and range spaces, and study the main relations
among them. We start introducing the two spaces associated with the function A.

Definition 2.5.1. Consider the matrix A ∈ Fm,n defining the linear function A : Fn → Fm.
The null space of the function A is the set N(A) ⊂ Fn given by

N(A) =
{
x ∈ Fn : Ax = 0

}
.

The range space of the function A is set R(A) ⊂ Fm given by

R(A) =
{
y ∈ Fm : y = Ax, for all x ∈ Fn

}
.

In Fig. 25 we show a picture, usual in set theory, sketching the null and range spaces
associated with a matrix A. One can see in these pictures that for a function A : Fn → Fm,
the null space is a subset in Fn, while the range space is a subset in Fm. Recall that the
homogeneous equation Ax = 0 always has the trivial solution x = 0. This property implies
both that 0 ∈ Fn also belongs to N(A) and that 0 ∈ Fm also belongs to R(A).

0
0

n

m

N ( A )

A

F

F

0

A

0

n

m

R ( A )

F

F

Figure 25. Sketch of the null space, N(A), and the range space, R(A), of
a linear function determined by the m× n matrix A.

The four spaces associated with a matrix A are N(A) and R(A) together with N(AT )
and R(AT ). Notice that these null and range spaces are subsets of different spaces. More
precisely, a matrix A ∈ Fm.n defines the functions and subsets,

A : Fn → Fm and AT : Fm → Fn,

N(A), R(AT ) ⊂ Fn, while R(A), N(AT ) ⊂ Fm.

Example 2.5.1: Find the N(A) and R(A) for the function A : R3 → R2 given by

A =
[
1 2 3
2 4 1

]
.

Solution: We first find N(A), the null space of A. This is the set of elements x ∈ R3 that
are solutions of the equation Ax = 0. We use the Gauss method to find all such solutions,

[
1 2 3
2 4 1

]
→

[
1 2 3
0 0 −5

]
→

[
1 2 0
0 0 1

]
⇒





x1 = −2x2

x3 = 0,

x2 : free variable.
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Therefore, the elements in N(A) are given by

N(A) 3 x =



−2x2

x2

0


 =



−2
1
0


 x2 ⇒ N(A) = Span

({


−2
1
0




}) ⊂ R3.

We now find R(A), the range space of A. This is the set of elements y ∈ R2 that can be
expressed as y = Ax for any x ∈ R3. In our case this means

y = Ax =
[
1 2 3
2 4 1

] 


x1

x2

x3


 =

[
1
2

]
x1 +

[
2
4

]
x2 +

[
3
1

]
x3.

What this last equation says, is that the elements of R(A) can be expressed as a linear
combination of the column vectors of matrix A. Therefore, the set R(A) is indeed the set of
all possible linear combinations of the column vectors of matrix A. We then conclude that

R(A) = Span
({[

1
2

]
,

[
2
4

]
,

[
3
1

] })
.

Notice that

2
[
1
2

]
=

[
2
4

]
⇒ Span

({[
1
2

]
,

[
2
4

]
,

[
3
1

] })
= Span

({[
1
2

]
,

[
3
1

] })
.

Therefore, we conclude that the smallest set whose span is R(A) contains two elements, the
first and third columns of A, that is,

R(A) = Span
({[

1
2

]
,

[
3
1

] })
= R2.

C

In the Example 2.5.1 above we have seen that both sets N(A) and R(A) can be expressed
as spans of appropriate vectors. It is not surprising to see that the same property holds for
N(AT ) and R(AT ), as we observe in the following Example.

Example 2.5.2: Find the N(AT ) and R(AT ) for the function AT : R2 → R3, where A is the
matrix in Example 2.5.1, that is,

AT =




1 2
2 4
3 1


 .

Solution: We start finding the N(AT ), that is, all vectors y ∈ R2 solutions of the homoge-
neous equation AT y = 0. Using the Gauss method we obtain,


1 2
2 4
3 1


→




1 2
0 0
0 −5


→




1 0
0 1
0 0


 ⇒ y =

[
0
0

]
⇒ N(AT ) =

{[
0
0

]}
⊂ R2.

We now find the R(AT ). This is the set of x ∈ R3 that can be expressed as x = AT y for
any y ∈ R2, that is,

x = AT y =




1 2
2 4
3 1




[
y1

y2

]
=




1
2
3


 y1 +




2
4
1


 y2.

As in the previous example, this last equation says that the elements of R(AT ) can be
expressed as a linear combination of the column vectors of matrix AT . Therefore, the set
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R(AT ) is indeed the set of all possible linear combinations of the column vectors of matrix
AT . We then conclude that

R(AT ) = Span
({




1
2
3


 ,




2
4
1




}) ⊂ R3.

In Fig. 26 we have sketched the sets N(A) and R(AT ), which are subsets of R3. C

3

N (A)
−2

R (A  )T

1

x 1

x2

x

Figure 26. The horizontal blue line is the N(A), and the vertical green
plane is the R(AT ), for the matrix A is given in Examples 2.5.1 and 2.5.2.
Notice that the blue line is perpendicular to the green plane. We will see
that this is always true for all m× n matrices.

Example 2.5.3: Find the N(A) and R(A) for the matrix

A =




1 3 −1
2 6 −2
3 9 −3


 .

Solution: Any element x ∈ N(A) must be solution of the homogeneous equation Ax = 0.
The Gauss method implies,


1 3 −1
2 6 −2
3 9 −3


→




1 3 −1
0 0 0
0 0 0


 ⇒

{
x1 = −3x2 + x3,

x2, x3 free variables.

Therefore, every element x ∈ N(A) has the form

x =



−3x2 + x3

x2

x3


 =



−3
1
0


 x2 +




1
0
1


 x3 ⇒ N(A) = Span

({


−3
1
0


 ,




1
0
1




})
.

The R(A) is the set of all y ∈ R3 such that y = Ax for some x ∈ R3. Therefore,

y =




1 3 −1
2 6 −2
3 9 −3







x1

x2

x3


 = x1




1
2
3


 + x2




3
6
9


 + x3



−1
−2
−3


 ,

and we conclude that

R(A) = Span
({




1
2
3


 ,




3
6
9


 ,



−1
−2
−3




})
.
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However, the expression above can be simplified noticing that



3
6
9


 = 3




1
2
3


 ,



−1
−2
−3


 = −




1
2
3


 .

So the smallest sets whose span is R(A) contain only one vector, and a possible choice is
the following:

R(A) = Span
({




1
2
3




})
.

C

2.5.2. Main properties. The property of the null and range sets we have found for the
matrix in Examples 2.5.1 and 2.5.2 also holds for every matrix. This will be an important
property later on, so we give it a name.

Definition 2.5.2. A subset of U ⊂ Fn is called closed under linear combination iff for
all elements x, y ∈ U and all scalars a, b ∈ F holds that (ax + by) ∈ U .

In words, a set U ⊂ Fn is closed under linear combination iff every linear combination
of elements in U stays in U . In Chapter 4 we generalize the linear combination structure
of Fn into a structure we call a vector space; we will see in that Chapter that sets in a
vector space which are closed under linear combinations are smaller vector spaces inside the
original vector space, and will be called subspaces. We now state as a general result the
property we found both in Examples 2.5.1 and 2.5.2.

Theorem 2.5.3. The sets N(A) ⊂ Fn and R(A) ⊂ Fm of a matrix A ∈ Fm,n are closed
under linear combinations in Fn and Fm, respectively. Furthermore, denoting the matrix
A =

[
A:1, · · · , A:n

]
, we conclude that R(A) = Span

({
A:1, · · · , A:n

})
.

It is common in the literature to introduce the column space of an m × n matrix A =[
A:1, · · · , A:n

]
, denoted as Col(A), as the set of all linear combinations of the column vectors

of A, that is, Col(A) = Span
({

A:1, · · · , A:n

})
. The Proposition above then says that

R(A) = Col(A).

Proof of Theorem 2.5.3: The sets N(A) and R(A) are closed under linear combinations
because the matrix-vector product is a linear operation. Consider two arbitrary elements
x1, x2 ∈ N(A), that is, Ax1 = 0 and Ax2 = 0. Then, for any a, b ∈ F holds

A(ax1 + bx2) = a Ax1 + b Ax2 = 0 ⇒ (ax1 + bx2) ∈ N(A).

Therefore, N(A) ⊂ Fn is closed under linear combinations. Analogously, consider two
arbitrary elements y1, y2 ∈ R(A), that is, there exist x1, x2 ∈ Fn such that y1 = Ax1 and
y2 = Ax2. Then, for any a, b ∈ F holds

(ay1 + by2) = aAx1 + bAx2 = A(ax1 + bx2) ⇒ (ay2 + by2) ∈ R(A).

Therefore, R(A) ⊂ Fm is closed under linear combinations. The furthermore part is proved
as follows. Denote A =

[
A:1, · · · ,A:n

]
, then any element y ∈ R(A) can be expressed as

y = Ax for some x = [xi] ∈ Fn, that is,

y = Ax =
[
A:1, · · · , A:n

]



x1

...
xn


 = A:1 x1 + · · ·+ A:n xn ∈ Span

({
A:1, · · · ,A:n

})
.
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This implies that R(A) ⊂ Col(A). The opposite inclusion, Col(A) ⊂ R(A) is trivial, since
any element of the form y = A:1 x1 + · · · + A:n xn ∈ Col(A) also belongs to R(A), since
y = Ax, where x = [xi]. This establishes the Theorem. ¤

The null and range spaces of a square matrix characterize whether the matrix is invertible
or not. The following result is a simple rewriting of Theorem 2.4.3.

Theorem 2.5.4. Given a matrix A ∈ Fn,n, the following statements are equivalent:
(a) The matrix A−1 exists;
(b) N(A) = {0};
(c) R(A) = Fn.

Proof of Theorem 2.5.4: This result follows from Theorem 2.4.3. More precisely, part (b)
follows from Theorem 2.4.3 part (c). While part (c) follows from Theorem 2.4.3 part (e). ¤
2.5.3. Gauss operations. In this section we study the relations between the four spaces
associated with the matrices A and B in the case that matrix B can be obtained from matrix
A by performing Gauss operations. We use the following notation: A

row←→ B to indicate that
A can be transformed into matrix B by performing Gauss operations on the rows of A.

Theorem 2.5.5. If matrices A, B ∈ Fm,n, then
(a) A

row←→ B ⇔ N(A) = N(B);
(b) A

row←→ B ⇔ R(AT ) = R(BT ).

It is simple to see that this result is true. Gauss operations do not change the solutions of
linear systems, so the linear system Ax = 0 has exactly the same solutions x as the linear
system Bx = 0, that is, N(A) = N(B). The second property must be also true, since Gauss
operations on the rows of A are equivalent to Gauss operations on the columns of AT . Now,
it is simple to see that each of the Gauss operations on the columns of AT do not change
the Col(AT ), hence R(AT ) = R(BT ).

One could say that the paragraph above is enough for a proof of the Theorem. However,
we would like to have a more detailed presentation of the ideas above. One way is to use
matrix multiplication to express the Gauss operation property that they do not change the
solutions to linear systems. One can prove the following: If the m × n matrices A and B
are related by Gauss operations on their rows, then there exists an m×m invertible matrix
G such that GA = B. The proof of this property is simple. Each one of the Gauss opera-
tions is associated with an invertible matrix, E, called an elementary Gauss matrix. Every
elementary Gauss matrix is invertible, since every Gauss operation can always be reversed.
The result of several Gauss operations on a matrix A is the product of the appropriate
elementary Gauss matrices in the same order as the Gauss operations are performed. If the
matrix B is obtained from matrix A by doing Gauss operations given by matrices Ei, for
i = 1, · · · , k, in that order, we can express the result of the Gauss method as follows:

Ek · · ·E1A = B, G = Ek · · ·E1 ⇒ GA = B.

Since each elementary Gauss matrix is invertible, then the matrix G is also invertible. The
following example shows all 3× 3 elementary Gauss matrices.

Example 2.5.4: Find all the elementary Gauss matrices which operate on 3× n matrices.

Solution: In the case of 3 × n matrices, the elementary Gauss matrices are 3 × 3. We
present these matrices for each one of the three main types of Gauss operations. Consider
the matrices Ei for i = 1, 2, 3 are given by

E1 =




k 0 0
0 1 0
0 0 1


 , E2 =




1 0 0
0 k 0
0 0 1


 , E3 =




1 0 0
0 1 0
0 0 k


 ;



80 G. NAGY – LINEAR ALGEBRA july 15, 2012

then, the product EiA represents the Gauss operation of multiplying by k the first, second
and third row of A, respectively. Consider the matrices Ei for i = 4, 5, 6 given by

E4 =




0 1 0
1 0 0
0 0 1


 , E5 =




0 0 1
0 1 0
1 0 0


 , E6 =




1 0 0
0 0 1
0 1 0


 ;

then, the product EiA for i = 4, 5, 6 represents the Gauss operation of interchanging the first
and second, the first and third, and the second and third rows of A, respectively. Finally,
consider the matrices Ei for j = 7, · · · , 12 given by

E7 =




1 0 0
k 1 0
0 0 1


 , E8 =




1 0 0
0 1 0
k 0 1


 , E9 =




1 0 0
0 1 0
0 k 1


 ,

E10 =




1 k 0
0 1 0
0 0 1


 , E11 =




1 0 k
0 1 0
0 0 1


 , E12 =




1 0 0
0 1 k
0 0 1


 ;

then, the product EiA for i = 7, · · · , 12 represents the Gauss operation of multiplying by k
one row of A and add the result to another row of A. C

Proof of Theorem 2.5.5: Recall the comment below Theorem 2.5.5: If the m×n matrices
A and B are related by Gauss operations on their rows, then there exits an m×m invertible
matrix G such that GA = B. This observation is the key to show that N(A) = N(B), since
given any element x ∈ N(A)

Ax = 0 ⇔ GAx = 0,

where the equivalence follows from G being invertible. Then it is simple to see that

0 = GAx = Bx ⇔ x ∈ N(B).

Therefore, we have shown that N(A) = N(B).
We now show the converse statement. If N(A) = N(B) this means that their reduced

echelon forms are the same, that is, EA = EB. This means that there exist Gauss operations
on the rows of A that transform it into matrix B.

We now show that R(AT ) = R(BT ). Given any element x ∈ R(AT ) we know that there
exists an element y ∈ Fm such that

x = AT y = AT GT
(
GT

)−1
y = (GA)T ỹ = BT ỹ, ỹ =

(
GT

)−1
y.

We have shown that given any x ∈ R(AT ), then x ∈ R(BT ), that is, R(AT ) ⊂ R(BT ). The
opposite implication is proven in the same way: Given any x ∈ R(BT ) there exists ỹ ∈ Fm

such that
x = BT ỹ = BT

(
GT

)−1
GT ỹ =

(
G−1B

)T
y = AT y, y = GT ỹ.

We have shown that given any x ∈ R(BT ), then x ∈ R(AT ), that is, R(BT ) ⊂ R(AT ).
Therefore, R(AT ) = R(BT ).

We now show that the converse statement. Assume that R(AT ) = R(BT ). This means
that every row in matrix A is a linear combination of the rows in matrix B. This also means
that there exists Gauss operations on the rows of A such that transform A into B. This
establishes the Theorem. ¤

Example 2.5.5: Verify Theorem 2.5.5 for matrix A =
[
1 2 3
2 4 1

]
and EA =

[
1 2 0
0 0 1

]
.
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Solution: Since EA is the reduced echelon form of matrix A, then R(AT ) = R
(
(EA)T

)
.

Consider the matrix A and its reduced echelon form EA given by

A =
[
1 2 3
2 4 1

]
, EA =

[
1 2 0
0 0 1

]
.

Their respective transposed matrices are given by

AT =




1 2
2 4
3 1


 , (EA)T =




1 0
2 0
0 1


 .

The result of Theorem 2.5.5 is that

R(AT ) = R
(
(EA)T

) ⇔ Span
({




1
2
3


 ,




2
4
1




})
= Span

({



1
2
0


 ,




0
0
1




})
.

We can verify that this result above is correct, since the column vectors in AT are linear
combinations of the column vectors in (EA)T , as the following equations show,




1
2
3


 =




1
2
0


 + 3




0
0
1







2
4
1


 = 2




1
2
0


 +




0
0
1


 .

C

The Example 2.5.5 above helps understand one important meaning of Gauss operations.
Gauss operations on the matrix A rows are linear combination of the matrix AT columns.
This is the reason why the interchange change A ↔ B by doing Gauss operations on rows
leaves the the range spaces of their transposes invariant, that is, R(AT ) = R(BT ).

Example 2.5.6: Given the matrices A =




1 1 5
2 0 6
1 2 7


, B =




1 −4 4
4 −8 6
0 −4 5


, verify whether

R(AT ) = R(BT )? R(A) = R(B)? N(A) = N(B)? N(AT ) = N(BT )?

Solution: We base our answer in Theorem 2.5.5 and an extra observation. First, let EA

and EB be the reduced echelon forms of A and B, respectively, and let EAT and EBT be the
reduced echelon forms of AT and BT respectively. The extra observation is the following:
EA = EB iff A

row←→ B. This observation and Theorem 2.5.5 imply that EA = EB is equivalent
to R(AT ) = R(BT ) and it is also equivalent to N(A) = N(B). We then find EA and EB,

A =




1 1 5
2 0 6
1 2 7


→




1 1 5
0 −2 −4
0 1 2


→




1 0 3
0 1 2
0 0 0


 = EA,

B =




1 −4 4
4 −8 6
0 −4 5


→




1 −4 4
0 8 −10
0 −4 5


→




1 −4 4
0 4 −5
0 0 0


→




1 0 −1
0 1 −5/4
0 0 0


 = EB.

Since EA 6= EB, we conclude that R(AT ) 6= R(BT ). This result also says that N(A) 6= N(B).
So for the first and third questions, the answer is no.

A similar argument also says that EAT = EBT iff AT row←→ BT . This observation and
Theorem 2.5.5 imply that EAT = EBT is equivalent to R(A) = R(B) and it is also equivalent
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to N(AT ) = N(BT ). We then find EAT and EBT ,

AT =




1 2 1
1 0 2
5 6 7


→




1 2 1
0 −2 1
0 −4 2


→




1 0 2
0 1 −1/2
0 0 0


 = EAT ,

BT =




1 4 0
−4 −8 −4
4 6 5


→




1 4 0
0 8 −4
0 −10 5


→




1 4 0
0 2 −1
0 0 0


→



1 0 2
0 1 −1/2
0 0 0


 = EBT .

Since EAT = EBT , we conclude that R(A) = R(B). This result on the reduced echelon forms
also says that N(AT ) = N(BT ). So for the second and four questions, the answer is yes. C

We finish this Section with two results concerning the ranks of a matrix and its transpose.
The first result says that transposition operation on a matrix does not change its rank.

Theorem 2.5.6. Every matrix A ∈ Fm,n satisfies that rank(A) = rank(AT ).

We delay the proof of the first result to Chapter 6, where we introduce the notion of inner
product in a vector space. Using an inner product in Fn, the proof of Theorem 2.5.6 below
is simple. We now introduce a particular name for those matrices having the maximum
possible rank.

Definition 2.5.7. An m× n matrix A has full rank iff rank(A) = min(m,n).

Our last result of this Section concerns full rank matrices and relates the rank of a matrix
A to the size of both N(A) and N(AT ).

Theorem 2.5.8. If matrix A ∈ Fm,n has full rank, then hold:
(a) If m = n, then rank(A) = rank(AT ) = n = m ⇔ {0} = N(A) = N(AT ) ⊂ Fn;

(b) If m < n, then rank(A) = rank(AT ) = m < n ⇔
{ {0} & N(A) ⊂ Fn,

{0} = N(AT ) ⊂ Fm;

(c) If m > n, then rank(A) = rank(AT ) = n < m ⇔
{ {0} = N(A) ⊂ Fn,

{0} & N(AT ) ⊂ Fm.

Proof of Theorem 2.5.8: We start recaling that the rank of a matrix A is the number of
pivot columns in its reduced echelon form EA.

If an m × n matrix A has rank(A) = n, this means two things: First, n 6 m; and
second, that every column in EA has a pivot. The latter property implies that there is no
free variables in the solution of the equation Ax = 0, and so x = 0 is the unique solution.
We conclude that N(A) = {0}. In order to study N(AT ) we need to consider the two
possible cases n = m or n < m. If n = m, then the matrices A and AT are square, and the
same argument about free variables applies to solutions of AT y = 0, so we conclude that
N(AT ) = {0}. This proves (a). In the case that n < m, then there are free variables in the
solution of the equation AT y = 0, therefore {0} & N(AT ). This proves (c).

If an m × n matrix A has rank(A) = m, recalling that rank(A) = rank(AT ), this means
two things: First, m 6 n; and second, that every column in EAT has a pivot. The latter
property shows that AT is full rank, so the argument above shows that N(AT ) = {0}. Since
the case n = m has already been studied, so we only need to consider the case m < n. In this
case there are free variables in the solution to the equation Ax = 0, therefore {0} & N(A).
This proves (b), and we have established the Theorem. ¤

Further reading. Section 4.2 in Meyer’s book [3] follows closely the descriptions of the
four spaces given here, although in more depth.
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2.5.4. Exercises.

2.5.1.- Find R(A) and R(AT ) for the matrix
A below and express them as the span
of the smallest possible set of vectors,
where

A =

2
4

1 2 2 3
2 4 1 3
3 6 1 4

3
5 .

2.5.2.- Find the N(A), R(A), N(AT ) and
R(AT ) for the matrix A below and ex-
press them as the span of the smallest
possible set of vectors, where

A =

2
4

1 2 1 1 5
−2 −4 0 4 −2
1 2 2 4 9

3
5 .

2.5.3.- Let A be a 3× 3 matrix such that

R(A) = Span
“n
2
4

1
2
3

3
5 ,

2
4

1
−1
2

3
5
o”

,

N(A) = Span
“n
2
4
−2
1
0

3
5
o”

.

(a) Show that the linear system Ax = b
is consistent for

b =

2
4

1
8
5

3
5 .

(b) Show that the system Ax = b above
has infinitely many solutions.

2.5.4.- Prove:

(a) Ax = b is consistent iff b ∈ R(A).
(b) The consistent system Ax = b has a

unique solution iff N(A) = {0}.

2.5.5.- Prove: A matrix A ∈ Fn,n is invert-
ible iff R(A) = Fn.

2.5.6.- Let A ∈ Fn,n be an invertible ma-
trix. Find the spaces N(A), R(A),
N(AT ), and R(AT ).

2.5.7.- Consider the matrices

A =

2
4

1 5 3
2 1 −3
1 3 1

3
5 , B =

2
4

1 0 −2
0 1 1
0 0 0

3
5 .

Answer the questions below. If the an-
swer is yes, give a proof; if the answer
is no, give a counter-example.

(a) Is R(A) = R(B)?
(b) Is R(AT ) = R(BT )?
(c) Is N(A) = N(B)?
(d) Is N(AT ) = N(BT )?
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2.6. LU-factorization

A factorization of a number means to decompose that number as a product of appropriate
factors. For example, the prime factorization of an integer number means to decompose that
integer as a product of prime numbers, like 70 = (2)(5)(7). In a similar way, a factorization
of a matrix means to decompose that matrix, using matrix multiplication, as a product of
appropriate factors. In this Section we introduce a particular type of factorization, called
LU-factorization, which stands for lower triangular-upper triangular factorization. A given
matrix A is expressed as a product A = LU, where L is lower triangular and U is upper
triangular. This type of factorization can be useful to solve systems of linear equations
having A as the coefficient matrix. The LU-factorization of A reduces the number of algebraic
operations needed to solve the linear system, saving computer time when solving these
systems using a computer. However, not every matrix has this type of factorization. We
provide sufficient conditions on A that guarantee its LU-factorization.

2.6.1. Main definitions. We start with few basic definitions.

Definition 2.6.1. An m×n matrix is called upper triangular iff every element below the
diagonal vanishes, and lower triangular iff every element above the diagonal vanishes.

Example 2.6.1: The matrices U1 and U2 below are upper triangular, while L1 and L2 are
lower triangular,

U1 =




2 3 4
0 5 6
0 0 1


 , U2 =




2 3 4 3
0 5 6 2
0 0 1 5


 , L1 =




2 0 0
3 4 0
5 6 7


 , L2 =




2 0 0 0
3 4 0 0
5 6 7 0


 .

C

Definition 2.6.2. An m× n matrix A has an LU-factorization iff there exists a square
m×m lower triangular matrix L and an m×n upper triangular matrix U such that A = LU.

In the particular case that A is a square matrix both L and U are square matrices.

Example 2.6.2: Verify that matrix L =




1 0 0
1 1 0
1 1 1


 and matrix U =




1 1 1
0 1 1
0 0 1


 are the

LU-factorization of matrix A =




1 1 1
1 2 2
1 2 3


.

Solution: We need to verify that A = LU. This is indeed the case, since

LU =




1 0 0
1 1 0
1 1 1







1 1 1
0 1 1
0 0 1


 =




1 1 1
1 2 2
1 2 3


 = A,

that is, A = LU. C

Example 2.6.3: Verify that matrix L =




1 0 0
−2 1 0
1 −3 1


 and matrix U =




2 4 −1
0 3 1
0 0 0


 are

the LU-factorization of matrix A =




2 4 −1
−4 −5 3
2 −5 −4


.
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Solution: We need to verify that A = LU. This is the case, since

LU =




1 0 0
−2 1 0
1 −3 1







2 4 −1
0 3 1
0 0 0


 =




2 4 −1
−4 −5 3
2 −5 −4


 = A ⇒ A = LU,

C

Example 2.6.4: Verify that matrix L =




1 0 0
2 1 0
3 2 1


 and matrix U =




1 4
0 −3
0 0


 are the

LU-factorization of matrix A =




1 4
2 5
3 6


.

Solution: We need to verify that A = LU. This is the case, since

LU =




1 0 0
2 1 0
3 2 1







1 4
0 −3
0 0


 =




1 4
2 5
3 6


 = A ⇒ A = LU.

C

Example 2.6.5: Verify that matrix L =
[
1 0
2 1

]
and matrix U =

[
1 3 5
0 −2 −4

]
are the

LU-factorization of matrix A =
[
1 3 5
2 4 6

]
.

Solution: We need to verify that A = LU. This is the case, since

LU =
[
1 0
2 1

] [
1 3 5
0 −2 −4

]
=

[
1 3 5
2 4 6

]
= A ⇒ A = LU.

C

2.6.2. A sufficient condition. We now provide sufficient conditions on a matrix that imply
that such matrix has an LU-factorization.

Theorem 2.6.3. If the m×n matrix A can be transformed into an echelon form without row
exchanges and without row rescaling, then A has an LU-factorization, A = LU. The matrix
U is the m×n echelon form mentioned above. Matrix L =

[
Lij

]
is an m×m lower triangular

matrix satisfying two conditions: First, the coefficients Lii = 1; second, the coefficients Lij

below the diagonal are equal to the multiple of row j that is subtracted from row i in other
to annihilate the (i, j) position during the Gauss elimination method.

This result is usually found in the literature for the case of square matrices, m = n. A
reason for this is that more often than not only square matrices appear in applications, like
finding solutions of a n × n linear system Ax = b, where matrix A is not only square but
also invertible. We have decided in these notes to present the most general version of the
LU-factorization in the statement above without proof, and we sketch a proof in the case of
2× 2 and 3× 3 matrices only. Before this sketch of a proof we show few examples in order
to have a better understanding of the statement in Theorem 2.6.3.

Example 2.6.6: Find the LU-factorization of matrix A =
[
1 2
3 4

]
.

Solution: Theorem 2.6.3 says that U is an echelon form of A obtained without row ex-

changes and without row rescaling, while L has the form L =
[

1 0
L21 1

]
, that is, we need to
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find only the coefficient L21. In this simple example we can summarize the whole procedure
in the following diagram:

A =
[
1 2
3 4

]
row(2)−3 row(1)−−−−−−−−−−−→

[
1 2
0 −2

]
= U, L =

[
1 0
3 1

]
.

This is what we have done: An echelon form for A is obtained with only one Gauss operation:
Subtract from the second row the first row multiplied by 3. The resulting echelon form of A
is matrix U already. And L21 = 3, since we multiplied by 3 the first row and we subtracted
it from the second row. So we have both U and L, and the result is:

A =
[
1 2
3 4

]
=

[
1 0
3 1

] [
1 2
0 −2

]
= LU.

C

Example 2.6.7: Find the LU-factorization of the matrix A =




2 4 −1
−4 −5 3
2 −5 −4


.

Solution: We recall that we have to find the coefficients below the diagonal in matrix

L =




1 0 0
L21 1 0
L31 L32 1


 .

From the first Gauss operation we obtain L21 as follows:



2 4 −1
−4 −5 3
2 −5 −4


 row(2)−(−2) row(1)−−−−−−−−−−−−−−→




2 4 −1
0 3 1
2 −5 −4


 ⇒ L =




1 0 0
−2 1 0
L31 L32 1


 .

From the second Gauss operation we obtain L31 as follows:



2 4 −1
0 3 1
2 −5 −4


 row(3)−1 row(1)−−−−−−−−−−−→




2 4 −1
0 3 1
0 −9 −3


 ⇒ L =




1 0 0
−2 1 0
1 L32 1


 .

From the third Gauss operation we obtain L32 as follows:



2 4 −1
0 3 1
0 −9 −3


 row(3)−(−3) row(2)−−−−−−−−−−−−−−→




2 4 −1
0 3 1
0 0 0


 ⇒ L =




1 0 0
−2 1 0
1 −3 1


 .

We then conclude,

L =




1 0 0
−2 1 0
1 −3 1


 , U =




2 4 −1
0 3 1
0 0 0


 ,

and we have the decomposition

A =




2 4 −1
−4 −5 3
2 −5 −4


 =




1 0 0
−2 1 0
1 −3 1







2 4 −1
0 3 1
0 0 0


 = LU.

C

In the following Example we show a matrix A that does not have an LU-factorization.
The reason is that in the procedure to find U appears a diagonal coefficient that vanishes.
Since row interchanges are prohibited, then there is no LU-factorization in this case.
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Example 2.6.8: Show that matrix A =




2 4 −1
−4 −8 3
2 −5 −4


 has no LU-factorization.

Solution: From the first Gauss operation we obtain L21 as follows:


2 4 −1
−4 −8 3
2 −5 −4


 row(2)−(−2) row(1)−−−−−−−−−−−−−−→




2 4 −1
0 0 1
2 −5 −4


 ⇒ L =




1 0 0
−2 1 0
L31 L32 1


 .

From the second Gauss operation we obtain L31 as follows:


2 4 −1
0 3 1
2 −5 −4


 row(3)−1 row(1)−−−−−−−−−−−→




2 4 −1
0 0 1
0 −9 −3


 ⇒ L =




1 0 0
−2 1 0
1 L32 1


 .

However, we cannot continue the Gauss method to find an echelon form for A without
interchanging the second and third rows. Therefore, matrix A has no LU-factorization. C

In the Example 2.6.7 we also had a diagonal coefficient in matrix U that vanishes, the
coefficient U33 = 0. However, in this case A did have an LU-factorization, since this vanishing
coefficient was in the last row of matrix U, and no further Gauss operations were needed.
Proof of Theorem 2.6.3: We only give a proof in the case that matrix A is 2× 2 or 3× 3.
This would give an idea how to construct a proof in the general case. This generalization
does not involve new ideas, only a more sophisticated notation.

Assume that matrix A is 2× 2, that is

A =
[
A11 A12

A21 A22

]
.

Matrix A is assumed to satisfy the following property: A can be transformed into echelon
form by the only Gauss operation of multiplying a row and add that result to another row.
If the coefficient A21 = 0, then matrix A is upper triangular already and it has the trivial
LU-factorization A = I2 A. If the coefficient A21 6= 0, then from Example 2.6.8 we know that
the assumption on A implies that the coefficient A11 6= 0. Then, we can perform the Gauss
operation EA = U, that is

EA =




1 0

−A21

A11
1




[
A11 A12

A21 A22

]
=




A11 A12

0
A22A11 −A21A12

A11


 = U.

Matrix U is the upper triangular, and denoting

U22 =
A22A11 −A21A12

A11
, L21 =

A21

A11
,

we obtain that

U =
[
A11 A12

0 U22

]
, E =

[
1 0
−L21 1

]
⇒ E−1 =

[
1 0

L21 1

]
.

We conclude that matrix A has an LU-factorization

A =
[

1 0
L21 1

] [
A11 A12

0 U22

]
.

Assume now that matrix A is 3× 3, that is

A =




A11 A12 A13

A21 A22 A23

A31 A32 A33


 .
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Once again, matrix A is assumed to satisfy the following property: A can be transformed
into echelon form by the only Gauss operation of multiplying a row and add that result to
another row. If any of the coefficients A21 or A13 is non-zero, then the assumption on A
implies that the coefficient A11 6= 0. Then, we can perform the Gauss operation E2E1A = B,
that is




1 0 0
0 1 0
−L31 0 1







1 0 0
−L21 1 0

0 0 1


 =




A11 A12 A13

A21 A22 A23

A31 A32 A33


 =




A11 A12 A13

0 B22 B23

0 B32 B33


 ,

where

E2 =




1 0 0
0 1 0
−L31 0 1


 , E1 =




1 0 0
−L21 1 0

0 0 1


 ,

we used the notation

L21 =
A21

A11
, L31 =

A31

A11
,

and the Bij coefficients can be easily computed. Now, if the coefficient B32 6= 0, then the
assumption on A implies that the coefficient B22 6= 0. We then assume that B22 6= 0 and
we proceed one more step. We can perform the Gauss operation E3 B = U, that is

E3 B =




1 0 0
0 1 0
0 −L31 1







A11 A12 A13

0 B22 B23

0 B32 B33


 =




A11 A12 A13

0 B22 B23

0 0 U33


 = U,

where we used the notation L31 =
B32

B22
and the coefficient U33 can be easily computed. This

product can be expressed as follows,

E3 E2 E1 A = U ⇒ A = E−1
1 E−1

2 E−1
3 U.

It is not difficult to see that

E−1
1 =




1 0 0
L21 1 0
0 0 1


 , E−1

2 =




1 0 0
0 1 0

L31 0 1


 , E−1

3 =




1 0 0
0 1 0
0 L32 1


 ,

which implies that

E−1
1 E−1

2 E−1
3 =




1 0 0
L21 1 0
L31 L32 1


 = L.

We have then shown that matrix A has the LU-factorization A = LU, where

L =




1 0 0
L21 1 0
L31 L32 1


 , U =




A11 A12 A13

0 B22 B23

0 0 U33


 .

It is not difficult to see that in the case where the coefficient B32 = 0, then the expression
A =

(
E−1

1 E−1
2

)
B is already the LU-factorization of matrix A. This establishes the Theorem

for 2× 2 and 3× 3 matrices. ¤
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2.6.3. Solving linear systems. Suppose we want to solve a linear system with coefficient
matrix A, and suppose that this matrix has an LU-factorization. This extra information is
useful to save computational time when solving the linear system. We state how this can
be done in the following result.

Theorem 2.6.4. Fix an m× n matrix A having an LU-factorization A = LU and a vector
b ∈ Fm. The vector x ∈ Fn is solution of the linear system Ax = b iff holds

Ux = y, where Ly = b. (2.8)

First solve the second equation for y, and then use this vector y to solve for vector x. This
is faster than solving directly for x in the original equation Ax = b. The reason is that
forward substitution can be used to solve for y, since L is lower triangular. Then, backward
substitution can be used to solve for x, since U is upper triangular.
Proof of Theorem 2.6.4: Replace on the second equation in (2.8) the vector y defined by
the first equation in (2.8). Hence, the vector x is solution of the system in (2.8) iff holds

L(Ux) = b.

Since A = LU, the equation above is equivalent to Ax = b. This establishes the Theorem. ¤
Example 2.6.9: Use the LU-factorization of matrix A below, to find the solution x to the
system Ax = b, where

A =




1 1 1
1 2 2
1 2 3


 , b =




1
2
3


 .

Solution: In Example 2.6.2 we have shown that A = LU with

L =




1 0 0
1 1 0
1 1 1


 , U =




1 1 1
0 1 1
0 0 1


 .

We first find y solution of the system Ly = b,then, having y, we find x solution of Ux = y.
For the first system we have




1 0 0
∣∣ 1

1 1 0
∣∣ 2

1 1 1
∣∣ 3


 ⇒





y1 = 1,

y1 + y2 = 2,

y1 + y2 + y3 = 3,





⇒ y =




1
1
1


 .

This system is solved for y using forward substitution. For the second system we have



1 1 1
∣∣ 1

0 1 1
∣∣ 1

0 0 1
∣∣ 1


 ⇒





x1 + x2 + x3 = 1,

x2 + x3 = 1,

x3 = 1,





⇒ x =




0
0
1


 .

This system is solved for x using back substitution. C

Further reading. There exists a vast literature on matrix factorization. See Section 3.10
in Meyer’s book [3] for few types of generalizations of the LU-factorizations, for example, ad-
mitting row interchanges in the process to obtain the factorization, or the LDU-factorization.
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2.6.4. Exercises.

2.6.1.- Find the LU-factorization of matrix

A =

»
5 2

−15 −3

–
.

2.6.2.- Find the LU-factorization of matrix

A =

»
2 1 3
4 6 7

–
.

2.6.3.- Find the LU-factorization of matrix

A =

2
4

2 1 2
4 5 5
6 −3 5

3
5 .

2.6.4.- Determine if the matrix below has
an LU-factorization,

A =

2
664

1 2 4 17
3 6 −12 3
2 3 −3 2
0 2 −2 6

3
775 .

2.6.5.- Find the LU-factorization of a tridi-
agonal matrix

T =

2
664

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

3
775 .

2.6.6.- Use the LU-factorization to find the
solutions to the system Ax = b, where

A =

2
4

2 2 2
4 7 7
6 18 22

3
5 , b =

2
4

12
24
12

3
5 .

2.6.7.- Find the values of the number c
such that matrix A below has no LU-
factorization,

A =

2
4

c 2 0
1 c 1
0 1 c

3
5 .
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Chapter 3. Determinants

3.1. Definitions and properties

A determinant is a scalar associated to a square matrix which can be used to determine
whether the matrix is invertible or not, and this property is the origin of its name. The
determinant has a clear geometrical meaning in the case of 2× 2 and 3× 3 matrices. In the
former case the absolute value of the determinant is the area of a parallelogram formed with
the matrix column vectors; in the latter case the absolute value of the determinant is the
volume of the parallelepiped formed with the matrix column vectors. The determinant for
n×n matrices is introduced as a suitable generalization of these properties. In this Section
we present the determinant for 2×2 and 3×3 matrices and we study their main properties.
We then present the definition of determinant for n × n matrices and we mention without
proof its main properties.

3.1.1. Determinant of 2×2 matrices. We start introducing the determinant as a scalar-
valued function on 2× 2 matrices.

Definition 3.1.1. The determinant of a 2× 2 matrix A =
[
A11 A12

A21 A22

]
is the value of the

function det : F2,2 → F given by det(A) = A11A22 −A12A21.

Depending on the context we will use for the determinant any of the following notations,

det(A) = |A| = ∆ =
∣∣∣∣
A11 A12

A21 A22

∣∣∣∣ .

For example,
∣∣∣∣
A11 A12

A21 A22

∣∣∣∣ = A11A22 −A12A21.

Example 3.1.1: The value of the determinant can be any real number, as the following
three cases show:∣∣∣∣

1 2
3 4

∣∣∣∣ = 4− 6 = −2,

∣∣∣∣
2 1
3 4

∣∣∣∣ = 8− 3 = 5,

∣∣∣∣
1 2
2 4

∣∣∣∣ = 4− 4 = 0.

C

We have seen in Theorem 2.4.2 in Section 2.4 that a 2 × 2 matrix is invertible iff its
determinant is non-zero. We now see that there is an interesting geometrical interpretation
of this property.

Theorem 3.1.2. Given a matrix A = [A1,A2] ∈ R2,2, the absolute value of its determinant,
| det(A)|, is the area of the parallelogram formed by the vectors A1, A2.

Proof of Theorem 3.1.2: Denote the matrix A as follows

A =
[
a b
c d

]
⇒ A1 =

[
a
c

]
, A2 =

[
b
d

]
.

The case where all the coefficients in matrix A are positive is shown in Fig. 27. We can see
in this Figure that the area of the parallelogram formed by the vectors A1 and A2 is related
to the area of the rectangle with sides b and c. More precisely, the area of the parallelogram
is equal to the area of the rectangle minus the area of the two triangles marked with a “−”
sign in Fig. 27 plus the area of the triangle marked with “+” sign. Denoting the area of the
parallelogram by Ap, we obtain the following equation,
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A

−

−

+

a

c

y

2
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a

a b

d

c

Figure 27. The geometrical meaning of the determinant of a 2×2 matrix
is that its absolute value is the area of the parallelogram formed by the
matrix column vectors.

Ap = bc− ac

2
− yd

2
+

(a− y)(c− d)
2

= bc− ac

2
− yd

2
+

ac

2
− ad

2
− yc

2
+

yd

2

= bc− ad

2
− yc

2
.

Similar triangles implies that
y

d
=

a

c
⇒ yc = ad.

Introducing this relation in the equation above it we obtain

Ap = bc− ad

2
− ad

2
⇒ Ap = ad− bc = | det(A)|.

We consider only this case in our proof. The remaining cases can be studied in a similar
way. This establishes the Theorem. ¤

Example 3.1.2: Find the area of the parallelogram formed by a =
[
1
2

]
and b =

[
2
1

]
.

Solution: If we consider the matrix A = [a, b] =
[
1 2
2 1

]
, then the area A of the parallelo-

gram formed by the vectors a, b is A = | det(A)|, that is,

det(A) =
∣∣∣∣
1 2
2 1

∣∣∣∣ = 1− 4 = −3 ⇒ A = 3.

C

We have seen that the determinant is a scalar-valued function on the space of 2 × 2
matrices, whose absolute value is the area of the parallelogram formed by the matrix column
vectors . This relation of the determinant with areas on the plane is at the origin of the
following properties.
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Theorem 3.1.3. For every vectors a1, a2, b ∈ F2 and scalar k ∈ F, the determinant
function det : F2,2 → F satisfies:

(a) det
(
[a1, a2]

)
= −det

(
[a2, a1]

)
;

(b) det
(
[k a1, a2]

)
= det

(
[a1, k a2]

)
= k det

(
[a1, a2]

)
;

(c) det
(
[a1, k a1]

)
= 0;

(d) det
(
[(a1 + b), a2]

)
= det

(
[a1, a2]

)
+ det

(
[b, a2]

)
.

Proof of Theorem 3.1.3: Introduce the notation

a1 =
[
a
c

]
, a2 =

[
b
d

]
, ⇒ [

a1, a2

]
=

[
a b
c d

]
.

Part (a):

det
(
[a1, a2]

)
=

∣∣∣∣
a b
c d

∣∣∣∣ = ad− bc

det
(
[a2, a1]

)
=

∣∣∣∣
b a
d c

∣∣∣∣ = bc− ad,





⇒ det
(
[a1, a2]

)
= −det

(
[a2, a1]

)
.

Part (b):

det
(
[k a1, a2]

)
=

∣∣∣∣
ka b
kc d

∣∣∣∣ = k(ad− bc) = k

∣∣∣∣
a b
c d

∣∣∣∣ = k det
(
[a1, a2]

)
,

det
(
[a1, k a2]

)
=

∣∣∣∣
a kb
c kd

∣∣∣∣ = k(ad− bc) = k

∣∣∣∣
a b
c d

∣∣∣∣ = k det
(
[a1, a2]

)
.

Part (c):

det
(
[a1, k a1]

)
= det

(
[k a1, a1]

)
= − det

(
[a1, k a1]

) ⇒ det
(
[a1, k a1]

)
= 0.

Part (d): Introduce the notation b =
[
b1

b2

]
. Then,

det
(
[(a1 + b), a2]

)
=

∣∣∣∣
(a + b1) b
(c + b2) d

∣∣∣∣
= (a + b1)d− (c + b2)b

= (ad− cb) + (b1d− b2b)

=
∣∣∣∣
a b
c d

∣∣∣∣ +
∣∣∣∣
b1 b
b2 d

∣∣∣∣
= det

(
[a1, a2]

)
+ det

(
[b, a2]

)
.

This establishes the Theorem. ¤
Moreover, the determinant function also satisfies the following further properties.

Theorem 3.1.4. Let A, B ∈ F2,2. Then it holds:

(a) Matrix A is invertible iff det(A) 6= 0;
(b) det(A) = det(AT );
(c) det(AB) = det(A) det(B).

(d) If matrix A is invertible, then det(A−1) =
1

det(A)
.

Proof of Theorem 3.1.4:
Part (a): It has been proven in Theorem 2.4.2.
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Part (b): Denote A =
[
a b
c d

]
. Then holds

det(A) =
∣∣∣∣
a b
c d

∣∣∣∣ = ad− bc =
∣∣∣∣
a c
b d

∣∣∣∣ = det
(
AT

)
.

Part (c): Denoting A =
[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
we obtain,

AB =
[
(A11B11 + A12B21) (A11B12 + A12B22)
(A21B11 + A22B21) (A21B12 + A22B22)

]
.

Therefore,

det(AB) = (A11B11 + A12B21)(A21B12 + A22B22)− (A11B12 + A12B22)(A21B11 + A22B21)
= A11B11A21B12 + A11B11A22B22 + A12B21A21B12 + A12B21A22B22

−A21B11A11B12 −A21B11A12B22 −A22B21A11B12 −A22B21A12B22

= A11B11A22B22 + A12B21A21B12 −A21B11A12B22 −A22B21A11B12

= (A11A22 −A21A12)B11B22 − (A11A22 −A12A21)B12B21

= (A11A22 −A21A12) (B11B22 −B12B21)

= det(A) det(B).

Part (d): Since A(A−1) = I2, we obtain

1 = det(I2) = det
(
A(A−1)

)
= det(A) det

(
A−1

) ⇒ det
(
A−1

)
=

1
det(A)

.

This establishes the Theorem. ¤
We finally mention that det(A) = det(AT ) implies that Theorem 3.1.3 can be generalized

from properties involving columns of the matrix into properties involving rows of the matrix.
Introduce the following notation that generalizes column vectors to include row vectors:

A =
[
A11 A12

A21 A22

]
=

[
a:1, a:2

]
=

[
a1:

a2:

]
,

where

a:1 =
[
A11

A21

]
, a:2 =

[
A12

A22

]
, a1: =

[
A11 A12

]
, a2: =

[
A21 A22

]
.

The first two vectors above are the usual column vectors of matrix A, and the last two are its
row vectors. When working with both, column vectors and row vectors, we use the notation
above; when working only with column vectors, we drop the colon and we denote them, for
example, as A:1 = A1. Using this notation, it is simple to verify the following result.

Theorem 3.1.5. For all column vectors aT
1:, aT

2:, bT
1: ∈ F2 and scalars k ∈ F, the determinant

function det : F2,2 → F satisfies:

(a) det
([

a1:

a2:

])
= −det

([
a2:

a1:

])
;

(b) det
([

k a1:

a2:

])
= det

([
a1:

k a2:

])
= k det

([
a1:

a2:

])
;

(c) det
([

a1:

k a1:

])
= 0;

(d) det
([

(a1: + b1:)
a2:

])
= det

([
a1:

a2:

])
+ det

([
b1:

a2:

])
.

The proof is left as an exercise.
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3.1.2. Determinant of 3 × 3 matrices. The determinant for 3 × 3 matrices is defined
recursively in terms of 2× 2 determinants.

Definition 3.1.6. The determinant on 3× 3 matrices is the function det : F3,3 → F,

det(A) =

∣∣∣∣∣∣

A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣
= A11

∣∣∣∣
A22 A23

A32 A33

∣∣∣∣−A12

∣∣∣∣
A21 A23

A31 A33

∣∣∣∣ + A13

∣∣∣∣
A21 A22

A31 A32

∣∣∣∣ .

We see that the determinant of a 3 × 3 matrix is computed as a linear combination of the
determinants of 2× 2 matrices,

det(A) = A11 det
(
Å11

)−A12 det
(
Å12

)
+ A13 det

(
Å13

)
,

where we introduced the 2× 2 matrices

Å11 =
[
A22 A23

A32 A33

]
, Å12 =

[
A21 A23

A31 A33

]
, Å13 =

[
A21 A21

A31 A31

]
;

These matrices are three of the nine matrices called the minors of matrix A.

Definition 3.1.7. The 2×2 matrix Åij is called the (i, j)-minor of a 3×3 matrix A iff Åij

is obtained from A by removing the row i and the column j. The (i, j)-cofactor of matrix
A is the number Cij = (−1)(i+j) det

(
Åij

)
.

These definitions are common in the literature, and they allow to write down a compact
expression for the determinant of a 3× 3 matrix. Indeed, the expression in Definition 3.1.6
now has the form

det(A) = A11C11 + A12C12 + A13C13.

Of course, all the complexity in the definition of determinant is now hidden in the definition
of the cofactors. The latter expression is not simpler than the one in Definition 3.1.6, it
only looks simpler.

Example 3.1.3: Find the determinant of the matrix A =




1 3 −1
2 1 1
3 2 1


.

Solution: We use the definition above, that is,
∣∣∣∣∣∣

1 3 −1
2 1 1
3 2 1

∣∣∣∣∣∣
= 1

∣∣∣∣
1 1
2 1

∣∣∣∣− 3
∣∣∣∣
2 1
3 1

∣∣∣∣ + (−1)
∣∣∣∣
2 1
3 2

∣∣∣∣

= (1− 2)− 3(2− 3)− (4− 3)
= 1 + 3− 1
= 1.

We conclude that det(A) = 1. C

As in the 2× 2 case, the determinant of a real-valued 3× 3 matrix can be any real num-
ber, positive, negative of zero. The absolute value of the determinant has the geometrical
meaning, see Fig. 28.

Theorem 3.1.8. The number | det(A)|, the absolute value of the determinant of matrix
A = [A:1, A:2, A:3], is the volume of the parallelepiped formed by the vectors A:1, A:2, A:3.

We do not give a prove of this statement. See the references at the end of the Section.



96 G. NAGY – LINEAR ALGEBRA july 15, 2012

2

A

2

1

1

x

3
x

x

3

A

A

Figure 28. The geometrical meaning of the determinant of a 3×3 matrix
is that its absolute value is the volume of the parallelepiped formed by the
matrix column vectors.

Example 3.1.4: Show that the determinant of an upper triangular or a lower triangular
matrix is the product of its diagonal elements.

Solution: Denote by A an upper-triangular matrix. Then, the definition of determinant
of a 3× 3 matrix implies

det(A) =

∣∣∣∣∣∣

A11 A12 A13

0 A22 A23

0 0 A33

∣∣∣∣∣∣
= A11

∣∣∣∣
A22 A23

0 A33

∣∣∣∣−A12

∣∣∣∣
0 A23

0 A33

∣∣∣∣ + A13

∣∣∣∣
0 A22

0 0

∣∣∣∣ .

We obtain that det(A) = A11A22A33. Suppose now that A is lower-triangular. The definition
of determinant of a 3× 3 matrix implies

det(A) =

∣∣∣∣∣∣

A11 0 0
A21 A22 0
A31 A32 A33

∣∣∣∣∣∣
= A11

∣∣∣∣
A22 0
A32 A33

∣∣∣∣− 0
∣∣∣∣
A21 0
A31 A33

∣∣∣∣ + 0
∣∣∣∣
A21 A22

A31 A32

∣∣∣∣ .

We obtain that det(A) = A11A22A33. C

The determinant function on 3× 3 satisfies a generalization of the properties proven for
2× 2 matrices in Theorem 3.1.3.

Theorem 3.1.9. For all vectors a1, a2, a3, b ∈ F3 and scalars k ∈ F, the determinant
function det : F3,3 → F satisfies:

(a) det
(
[a1, a2, a3]

)
= − det

(
[a2, a1, a3]

)
= −det

(
[a1, a3, a2]

)
;

(b) det
(
[k a1, a2, a3]

)
= k det

(
[a1, a2, a3]

)
;

(c) det
(
[a1, k a1, a3]

)
= 0;

(d) det
(
[(a1 + b), a2, a3]

)
= det

(
[a1, a2, a3]

)
+ det

(
[b, a2, a3]

)
.

The proof of this Theorem is left as an exercise. The property (a) implies that all the
remaining properties (b)-(d) also hold for all the column vectors. That is, from properties (a)
and (b) one also shows

det
(
[k a1, a2, a3]

)
= det

(
[a1, k a2, a3]

)
= det

(
[a1, a2, k a3]

)
= k det

(
[a1, a2, a3]

)
;

from properties (a) and (c) one also shows

det
(
[a1, a2, k a1]

)
= 0, det

(
[a1, a2, k a2]

)
= 0;
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and from properties (a) and (d) one also shows

det
(
[a1, (a2 + b), a3]

)
= det

(
[a1, a2, a3]

)
+ det

(
[a1, b, a3]

)
,

det
(
[a1, a2, (a3 + b)]

)
= det

(
[a1, a2, a3]

)
+ det

(
[a1, a2, b]

)
.

The following result is a generalization of Theorem 3.1.4.

Theorem 3.1.10. Let A, B ∈ F3,3. Then it holds:
(a) Matrix A is invertible iff det(A) 6= 0;
(b) det(A) = det(AT );
(c) det(AB) = det(A) det(B).

(d) If matrix A is invertible, then det(A−1) =
1

det(A)
.

The proof of this Theorem is left as an exercise. Like in the case of matrices 2 × 2,
Theorem 3.1.9 can be generalized from properties involving column vector to properties
involving row vectors.

Theorem 3.1.11. For all vectors aT
1:, aT

2:, aT
3:, bT

1: ∈ F3 and scalars k ∈ F, the determinant
function det : F3,3 → F satisfies:

(a) det
(



a1:

a2:

a3:




)
= − det

(



a2:

a1:

a3:




)
; = − det

(



a3:

a2:

a1:




)
; = −det

(



a1:

a3:

a2:




)
;

(b) det
(



k a1:

a2:

a3:




)
= k det

(



a1:

a2:

a3:




)
;

(c) det
(



a1:

k a1:

a3:




)
= 0;

(d) det
(



(a1: + b1:)
a2:

a3:




)
= det

(



a1:

a2:

a3:




)
+ det

(



b1:

a2:

a3:




)
.

The proof is left as an exercise. The property (a) implies that all the remaining properties
(b)-(d) also hold for all the row vectors. That is, from properties (a) and (b) one also shows

det
(



k a1:

a2:

a3:




)
= det

(



a1:

k a2:

a3:




)
= det

(



a1:

a2:

k a3:




)
= k det

(



a1:

a2:

a3:




)
;

from properties (a) and (c) one also shows

det
(



a1:

a2:

k a1:




)
= 0; det

(



a1:

k a2:

a2:




)
= 0;

from properties (a) and (d) one also shows

det
(



a1:

(a2: + b2:)
a3:




)
= det

(



a1:

a2:

a3:




)
+ det

(



a1:

b2:

a3:




)
,

det
(



a1:

a2:

(a3: + b3:)




)
= det

(



a1:

a2:

a3:




)
+ det

(



a1:

a2:

b3:




)
.
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3.1.3. Determinant of n × n matrices. The notion of determinant can be generalized
to n × n matrices with n > 1. One way to find an appropriate generalization is to realize
that the determinant of 2 × 2 and 3 × 3 matrices are related to the notion of areas and
volumes, respectively. One then studies the properties of areas an volumes, like the ones
given in Theorem 3.1.3 and 3.1.9. It can be shown that generalizations of these properties
determine a unique function det : Fn,n → F. In this notes we only present the final result,
the definition of determinant for n× n matrices. The reader is referred to the literature for
a constructive proof of the function determinant.

Definition 3.1.12. The determinant of a matrix A = [Aij ] ∈ Fn,n, with n > 1 and
i, j = 1, · · · , n, is the value of the function det : Fn,n → F is given by

det(A) = A11 C11 + · · ·+ A1n C1n, (3.1)

where the number Cij, called (i, j)-cofactor of matrix A, is the scalar given by

Cij = (−1)(i+j) det
(
Åij

)
,

and where the matrices Åij ∈ F(n−1),(n−1), called the (i, j)-minors of A, are obtained from
matrix A by eliminating the row i and the column j, which are highlighted below

Åij =




A11 · · · A1j · · · A1n

...
...

...
Ai1 · · · Aij · · · Ain

...
...

...
An1 · · · Anj · · · Ann




.

Example 3.1.5: Use Eq. (3.1) to compute the determinant of a 2× 2 matrix.

Solution: Consider the matrix A =
[
A11 A12

A21 A22

]
. The four minor matrices are given by

Å11 = A22, Å12 = A21, Å21 = A12, Å22 = A11.

This means, generalizing the notion of determinant to numbers by det(a) = a, that the
cofactors are

C11 = A22, C12 = −A21, C21 = −A12, C22 = A11.

So, we obtain that

det(A) = A11C11 + A12C12 ⇔ det(A) = A11A22 −A12A21.

Notice that we do not need to compute all four cofactors to compute the determinant of the
matrix; just two of them are enough. C

Example 3.1.6: Use Eq. (3.1) to compute the determinant of a 3× 3 matrix.

Solution: Consider the matrix

A =




A11 A12 A13

A21 A22 A23

A31 A32 A33


 .
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The nine minor matrices are given by

Å11 =
[
A22 A23

A32 A33

]
Å12 =

[
A21 A23

A31 A33

]
Å13 =

[
A21 A22

A31 A32

]

Å21 =
[
A12 A13

A32 A33

]
Å22 =

[
A11 A13

A31 A33

]
Å23 =

[
A11 A12

A31 A32

]

Å31 =
[
A12 A13

A22 A23

]
Å32 =

[
A11 A13

A21 A23

]
Å23 =

[
A11 A12

A21 A22

]
.

Then, Def. 3.1.12 agrees with Def. 3.1.6, since

det(A) = A11C11 + A12C12 + A13C13

is equivalent to

det(A) = A11

∣∣∣∣
A22 A23

A32 A33

∣∣∣∣−A12

∣∣∣∣
A21 A23

A31 A33

∣∣∣∣ + A13

∣∣∣∣
A21 A22

A31 A32

∣∣∣∣ .

C

We now state several results that summarize the main properties of the determinant of
n×n matrices. We state the results without proof. The frost result says that the determinant
of a matrix can be computed using expansions along any row or any column in the matrix.

Theorem 3.1.13. The determinant of an n×n matrix A = [Aij ] can be computed expanding
along any row or any column of matrix A, that is,

det(A) = Ai1Ci1 + · · ·+ AinCin, i = 1, · · · , n,

= A1jC1j + · · ·+ AnjCnj , j = 1, · · · , n.

Example 3.1.7: Show all possible expansions of the determinant of a 3×3 matrix A = [Aij ].

Solution: The expansions along each of the three rows are the following:

det(A) = A11C11 + A12C12 + A13C13

= A21C21 + A22C22 + A23C23

= A31C31 + A32C32 + A33C33;

The expansions along each of the three columns are the following:

det(A) = A11C11 + A21C21 + A31C31

= A12C12 + A22C22 + A32C32

= A13C13 + A23C23 + A33C33.

C

Example 3.1.8: Compute the determinant of A =




1 3 −1
2 1 1
3 2 1


 with an expansion by the

third column.
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Solution: The expansion by the third column is the following,∣∣∣∣∣∣

1 3 −1
2 1 1
3 2 1

∣∣∣∣∣∣
= (−1)

∣∣∣∣
2 1
3 2

∣∣∣∣− (1)
∣∣∣∣
1 3
3 2

∣∣∣∣ + (1)
∣∣∣∣
1 3
2 1

∣∣∣∣

= −(4− 3)− (2− 9) + (1− 6)
= −1 + 7− 5
= 1,

That is, det(A) = 1. This result agrees with Example 3.1.3. C

The generalization of Theorem 3.1.9 to n× n matrices is the following.

Theorem 3.1.14. For all vectors ai, aj,b ∈ Fn, with i, j = 1, · · · , n, and for all scalars
k ∈ F, the determinant function det : Fn,n → F satisfies:
(a) det

(
[a1, · · · , ai, · · · , aj , · · · , an]

)
= −det

(
[a1, · · · , aj , · · · , ai, · · · , an]

)
;

(b) det
(
[a1, · · · , k ai, · · · , an]

)
= k det

(
[a1, · · · , ai, · · · , an]

)
;

(c) det
(
[a1, · · · , k ai, · · · , ai, · · · , an]

)
= 0;

(d) det
(
[a1, · · · , (ai + b), · · · , an]

)
= det

(
[a1, · · · , ai, · · · , an]

)
+ det

(
[b, · · · , b, · · · , an]

)
.

The generalization of Theorem 3.1.10 to n× n matrices is the following.

Theorem 3.1.15. Let A, B ∈ Fn,n. Then it holds:
(a) Matrix A is invertible iff det(A) 6= 0;
(b) det(A) = det(AT );
(c) det

(
A

)
= det(A);

(d) det(AB) = det(A) det(B).

(e) If matrix A is invertible, then det(A−1) =
1

det(A)
.

The proof of this Proposition is left as an exercise. Like in the case of matrices 2 × 2,
Theorem 3.1.9 can be generalized from properties involving column vector to properties
involving row vectors.

Theorem 3.1.16. For all vectors aT
i:, aT

j:, bT
i: ∈ Fn and scalars k ∈ F, the determinant

function det : Fn,n → F satisfies:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1:

...
ai:

...
aj:

...
an:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1:

...
aj:

...
ai:

...
an:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

;

∣∣∣∣∣∣∣∣∣∣∣∣

a1:

...
k ai:

...
an:

∣∣∣∣∣∣∣∣∣∣∣∣

= k

∣∣∣∣∣∣∣∣∣∣∣∣

a1:

...
ai:

...
an:

∣∣∣∣∣∣∣∣∣∣∣∣

;

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1:

...
k ai:

...
ai:

...
an:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0;

∣∣∣∣∣∣∣∣∣∣∣∣

a1:

...
(ai: + bi:)

...
an:

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

a1:

...
ai:

...
an:

∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣

a1:

...
bi:

...
an:

∣∣∣∣∣∣∣∣∣∣∣∣

.
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3.1.4. Exercises.

3.1.1.- Find the determinant of matrices

A =

2
4

2 1 1
6 2 1
−2 2 1

3
5 , B =

2
4

2 1 1
6 0 1
−2 0 1

3
5 .

3.1.2.- Find the volume of the parallelepi-
ped formed by the vectors

x1 =

2
4

3
0
−4

3
5 , x2 =

2
4

0
2
0

3
5 , x3 =

2
4

1
0
1

3
5 .

3.1.3.- Find the determinants of the upper
and lower triangular matrices

U =

2
4

1 2 3
0 4 5
0 0 6

3
5 , L =

2
4

1 0 0
2 3 0
4 5 6

3
5 .

3.1.4.- Find the determinant of the matrix

A =

2
4

0 0 1
0 2 3
4 5 6

3
5 .

3.1.5.- Give an example to show that in
general

det(A + B) 6= det(A) + det(B).

3.1.6.- If A ∈ Fn,n express

det(2A), det(−A), det(A2)

in terms of det(A) and n.

3.1.7.- Given matrices A, P ∈ Fn,n, with P
invertible, let B = P−1AP. Prove that
det(B) = det(A).

3.1.8.- Prove that for all matrix A ∈ Fn,n

holds that det(A∗) = det(A).

3.1.9.- Prove that for all A ∈ Fn,n holds
that det(A∗A) > 0.

3.1.10.- Prove that for all A ∈ Fn,n and all
k ∈ F holds that det(k A) = kn det(A).

3.1.11.- Prove that a skew-symmetric ma-
trix A ∈ Fn,n, with n odd, must satisfy
that det(A) = 0.

3.1.12.- Let A ∈ Fn,n be a matrix satisfying
that AT A = In. Prove that

det(A) = ±1.
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3.2. Applications

In the previous section we mentioned that the absolute value of the determinant is the
area of a parallelogram formed by the column vectors of a 2×2 matrix, while it is the volume
of the parallelepiped formed by the column vectors of a 3×3 matrix. There are several other
applications of determinants. They determine whether a matrix A ∈ Fn,n is invertible or
not, since a matrix A is invertible iff det(A) 6= 0. They determine whether a square system
of linear equations has a unique solution for every source vector. The determinant is the key
tool to find a formula for the inverse matrix, hence a formula for the solution components
of a square linear system, called Cramer’s rule. We discuss these to applications in more
detail below.

3.2.1. Inverse matrix formula. The determinant of a matrix plays a crucial role in a
formula for the inverse matrix. The existence of this formula does not change the fact that
one can always compute the inverse matrix using Gauss operations. This formula for the
inverse matrix is important though, since it explicitly shows how the inverse matrix depends
on the coefficients of the original matrix. It thus shows how the inverse changes when the
original matrix changes. The formula for the inverse matrix shows that the inverse matrix
is a continuous function of the original matrix.

Theorem 3.2.1. Given a matrix A = [Aij ] ∈ Fn,n, let C = [Cij ] be its cofactor matrix,
where the cofactors are given by Cij = (−1)(i+j) det(Åij), and matrix Åij ∈ F(n−1),(n−1) is
the (i, j)-minor of matrix A. If det(A) 6= 0, then the inverse of matrix A is given by

A−1 =
1

det(A)
CT , that is,

(
A−1

)
ij

=
1

det(A)
Cji.

Proof of Theorem 3.2.1: Since det(A) 6= 0 we know that matrix A is invertible. We only
need to verify that the expression for A−1 given in Theorem 3.2.1 is correct. That is, we
need to show that CT A = det(A) In = ACT . We start with the product

(CT A)ij =
(
C1iA1j + · · ·+ CniAnj

)
.

Notice that this component (CT A)ij is precisely the the expansion along the column i of the
determinant of the following matrix: The matrix constructed from matrix A by placing the
column vector Aj: in both columns i and j. In the particular case that i < j, this component
(CT A)ij has the form

(
C1iA1j + · · ·+ CniAnj

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A11 · · · A1j · · · A1j · · · A1n

...
...

...
...

Ai1 · · · Aij · · · Aij · · · Ain

...
...

...
...

Aj1 · · · Ajj · · · Ajj · · · Ajn

...
...

...
...

An1 · · · Anj · · · Anj · · · Ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, i < j,

where we have highlighted in blue the column i which is occupied by the column vector
A:j . The determinant on the right hand side vanishes, since for i < j the matrix has the
columns i and j repeated. A similar situation happens for i > j. So, we conclude that the
non-diagonal elements of (CT A) vanish. The diagonal elements are given by

(CT A)ii =
(
C1iA1i + · · ·+ CniAni

)
= det(A),

the determinant of A expanded along the i-th column. This shows that CT A = det(A) In. A
similar analysis shows that ACT = det(A) In. This establishes the Theorem. ¤
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Example 3.2.1: Use the formula in Theorem 3.2.1 to find the inverse of matrix

A =




1 3 −1
2 1 1
3 2 1


 .

Solution: We already know from Example 3.1.3 that det(A) = 1. We now need to compute
all the cofactors:

C11 =
∣∣∣∣
1 1
2 1

∣∣∣∣
= −1;

C12 = −
∣∣∣∣
2 1
3 1

∣∣∣∣
= 1;

C13 =
∣∣∣∣
2 1
3 2

∣∣∣∣
= 1;

C21 = −
∣∣∣∣
3 −1
2 1

∣∣∣∣
= −5;

C22 =
∣∣∣∣
1 −1
3 1

∣∣∣∣
= 4;

C23 = −
∣∣∣∣
1 3
3 2

∣∣∣∣
= 7;

C31 =
∣∣∣∣
3 −1
1 1

∣∣∣∣
= 4;

C32 = −
∣∣∣∣
1 −1
2 1

∣∣∣∣
= −3;

C33 =
∣∣∣∣
1 3
2 1

∣∣∣∣
= −5.

Therefore, the cofactor matrix is given by

C =



−1 1 1
−5 4 7
4 −3 −5


 ,

and the formula A−1 = CT / det(A) together with det(A) = 1 imply that

A−1 =



−1 −5 4
1 4 −3
1 7 −5


 .

C

The formula in Theorem 3.2.1 is useful to compute individual components of the inverse
of a matrix.

Example 3.2.2: Find the coefficients
(
A−1

)
12

and
(
A−1

)
32

of the matrix

A =




1 1 1
1 −1 2
1 1 3


 .

Solution: We first need to compute

det(A) = (1)
∣∣∣∣
−1 2
1 3

∣∣∣∣− (1)
∣∣∣∣
1 2
1 3

∣∣∣∣ + (1)
∣∣∣∣
1 −1
1 1

∣∣∣∣ = −5− 1 + 2 ⇒ det(A) = −4.

The formula in Theorem 3.2.1 implies that

(
A−1

)
12

=
1
−4

C21, C21 = (−1)
∣∣∣∣
1 1
1 3

∣∣∣∣ = −2, ⇒ (
A−1

)
12

=
1
2
.

(
A−1

)
32

=
1
−4

C23, C23 = (−1)
∣∣∣∣
1 1
1 1

∣∣∣∣ = 0, ⇒ (
A−1

)
32

= 0.

C
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3.2.2. Cramer’s rule. We know that given an invertible matrix A ∈ Fn,n, a system of
linear equations Ax = b has a unique solution x for every source vector b ∈ Fn. This
solution can be written in terms of the inverse matrix A−1 as x = A−1b. The formula for
the inverse matrix given in Theorem 3.2.1 provides an explicit expression for the solution x.
The result is known as Cramer’s rule, and it is summarized below.

Theorem 3.2.2. If the matrix A = [A1, · · · ,An] ∈ Fn,n is invertible, then the system of
linear equations Ax = b has a unique solution x = [xi] for every b ∈ Fn given by

xi =
det

(
Ai(b)

)

det(A)
,

with matrix Ai(b) = [A1, · · · , b, · · · ,An] where vector b is placed in the i-th column.

Example 3.2.3: Use Cramer’s rule to find the solution x of the linear system Ax = b, where

A =
[

3 −2
−5 6

]
, b =

[
7
−5

]
.

Solution: We first need to compute the determinant of A, that is,

det(A) = 18− 10 ⇒ det(A) = 8.

Then, we need to find the matrices A1(b) and A2(b), given by

A1(b) = [b, A2] =
[

7 −2
−5 6

]
, A2(b) = [A1, b] =

[
3 7
−5 −5

]
.

We finally compute their determinants,

det(A1(b)) = 42− 10 = 32, det(A2(b)) = −15 + 35 = 20.

So the solution is,

x =
[
x1

x2

]
x1 =

32
8

= 4, x2 =
20
8

=
5
2
, ⇒ x =

[
4

5/2

]
.

C

Proof of Theorem 3.2.2: Since matrix A is invertible, the solution to the linear system
is x = A−1b. Using the formula for the inverse matrix given in Theorem 3.2.1, the solution
x = [xi] can be written as

x =
1

det(A)
CT b ⇒ xi =

1
det(A)

n∑

j=1

Cjibj .

Notice that the sum in the last equation above is precisely the expansion along the column
i of the determinant of the matrix Aj(b), that is,

det(Ai(b)) =

∣∣∣∣∣∣∣

A11 · · · b1 · · · A1n

...
...

...
An1 · · · bn · · · Ann

∣∣∣∣∣∣∣
= b1C1i + · · ·+ bnCni =

n∑

j=1

bjCji,

where the vector b replaces the vector Ai in the column i of matrix A. So, we conclude that

xi =
det(Ai(b))

det(A)
.

This establishes the Theorem. ¤
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3.2.3. Determinants and Gauss operations. Gauss elimination operations can be used
to compute the determinant of a matrix. If a Gauss operation on matrix A produces matrix
B, then det(A) is related to det(B) in a precise way. Here is the relation.

Theorem 3.2.3. Let A, B ∈ Fm,n be matrices related by a Gauss operation, that is, A→ B
by a Gauss operation. Then, the following statements hold:
(a) If matrix B is the result of adding to a row in A a multiple of another row in A, then

det(A) = det(B);

(b) If matrix B is the result of interchanging two rows in A, then

det(A) = −det(B);

(c) If matrix B is the result of the multiplication of one row in A by a scalar
1
k
∈ F, then

det(A) = k det(B).

Proof of Theorem 3.2.3: We use the row vector notation for matrices A and B,

A =




A1:

...
An:


 , B =




B1:

...
Bn:


 .

Part (a): Matrix B results from multiplying row j of A by k and adding that to row i,

B =




A1:

...
Ai: + kAj:

...
Aj:

...
An:




⇒ det(B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1:

...
Ai: + kAj:

...
Aj:

...
An:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1:

...
Ai:

...
Aj:

...
An:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1:

...
Aj:

...
Aj:

...
An:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1:

...
Ai:

...
Aj:

...
An:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= det(A).

Part (b): Matrix B is the result of the interchange of rows i and j in matrix A, that is,

A =




A1:

...
Ai:

...
Aj:

...
An:




→ B =




A1:

...
Aj:

...
Ai:

...
An:




⇒ det(B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1:

...
Aj:

...
Ai:

...
An:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A1:

...
Ai:

...
Aj:

...
An:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −det(A).

Part (c): Matrix B is the result of the multiplication of row i of A by
1
k
∈ F, that is,

A =




A1:

...
Ai:

...
An:



→ B =




A1:

...
1
k Ai:

...
An:



⇒ det(B) =

∣∣∣∣∣∣∣∣∣∣∣∣

A1:

...
1
k Ai:

...
An:

∣∣∣∣∣∣∣∣∣∣∣∣

=
1
k

∣∣∣∣∣∣∣∣∣∣∣∣

A1:

...
Ai:

...
An:

∣∣∣∣∣∣∣∣∣∣∣∣

=
1
k

det(A).

This establishes the Theorem. ¤
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Example 3.2.4: Use Gauss operations to transform matrix A below into upper-triangular
form, and use that calculation to find det(A), where,

A =




1 3 −1
2 1 1
3 2 1


 .

Solution: We perform Gauss operations to transform A into upper-triangular form:

det(A) =

∣∣∣∣∣∣

1 3 −1
2 1 1
3 2 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 3 −1
0 −5 3
0 −7 4

∣∣∣∣∣∣
= (−5)

∣∣∣∣∣∣

1 3 −1
0 1 −3/5
0 −7 4

∣∣∣∣∣∣
= (−5)

∣∣∣∣∣∣

1 3 −1
0 1 −3/5
0 0 −1/5

∣∣∣∣∣∣
.

We only need to reduce matrix A into upper-triangular form, not into reduced echelon
form, since the determinant of an upper-triangular matrix is simple enough to find, just the
product of its diagonal elements. In our case we find that

det(A) = (−5)

∣∣∣∣∣∣

1 3 −1
0 1 −3/5
0 0 −1/5

∣∣∣∣∣∣
= (−5)(1)(1)

(
−1

5

)
⇒ det(A) = 1.

C



G. NAGY – LINEAR ALGEBRA July 15, 2012 107

3.2.4. Exercises.

3.2.1.- Use determinants to compute A−1,
where

A =

2
4

2 1 1
6 2 1
−2 2 1

3
5 .

3.2.2.- Find the coefficients (A−1)12 and
(A−1)32, where

A =

2
4

1 5 7
2 1 0
4 1 3

3
5 .

3.2.3.- Use Gauss operations to reduce ma-
trices A and B below to upper triangu-
lar form and evaluate their determinant,
where

A =

2
4

1 2 3
2 4 1
1 4 4

3
5 , B =

2
4

1 3 5
−1 4 2
3 −2 4

3
5 .

3.2.4.- Use Gauss operations to prove the
formula˛̨
˛̨
˛̨
1 a a2

1 b b2

1 c c2

˛̨
˛̨
˛̨ = (b− a)(c− a)(c− b).

3.2.5.- Use the det(A) to find the values
of the constant k such that the system
Ax = b has a unique solution for every
source vector b, where

A =

2
4

1 k 0
0 1 −1
k 0 1

3
5 .

3.2.6.- Use Cramer’s rule to find the solu-
tion to the linear system

a x1 + b x2 = 1

c x1 + d x2 = 0.

where a, b, c, d ∈ R.

3.2.7.- Use Cramer’s rule to find the solu-
tion to the linear system2

4
1 1 1
1 1 0
0 1 1

3
5
2
4

x1

x2

x3

3
5 =

2
4

1
2
3

3
5 .
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Chapter 4. Vector spaces

4.1. Spaces and subspaces

A vector space is any set where the linear combination operation is defined on its elements.
In a vector space, also called a linear space, the elements are not important. The actual
elements that constitute the vector space are left unspecified, only the relation among them
is determined. An example of a vector space is the set Fn of n-vectors with the operation
of linear combination studied in Chapter 1. Another example is the set Fm,n of all m × n
matrices with the operation of linear combination studied in Chapter 2. We now define
a vector space and comment its main properties. A subspace is introduced later on as a
smaller vector space inside the original one. We end this Section with the concept of span
of a set of vectors, which is a way to construct a subspace from any subset in a vector space.

Definition 4.1.1. A set V is a vector space over the scalar field F ∈ {R,C} iff there
are two operations defined on V , called vector addition and scalar multiplication with the
following properties: For all u, v, w ∈ V the vector addition satisfies

(A1) u + v ∈ V , (closure of V );
(A2) u + v = v + u, (commutativity);
(A3) (u + v) + w = u + (v + w), (associativity);
(A4) ∃ 0 ∈ V : 0 + u = u ∀ u ∈ V , (existence of a neutral element);
(A5) ∀ u ∈ V ∃ (−u) ∈ V : u + (−u) = 0, (existence of an opposite element);

furthermore, for all a, b ∈ F the scalar multiplication satisfies

(M1) au ∈ V , (closure of V );
(M2) 1u = u, (neutral element);
(M3) a(bu) = (ab)u, (associativity);
(M4) a(u + v) = au + av, (distributivity);
(M5) (a + b)u = au + bu, (distributivity).

The definition of a vector space does not specify the elements of the set V , it only
determines the properties of the vector addition and scalar multiplication operations. We
use the convention that elements in a vector space, called vectors, are represented in boldface.
Nevertheless, we allow several exceptions, the first two of them are given in Examples 4.1.1
and 4.1.2. We now present several examples of vector spaces.

Example 4.1.1: A vector space is the set Fn of n-vectors u = [ui] with components ui ∈ F
and the operations of column vector addition and scalar multiplication given by

[ui] + [vi] = [ui + vi], a[ui] = [aui].

This space of column vectors was introduced in Chapter 1. Elements in these vector spaces
are not represented in boldface, instead we keep the previous sanserif font, u ∈ Fn. The
reason for this notation will be clear in Sect. 4.4. C

Example 4.1.2: A vector space is the set Fm,n of m × n matrices A = [Aij ] with matrix
coefficients Aij ∈ F and the operations of addition and scalar multiplication given by

[
Aij

]
+

[
Bij

]
=

[
Aij + Bij

]
, a

[
Aij

]
=

[
aAij

]
,

These operations were introduced in Chapter 2. As in the previous example, elements in
these vector spaces are not represented in boldface, instead we keep the previous capital
sanserif font, A ∈ Fm,n. The reason for this notation will be clear in Sect. 4.4. C



G. NAGY – LINEAR ALGEBRA July 15, 2012 109

Example 4.1.3: Let Pn(U) be the set of all polynomials having degree n > 0 and domain
U ⊂ F, that is,

Pn(U) =
{
p(x) = a0 + a1x + · · ·+ anxn, with a0, · · · , an ∈ F and x ∈ U ⊂ F}

.

The set Pn(U) together with the addition of polynomials (p + q)(x) = p(x) + q(x) and the
scalar multiplication (ap)(x) = ap(x) is a vector space. In the case U = R we use the
notation Pn = Pn(R). C

Example 4.1.4: Let Ck
(
[a, b],F

)
be the set of scalar valued functions with domain [a, b] ⊂ R

with the k-th derivative being a continuous function, that is,

Ck
(
[a, b],F

)
=

{
f : [a, b]→ F such that f (k) is continuous

}
.

The set Ck
(
[a, b],F

)
together with the addition of functions (f + g)(x) = f (x) + g(x) and

the scalar multiplication (af )(x) = a f (x) is a vector space. The particular case Ck(R,R)
is denoted simply as Ck. The set of real valued continuous function is then C0. C

Example 4.1.5: Let ` be the set of absolute convergent series, that is,

` =
{
a =

∑
an : an ∈ F and

∞∑
n=0

|an| exists
}

.

The set ` with the addition of series a + b =
∑

(an + bn) and the scalar multiplication
ca =

∑
c an is a vector space. C

The properties (A1)-(M5) given in the definition of vector space are not redundant. As
an example, these properties do not include the condition that the neutral element 0 is
unique, since it follows from the definition.

Theorem 4.1.2. The element 0 in a vector space is unique.

Proof Theorem 4.1.2: Suppose that there exist two neutral elements 01 and 02 in the
vector space V , that is,

01 + u = u and 02 + u = u for all u ∈ V

Taking u = 02 in the first equation above, and u = 01 in the second equation above we
obtain that

01 + 02 = 02, 02 + 01 = 01.

These equations above simply that the two neutral elements must be the same, since

02 = 01 + 02 = 02 + 01 = 01;

where in the second equation we used that the addition operation is commutative. This
establishes the Theorem. ¤
Theorem 4.1.3. It holds that 0u = 0 for all element u in a vector space V .

Proof Theorem 4.1.3: For every u ∈ V holds

u = 1u = (1 + 0)u = 1u + 0u = u + 0u = 0u + u ⇒ u = 0u + u.

This last equation says that 0u is a neutral element, 0. Theorem 4.1.2 says that the neutral
element is unique, so we conclude that, for all u ∈ V holds that

0u = 0.

This establishes the Theorem. ¤
Also notice that the property (A5) in the definition of vector space says that the opposite

element exists, but it does not say whether it is unique. The opposite element is actually
unique.
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Theorem 4.1.4. The opposite element −u in a vector space is unique.

Proof Theorem 4.1.4: Suppose there are two opposite elements −u1 and −u2 to the
element u ∈ V , that is,

u + (−u1) = 0, u + (−u2) = 0.

Therefore,

(−u1) = 0 + (−u1)

= u + (−u2) + (−u1)

= (−u2) + u + (−u1)

= (−u2) + 0

= 0 + (−u2)

= (−u2) ⇒ (−u1) = (−u2).

This establishes the Theorem. ¤
Finally, notice that the element (−u) opposite to u is actually the element (−1)u.

Theorem 4.1.5. It holds that (−1)u = (−u).

Proof Theorem 4.1.5:

0 = 0u = (1− 1)u = 1u + (−1)u = u + (−1)u.

Hence (−1)u is an opposite element of u. Since Theorem 4.1.4 says that the opposite
element is unique, we conclude that (−1)u = (−u). This establishes the Theorem. ¤

4.1.1. Subspaces. We now introduce the notion of a subspace of a vector space, which is
essentially a smaller vector space inside the original vector space. Subspaces are important
in physics, since physical processes frequently take place not inside the whole space but in a
particular subspace. For instance, planetary motion does not take plane in the whole space
but it is confined to a plane.

Definition 4.1.6. The subset W ⊂ V of a vector space V over F is called a subspace of
V iff for all u, v ∈W and all a, b ∈ F holds that au + bv ∈W .

A subspace is a particular type of set in a vector space. Is a set where all possible linear
combinations of two elements in the set results in another element in the same set. In other
words, elements outside the set cannot be reached by linear combinations of elements within
the set. For this reason a subspace is called a closed set under linear combinations. The
following statement is usually helpful

Theorem 4.1.7. If W ⊂ V is a subspace of a vector space V , then 0 ∈W .

This statement says that 0 /∈ W implies that W is not a subspace. However, if actually
0 ∈ W , this fact alone does not prove that W is a subspace. One must show that W is
closed under linear combinations.
Proof of Theorem 4.1.7: Since W is closed under linear combinations, given any element
u ∈ W , the trivial linear combination 0u = 0 must belong to W , hence 0 ∈ W . This
establishes the Theorem. ¤

Example 4.1.6: Show that the set W ⊂ R3 given by W =
{
u = [ui] ∈ R3 : u3 = 0

}
is a

subspace of R3:
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Solution: Given two arbitrary elements u, v ∈ W we must show that au + bv ∈ W for all
a, b ∈ R. Since u, v ∈W we know that

u =




u1

u2

0


 , v =




v1

v2

0


 .

Therefore

au + bv =




au1 + bv1

au2 + bv2

0


 ∈W,

since the third component vanishes, which makes the linear combination an element in W .
Hence, W is a subspace of R3. In Fig. 29 we see the plane u3 = 0. It is a subspace, since
not only 0 ∈W , but any linear combination of vectors on the plane stays on the plane. C

3W = { u  =0 }

3uR
3

1u

u 2

Figure 29. The horizontal plane u3 = 0 is a subspace of R3.

Example 4.1.7: Show that the set W =
{
u = [ui] ∈ R2 : u2 = 1

}
is not a subspace of R2.

Solution: The set W is not a subspace, since 0 /∈ W . This is enough to show that W
is not a subspace. Another proof is that the addition of two vectors in the set is a vector
outside the set, as can be seen by the following calculation,

u =
[
u1

1

]
∈W, v =

[
v1

1

]
∈W ⇒ u + v =

[
u1 + v1

2

]
/∈W.

The second component in the addition above is 2, not 1, hence this addition does not belong
to W . An example of this calculation is given in Fig. 30. C

1

2W = { u  = 1 }

1

2uR
2

u

Figure 30. The horizontal line u2 = 1 is not a subspace of R2.
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1

2xR
2

U

x

V

R
2

x 2

x 1 1

2xR 2

W

x

Figure 31. Three subsets, U , V , and W , of R2. Only the set U is a subspace.

Example 4.1.8: Determine which one of the sets given in Fig. 31 is a subspace of R2.

Solution: The set U is a vector space, since any linear combination of vectors parallel to
the line is again a vector parallel to the line. The sets V and W are not subspaces, since
given a vector u in these spaces, a the vector au does not belong to these sets for a number
a ∈ R big enough. This argument is sketched in Fig. 32.

1

u

a u

U2xR
2

x 1

V
u

ua

x 2R
2

x

W

2xR
2

ua

u

x 1

Figure 32. Three subsets, U , V , and W , of R2. Only the set U is a subspace.

C

4.1.2. The span of finite sets. If a set is not a subspace there is a way to increase it into
a subspace. Define a new set including all possible linear combinations of elements in the
old set.

Definition 4.1.8. The span of a finite set S = {u1, · · · ,un} in a vector space V over F,
denoted as Span(S), is the set given by

Span(S) = {u ∈ V : u = c1u1 + · · ·+ cnun, c1, · · · , cn ∈ F}.

The following result remarks that the span of a set is a subspace.

Theorem 4.1.9. Given a finite set S in a vector space V , Span(S) is a subspace of V .

Proof of Theorem 4.1.9: Since Span(S) contains all possible linear combinations of
the elements in S, then Span(S) is closed under linear combinations. This establishes the
Theorem. ¤

Example 4.1.9: The subspace Span
({v}), that is, the set of all possible linear combinations

of the vector v, is formed by all vectors of the form cv, and these vectors belong to a line
containing v. The subspace Span

({v,w}), that is, the set of all linear combinations of two
vectors v, w, is the plane containing both vectors v and w. See Fig. 33 for the case of the
vector spaces R2 and R3, respectively. C
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1

v

2x R
2

Span{   }v

x

Span{   ,    }

w

v

3
xR

3

2x

x1

v w

Figure 33. Examples of the span of a set of a single vector, and the span
of a linearly independent set of two vectors.

4.1.3. Algebra of subspaces. We now show that the intersection of two subspaces is again
a subspace. However, the union of two subspaces is not, in general, a subspace. The smaller
subspace containing the union of two subspaces is precisely the span of the union. We then
define the addition of two subspaces as the span of the union of two subspaces.

Theorem 4.1.10. If W1 and W2 are subspaces of a vector space V , then W1 ∩W2 ⊂ V is
also a subspace of V .

Proof of Theorem 4.1.10: Let u and v be any two elements in W1 ∩W2. This means
that u, v ∈W1, which is a subspace, so any linear combination (au + bv) ∈W1. Since u, v
belong to W1 ∩W2 they also belong to W2, which is a subspace, so any linear combination
(au + bv) ∈ W2. Therefore, any linear combination (au + bv) ∈ W1 ∩W2. This establishes
the Theorem. ¤
Example 4.1.10: The sketch in Fig. 34 shows the intersection of two subspaces in R3, a
plane and a line. In this case the intersection is the former line, so the intersection is a
subspace.

x

x1

W
3xR

3

1

W 2

2

Figure 34. Intersection of two subspaces, W1 and W2 in R3. Since the
line W2 is included into the plane W1, we have that W1 ∩W2 = W2.

C

While the intersection of two subspaces is always a subspace, their union is, in general,
not a subspace, unless one subspace is contained into the other.
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Example 4.1.11: Consider the vector space V = R2, and the subspaces W1 and W2 given
by the lines sketched in Fig. 35. Their union is the set formed by these two lines. This set
is not a subspace, since the addition of the vectors u1 ∈ W1 with u2 ∈ W2 does not belong
to W1 ∪W2, as is it shown in Fig. 35.

W

R 2x2

1u

u 2

v

W1

x 1

2

Figure 35. The union of the subspaces W1 and W2 is the set formed by
these two lines. This is not a subspace, since the addition of u1 ∈ W1 and
u2 ∈W2 is the vector v which does not belong to W1 ∪W2.

C

Although the union of two subspaces is not always a subspace, it is possible to enlarge
the union into a subspace. The idea is to incorporate all possible additions of vectors in the
two original subspaces, and the result is called the addition of the two subspaces. Here is
the precise definition.

Definition 4.1.11. The addition of the subspaces W1, W2 in a vector space V , denoted
as W1 + W2, is the set given by

W1 + W2 =
{
u ∈ V : u = w1 + w2 with w1 ∈W1, w2 ∈W2

}
.

The following result remarks that the addition of subspaces is again a subspace.

Theorem 4.1.12. If W1 and W2 are subspaces of a vector space V , then the addition
W1 + W2 is also a subspace of V .

Proof of Theorem 4.1.12: Suppose that x ∈ W1 + W2 and y ∈ W1 + W2. We must
show that any linear combination ax + by also belongs to W1 + W2. This is the case, by
the following argument. Since x ∈ W1 + W2, there exist x1 ∈ W1 and x2 ∈ W2 such that
x = x1 + x2. Analogously, since y ∈ W1 + W2, there exist y1 ∈ W1 and y2 ∈ W2 such that
y = y1 + y2. Now any linear combination of x and y satisfies

ax + by = a(x1 + x2) + b(y1 + y2)

= (ax1 + by1) + (ax2 + by2)

Since W1 and W2 are subspaces, (ax1 + by2) ∈ W1, and (ax2 + by2) ∈ W2. Therefore, the
equation above says that (ax + by) ∈W1 + W2. This establishes the Theorem. ¤
Example 4.1.12: The sketch in Fig. 36 shows the union and the addition of two subspaces
in R3, each subspace given by a line through the origin. While the union is not a subspace,
their addition is the plane containing both lines, which is a subspace. Given any non-zero
vector w1 ∈W1 and any other non-zero vector w2 ∈W2, one can verify that the sum of two
subspaces is the span of

{
w1,w2

}
, that is,

W1 + W2 = Span
({

w1

} ∪ {
w2

})
.
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C

3

x

W  +  W1 2

x
3

x1

2

2W

W1

R

Figure 36. Union and addition of the subspaces W1 and W2 in R3. The
union is not a subspace, while the addition is a subspace of R3.

4.1.4. Internal direct sums. This is a particular case of the addition of subspaces. It is
called internal direct sum in order to differentiate it from another type of direct sum found
in the literature. The latter, also called external direct sum, is a sum of different vector
spaces, and it is a way to construct new vector spaces from old ones. We do not discuss this
type of direct sums here. From now on, direct sum in these notes means the internal direct
sum of subspaces inside a vector space.

Definition 4.1.13. Given a vector space V , we say that V is the internal direct sum of
the subspaces W1, W2 ⊂ V , denoted as V = W1 ⊕W2, iff every vector v ∈ V can be written
in a unique way, except for order, as a sum of vectors from W1 and W2.

A crucial part in the definition above is the uniqueness of the decomposition of every
vector v ∈ V as a sum of a vector in W1 plus a vector in W2. By uniqueness we mean the
following: For every v ∈ V exist w1 ∈ W1 and w2 ∈ W2 such that v = w1 + w2, and if
v = w̃1 + w̃2 with w̃1 ∈ W1 and w̃2 ∈ W2, then w1 = w̃1 and w2 = w̃2. In the case that
V = W1 ⊕W2 we say that W1 and W2 are direct summands of V , and we also say that W1

is the direct complement of W2 in V . There is an useful characterization of internal direct
sums.

Theorem 4.1.14. A vector space V is the direct sum of subspaces W1 and W2 iff holds
both V = W1 + W2 and W1 ∩W2 = {0}.
Proof of Theorem 4.1.14:

(⇒) If V = W1 ⊕W2, then it implies that V = W1 + W2. Suppose that v ∈ W1 ∩W2,
then on the one hand, there exists w1 ∈W1 such that v = w1 + 0; on the other hand, there
is w2 ∈W2 such that v = 0 + w2. Therefore, w1 = 0 and w2 = 0, so W1 ∩W2 = {0}.

(⇐) Since V = W1 + W2, for every v ∈ V there exist w1 ∈ W1 and w2 ∈ W2 such
that v = w1 + w2. Suppose there exists other vectors w̃1 ∈ W1 and w̃2 ∈ W2 such that
v = w̃1 + w̃2. Then,

0 = (w1 − w̃1) + (w2 − w̃2) ⇔ (w1 − w̃1) = −(w2 − w̃2),

Therefore (w1 − w̃1) ∈ W2 and so (w1 − w̃1) ∈ W1 ∩W2. Since W1 ∩W2 = {0}, we then
conclude that w1 = w̃1, which also says w2 = w̃2. Then V = W1 ⊕W2. This establishes
the Theorem. ¤
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Example 4.1.13: Denote by Sym and SkewSym the sets of all symmetric and all skew-
symmetric n× n matrices. Show that Fn,n = Sym⊕ SkewSym.

Solution: Given any matrix A ∈ Fn,n, holds

A = A +
1
2
(
AT − AT

)
=

1
2
(
A + AT

)
+

1
2
(
A− AT

)
.

We then can decompose matrix as A = B + C, where matrix B =
(
A + AT

)
/2 ∈ Sym while

matrix C =
(
A−AT

)
/2 ∈ SkewSym. That is, we can write any square matrix as a symmetric

matrix plus a skew-symmetric matrix, hence Fn,n ⊂ Sym + SkewSym. The other inclusion
is obvious, that is, Sym + SkewSym ⊂ Fn,n, because each term in the sum is a subset of
Fn,n. So, we conclude that

Fn,n = Sym + SkewSym.

Now we must show that Sym∩SkewSym = {0}. This is the case, as the following argument
shows. If matrix D ∈ Sym ∩ SkewSym, then matrix D is symmetric, D = DT , but matrix D
is also skew-symmetric, D = −DT . This implies that D = −D, that is, D = 0, proving our
assertion that Sym ∩ SkewSym = {0}. We then conclude that

Fn,n = Sym⊕ SkewSym.

C
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4.1.5. Exercises.

4.1.1.- Determine which of the following
subsets of Rn, with n > 1, are in fact
subspaces. Justify your answers.

(a) {x ∈ Rn : xi > 0 i = 1, · · · , n};
(b) {x ∈ Rn : x1 = 0};
(c) {x ∈ Rn : x1x2 = 0 n > 2};
(d) {x ∈ Rn : x1 + · · ·+ xn = 0};
(e) {x ∈ Rn : x1 + · · ·+ xn = 1};
(f) {x ∈ Rn : Ax = b, A 6= 0, b 6= 0}.

4.1.2.- Determine which of the following
subsets of Fn,n, with n > 1, are in fact
subspaces. Justify your answers.

(a) {A ∈ Fn,n : A = AT };
(b) {A ∈ Fn,n : A invertible};
(c) {A ∈ Fn,n : A not invertible};
(d) {A ∈ Fn,n : A upper-triangular};
(e) {A ∈ Fn,n : A2 = A};
(f) {A ∈ Fn,n : tr (A) = 0}.
(g) Given a matrix X ∈ Fn,n, define

{A ∈ Fn,n : [A, X] = 0}.

4.1.3.- Find W1 + W2 ⊂ R3, where W1 is a
plane passing through the origin in R3

and W2 is a line passing through the
origin in R3 not contained in W1.

4.1.4.- Sketch a picture of the subspaces
spanned by the following vectors:

(a)
n
2
4

1
2
3

3
5 ,

2
4

3
6
9

3
5 ,

2
4
−2
−4
−6

3
5
o

;

(b)
n
2
4

0
2
0

3
5 ,

2
4

1
1
0

3
5 ,

2
4

2
3
0

3
5
o

;

(c)
n
2
4

1
0
0

3
5 ,

2
4

1
1
0

3
5 ,

2
4

1
1
1

3
5
o

.

4.1.5.- Given two finite subsets S1, S2 in a
vector space V , show that

Span(S1 ∪ S2) =

Span(S1) + Span(S2).

4.1.6.- Let W1 ⊂ R3 be the subspace

W1 = Span
“n
2
4

1
2
3

3
5 ,

2
4

1
0
1

3
5
o”

.

Find a subspace W2 ⊂ R3 such that
R3 = W1 ⊕W2.
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4.2. Linear dependence

4.2.1. Linearly dependent sets. In this Section we present the notion of a linearly de-
pendent set of vectors. If one of the vectors in the set is a linear combination of the other
vectors in the set, then the set is called linearly dependent. If this is not the case, the set is
called linearly independent. This notion plays a crucial role in Sect. 4.3 to define a basis of
a vector space. Bases are very useful in part because every vector in the vector space can
be decomposed in a unique way as a linear combination of the basis elements. Bases also
provide a precise way to measure the size of a vector space.

Definition 4.2.1. A finite set of vectors
{
v1, · · · , vk

}
in a vector space is called linearly

dependent iff there exists a set of scalars {c1, · · · , ck}, not all of them zero, such that,

c1v1 + · · ·+ ckvk = 0. (4.1)

On the other hand, the set
{
v1, · · · , vk

}
is called linearly independent iff Eq. (4.1) implies

that every scalar vanishes, c1 = · · · = ck = 0.

The wording in this definition is carefully chosen to cover the case of the empty set. The
result is that the empty set is linearly independent. It might seems strange, but this result
fits well with the rest of the theory. On the other hand, the set {0} is linearly dependent,
since c10 = 0 for any c1 6= 0. Moreover, any set containing the zero vector is also linearly
dependent.

Linear dependence or independence are properties of a set of vectors. There is no meaning
to a vector to be linearly dependent, or independent. And there is no meaning of a set
of linearly dependent vectors, as well as a set of linearly independent vectors. What is
meaningful is to talk of a linearly dependent or independent set of vectors.

Example 4.2.1: Show that the set S ⊂ R2 below is linearly dependent,

S =
{[

1
0

]
,

[
0
1

]
,

[
2
3

]}
.

Solution: It is clear that[
2
3

]
= 2

[
1
0

]
+ 3

[
0
1

]
⇒ 2

[
1
0

]
+ 3

[
0
1

]
−

[
2
3

]
=

[
0
0

]
.

Since c1 = 2, c2 = 3, and c3 = −1 are non-zero, the set S is linearly dependent. C

It will be convenient to have the concept of a linearly dependent or independent set
containing infinitely many vectors.

Definition 4.2.2. An infinite set of vectors S =
{
v1, v2, · · ·

}
in a vector space V is called

linearly independent iff every finite subset of S is linearly independent. Otherwise, the
infinite set S is called linearly dependent.

Example 4.2.2: Consider the vector space V = C∞
(
[−`, `],R

)
, that is, the space of infin-

itely differentiable real-valued functions defined on the domain [−`, `] ⊂ R with the usual
operation of linear combination of functions. This vector space contains linearly indepen-
dent sets with infinitely many vectors. One example is the infinite sets S1 below, which is
linearly independent,

S1 =
{
1, x, x2, · · · , xn, · · ·}.

Another example is the infinite set S2, which is also linearly independent,

S2 =
{

1, cos
(nπx

`

)
, sin

(nπx

`

)}∞
n=1

.

C
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4.2.2. Main properties. As we have seen in the Example 4.2.1 above, in a linearly depen-
dent set there is always at least one vector that is a linear combination of the other vectors
in the set. This is simple to see from the Definition 4.2.1. Since not all the coefficients ci

are zero in a linearly dependent set, let us suppose that cj 6= 0; then from the Eq. (4.1) we
obtain

vj = − 1
cj

[
c1v1 + · · ·+ cj−1vj−1 + cj+1vj+1 + · · ·+ ckvk

]
,

that is, vj is a linear combination of the other vectors in the set.

Theorem 4.2.3. The set
{
v1, · · · , vk

}
is linearly dependent with the vector vk being a

linear combination of the the remaining k − 1 vectors iff

Span
({

v1, · · · , vk

})
= Span

({
v1, · · · , vk−1

})
.

This Theorem captures the idea behind the notion of a linearly dependent set: A finite
set is linearly dependent iff there exists a smaller set with the same span. In this sense the
vector vk in the Proposition above is redundant with respect to linear combinations.
Proof of Theorem 4.2.3: Let Sk =

{
v1, · · · , vk

}
and Sk−1 =

{
v1, · · · , vk−1

}
.

On the one hand, if vk is a linear combination of the other vectors in S, then for every
x ∈ Span(Sk) can be expressed as an element in Span(Sk−1) simply by replacing vk in terms
of the vectors in S̃. This shows that Span(Sk) ⊂ Span(Sk−1). The other inclusion is trivial,
so Span(Sk) = Span(Sk−1).

On the other hand, if Span(Sk) = Span(Sk−1), this means that vk is a linear combination
of the elements in Sk−1. Therefore, the set Sk is linearly dependent. This establishes the
Theorem. ¤

Example 4.2.3: Consider the set S ⊂ R3 given by S =
{



−2
2
−3


 ,




4
−6
8


 ,



−2
−3
2


 ,



−4
1
−3




}
.

Find a set S̃ ⊂ S having the smallest number of vectors such that Span(S̃) = Span(S).

Solution: We have to find all the redundant vectors in S with respect to linear combina-
tions. In other words, with have to find a linearly independent subset of S̃ ⊂ S such that
Span(S̃) = Span(S). The calculation we must do is to find the non-zero coefficients ci in
the solution of the equation




0
0
0


 = c1



−2
2
−3


 + c2




4
−6
8


 + c3



−2
−3
2


 + c4



−4
1
−3


 =



−2 4 −2 −4
2 −6 −3 1
−3 8 2 −3







c1

c2

c3

c4


 .

Hence, we must find the reduced echelon form of the coefficient matrix above, that is,

A =

2
4
−2 4 −2 −4
2 −6 −3 1
−3 8 2 −3

3
5→

2
4

1 −2 1 2
0 −2 −5 −3
0 2 5 3

3
5→

2
4

1 −2 1 2
0 2 5 3
0 0 0 0

3
5→

2
4

1 0 6 5
0 1 5

2
3
2

0 0 0 0

3
5 = EA.

This means that the solution for the coefficients is

c1 = −6c3 − 5c4, c2 = −5
2
c3 − 3

2
c4, c3, c4 free variables.

Choosing:

c4 = 0, c3 = 2 ⇒ c1 = −12, c2 = −5 ⇒ −12



−2
2
−3


− 5




4
−6
8


 + 2



−2
−3
2


 =




0
0
0


 ,
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c4 = 2, c3 = 0 ⇒ c1 = −10, c2 = −3 ⇒ −10



−2
2
−3


− 3




4
−6
8


 + 2



−4
1
−3


 =




0
0
0


 .

We can interpret this result thinking that the third and fourth vectors in matrix A are linear
combination of the first two vectors. Therefore, a linearly independent subset of S having
its same span is given by

S̃ =
{



−2
2
−3


 ,




4
−6
8




}
.

Notice that all the information to find S̃ is in matrix EA, the reduced echelon form of
matrix A,

A =



−2 4 −2 −4
2 −6 −3 1
−3 8 2 −3


→




1 0 6 5
0 1 5

2
3
2

0 0 0 0


 = EA.

The columns with pivots in EA determine the column vectors in A that form a linearly
independent set. The non-pivot columns in EA determine the column vectors in A that are
linear combination of the vectors in the linearly independent set. The factors of these linear
combinations are precisely the component of the non-pivot vectors in EA. For example, the
last column vector in EA has components 5 and 3/2, and these are precisely the coefficients
in the linear combination: 


−4
1
−3


 = 5



−2
2
−3


 +

3
2




4
−6
8


 .

C

In Example 4.2.3 we answered a question about the linear independence of a set S ={
v1, · · · , vn

} ⊂ Fn by studying the properties of a matrix having these vectors a column
vectors, that is, A =

[
v1, · · · , vn

]
. It turns out that this is a good idea and the following

result summarizes few useful relations.

Theorem 4.2.4. Given A =
[
A:1, · · · ,A:n

] ∈ Fm,n, the following statements are equivalent:
(a) The column vectors set {A:1, · · · ,A:n} ⊂ Fm is linearly independent;
(b) N(A) = {0};
(c) rank(A) = n

In the case A ∈ Fn,n, the set {A:1, · · · ,A:n} ⊂ Fn is linearly independent iff A is invertible.

Proof of Theorem 4.2.4: Let us denote by S =
{
v1, · · · , vn

} ⊂ Fm a set of vectors in a
vector space, and introduce the matrix A =

[
v1, · · · , vn

]
. The set S is linearly independent

iff only solution c ∈ Rn to the equation Ac = 0 is the trivial solution c = 0. This is equivalent
to say that N(A) = {0}. This is equivalent to say that EA has n pivot columns, which is
equivalent to say that rank(A) = n. The furthermore part is straightforward, since an n×n
matrix A is invertible iff rank(A) = n. This establishes the Theorem. ¤

Further reading. See Section 4.3 in Meyer’s book [3].
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4.2.3. Exercises.

4.2.1.- Determine which of the following
sets is linearly independent. For those
who are linearly dependent, express one
vector as a linear combination of the
other vectors in the set.

(a)
n
2
4

1
2
3

3
5 ,

2
4

2
1
0

3
5 ,

2
4

1
5
9

3
5
o

;

(b)
n
2
4

1
2
3

3
5 ,

2
4

0
4
5

3
5 ,

2
4

0
0
6

3
5 ,

2
4

1
1
1

3
5
o

;

(c)
n
2
4

3
2
1

3
5 ,

2
4

1
0
0

3
5 ,

2
4

2
1
0

3
5
o

.

4.2.2.- Let A =

2
4

2 1 1 0
4 2 1 2
6 3 2 3

3
5.

(a) Find a linearly independent set con-
taining the largest possible number
of columns of A.

(b) Find how many linearly indepen-
dent sets can be constructed using
any number of column vectors of A.

4.2.3.- Show that any set containing the
zero vector must be linearly dependent.

4.2.4.- Given a vector space V , prove the
following: If the set

{v, w} ⊂ V

is linearly independent, then so is˘
(v + w), (v−w)

¯
.

4.2.5.- Determine whether the set
n»1 2

2 1

–
,

»
2 1
1 1

–
,

»
4 −1
−1 1

–o
⊂ R2,2

is linearly independent of dependent.

4.2.6.- Show that the following set in P2 is
linearly dependent,

{1, x, x2, 1 + x + x2}.

4.2.7.- Determine whether S ⊂ P2 is a lin-
early independent set, where

S =
˘
1 + x + x2, 2x− 3x2, 2 + x

¯
.
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4.3. Bases and dimension

In this Section we introduce a notion that quantifies the size of a vector space. Before
doing that, however, we need to separate two main cases, the vector spaces we call finite
dimensional from those called infinite dimensional. In the first case, finite dimensional vector
spaces, we introduce the notion of a basis. This is a particular type of set in the vector
space that is small enough to be a linearly independent set and big enough to span the whole
vector space. A basis of a finite dimensional vector space is not unique. However, every
basis contains the same number of vectors. This number, called dimension, quantifies the
size of the finite dimensional vector space. In the second case above, infinite dimensional
vector spaces, we do not introduce here a concept of basis. More structure is needed in the
vector space to be able to determine whether or not an infinite sum of vectors converges.
We will not discuss these issues here.

4.3.1. Basis of a vector space. A particular type of finite sets in a vector space, small
enough to be linearly independent and big enough to span the whole vector space, is called
a basis of that vector space. Vector spaces having a finite set with these properties are
essentially small, and they are called finite dimensional. When there is no finite set that
spans the whole vector space, we call that space infinite dimensional. We now highlight
these ideas in a more precise way.

Definition 4.3.1. A finite set S ⊂ V is called a finite basis of a vector space V iff S is
linearly independent and Span(S) = V .

The existence of a finite basis is the property that defines the size of the vector space.

Definition 4.3.2. A vector space V is finite dimensional iff V has a finite basis or V is
one of the following two extreme cases: V = ∅ or V = {0}. Otherwise, the vector space V
is called infinite dimensional.

In these notes we will often call a finite basis just simply as a basis, without remarking
that they contain a finite number of elements. We only study this type of basis, and we
do not introduce the concept of an infinite basis. Why don’t we define the notion of an
infinite basis, since we have already defined the notion of an infinite linearly independent
set? Because we do not have any way to define what is the span of an infinite set of vectors.
In a vector space, without any further structure, there is no way to know whether an infinite
sum converges or not. The notion of convergence needs further structure in a vector space,
for example it needs a notion of distance between vectors. So, only in certain vector spaces
with a notion of distance it is possible to introduce an infinite basis. We will discuss this
subject in a later Chapter.

Example 4.3.1: We now present several examples.

(a) Let V = R2, then the set S2 =
{

e1 =
[
1
0

]
, e2 =

[
0
1

]}
is a basis of F2. Notice that

ei = I:i, that is, ei is the i-th column of the identity matrix I2. This basis S2 is called
the standard basis of R2.

(b) A vector space can have infinitely many bases. For example, a second basis for R2 is

the set U =
{

u1 =
[
1
1

]
, u2 =

[−1
1

]}
. It is not difficult to verify that this set is a basis

of R2, since u is linearly independent, and Span(U) = R2.
(c) Let V = Fn, then the set Sn =

{
e1 = I:1, · · · , en = I:n

}
is a basis of Rn, where I:i is the

i-th column of the identity matrix In. This set Sn is called the standard basis of Fn.
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(d) A basis for the vector space F2,2 of all 2× 2 matrices is the set S2,2 given by

S2,2 =
{

E11 =
[
1 0
0 0

]
, E12 =

[
0 1
0 0

]
,E21 =

[
0 0
1 0

]
, E22 =

[
0 0
0 1

]}
;

This set is linearly independent and Span(S2,2) = F2,2, since any element A ∈ F2,2 can
be decomposed as follows,

A =
[
A11 A12

A21 A22

]
= A11

[
1 0
0 0

]
+ A12

[
0 1
0 0

]
+ A21

[
0 0
1 0

]
+ A22

[
0 0
0 1

]
.

(e) A basis for the vector space Fm,n of all m× n matrices is the following:

Sm,n =
{
E11,E12, · · · ,Emn

}
,

where each m× n matrix Eij is a matrix with all coefficients zero except the coefficient
(i, j) which is equal to one (see previous example). The set Sm,n is linearly independent,
and Span(Sm,n) = Fm,n, since

A = [Aij ] =
m∑

i=1

n∑

j=1

AijEij .

(f) Let V = Pn, the set of all polynomials with domain R and degree less or equal n. Any
element p ∈ Pn can be expressed as follows,

p(x) = a0 + a1x + a2x
2 + · · ·+ anxn,

that is equivalent to say that the set

S =
{
p0 = 1, p1 = x, p2 = x2, · · · , pn = xn

}

satisfies Pn = Span(S). The set S is also linearly independent, since

q(x) = c0 + c1x + c2x
2 + · · ·+ cnxn = 0 ⇒ c0 = · · · = cn = 0.

The proof of the latter statement is simple: Compute the n-th derivative of q above,
and obtain the equation n! cn = 0, so cn = 0. Add this information into the (n− 1)-th
derivative of q and we conclude that cn−1 = 0. Continue in this way, and you will prove
that all the coefficient c’s vanish. Therefore, S is a basis of Pn, ands it is also called the
standard basis of Pn.

C

Example 4.3.2: Show that the set U =
{




1
0
1


 ,




0
1
1


 ,




1
0
−1




}
is a basis for R3.

Solution: We must show that U is a linearly independent set and Span(U) = R3. Both
properties follow from the fact that matrix U below, whose columns are the elements in U ,
is invertible,

U =




1 0 1
0 1 0
1 1 −1


 ⇒ U−1 =

1
2




1 −1 1
0 2 0
1 1 −1


 .

Let us show that U is a basis of R3: Since matrix U is invertible, this implies that its
reduced echelon form EU = I3, so its column vectors form a linearly independent set. The
existence of U−1 implies that the system of equations Ux = y has a solution x = U−1y for
every y ∈ R3, that is, y ∈ Col(U) = Span(U) for all y ∈ R3. This means that Span(U) = R3.
Hence, the set U is a basis of R3. C

The following definitions will be useful to establish important properties of a basis.
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Definition 4.3.3. Let V be a vector space and Sn ⊂ V be a subset with n elements. The set
Sn is a maximal linearly independent set iff Sn is linearly independent and every other
set S̃m with m > n elements is linearly dependent. The set Sn is a minimal spanning set
iff Span(Sn) = V and every other set S̃m with m < n elements satisfies Span(S̃m) & V .

A maximal linearly independent set S is the biggest set in a vector space that is linearly
independent. A set cannot be linearly independent if it is too big, since the bigger the set
the more probable that one element in the set is a linear combination of the other elements
in the set. A minimal spanning set is the smallest set in a vector space that spans the whole
space. A spanning set, that is, a set whose span is the whole space, cannot be too small,
since the smaller the set the more probable that an element in the vector space is outside the
span of the set. The following result provides a useful characterization of a basis: A basis is
a set in the vector space that is both maximal linearly independent and minimal spanning.
In this sense, a basis is a set with the right size, small enough to be linearly independent
and big enough to span the whole vector space.

Theorem 4.3.4. Let V be a vector space. The following statements are equivalent:

(a) U is a basis of V ;
(b) U is a minimal spanning set in V .
(c) U is a maximal linearly independent set in V ;

Example 4.3.3: We showed in Example 4.3.2 above that the set U =
{




1
0
1


 ,




0
1
1


 ,




1
0
−1




}

is a basis for R3. Since this basis has three elements, Theorem 4.3.4 says that any other
spanning set in R3 cannot have less than three vectors, and any other linearly independent
set in R3 cannot have more that three vectors. For example, any subset of U containing two
elements cannot span R3; the linear combination of two vectors in U span a plane in R3.
Another example, any set of four vectors in R3 must be linearly dependent. C

Proof of Theorem 4.3.4: We first show part (a)-(b).
(⇒) Assume that U is a basis of V . If the set U is not a minimal spanning set of V , that

means there exists Ũ =
{
ũ1, · · · , ũn−1

}
such that Span(Ũ) = V . So, every vector in U can

be expressed as a linear combination of vectors in Ũ . Hence, there exists a set of coefficients
Cij such that

uj =
n−1∑

i=1

Cijũi, j = 1, · · · , n.

The reason to order the coefficients Cij is this form is that they form a matrix C = [Cij ]
which is (n− 1)× n. This matrix C defines a function C : Rn → Rn−1, and since rank(C) 6
(n− 1) < n, this matrix satisfies that N(C) is nontrivial as a subset of Rn. So there exists
a nonzero column vector in Rn with components z = [zj ] ∈ Rn, not all components zero,
such that z ∈ N(C), that is,

n∑

j=1

Cijzj = 0, i = 1, · · · , (n− 1).

What we have found is that the linear combination

z1u1 + · · ·+ znun =
n∑

j=1

zjuj =
n∑

j=1

zj

(n−1∑

i=1

Cijũi

)
=

n−1∑

i=1

( n∑

j=1

Cijzj

)
ũi = 0,
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with at least one of the coefficients zj non-zero. This means that the set U is not linearly
independent. But this contradicts that U is a basis. Therefore, the set U is a minimal
spanning set of V .

(⇐) Assume that U is a minimal spanning set of V . If U is not a basis, that means U is
not a linearly independent set. At least one element in U must be a linear combination of
the others. Let us arrange the order of the basis vectors such that the vector un is a linear
combination of the other vectors in U . Then, the set Ũ =

{
u, · · · ,un−1

}
must still span V ,

that is Span(Ũ) = V . But this contradicts the assumption that U is a minimal spanning set
of V .

We now show part (a)-(c).
(⇐) Assume that U is a maximal linearly independent set in V . If U is not a basis, that

means Span(U) $ V , so there exists un+1 ∈ V such that un+1 /∈ Span(U). Hence, the set
Ũ =

{
u, · · · ,un+1

}
is a linearly independent set. However, this contradicts the assumption

that U is a maximal linearly independent set. We conclude that U is a basis of V .
(⇒) Assume that U is a basis of V . If the set U is not a maximal linearly independent

set in V , then there exists a maximal linearly independent set Ũ =
{
ũ1, · · · , ũk

}
, with

k > n. By the argument given just above, Ũ is a basis of V . By part (b) the set Ũ must
be a minimal spanning set of V . However, this is not true, since U is smaller and spans V .
Therefore, U must be a maximal linearly independent set in V .

This establishes the Theorem. ¤

4.3.2. Dimension of a vector space. The characterization of a basis given in Theo-
rem 4.3.4 above implies that the number of elements in a basis is always the same as in any
other basis.

Theorem 4.3.5. The number of elements in any basis of a finite dimensional vector space
is the same as in any other basis.

Proof of Theorem (4.3.5: Let Vn and Vm be two bases of a vector space V with n
and m elements, respectively. If m > n, the property that Vm is a minimal spanning set
implies that Span(Vn) & Span(Vm) = V . The former inclusion contradicts that Vn is a
basis. Therefore, n = m. (A similar proof can be constructed with the maximal linearly
independence property of a basis.) This establishes the Theorem. ¤

The number of elements in a basis of a finite dimensional vector space is a characteristic
of the vector space, so we give that characteristic a name.

Definition 4.3.6. The dimension of a finite dimensional vector space V with a finite
basis, denoted as dim V , is the number of elements in any basis of V . The extreme cases of
V = ∅ and V = {0} are defined as zero dimensional.

From the definition above we see that dim{0} = 0 and dim ∅ = 0.

Example 4.3.4: We now present several examples.
(a) The set Sn =

{
e1 = I:1, · · · , en = I:n

}
is a basis for Fn, so dimFn = n.

(b) A basis for the vector space F2,2 of all 2× 2 matrices is the set S2,2 is given by

S2,2 =
{

E11 =
[
1 0
0 0

]
, E12 =

[
0 1
0 0

]
,E21 =

[
0 0
1 0

]
, E22 =

[
0 0
0 1

]}
,

so we conclude that dimF2,2 = 4.
(c) A basis for the vector space Fm,n of all m× n matrices is the following:

Sm,n =
{
E11,E12, · · · ,Emn

}
,
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where we recall that each m× n matrix Eij is a matrix with all coefficients zero except
the coefficient (i, j) which is equal to one. Since the basis Sm,n contains mn elements,
we conclude that dimFm,n = mn.

(d) A basis for the vector space Pn of all polynomial with degree less or equal n is the set
S given by S =

{
p0 = 1, p1 = x, p2 = x2, · · · , pn = xn

}
. This set has n + 1 elements,

so dimPn = n + 1.

C

Remark: Any subspace W ⊂ V of a vector space V is itself a vector space, so the definition
of basis also holds for W . Since W ⊂ V , we conclude that dim W 6 dim V .

Example 4.3.5: Consider the case V = R3. It is simple to see in Fig. 37 that dim U = 1
and dim W = 2, where the subspaces U and W are spanned by one vector and by two
non-collinear vectors, respectively.

dim ( U ) = 1          dim ( W ) = 2

V =  R
U3

0

W

Figure 37. Sketch of two subspaces U and W , in the vector space R3, of
dimension one and two, respectively.

C

Example 4.3.6: Find a basis for N(A) and R(A), where matrix A ∈ R3,4 is given by

A =



−2 4 −2 −4
2 −6 −3 1
−3 8 2 −3


 . (4.2)

Solution: Since A ∈ R3,4, then A : R4 → R3, which implies that N(A) ⊂ R4 while
R(A) ⊂ R3. A basis for N(A) is found as follows: Find all solution of Ax = 0 and express
these solutions as the span of a linearly independent set of vectors. We first find EA,

A =



−2 4 −2 −4
2 −6 −3 1
−3 8 2 −3


→




1 0 6 5
0 1 5

2
3
2

0 0 0 0


 = EA ⇒





x1 = −6x3 − 5x4,

x2 = −5
2

x3 − 3
2

x4,

x3, x4 free variables.

Therefore, every element in N(A) can be expressed as follows,

x =




−6x3 − 5x4

− 5
2 x3 − 3

2 x4

x3

x4


 =




−6
− 5

2
1
0


 x3 +




−5
− 3

2
0
1


 x4, ⇒ N(A) = Span

({



−6
− 5

2
1
0


 ,




−5
− 3

2
0
1




})
.



G. NAGY – LINEAR ALGEBRA July 15, 2012 127

Since the vectors in the span above form a linearly independent set, we conclude that a
basis for N(A) is the set N given by

N =
{




−6
− 5

2
1
0


 ,




−5
− 3

2
0
1




}
.

We now find a basis for R(A). We know that R(A) = Col(A), that is, the span of the column
vectors of matrix A. We only need to find a linearly independent subset of column vectors
of A. This information is given in EA, since the pivot columns in EA indicate the columns in
A which form a linearly independent set. In our case, the pivot columns in EA are the first
and second columns, so we conclude that a basis for R(A) is the set R given by

R =
{



−2
2
−3


 ,




4
−6
8




}
.

C

4.3.3. Extension of a set to a basis. We know that a basis of a vector space is not unique,
and the following result says that actually any linearly independent set can be extended into
a basis of a vector space.

Theorem 4.3.7. If Sk =
{
u1, · · · ,uk

}
is a linearly independent set in a vector spave V

with basis V =
{
v1, · · · , vn

}
, where k < n, then, there always exists a basis of V given by

an extension of the set Sk of the form S =
{
u1, · · · ,uk, vi1 , · · · , vin−k

}
.

The statement above says that a linearly independent set Sk can be extended into a basis
S of a a vector space V simply incorporating appropriate vectors from any basis of V . If a
basis V of V has n vectors, and the set Sk has k < n vectors, then one can always select
n− k vectors from the basis V to enlarge the set Sk into a basis of V .
Proof of Theorem 4.3.7: Introduce the set Sk+n

sk+n =
{
u1, · · · ,uk, v1, · · · , vn

}
.

We know that Span(Sk+n) = V since V ⊂ Sk+n. We also know that Sk+n is linearly de-
pendent, since the maximal linearly independent set contains n elements and Sk+n contains
n + k > n elements. The idea is to eliminate the vi such that Sk ∪ {vi} is linearly depen-
dent. Since the maximal linearly independent set contains n elements and the Sk is linearly
independent, there are k elements in V that will be eliminated. The resulting set is S, which
is a basis of V containing Sk. This establishes the Theorem. ¤

Example 4.3.7: Given the 3 × 4 matrix A defined in Eq. (4.2) in Example 4.3.6 above,
extend the basis of N(A) ⊂ R4 into a basis of R4.

Solution: We know from Example 4.3.6 that a basis for the N(A) is the set N given by

N =
{




−6
− 5

2
1
0


 ,




−5
− 3

2
0
1




}
.
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Following the idea in the proof of Theorem 4.3.7, we look for a linear independent set of
vectors among the columns of the matrix

M =




−6 −5 1 0 0 0
− 5

2 − 3
2 0 1 0 0

1 0 0 0 1 0
0 1 0 0 0 1


 .

That is, matrix M include the basis vectors of N(A) and the four vectors ei of the standard
basis of R4. It is important to place the basis vectors of N(A) in the first columns of M. In
this way, the Gauss method will select these first vectors as part of the linearly independent
set of vectors. Find now the reduced echelon form matrix EM,

EM =




1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 6 5
0 0 0 1 5 3


 .

Therefore, the first four vectors in M are form a linearly independent set, so a basis of R4

that includes N is given by

V =
{




−6
− 5

2
1
0


 ,




−5
− 3

2
0
1


 ,




1
0
0
0


 ,




0
1
0
0




}
.

C

4.3.4. The dimension of subspace addition. Recall that the sum and the intersection
of two subspaces is again a subspace in a given vector space. The following result relates
the dimension of a sum of subspaces with the dimension of the individual subspaces and the
dimension of their intersection.

Theorem 4.3.8. If W1, W2 ⊂ V are subspaces of a vector space V , then holds

dim(W1 + W2) = dim W1 + dim W2 − dim(W1 ∩W2).

Proof of Theorem 4.3.8: We find the dimension of W1 + W2 finding a basis of this sum.
The key idea is to start with a basis of W1 ∩ W2. Let B0 =

{
z1, · · · , zl

}
be a basis for

W1 ∩W2. Enlarge that basis into basis B1 for W1 and B2 for W2 as follows,

B1 =
{
z1, · · · , zl,x1, · · · ,xn

}
, B2 =

{
z1, · · · , zl,y1, · · · ,ym

}
.

We use the notation l = dim(W1 ∩W2), l + n = dim W1 and l + m = dim W2. We now
propose as basis for W1 + W2 the set

B =
{
z1, · · · , zl,x1, · · · ,xn,y1, · · · ,ym

}
.

By construction this set satisfies that Span(B) = W1 + W2. We only need to show that B is
linearly independent. Assume that the set B is linearly dependent. This means that there
is non-zero constants ai, bj and ck solutions of the equation

n∑

i=1

aixi +
m∑

j=1

bjyj +
l∑

k=1

ckzk = 0. (4.3)
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This implies that the vector
∑n

i=1 aixi, which by definition belongs to W1, also belongs to
W2, since

n∑

i=1

aixi = −
( m∑

j=1

bjyj +
l∑

k=1

ckzk

)
∈W2.

Therefore,
∑n

i=1 aixi belongs to W1 ∩W2, and so is a linear combination of the elements of
B0, that is, there exists scalars dk such that

n∑

i=1

aixi =
l∑

i=1

dkzk.

Since B1 is a basis of W1, this implies that all the coefficients ai and dk vanish. Introduce
this information into Eq. (4.3) and we conclude that

m∑

j=1

bjyj +
l∑

k=1

ckzk = 0.

Analogously, the set B2 is a basis, so all the coefficients bj and ck must vanish. This implies
that the set B is linearly independent, hence a basis of W1 + W2. Therefore, the dimension
of the sum is given by

dim(W1 + W2) = n + m + k = (n + k) + (m + k)− k = dim W1 + dim W2 − dim(W1 ∩W2).

This establishes the Theorem. ¤
The following corollary is immediate.

Corollary 4.3.9. If a vector space can be decomposed as V = W1 ⊕W2, then

dim(W1 ⊕W2) = dim W1 + dim W2.

The proof is straightforward from Theorem 4.3.8, since the condition of subspaces direct
sum, W1 ∩W2 = {0}, says that dim

(
W1 ∩W2) = 0.
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4.3.5. Exercises.

4.3.1.- Find a basis for each of the spaces
N(A), R(A), N(AT ), R(AT ), where

A =

2
4

1 2 2 3
2 4 1 3
3 6 1 4

3
5 .

4.3.2.- Find the dimension of the space
spanned by

n
2
664

1
2
−1
3

3
775 ,

2
664

1
0
0
2

3
775 ,

2
664

2
8
−4
8

3
775 ,

2
664

1
1
1
1

3
775 ,

2
664

3
3
0
6

3
775
o

.

4.3.3.- Find the dimension of the following
spaces:

(a) The space Pn of polynomials of de-
gree less or equal n.

(b) The space Fm,n of m× n matrices.
(c) The space of real symmetric n × n

matrices.
(d) The space of real skew-symmetric

n× n matrices.

4.3.4.- Find an example to show that the
following statement is false: Given a ba-
sis {v1, v2} of R2, then every subspace
W ⊂ R2 has a basis containing at least
one of the basis vectors v1, v2.

4.3.5.- Given the matrix A and vector v,

A =

2
4

1 2 2 0 5
2 4 3 1 8
3 6 1 5 5

3
5 , v =

2
66664

−8
1
3
3
0

3
77775

,

verify that v ∈ N(A), and then find a
basis of N(A) containing v.

4.3.6.- Determine whether or not the set

B =
n
2
4

2
3
2

3
5 ,

2
4

1
1
−1

3
5
o

is a basis for the subspace

Span
“n
2
4

1
2
3

3
5 ,

2
4

5
8
7

3
5 ,

2
4

3
4
1

3
5
o”

⊂ R3.
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4.4. Vector components

4.4.1. Ordered bases. In the previous Section we introduced a finite basis in a vector
space. Although a vector space can have different bases, every basis has the same number
of elements, which provides a measure of the vector space size, called the dimension of the
vector space. In this Section we study another property of a basis. Every vector in a finite
dimensional vector space can be expressed in a unique way as a linear combination of the
basis vectors. This property can be clearly stated in an ordered basis, which is a basis with
the basis vectors given in a specific order.

Definition 4.4.1. An ordered basis of an n-dimensional vector space V is a sequence
(v1, · · · , vn) of vectors such that the set {v1, · · · , vn} is a basis of V .

Recall that a sequence is an ordered set, that is, a set with elements given in a particular
order.

Example 4.4.1: The following four ordered basis of R3 are all different,

(



1
0
0


 ,




0
1
0


 ,




0
0
1




)
,

(



0
1
0


 ,




1
0
0


 ,




0
0
1




)
,

(



0
1
0


 ,




0
0
1


 ,




1
0
0




)
,

(



0
0
1


 ,




0
1
0


 ,




1
0
0




)
,

however, they determine the same basis S3 =
{




1
0
0


 ,




0
1
0


 ,




0
0
1




}
. C

4.4.2. Vector components in a basis. The following result states that given a vector
space with an ordered basis, there exists a correspondence between vectors and certain
sequences of scalars.

Theorem 4.4.2. Let V be an n-dimensional vector space over the scalar field F with an
ordered basis

(
u1, · · · ,un

)
. Then, every vector v ∈ V determines a unique scalars’ sequence(

v1, · · · , vn

) ⊂ F such that
v = v1u1 + · · ·+ vnun. (4.4)

And every scalars’ sequence (v1, · · · , vn) ⊂ F determines a unique vector v ∈ V by Eq. (4.4).

Proof of Theorem 4.4.2: Denote by U =
(
u1, · · · ,un

)
the ordered basis of V . Since U

is a basis, Span(U) = V and U is linearly independent. The first property implies that for
every v ∈ V there exist scalars v1, · · · , vn such that v is a linear combination of the basis
vectors, that is,

v = v1u1 + · · ·+ vnun.

The second property of a basis implies that the linear combination above is unique. Indeed,
if there exists another linear combination

v = ν1u1 + · · ·+ νnun,

then 0 = v − v = (v1 − ν1)u1 + · · · + (vn − νn)un. Since U is linearly independent, this
implies that each coefficient above vanishes, so v1 = ν1, · · · , vn = νn.

The converse statement is simple to show, since the scalars are given in a specific order.
Every scalars’ sequence (v1, · · · , vn) determines a unique linear combination with an ordered
basis

(
u1, · · · ,un

)
given by v1u1 + · · ·+ vnun. This unique linear combination determines

a unique vector in the vector space. This establishes the Theorem. ¤
Theorem 4.4.2 says that there exists a correspondence between vectors in a vector space

with an ordered basis and scalars’ sequences. This correspondence is called a coordinate
map and the scalars are called vector components in the basis. Here is a precise definition.
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Definition 4.4.3. Let V be an n-dimensional vector space over F with an ordered basis
U = (u1, · · · ,un). The coordinate map is the function [ ]u : V → Fn, with [v ]u = vu, and

vu =




v1

...
vn


 ⇔ v = v1u1 + · · ·+ vnun.

The scalars v1, · · · , vn are called the vector components of v in the ordered basis U .

Therefore, we use the notation [v ]u = vu ∈ Fn for the components of a vector v ∈ V in an
ordered basis U . We remark that the coordinate map is defined only after an ordered basis
is fixed in V . Different ordered bases on V determine different coordinate maps between
V and Fn. When the situation under study involves only one ordered basis, we suppress
the basis subindex. The coordinate map will be denoted by [ ] : V → Fn and the vector
components by v = [v]. In the particular case that V = Fn and the basis is the standard
basis Sn, then the coordinate map [ ]s is the identity map, so v = [v]s = v. In this case we
follow the convention established in the first Chapters, that is, we denote vectors in Fn by
v instead of v. When the situation under study involves more than one ordered basis we
keep the sub-indices in the coordinate map, like [ ]u, and in the vector components, like vu,
to keep track of the basis attached to these expressions.

Example 4.4.2: Let V be the set of points on the plane with a preferred origin. Let
S =

(
e1, e2

)
be an ordered basis, pictured in Fig. 38.

(a) Find the components vs = [v]s ∈ R2 of the vector v = e1 + 3e2 in the ordered basis S.
(b) Find the components vu = [v]u ∈ R2 of the same vector v given in part (a) but now in

the ordered basis U =
(
u1 = e1 + e2, u2 = −e1 + e2

)
.

Solution: Part (a) is straightforward to compute, since the definition of component of a
vector says that the numbers multiplying the basis vectors in the equation v = e1 + 3e2 are
the components of the vector, that is,

v = e1 + 3e2 ⇔ vs =
[
1
3

]
.

Part (b) is more involved. We are looking for numbers ṽ1 and ṽ2 such that

v = ṽ1u1 + ṽ2u2 ⇔ vu =
[
ṽ1

ṽ2

]
. (4.5)

From the definition of the basis U we know the components of the basis vectors in U in
terms of the standard basis, that is,

u1 = e1 + e2 ⇔ u1s =
[
1
1

]
,

u2 = −e1 + e2 ⇔ u2s =
[−1

1

]
.

In other words, we can write the ordered basis U as the column vectors of the matrix
Us =

[U]
s

=
[
[u1]s, [u2]s

]
given by

Us =
[
u1s, u2s

]
=

[
1 −1
1 1

]
.

Expressing Eq. (4.5) in the standard basis means

e1 + 3e2 = v = ṽ1(e1 + e2) + ṽ2(−e1 + e2) ⇔
[
1
3

]
= ṽ1

[
1
1

]
+ ṽ2

[−1
1

]
.
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The last equation on the right is a matrix equation for the unknowns vu =
[
ṽ1

ṽ2

]
,

[
1 −1
1 1

] [
ṽ1

ṽ2

]
=

[
1
3

]
⇔ Usvu = vs.

We find the solution using the Gauss method,
[
1 −1

∣∣ 1
1 1

∣∣ 3

]
→

[
1 0

∣∣ 2
0 1

∣∣ 1

]
⇒ vu =

[
2
1

]
⇔ v = 2u1 + u2.

A sketch of what has been computed is in Fig. 38. In this Figure is clear that the vector
v is fixed, and we have only expressed this fixed vector in as a linear combination of two
different bases. It is clear in this Fig. 38 that one has to stretch the vector u1 by two and
add the result to the vector u2 to obtain v. C

v

e

2

e 2u
2

x

x 1

u

1

1

Figure 38. The vector v = e1 + 3e2 expressed in terms of the basis U ={
u1 = e1 + e2,u2 = −e1 + e2

}
is given by v = 2u1 + u2.

Example 4.4.3: Consider the vector space P2 of all polynomials of degree less or equal two,
and let us consider the case of F = R. An ordered basis is S =

(
p0 = 1, p1 = x, p2 = x2

)
.

The coordinate map is [ ]s : P2 → R3 defined as follows, [p]s = ps, where

ps =




a
b
c


 ⇔ p(x) = a + bx + cx2.

The column vector ps represents the components of the vector p in the ordered basis S. The
equation above defines a correspondence between every element in P2 and every element in
R3. The coordinate map depend on the choice of the ordered basis. For example, choosing
the ordered basis S̃ =

(
p0 = x2, p1 = x, p2 = 1

)
, the corresponding coordinate map is

[ ]s̃ : P2 → R3 defined by [p]s̃ = ps̃, where

ps̃ =




c
b
a


 ⇔ p(x) = a + bx + cx2.
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The coordinate maps above generalize to the spaces Pn and Rn+1 for all n ∈ N. Given
the ordered basis S =

(
p0 = 1,p1 = x, · · · ,pn = xn

)
, the corresponding coordinate map

[ ]s : Pn → Rn+1 defined by [p]s = ps, where

ps =




a0

...
an


 ⇔ p(x) = a0 + · · ·+ anxn.

C

Example 4.4.4: Consider V = P2 with ordered basis S =
(
p0 = 1, p1 = x, p2 = x2

)
.

(a) Find rs = [r]s, the components of r(x) = 3 + 2x + 4x2 in the ordered basis S.
(b) Find rq = [r]q, the components of the same polynomial r given in part (a) but now in

the ordered basis Q =
(
q0 = 1, q1 = 1 + x, q2 = 1 + x + x2,

)
.

Solution:
Part (a):This is straightforward to compute, since r(x) = 3 + 2x + 4x2 implies that

r(x) = 3p0(x) + 2p1(x) + 4p2(x) ⇔ rs =




3
2
4


 .

Part (b): This is more involved, as in Example 4.4.2. We look for numbers r̃1, r̃2, r̃3 such
that

r(x) = r̃0 q0(x) + r̃1 q1(x) + r̃2 q2(x) ⇔ rq =




r̃0

r̃1

r̃2


 . (4.6)

From the definition of the basis Q we know the components of the basis vectors in Q in
terms of the S basis, that is,

q0(x) = p0(x) ⇔ q0s =




1
0
0


 ,

q1(x) = p0(x) + p1(x) ⇔ q1s =




1
1
0




q2(x) = p0(x) + p1(x) + p2(x) ⇔ q2s =




1
1
1


 .

Now we can write the ordered basis Q in terms of the column vectors of the matrix Qs =[Q]
s

=
[
q0s, q1s, q2s

]
, as follows,

Qs =




1 1 1
0 1 1
0 0 1


 .

Expressing Eq. (4.6) in the standard basis means



3
2
4


 = r̃0




1
0
0


 + r̃1




1
1
0


 + r̃2




1
1
1


 .
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The last equation on the right is a matrix equation for the unknowns r̃0, r̃1, and r̃2


1 1 1
0 1 1
0 0 1







r̃0

r̃1

r̃2


 =




3
2
4


 ⇔ Qsrq = rs.

We find the solution using the Gauss method,


1 1 1
∣∣ 3

0 1 1
∣∣ 2

0 0 1
∣∣ 4


→




1 0 0
∣∣ 1

0 1 0
∣∣ −2

0 0 1
∣∣ 4


 ,

hence the solution is

rq =




1
−2
4


 ⇔ r(x) = q0(x)− 2 q1(x) + 4 q2(x).

We can verify that this is the solution, since

r(x) = q0(x)− 2 q1(x) + 4 q2(x)

= 1− 2 (1 + x) + 4 (1 + x + x2)

= (1− 2 + 4) + (−2 + 4)x + 4x2

= 3 + 2x + 4x2

= 3p0(x) + 2p1(x) + 4p2(x).

C

Example 4.4.5: Given any ordered basis U =
(
u1,u2,u3

)
of a 3-dimensional vector space

V , find Uu =
[U]

u
⊂ F3,3, that is, find ui = [ui]u for i = 1, 2, 3, the components of the basis

vectors ui in its own basis U .

Solution: The answer is simple: The definition of vector components in a basis says that

u1 = u1 + 0u2 + 0u3 ⇔ u1u =




1
0
0


 = e1,

u2 = 0u1 + u2 + 0u3 ⇔ u2u =




0
1
0


 = e2,

u3 = 0u1 + 0u2 + u3 ⇔ u3u =




0
0
1


 = e3.

In other words, using the coordinate map φu : V → F3, we can always write any basis U
as components in its own basis as follows, Uu =

[
e1, e2, e3

]
= I3. This example says that

there is nothing special about the standard basis S = {e1, · · · , en} of Fn, where ei = I:i is
the i-th column of the identity matrix In. Given any n-dimensional vector space V over F
with any ordered basis V, the components of the basis vectors expressed on its own basis is
always the standard basis of Fn, that is, the result is always

[V]
v

= In. C
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4.4.3. Exercises.

4.4.1.- Let S =
`
e1, e2, e3

´
be the standard

basis of R3. Find the components of the
vector v = e1 + e2 + 2e3 in the ordered
basis U
“
u1s =

2
4

1
0
1

3
5 , u2s =

2
4

0
1
1

3
5 , u3s =

2
4

1
1
0

3
5
”
.

4.4.2.- Let S =
`
e1, e2, e3

´
be the standard

basis of R3. Find the components of the
vector

vs =

2
4

8
7
4

3
5

in the ordered basis U given by

“
u1s =

2
4

1
1
1

3
5 , u2s =

2
4

1
2
2

3
5 , u3s =

2
4

1
2
3

3
5
”
.

4.4.3.- Consider the vector space V = P2

with the ordered basis S given by

S =
`
p0 = 1, p1 = x, p2 = x2´.

(a) Find the components of the poly-
nomial r(x) = 2 + 3x − x2 in the
ordered basis S.

(b) Find the components of the same
polynomial r given in part (a) but
now in the ordered basis Q given by`

q0 = 1, q1 = 1− x, q2 = x + x2,
´
.

4.4.4.- Let S be the standard ordered basis
of R2,2, that is,

S = (E11, E12, E21, E22) ⊂ R2,2,

with

E11 =

»
1 0
0 0

–
, E12 =

»
0 1
0 0

–
,

E21 =

»
0 0
1 0

–
, E22 =

»
0 0
0 1

–
.

(a) Show that the ordered set M below
is a basis of R2,2, where

M = (M1, M2, M3, M4) ⊂ R2,2,

with

M1 =

»
0 1
1 0

–
, M2 =

»
0 −1
1 0

–
,

M3 =

»
1 0
0 1

–
, M4 =

»
1 0
0 −1

–
,

where the matrices above are writ-
ten in the standard basis.

(b) Consider the matrix A written in
the standard basis S,

A =

»
1 2
3 4

–
.

Find the components of the matrix
A in the ordered basis M.
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Chapter 5. Linear transformations

5.1. Linear transformations

We now introduce the notion of a linear transformation between vector spaces. Vector
spaces are defined not by the elements they are made of but by the relation among these
elements. They are defined by the properties of the operation we called linear combinations
of the vector space elements. Linear transformations are a very special type of functions
that preserve the linear combinations on both vector spaces where they are defined. Linear
transformations generalize the definition of a linear function introduced in Sect. 2.1 between
the spaces Fn and Fm to any two vector spaces. Linear transformations are also called in
the literature as linear maps or linear mappings.

Definition 5.1.1. Given the vector spaces V and W over F, the function T : V → W is
called a linear transformation iff for all u, v ∈ V and all scalars a, b ∈ F holds

T(au + bv) = aT(u) + bT(v).

In the case that V = W a linear transformation T : V → V is called a linear operator.

Taking a = b = 0 in the definition above we see that every linear transformation satisfies
that T(0) = 0. As we said in Sect. 2.1, if a function does not satisfy this condition,
then it cannot be a linear transformation. We now consider several examples of linear
transformations. We do not prove that these examples are indeed linear transformations;
the proofs are left to the reader.

Example 5.1.1: We give several examples of linear transformations.
(a) The transformation IV : V → V defined by IV (v) = v for all v ∈ V is called the identity

transformation. The transformation 0 : V → W defined by 0(v) = 0 for all v ∈ V is
called the zero transformation.

(b) Every example of a matrix as a linear function given in Sect. 2.1 is a linear transfor-
mation. More precisely, if V = Fn and W = Fm, then any m × n matrix A defines a
linear transformation A : Fn → Fm by A(x) = Ax. Therefore, rotations, reflections,
projections, dilations are linear transformations in the sense given in Def. 5.1.1 above.
In particular, square matrices are now called linear operators.

(c) The vector spaces V and W are part of the definition of the linear transformation. For
example, a matrix A alone does not determine a linear transformation, since the vector
spaces must also be specified. For example, and m × n matrix A defines two different
linear transformations, the first one A : Rn → Rm, and the second one A : Cn → Cm.
Although the action of these transformations is the same, the matrix-vector product
A(x) = Ax, the linear transformations are different. We will see in Chapter 9 that in
the case m = n these transformations may have different eigenvalues and eigenvectors.

(d) Let V = P3, W = P2 and let D : P3 → P2 be the differentiation transformation

D(p) =
dp

dx
.

That is, given a polynomial p ∈ P3, the transformation D acting on p is a polynomial
one degree less than p given by the derivative of p. For example,

p(x) = 2 + 3x + x2 − x3 ∈ P3 ⇒ D(p)(x) = 3 + 2x− 3x2 ∈ P2.

The transformation D is linear, since for all polynomials p, q ∈ P3 and scalars a, b ∈ F
holds

D(ap + bq)(x) =
d

dx

[
ap(x) + b q(x)

]
= a

dp(x)
dx

+ b
dq(x)
dx

= aD(p)(x) + bD(q)(x).
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(e) Notice that the differentiation transformation introduced above can also be defined as
a linear operator: Let V = W = P3, and introduce D : P3 → P3 with the same action

as above, that is, D(p) =
dp

dx
. The vector spaces used to define the transformation are

important. The transformation defined in this example D : P3 → P3 is different for the
one defined above D : P3 → P2. Although the action is the same, since the action of
both transformations is to take the derivative of their arguments, the transformations
are different. We comment on these issues later on.

(f) Let V = P2, W = P3 and let S : P2 → P3 be the integral transformation

S(p)(x) =
∫ x

0

p(t) dt.

For example,

p(x) = 2 + 3x + x2 ∈ P2 ⇒ S(p)(x) = 2x +
3
2

x2 +
1
3

x3 ∈ P3.

The transformation S is linear, since for all polynomials p, q ∈ P2 and scalars a, b ∈ F
holds

S(ap+ bq)(x) =
∫ x

0

[
ap(t)+ b q(t)

]
dt = a

∫ x

0

p(t) dt + b

∫ x

0

q(t) dt = aS(p)(x)+ bS(q)(x).

(g) Let V = C1
(
R,R

)
, the space of all functions f : R → R having one continuous deriva-

tive,that is f ′ is continuous. Let W = C0
(
R,R

)
, the space of all continuous functions

f : R → R. Notice that V & W , since f (x) = |x|, the absolute value function, belongs
to W but it does not belong to V . The differentiation transformation D : V →W ,

D(f )(x) =
df

dx
(x),

is a linear transformation. The integral transformation S : W → V ,

S(f )(x) =
∫ x

0

f (t) dt,

is also a linear transformation.
C

5.1.1. The null and range spaces. The range and null spaces of an m× n matrix intro-
duced in Sect. 2.5 can be also be defined for linear transformations between arbitrary vector
spaces.

Definition 5.1.2. Let V , W be vector spaces and T : V → W be a linear transformation.
The null space of the transformation T is the set N(T) ⊂ V given by

N(T) =
{
x ∈ V : T(x) = 0

}

The range space of the transformation T is the set R(T) ⊂W given by

R(T) =
{
y ∈W : y = T(x) for all x ∈ V

}
.

The null space of a linear transformation is also called the kernel of the transformation
and denoted as ker(T). The range space of a linear transformation is also called the image
of the transformation.

Example 5.1.2: In the case of V = Rn, W = Rm and A = A an m × n matrix, we have
seen many examples of the sets N(A) and R(A) in Sect. 2.5. Additional examples in the
case of more general linear transformations are the following:
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(a) Let V = P3, W = P2, and let D : P3 → P2 be the differentiation transformation

D(p) =
dp

dx
.

Recalling that D(p) = 0 iff p(x) = c, with c constant, we conclude that N(D) is the set
of constant polynomials, that is

N(D) = Span
({p0 = 1}) ⊂ P3.

Let us now find the set R(D). Notice that the derivative of a degree three polynomial
is a degree two polynomial, never a degree three. We conclude that R(D) = P2.

(b) Let V = P2, W = P3, and let S : P2 → P3 be the integration transformation

S(p)(x) =
∫ x

0

p(t) dt.

Recalling that S(p) = 0 iff p(x) = 0, we conclude that

N(S) =
{
p(x) = 0

} ⊂ P2.

Let us now find the set R(S). Notice that the integral of a nonzero constant polynomial
is a polynomial of degree one. We conclude that

R(S) =
{
p(x) ∈ P3 : p(x) = a1x + a2x

2 + a3x
3
}
.

Therefore, non-zero constant polynomials do not belong to R(S), so R(S) & P3.
C

Given a linear transformation T : V → W between vector spaces V and W , it is not
difficult to show that the sets N(T) ⊂ V and R(T) ⊂ W are also subspaces of their
respective vector spaces.

Theorem 5.1.3. Let V and W be vector spaces and T : V →W be a linear transformation.
Then, the sets N(T ) ⊂ V and R(T ) ⊂W are subspaces of V and W , respectively.

The proof is formally the same as the proof of Theorem 2.5.3 in Sect. 2.5.
Proof of Theorem 5.1.3: The sets N(T ) and R(T ) are subspaces because the transfor-
mation T is linear. Consider two arbitrary elements x1, x2 ∈ N(T ), that is, T(x1) = 0 and
T(x2) = 0. Then, for any a, b ∈ F holds

T(ax1 + bx2) = aT(x1) + bT(x2) = 0 ⇒ (ax1 + bx2) ∈ N(T).

Therefore, N(T ) ⊂ V is a subspace. Analogously, consider two arbitrary elements y1,
y2 ∈ R(T ), that is, there exist x1, x2 ∈ V such that y1 = T(x1) and y2 = T(x2). Then, for
any a, b ∈ F holds

(ay1 + by2) = aT(x1) + bT(x2) = T(ax1 + bx2) ⇒ (ay2 + by2) ∈ R(T ).

Therefore, R(T ) ⊂W is a subspace. This establishes the Theorem. ¤

5.1.2. Injections, surjections and bijections. We now specify useful properties a linear
transformation might have.

Definition 5.1.4. Let V and W be vector spaces and T : V →W be a linear transformation.
(a) T is injective (or one-to-one) iff for all vectors v1, v2 ∈ V holds

v1 6= v2 ⇒ T(v1) 6= T(v2).

(b) T is surjective (or onto) iff R(T ) = W .
(c) T is bijective (or an isomorphism) iff T is both injective and surjective.
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Figure 39. Sketch representing an injective and a non-injective function,
as well as a surjective and a non-surjective function.

In Fig. 39 we sketch the meaning of these definitions using standard pictures from set
theory. Notice that a given transformation can be only injective, or it can be only surjective,
or it can be both injective and surjective (bijective), or it can be neither. That a transfor-
mation is injective does not imply anything about whether it is surjective or not. That a
transformation is surjective does not imply anything about whether it is injective or not.
Before we present examples of injective and/or surjective linear transformations it is useful
to introduce a result to characterize those transformations that are injective. This can be
done in terms of the null space of the transformation.

Theorem 5.1.5. The linear transformation T : V →W is injective iff N(T ) = {0}.
Proof of Theorem 5.1.5:

(⇒) Since the transformation T is injective, given two elements v 6= 0, we know that
T(v) 6= T(0) = 0, where the last equality comes from the fact that T is linear. We conclude
that the null space of T contains only the zero vector.

(⇐) Since N(T) = {0}, given any two different elements v1, v2 ∈ V , that is, v1−v2 6= 0,
we know that T(v1 − v2) 6= 0, because the only element in N(T) is the zero vector. Since
T(v1−v2) = T(v1)−T(v2), we obtain that T(v1) 6= T(v2). We conclude that T is injective.
This establishes the Theorem. ¤

Example 5.1.3: Let V = R3, W = R2, and consider the linear transformation A defined

by the 2× 3 matrix A =
[
1 2 3
2 4 1

]
. Is A injective? Is A surjective?

Solution: A simple way to answer these questions is to find bases for the N(A) and R(A)
spaces. Both bases can be obtained from the information given in EA, the reduced echelon
form of A. A simple calculation shows

A =
[
1 2 3
2 4 1

]
→

[
1 2 0
0 0 1

]
= EA.

This information gives a basis for N(A), since all solutions Ax = 0 are given by

x1 = −2x2,

x2 free variable,
x3 = 0,





⇒ x =



−2
1
0


 x2 ⇒ N(A) = Span

({


−2
1
0




})
.
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Since N(A) 6= {0}, the transformation associated with A is not injective. The reduced
echelon form above also says that the first and third column vectors in A form a linearly
independent set. Therefore, the set

R =
{[

1
2

]
,

[
3
1

]}

is a basis for R(A), so dim R(A) = 2, and then R(A) = R2. Therefore, the transformation
associated with A is surjective. C

Example 5.1.4: Consider the differentiation and integration transformations

D : P3 → P2 D(p)(x) =
dp

dx
(x), S : P2 → P3 S(p)(x) =

∫ x

0

p(t) dt.

Show that D above is surjective but not injective, and S above is injective but not surjective.

Solution: Let us start with the differentiation transformation. In Example 5.1.2 we found
that N(D) 6= {0} and R(D) = P2. Therefore, D above is not injective but it is surjective.
Regarding the integration transformation, we have seen in the same Example 5.1.2 that
N(S) = {0} and R(S) & P3. Therefore, S above is injective but it is not surjective. C

5.1.3. Nullity-Rank Theorem. The following result relates the dimensions of the null
and range spaces of a linear transformation on finite dimensional vector spaces. This result
is usually called Nullity-Rank Theorem, where the nullity of a linear transformation is the
dimension of its null space, and the rank is the dimension of its range space. This result is
also called the Dimension Theorem.

Theorem 5.1.6. Every linear transformation T : V →W between finite dimensional vector
spaces V and W satisfies that

dim N(T ) + dim R(T ) = dim V. (5.1)

Proof of Theorem 5.1.6: Let us denote by n = dim V and by N =
{
u1, · · · ,uk

}
a

basis for N(T ), where 0 6 k 6 n, with k = 0 representing the case N(T ) = {0}. By
Theorem 4.3.7 we know we can increase the set N into a basis of V , so let us denote this
basis as

V =
{
u1, · · · ,uk, v1, · · · , vl

}
, k + l = n.

In order to prove Eq. (5.1) we now show that the set

R =
{
T(v1), · · · ,T(vl)

}

is a basis of R(T ). We first show that Span(R) = R(T ): Given any vector v ∈ V , we can
express it in the basis V as follows,

v = x1u1 + · · ·+ xkuk + y1v1 + · · ·+ ylvl.

Since R(T ) is the set of vectors of the form T(v) for all v ∈ V , therefore T(v) ∈ R(T ) iff

T(v) = y1 T(v1) + · · ·+ yl T(vl) ∈ Span(R).

But this just says that R(T ) = Span(R). Now we show that R is linearly independent:
Given any linear combination of the form

0 = c1 T(v1) + · · ·+ cl T(vl) = T(c1v1 + · · ·+ clvl),

we conclude that c1v1 + · · ·+ clvl ∈ N(T ), so there exist d1, · · · , dk such that

c1v1 + · · ·+ clvl = d1u1 + · · ·+ dkuk,
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which is equivalent to

d1u1 + · · ·+ dkuk − c1v1 − · · · − clvl = 0.

Since V is a basis we conclude that all coefficients ci and dj must vanish, for i = 1, · · · , l
and j1, · · · , k. This shows that R is a linearly independent set. Then R is a basis of R(T )
and so,

dim N(T ) = k, dim R(T ) = l = n− k.

This establishes the Theorem. ¤
One simple consequence of the Dimension Theorem is that an injective linear operator is

also surjective, and vice versa.

Corollary 5.1.7. A linear operator on a finite dimensional vector space is injective iff it
is surjective.

The proof is left as an exercise, Exercise 5.1.7. In the case that the linear transformation
is given by an m × n matrix, Theorem 5.1.6 establishes a relation between the the nullity
and the rank of the matrix.

Corollary 5.1.8. Every m× n matrix A satisfies that dim N(A) + rank(A) = n.

Proof of Corollary 5.1.8: This Corollary is just a particular case of Theorem 5.1.6.
Indeed, an m × n matrix A defines a linear transformation given by A : Fn → Fm by
A(x) = Ax. Since rank(A) = dim R(A) and dimFn = n, Eq. (5.1) implies that dimN(A) +
rank(A) = n. This establishes the Corollary.

An alternative wording of this result uses EA, the reduced echelon form of A. Since
N(A) = N(EA), the dim N(A) is the number of non-pivot columns in EA. We also know
that rank(A) is the number of pivot columns in EA. Therefore dim N(A) + rank(A) is the
total number of columns in A, which is n. ¤
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5.1.4. Exercises.

5.1.1.- Consider the operator A : R2 → R2

given by the matrix A =
1

2

»
1 1
1 1

–
,

which projects a vector

»
x1

x2

–
onto the

line x1 = x2 on R2. Is A injective? Is
A surjective?

5.1.2.- Fix any real number θ ∈ [0, 2π), and
define the operator R(θ) : R2 → R2 by

the matrix R(θ) =

»
cos(θ) − sin(θ)
sin(θ) cos(θ)

–
,

which is a rotation by an angle θ coun-
terclockwise. Is R(θ) injective? Is R(θ)
surjective?

5.1.3.- Let Fn,n be the vector space of all
n × n matrices, and fix A ∈ Fn,n. De-
termine which of the following transfor-
mations T : Fn,n → Fn,n is linear.

(a) T(X) = AX− XA;
(b) T(X) = XT ;
(c) T(X) = XT + A;
(d) T(X) = A tr (X).
(e) T(X) = X + XT .

5.1.4.- Fix a vector v ∈ Fn and then define
the function T : Fn → F by T(x) = vT x.
Show that T is a linear transformation.
Is T a linear operator? Is T a linear
functional?

5.1.5.- Show that the mapping ∆ : P3 → P1

is a linear transformation, where

∆(p)(x) =
d2p

dx2
(x)

Is ∆ injective? Is ∆ surjective?

5.1.6.- If the following statement is true,
give a proof; if it is false, show it with an
example. If a linear transformation on
vector spaces T : V → W is injective,
then the image of a linearly independent
set in V is a linearly independent set in
W .

5.1.7.- Prove the following statement: A
linear operator T : V → V on a finite
dimensional vector space V is injective
iff T is surjective.

5.1.8.- Prove the following statement: If
V and W are finite dimensional vector
spaces with dim V > dim W , then every
linear transformation T : V → W is not
injective.
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5.2. Properties of linear transformations

5.2.1. The inverse transformation. Bijective transformations are invertible. We now
introduce the inverse of a bijective transformation and we then show that if the invertible
transformation is linear, then the inverse is again a linear transformation.

Definition 5.2.1. The inverse of a bijective transformation T : V → W is the transfor-
mation T−1 : W → V defined for all w ∈W and v ∈ V as follows,

T−1(w) = v ⇔ T(v) = w. (5.2)

The inverse transformation defined above makes sense only in the case that the original
transformation is bijective, hence bijective transformations are called invertible.

Example 5.2.1: Given a real number θ ∈ (0, π), define the transformation T : R2 → R2

T(x) = Rθ x, Rθ =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Find the inverse transformation.

Solution: Since the transformation above is a rotation counterclockwise by an angle θ,
the inverse transformation is a rotation clockwise by the same angle θ. In other words,
(Rθ)−1 = R−θ. Therefore, we conclude that,

T−1 = (Rθ)−1 = R−θ ⇒ (Rθ)−1 =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
,

where we have used the relations cos(−θ) = cos(θ) and sin(−θ) = − sin(θ). C

It is common in the literature to define the inverse matrix in an equivalent way, which
we state here as a Theorem.

Theorem 5.2.2. The transformation T−1 : W → V is the inverse of a bijective transfor-
mation T ∈ L(V ) iff holds

T−1 ◦T = IV , T ◦T−1 = IW .

Proof of Theorem 5.2.2:
(⇒) Replace w = T(v) into the expression of T−1, that is, T−1(T(v)) = v, for all v ∈ V .

This says that T−1 ◦T is the identity operator in V . In a similar way, replace v = T−1(w)
into the expression of T, that is, T(T−1(w)) = w, for all w ∈ W . This says that T−1 ◦T
is the identity in W .

(⇐) If w = T(v), then T−1(w) = T−1(T(v)) = v. Conversely, if v = T−1(w), then
T(v) = T(T−1(w)) = w. We conclude that

T−1(w) = v ⇔ T(v) = w.

This establishes the Theorem. ¤
Using this theorem is simple to prove that the result in the previous example can be

generalized to any linear transformation defined by an invertible matrix.

Example 5.2.2: Prove the following statement: If T : Fn → Fn is given by T(x) = Ax with
A invertible, then T is invertible and T−1(y) = A−1y.

Solution: Denote S(y) = A−1y. Then S(T(x)) = A−1Ax = x for all x ∈ Fn. This shows
that S ◦T = In. The transformation S also satisfies T(S(y)) = AA−1y = y for all y ∈ Fn.
This shows that T ◦ S = In. Therefore, T−1 = S, that is, T−1(y) = A−1y. C
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Example 5.2.3: Let V = P3, W = P2 and let D : V → W be the differentiation transfor-
mation

D(p) =
dp

dx
.

Is this transformation invertible?

Solution: For every constant polynomial p(x) = c ∈ P3, with c ∈ F, holds D(c) = 0. So
the null space of the differentiation transformation is non-trivial, that is, N(D) 6= {0}. Since
the transformation is not injective, it is not bijective. We conclude that the differentiation
transformation above is not invertible. C

Example 5.2.4: Let V = {p ∈ P3 : p(0) = 0}, W = P2 and let D : V → W be the
differentiation transformation

D(p) =
dp

dx
.

Is this transformation invertible?

Solution: First, notice that V is a vector space, since given any two elements p, q ∈ V , the
linear combination satisfies (ap+bq)(0) = ap(0)+bq(0) = 0 for all a, b ∈ F, so (ap+bq) ∈ V .
Also notice that the only constant polynomial p(x) = c belonging to V is the trivial one
c = 0. So, the N(D) = {0} and the differentiation operator is injective. It is simple to see
that this operator is also surjective, since every element in W also belongs to R(D). Indeed,
for every constants a2, a1, a0 ∈ F the arbitrary polynomial r(x) = a2x

2+a1x+a0 ∈W is the
image under D of the polynomial p(x) = a2x

3/3+a1x
2/2+a0x ∈ V , that is, D(p) = r. So,

W = R(D), the differentiation transformation is surjective, so it is bijective. We conclude
that D : V →W is invertible. C

We now show a couple of properties of the inverse transformation. We start showing that
the inverse of a bijective linear transformation is also linear.

Theorem 5.2.3. If the bijective transformation T : V → W is linear, then the inverse
transformation T−1 : W → V is also a linear transformation.

Proof of Theorem 5.2.3: Since the linear transformation T is bijective, hence invertible,
we now that for every pair of vectors v1, v2 ∈ V there exist vectors w1, w2 ∈W such that

T(v1) = w1 ⇔ T−1(w1) = v1,

T(v2) = w2 ⇔ T−1(w2) = v2.

Since T : V →W is linear, for all a1, a2 ∈ F holds

T(a1v1 + a2v2) = a1T(v1) + a2T(v2),
= a1w1 + a2w2.

By definition of the inverse transformation, the last equation above is equivalent to

T−1(a1w1 + a2w2) = a1v1 + a2v2,

= a1T
−1(w1) + a2T

−1(w2).

The last equation above says that T−1 : W → V is a linear transformation. This establishes
the Theorem. ¤

We now show that the inverse of a linear transformation is not only a linear transformation
but it is also a bijection.

Theorem 5.2.4. If the linear transformation T : V → W is a bijection, then the inverse
linear transformation T−1 : W → V also is a bijection.
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Proof of Theorem 5.2.4: Since T is a bijection, it is invertible so, for every w1, w2 ∈W
there exist v1, v2 ∈ V such that

T−1(w1) = v1 ⇔ T(v1) = w1,

T−1(w2) = v2 ⇔ T(v2) = w2.

In order to show that T−1 is injective pick up w1 and w2 with w1 6= w2 and show that this
implies v1 6= v2. This is indeed the case, since subtracting the first line from the second
line above we get 0 6= w2 − w1 = T(v2 − v1). Since T is injective, its null space is trivial,
so v2 − v1 6= 0. We then conclude that T−1 is injective. This inverse transformation is
also surjective, which is simple to see from the definition of inverse transformation: For all
v ∈ V there exists w ∈W such that

T(v) = w ⇔ T−1(w) = v.

We conclude that R(T−1) = V , so T−1 is surjective. This establishes the Theorem. ¤
A simple corollary of Theorem 5.2.4 is that T−1 is invertible. It is not difficult to show

that
(
T−1

)−1 = T. We have mentioned in Sect. 5.1 that a bijective linear transformation
is also called and isomorphism. This is the reason for the following definition.

Definition 5.2.5. The vector spaces V and W are called isomorphic iff there exist an
isomorphism T : V →W .

Different vector spaces which are isomorphic are the same space from the point of view
of linear algebra. This means that any linear combination performed in one of the spaces
can be translated to the other space through the isomorphism, and any linear operator
defined on one of these vector spaces can be translated into a unique linear operator on the
other space. This translation is not unique, since there exist infinitely many isomorphisms
between isomorphic vector spaces.

Example 5.2.5: Show that the vector space V = {p ∈ P3 : p(0) = 0} is isomorphic to P2.

Solution: We have seen in Example 5.2.4 that the differentiation D : V → P2 is a bijection,
that is, an isomorphism. Therefore, the spaces V and P2 are isomorphic. We mention that
this isomorphism relates the polynomials in V and P2 as follows

V 3 p(x) = a3x
3 + a2x

2 + a1x 7→ dp

dx
= 3a3x

2 + 2a2x + a1 ∈ P2.

C

Example 5.2.6: Show whether the vector spaces F2,2 and F4 are isomorphic or not.

Solution: In order to see if these vector spaces are isomorphic, we need to find a bijective
transformation between the spaces. We propose the following transformation: T : F2,2 → F4

given by

T
([

x11 x12

x21 x22

])
=




x11

x12

x21

x22


 .

It is simple to see that T is a bijection, so we conclude that F2,2 is isomorphic to F4.
We mention that this is not the only isomorphism between these vector spaces. Another
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isomorphism is the following:

S
([

x11 x12

x21 x22

])
=




x22

x21

x12

x11


 .

C

Example 5.2.7: Show whether the vector spaces P2(F,F) and F3 are isomorphic or not.

Solution: In order to see if these vector spaces are isomorphic, we need to find a bijective
transformation between the spaces. We propose the following transformation: T : P2 → F3

given by

T
(
a2x

2 + a1x + a0

)
=




a2

a1

a0


 .

It is simple to see that T is a bijection, so we conclude that P2 is isomorphic to F3. We
mention that this is not the only isomorphism between these vector spaces. Another iso-
morphism is the following:

S
(
a2x

2 + a1x + a0

)
=




a0

a2

a1


 .

C

Theorem 5.2.6. Every n-dimensional vector space over the field F is isomorphic to Fn.

The proof is left as Exercise 5.2.5. This result says that nothing essentially different
from Fn should be expected from any finite dimensional vector space. On the other hand,
infinite dimensional vector spaces are essentially different from Fn. Several results that hold
for finite dimensional vector spaces do not hold for infinite dimensional ones. An example
is the Nullity-Rank Theorem stated in Section 5.1. One could say that finite dimensional
vector spaces are all alike; every infinite dimensional vector space is special in its own way.

5.2.2. The vector space of linear transformations. Linear transformations from V to
W can be combined in different ways to obtain new linear transformations. Two linear
transformations can be added together and a linear transformation can be multiplied by a
scalar. The space of all linear transformations with these operations is a vector space. This
is why a linear transformation can be seen either as a function between vector spaces or as
a vector in the space of all linear transformations. As an example of these ideas recall the
set of all m × n matrices, denoted as Fm,n. This set is a vector space, since two matrices
can be added together and a matrix can be multiplied by a scalar. Since any element in this
set, an m × n matrix A, is also a linear transformation A : Fn → Fm, the set of all linear
transformations from Fn to Fm is a vector space. This is why an m × n matrix A can be
interpreted either as a linear transformation between vector spaces A : Fn → Fm or as a
vector in the space of matrices, A ∈ Fm,n.

Definition 5.2.7. Given the vector spaces V and W over F, we denote by L(V,W ) the
set of all linear transformations from V to W . The set L(V, V ) containing all linear
operators from V to V is denoted as L(V ). Furthermore, given T, S ∈ L(V, W ) and scalars
a, b ∈ F, introduce the linear combination of linear transformations as follows

(aT + bS)(v) = aT(v) + bS(v) for all v ∈ V.
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Notice that the zero transformation 0 : V → W , given by 0(v) = 0 for all v ∈ V , be-
longs to L(V,W ). Moreover, the space L(V, W ) with the addition and scalar multiplication
operations above is indeed a vector space.

Theorem 5.2.8. The set L(V, W ) of linear transformations from V to W together with the
addition and scalar multiplication operations in Definition 5.2.7 is a vector space.

The proof is to verify all properties in the Definition 4.1.1, and we left it to the reader.
We conclude that a linear transformations can be interpreted either as linear maps between
vector spaces or as vectors in the space L(V, W ). Furthermore, for finite dimensional vector
spaces we have the following result.

Theorem 5.2.9. If V and W are finite dimensional vector spaces, then L(V,W ) is also
finite dimensional and dim L(V, W ) = (dim V )(dim W ).

Proof of Theorem 5.2.9: We introduce a set of linear transformations and we show that
this set is indeed a basis for L(V,W ). Before that let us denote n = dim V , m = dimW ,
and let us introduce both a basis V = {vi} of V and a basis W = {wj} of W , where the
indices take values i = 1, · · · , n and j = 1, · · · , m. The proposal for a basis of L(V,W ) is
the set S = {Sij}, with elements defined as follows,

Sij(vk) =
{

wj for i = k,

0 for i 6= k,
where i = 1, · · · , n and j = 1, · · · ,m.

So, the map Sij transforms the basis vector vi into the basis vector wj and the rest of the
basis vectors in V into the zero vector in W . We now show that S is a basis for L(V, W ). Let
us first prove that S spans L(V, W ). Indeed, for every linear transformation T ∈ L(V,W )
and every vector v ∈ V holds,

T(v) =
n∑

i=1

viT(vi),

where we used the decomposition v =
∑n

i=1 vivi of vector v in the basis V. Since T(vi) ∈W ,
it can be decomposed in the W basis as follows,

T(vi) =
m∑

j=1

Tij wj .

Replacing the last equation on the previous one we get,

T(v) =
n∑

i=1

( m∑

j=1

viTij wj

)
,

The basis vector wj can be written in terms of the maps Sij as wj = Skj(vk). Choosing
index k to be the value of index i in the sums above we get,

T(v) =
n∑

i=1

( m∑

j=1

viTij Sij(vi)
)

=
n∑

i=1

( m∑

j=1

Tij Sij(vivi)
)
.

Here is the critical step: Since Sij(vk) = 0 for k 6= i, the following equation holds,
Sij(vivi) = Sij(v). Introducing this property in the equation above we get

T(v) =
n∑

i=1

( m∑

j=1

Tij Sij(v)
)

for all v ∈ V,
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that is,

T =
n∑

i=1

m∑

j=1

Tij Sij ⇒ T ∈ Span
(S) ⊂ L(V,W ).

Since the map T is an arbitrary element in L(V, W ), we conclude that L(V, W ) ⊂ Span
(S)

,
hence Span

(S)
= L(V, W ). We now show that S is a linearly independent set. Indeed,

suppose there exist scalars cij satisfying

n∑

i=1

m∑

j=1

cij Sij = 0.

Interchange the sums and evaluate this expression at the basis vector vk, we obtain,

0 =
m∑

j=1

( n∑

i=1

cij Sij(vk)
)

=
m∑

j=1

ckj wj .

Since the set W is a basis of W , this implies that the coefficients ckj = 0 for j = 1, · · · ,m.
The same argument holds for every k = 1, · · · , n, so we conclude that every coefficient cij

vanishes. The set S is linearly independent, and so, it is a basis for L(V,W ). Since the set
contains nm elements, we conclude that dimL(V,W ) =

(
dim V

)(
dim W

)
. This establishes

the Theorem. ¤

5.2.3. Linear functionals and the dual space. An important example of linear trans-
formations is the case where the target vector space W is the set of scalars F, the latter,
let us recall, is always a vector space. We often use boldface Greek letters to denote linear
functionals.

Definition 5.2.10. Given the vector space V over F, the linear transformation φ : V → F
is called a linear functional. The vector space of linear functionals L(V,F) is denoted as
V ∗ and called the dual space of V .

Example 5.2.8: Show that the projection onto the first component π1 : F3 → F is a linear
functional, where

π1

(



x1

x2

x3




)
= x1.

Solution: We only need to show that π1 is a linear transformation. This is indeed the
case, since for all x, y ∈ F3 and all a, b ∈ F holds

π1(ax + by) = ax1 + by1 = a π1(x) + b π1(y).

Since the map is defined from F3 into F, we conclude that π1 is a linear functional. C

Example 5.2.9: Consider the vector space V = C
(
[a, b],R

)
of continuous real-valued func-

tions with domain in the interval [a, b] ⊂ R. Show that the function φ : V → R given below
is a linear functional, where

φ(f ) =
∫ b

a

f (x) dx.
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Solution: We only need to show that the function φ : V → R is a linear transformations.
This is the case, since for all f , g ∈ V and all scalars c, d ∈ R holds,

φ(cf + dg) =
∫ b

a

(
c f (x) + d g(x)

)
dx

= c

∫ b

a

f (x) dx + d

∫ b

a

g(x) dx

= c φ(f ) + d φ(g).

We conclude that φ ∈ V ∗. C

Example 5.2.10: Show that the trace map tr : Fn,n → F is a linear functional.

Solution: We have already seen that the trace map is a linear map. Since the trace of a
matrix is a scalar, we conclude that the trace map is a linear functional, so tr ∈ (

Fn,n
)∗. C

The following result says that the dual space of a finite dimensional vector space is
isomorphic to the original vector space. This means that the vector space and its dual are the
same from the point of view of linear algebra. This result is not true for infinite dimensional
vector spaces. This is one reason why infinite dimensional vector spaces, like function
spaces, have more structure and are more complicated to study than finite dimensional
vector spaces.

Theorem 5.2.11. Every finite dimensional vector space is isomorphic to its dual space.

We give two proofs of the same result. In the first proof, we show that an n-dimensional
vector space V is isomorphic to Fn, and that V ∗ is isomorphic to Fn. We conclude that V
is isomorphic to V ∗. The second proof is more abstract, and makes use of what is called a
dual basis of V ∗.
Proof of Theorem 5.2.11: (First proof.) We already know that the ordered basis V =
(v1, · · · , vn) of an n-dimensional vector space V determines the isomorphism [ ]v : V → Fn,
called the coordinate map, as follows

[x]v = xv =




x1

...
xn




v

⇔ x = x1v1 + · · ·+ xnvn.

So, any vector x ∈ V can be associated with a column vector xv ∈ Fn. We now show that
the dual space V ∗ is also isomorphic to the vector space Fn. Once this is shown we can
conclude that V is isomorphic to V ∗. An arbitrary linear functional φ ∈ V ∗ satisfies that

φ(x) = φ(x1v1 + · · ·+ xnvn)

= x1 φ(v1) + · · ·+ xn φ(vn)

=
[
φ(v1), · · · , φ(vn)

]
v




x1

...
xn




v

∈ F

for all x ∈ V . Denoting the scalars φi = φ(vi), for i = 1, · · · , n, we introduce the coordinate
map [ ]v : V ∗ → Fn as follows

[φ]v =
[
φ1, · · · , φn

]
v
⇔ φ(x) =

[
φ1, · · · , φn

]
v




x1

...
xn




v

.
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The coordinate map defined on the space V ∗ of linear functionals associates a linear func-
tional with a row vector. We have chosen a row vector instead of a column vector so we
can use the matrix-vector product to express the action of φ on a vector x. We conclude
that, once a basis is fixed in a finite dimensional vector space, vectors can be associated with
column vectors, while linear functionals can be associated with row vectors. This establishes
the Theorem. ¤
Proof of Theorem 5.2.11: (Second proof.) Since V ∗ = L(V,F), by Theorem 5.2.9 we
know that dim V ∗ = dim V , where we used the fact the space of scalars, F, is itself a vector
space and dimF = 1. From the proof of Theorem 5.2.9 we know that a basis of V ∗ is given
by the set of linear functionals Φ = {φi} defined as follows: Given a basis V = {vi} of V ,
for i = 1 · · · , n = dim V , the linear functionals φi satisfy

φi : V → F, φi(vk) =
{ 1 for i = k,

0 for i 6= k,
i, k = 1, · · · , n.

Such a basis Φ is called the dual basis of V. Now that we have a basis in V and a basis in V ∗

it is simple to find an isomorphism between these spaces. We propose the map R : V → V ∗

that changes one basis into the other,

R(vi) = φi.

We now show that this linear transformation R is an isomorphism. It is injective because
of the following argument. Consider an arbitrary element v ∈ N(R), that is,

R(v) = 0,

where 0 : V → F is the zero map. Introducing the basis decomposition v =
∑n

i=1 vi vi in
the expression above we get

0 =
n∑

i=1

vi R(vi) =
n∑

i=1

vi φi.

Since the set Φ is a basis of V ∗, then Φ is linearly independent, which implies that all
coefficients vi above vanish. We conclude that the vector v =

∑n
i=1 vi vi = 0, that is, the

null space of R is trivial. Hence R is injective. This property together with the Nullity-Rank
Theorem and the fact that dim V ∗ = dim V imply that R is also surjective. We conclude
that V is isomorphic to V ∗. This establishes the Theorem. ¤

In the second proof above we introduced a particular basis of the dual space, called the
dual basis.

Definition 5.2.12. Given an n-dimensional vector space V with a basis V = {v1, · · · , vn},
the dual basis of V is a particular basis Φ = {φ1, · · · , φn} of the dual space V ∗ that for
i, j = 1, · · · , n the basis linear functionals φi satisfy

φi(vj) =
{ 1 for i = j,

0 for i 6= j.

Example 5.2.11: Find the dual basis of the basis U ⊂ R2, where

U =
{

u1 =
[
1
1

]
, u2 =

[−1
1

]}
.

Solution: We need to find a set Φ = {φ1, φ2} of linear functionals satisfying the equations

φ1(u1) = 1, φ2(u1) = 0,

φ1(u2) = 0, φ2(u2) = 1.
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The two equation on the left can be solved independently of the two equations on the
right. Recall that the most general expression for the linear functionals φ1 : R2 → R and
φ2 : R2 → R is given by

φ1

([
x1

x2

])
= a1x1 + a2x2. φ2

([
x1

x2

])
= b1x1 + b2x2.

We only need to find the components a1, a2 and b1, b2. The a’s can be obtained from the
two equations on the left above, that is,

φ1(u1) = 1 ⇒ φ1

([
1
1

])
= a1 + a2 = 1

φ1(u2) = 0 ⇒ φ1

([−1
1

])
= −a1 + a2 = 0.





⇒
a1 = 1/2,

a2 = 1/2.

A similar calculation for φ2 implies,

φ2(u1) = 0 ⇒ φ2

([
1
1

])
= b1 + b2 = 0

φ2(u2) = 1 ⇒ φ1

([−1
1

])
= −b1 + b2 = 1.





⇒
b1 = −1/2,

b2 = 1/2.

So we conclude that the dual basis of U is the basis Φ = {φ1, φ2} defined as follows

φ1

([
x1

x2

])
=

1
2

(x1 + x2), φ1

([
x1

x2

])
=

1
2

(−x1 + x2).

If we associate the linear functionals above with row vectors in R2 with the isomorphism

[φ ] =
[
a1, a2

] ⇔ φ
([

x1

x2

])
= a1x1 + a2x2,

then, the answer of the Example is given by the row vectors

[φ1] =
1
2

[
1, 1

]
, [φ2] =

1
2

[−1, 1
]
.

Associating linear functionals components with row vector is useful, because the matrix-
vector product can be used to represent the action of a functional onto a vector. The
scalar obtained by the action of a linear functional onto a vector is the scalar given by the
matrix-vector product of a row vector times a column vector. For example,

φ1(u1) =
1
2

[
1, 1

] [
1
1

]
= 1, φ1(u2) =

1
2

[
1, 1

] [−1
1

]
= 0,

φ2(u1) =
1
2

[−1, 1
] [

1
1

]
= 0, φ2(u2) =

1
2

[−1, 1
] [−1

1

]
= 1.

C
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5.2.4. Exercises.

5.2.1.- Show that the linear transformation
T : F2 → F2 given below is invert-
ible and find the inverse transformation,
where

T
“»x1

x2

–”
=

»
x1 + x2

3x1 − 2x2

–
.

5.2.2.- Consider the vector space

V = {p ∈ P4 : p(0) = 0,
dp

δx
(0) = 0}.

Then show that the linear transforma-
tion ∆ : V → P2 given below is invert-
ible and find the inverse transformation,
where

∆(p) =
d2p

dx2
.

5.2.3.- Use the Nullity-Rank Theorem 5.1.6
to show that if the finite dimensional
vector spaces V and W are isomorphic,
then they have the same dimension.

5.2.4.- Show that the spaces Pn and Fn+1

are isomorphic.

5.2.5.- Use the coordinate map to prove
Theorem 5.2.6: Every n-dimensional
vector space over the field F is isomor-
phic to Fn.

5.2.6.- Show that the projection onto the
i-component πI : Fn → F is a linear
functional, where

πi

“
2
64

x1

...
xn

3
75
”

= xi.

5.2.7.- Let V = P2([0, 1]) be the vector
space of polynomials up to degree two
on the domain [0, 1] ⊂ R. Show that
the function φ : V → R given below is
a linear functional, where

φ(p) =

Z 1

0

p(x) dx.

5.2.8.- Given the basis U ⊂ R2 below, find
its dual basis, where

U =
n

u1 =

»
2
1

–
, u2 =

»
3
1

–o
.
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5.3. The algebra of linear operators

A vector space where one can multiply two vectors to obtain a third vector is called an
algebra. We have seen that the set L(V, W ) is a vector space. A multiplication can be
defined between linear transformations in many different ways, but the most interesting one
from the physical point of view is the composition of linear transformations. If T : U → V
and S : V →W are linear transformations, then S ◦T : U →W defined as

(S ◦T )(u) = S
(
T(u)

)
for all u ∈ U,

is also a linear transformation. This operation is not defined on a single vector space, but on
three different spaces, namely, L(U, V ), L(V,W ) and L(U,W ). However, in the particular
case that U = V = W the composition of linear operators is defined on a single vector space
L(V, V ), denoted simply as L(V ). The vector space L(V ) is an algebra of linear operators.
We start introducing the definition of an algebra over a field.

Definition 5.3.1. An algebra V over the field F is a vector space V over the field F
equipped with an operation V × V → V called multiplication, satisfying,

u(av + bw) = auv + buw for all u, v,w ∈ V and a, b ∈ F.
The algebra is called associative iff the product satisfies

u(vw) = (uv)w for all u, v,w ∈ V.

The algebra is called commutative iff the product satisfies

uv = vu for all u, v ∈ V.

An algebra is called with identity iff there is an element i ∈ V satisfying

iu = ui = u for all u ∈ V.

Maybe the best known example of an algebra is the vector space R3 equipped with
the cross product, also called vector product. This is a non-associative, non-commutative
algebra.

Example 5.3.1: Let S = (e1, e2, e3) be the standard ordered basis of R3 and introduce the
cross product of vectors u, v ∈ R3 as follows

u× v = (u2v3 − u3v2) e1 − (u1v3 − u3v1) e2 + (u1v2 − u2v1) e3,

where u = u1 e1 + u2 e2 + u3 e3 and v = v1 e1 + v2 e2 + v3 e3. Show that R3 equipped with
the cross product is a non-associative, non-commutative algebra.

Solution: It is convenient to express the cross product of two vectors using the determinant
notation. Indeed, the cross product above is equal to the following expression

u× v =

∣∣∣∣∣∣

e1 e2 e3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
,

where in the first row of the array above contains the basis vectors and the other two
rows contain vector components. So, the array above is not a matrix, but the definition
of determinant of a matrix when used on this array produces the cross product of two
vectors. This notation is convenient since the cross product shares all the properties that
the determinant has. For example, the cross product satisfies the following two properties:

u× (av) =

∣∣∣∣∣∣

e1 e2 e3

u1 u2 u3

av1 av2 av3

∣∣∣∣∣∣
= a

∣∣∣∣∣∣

e1 e2 e3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
= a (u× v);
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u× (v + w) =

∣∣∣∣∣∣

e1 e2 e3

u1 u2 u3

(v1 + w1) (v2 + w2) (v3 + w3)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

e1 e2 e3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
+

∣∣∣∣∣∣

e1 e2 e3

u1 u2 u3

w1 w2 v3

∣∣∣∣∣∣
= u× v + u× w.

These two properties show that R3 with the cross product form an algebra. This algebra is
not commutative, since

u× v =

∣∣∣∣∣∣

e1 e2 e3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣
= −

∣∣∣∣∣∣

e1 e2 e3

v1 v2 v3

u1 u2 u3

∣∣∣∣∣∣
= −(v × u).

In particular, notice that the equation above implies that u× u = 0. Finally, this algebra is
not associative as the following argument shows. First, from the definition of cross product
it is simple to see that

e1 × e2 = e3, e3 × e1 = e2, e2 × e3 = e1.

Using the first two equations we obtain the following relations,

e1 × (e1 × e2) = e1 × e3 = −e2,

(e1 × e1)× e2 = 0× e2 = 0,

showing that the algebra is not associative. C

In these notes we concentrate on only one example, the algebra of linear operators on a
vector space, which we now describe in the following result.

Theorem 5.3.2. The vector space L(V ) of linear operators on a vector space V over the
field F equipped with the composition operation is an associative algebra with identity. This
algebra is not commutative. Furthermore, dim L(V ) = (dim V )2.

Proof of Theorem 5.3.2: The vector space L(V ) equipped with the composition operation
is an algebra. Indeed, given arbitrary linear operators R, S, T ∈ L(V ), the following
equations holds for all v ∈ V , and all scalars all a, b ∈ F,

(
T ◦ (aS + bR )

)
(v) = T

(
aS(v) + bR(v)

)

= aT
(
S(v)

)
+ bT

(
R(v)

)

= aT ◦ S(v) + bT ◦R(v).

Therefore, we established that the composition operation satisfies

T ◦ (aS + bR ) = aT ◦ S + bT ◦R,

proving that the vector space L(V ) equipped with the composition operation is and algebra.
This algebra is associative, since for all linear operators R, S, T ∈ L(V ), the following
equations holds for all v ∈ V ,

(
T ◦ (S ◦R )

)
(v) = T

(
S ◦R )(v)

)

= T
(
S
(
R(v)

))

=
(
T ◦ S )(

R(v)
)

=
((

T ◦ S ) ◦R )
(v),
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so we conclude that
T ◦ (S ◦R ) =

(
T ◦ S ) ◦R.

This algebra has identity, since the identity transformation IV ∈ L(V ) satisfies the equation
IV ◦ T = T = T ◦ IV for all T ∈ L(V ). Finally, this algebra is not commutative. We just
need to show one example with this property. We choose V = R2 and the transformations
given by matrices

A =
[
0 1
1 0

]
, B =

[
0 −1
1 0

]
.

We have seen in Example 2.1.3 and 2.1.4 that A is a reflection along the axis x1 = x2 while
B is a rotation by π/2 counterclockwise. It is simple to see that

A ◦ B =
[
0 1
1 0

] [
0 −1
1 0

]
=

[
1 0
0 −1

]

B ◦ A =
[
0 −1
1 0

] [
0 1
1 0

]
=

[−1 0
0 1

]
.

Therefore, the algebra is not commutative. Finally, the result that dimL(V ) = n2 follows
from Theorem 5.2.9. This establishes the Theorem. ¤
Example 5.3.2: Show that the vector space Fn,n equipped with the matrix multiplication
operation is an associative algebra with identity.

Solution: We know that Fn,n = L(Fn), and we also know that matrix multiplication is
equal to matrix composition, that is, for all A, B ∈ Fn,n and all x ∈ Fn holds

(AB)x = A(Bx) = (A ◦ B)(x) ⇒ AB = A ◦ B.

Therefore, Theorem 5.3.2 implies that Fn,n equipped with the matrix multiplication opera-
tion is an associative algebra with identity. C

5.3.1. Polynomial functions of linear operators. Polynomial functions of vectors in
an algebra can be defined using linear combinations and multiplications of vectors. In the
particular case of the algebra of linear operators, we use the notation T ◦ S = TS for the
composition of linear operators in L(V ), and also Tn = TTn−1 for the n-th power of the
operator T, which is defined for all positive integers n > 1. The consistency of this equation
for n = 1 demands the definition T 0 = IV . It follows that functions like the operator-valued
polynomial below can be defined.

Definition 5.3.3. An operator-valued polynomial of degree n defined by the scalars
a0, · · · , an ∈ F is the function p : L(V )→ L(V ) given by

p(T ) = a0IV + a1T + a2T
2 + · · ·+ anT

n.

Example 5.3.3: Consider the vector space V = R2 and given any real number θ introduce
the linear operator

Rθ =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Find the explicit expression of the operator (Rθ)n for any positive integer n.

Solution: We have seen in Example 2.1.5 that the operator Rθ is a rotation by an angle
θ counterclockwise. We have also seen in Example 2.3.6 that given two operators Rθ1 and
Rθ2 , the following formula holds,

Rθ1Rθ2 = Rθ1+θ2 .
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In the particular case of θ1 = θ2 we obtain
(
Rθ

)2 = R2θ. Analogously,
(
Rθ

)3 = Rθ

(
Rθ

)2 = RθR2θ = R3θ.

This calculation suggests the formula
(
Rθ

)n = Rnθ for all positive integer n. We now prove
this formula using induction in n. Assume that the formula holds for an arbitrary value of
n and then prove that the formula also holds for (n + 1). Indeed,

(
Rθ

)(n+1) = Rθ

(
Rθ

)n = RθRnθ = R(n+1)θ.

We then conclude that
(
Rθ

)n = Rnθ holds for every positive integer n. C

5.3.2. Functions of linear operators. Negative powers of an operator can be defined in
the case that the operator is invertible. In that case, if one defines T−n =

(
T−1

)n for any
positive integer n, then the exponents satisfy the usual well known rules that hold when the
base is a real number. That is, for an invertible operator T holds that TmTn = T (m+n)

and
(
Tm

)n = Tmn, for all integers m, n.
It is much more complicated to define further generalizations of these operator-valued

power functions to include fractional exponents and real number exponents. The general idea
behind such generalizations is the same used to define an infinitely differentiable function
of an operator. Such functions are defined using Taylor expansions similar to those used
on real-valued functions. Let us recall that the Taylor expansion centered at x0 ∈ R of an
infinitely differentiable real-valued function is given by

f(x) =
∞∑

n=0

f (n)(x0)
n!

(x− x0)n = f(x0) + f ′(x0) (x− x0) + f ′′(x0) (x− x0)2 + · · · .

Example 5.3.4: Find the Taylor series expansion of the real valued exponential function
f(x) = ex centered x0 = 0.

Solution: Since x0 = 0, the Taylor expansion formula above has the form

f(x) =
∞∑

n=0

f (n)(0)
n!

xn = f(0) + f ′(0) x + f ′′(0) x2 + · · · .

Since the exponential function f(x) = ex satisfies that f (n)(x) = f(x) for all positive integer
n, and f(0) = e0 = 1, we obtain the formula

ex =
∞∑

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ · · · .

C

Coming back to linear operators on a vector space, one can use the right hand side of
the Taylor expansion formulas to define a function of a linear operator. However, such idea
cannot be applied to linear operators until one understands the meaning of an infinite sum
of linear operators. We discuss these ideas in Chapter 9. What we can do right now is
to truncate the Taylor series and define a particular type of polynomial functions of linear
operators as follows. Given the real-valued function f : R → R, a vector space V , and a
linear operator T ∈ L(V ), introduce the Taylor polynomial fN(T ) for any positive integer
N as follows

fN(T ) =
N∑

n=0

f (n)(x0)
n!

(
T− x0 IV

)n
,

that is,

fN(T ) = f(x0)IV + f
′
(x0)

(
T− x0 IV

)
+ · · ·+ f (N)(x0)

N !
(
T− x0 IV

)N
.
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The Taylor polynomial of degree N simplify in the case that x0 = 0, that is

fN(T ) =
N∑

n=0

f (n)(0)
n!

T n = f(0)IV + f
′
(0)T + · · ·+ f (N)(0)

N !
T N .

In order to define the limit of fN(T ) as N → ∞ it is needed a notion of distance between
linear operators. We come back to this point in Chapter 9.

5.3.3. The commutator of linear operators. We know that the composition of linear
maps depends on the order the operators appear. We say that function composition is not
commutative. The commutator of two linear operators measures the lack of commutativity
of these two operators.

Definition 5.3.4. The commutator, [T,S ], of the operators T, S ∈ L(V ) is given by,

[T,S ] = TS− ST.

In the case where L(V ) = Fn,n the commutator of linear operators defined above agrees
with the definition of matrix commutators introduced at the end of Section 2.3. An imme-
diate consequence of the definition above are the following properties.

Theorem 5.3.5. For S, T, U ∈ L(V ) and a, b ∈ F, we have:
(a) [T,S ] = −[S,T ], antisymmetry;
(b) [aT, bS ] = ab [T,S ], linearity;
(c) [U, (T + S)] = [U,T ] + [U,S ], linearity in the right entry;
(d) [(U + T),S ] = [U,S ] + [T,S ], linearity in the left entry;
(e) [UT,S ] = U [T,S ] + [U,S ]T, left derivation property;
(f) [U,TS ] = T [U,S ] + [U,T ]S, right derivation property;
(g)

[
[S,T ],U

]
+

[
[U,S ],T

]
+

[
[T,U ],S

]
= 0, Jacobi identity.

Proof of Theorem 5.3.5: Properties (a)-(d) and (g) follow from the definition of commu-
tator in a straightforward way. We just show here the left derivation property:

[UT,S ] = UTS− SUT

= UTS− SUT + UST−UST

= (UTS−UST) + (UST− SUT)

= U[T,S ] + [U,S ]T.

The proof of the right derivation property is similar. This establishes the Theorem. ¤
The commutator of two linear operators in a vector space is an important concept in

quantum mechanics, since it indicates how well two properties of the physical system de-
scribed by these operators can be measured simultaneously. The Heisenberg uncertainty
relations are statements about the commutators of linear operators.
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5.3.4. Exercises.

5.3.1.- Let T, S ∈ L(F2) be the linear op-
erators given by

T
“»x1

x2

–”
=

»
x2

x1

–
, S
“»x1

x2

–”
=

»
0
x1

–
.

Compute explicitly the operators

(a) 3T− 2S;
(b) T ◦ S and S ◦T;
(c) T 2 and S 2.

5.3.2.- Find the dimension of the vector
spaces L(F4), L(P2) and L(F3,2).

5.3.3.- Let T : R2 → R2 be the linear oper-
ator

T
“»x1

x2

–”
=

»
2x1

4x1 − x2

–
.

Find the operator T−2.

5.3.4.- Let T : R2 → R2 be the linear oper-
ator

T
“»x1

x2

–”
=

»
x1 + 2x2

3x1 + 4x2

–
.

Find the operator

p(T ) = T 2 − 2T− 3 I2.

5.3.5.- Use the definition of the rotation
matrix Rθ given in Example 5.3.2 and
the formula

`
Rθ

´n
= Rnθ to explicitly

verify that
`
Rθ

´n`
Rθ

´−n
= I2.

5.3.6.- Prove the properties (a), (b) and (c)
in Theorem 5.3.5.
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5.4. Transformation components

5.4.1. The matrix of a linear transformation. We have seen in Sections 2.1 and 5.1
that every m× n matrix defines a linear transformation between the vector spaces Fn and
Fm equiped with standard bases. We now show that every linear transformation T : V →W
between finite dimensional vector spaces V and W has associated a matrix T. The matrix
associated with such linear transformation is not unique. In order to compute the matrix of
a linear transformation a basis must be chosen both in V and in W . The matrix associated
with a linear transformation depends on the choice of bases done in V and W . We can say
that the matrix T of a linear transformation T : V → W are the components of T in the
given bases for V and W , analogously to the components v of a vector v ∈ V in a basis for
V studied in Section 4.4.

Definition 5.4.1. Let both V and W be finite dimensional vector spaces over the field F
with respective ordered bases V =

(
v1, · · · , vn

)
and W =

(
w1, · · · ,wm

)
, and let the map

[ ]w : W → Fm be the coordinate map on W . The matrix of the linear transformation
T : V →W in the ordered bases V and W is the m× n matrix

Tvw =
[
[T(v1)]w, · · · , [T(vn)]w

]
. (5.3)

Let us explain the notation in Eq. (5.3). Given any basis vector vi ∈ V ⊂ V , where
i = 1, · · · , n, we know that T(vi) is a vector in W . Like any vector in a vector space,
T(vi) can be decomposed in a unique way in terms of the basis vectors in W, and following
Sect. 4.4 we denote them as [T(vi)]w. When there is no possibility of confusion, we denote
Tvw simply as T.

Example 5.4.1: Consider the vector spaces V = W = R2, both with the standard basis,

that is, S =
(
e1 =

[
1
0

]
, e2 =

[
0
1

])
. Let the linear operator T : R2 → R2 be given by

[
T

([
x1

x2

]

s

)]
s

=
[
3x1 + 2x2

4x1 − x2

]

s

. (5.4)

(a) Find the matrix Tss associated with the linear operator above.

(b) Consider the ordered basis U for R2 given by U =
(
u1s =

[
1
1

]
, u2s =

[−1
1

])
. Find the

matrix Tuu associated with the linear operator above.

Solution:
Part (a): The definition of Tss implies Tss =

[
[T(e1)]s, [T(e2)]s

]
. From Eq. (5.4) we

know that [
T

([
1
0

]

s

)]
s

=
[
3
4

]

s

,
[
T

([
0
1

]

s

)]
s

=
[

2
−1

]

s

.

Therefore,

Tss =
[
3 2
4 −1

]
.

Part (b): By definition Tuu =
[ [

T(u1)
]
u
,
[
T(u2)

]
u

]
. Notice that from the definition

of basis U we have uis = [ui]s, the column vector form with the components of the basis
vectors ui in the standard basis S. So, we can use the definition of T in Eq. (5.4), that is,

[T(u1)]s =
[
T

([
1
1

]

s

)]
s

=
[
5
3

]

s

, [T(u2)]s =
[
T

([−1
1

]

s

)]
s

=
[−1
−5

]

s

.
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The results above are vector components in the standard basis S, so we need to translate
these results into components on the U basis. We translate them in the usual way, solving
a linear system for each of these two vectors:

[
5
3

]

s

= y1

[
1
1

]

s

+ y2

[−1
1

]

s

,

[−1
−5

]

s

= z1

[
1
1

]

s

+ z2

[−1
1

]

s

.

The solutions are the components we are looking for, since

[T(u1)]u =
[
y1

y2

]

u

, [T(u2)]u =
[
z1

z2

]

u

.

We can solve both systems above at the same time using the augmented matrix
[
1 −1

∣∣ 5 −1
1 1

∣∣ 3 −5

]
→

[
1 0

∣∣ 4 −3
0 1

∣∣ −1 −2

]
.

We have obtained that

[T(u1)]u =
[

4
−1

]

u

, [T(u2)]u =
[−3
−2

]

u

.

So we conclude that

Tuu =
[

4 −3
−1 −2

]
.

C

From the Definition 5.4.1 it is clear that the matrix associated with a linear transformation
T : V →W depends on the choice of bases V and W for the spaces V and W , respectively.
In the case that V = W the matrix of the linear operator T : V → V usually means Tvv,
that is, to choose the same basis V for the domain space V and the range space V . But this
is not the only choice. One can choose different bases V and Ṽ for the domain and range
spaces, respectively. In this case, the matrix associated with the linear operator T is Tvṽ,
that is,

Tvṽ =
[
[T(v1)]ṽ, · · · , [T(vn)]ṽ

]
.

Example 5.4.2: Consider the linear operator defined in Eq. (5.4) in Example 5.4.1. Find the
associated matrices Tus and Tsu, where S and U are the bases defined in that Example 5.4.1.

Solution: The first matrix is simple to obtain, since

Tus =
[
[T(u1)]s, [T(u2)]s

]

and it is straightforward to compute
[
T

([
1
1

]

s

)]
s

=
[
5
3

]

s

,
[
T

([−1
1

]

s

)]
s

=
[−1
−5

]

s

,

so, we then conclude that

Tus =
[
5 −1
3 −5

]

us

.

We now compute
Tsu =

[
[T(e1)]u, [T(e2)]u

]
.

From the definition of T we know that
[
T

([
1
0

]

s

)]
s

=
[
3
4

]

s

,
[
T

([
0
1

]

s

)]
s

=
[

2
−1

]

s

.
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The results are expressed in the standard basis S, so we need to translate them into the U
basis, as follows[

3
4

]

s

= y1

[
1
1

]

s

+ y2

[−1
1

]

s

,

[
2
−1

]

s

= z1

[
1
1

]

s

+ z2

[−1
1

]

s

.

The solutions are the components we are looking for, since

[T(e1)]u =
[
y1

y2

]

u

, [T(e2)]u =
[
z1

z2

]

u

.

We can solve both systems above at the same time using the augmented matrix[
1 −1

∣∣ 3 2
1 1

∣∣ 4 −1

]
→

[
2 0

∣∣ 7 1
0 2

∣∣ 1 −3

]
.

We have obtained that

[T(e1)]u =
1
2

[
7
1

]

u

, [T(e2)]u =
1
2

[
1
−3

]

u

.

So we conclude that

Tsu =
1
2

[
7 1
1 −3

]

su

.

C

5.4.2. Action as matrix-vector product. An important property of the matrix associ-
ated with a linear transformation T is that the action of the transformation onto a vector
can be represented as the matrix-vector product between the transformation matrix T the
vector components in the appropriate bases.

Theorem 5.4.2. Let V and W be finite dimensional vector spaces with ordered bases V
and W, respectively. Let T : V → W be a linear transformation with associated matrix
Tvw. Then, the components of the vector T(x) ∈W in the basis W can be expressed as the
matrix-vector product

[T(x)]w = Tvw xv,

where xv = [x]v are the components of the vector x ∈ V in the basis V.
Proof of Theorem 5.4.2: Given any vector x ∈ V , the definition of its vector components
in the basis V =

{
v1, · · · , vn

}
implies that

xv =




x1

...
xn



V

⇔ x = x1v1 + · · ·+ xnvn.

Since T is a linear transformation we know that

T(x) = x1 T(v1) + · · ·+ xn T(vn).

The equation above holds in any basis of W , in particular in W, that is,

[T(x)]w = x1 [T(v1)]w + · · ·+ xn [T(vn)]w

=
[
[T(v1)]w, · · · [T(vn)]w

]



x1

...
xn




v

= Tvw xv.

This establishes the Theorem. ¤
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Example 5.4.3: Consider the linear operator T : R2 → R2 given in Example 5.4.1 above
together with the bases S and U defined in that example.

(a) Use the matrix vector product to express the action of the operator T when the standard
basis S is used in both domain and range spaces R2.

(b) Use the matrix vector product to express the action of the operator T when the basis
U is used in both domain and range spaces R2.

Solution:
Part (a): We need to find [T(x)]s and express the result using Tss. We use the notation

xs =
[
x1

x2

]

s

, and we repeat the steps followed in the proof of Theorem 5.4.2.

[T(x)]s = [T(x1e1 + x2e2)]s = x1 [T(e1)]s + x2 [T(e2)]s =
[
[T(e1)]s, [T(e2)]s

] [
x1

x2

]

s

,

so we conclude that [T(x)]s = Tssxs and the matrix on the far right-hand side agrees with
the matrix we found in the first half of Example 5.4.1, where we have found that

Tss =
[
3 −2
4 1

]

ss

.

Therefore, the action of T on x when expressed in the standard basis S is given by the
following matrix-vector product,

[T(x)]s =
[
3 2
4 −1

]

ss

[
x1

x2

]

s

.

Part (b): We need to find [T(x)]u and express the result using Tuu. We use the notation

xu =
[
x̃1

x̃2

]

u

, and we repeat the steps followed in the proof of Theorem 5.4.2.

[T(x)]u = [T(x̃1u1 + x̃2u2)]u = x̃1 [T(u1)]u + x̃2 [T(u2)]u =
[
[T(u1)]u, [T(u2)]u

] [
x̃1

x̃2

]

u

,

so we conclude that [T(x)]u = Tuuxu. At the end of Example 5.4.1 we have found that

Tuu =
[

4 −3
−1 −2

]

uu

.

Therefore, the action of T on x when expressed in the basis U is given by the following
matrix-vector product,

[T(x)]u =
[

4 −3
−1 −2

]

uu

[
x̃1

x̃2

]

u

.

C

Example 5.4.4: Express the action of the differentiation transformation D : P3 → P2, given

by D(p)(x) =
dp

dx
(x) as a matrix-vector product in the standard ordered bases

S =
(
p0 = 1, p1 = x, p2 = x2, p3 = x3

) ⊂ P3,

S̃ =
(
q0 = 1, q1 = x, q2 = x2

) ⊂ P2.
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Solution: Following the Theorem 5.4.2 we only need to find the matrix Dss̃ associated
with the transformation D,

Dss̃ =
[
[D(p0)]s̃, [D(p1)]s̃, [D(p2)]s̃, [D(p3)]s̃

] ⇒ Dss̃ =




0 1 0 0
0 0 2 0
0 0 0 3




ss̃

.

Therefore, given any vector

p(x) = a0 + a1x + a2x
2 + a3x

3 ⇔ ps =




a0

a1

a2

a3




s

we obtain that D(p)(x) = a1 + 2a2x + 3a3x
2 is equivalent to

[D(p)]s̃ = Dss̃ps ⇒ [D(p)]s̃ =




0 1 0 0
0 0 2 0
0 0 0 3




ss̃




a0

a1

a2

a3




s

⇒ [D(p)]s̃ =




a1

2a2

3a3




s̃

.

C

Example 5.4.5: Express the action of the integration transformation S : P2 → P3, given
by S(q)(x) =

∫ x

0
q(t) dt as a matrix-vector product in the standard ordered bases

S =
(
p0 = 1, p1 = x, p2 = x2, p3 = x3

) ⊂ P3,

S̃ =
(
q0 = 1, q1 = x, q2 = x2

) ⊂ P2.

Solution: Following the Theorem 5.4.2 we only need to find the matrix Ss̃s associated with
the transformation S,

Ss̃s =
[
[S(q0)]s, [S(q1)]s, [S(q2)]s

] ⇒ Ss̃s =




0 0 0
1 0 0
0 1

2 0
0 0 1

3




s̃s

.

Therefore, given any vector

q(x) = a0 + a1x + a2x
2 ⇔ qs̃ =




a0

a1

a2




s̃

we obtain that S(q)(x) = a0 x +
a1

2
x2 +

a2

3
x3 is equivalent to

[S(q)]s = Ss̃sqs̃ ⇒ [S(q)]s =




0 0 0
1 0 0
0 1

2 0
0 0 1

3




s̃s




a0

a1

a2




s̃

⇒ [S(q)]s =




0
a0

a1/2
a2/3




s

.

C
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5.4.3. Composition and matrix product. The following formula relates the composition
of linear transformations with the matrix product of their associated matrices.

Theorem 5.4.3. Let U , V and W be finite-dimensional vector spaces with bases U , V
and W, respectively. Let T : U → V and S : V → W be linear transformations with
associated matrices Tuv and Svw, respectively. Then, the composition S ◦T : U →W given
by (S ◦ T )(u) = S(

(
T(u)

)
, for all u ∈ U , is a linear transformation and the associated

matrix (S ◦ T)uw is given by the matrix product by

(S ◦ T)uw = SvwTuv.

Proof of Theorem 5.4.3: First show that the composition of two linear transformations
S and T is a linear transformation. Given any u1, u2 ∈ U and arbitrary scalars a and b
holds

(S ◦T)(au1 + bu2) = S
(
T(au1 + bu2)

)

= S
(
aT(u1) + bT(u2)

)

= aS
(
T(u1)

)
+ bS(

(
T(u2)

)

= a (S ◦T)(u1) + b (S ◦T)(u2).

We now compute the matrix of the composition transformation. Denote the ordered basis
in U as follows, U =

(
u1, · · · ,un

)
. Then compute

(S ◦ T)uw =
[ [

S
(
T(u1)

)]
w
, · · · , [S(

T(un)
)]

w

]
.

The column i, with i = 1, · · · , n, in the matrix above has the form
[
S
(
T(ui)

)]
w

= Svw[T(ui)]v = SvwTuvuiu.

Therefore, we conclude that
(S ◦ T)uw = SvwTuv.

This establishes the Theorem. ¤

Example 5.4.6: Let S be the standard ordered basis of R3, and consider the linear trans-
formations T : R3 → R3 and S : R3 → R3 given by

[
T

(



x1

x2

x3




s

)]
s

=




2x1 − x2 + 3x3

−x1 + 2x2 − 4x3

x2 + 3x3




s

,
[
S
(



x1

x2

x3




s

)]
s

=



−x1

2x2

3x3




s

(a) Find a matrices Tss and Sss. By the way, Is T injective? Is T surjective?
(b) Find the matrix of the composition T ◦ S : R3 → R3 in standard ordered basis S.

Solution: Since there is only one ordered basis in this problem, we represent Tss and Sss

simply by T and S, respectively.
Part (a): A straightforward calculation from the definitions

T =
[
[T(e1)]s, [T(e2)]s, [T(e3)]s

]
, S =

[
[S(e1)]s, [S(e2)]s, [S(e3)]s

]
,

gives us the matrices associated with T and S in the standard ordered basis,

T =




2 −1 3
−1 2 −4
0 1 3


 , S =



−1 0 0
0 2 0
0 0 3


 .
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The information in matrix T is useful to find out whether the linear transformation T is
injective and/or surjective. First, find the reduced echelon form of T,


2 −1 3
−1 2 −4
0 1 3


→




1 −2 4
2 −1 3
0 1 3


→




1 −2 4
0 3 5
0 1 3


→




1 0 10
0 1 3
0 0 −4


→




1 0 0
0 1 0
0 0 1


 .

We conclude that N(T) = {0}, which implies that T is injective. The relation

dim N(T) + dim Col(T) = 3

together with dim N(T) = 0 imply that dim Col(T) = 3, hence T is surjective.
Part (b): The matrix of the composition T ◦ S in the standard ordered basis S is the

product TS, that is,

(T ◦ S)ss = TS =




2 −1 3
−1 2 −4
0 1 3






−1 0 0
0 2 0
0 0 3


 ⇒ (T ◦ S)ss =



−2 −2 9
1 4 −12
0 2 9


 .

C
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5.4.4. Exercises.

5.4.1.- Consider T : R2 → R2 the linear
operator given by
h
T
“»x1

x2

–

s

”i
s

=

»
x1 + x2

−2x1 + 4x2

–

s

,

where S denote the standard ordered
basis of R2. Find the matrix Tuu as-
sociated with the linear operator T in
and the ordered basis U of R2 given by

“
[u1]s =

»
1
1

–

s

, [u2]s =

»
1
2

–

s

”
.

5.4.2.- Let T : R3 → R3 be given by

h
T
“
2
4

x1

x2

x3

3
5

s

”i
s

=

2
4

x1 − x2

−x1 + x2

x1 − x3

3
5

s

,

S is the standard ordered basis of R3.

(a) Find the matrix Tuu of the linear
operator T in the ordered basis

U =
“
2
4

1
0
1

3
5

s

,

2
4

0
1
1

3
5

s

,

2
4

1
1
0

3
5

s

”
.

(b) Verify that [T(v)]u = Tuuvu, where

vs =

2
4

1
1
2

3
5

s

.

5.4.3.- Fix an m × n matrix A and define
the linear transformation T : Rn → Rm

as follows: [T(x)]s̃ = Axs, where S ⊂
Rn and S̃ ⊂ Rm are standard ordered
bases. Show that Tss̃ = A.

5.4.4.- Find the matrix associated with the
linear transformation T : P3 → P2,

T(p)(x) =
d2p

dx2
(x)− dp

dx
(x),

in the standard ordered bases of P3, P2.

5.4.5.- Find the matrices in the standard
bases of P3 and P2 of the transforma-
tions

S ◦D : P3 → P3, D ◦ S : P2 → P2,

that is, the composition of the differen-
tiation and integration transformations,
as defined in Sect. 5.1.
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5.5. Change of basis

In this Section we summarize the main calculations needed to find the change of vector
and linear transformation components under a change of basis. We provide simple formulas
to compute this change efficiently.

5.5.1. Vector components. We have seen in Sect. 4.4 that every vector v in a finite
dimensional vector space V with an ordered basis V, can be expressed in a unique way as
a linear combination of the basis elements, with vv = [v ]v denoting the coefficients in that
linear combination. These components depend on the basis chosen in V . Given two different
ordered bases V, Ṽ ⊂ V , the components vv and vṽ associated with a vector v ∈ V are in
general different. We now use the matrix-vector product to find a simple formula relating
vv to vṽ.

Let us recall the following notation. Given an n-dimensional vector space V , let Ṽ and
V be two ordered bases of V given by

Ṽ =
(
ṽ1, · · · , ṽn

)
and V =

(
v1, · · · , vn

)
.

Let I : V → V be the identity transformation, that is, I(v) = v for all v ∈ V , and introduce
the change of basis matrices

Iṽv =
[
ṽ1v, · · · , ṽnv

]
and Ivṽ =

[
v1ṽ, · · · , vnṽ

]
,

where we denoted, as usual, ṽiv = [ṽi]v and viṽ = [vi]ṽ, for i = 1, · · · , n. Since the sets
V and Ṽ are bases of V , the matrices Ivṽ and Iṽv are invertible, and it is not difficult to
show that (Ivṽ)−1 = Iṽv. Finally, introduce the following notation for the change of basis
matrices,

P = Iṽv and P−1 = Ivṽ.

Theorem 5.5.1. Let V be a finite dimensional vector space, let Ṽ and V be two ordered
bases of V , and let P = Iṽv be the change of basis matrix. Then, the components xṽ and
xv of any vector x ∈ V in the ordered bases Ṽ and V, respectively, are related by the linear
equation

xṽ = P−1xv. (5.5)

Remark: Eq. (5.5) is equivalent to the inverse equation xv = P xṽ.
Proof of Theorem 5.5.1: Let V be an n-dimensional vector space with two ordered bases
Ṽ =

(
ṽ1, · · · , ṽn

)
and V =

(
v1, · · · , vn

)
. Given any vector x ∈ V , then the definition of

vector components xv = [x]v in the basis V implies

xv =




x1

...
xn




v

⇔ x = x1v1 + · · ·+ xnvn.

Express the second equation above in terms of components in the ordered basis Ṽ,

xṽ = x1 v1ṽ + · · ·+ xn vnṽ =
[
v1ṽ, · · · , vnṽ

]



x1

...
xn




v

⇒ xṽ = Ivṽ xv.

We conclude that xṽ = P−1xv. This establishes the Theorem. ¤
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Example 5.5.1: Consider the vector space V = R2 with the standard ordered basis S and

the ordered basis U =
(
u1s =

[
1
1

]

s

, u2s =
[−1

1

]

s

)
. Given the vector with components

xs =
[
1
3

]

s

, find xu.

Solution: The answer is given by Theorem 5.5.1, that says

xu = P−1xs, P = Ius.

From the data of the problem the matrix P is simple to compute, since

P = Ius =
[
u1s, u2s

]
=

[
1 −1
1 1

]

us

.

Computing the inverse matrix

P−1 =
1
2

[
1 1
−1 1

]

su

we obtain the final result

xu =
1
2

[
1 1
−1 1

]

su

[
1
3

]

s

⇒ xu =
[
2
1

]

u

.

C

Example 5.5.2: Let V = R2 with ordered bases B =
{
b1, b2

}
and C =

{
c1, c2

}
related by

the equations
b1 = −c1 + 4c2, b2 = 5c1 − 3c2.

(a) Given xb =
[
5
3

]

b

, find xc.

(b) Given xc =
[
1
1

]

c

, find xb.

Solution:
Part (a): We know that xc = P−1xb, where P = Icb. From the data of the problem we

know that

b1 = −c1 + 4c2 ⇔ b1c =
[−1

4

]

c

,

b2 = 5c1 − 3c2. ⇔ b2c =
[

5
−3

]

c

,





⇒ Ibc =
[−1 5

4 −3

]

bc

,

hence we know the change of basis matrix Ibc = P−1, so we conclude that

xc =
[−1 5

4 −3

]

bc

[
5
3

]

b

⇒ xc =
[
10
11

]

c

Part (b): keeping the definition of matrix P = Icb as we introduced it in part (a), we
know that xc = P−1xb. In this part (b) we need the inverse relation xb = Pxc. Since

P−1 =
[−1 5

4 −3

]

bc

, it is simple to obtain P−1 = 1
17

[
3 5
4 1

]

cb

. Using this matrix we obtain

xb =
1
17

[
3 5
4 1

]

cb

[
1
1

]

c

⇒ xb =
1
17

[
8
5

]

b

.

C
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5.5.2. Transformation components. Analogously, we have seen in Sect. 5.4 that every
linear transformation T : V → W between finite dimensional vector spaces V and W with
ordered bases V andW, respectively, can be expressed in a unique way as an dim W ×dim V
matrix Tvw. These components depend on the bases chosen in V and W . Given two different
ordered bases V, Ṽ ⊂ V , and given two different basesW, W̃ ⊂W , the matrices Tvw and Tṽw̃

associated with the linear transformation T are in general different. Matrix multiplication
provides a simple formula relating Tvw and Tṽw̃.

Let us recall old notation and also introduce a bit of new one. Given an n-dimensional
vector space V , let Ṽ and V be ordered bases of V ,

Ṽ =
(
ṽ1, · · · , ṽn

)
and V =

(
v1, · · · , vn

)
;

and given an m-dimensional vector space W , let W̃ and W be two ordered bases of W ,

W̃ =
(
w̃1, · · · , w̃m

)
and W =

(
w1, · · · ,wm

)
.

Let I : V → V be the identity transformation, that is, I(v) = v for all v ∈ V , and introduce
the change of basis matrices

Ivṽ =
[
v1ṽ, · · · , vnṽ

]
and Iṽv =

[
ṽ1v, · · · , ṽnv

]
.

Let J : W → W be the identity transformation, that is, J(w) = w for all w ∈ W , and
introduce the change of basis matrices

Jww̃ =
[
w1w̃, · · · , wmw̃

]
and Jw̃w =

[
w̃1w, · · · , w̃mw

]
.

Notice that the sets V and Ṽ are bases of V , therefore the n × n matrices Ivṽ and Iṽ are
invertible, and (Ivṽ)−1 = Iṽv. The similar statement is true for the m×m matrices Jww̃ and
Jw̃w, and (Jww̃)−1 = Jw̃w. Finally, introduce the following notation for the change of basis
matrices,

P = Iṽv ⇒ P−1 = Ivṽ, and Q = Jw̃w ⇒ Q−1 = Jww̃.

Theorem 5.5.2. Let V and W be finite dimensional vector spaces, let Ṽ and V be two
ordered bases of V , let W̃ and W be two ordered bases of W , and let P = Iṽv and Q = Jw̃w

be the change of basis matrices, respectively. Then, the components Tṽw̃ and Tvw of any
linear transformation T : V →W in the bases Ṽ, W̃ and V, W, respectively, are related by
the matrix equation

Tṽw̃ = Q−1TvwP. (5.6)

Remark: Eq. (5.6) is equivalent to the inverse equation Tvw = QTṽw̃P−1. A particular
case of Theorem 5.5.2 that frequently appears in applications is when T is a linear operator.
In this is the case T : V → V , so V = W . Often in applications one also has V = W and
Ṽ = W̃, which imply P = Q.

Corollary 5.5.3. Let V be a finite dimensional vector space, let Ṽ and V be two ordered
bases of V , let P = Iṽv be the change of basis matrix, and let T : V → V be a linear operator.
Then, the components T̃ = Tṽṽ and T = Tvv of T in the bases Ṽ and V, respectively, are
related by the matrix equation

T̃ = P−1TP. (5.7)

Proof of Theorem 5.5.2: Let V be an n-dimensional vector space with ordered bases
Ṽ =

(
ṽ1, · · · , ṽn

)
and V =

(
v1, · · · , vn

)
; and let W be an m-dimensional vector space with

ordered bases W̃ =
(
w̃1, · · · , w̃m

)
and W =

(
w1, · · · ,wm

)
. We know that the matrix Tṽw̃

associated with the transformation T and the bases Ṽ, W̃, and the matrix Tvw associated
with the transformation T and the bases V, W satisfy the following equations,

[T(x)]w̃ = Tṽw̃xṽ and [T(x)]w = Tvwxv. (5.8)
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Since T(x) ∈W , Theorem 5.5.1 says that its components in the bases W̃ andW are related
by the equation

[T(x)]w̃ = Q−1 [T(x)]w, with Q = Jw̃w.

Therefore, the first equation in (5.8) implies that

Tṽw̃xṽ = Q−1[T(x)]w

= Q−1Tvwxv

= Q−1TvwP xṽ, with P = Iṽv,

where in the second line above we used the second equation in (5.8), and in the third line
above we used the inverse form of Theorem 5.5.1. Since the equation above holds for all
x ∈ V we conclude that

Tṽw̃ = Q−1TvwP.

This establishes the Theorem. ¤

Example 5.5.3: Let S be the standard ordered basis of R2, and let T : R2 → R2 be the
linear operator given by [

T
([

x1

x2

]

s

)]
s

=
[
x2

x1

]

s

,

that is, a reflection along the line x2 = x1. Find the matrix Tuu, where the ordered basis U
is given by U =

(
u1s =

[
1
1

]

s

, u2s =
[−1

1

]

s

)
.

Solution: From the definition of T is straightforward to obtain Tss, as follows,

Tss =
[ [

T
([

1
0

]

s

)]
s
,
[
T

([
0
1

]

s

)]
s

]
⇒ Tss =

[
0 1
1 0

]

ss

.

Since T is a linear operator and we want to compute the matrix Tuu from matrix Tss,
we can use Corollary 5.5.3, which says that these matrices are related by the similarity
transformation

Tuu = P−1TssP, where P = Ius.

From the data of the problem we know that

Ius =
[
u1s, u2s

]
us =

[
1 −1
1 1

]

us

,

therefore,

P =
[
1 −1
1 1

]

us

, P−1 =
1
2

[
1 1
−1 1

]

su

.

We then conclude that

Tuu =
1
2

[
1 1
−1 1

]

su

[
0 1
1 0

]

ss

[
1 −1
1 1

]

us

⇒ Tuu =
[
1 0
0 −1

]

uu

.

Remark: We can see in this Example that the matrix associated with the reflection trans-
formation T is diagonal in the basis U . For this particular transformation we have that

T(u1) = u1, T(u2) = −u2.

Non-zero vectors v with this property, that T(v) = λv, are called eigenvectors of the operator
T and the scalar λ is called eigenvalue of T. In this example the elements in the basis U are
eigenvectors of the reflection operator, and the matrix of T in this special basis is diagonal.
Basis formed with eigenvectors of a given linear operator will be studied in a later on. C
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Example 5.5.4: Let S be the standard ordered basis of R2, and let T : R2 → R2 be the
linear operator given by

[
T

([
x1

x2

]

s

)]
s

=
(x1 + x2)

2

[
1
1

]

s

,

that is, a projection along the line x2 = x1. Find the matrix Tuu, where the ordered basis

U =
(
u1s =

[
1
1

]

s

, u2s =
[−1

1

]

s

)
.

Solution: From the definition of T is straightforward to obtain Tss, as follows,

Tss =
[[

T
([

1
0

]

s

)]
s
,
[
T

([
0
1

]

s

)]
s

]
⇒ Tss =

1
2

[
1 1
1 1

]

ss

.

Since T is a linear operator and we want to compute the matrix Tuu from matrix Tss,
we again use Corollary 5.5.3, which says that these matrices are related by the similarity
transformation

Tuu = P−1TssP, where P = Ius.

In Example 5.5.3 we have already computed

P =
[
1 −1
1 1

]

us

, P−1 =
1
2

[
1 1
−1 1

]

su

.

We then conclude that

Tuu =
1
2

[
1 1
−1 1

]

su

1
2

[
1 1
1 1

]

ss

[
1 −1
1 1

]

us

⇒ Tuu =
[
1 0
0 0

]

uu

.

Remark: Again in this Example we can see that the matrix associated with the reflection
transformation T is diagonal in the basis U , with diagonal elements equal to one and zero.
For this particular transformation we have that the basis vectors in U are eigenvectors of T
with eigenvalues 1 and 0, that is, T(u1) = u1 and T(u2) = 0. C

Example 5.5.5: Let U and V be standard ordered bases of R3 and R2, respectively, let
T : R3 → R2 be the linear transformation

[
T

(



x1

x2

x3




u

)]
v

=
[
x1 − x2 + x3

x2 − x3

]

v

,

and introduce the ordered bases

Ũ =
(
ũ1u =




1
1
0




u

, ũ2u =




0
1
1




u

, ũ3u =




1
0
1




u

)
⊂ R3,

Ṽ =
(
ṽ1v =

[
1
2

]

v

, ṽ2v =
[
2
1

]

v

)
⊂ R2.

Find the matrices Tuv and Tũṽ.

Solution: We start finding the matrix Tuv, which by definition is given by

Tuv =




[
T

(



1
0
0




u

)]
v
,
[
T

(



0
1
0




u

)]
v
,
[
T

(



0
0
1




u

)]
v
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hence we obtain Tuv =
[
1 −1 1
0 1 −1

]

uv

. Theorem 5.5.2 says that the matrices Tũṽ and Tuv

are related by the equation

Tũṽ = Q−1TuvP, where Q = Jṽv and P = Iũu.

From the data of the problem we know that

Iũu =
[
ũ1u, ũ2u, ũ3u

]
ũu

=




1 0 1
1 1 0
0 1 1




ũu

⇒ P =




1 0 1
1 1 0
0 1 1




ũu

,

Jṽv =
[
ṽ1v, ṽ2v

]
ṽv

=
[
1 2
2 1

]

ṽv

⇒ Q =
[
1 2
2 1

]

ṽv

, Q−1 =
1
3

[−1 2
2 −1

]

vṽ

.

Therefore, we need to compute the matrix product

Tũṽ =
1
3

[−1 2
2 −1

]

vṽ

[
1 −1 1
0 1 −1

]

uv




1 0 1
1 1 0
0 1 1




ũu

and the result is Tũṽ = 1
3

[
2 0 −4
−1 0 5

]

ũṽ

. C

5.5.3. Determinant and trace of linear operators. The type of matrix transformation
given by Eq. (5.7) will be important later on, so we give such transformations a name.

Definition 5.5.4. The n×n matrices A and B are related by a similarity transformation
iff there exists and invertible n× n matrix P such that

B = P−1AP.

Therefore, similarity transformations are transformations among matrices. They appear
in two different contexts. The first, or active context, is when matrix A and matrix B above
are written in the same basis. In this case a similarity transformation changes matrix A into
matrix B. The second, or passive context, is when matrix A and matrix B are two matrices
corresponding to the same linear transformation. In this case matrices A and B are written
in different basis, and the similarity transformation is the change of basis equation for the
linear transformation matrices.

The following results says that, no matter in which contex one uses a similarity transfor-
mation, the determinant and trace of a matrix are invariant under similarity transformations.

Theorem 5.5.5. If the square matrices A, B are related by the similarity transformation
B = P−1AP, then holds

det(B) = det(A), tr (B) = tr (A).

Proof of Theorem: 5.5.5: The determinant is invariant under similarity transformations,
since

det(B) = det(P−1AP) = det(P−1) det(A) det(P) = det(A).
The trace is also invariant under similarity transformations, since

tr (B) = tr (P−1AP) = tr (PP−1A) = tr (A).

This establishes the Theorem. ¤
We now use this result in the passive context for similarity transformations. This means

that the determinant and trace are independent of the vector basis one uses to write down the
matrix. Therefore, a determinant or a trace is an operation on a linear transformation, not
on a particular matrix representation of a linear transformation. This observation suggests
the following definition.
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Definition 5.5.6. Let V be a finite dimensional vector space, let T ∈ L(V ) be a linear
operator, and let Tvv be the matrix of the linear operator in an arbitrary ordered basis V of
V . The determinant and trace of a linear operator T ∈ L(V ) are respectively given by,

det(T) = det(Tvv), tr (T) = tr (Tvv).

We repeat that the determinant and trace of a linear operator are well-defined, since given
any other ordered basis V of V , we know that the matrices Tṽṽ and Tvv are related by a
similarity transformation. However, the determinant and trace are invariant under similatiry
transformations. So no matter what vector basis we use to compute determinant and trace
of a linear operator, we always get the same result.
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5.5.4. Exercises.

5.5.1.- Let U = (u1,u2) be an ordered basis
of R2 given by

u1 = 2e1 − 9e2, u2 = e1 + 8e2,

where S = (e1, e2) is the standard or-
dered basis of R2.

(a) Find both change of basis matrices
Ius and Isu.

(b) Given the vector x = 2u1 +u2, find
both xs and xu.

5.5.2.- Consider the ordered bases of R3,
B = (b1, b2, b3) and C = (c1, c2, c3),
where

c1 = b1 − 2b2 + b3,

c2 = −b2 + 3b3,

c3 = −2b1 + b3.

(a) Find both the change of basis ma-
trices Ibc and Icb.

(b) Let x = c1 − 2c2 + 2c3. Find both
xb and xc.

5.5.3.- Consider the ordered bases U and S
of R2 given by

U =
“
u1s =

»
1
2

–

s

, u2s =

»
2
1

–

s

”
,

S =
“
e1s =

»
1
0

–

s

, e2s =

»
0
1

–

s

o
.

(a) Given xu =

»
3
2

–

u

find xs.

(b) Find e1u and e2u.

5.5.4.- Consider the ordered bases of R2

B =
“
b1s =

»
1
2

–

s

, b2s =

»
1
−2

–

s

”

C =
“
c1s =

»
1
1

–

s

, c2s =

»−1
1

–

s

”
,

where S is the standard ordered basis.

(a) Given xc =

»
2
3

–

c

, find xs.

(b) For the same x above, find xb.

5.5.5.- Let S = (e1, e2) be the standard or-
dered basis of R2 and B = (b1, b2) be

another ordered basis. Let A =

»
1 2
2 3

–

be the matrix that transforms the com-
ponents of a vector x ∈ R2 from the ba-
sis S into the basis B, that is, xb = Axs.
Find the components of the basis vec-
tors b1, b2 in the standard basis, that
is, find b1s and b2s.

5.5.6.- Show that similarity is a transitive
property, that is, if matrix A is similar
to matrix B, and B is similar to matrix
C, then A is similar to C.

5.5.7.- Consider R3 with the standard or-
dered basis S and the ordered basis

U =
“
2
4

1
0
0

3
5

s

,

2
4

1
1
0

3
5

s

,

2
4

1
1
1

3
5

s

”
.

Let T : R3 → R3 be the linear operator

h
T
“
2
4

x1

x2

x3

3
5

s

”i
s

=

2
4

x1 + 2x2 − x3

−x2

x1 + 7x3

3
5

s

.

Find both matrices Tss and Tuu.

5.5.8.- Consider R2 with ordered bases

S =
“
e1s =

»
1
0

–

s

, e2s =

»
0
1

–

s

”
,

U =
“
u1s =

»
1
1

–

s

, u2s =

»
1
−1

–

s

”
.

Let T : R2 → R2 be a linear transfor-
mation given by

[T(u1)]s =

»
1
3

–

s

, [T(u2)]s =

»
3
1

–

s

.

Find the matrix Tus, then the matrices
Tss, Tuu, and finally Tsu.
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Chapter 6. Inner product spaces

An inner product space is a vector space with an additional structure called inner product.
This additional structure is an operation that associates each pair of vectors in the vector
space with a scalar. An inner product extends to any vector space the main concepts
included in the dot product, which is defined on Rn. These main concepts include the length
of a vector, the notioin of perpendicular vectors, and distance between vectors. When these
ideas are introduced in function vector spaces, they allow to define the notion of convergence
of an infinite sum of vectors. This, in turns, provides a way to evaluate the accuracy of
approximate solutions to differential equations.

6.1. Dot product

6.1.1. Dot product in R2. We review the definition of the dot product between vectors
in R2, and we describe its main properties, including the Cauchy-Schwarz inequality. We
then use the dot product to introduce the notion of length of a vector, distance and angle
between vectors, including the special case of perpendicular vectors. We then review that
all these notions can be generalized in a straightforward way from R2 to Fn, n > 1.

Definition 6.1.1. Given any vectors x, y ∈ R2 with components x =
[
x1

x2

]
, y =

[
y1

y2

]
in the

standard ordered basis S. The dot product on R2 with is the function · : R2 × R2 → R,

x · y = x1y1 + x2y2.

The dot product norm of a vector x ∈ R2 is the value of the function ‖ ‖ : R2 → R,

‖x‖ =
√

x · x.
The norm distance between x, y ∈ R2 is the value of the function d : R2 × R2 → R,

d(x, y) = ‖x− y‖.
The dot product can be expressed using the transpose of a vector components in the

standard basis, as follows,

xT y = [x1, x2]
[
y1

y2

]
= x1y1 + x2y2 = x · y.

The dot product norm and the norm distance can be expressed in term of vector components
in the standard ordered basis S as follows,

‖x‖ =
√

(x1)2 + (x2)2, d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2.

The geometrical meaning of the norm and distance is clear form this expression in com-
ponents, as is shown in Fig. 40. The norm of a vector is the Euclidean length from the
origin point to the head point of the vector, while the distance between two vectors in the
Euclidean distance between the head points of the two vectors.

It is important that we summarize the main properties of the dot product in R2, since
they are the main guide to construct the generalizations of the dot product to other vector
spaces.

Theorem 6.1.2. The dot product on R2 satisfies, for every vector x, y, z ∈ R2 and every
scalar a, b ∈ R, the following properties:
(a) x · y = y · x, (Symmetry);
(b) x · (ay + bz) = a (x · y) + b (x · z), (Linearity on the second argument);
(c) x · x > 0, and x · x = 0 iff x = 0, (Positive definiteness).
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Figure 40. Example of the Euclidean notions of vector length and distance
between vectors in R2.

Proof of Theorem 6.1.2: These properties are simple to obtain from the definition of the
dot product.

Part (a): It is simple to see that

x · y = x1y1 + x2y2 = y1x1 + y2x2 = y · x.
Part (b): It is also simple to see that

x · (ay + bz) = x1(ay1 + bz1) + x2(ay2 + bz2)

= a (x1y1 + x2y2) + b (x1z1 + x2z2)

= a (x · y) + b (x · z).
Part (c): This follows from

x · x = (x1)2 + (x2)2 > 0;

furthermore, in the case x · x = 0 we obtain that

(x1)2 + (x2)2 = 0 ⇔ x1 = x2 = 0.

This establishes the Theorem. ¤
These simple properties are crucial to establish the following result, known as Cauchy-

Schwarz inequality for the dot product in R2. This inequality allows to express the dot
product of two vectors in R2 in terms of the angle between the vectors.

Theorem 6.1.3 (Cauchy-Schwarz). The properties (a)-(c) in Theorem 6.1.2 imply that
for all x, y ∈ R2 holds

|x · y| 6 ‖x‖ ‖y‖.
Proof of Theorem 6.1.3: From the positive definiteness property we know that the
following inequality holds for all x, y ∈ R2 and for all a ∈ R,

0 6 ‖ax− y‖2 = (ax− y) · (ax− y).

The symmetry and the linearity on the second argument imply

0 6 (ax− y) · (ax− y) = a2 ‖x‖2 − 2a (x · y) + ‖y‖2. (6.1)

Since the inequality above holds for all a ∈ R, let us choose a particular value of a, the
solution of the equation

a ‖x‖2 − (x · y) = 0 ⇒ a =
x · y
‖x‖2 .

Introduce this particular value of a into Eq. (6.1),

0 6 −
( x · y
‖x‖2

)
(x · y) + ‖y‖2 ⇒ |x · y|2 6 ‖x‖2 ‖y‖2.

This establishes the Theorem. ¤
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The Cauchy-Schwarz inequality implies that we can express the dot product of two vectors
in an alternative and more geometrical way, in terms of an angle related with the two vectors.
The Cauchy-Schwarz inequality says

−1 6 x · y
‖x‖ ‖y‖ 6 1,

which suggests that the number (x · y)/(‖x‖ ‖y‖) can be expressed as a sine or a cosine of an
appropriate angle.

Theorem 6.1.4. The angle between vectors x, y ∈ R2 is the number θ ∈ [0, π] given by

cos(θ) =
x · y
‖x‖ ‖y‖ .

Proof of Theorem 6.1.4: It is not difficult to see that given any vectors x, y ∈ R2, the
vectors x/‖x‖ and y/‖y‖ have unit norm. Indeed,

∥∥∥ x

‖x‖
∥∥∥

2

=
(x1)2

‖x‖2 +
(x2)2

‖x‖2 =
1
‖x‖2

[
(x1)2 + (x2)2

]
= 1.

The same holds for the vector y/‖y‖. The expression
x · y
‖x‖ ‖y‖ =

x

‖x‖ ·
y

‖y‖ ,

shows that the number (x ·y)/(‖x‖ ‖y‖) is the inner product of two vectors in the unit circle,
as shown in Fig. 41.

1

R
2

0

0

0

1

2

y

x

Figure 41. The dot product of two vectors x, y ∈ R2 can be expressed in
terms of the angle θ = θ1 − θ2 between the vectors.

Therefore, we know that

x

‖x‖ =
[
cos(θ1)
sin(θ1)

]
,

y

‖y‖ =
[
cos(θ2)
sin(θ2)

]
.

Their dot product is given by

x

‖x‖ ·
y

‖y‖ =
[
cos(θ1), sin(θ1)

] [
cos(θ2)
sin(θ2)

]
= cos(θ1) cos(θ2) + sin(θ1) sin(θ2).

Using the formula cos(θ1) cos(θ2) + sin(θ1) sin(θ2) = cos(θ1 − θ2), and denoting the angle
between the vectors by θ = θ1 − θ2, we conclude that

x · y
‖x‖ ‖y‖ = cos(θ).

This establishes the Theorem. ¤
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Recall the notion of perpendicular vectors.

Definition 6.1.5. The vectors x, y ∈ R2 are orthogonal, denoted as x ⊥ y, iff the angle
θ ∈ [0, π] between the vectors is θ = π/2.

The notion of orthogonal vectors in Def. 6.1.5 can be expressed in terms of the dot
product, and it is equivalent to Pythagoras Theorem on right triangles.

Theorem 6.1.6. Let x, y ∈ R2 be non-zero vectors, then the following statement holds,

x ⊥ y ⇔ x · y = 0 ⇔ ‖x− y‖2 = ‖x‖2 + ‖y‖2.
Proof of Theorem 6.1.6: The non-zero vectors x and y ∈ R2 are orthogonal iff θ = π/2,
which is equivalent to

x · y
‖x‖ ‖y‖ = 0 ⇔ x · y = 0.

The last part of the Proposition comes from the following calculation,

‖x− y‖2 = (x1 − y1)2 + (x2 − y2)2

= (x1)2 + (x2)2 + (y1)2 + (y2)2 − 2(x1y1 + x2y2)

= ‖x‖2 + ‖y‖2 − 2 x · y.
Hence, x ⊥ y iff x · y = 0 iff Pythagoras Theorem holds for the triangle with sides given by
x, y and hypotenuse x− y. This establishes the Theorem. ¤

Example 6.1.1: Find the length of the vectors x =
[
1
2

]
and y =

[
3
1

]
, the angle between

them, and then find a non-zero vector z orthogonal to x.

Solution: We first find the length, that is, the norms of x and y,

‖x‖2 = x · x = xT x =
[
1 2

]
,

[
1
2

]
= 1 + 4 ⇒ ‖x‖ =

√
5,

‖y‖2 = y · y = yT y =
[
3 1

] [
3
1

]
= 9 + 1 ⇒ ‖y‖ =

√
10.

We now find the angle between x and y,

cos(θ) =
x · y
‖x‖ ‖y‖ =

[
1 2

] [
3
1

]

√
5
√

10
=

5
5
√

2
=

1√
2
⇒ θ =

π

4
.

We now find z such that z ⊥ x, that is,

0 =
[
z1 z2

] [
1
2

]
= z1 + 2z2 ⇒

{
z1 = −2z2

z2 free variable

}
⇒ z =

[−2
1

]
z2.

C

6.1.2. Dot product in Fn. The notion of dot product reviewed above can be generalized
in a straightforward way from R2 to Fn, n > 1, where F ∈ {R,C}.
Definition 6.1.7. The dot product on the vector space Fn, with n > 1, is the function
· : Fn × Fn → F given by

x · y = x∗ y,

where x, y denote components in the standard basis of Fn. The dot product norm of a
vector x ∈ Fn is the value of the function ‖ ‖ : Fn → R,

‖x‖ =
√

x · x.
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The norm distance between x, y ∈ Fn is the value of the function d : Fn × Fn → R,

d(x, y) = ‖x− y‖.
The vectors x, y ∈ Fn are orthogonal, denoted as x ⊥ y, iff holds x · y = 0.

Notice that we defined two vectors to be orthogonal by the condition that their dot
product vanishes. This is the appropriate generalization to Fn of the ideas we saw in R2.
The concept of angle is more difficult to study. In the case that F = C is not clear what the
angle between vectors mean. In the case F = R and n > 3 we have to define angle by the
number (x · y)/(‖x‖ ‖y‖). This will be done after we prove the Cauchy-Schwarz inequality,
which then is used to show that the number (x · y)/(‖x‖ ‖y‖) ∈ [−1, 1]. The formulas above
for the dot product, norm and distance can be expressed in terms of the vector components
in the standard basis as follows,

x · y = x1y1 + · · ·+ xnyn,

‖x‖ =
√
|x1|2 + · · ·+ |xn|2,

d(x, y) =
√
|x1 − y1|2 + · · ·+ |xn − yn|2,

where we used the standard notation x =




x1

...
xn


, y =




y1

...
yn


, and |xi|2 = xixi, for i = 1, · · ·n.

In the particular case that F = R all the vector components are real numbers, so xi = xi.

Example 6.1.2: Find whether x is orthogonal to y and/or z, where

x =




1
2
3
4


 , y =




−5
4
−3
2


 , z =




−4
−3
2
1


 .

Solution: We need to compute the dot products x · y and x · z. We obtain

xT y =
[
1 2 3 4

]



−5
4
−3
2


 = −5 + 8− 9 + 8 ⇒ x · y = 2 ⇒ x 6⊥ y,

xT z =
[
1 2 3 4

]



−4
−3
2
1


 = −4− 6 + 6 + 4 ⇒ x · z = 0 ⇒ x ⊥ z.

C

Example 6.1.3: Find x · y, where x =




2 + 3i
i

1− i


 and y =




2i
1

1 + 3i


.

Solution: The first product x · y is given by

x∗ y =
[
2− 3i −i 1 + i

]



2i
1

1 + 3i


 = (2− 3i)(2i)− i + (1 + i)(1 + 3i),

so x · y = 4i + 6− i + 1− 3 + i + 3i, that is, x · y = 4 + 7i. C

The dot product satisfies the following properties.
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Theorem 6.1.8. The dot product on Fn, with n > 1, satisfies for every vector x, y, z ∈ Fn

and every scalar a, b ∈ F, the following properties:
(a1) x · y = y · x, (Symmetry F = R);
(a2) x · y = y · x, (Conjugate symmetry, for F = C);
(b) x · (ay + bz) = a (x · y) + b (x · z), (Linearity on the second argument);
(c) x · x > 0, and x · x = 0 iff x = 0, (Positive definiteness).

Proof of Theorem 6.1.8: Use the expression of the dot product in terms of the vector
components. The property in (a1) can be established as follows,

x · y = x1y1 + · · ·+ xnyn = y1x1 + · · ·+ ynxn = y · x.
The property in (a2) can be established as follows,

x · y = x1y1 + · · ·+ xnyn = (y1x1 + · · ·+ ynxn) = y · x.
The property in (b) is shown in a similar way,

x · (ay + bz) = x∗(a y + b z) = a x∗ y + b x∗ z = a (x · y) + b (x · z).
The property in (c) follows from

x · x = x∗ x = |x1|2 + · · ·+ |xn|2 > 0;

furthermore, in the case that x · x = 0 we obtain that

|x1|2 + · · ·+ |xn|2 = 0 ⇔ x1 = · · · = xn = 0 ⇔ x = 0.

This establishes the Theorem. ¤
The positive definiteness property (c) above shows that the dot product norm is indeed a

real-valued and not a complex-valued function, since x · x > 0 implies that ‖x‖ =
√

x · x ∈ R.
In the case of F = R, the symmetry property and the linearity in the second argument
property imply that the dot product on Rn is also linear in the first argument. This is a
reason to call the dot product on Rn a bilinear form. Finally, notice that in the case F = C,
the conjugate symmetry property and the linearity in the second argument imply that the
dot product on Cn is conjugate linear on the first argument. The proof is the following:

(ay + bz) · x = x · (ay + bz) = a (x · y) + b (x · z) = a (x · y) + b (x · z),
that is, for all x, y, z ∈ Cn and all a, b ∈ C holds

(ay + bz) · x = a (y · x) + b (z · x).
Hence we say that the dot product on Cn is conjugate linear in the first argument.

Example 6.1.4: Compute the dot product of x =
[
2 + 3i
6i− 9

]
with y =

[
3i
2

]
.

Solution: This is a straightforward computation

x · y = x∗y =
[
2− 3i −6i− 9

] [
3i
2

]
= 6i + 9− 12i− 18 ⇒ x · y = −9− 6i.

Notice that x = (2 + 3i)x̂, with x̂ =
[

1
3i

]
, so we could use the conjugate linearity in the first

argument to compute

x · y =
(
(2 + 3i)x̂

) · y = (2− 3i) (x̂ · y) = (2− 3i)
[
1 −3i

] [
3i
2

]
= (2− 3i)(3i− 6i),

and we obtain the same result, x · y = −9− 6i. Finally, notice that y · x = −9 + 6i. C

An important result is that the dot product in Fn satisfies the Cauchy-Schwarz inequality.
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Theorem 6.1.9 (Cauchy-Schwarz). The properties (a1)-(c) in Theorem 6.1.8 imply that
for all x, y ∈ Fn holds

|x · y| 6 ‖x‖ ‖y‖.
Remark: The proof of the Cauchy-Schwarz inequality only uses the three properties of the
dot product presented in Theorem 6.1.8. Any other function f : Fn × Fn → F having these
three properties also satisfies the Cauchy-Schwarz inequality.
Proof of Theorem 6.1.9: From the positive definiteness property we know that the
following inequality holds for all x, y ∈ Fn and for all a ∈ F,

0 6 ‖ax− y‖2 = (ax− y) · (ax− y).

The symmetry and the linearity on the second argument imply

0 6 (ax− y) · (ax− y) = a a ‖x‖2 − a (x · y)− a (y · x) + ‖y‖2. (6.2)

Since the inequality above holds for all a ∈ F, let us choose a particular value of a, the
solution of the equation

a a ‖x‖2 − a (x · y) = 0 ⇒ a =
x · y
‖x‖2 .

Introduce this particular value of a into Eq. (6.2),

0 6 −
( x · y
‖x‖2

)
(x · y) + ‖y‖2 ⇒ |x · y|2 6 ‖x‖2 ‖y‖2.

This establishes the Theorem. ¤
In the case F = R, the Cauchy-Schwarz inequality in Rn implies that the number

(x · y)/(‖x‖ ‖y‖) ∈ [−1, 1], which is a necessary and sufficient condition for the following
definition of angle between two vectors in Rn.

Definition 6.1.10. The angle between vectors x, y ∈ Rn is the number θ ∈ [0, π] given by

cos(θ) =
x · y
‖x‖ ‖y‖ .

The dot product norm function in Definition 6.1.7 satisfies the following properties.

Theorem 6.1.11. The dot product norm function on Fn, with n > 1, satisfies for every
vector x, y ∈ Fn and every scalar a ∈ F the following properties:
(a) ‖x‖ > 0, and ‖x‖ = 0 iff x = 0, (Positive definiteness);
(b) ‖ax‖ = |a| ‖x‖, (Scaling);
(c) ‖x + y‖ 6 ‖x‖+ ‖y‖, (Triangle inequality).

Proof of Theorem 6.1.11: Properties (a) and (b) are straightforward to show from the
definition of dot product, and their proof is left as an exercise. We show here how to
obtain the triangle inequality, property (c). The proof uses the Cauchy-Schwarz inequality
presented in Theorem 6.1.9. Given any vectors x, y ∈ Fn holds

‖x + y‖2 = (x + y) · (x + y)

= ‖x‖2 + (x · y) + (y · x) + ‖y‖2
6 ‖x‖2 + 2 |x · y|+ ‖y‖2

6 ‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2 =
(‖x‖+ ‖y‖)2

,

We conclude that ‖x + y‖2 6
(‖x‖+ ‖y‖)2. This establishes the Theorem. ¤

A vector v ∈ Fn is called normal or unit vector iff ‖v‖ = 1. Examples of unit vectors are
the standard basis vectors. Unit vectors parallel to a given vector are simple to find.
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Theorem 6.1.12. If v ∈ Fn is non-zero, then
v

‖v‖ is a unit vector parallel to v.

Proof of Theorem 6.1.12: Notice that u =
v

‖v‖ is parallel to v, and it is straightforward

to check that u is a unit vector, since

‖u‖ =
∥∥∥ v

‖v‖
∥∥∥ =

1
‖v‖ ‖v‖ = 1.

This establishes the Theorem. ¤

Example 6.1.5: Find a unit vector parallel to x =




1
2
3


.

Solution: First compute the norm of x,

‖x‖ =
√

1 + 4 + 9 =
√

14,

therefore u =
1√
14




1
2
3


 is a unit vector parallel to v. C
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6.1.3. Exercises.

6.1.1.- Consider the vector space R4 with
standard basis S and dot product. Find
the norm of u and v, their distance and
the angle between them, where

u =

2
664

2
1
−4
−2

3
775 , v =

2
664

1
−1
1
−1

3
775 .

6.1.2.- Use the dot product on R2 to find
two unit vectors orthogonal to

x =

»
3
2

–
.

6.1.3.- Use the dot product on C2 to find a
unit vector parallel to

x =

»
1 + 2i
2− i

–
.

6.1.4.- Consider the vector space R2 with
the dot product.

(a) Give an example of a linearly inde-
pendent set {x, y} with x 6⊥ y.

(b) Give an example of a linearly de-
pendent set {x, y} with x ⊥ y.

6.1.5.- Consider the vector space Fn with
the dot product, and let Re denote the
real part of a complex number. Show
that for all x, y ∈ Fn holds

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2Re(x · y).

6.1.6.- Use the result in Exercise 6.1.5
above to prove the following generaliza-
tions of the Pythagoras Theorem to Fn

with the dot product.

(a) For x, y ∈ Rn holds

x ⊥ y ⇔ ‖x + y‖2 = ‖x‖2 + ‖y‖2.
(b) For x, y ∈ Cn holds

x ⊥ y ⇒ ‖x + y‖2 = ‖x‖2 + ‖y‖2.

6.1.7.- Prove that the parallelogram law
holds for the dot product norm in Fn,
that is, show that for all x, y ∈ Fn holds

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.
This law states that the sum of the
squares of the lengths of the four sides
of a parallelogram formed by x and y
equals the sum of the square of the
lengths of the two diagonals.
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6.2. Inner product

6.2.1. Inner product. An inner product on a vector space is a generalization of the dot
product on Rn or Cn introduced in Sect. 6.1. The inner product is not defined with a
particular formula, or requiring a particular basis in the vector space. Instead, the inner
product is defined by a list of properties that must satisfy. We did something similar when
we introduced the concept of a vector space. In that case we defined a vector space as a set
of any kind of elements where linear combinations are possible, instead of defining the set
by explicitly giving its elements.

Definition 6.2.1. Let V be a vector space over the scalar field F ∈ {R,C}. A function
〈 , 〉 : V × V → F is called an inner product iff for every x, y, z ∈ V and every a, b ∈ F
the function 〈 , 〉 satisfies:

(a1) 〈x,y〉 = 〈y,x〉, (Symmetry, for F = R);
(a2) 〈x,y〉 = 〈y,x〉, (Conjugate symmetry, for F = C);
(b) 〈x, (ay + bz)〉 = a〈x,y〉+ b〈x, z〉, (Linearity on the second argument);
(c) 〈x,x〉 > 0, and 〈x,x〉 = 0 iff x = 0, (Positive definiteness).
An inner product space is a pair

(
V, 〈 , 〉) of a vector space with an inner product.

Different inner products can be defined on a given vector space. The dot product is an
inner product in Fn. A different inner product can be defined in Fn, as can be seen in the
following example.

Example 6.2.1: We show that Rn can have different inner products.
(a) The dot product on Rn is an inner product, since the expression

〈x, y〉 = xT
s ys =

[
x1 · · · xn

]
s




y1

...
yn




s

= x1y1 + · · ·+ xnyn, (6.3)

satisfies all the properties in Definition 6.2.1, with S the standard ordered basis in Rn.
(b) A different inner product in Rn can be introduced by a formula similar to the one in

Eq. (6.3) by choosing a different ordered basis. If U is any ordered basis of Rn, then

〈x, y〉 = xT
uyu.

defines an inner product on Rn. The inner product defined using the basis U is not equal
to the inner product defined using the standard basis S. Let P = Ius be the change of
basis matrix, then we know that xu = P−1xs. The inner product above can be expressed
in terms of the S basis as follows,

〈x, y〉 = xT
s Mys, M =

(
P−1

)T (
P−1

)
,

and in general, M 6= In. Therefore, the inner product above is not equal to the dot
product. Also, see Example 6.2.2.

C

Example 6.2.2: Let S be the standard ordered basis in R2, and introduce the ordered basis
U as the following rescaling of S,

U =
(
u1 =

1
2
e1,u2 =

1
3
e2

)
.

Express the inner product 〈x, y〉 = xT
uyu in terms of xs and ys. Is this inner product the

same as the dot product?
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Solution: The definition of the inner product says that 〈x, y〉 = xT
uyu. Introducing the

notation xu =
[
x̃1

x̃2

]

u

and yu =
[
ỹ1

ỹ2

]

u

, we obtain the usual expression 〈x, y〉 = x̃1ỹ1 + x̃2ỹ2.

The components xu and xs are related by the change of basis formula

xu = P−1xs, P = Ius =
[
1/2 0
0 1/3

]

us

⇒ P−1 =
[
2 0
0 3

]

su

=
(
P−1

)T
.

Therefore,

〈x, y〉 = xT
uyu = xT

s

(
P−1

)T
P−1ys =

[
x1, x2

]
s

[
4 0
0 9

]

su

[
y1

y2

]

s

where we used the standard notation xs =
[
x1

x2

]

s

and ys =
[
y1

y2

]

s

. We conclude that

〈x, y〉 = xT
s

(
P−1

)2
ys ⇔ 〈x, y〉 = 4x1y1 + 9x2y2.

The inner product 〈x, y〉 = xT
uyu is different from the dot product x · y = xT

s ys. C

Example 6.2.3: Determine whether the function 〈 , 〉 : R3 × R3 → R below is an inner
product in R3, where

〈x, y〉 = x1y1 + x2y2 + x3y3 + 3x1y2 + 3x2y1.

Solution: The function 〈 , 〉 seems to be symmetric and linear. It is not so clear whether
this function is positive, because of the presence of crossed terms. So, before spending time
to prove the symmetry and linearity properties, we first concentrate on the property that
might fail, positivity. If positivity fails, we don’t need to prove the remaining properties.
The crossed terms 3(x1y2 + x2y1) in the definition of the inner product suggest that the
product is not positive, since the factor 3 makes them too important compared with the
other terms. Let us try to find an example, that is a vector x 6= 0 such that 〈x, x〉 6 0. Let
us try with

x =




1
−1
0


 ⇒ 〈x, x〉 = 12 + (−1)2 + 02 + 3[(1)(−1) + (−1)(1)] = 2− 6 = −4.

Since 〈x, x〉 = −4, the function 〈 , 〉 is not positive, hence it is not an inner product. C

Example 6.2.4: Consider the vector space Fm,n of all m× n matrices. Show that an inner
product on that space is the function 〈 , 〉F : Fm,n × Fm,n → F

〈A, B〉F = tr (A∗B).

The inner product is called Frobenius inner product.

Solution: We show that the Frobenius function 〈 , 〉F above satisfies the three properties
in Def. 6.2.1. We use the component notation A = [Aij ], B = [Bkl], with i, k = 1, · · · ,m
and j, l = 1, · · · , n, so

(A∗B)jl =
m∑

i=1

(
A

T )
ji

Bil =
m∑

i=1

AijBil ⇒ 〈A,B〉F =
n∑

j=1

n∑

i=1

AijBij .

The first property is satisfied, since

〈A,A〉F = tr (A∗A) =
n∑

j=1

m∑

i=1

∣∣Aij

∣∣2 > 0,
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and 〈A, A〉F = 0 iff Aij = 0 for every indices i, j, which is equivalently to A = 0. The second
property is satisfied, since

〈A,B〉F =
n∑

j=1

n∑

i=1

AijBij =
n∑

j=1

n∑

i=1

BijAij = 〈B, A〉F .

The same proof can be expressed in index-free notation using the properties of the trace,

tr
(
A∗ B

)
) = tr

(
A

T
B

)
= tr

[
(A

T
B)T

]
= tr

(
BT A

)
= tr

(
B∗ A

)
,

that is, 〈A, B〉F = 〈B,A〉F . The third property comes from the distributive property of the
matrix product, that is,

〈A, (aB + bC)〉F = tr
(
A∗ (aB + bC)

)
= a tr

(
A∗ B

)
+ b tr

(
A∗ C

)
= a 〈A, B〉F + b 〈A, C〉F .

This establishes that 〈 , 〉F is an inner product. C

Example 6.2.5: Compute the Frobenius inner product 〈A,B〉F where

A =
[
1 2 3
2 4 1

]
, B =

[
3 2 1
2 1 2

]
∈ R2,3.

Solution: Since the matrices have real coefficients, the Frobenius inner product has the
form 〈A,B〉F = tr

(
AT B

)
. So, we need to compute the diagonal elements in the product

AT B =




1 2
2 4
3 1




[
3 2 1
2 1 2

]
=




7 ∗ ∗
∗ 8 ∗
∗ ∗ 5


 ⇒ 〈A,B〉F = 7 + 8 + 5 ⇒ 〈A, B〉F = 20.

C

Example 6.2.6: Consider the vector space Pn([−1, 1]) of polynomials with real coefficients
having degree less or equal n ≥ 1 and being defined on the interval [−1, 1]. Show that an
inner product in this space is the following:

〈p, q〉 =
∫ 1

−1

p(x)q(x) dx. p, q ∈ Pn.

Solution: We need to verify the three properties in the Definition 6.2.1. The positive
definiteness property is satisfied, since

〈p,p〉 =
∫ 1

−1

[
p(x)

]2
dx > 0,

and in the case 〈p,p〉 = 0 this implies that the integrand must vanish, that is, [p(x)]2 = 0,
which is equivalent to p = 0. The symmetry property is satisfied, since p(x)q(x) = q(x)p(x),
which implies that 〈p, q〉 = 〈q,p〉. The linearity property on the second argument is also
satisfied, since

〈p, (aq + br)〉 =
∫ 1

−1

p(x)
[
a q(x) + b r(x)

]
dx

= a

∫ 1

−1

p(x)q(x) dx + b

∫ 1

−1

p(x)r(x) dx

= a 〈p, q〉+ b 〈p, r〉.
This establishes that 〈 , 〉 is an inner product. C
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Example 6.2.7: Consider the vector space Ck([a, b],R), with k > 0 and a < b, of k-times
continuously differentiable real-valued functions f : [a, b] → R. An inner product in this
vector space is given by

〈f , g〉 =
∫ b

a

f (x)g(x) dx.

Any positive function µ ∈ C0([a, b],R) determines an inner product in Ck([a, b],R) as follows

〈f , g〉µ =
∫ b

a

µ(x) f (x)g(x) dx.

The function µ is called a weigh function. An inner product in the vector space Ck([a, b],C)
of k-times continuously differentiable complex-valued functions f : [a, b] ⊂ R → C is the
following,

〈f , g〉 =
∫ b

a

f (x)g(x) dx.

C

An inner product satisfies the following inequality.

Theorem 6.2.2 (Cauchy-Schwarz). If
(
V, 〈 , 〉) is an inner product space over F, then

for every x, y ∈ V holds
|〈x,y〉|2 6 〈x,x〉 〈y,y〉.

Furthermore, equality holds iff y = ax, with a = 〈x,y〉/〈x,x〉.
Proof of Theorem 6.2.2: From the positive definiteness property we know that for every
x, y ∈ V and every scalar a ∈ F holds 0 6 〈(ax − y), (ax − y)〉. The symmetry and the
linearity on the second argument imply

0 6 〈(ax− y), (ax− y)〉 = a a 〈x,x〉 − a 〈x,y〉 − a 〈y,x〉+ 〈y,y〉. (6.4)

Since the inequality above holds for all a ∈ F, let us choose a particular value of a, the
solution of the equation

a a 〈x,x〉 − a 〈x,y〉 = 0 ⇒ a =
〈x,y〉
〈x,x〉 .

Introduce this particular value of a into Eq. (6.4),

0 6 −
( 〈x,y〉
〈x,x〉

)
〈x,y〉+ 〈y,y〉 ⇒ |〈x,y〉|2 6 〈x,x〉 〈y,y〉.

Finally, notice that equality holds iff ax = y, and in this case, computing the inner product
with x we obtain a〈x,x〉 = 〈x,y〉. This establishes the Theorem. ¤

6.2.2. Inner product norm. The inner product on a vector space determines a particular
notion of length, or norm, of a vector, and we call it the inner product norm. After we
introduce this norm we show its main properties. In Chapter 8 later on we use these
properties to define a more general notion of norm as any function on the vector space
satisfying these properties. The inner product norm is just a particular case of this broader
notion of length. A normed space is a vector space with any norm.

Definition 6.2.3. The inner product norm determined in an inner product space
(
V, 〈 , 〉)

is the function ‖ ‖ : V → R given by

‖x‖ =
√
〈x,x〉.
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The Cauchy-Schwarz inequality is often expressed using the inner product norm as follows:
For every x, y ∈ V holds

|〈x,y〉| 6 ‖x‖ ‖y‖.
A vector x ∈ V is a normal or unit vector iff ‖x‖ = 1.

Theorem 6.2.4. If v 6= 0 belongs to
(
V, 〈 , 〉), then

v

‖v‖ is a unit vector parallel to v.

The proof is the same of Theorem 6.1.12.

Example 6.2.8: Consider the inner product space
(
Fm,n, 〈 , 〉F

)
, where Fm,n is the vector

space of all m×n matrices and 〈 , 〉F is the Frobenius inner product defined in Example 6.2.4.
The associated inner product norm is called the Frobenius norm and is given by

‖A‖F =
√
〈A,A〉F =

√
tr

(
A∗A

)
.

If A = [Aij ], with i = 1, · · · ,m and j = 1, · · · , n, then

‖A‖F =
( m∑

i=1

n∑

j=1

|Aij |2
)1/2

.

C

Example 6.2.9: Find an explicit expression for the Frobenius norm of any element A ∈ F2,2.

Solution: The Frobenius norm of an arbitrary matrix A =
[
A11 A12

A21 A22

]
∈ F2,2 is given by

‖A‖2F = tr
([

A11 A21

A12 A22

] [
A11 A12

A21 A22

] )
.

Since we are only interested in the diagonal elements of the matrix product in the equation
above, we obtain

‖A‖2F = tr
[|A11|2 + |A21|2 ∗

∗ |A12|2 + |A22|2
]

which gives the formula

‖A‖2F = |A11|2 + |A12|2 + |A21|2 + |A22|2.

This is the explicit expression of the sum ‖A‖F =
( 2∑

i=1

2∑

j=1

|Aij |2
)1/2

. C

The inner product norm function has the following properties.

Theorem 6.2.5. The inner product norm introduced in Definition 6.2.3 satisfies that for
every x, y ∈ V and every a ∈ F holds,

(a) ‖x‖ > 0, and ‖x‖ = 0 iff x = 0, (Positive definiteness);
(b) ‖ax‖ = |a| ‖x‖, (Scaling);
(c) ‖x + y‖ 6 ‖x‖+ ‖y‖, (Triangle inequality).

Proof of Theorem 6.2.5: Properties (a) and (b) are straightforward to show from the
definition of inner product, and their proof is left as an exercise. We show here how to
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obtain the triangle inequality, property (c). Given any vectors x, y ∈ V holds

‖x + y‖2 = 〈(x + y), (x + y)〉
= ‖x‖2 + 〈x,y〉+ 〈y,x〉+ ‖y‖2
6 ‖x‖2 + 2 |〈x,y〉|+ ‖y‖2

6 ‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2 =
(‖x‖+ ‖y‖)2

,

where the last inequality comes from the Cauchy-Schwarz inequality. We then conclude that
‖x + y‖2 6

(‖x‖+ ‖y‖)2. This establishes the Theorem. ¤
6.2.3. Norm distance. The norm on an inner product space determines a particular notion
of distance between vectors. After we introduce this norm we show its main properties.

Definition 6.2.6. The norm distance between two vectors in a vector space V with a
norm function ‖ ‖ : V → R is the value of the function d : V × V → R given by

d(x,y) = ‖x− y‖.

Theorem 6.2.7. The norm distance in Definition 6.2.6 satisfies for every x, y, z ∈ V that
(a) d(x,y) > 0, and d(x,y) = 0 iff x = y, (Positive definiteness);
(b) d(x,y) = d(y,x), (Symmetry);
(c) d(x,y) 6 d(x, z) + d(z,y), (Triangle inequality).

Proof of Theorem 6.2.7: Properties (a) and (b) are straightforward from properties (a)
and (b), and their proof are left as an exercise. We show how the triangle inequality for the
distance comes from the triangle inequality for the norm. Indeed

d(x,y) = ‖x− y‖ = ‖(x− z)− (y− z)‖ 6 ‖x− z‖+ ‖y− z‖ = d(x, z) + d(z,y),

where we used the symmetry of the distance function on the last term above. This establishes
the Theorem. ¤

The presence of an inner product, and hence a norm and a distance, on a vector space
permits to introduce the notion of convergence of an infinite sequence of vectors. We say
that the sequence {xn}∞n=0 ⊂ V converges to x ∈ V iff

lim
n→∞

d(xn,x) = 0.

Some of the most important concepts related to convergence are closeness of a subspace,
completeness of the vector space, and the continuity of linear operators and linear trans-
formations. In the case of finite dimensional vector spaces the situation is straightforward.
All subspaces are closed, all inner product spaces are complete and all linear operators and
linear transformations are continuous. However, in the case of infinite dimensional vector
spaces, things are not so simple.
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6.2.4. Exercises.

6.2.1.- Determine which of the following
functions 〈 , 〉 : R3 × R3 → R defines
an inner product on R3. Justify your
answers.

(a) 〈x, y〉 = x1y1 + x3y3;
(b) 〈x, y〉 = x1y1 − x2y2 + x3y3;
(c) 〈x, y〉 = 2x1y1 + x2y2 + 4x3y3;
(d) 〈x, y〉 = x2

1 y2
1 + x2

2 y2
2 + x2

3 y2
3 .

We used the standard notation

x =

2
4

x1

x2

x3

3
5 , y =

2
4

y1

y2

y3

3
5 .

6.2.2.- Prove that an inner product func-
tion 〈 , 〉 : V × V → F satisfies the fol-
lowing properties:

(a) 〈x, y 〉 = 0 for all x ∈ V , then y = 0.
(b) 〈ax, y 〉 = a 〈x, y 〉 for all x, y ∈ V .

6.2.3.- Given a matrix M ∈ R2,2 introduce
the function 〈 , 〉M : R2 × R2 → R,

〈y, x〉M = yT Mx.

For each of the matrices M below de-
termine whether 〈 , 〉M defines an inner
product or not. Justify your answers.

(a) M =

»
4 1
1 9

–
;

(b) M =

»
4 −3
3 9

–
;

(c) M =

»
4 1
0 9

–
.

6.2.4.- Fix any A ∈ Rn,n with N(A) = {0}
and introduce M = AT A. Prove that
〈 , 〉M : Rn × Rn → R, given by

〈y, x〉 = yT Mx.

is an inner product in Rn.

6.2.5.- Find k ∈ R such that the matrices
A, B ∈ R2,2 are perpendicular in the
Frobenius inner product,

A =

»
1 2
3 4

–
, B =

»
1 2
k 1

–
.

6.2.6.- Evaluate the Frobenius norm for the
matrices

A =

»
1 −2
−1 2

–
, B =

2
4

0 1 0
0 0 1
1 0 0

3
5 .

6.2.7.- Prove that ‖A‖F = ‖A∗‖F for all
A ∈ Fm,n.

6.2.8.- Consider the vector space P2([0, 1])
with inner product

〈p, q 〉 =

Z 1

0

p(x)q(x) dx.

Find a unit vector parallel to

p(x) = 3− 5x2.
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6.3. Orthogonal vectors

6.3.1. Definition and examples. In the previous Section we introduced the notion of inner
product in a vector space. This structure provides a notion of vector norm and distance
between vectors. In this Section we explore another concept provided by an inner product;
the notion of perpendicular vectors and the notion of angle between vectors in a real vector
space. We start defining perpendicular vectors on any inner product space.

Definition 6.3.1. Two vectors x, y in and inner product space
(
V, 〈 , 〉) are orthogonal or

perpendicular, denoted as x ⊥ y, iff holds 〈x,y〉 = 0.

The Pythagoras Theorem holds on any inner product space.

Theorem 6.3.2. Let
(
V, 〈 , 〉) be an inner product space over the field F.

(a) If F = R, then x ⊥ y ⇔ ‖x− y‖2 = ‖x‖2 + ‖y‖2;
(b) If F = C, then x ⊥ y ⇒ ‖x− y‖2 = ‖x‖2 + ‖y‖2.
Proof of Theorem 6.3.2: Both statements derive from the following equation:

‖x− y‖2 = 〈(x− y), (x− y)〉
= 〈x,x〉+ 〈y,y〉 − 〈x,y〉 − 〈y,x〉
= ‖x‖2 + ‖y‖2 − 2 Re

(〈x,y〉). (6.5)

In the case F = R holds Re
(〈x,y〉) = 〈x,y〉, so Part (a) follows. If F = C, then 〈x,y〉 implies

‖x−y‖2 = ‖x‖2 +‖y‖2, so Part (b) follows. (Notice that the converse statement is not true
in the case F = C, since Eq. (6.5) together with the hypothesis ‖x− y‖2 = ‖x‖2 + ‖y‖2 do
not fix Im

(〈x,y〉).) This establishes the Theorem. ¤
In the case of real vector space the Cauchy-Schwarz inequality stated in Theorem 6.2.2

allows us to define the angle between vectors.

Definition 6.3.3. The angle between two vectors x, y in a real vector inner product space(
V, 〈 , 〉) is the number θ ∈ [0, π] solution of

cos(θ) =
〈x,y〉
‖x‖ ‖y‖ .

Example 6.3.1: Consider the inner product space
(
R2,2, 〈 , 〉F

)
and show that the following

matrices are orthogonal,

A =
[

1 3
−1 4

]
, B =

[−5 2
5 1

]
.

Solution: Since we need to compute the Frobenius inner product 〈A,B〉F , we first compute
the matrix

AT B =
[
1 −1
3 4

] [−5 2
5 1

]
=

[−10 1
5 10

]
.

Therefore 〈A, B〉F = tr
(
AT B

)
= 0, so we conclude that A ⊥ B. C

Example 6.3.2: Consider the vector space V = C∞
(
[−`, `],R

)
with the inner product

〈f , g〉 =
∫ `

−`

f (x)g(x) dx.

Consider the functions un(x) = cos
(

nπx
`

)
and vm(x) = sin

(
mπx

`

)
, where n, m are integers.

(a) Show that un ⊥ vm for all n, m.
(b) Show that un ⊥ um for all n 6= m.
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(c) Show that vn ⊥ vm for all n 6= m.

Solution: Recall the identities

sin(θ) cos(φ) =
1
2
[
sin(θ − φ) + sin(θ + φ)

]
, (6.6)

cos(θ) cos(φ) =
1
2
[
cos(θ − φ) + cos(θ + φ)

]
, (6.7)

sin(θ) sin(φ) =
1
2
[
cos(θ − φ)− cos(θ + φ)

]
. (6.8)

Part (a): Using identity in Eq. (6.6) is simple to show that

〈un, vm〉 =
∫ `

−`

cos
(nπx

`

)
sin

(mπx

`

)
dx

=
1
2

∫ `

−`

[
sin

( (n−m)πx

`

)
+ sin

( (n + m)πx

`

)]
. (6.9)

First, assume that both n−m and n + m are non-zero,

〈un, vm〉 = −1
2

[ `

(n−m)π
cos

( (n−m)πx

`

)∣∣∣
`

−`
+

`

(n + m)π
cos

( (n + m)πx

`

)∣∣∣
`

−`

]
. (6.10)

Since cos((n±m)π) = cos(−(n±m)π), we conclude that both terms above vanish.
Second, in the case that n −m = 0 the first term in Eq. (6.9) vanishes identically and

we need to compute the term with (n + m), which also vanishes by the second term in
Eq. (6.10). Analogously, in the case of (n + m) = 0 the second term in Eq. (6.9) vanishes
identically and we need to compute the term with (n−m) which also vanishes by the first
term in Eq. (6.10). Therefore, 〈un, vm〉 = 0 for all n, m integers, and so un ⊥ vm in this
case.

Part (b): Using identity in Eq. (6.7) is simple to show that

〈un,um〉 =
∫ `

−`

cos
(nπx

`

)
cos

(mπx

`

)
dx

=
1
2

∫ `

−`

[
cos

( (n−m)πx

`

)
+ cos

( (n + m)πx

`

)]
. (6.11)

We know that n−m is non-zero. Now, assume that n + m is non-zero, then

〈un,um〉 =
1
2

[ `

(n−m)π
sin

( (n−m)πx

`

)∣∣∣
`

−`
+

`

(n + m)π
sin

( (n + m)πx

`

)∣∣∣
`

−`

]

=
`

(n−m)π
sin((n−m)π) +

`

(n + m)π
sin((n + m)π). (6.12)

Since sin((n±m)π) = 0 for (n±m) integer, we conclude that both terms above vanish.
In the case of (n + m) = 0 the second term in Eq. (6.11) vanishes identically and we

need to compute the term with (n−m) which also vanishes by the first term in Eq. (6.12).
Therefore, 〈un,um〉 = 0 for all n 6= m integers, and so un ⊥ um in this case.

Part (c): Using identity in Eq. (6.8) is simple to show that

〈vn, vm〉 =
∫ `

−`

sin
(nπx

`

)
sin

(mπx

`

)
dx

=
1
2

∫ `

−`

[
cos

( (n−m)πx

`

)
− cos

( (n + m)πx

`

)]
. (6.13)
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Since the only difference between Eq. (6.13) and (6.11) is the sign of the second term,
repeating the argument done in case (b) we conclude that 〈vn, vm〉 = 0 for all n 6= m
integers, and so vn ⊥ vm in this case. C

6.3.2. Orthonormal basis. We saw that an important property of a basis is that every
vector in a vector space can be decomposed in a unique way in terms of the basis vectors.
This decomposition is particularly simple to find in an inner product space when the basis
is an orthonormal basis. Before we introduce such basis we define an orthonormal set.

Definition 6.3.4. The set U = {u1, · · · ,up}, p > 1, in an inner product space
(
V, 〈 , 〉) is

called an orthonormal set iff for all i, j = 1, · · · , p holds

〈ui,uj〉 =
{ 0 if i 6= j,

1 if i = j.

The set U is called an orthogonal set iff holds that 〈ui,uj〉 = 0 if i 6= j and 〈ui,ui〉 6= 0.

Example 6.3.3: Consider the vector space V = C∞
(
[−`, `],R

)
with the inner product

〈f , g〉 =
∫ `

−`

f (x)g(x) dx.

Show that the set

U =
{
u0 =

1√
2`

, un(x) =
1√
`

cos
(nπx

`

)
, vm(x) =

1√
`

sin
(mπx

`

)}∞
n=1

is an orthonormal set.

Solution: We have shown in Example 6.3.2 that U is an orthogonal set. We only need
to compute the norm of the vectors u0, un and vn, for n = 1, 2, · · · . The norm of the first
vector is simple to compute,

〈u0,u0〉 =
∫ `

−`

1
2`

dx = 1.

The norm of the cosine functions is computed as follows,

〈un,un〉 =
1
`

∫ `

−`

cos2
(nπx

`

)
dx

=
1
2`

∫ `

−`

[
1 + cos

(2nπx

`

)]
dx

= 1 +
`

2nπ

[
sin

(2nπx

`

)∣∣∣
`

−`

]
⇒ 〈un,un〉 = 1.

A similar calculation for the sine functions gives the result

〈vn, vn〉 =
1
`

∫ `

−`

sin2
(nπx

`

)
dx

=
1
2`

∫ `

−`

[
1− cos

(2nπx

`

)]
dx

= 1− `

2nπ

[
sin

(2nπx

`

)∣∣∣
`

−`

]
⇒ 〈vn, vn〉 = 1.

Therefore, U is an orthonormal set. C

A straightforward result is the following:

Theorem 6.3.5. An orthogonal set in an inner product space is linearly independent.
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Proof of Theorem 6.3.5: Let U = {u1, · · · ,up}, p > 1, be an orthogonal set. The zero
vector is not included since 〈ui,ui〉 6= 0 for all i = 1, · · · , p. Let c1, · · · , cp ∈ F be scalars
such that

c1u1 + · · ·+ cpup = 0.

Then, for any ui ∈ U holds

0 = 〈ui, (c1u1 + · · ·+ cpup〉 = c1〈ui,u1〉+ · · ·+ cp〈ui,up〉.
Since the set U is orthogonal, 〈ui,uj〉 = 0 for i 6= j and 〈ui,ui〉 6= 0, so we conclude that

ci〈ui,ui〉 = 0 ⇒ ci = 0, i = 1, · · · , p.

Therefore, U is a linearly independent set. This establishes the Thorem. ¤
Definition 6.3.6. A basis U of an inner product space is called an orthonormal basis
(orthogonal basis) iff the basis U is an orthonormal (orthogonal) set.

Example 6.3.4: Consider the inner product space
(
R2, ·). Determine whether the following

bases are orthonormal, orthogonal or neither:

S =
{

e1 =
[
1
0

]
, e2 =

[
0
1

]}
, U =

{
u1 =

[
1
1

]
, u2 =

[−1
1

]}
, V =

{
v1 =

[
1
3

]
, v2 =

[
3
1

]}
.

Solution: The basis S is orthonormal, since e1 · e2 = 0 and e1 · e1 = e2 · e2 = 1. The basis
U is orthogonal since u1 · u2 = 0, but it is not orthonormal. Finally, the basis V is neither
orthonormal nor orthogonal. C

Theorem 6.3.7. Given the set U = {u1, · · · , up}, p > 1, in the inner product space
(
Fn, ·),

introduce the matrix U = [u1, · · · , up]. Then the following statements hold:
(a) U is an orthonormal set iff matrix U satisfies U∗U = Ip.
(b) U is an orthonormal basis of Fn iff matrix U satisfies U−1 = U∗.

Matrices satisfying the property mentioned in part (b) of Theorem 6.3.7 appear frequently
in Quantum Mechanics, so they are given a name.

Definition 6.3.8. A matrix U ∈ Fn,n is called unitary iff holds U−1 = U∗.

These matrices are called unitary because they do not change the norm of vectors in Fn

equipped with the dot product. Indeed, given any x ∈ Fn with norm ‖x‖, the vector Ux ∈ Fn

has the same norm, since

‖Ux‖2 =
(
Ux

)∗(
Ux

)
= x∗U∗Ux = x∗U−1Ux = x∗x = ‖x‖2.

Proof of Theorem 6.3.7:
Part (a): This is proved by a straightforward computation,

U∗U =




u∗1
...

u∗p




[
u1, · · · , up

]
=




u∗1u1 · · · u∗1up

...
...

u∗pu1 · · · u∗pup


 =




u1 · u1 · · · u1 · up

...
...

up · u1 · · · up · up


 = Ip.

Part (b): It follows from part (a): If U is a basis of Fn, then p = n; since U is an
orthonormal set, part (a) implies U∗U = In. Since U is an n × n matrix, it follows that
U∗ = U−1. This establishes the Theorem. ¤

Example 6.3.5: Consider v1 =




1
1
2


, v2 =




2
0
−1


, in the inner product space

(
R3, ·).

(a) Show that v1 ⊥ v2;
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(b) Find x ∈ R3 such that x ⊥ v1 and x ⊥ v2.
(c) Rescale the elements of {v1, v2, x} so that the new set is an orthonormal set.

Solution:
Part (a):

[
1 1 2

]



2
0
−1


 = 2 + 0− 2 = 0 ⇒ v1 ⊥ v2.

Part (b): We need to find x =




x1

x2

x3


 such that

v1 · x =
[
1 1 2

]



x1

x2

x3


 = 0, v2 · x =

[
2 0 −1

]



x1

x2

x3


 = 0,

The equations above can be written in matrix notation as

AT x = 0, where A =
[
v1, v2

]
=




1 2
1 0
2 −1


 .

Gauss elimination operation on AT imply

[
1 1 2
2 0 −1

]
→

[
1 0 −1/2
0 1 5/2

]
⇒





x1 =
1
2

x3,

x2 = −5
2

x3,

x3 free.

There is a solution for any choice of x3 6= 0, so we choose x3 = 2, that is, x =




1
−5
2


.

Part (c): The vectors v1, v2 and x are mutually orthogonal. Their norms are:

‖v1‖ =
√

6, ‖v2‖ =
√

5, ‖x‖ =
√

30.

Therefore, the orthonormal set is

{
u1 =

1√
6




1
1
2


 , u2 =

1√
5




2
0
−1


 , u3 =

1√
30




1
−5
2




}
.

Finally, notice that the inverse of the matrix

U =




1√
6

2√
5

1√
30

1√
6

0 − 5√
30

2√
6
− 1√

5
2√
30


 is U−1 =




1√
6

1√
6

2√
6

2√
5

0 − 1√
5

1√
30
− 5√

30
2√
30


 = UT .

C

6.3.3. Vector components. Given a basis in a finite dimensional vector space, we know
that every vector in the vector space can be decomposed in a unique way as a linear com-
bination of the basis vectors. What we do not know is a general formula to compute the
vector components in such a basis. However, in the particular case that the vector space
admits an inner product and the basis is an orthonormal basis, we have such formula for
the vector components. The formula is very simple and is the main result in the following
statement.
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Theorem 6.3.9. If
(
V, 〈 , 〉) is an n-dimensional inner product space with an orthonormal

basis U = {u1, · · · ,un}, then every vector x ∈ V can be decomposed as

x = 〈u1,x〉u1 + · · ·+ 〈un,x〉un. (6.14)

Proof of Theorem 6.3.9: Since U is a basis, we know that for all x ∈ V there exist scalars
c1, · · · , cn such that

x = c1u1 + · · ·+ cnun.

Therefore, the inner product 〈ui,x〉 for any i = 1, · · · , n is given by

〈ui,x〉 = c1 〈ui,u1〉+ · · ·+ cn 〈ui,un〉.
Since U is an orthonormal set, 〈ui,x〉 = ci. This establishes the Theorem. ¤

The result in Theorem 6.3.9 provides a remarkable simple formula for vector components
in an orthonormal basis. We will get back to this subject in some depth in Section 7.1.
In that Section we will name the coefficients 〈ui,x〉 in Eq. (6.14) as Fourier coefficients of
the vector x in the orthonormal set U = {u1, · · · ,un}. When the set U is an orthonormal
ordered basis of a vector space V , the coordinate map [ ]u : V → Fn is expressed in terms
of the Fourier coefficients as follows,

[x ]u =



〈u1,x〉

...
〈un,x〉


 .

So, the coordinate map has a simple expression when it is defined by an orthonormal basis.

Example 6.3.6: Consider the inner product space
(
R3, ·) with the standard ordered basis

S, and find the vector components of x =




1
2
3


 in the orthonormal ordered basis

U =
(
u1 =

1√
6




1
1
2


 , u2 =

1√
5




2
0
−1


 , u3 =

1√
30




1
−5
2




)
.

Solution: The vector components of x in the orthonormal basis U are given by

xu =



〈u1, x〉
〈u2, x〉
〈u3, x〉


 ⇒ u =




9√
6

− 1√
5

− 3√
30


 .

Remark: We have done a change of basis, from the standard basis S to the U basis. In
fact, we can express the calculation above as follows

xu = P−1xs, where P = Ius =




1√
6

2√
5

1√
30

1√
6

0 − 5√
30

2√
6
− 1√

5
2√
30


 = U.

Since U is an orthonormal basis, U−1 = UT , so we conclude that

xu = UT xs =




1√
6

1√
6

2√
6

2√
5

0 − 1√
5

1√
30
− 5√

30
2√
30







1
2
3


 =




9√
6

− 1√
5

− 3√
30


 .

C
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6.3.4. Exercises.

6.3.1.- Prove that the following form of the
Pythagoras Theorem holds on complex
vector spaces: Two vectors x, y in an
inner product space

`
V, 〈 , 〉´ over C are

orthogonal iff for all a, b ∈ C holds

‖ax + by‖2 = ‖ax‖2 + ‖by‖2.

6.3.2.- Consider the vector space R3 with
the dot product. Find all vectors x ∈ R3

which are orthogonal to the vector

v =

2
4

1
2
3

3
5 .

6.3.3.- Consider the vector space R3 with
the dot product. Find all vectors x ∈ R3

which are orthogonal to the vectors

v1 =

2
4

1
2
3

3
5 , v2 =

2
4

1
0
1

3
5 .

6.3.4.- Let P3([−1, 1]) be the space of poly-
nomials up to degree three defined on
the interval [−1, 1] ⊂ R with the inner
product

〈p, q 〉 =

Z 1

−1

p(x)q(x) dx.

Show that the set (p0,p1,p2,p3) is an
orthogonal basis of P3, where

p0(x) = 1,

p1(x) = x,

p2(x) =
1

2
(3x2 − 1),

p3(x) =
1

2
(5x3 − 3x).

(These polynomials are the first four of
the Legendre polynomials.)

6.3.5.- Consider the vector space R3 with
the dot product.

(a) Show that the following ordered ba-
sis U is orthonormal,

“ 1√
2

2
4

1
−1
0

3
5 ,

1√
3

2
4

1
1
1

3
5 ,

1√
6

2
4
−1
−1
2

3
5
”
.

(b) Use part (a) to find the components
in the ordered basis U of the vector

x =

2
4

1
0
−2

3
5 .

6.3.6.- Consider the vector space R2,2 with
the Frobenius inner product.

(a) Show that the ordered basis given
by U = (E1, E2, E3, E4) is orthonor-
mal, where

E1 =
1√
2

»
0 1
1 0

–
E2 =

1√
2

»
1 0
0 −1

–

E3 =
1

2

»
1 −1
1 1

–
E4 =

1

2

»
1 1
−1 1

–
.

(b) Use part (a) to find the components
in the ordered basis U of the matrix

A =

»
1 1
1 1

–
.

6.3.7.- Consider the inner product space`
R2,2, 〈 , 〉F

´
, and find the cosine of the

angle between the matrices

A =

»
1 3
2 4

–
, B =

»
2 −2
2 0

–
.

6.3.8.- Find the third column in matrix U
below such that UT = U−1, where

U =

2
4

1/
√

3 1/
√

14 U13

1/
√

3 2/
√

14 U23

1/
√

3 −3/
√

14 U33

3
5 .
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6.4. Orthogonal projections

6.4.1. Orthogonal projection onto subspaces. Given any subspace of an inner product
space, every vector in the vector space can be decomposed as a sum of two vectors; a vector
in the subspace and a vector perpendicular to the subspace. The picture one often has in
mind is a plane in R3 equiped with the dot product, as in Fig. 43. Any vector in R3 can
be decomposed as a vector on the plane plus a vector perpendicular to the plane. In this
Section we provide expressions to compute this type of decompositions. We start splitting
a vector in orthogonal components with respect to a one dimensional subspace. The study
of this simple case describes the main ideas and the main notation used in orthogonal
decompositions. Later on we present the decomposition of a vector onto an n-dimensional
subspace.

Theorem 6.4.1. Fix a vector u 6= 0 in an inner product space
(
V, 〈 , 〉). Given any vector

x ∈ V decompose it as x = xq + xp− where xq ∈ Span({u}). Then, xp− ⊥ u iff holds

xq =
〈u,x〉
‖u‖2 u. (6.15)

Furthermore, in the case that u is a unit vector holds xq = 〈u,x〉u.

The main idea of this decomposition can be understood in the inner product space
(
R2, ·)

and it is sketched in Fig. 42. It is obvious that every vector x can be expressed in many
different ways as the sum of two vectors. What is special of the decomposition in Eq. 6.15
is that xq has the precise length such that xp− is orthogonal to xq (see Fig. 42).

x

u x

x

Figure 42. Orthogonal decomposition of the vector x ∈ R2 onto the sub-
space spanned by vector u.

Proof of Theorem 6.4.1: Since xq ∈ Span({u}), there exists a scalar a such that xq = au.
Therefore u ⊥ xp− iff holds that 〈u,xp−〉 = 0. A straightforward computation shows,

0 = 〈u,xp−〉 = 〈u,x〉 − 〈u,xq〉 = 〈u,x〉 − a 〈u,u〉 ⇔ a =
〈u,x〉
‖u‖2 .

We conclude that the decomposition x = xq + xp− satisfies

xp− ⊥ u ⇔ xq =
〈u,x〉
‖u‖2 u.

In the case that u is a unit vector holds ‖u‖ = 1, so xq is given by xq = 〈u,x〉u. This
establishes the Theorem. ¤
Example 6.4.1: Consider the inner product space

(
R3, ·) and decompose the vector x in

orthogonal components with respect to the vector u, where

x =




3
2
1


 , u =




1
2
3


 .
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Solution: We first compute xq =
u · x
‖u‖2 u. Since

u · x =
[
1 2 3

]



3
2
1


 = 3 + 4 + 3 = 10, ‖u‖2 =

[
1 2 3

]



1
2
3


 = 1 + 4 + 9 = 14,

we obtain xq =
5
7




1
2
3


. We now compute x p− as follows,

x p− = x− xq =




3
2
1


− 5

7




1
2
3


 =

1
7




21
14
7


− 1

7




5
10
15


 =

1
7




16
4
−8


 ⇒ x p− =

4
7




4
1
−2


 .

Therefore, x can be decomposed as

x =
5
7




1
2
3


 +

4
7




4
1
−2


 .

Remark: We can verify that this decomposition is orthogonal with respect to u, since

u · x p− =
4
7

[
1 2 3

]



4
1
−2


 =

4
7

(4 + 2− 6) = 0.

C

We now decompose a vector into orthogonal components with respect to a p-dimensional
subspace with p > 1.

Theorem 6.4.2. Fix an orthogonal set U = {u1, · · · ,up}, with p > 1, in an inner product
space

(
V, 〈 , 〉). Given any vector x ∈ V , decompose it as x = xq + xp− , where xq ∈ Span(U).

Then, xp− ⊥ ui, for i = 1, · · · , p iff holds

xq =
〈u1,x〉
‖u1‖2 u1 + · · ·+ 〈up,x〉

‖up‖2 up. (6.16)

Furthermore, in the case that U is an orthonormal basis holds

xq = 〈u1,x〉u1 + · · ·+ 〈up,x〉up. (6.17)

Remark: The set U in Theorem 6.4.2 must be an orthogonal set. If the vectors u1, · · · ,up

are not mutually orthogonal, then the vector xq computed in Eq. (6.17) is not the orthogonal
projection of vector x, that is, (x − xq) 6⊥ ui for i = 1, · · · , p. Therefore, before using
Eq. (6.17) in a particular application one should verify that the set U one is working with is
in fact an orthogonal set. A particular case of the orthogonal projection of a vector in the
inner product space

(
R3, ·) onto a plane is sketched in Fig. 43.

Proof of Theorem 6.4.2: Since xq ∈ Span(U), there exist scalars ai, for i = 1, · · · , p such
that xq = a1u1+· · ·+apup. The vector xp− ⊥ ui iff holds that 〈ui,xp−〉 = 0. A straightforward
computation shows that, for i = 1, · · · , p holds

0 = 〈ui,xp−〉 = 〈ui,x〉 − 〈ui,xq〉
= 〈ui,x〉 − a1 〈ui,u1〉 − · · · − ap 〈ui,up〉

= 〈ui,x〉 − ai〈ui,ui〉 ⇔ ai =
〈ui,x〉
‖ui‖2 .
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x

u1

u 2
R

3

x

U

x

Figure 43. Orthogonal decomposition of the vector x ∈ R3 onto the sub-
space U spanned by the vectors u1 and u2.

We conclude that the decomposition x = xq + xp− satisfies xp− ⊥ ui for i = 1, · · · , p iff holds

xq =
〈u1,x〉
‖u1‖2 u1 + · · ·+ 〈up,x〉

‖up‖2 up.

In the case that U is an orthonormal set holds ‖ui‖ = 1 for i = 1, · · · , p, so xq is given by
Eq. (6.17). This establishes the Theorem. ¤

Example 6.4.2: Consider the inner product space
(
R3, ·) and decompose the vector x in

orthogonal components with respect to the subspace U , where

x =




1
2
3


 , U = Span

({
u1 =




2
5
−1


 , u2 =



−2
1
1




})
.

Solution: In order to use Eq. (6.16) we need an orthogonal basis of U . So, need need to
verify whether u1 is orthogonal to u2. This is indeed the case, since

u1 · u2 =
[
2 5 −1

]


−2
1
1


 = −4 + 5− 1 = 0.

So now we use u1 and u2 to compute xq using Eq. (6.17). We need the quantities

u1 · x =
[
2 5 −1

]



1
2
3


 = 9, u1 · u1 =

[
2 5 −1

]



2
5
−1


 = 30,

u2 · x =
[−2 1 1

]



1
2
3


 = 3, u2 · u2 =

[−2 1 1
]



−2
1
1


 = 6.

Now is simple to compute xq, since

xq =
9
30




2
5
−1


 +

3
6



−2
1
1


 =

3
10




2
5
−1


 +

1
2



−2
1
1


 =

1
10




6
15
−3


 +

1
10



−10

5
5


 ,

therefore,

xq =
1
10



−4
20
2


 ⇒ xq =

1
5



−2
10
1


 .
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The vector x p− is obtained as follows,

x p− = x− xq =




1
2
3


− 1

5



−2
10
1


 =

1
5




5
10
15


− 1

5



−2
10
1


 =

1
5




7
0
14


 ⇒ x p− =

7
5




1
0
2


 .

We conclude that

x =
1
5



−2
10
1


 +

7
5




1
0
2


 .

Remark: We can verify that x p− ⊥ U , since

u1 · x p− =
7
5

[
2 5 −1

]



1
0
2


 =

7
5

(2 + 0− 2) = 0,

u2 · x p− =
7
5

[−2 1 1
]




1
0
2


 =

7
5

(2 + 0− 2) = 0.

C

6.4.2. Orthogonal complement. We have seen that any vector in an inner product space
can be decomposed as a sum of orthogonal vectors, that is, x = xq + xp− with 〈xq,xp−〉 = 0.
Inner product spaces can be decomposed in a somehow analogous way as a direct sum of
two mutually orthogonal subspaces. In order to understand such decomposition, we need to
introduce the notion of the orthogonal complement of a subspace. Then we will show that
a finite dimensional inner product space is the direct sum of a subspace and it orthogonal
complement. It is precisely this result that motivates the word “complement” in the name
orthogonal complement of a subspace.

Definition 6.4.3. The orthogonal complement of a subspace W in an inner product
space

(
V, 〈 , 〉), denoted as W⊥, is the set W⊥ = {u ∈ V : 〈u,w〉 = 0 ∀ w ∈W}.

Example 6.4.3: In the inner product space
(
R3, ·), the orthogonal complement to a line is

a plane, and the orthogonal complement to a plane is a line, as it is shown in Fig. 44. C

0

R
U

U

3

V

R
3

0

V

Figure 44. The orthogonal complement to the plane U is the line U⊥,
and the orthogonal complement to the line V is the plane V ⊥.

As the sketch in Fig. 44 suggests, the orthogonal complement of a subspace is a subspace.

Theorem 6.4.4. The orthogonal complement W⊥ of a subspace W in an inner product
space is also a subspace.
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Proof of Theorem 6.4.4: Let u1, u2 ∈ W⊥, that is, 〈ui,w〉 = 0 for all w ∈ W and
i = 1, 2. Then, any linear combination au1 + bu2 also belongs to W⊥, since

〈(au1 + bu2),w〉 = a 〈u1,w〉+ b 〈u2,w〉 = 0 + 0 ∀w ∈W.

This establishes the Theorem. ¤

Example 6.4.4: Find W⊥ for the subspace W = Span
({

w1 =



−1
2
3




})
in

(
R3, ·).

Solution: We need to find the set of all x ∈ R3 such that x · w1 = 0. That is,

[−1 2 3
]



x1

x2

x3


 = 0 ⇒ x1 = 2x2 + 3x3.

The solution is

x =




2x2 + 3x3

x2

x3


 ⇒ x =




2
1
0


 x2 +




3
0
1


 x3,

hence we obtain

W⊥ = Span
({




2
1
0


 ,




3
0
1




})
.

The orthogonal complement of a line is a plane, as sketched in the second picture in Fig. 44.
Remark: We can verify that the result is correct, since

[−1 2 3
]




2
1
0


 = −2 + 2 + 0 = 0,

[−1 2 3
]




3
0
1


 = −3 + 0 + 3 = 0.

C

Example 6.4.5: Find W⊥ for the subspace W = Span
({

w1 =




1
2
3


 , w2 =




3
2
1




})
in

(
R3, ·).

Solution: We need to find the set of all x ∈ R3 such that x ·w1 = 0 and x ·w2 = 0. That is,

[
1 2 3
3 2 1

] 


x1

x2

x3


 = 0

We an use Gauss elimination to find the solution,

[
1 2 3
3 2 1

]
→

[
1 0 −1
0 1 2

]
⇒





x1 = x3,

x2 = −2x3,

x3 free.
⇒ x =




1
−2
1


 x3,

hence we obtain

W⊥ = Span
({




1
−2
1




})
.

So, the orthogonal complement of a pane is a line, as sketched in the first picture in Fig. 44.
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Remark: We can verify that the result is correct, since

[
1 2 3

]



1
−2
1


 = 1− 4 + 3 = 0,

[
3 2 1

]



1
−2
1


 = 3− 4 + 1 = 0.

C

As we mentioned above, the reason for the word “complement” in the name of an orthog-
onal complement is that the vector space can be split into the sum of two subspaces with
zero intersection. We summarize this below.

Theorem 6.4.5. If W is a subspace in a finite dimensional inner product space V , then

V = W ⊕W⊥.

Proof of Theorem 6.4.5: We first show that V = W + W⊥. In order to do that,
first choose an orthonormal basis W = {w1, · · · ,wp} for W , we here we have assumed
dim W = p 6 n = dim V . Then, for every vector x ∈ V holds that it can be decomposed as

x = xq + xp− , xq = 〈w1,x〉w1 + · · ·+ 〈wp,x〉wp, xp− = x− xq.

Theorem 6.4.2 says that xp− ⊥ wi for i = 1, · · · , p. This implies that xp− ∈ W⊥ and, since
x is an arbitrary vector in V , we have established that V = W + W⊥. We now show that
W ∩ W⊥ = {0}. Indeed, if u ∈ W⊥, then 〈u,w〉 = 0 for all w ∈ W . If u ∈ W , then
choosing w = u in the equation above we get 〈u,u〉 = 0, which implies u = 0. Therefore,
W ∩W⊥ = {0} and we conclude that V = W ⊕W⊥. This establishes the Theorem. ¤

Since the orthogonal complement W⊥ of a subspace W is itself a subspace, we can
compute (W⊥)⊥. The following statement says that the result is the original subspace W .

Theorem 6.4.6. If W is a subspace in an finite dimensional inner product space, then
(
W⊥)⊥ = W.

Proof of Theorem 6.4.6: First notice that W ⊂ (
W⊥)⊥. Indeed, given any fixed vector

w ∈ W , the definition of W⊥ implies that every vector u ∈ W⊥ satisfies 〈w,u〉 = 0. This
condition says that w ∈ (

W⊥)⊥, hence we conclude W ⊂ (
W⊥)⊥. Second, Theorem 6.4.2

says that
V = W⊥ ⊕ (

W⊥)⊥
.

In particular, this decomposition implies that dim V = dim W⊥ + dim
(
W⊥)⊥. Again The-

orem 6.4.2 also says that
V = W ⊕W⊥,

which in particular implies that dim V = dim W + dim W⊥. These last two results put
together imply dim W = dim

(
W⊥)⊥. It is from this last result together with our previous

result, W ⊂ (
W⊥)⊥, that we obtain W =

(
W⊥)⊥. This establishes the Theorem. ¤
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6.4.3. Exercises.

6.4.1.- Consider the inner product space`
R3, · ´ and use Theorem 6.4.1 to find

the orthogonal decomposition of vector
x along vector u, where

x =

2
4

1
2
3

3
5 , u =

2
4

1
1
1

3
5 .

6.4.2.- Consider the subspace W given by

Span
“n

w1 =

2
4

1
2
1

3
5 , w2 =

2
4

2
−1
3

3
5
o”

in the inner product space
`
R3, · ´.

(a) Find an orthogonal decomposition
of the vector w2 with respect to the
vector w1. Using this decomposi-
tion, find an orthogonal basis for
the space W .

(b) Find the decomposition of the vec-
tor x below in orthogonal compo-
nents with respect to the subspace
W , where

x =

2
4

4
3
0

3
5 .

6.4.3.- Consider the subspace W given by

Span
“n

w1 =

2
4

2
0
−2

3
5 , w2 =

2
4

2
−1
0

3
5 ,
o”

in the inner product space
`
R3, · ´. De-

compose the vector x below into orthog-
onal components with respect to W ,
where

x =

2
4

1
1
−1

3
5 .

(Notice that w1 6⊥ w2.)

6.4.4.- Given the matrix A below, find a ba-
sis for the space R(A)⊥, where

A =

2
4

1 2
1 1
2 0

3
5 .

6.4.5.- Consider the subspace

W = Span
n
2
4

1
−1
2

3
5
o

in the inner product space
`
R3, · ´.

(a) Find a basis for the space W⊥, that
is, find a basis for the orthogonal
complement of the space W .

(b) Use Theorem 6.4.1 to transform the
basis of W⊥ found in part (a) into
an orthogonal basis.

6.4.6.- Consider the inner product space`
R4, · ´, and find a basis for the orthog-

onal complement of the subspace W
given by

W = Span
“n
2
664

1
2
0
3

3
775 ,

2
664

2
4
1
6

3
775
o”

.

6.4.7.- Let X and Y be subspaces of a fi-
nite dimensional inner product space`
V, 〈 , 〉´. Prove the following:

(a) X ⊂ Y ⇒ Y ⊥ ⊂ X⊥;

(b) (X + Y )⊥ = X⊥ ∩ Y ⊥;
(c) Use part (b) to show that

(X ∩ Y )⊥ = X⊥ + Y ⊥.
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6.5. Gram-Schmidt method

We now describe the Gram-Schmidt orthogonalization method, which is a method to
transform a linearly independent set of vectors into an orthonormal set. The method is
based on projecting the i-th vector in the set onto the subspace spanned by the previous
(i− 1) vectors.

Theorem 6.5.1 (Gram-Schmidt). Let X = {x1, · · · ,xp} be a linearly independent set in
an inner product space

(
V, 〈 , 〉). If the set Y = {y1, · · · ,yp} is defined as follows,

y1 = x1,

y2 = x2 − 〈y1,x2〉
‖y1‖2

y1,

...

yp = xp − 〈y1,xp〉
‖y1‖2

y1 − · · · −
〈y(p−1),xp〉
‖y(p−1)‖2

y(p−1),

then Y is an orthogonal set with Span(Y ) = Span(X). Furthermore, the set

Z =
{
z1 =

y1

‖y1‖
, · · · , zp =

yp

‖yp‖
}

is an orthonormal set with Span(Z) = Span(Y ).

Remark: Using the notation in Theorem 6.4.2 we can write y2 = x2 p− , where the projec-
tion is onto the subspace Span({y1}). Analogously, yi = xi p− , for i = 2, · · · , p, where the
projection is onto the subspace Span({y1, · · · ,yi−1}).
Proof of Theorem 6.5.1: We first show that Y is an orthogonal set. It is simple to see
that y2 ∈ Span({y1})⊥, since

〈y1,y2〉 = 〈y1,x2〉 − 〈y1,x2〉
‖y1‖2

〈y1,y1〉 = 0.

Assume that yi ∈ Span({y1, · · · ,yi−1})⊥, we then show that yi+1 ∈ Span({y1, · · · ,yi})⊥.
Indeed, for j = 1, · · · , i holds

〈yj ,yi+1〉 = 〈yj ,xi+1〉 −
〈yj ,xi+1〉
‖yj‖2

〈yj ,yj〉 = 0,

where we used that yj ∈ Span({y1, · · · ,yi−1})⊥, for all j = 1, · · · , i. Therefore, Y is an
orthogonal set (and so, a linearly independent set).

The proof that Span(X) = Span(Y ) has two steps: On the one hand, the elements in Y
are linear combinations of elements in X, hence Span(Y ) ⊂ Span(X); on the other hand
dimSpan(X) = dimSpan(Y ), since X and Y are both linearly independent sets with the
same number of elements We conclude that Span(X) = Span(Y ). It is straightforward to
see that Z is an orthonormal set, and since every element zi ∈ Z is proportional to every
yi ∈ Y , then Span(Y ) = Span(Z). This establishes the Theorem. ¤

Example 6.5.1: Use the Gram-Schmidt method to find an orthonormal basis for the inner
product space

(
R3, ·) from the ordered basis

X =
(
x1 =




1
1
0


 , x2 =




2
1
0


 , x3 =




1
1
1




)
.
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Solution: We first find an orthogonal basis. The first element is

y1 = x1 =




1
1
0


 ⇒ ‖y1‖2 = 2.

The second element is
y2 = x2 − y1 · x2

‖y1‖2 y1,

where

y1 · x2 =
[
1 1 0

]



2
1
0


 = 3.

A simple calculation shows

y2 =




2
1
0


− 3

2




1
1
0


 =

1
2




4
2
0


− 1

2




3
3
0


 =

1
2




1
−1
0


 ,

therefore,

y2 =
1
2




1
−1
0


 ⇒ ‖y2‖2 =

1
2
.

Finally, the last element is

y3 = x3 − y1 · x3

‖y1‖2 y1,−y2 · x3

‖y2‖2 y2,

where

y1 · x3 =
[
1 1 0

]



1
1
1


 = 2, y2 · x3 =

1
2

[
1 −1 0

]



1
1
1


 = 0.

Another simple calculation shows

y3 =




1
1
1


− 2

2




1
1
0


 =




0
0
1


 ,

therefore,

y3 =




0
0
1


 ⇒ ‖y3‖2 = 1.

The set Y = {y1, y2, y3} is an orthogonal set, while an orthonormal set is given by

Z =
{

z1 =
1√
2




1
1
0


 , z2 =

1√
2




1
−1
0


 , z3 =




0
0
1




}
.

C

Example 6.5.2: Consider the vector space P3([−1, 1]) with the inner product

〈p, q 〉 =
∫ 1

−1

p(x)q(x) dx.

Given the basis {p0 = 1, p1 = x, p2 = x2, p3 = x3}, use the Gram-Schmidt method
starting with the vector p0 to find an orthogonal basis for P3([−1, 1]).
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Solution: The first element in the new basis is

q0 = p0 = 1 ⇒ ‖q0‖2 =
∫ 1

−1

dx = 2.

The second element is

q1 = p1 −
〈q0,p1〉
‖q0‖2

q0.

It is simple to see that

〈q0,p1〉 =
∫ 1

−1

x dx =
1
2
x2

∣∣∣
1

−1
= 0.

So we conclude that

q1 = p1 = x ⇒ ‖q1‖2 =
∫ 1

−1

x2 dx =
1
3
x3

∣∣∣
1

−1
⇒ ‖q1‖2 =

2
3
.

The third element in the basis is

q2 = p2 −
〈q0,p2〉
‖q0‖2

q0 −
〈q1,p2〉
‖q1‖2

q1.

It is simple to see that

〈q0,p2〉 =
∫ 1

−1

x2 dx =
1
3
x3

∣∣∣
1

−1
=

2
3
,

〈q1,p2〉 =
∫ 1

−1

x3 dx =
1
4
x4

∣∣∣
1

−1
= 0.

Hence we obtain

q2 = p2 −
2
3

1
2
q0 = x2 − 1

3
⇒ q2 =

1
3

(3x2 − 1).

The norm square of this vector is

‖q2‖2 =
1
9

∫ 1

−1

(3x2 − 1)(3x2 − 1) dx

=
1
9

∫ 1

−1

(9x4 − 6x2 + 1) dx

=
1
9

(9
5
x5 − 2x3 + x

)∣∣∣
1

−1

=
8
45

.

Finally, the fourth vector of the orthogonal basis is given by

q3 = p3 −
〈q0,p3〉
‖q0‖2

q0 −
〈q1,p3〉
‖q1‖2

q1 −
〈q1,p3〉
‖q2‖2

q2.

It is simple to see that

〈q0,p3〉 =
∫ 1

−1

x3 dx =
1
4
x4

∣∣∣
1

−1
= 0,

〈q1,p3〉 =
∫ 1

−1

x4 dx =
1
5
x5

∣∣∣
1

−1
=

2
5
,

〈q2,p3〉 =
1
3

∫ 1

−1

(3x2 − 1) x3 dx =
1
3

(1
2
x6 − 1

4
x4

)∣∣∣
1

−1
= 0.
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Hence we obtain

q3 = p3 −
2
5

3
2
q1 = x3 − 3

5
x ⇒ q3 =

1
5
(5x3 − 3x).

The orthogonal basis is then given by
{
q0 = 1, q1 = x, q2 =

1
3

(3x2 − 1), q3 =
1
5
(5x3 − 3x)

}
.

These polynomials are proportional to the first three Legendre polynomials. The Legendre
polynomials form an orthogonal set in the space P∞([−1, 1]) of polynomials of all degrees.
They play an important role in physics, since Legendre polynomials are solution of a par-
ticular differential equation that often appears in physics. C
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6.5.1. Exercises.

6.5.1.- Find an orthonormal basis for the
subspace of R3 spanned by the vectors

n
u1 =

2
4
−2
2
−1

3
5 , u2 =

2
4

1
−3
1

3
5
o

,

using the Gram-Schmidt process start-
ing with the vector u1.

6.5.2.- Let W ⊂ R3 be the subspace

Span
n

u1 =

2
4

0
2
0

3
5 , u2 =

2
4

3
1
4

3
5
o

.

(a) Find an orthonormal basis for W
using the Gram-Schmidt method
starting with the vector u1.

(b) Decompose the vector x below as

x = xq + xp− ,

with xq ∈ W and xp− ∈ W⊥, where

x =

2
4

5
1
0

3
5 .

6.5.3.- Knowing that the column vectors in
matrix A below form a linearly indepen-
dent set, use the Gram-Schmidt method
to find an orthonormal basis for R(A),
where

A =

2
4

1 2 5
0 2 0
1 0 −1

3
5 .

6.5.4.- Use the Gram-Schmidt method to
find an orthonormal basis for R(A),
where

A =

2
4

1 2 1
0 2 −2
1 0 3

3
5 .

6.5.5.- Consider the vector space P2([0, 1])
with inner product

〈p, q 〉 =

Z 1

0

p(x)q(x) dx.

Use the Gram-Schmidt method on the
ordered basis`

p0 = 1, p1 = x, p2 = x2´,
starting with vector p0, to obtain an or-
thogonal basis for P2([0, 1]).
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6.6. The adjoint operator

6.6.1. The Riesz Representation Theorem. The Riesz Representation Theorem is a
statement concerning linear functionals on an inner product space. Recall that a linear
functional on a vector space V over a scalar field F is a linear function f : V → F, that is,
for all x, y ∈ V and all a, b ∈ F holds f(ax + by) = a f(x) + b f(y) ∈ F. An example of a
linear functional on R3 is the function

R3 3 x =




x1

x2

x3


 7→ f(x) = 3x1 + 2x2 + x3 ∈ R.

This function can be expressed in terms of the dot product in R3 as follows

f(x) = u · x, u =




3
2
1


 .

The Riesz Representation Theorem says that what we did in this example can be done in the
general case. In an inner product space

(
V, 〈 , 〉) every linear functional f can be expressed

in terms of the inner product.

Theorem 6.6.1. Consider a finite dimensional inner product space
(
V, 〈 , 〉) over the scalar

field F. For every linear functional f : V → F there exists a unique vector uf ∈ V such that
holds

f(v) = 〈uf , v〉 ∀v ∈ V.

Proof of Theorem 9.4.1: Introduce the set

N = {v ∈ V : f(v) = 0 } ⊂ V.

This set is the analogous to linear functionals of the null space of linear operators. Since f is
a linear function the set N is a subspace of V . (Proof: Given two elements v1, v2 ∈ N and
two scalars a, b ∈ F, holds that f(av1 +bv2) = a f(v1)+b f(v2) = 0+0, so (av1 +bv2) ∈ N .)
Introduce the orthogonal complement of N , that is,

N⊥ = {w ∈ V : 〈w, v〉 = 0 ∀v ∈ V },
which is also a subspace of V . If N⊥ = {0}, then N =

(
N⊥)⊥ =

({0})⊥ = V . Since the
null space of f is the whole vector space, the functional f is identically zero, so only for the
choice uf = 0 holds f(v) = 〈0, v〉 for all v ∈ V .

In the case that N⊥ 6= {0} we now show that this space cannot be very big, in fact it
has dimension one, as the following argument shows. Choose ũ ∈ N⊥ such that f(ũ) = 1.
Then notice that for every w ∈ N⊥ the vector w− f(w)ũ is trivially in N⊥ but it is also in
N , since

f
(
w− f(w) ũ

)
= f(w)− f(w) f(ũ) = f(w)− f(w) = 0.

A vector both in N and N⊥ must vanish, so w = f(w) ũ. Then every vector in N⊥ is
proportional to ũ, so dim N⊥ = 1. This information is used to split any vector v ∈ V as
follows v = a ũ + x where x ∈ V and a ∈ F. It is clear that

f(v) = f(a ũ + x) = a f(ũ) + f(x) = a f(ũ) = a.

However, the function with values g(v) =
〈 ũ

‖ũ‖2 , v
〉

has precisely the same values as f ,

since for all v ∈ V holds

g(v) =
〈 ũ

‖ũ‖2 , v
〉

=
〈 ũ

‖ũ‖2 , (a ũ + x)
〉

=
a

‖ũ‖2 〈ũ, ũ〉+ 1
‖ũ‖2 〈ũ,x〉 = a.
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Therefore, choosing uf = ũ/‖ũ‖2, holds that

f(v) = 〈uf , v〉 ∀v ∈ V.

Since dim N⊥ = 1, the choice of uf is unique. This establishes the Theorem. ¤

6.6.2. The adjoint operator. Given a linear operator defined on an inner product space,
a new linear operator can be defined through an equation involving the inner product.

Proposition 6.6.2. If T ∈ L(V ) is a linear operator on a finite-dimensional inner product
space

(
V, 〈 , 〉), then there exists a unique linear operator T ∗ ∈ L(V ), called the adjoint of

T, such that for all vectors u, v ∈ V holds

〈v,T ∗(u)〉 = 〈T(v),u〉.
Proof of Proposition 9.4.2: We first establish the following statement: For every vector
u ∈ V there exists a unique vector w ∈ V such that

〈T(v),u〉 = 〈v,w〉 ∀v ∈ V. (6.18)

The proof starts noticing that for a fixed u ∈ V the scalar-valued function fu : V → F
given by fu(v) = 〈u,T(v)〉 is a linear functional. Therefore, the Riesz Representation
Theorem 6.6.1 implies that there exists a unique vector w ∈ V such that fu(v) = 〈w, v〉.
This establishes that for every vector u ∈ V there exists a unique vector w ∈ V such that
Eq. (6.18) holds. Now that this statement is proven we can define a map, that we choose
to denote as T ∗ : V → V , given by u 7→ T ∗(u) = w. We now show that this map T ∗ is
linear. Indeed, for all u1, u2 ∈ V and all a, b ∈ F holds

〈v,T ∗(au1 + bu2)〉 = 〈T(v), (au1 + bu2)〉 ∀v ∈ V,

= a 〈T(v),u1〉+ b 〈T(v),u2)〉
= a〈v,T ∗(u1)〉+ b〈v,T ∗(u2)〉
=

〈
v,

[
aT ∗(u1) + bT ∗(u2)

]〉 ∀v ∈ V,

hence T ∗(au1 + bu2) = aT ∗(u1) + bT ∗(u2). This establishes the Proposition. ¤
The next result relates the adjoint of a linear operator with the concept of the adjoint

of a square matrix introduced in Sect. 2.2. Recall that given a basis in the vector space,
every linear operator has associated a unique square matrix. Let us use the notation [T ]
and [T ∗] for the matrices on a given basis of the operators T and T ∗, respectively.

Proposition 6.6.3. Let
(
V, 〈 , 〉) be a finite-dimensional vector space, let V be an orthonor-

mal basis of V , and let [T ] be the matrix of the linear operator T ∈ L(V ) in the basis V.
Then, the matrix of the adjoint operator T ∗ in the basis V is given by [T ∗] = [T ]∗.

Proposition 6.6.3 says that the matrix of the adjoint operator is the adjoint of the matrix
of the operator, however this is true only in the case that the basis used to compute the
respective matrices is orthonormal. If the basis is not orthonormal, the relation between
the matrices [T ] and [T ∗] is more involved.
Proof of Proposition 6.6.3: Let V = {e1, · · · , en} be an orthonormal basis of V , that is,

〈ei, ej〉 =
{ 0 if i 6= j,

1 if i = j.

The components of two arbitrary vectors u, v ∈ V in the basis V is denoted as follows

u =
∑

i

uiei, v =
∑

i

viei.
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The action of the operator T can also be decomposed in the basis V as follows

T(ej) =
∑

i

[T ]ijei, [T ]ij = [T(ej)]i.

We use the same notation for the adjoint operator, that is,

T ∗(ej) =
∑

i

[T ∗]ijei, [T ∗]ij = [T ∗(ej)]i.

The adjoint operator is defined such that the equation 〈v,T ∗(u)〉 = 〈T(v),u〉 holds for all
u, v ∈ V . This equation can be expressed in terms of components in the basis V as follows

∑

ijk

〈
viei, uj [T ∗(ej)]kek

〉
=

∑

ijk

〈
vi[T(ei)]kek, ujej

〉
,

that is, ∑

ijk

viuj [T ∗]kj〈ei, ek〉 =
∑

ijk

vi[T ]kiuj〈ek, ej〉.

Since the basis V is orthonormal we obtain the equation
∑

ij

viuj [T ∗]ij =
∑

ijk

vi[T ]jiuj ,

which holds for all vectors u, v ∈ V , so we conclude

[T ∗]ij = [T ]ji ⇔ [T ∗] = [T ]
T ⇔ [T ∗] = [T ]∗.

This establishes the Proposition. ¤

Example 6.6.1: Consider the inner product space
(
C3, ·). Find the adjoint of the linear

operator T with matrix in the standard basis of C3 given by

[T(x)] =




x1 + 2ix2 + ix3

ix1 − x3

x1 − x2 + ix3


 , [x] =




x1

x2

x3


 .

Solution: The matrix of this operator in the standard basis of C3 is given by

[T ] =




1 2i i
i 0 −1
1 −1 i


 .

Since the standard basis is an orthonormal basis with respect to the dot product, Proposi-
tion 6.6.3 implies that

[T ∗] = [T ]∗ =




1 2i i
i 0 −1
1 −1 i



∗

=




1 −i 1
−2i 0 −1
−i −1 −i


 ⇒ [T ∗(x)] =




x1 − ix2 + x3

−2ix1 − x3

−ix1 − x2 − ix3


 .

C

6.6.3. Normal operators. Recall now that the commutator of two linear operators T,
S ∈ L(V ) is the linear operator [T,S] ∈ L(V ) given by

[T,S](u) = T(S(u))− S(T(u)) ∀u ∈ V.

Two operators T, S ∈ L(V ) are said to commute iff their commutator vanishes, that is,
[T,S] = 0. Examples of operators that commute are two rotations on the plane. Examples
of operators that do not commute are two arbitrary rotations in space.
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Definition 6.6.4. A linear operator T defined on a finite-dimensional inner product space(
V, 〈 , 〉) is called a normal operator iff holds [T,T ∗] = 0, that is, the operator commutes

with its adjoint.

An interesting characterization of normal operators is the following: A linear operator
T on an inner product space is normal iff ‖T(u)‖ = ‖T ∗(u)‖ holds for all u ∈ V . Normal
operators are particularly important because for these operators hold the Spectral Theorem,
which we study in Chapter 9.

Two particular cases of normal operators are often used in physics. A linear operator T
on an inner product space is called a unitary operator iff T ∗ = T−1, that is, the adjoint
is the inverse operator. Unitary operators are normal operators, since

T ∗ = T−1 ⇒
{

TT ∗ = I,

T ∗T = I,
⇒ [T,T ∗] = 0.

Unitary operators preserve the length of a vector, since

‖v‖2 = 〈v, v〉 = 〈v,T−1(T(v))〉 = 〈v,T ∗(T(v))〉 = 〈T(v),T(v)〉 = ‖T(v)‖2.
Unitary operators defined on a complex inner product space are particularly important in
quantum mechanics. The particular case of unitary operators on a real inner product space
are called orthogonal operators. So, orthogonal operators do not change the length of a
vector. Examples of orthogonal operators are rotations in R3.

A linear operator T on an inner product space is called an Hermitian operator iff
T ∗ = T, that is, the adjoint is the original operator. This definition agrees with the
definition of Hermitian matrices given in Chapter 2.

Example 6.6.2: Consider the inner product space
(
C3, ·) and the linear operator T with

matrix in the standard basis of C3 given by

[T(x)] =




x1 − ix2 + x3

ix1 − x3

x1 − x2 + x3


 , [x] =




x1

x2

x3


 .

Show that T is Hermitian.

Solution: We need to compute the adjoint of T. The matrix of this operator in the
standard basis of C3 is given by

[T ] =




1 −i 1
i 0 −1
1 −1 1


 .

Since the standard basis is an orthonormal basis with respect to the dot product, Proposi-
tion 6.6.3 implies that

[T ∗] = [T ]∗ =




1 −i 1
i 0 −1
1 −1 1



∗

=




1 −i 1
i 0 −1
1 −1 1


 = [T ].

Therefore, T ∗ = T. C

6.6.4. Bilinear forms.

Definition 6.6.5. A bilinear form on a vector space V over F is a function a : V ×V → F
linear on both arguments, that is, for all u, v1, v2 ∈ V and all b1, b2 ∈ F holds

a
(
u, (b1v1 + b2v2)

)
= b1a(u, v1) + b2a(u, v2),

a
(
(b1v1 + b2v2),u

)
= b1a(v1,u) + b2a(v2,u).
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The bilinear form a : V × V → F is called symmetric iff for all u, v ∈ V holds

a(u, v) = a(v,u).

An example of a symmetric bilinear form is any the inner product on a real vector space.
Indeed, given a real inner product space

(
V, 〈 , 〉), the function 〈 , 〉 : V × V → R is a

symmetric bilinear form, since it is symmetric and

〈u, (b1v1 + b2v2)〉 = b1〈u, v1〉+ b2〈u, v2〉.
We will shortly see that another example of a bilinear form appears on the weak formulation
of the boundary value problem in Eq. (7.30).

On the other hand, an inner product on a complex vector space is not a bilinear form,
since it is conjugate linear on the first argument instead of linear. Such functions are called
sesquilinear forms. That is, a sesquilinear form on a complex vector space V is a function
a : V × V → C that is conjugate linear on the first argument and linear on the second
argument. Sesquilinear forms are important in the case of studying differential equations
involving complex functions.

Definition 6.6.6. Consider a bilinear form a : V × V → F on an inner product space(
V, 〈 , 〉) over F. The bilinear form a is called positive iff there exists a real number k > 0

such that for all u ∈ V holds
a(u,u) > k ‖u‖2.

The bilinear form a is called bounded iff there exists a real number K > 0 such that for
all u, v ∈ V holds

a(u, v) 6 K ‖u‖ ‖v‖.
An example of a positive bilinear form is any inner product on a real vector space. The

Schwarz inequality implies that such inner product is also a bounded bilinear form. In fact,
an inner product on a real vector space is a symmetric, positive, bounded bilinear form. We
will shortly see that the bilinear form that appears on a weak formulation of the boundary
value problem in Eq. (7.30) is symmetric, positive and bounded. We will see that these
properties imply the existence and uniqueness of solutions to the weak formulation of the
boundary value problem.
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6.6.5. Exercises.

6.6.1.- . 6.6.2.- .
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Chapter 7. Approximation methods

7.1. Best approximation

The first half of this Section is dedicated to show that the Fourier series approximation of
a function is a particular case of the orthogonal decomposition of a vector onto a subspace
in an inner product space, studied in Section 6.4. Once we realize that it is not difficult to
see why such Fourier approximations are useful. We show that the orthogonal projection
xq of a vector x onto a subspace U is the vector in the subspace U closest to x. This is
the origin of the name “best approximation” for xq. What is intuitively clear in

(
R3, ·) is

true in every inner product space, hence it is true for the Fourier series approximation of
a function. In the second half of this Section we show a deep relation between the Null
space of a matrix and the Range space of the adjoint matrix. The former is the orthogonal
complement of the latter. A consequence of this relation is a simple proof to the property
that a matrix and its adjoint matrix have the same rank. Another consequence is given in
the next Section, where we obtain a simple equation, called the normal equation, to find a
least squares solution of an inconsistent linear system.

7.1.1. Fourier expansions. We have seen that orthonormal bases have a practical ad-
vantage over arbitrary basis. The components [x ]u of a vector x in an orthonormal basis
Un = {u1, · · · ,un} of the inner product space

(
V, 〈 , 〉) are given by the simple expression

[x ]u =



〈u1,x〉

...
〈un,x〉


 ⇔ x = 〈u1,x〉u1 + · · ·+ 〈un,x〉un.

In the case that an orthonormal set Up is not a basis of V , that is, p < dim V , one can always
introduce the orthogonal projection of a vector x ∈ V onto the subspace Up = Span(Up),

xq = 〈u1,x〉u1 + · · ·+ 〈up,x〉up.

We have seen that in this case, xq 6= x. In fact we called the difference vector xp− = x− xq,
since this vector satisfies that xp− ⊥ xq. We now give the projection vector xq a new name.

Definition 7.1.1. The Fourier expansion of a vector x ∈ V with respect to an orthonor-
mal set Up = {u1, · · · ,up} ⊂

(
V, 〈 , 〉) is the unique vector xq ∈ Span(Up) given by

xq = 〈u1,x〉u1 + · · ·+ 〈up,x〉up. (7.1)

The scalars 〈ui,x〉 are the Fourier coefficient of the vector x with respect to the set Up.

A reason to the name “Fourier expansion” to the orthogonal projection of a vector onto
a subspace is given in the following example.

Example 7.1.1: Given the vector space of continuous functions V = C
(
[−`, `],R

)
with

inner product given by 〈f , g〉 =
∫ `

−`

f (x)g(x) dx, find the Fourier expansion of an arbitrary

function f ∈ V with respect to the orthonormal set

UN =
{
u0 =

1√
2`

, un =
1√
`

cos
(nπx

`

)
, vn =

1√
`

sin
(nπx

`

)}N

n=1
.

Solution: Using Eq. (7.1) on a function f ∈ V we get

f q = 〈u0, f 〉u0 +
N∑

n=1

[
〈un, f 〉un + 〈vn, f 〉 vn

]
.
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Introduce the vectors in UN explicitly in the expression above,

f q =
1√
2`
〈u0, f 〉+

N∑
n=1

[ 1√
`
〈un, f 〉 cos

(nπx

`

)
+

1√
`
〈vn, f 〉 sin

(nπx

`

)]
.

Denoting by

a0 =
1√
2`
〈u0, f 〉 an =

1√
`
〈un, f 〉 bn =

1√
`
〈un, f 〉,

then we get that

f q(x) = a0 +
N∑

n=1

[
an cos

(nπx

`

)
+ bn sin

(nπx

`

)]
,

where the coefficients a0, an and bn, for n = 1, · · · , N are the usual Fourier coefficients,

a0 =
1
2`

∫ `

−`

f (x) dx, an =
1
`

∫ `

−`

f (x) cos
(nπx

`

)
dx, bn =

1
`

∫ `

−`

f (x) sin
(nπx

`

)
dx.

C

The example above is a good reason to name Fourier expansion the orthogonal projection
of a vector onto a subspace. We already know that the Fourier expansion xq of a vector x with
respect to a an orthonormal set Up has a particular property, that is, (x − xq) = xp− ∈ U⊥

p .
This property means that xq is the best approximation of the vector x from within the
subspace Span(Up). See Fig. 45 for the case V = R3, with 〈 , 〉 = ·, and Span(U2) two-
dimensional. We highlight this property in the following result.

Theorem 7.1.2 (Best approximation). The Fourier expansion xq of a vector x with
respect to an orthonormal set Up in an inner product space, is the unique vector in the
subspace Span(Up) that is closest to x, in the sense that

‖x− xq‖ < ‖x− y‖ ∀ y ∈ Span(Up)− {xq}.

Proof of Theorem 7.1.2: Recall that xp− = x − xq is orthogonal to Span(U), that is
(x− xq) ⊥ (xq − y) for all y ∈ Span(U). Hence,

‖x− y‖2 = ‖(x− xq) + (xq − y)‖2 = ‖x− xq‖2 + ‖xq − y‖2, (7.2)

where the las equality comes from Pythagoras Theorem. Eq. (7.2) says that ‖x− y‖ is the
smallest iff y = xq and the smallest value is ‖x− xq‖. This establishes the Theorem. ¤

Span ( U )

x

y

(x−y)xR
3

Figure 45. The Fourier expansion xq of the vector x ∈ R3 is the best
approximation of x from within Span(U).
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Example 7.1.2: Given the vector space of continuous functions V = C
(
[−1, 1],R

)
with the

inner product given by 〈f , g〉 =
∫ 1

−1

f (x)g(x) dx, find the Fourier expansion of the function

f (x) = x with respect to the orthonormal set

UN =
{
u0 =

1√
2`

, un =
1√
`

cos
(nπx

`

)
, vn =

1√
`

sin
(nπx

`

)}N

n=1
.

Solution: We use the formulas in Example 7.1.1 above to the function f (x) = x on the
interval [−1, 1], since ` = 1. The coefficient a0 above is given by

a0 =
1
2

∫ 1

−1

x dx =
1
4
(
x2

∣∣1
−1

) ⇒ a0 = 0.

The coefficients an, bn, for n = 1, · · · , N computed with one integration by parts,
∫

x cos(nπx) dx =
x

nπ
sin(nπx) +

1
n2π2

cos(nπx),
∫

x sin(nπx) dx = − x

nπ
cos(nπx) +

1
n2π2

sin(nπx).

The coefficients an vanish, since

an =
∫ 1

−1

x cos(nπx) dx =
[ x

nπ
sin(nπx)

]∣∣∣
1

−1
+

1
n2π2

cos(nπx)
∣∣∣
1

−1
⇒ an = 0.

The coefficients bn are given by

bn =
∫ 1

−1

x sin(nπx) dx = −
[ x

nπ
cos(nπx)

]∣∣∣
1

−1
+

1
n2π2

sin(nπx)
∣∣∣
1

−1
⇒ bn =

2(−1)(n+1)

nπ
.

Therefore, the Fourier expansion of f (x) = x with respect to UN is given by

f q(x) =
2
π

N∑
n=1

(−1)(n+1)

n
sin(nπx).

Remark: First, a simpler proof that the coefficients a0 and an vanish is to realized that we
are integrating an odd function on the interval [−1, 1]. The odd function is the product of
an odd function times an even function. Second, Theorem 7.1.2 tells us that the function
f q above is only combination of the sine and cosine functions in UN that approximates best
the function f (x) = x on the interval [−1, 1]. C

7.1.2. Null and range spaces of a matrix. The null and range spaces associated with a
matrix A ∈ Fm,n and its adjoint matrix A∗ are deeply related.

Theorem 7.1.3. For every matrix A ∈ Fm,n holds N(A) = R(A∗)⊥ and N(A∗) = R(A)⊥.

Since for every subspace W on a finite dimensional inner product space holds (W⊥)⊥ = W ,
we also have the relations

N(A)⊥ = R(A∗), N(A∗)⊥ = R(A).

In the case of real-valued matrices, the Theorem above says that

N(A) = R(AT )⊥ and N(AT ) = R(A)⊥.
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Before we state the proof of this Theorem let us review the following notation: Given
an m × n matrix A ∈ Fm,n, we write it either in terms of column vectors A:j ∈ Fm for
j = 1, · · · , n, or in terms of row vectors Ai: ∈ Fn for i = 1, · · · ,m, as follows,

A =
[
A:1 · · · A:n

]
, A =




A1:

...
Am:


 .

Since the same type of definition holds for the n×m matrix A∗, that is,

A∗ =
[
(A∗):1 · · · (A∗):m

]
, A∗ =




(A∗)1:
...

(A∗)n:


 ,

then we have the relations

(A:j)∗ = (A∗)j:, (Ai:)∗ = (A∗):i.

For example, consider the 2× 3 matrix

A =
[
1 2 3
4 5 6

]
⇒ A:1 =

[
1
4

]
, A:2 =

[
2
5

]
, A:3 =

[
3
6

]
,

A1: =
[
1 2 3

]
,

A2: =
[
4 5 6

]
.
.

The transpose is a 3× 2 matrix that can be written as follows

AT =




1 4
2 5
3 6


 ⇒ (AT ):1 =




1
2
3


 , (AT ):2 =




4
5
6


 ,

(AT )1: =
[
1 4

]
,

(AT )2: =
[
2 5

]
,

(AT )3: =
[
3 6

]
.

.

So, for example we have the relation

(A:3)T =
[
3 6

]
= (AT )3:, (A2:)T =




4
5
6


 = (AT ):2.

Proof of Theorem 7.1.3: We first show that the N(A) = R(A∗)⊥. A vector x ∈ Fn

belongs to N(A) iff holds

Ax = 0 ⇔




A1:

...
Am:


 x = 0 ⇔




[
(A∗):1

]∗
...[

(A∗):m
]∗


 x = 0 ⇔





(A∗):1 · x = 0,

...

(A∗):m · x = 0.

So, x ∈ N(A) iff x is orthogonal to every column vector in A∗, that is, x ∈ R(A∗)⊥.
The equation N(A∗) = R(A)⊥ comes from N(B) = R(B∗)⊥ taking B = A∗. Nevertheless,

we repeat the proof above, just to understand the previous argument. A vector y ∈ Fm

belongs to N(A∗) iff

A∗y = 0 ⇔




(A∗)1:
...

(A∗)n:


 y = 0 ⇔




(A:1)∗
...

(A:n)∗


 y = 0 ⇔





A:1 · y = 0,

...
A:n · y = 0.

So, y ∈ N(A∗) iff y is orthogonal to every column vector in A, that is, y ∈ R(A)⊥. This
establishes the Theorem. ¤
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Example 7.1.3: Verify Theorem 7.1.3 for the matrix A =
[
1 2 3
3 2 1

]
.

Solution: We first find the N(A), that is, all x ∈ R3 solutions of Ay = 0. Gauss operations
on matrix A imply

[
1 2 3
3 2 1

]
→

[
1 0 −1
0 1 2

]
⇒





x1 = x3,

x2 = −2x3,

x3 free,
⇒ N(A) = Span

({



1
−2
1




})
.

It is simple to find R(AT ), since

R(AT ) = Span
({




1
2
3


 ,




3
2
1




})
.

Theorem 7.1.3 is verified, since

[
1 2 3

]



1
−2
1


 = 1−4+3 = 0,

[
3 2 1

]



1
−2
1


 = 3−4+1 = 0 ⇒ N(A) = R(AT )⊥.

Let us verify the same Theorem for AT . We first find N(AT ), that is, all y ∈ R2 solutions of
AT y = 0. Gauss operations on matrix AT imply


1 3
2 2
3 1


→




1 0
0 1
0 0


 ⇒ y =

[
0
0

]
⇒ N(AT ) = {0}.

The space R(A) is given by

R(A) = Span
({[

1
3

]
,

[
2
2

]
,

[
3
1

]})
= Span

({ [
1
3

]
,

[
2
2

]})
= R2.

Since (R2)⊥ = {0}, Theorem 7.1.3 is verified. C

Theorem 7.1.3 provides a simple proof for a result we used in Chapter 2.

Theorem 7.1.4. For every matrix A ∈ Fm,n holds that rank(A) = rank(A∗).

Proof of Theorem 7.1.4: Recall the Nullity-Rank result in Corollary 5.1.8, which says
that for all matrix A ∈ Fm,n holds dim N(A) + dim R(A) = n. Equivalently,

dim R(A) = n− dim N(A) = n− dim R(A∗)⊥,

since N(A) = R(A∗)⊥. From the orthogonal decomposition Fn = R(A∗)⊕R(A∗)⊥ we know
that dim R(A∗) = n− dim R(A∗)⊥. We then conclude that

dim R(A) = dim R(A∗).

This establishes the Theorem. ¤
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7.1.3. Exercises.

7.1.1.- Consider the inner product space`
R3, · ´ and the orthonormal set U ,

n
u1 =

1√
2

2
4

1
−1
0

3
5 , u2 =

1√
3

2
4

1
1
1

3
5
o

.

Find the best approximation of x below
in the subspace Span(U), where

x =

2
4

1
0
−2

3
5 .

7.1.2.- Consider the inner product space`
R2,2, 〈 , 〉F

´
and the orthonormal set

U = {E1, E2}, where

E1 =
1√
2

»
0 1
1 0

–
, E2 =

1√
2

»
1 0
0 −1

–
.

Find the best approximation of matrix
A below in the subspace Span(U), where

A =

»
1 1
1 1

–
.

7.1.3.- Consider the inner product space

P2([0, 1]), with 〈p, q 〉 =
R 1

0
p(x)q(x) dx,

and the subspace U = Span(U), where
U = {q0 = 1, q1 = (x− 1

2
)}.

(a) Show that U is an orthogonal set.
(b) Find rq, the best approximation

with respect to U of the polynomial
r(x) = 2x + 3x2.

(c) Verify whether (r−rq) ∈ U⊥ or not.

7.1.4.- Consider the space C∞([−`, `],R)
with inner product

〈f , g〉 =

Z `

−`

f (x)g(x) dx,

and the orthonormal set U given by

u0 =
1√
2`

u1 =
1√
`

cos
“πx

`

”

v1 =
1√
`

sin
“πx

`

”
.

Find the best approximation of

f (x) =


x 0 6x 6 `,

−x −` 6x < 0.

in the space Span(U)

7.1.5.- For the matrix A ∈ R3,3 below,
verify that N(A) = R(AT )⊥ and that

N(AT ) = R(A)⊥, where

A =

2
4

2 1 1
−1 −1 0
−2 −1 −1

3
5 .
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7.2. Least squares

7.2.1. The normal equation. We describe the least squares method to find approximate
solutions to inconsistent linear systems. The method is often used to find the best parameters
that fit experimental data. The parameters are the unknowns of the linear system, and the
experimental data determines the matrix of coefficients and the source vector of the system.
Such a linear system usually contains more equations than unknowns, and it is inconsistent,
since there are no parameters that fit all the data exactly. We start introducing the notion
of least squares solution of a possibly inconsistent linear system.

Definition 7.2.1. Given a matrix A ∈ Fm,n and a vector b ∈ (
Fm, · ), the vector x̂ ∈ Fn is

called a least squares solution of the linear system Ax = b iff holds

‖Ax̂− b‖ 6 ‖y − b‖ ∀ y ∈ R(A).

The problem we study is to find the least squares solution to an m × n linear system
Ax = b. In the case that b ∈ R(A) the linear system Ax = b is consistent and the least
squares solution x̂ is the actual solution of the system, hence ‖Ax̂− b‖ = 0. In the case that
b does not belong to R(A), the linear system Ax = b is inconsistent. In such a case the least
squares solution x̂ is the vector in Rn with the property that Ax̂ is a vector in R(A) closest
to b in the inner product space

(
Rm, ·). A sketch of this situation for a matrix A ∈ R3,2 is

given in Fig. 46.

3

x

b

Ax

Ax

A

R R

R ( A )

2

Figure 46. The meaning of the least squares solution x̂ ∈ R2 for the 3× 2
inconsistent linear system Ax = b is that the vector Ax̂ is the closest to b
in the inner product space

(
R3, ·).

The solution to the problem of finding a least squares solution to a linear system is
summarized in the following result.

Theorem 7.2.2. Given a matrix A ∈ Fm,n and a vector b in the inner product space(
Fm, ·), the vector x̂ ∈ Fn is a least squares solution of the m× n linear system Ax = b iff x̂

is solution to the n× n linear system, called normal equation,

A∗A x̂ = A∗b. (7.3)

Furthermore, the least squares solution x̂ is unique iff the column vectors of matrix A form
a linearly independent set.

Remark: In the case that F = R, the normal equation reduces to AT A x̂ = AT b.
Proof of Theorem 7.2.2: We are interested in finding a vector x̂ ∈ Fn such that Ax̂ is the
best approximation in R(A) of vector b ∈ Fm. That is, we want to find x̂ ∈ Fn such that

‖Ax̂− b‖ 6 ‖y − b‖ ∀ y ∈ R(A).
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Theorem 7.1.2 says that the best approximation of b is when Ax̂ = bq, where bq is the
orthogonal projection of b onto the subspace R(A). This means that

(Ax̂− b) ∈ R(A)⊥ = N(A∗) ⇔ A∗(Ax̂− b) = 0.

We then conclude that x̂ must be solution of the normal equation

A∗Ax̂ = A∗b.

The furthermore can be shown as follows. The column vectors of matrix A form a linearly
independent set iff N(A) = {0}. Lemma 7.2.3 stated below establishes that, for all matrix
A holds that N(A) = N(A∗A). This result in our case implies that N(A∗A) = {0}. Since
matrix A∗A is a square, n× n, matrix, we conclude that it is invertible. This is equivalent
to say that the solution x̂ to the normal equation is unique; moreover, it is given by x̂ =
(A∗A)−1A∗b. This establishes the Theorem. ¤

In the proof of Theorem 7.2.2 above we used the following result:

Lemma 7.2.3. If A ∈ Fm,n, then N(A) = N(A∗A).

Proof of Lemma 7.2.3: We first show that N(A) ⊂ N(A∗A). Indeed,

x ∈ N(A) ⇒ Ax = 0 ⇒ A∗Ax = 0 ⇒ x ∈ N(A∗A).

Now, suppose that there exists x ∈ N(A∗A) such that x /∈ N(A). Therefore, x 6= 0 and
Ax 6= 0, which imply that

0 6= ‖Ax‖2 = x∗A∗Ax ⇒ A∗Ax 6= 0.

However, this last equation contradicts the assumption that x ∈ N(A∗A). Therefore, we
conclude that N(A) = N(A∗A). This establishes the Lemma. ¤
Example 7.2.1: Show that the 3× 2 linear system Ax = b is inconsistent; then find a least

squares solutions x̂ =
[
x̂1

x̂2

]
to that system, where

A =




1 3
2 2
3 1


 , b =



−1
1
−1


 .

Solution: We first show that the linear system above is inconsistent, since Gauss operation
on the augmented matrix [A|b] imply




1 3
∣∣ −1

2 2
∣∣ 1

3 1
∣∣ −1


→




1 3
∣∣ −1

0 −4
∣∣ 3

0 −8
∣∣ 2


→




1 3
∣∣ −1

0 −4
∣∣ 3

0 0
∣∣ 1


 .

In order to find the least squares solution to the system above we first construct the normal
equation. We need to compute

AT A =
[
1 2 3
3 2 1

] 


1 3
2 2
3 1


 =

[
14 10
10 14

]
, AT b =

[
1 2 3
3 2 1

] 

−1
1
−1


 =

[−2
−2

]
.

Therefore, the normal equation is given by[
14 10
10 14

] [
x̂1

x̂2

]
=

[−2
−2

]
.

Since the column vectors of A form a linearly independent set, matrix AT A is invertible,
(
AT A

)−1 =
1
96

[
14 −10
−10 14

]
=

1
48

[
7 −5
−5 7

]
.
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The least squares solution is unique and given by

x̂ =
1
24

[
7 −5
−5 7

] [−1
−1

]
⇒ x̂ =

1
12

[−1
−1

]
.

Remark: We now verify that (Ax̂− b) ∈ R(A)⊥. Indeed,

Ax̂− b =




1 3
2 2
3 1


 1

12

[−1
−1

]
−



−1
1
−1


 = −1

3




1
1
1


−



−1
1
−1


 ⇒ Ax̂− b =

2
3




1
−2
1


 .

Since

[
1 −2 1

]



1
2
3


 = 1− 4 + 3 = 0,

[
1 −2 1

]



3
2
1


 = 3− 4 + 1 = 0,

we have verified that (Ax̂− b) ∈ R(A)⊥. C

We finish this Subsection with an alternative proof of Theorem 7.2.2 in the particular
case that involves real-valued matrices, that is, F = R. The proof is interesting in its own,
since it is based in solving a constrained minimization problem.
Alternative proof of Theorem 7.2.2 for F = R: The vector x̂ ∈ Rn is a least squares
solution of the system Ax = b iff the function f : Rn → R given by f(x) = ‖Ax̂− b‖2 has a
minimum at x = x̂. We then find all minima of function f . We first express f as follows,

f(x) = (Ax− b) · (Ax− b)
= (Ax) · (Ax)− 2b · (Ax) + b · b
= xT AT Ax− 2bT Ax + bT b.

We now need to find all solutions to the equation ∇xf(x) = 0. Recalling the definition of a
gradient vector

∇xf =




∂f

∂x1
...

∂f

∂xn




,

it is simple to see that, for any vector a ∈ Rn, holds,

∇x(aT x) = a, ∇x(xT a) = a.

Therefore, the gradient of f is given by

∇xf = 2AT Ax− 2AT b.

We are interested in the stationary points, the x̂ solutions of

∇xf(x̂) = 0 ⇔ AT Â x = AT b.

We conclude that all stationary points x̂ are solutions of the normal equation, Eq. (7.3).
These stationary points must be a minimum of f , since f is quadratic on the vector compo-
nents xi having the degree two terms all positive coefficients. This establishes the first part
of Theorem 7.2.2 in the case that F = R. ¤
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7.2.2. Least squares fit. It is often desirable to construct a mathematical model to de-
scribe the results of an experiment. This may involve fitting an algebraic curve to the given
experimental data. The least squares method can be used to find the best parameters that
fit the data.

Example 7.2.2: (Linear fit) The simplest situation is the case where the best curve fitting
the data is a straight line. More precisely, suppose that the result of an experiment is the
following collection of ordered numbers

{
(t1, b1), · · · , (tm, bm)

}
, m > 2,

and suppose that a plot on a plane of the result of this experiment is given in Fig. 47.
(For example, from measuring the vertical displacement bi in a spring when a weight ti is
attached to it.) Find the best line y(t) = x̂2 t + x̂1 that approximate these points in least
squares sense. The latter means to find the numbers x̂2, x̂1 ∈ R such that

∑m
i=1 |∆bi|2 is

the smallest possible, where

∆bi = bi − y(ti) ⇔ ∆bi = bi − (x̂2 ti + x̂1), i = 1, · · · , m.

i t

b

b i

i i( t  , b  ) 2
y ( t ) = x   t +  x1

b
i

t

Figure 47. Sketch of the best line y(t) = x̂2t + x̂1 fitting the set of points
(ti, bi), for i = 1, · · · , 10.

Solution: Let us rewrite this problem as the least squares solution of an m × 2 linear
system, which in general is inconsistent. We are interested to find x̂2, x̂1 solution of the
linear system

y(t1) = b1

...

y(tm) = bm

⇔
x̂1 + t1x̂2 = b1

...
x̂1 + tmx̂2 = bm

⇔




1 t1
...

...
1 tm




[
x̂1

x̂2

]
=




b1

...
bm


 .

Introducing the notation

A =




1 t1
...

...
1 tm


 , x̂ =

[
x̂1

x̂2

]
, b =




b1

...
bm


 ,
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we are then interested in finding the solution x̂ of the m×2 linear system Ax̂ = b. Introducing
also the vector

∆b =




∆b1

...
∆bm


 ,

it is clear that Ax̂− b = ∆b, and so we obtain the important relation

‖Ax̂− b‖2 = ‖∆b‖2 =
m∑

i=1

(
∆bi

)2
.

Therefore, the vector x̂ that minimizes the square of the deviation from the line,
∑m

i=1(∆bi)2,
is precisely the same vector x̂ ∈ R2 that minimizes the number ‖Ax̂ − b‖2. We studied the
latter problem at the begining of this Section. We called it a least squares problem, and the
solution x̂ is the solution of the normal equation

AT A x̂ = AT b.

It is simple to see that

AT A =
[

1 · · · 1
t1 · · · tm

]



1 t1
...

...
1 tm


 =

[
m

∑
ti∑

ti
∑

t2i

]
,

AT b =
[

1 · · · 1
t1 · · · tm

]



b1

...
bm


 =

[ ∑
bi∑

tibi

]
.

Therefore, we are interested in finding the solution to the 2× 2 linear system[
m

∑
ti∑

ti
∑

t2i

] [
x̂1

x̂2

]
=

[ ∑
bi∑

tibi

]
.

Suppose that at least one of the ti is different from 1, then matrix AT A is invertible and the
inverse is (

AT A
)−1 =

1

m
∑

t2i −
(∑

ti
)2

[ ∑
t2i −∑

ti
−∑

ti m

]
.

We conclude that the solution to the normal equation is[
x̂1

x̂2

]
=

1

m
∑

t2i −
(∑

ti
)2

[ ∑
t2i −∑

ti
−∑

ti m

] [ ∑
bi∑

tibi

]
.

So, the slope x̂2 and vertical intercept x̂1 of the best fitting line are given by

x̂2 =
m

∑
tibi − (

∑
ti)(

∑
bi)

m
∑

t2i −
(∑

ti
)2 , x̂1 =

(
∑

t2i )(
∑

bi)− (
∑

ti)(
∑

tibi)

m
∑

t2i −
(∑

ti
)2 .

C

Example 7.2.3: (Polynomial fit) Find the best polynomial of degree (n − 1) > 0, say
p(t) = x̂n t(n−1) + · · ·+ x̂1, that approximates in least squares sense the set of points{

(t1, b1), · · · , (tm, bm)
}
, m > n.

(See Fig. 48 for an example in the case that the fitting curve is a parabola, n = 3.) Following
Example 7.2.2, the least squares approximation means to find the numbers x̂n, · · · , x̂1 ∈ R
such that

∑m
i=1 |∆bi|2 is the smallest possible, where

∆bi = bi − p(ti) ⇔ ∆bi = bi − (x̂n t
(n−1)
i + · · ·+ x̂1), i = 1, · · · ,m.



228 G. NAGY – LINEAR ALGEBRA july 15, 2012

2

t

b

t
i

b i

( t  , b  )
i ib i

p ( t ) = x   t  + x   t +  x3 2 1

Figure 48. Sketch of the best parabola p(t) = x̂3t
2 + x̂2t + x̂1 fitting the

set of points (ti, bi), for i = 1, · · · , 10.

Solution: We rewrite this problem as the least squares solution of an m×n linear system,
which in general is inconsistent. We are interested to find x̂n, · · · , x̂1 solution of the linear
system

p(t1) = b1

...

p(tm) = bm

⇔
x̂1 + · · ·+ t

(n−1)
1 x̂n = b1

...

x̂1 + · · ·+ t(n−1)
m x̂n = bm

⇔




1 · · · t
(n−1)
1

...
...

1 · · · t
(n−1)
m







x̂1

...
x̂n


 =




b1

...
bm


 .

Introducing the notation

A =




1 · · · t
(n−1)
1

...
...

1 · · · t
(n−1)
m


 , x̂ =




x̂1

...
x̂n


 , b =




b1

...
bm


 ,

we are then interested in finding the solution x̂ of the m×n linear system Ax̂ = b. Introducing
also the vector

∆b =




∆b1

...
∆bm


 ,

it is clear that Ax̂− b = ∆b, and so we obtain the important relation

‖Ax̂− b‖2 = ‖∆b‖2 =
m∑

i=1

(
∆bi

)2
.

Therefore, the vector x̂ that minimizes the square of the deviation from the line,
∑m

i=1(∆bi)2,
is precisely the same vector x̂ ∈ R2 that minimizes the number ‖Ax̂ − b‖2. We studied the
latter problem at the begining of this Section. We called it a least squares problem, and the
solution x̂ is the solution of the normal equation

AT A x̂ = AT b. (7.4)
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It is simple to see that Eq. (7.4) is an n× n linear system, since

AT A =




1 · · · 1
...

...
t
(n−1)
1 · · · t

(n−1)
m







1 · · · t
(n−1)
1

...
...

1 · · · t
(n−1)
m


 ,

AT b =




1 · · · 1
...

...
t
(n−1)
1 · · · t

(n−1)
m







b1

...
bm


 .

We do not compute these expressions explicitly here. In the case that the columns of A
form a linearly independent set, the solution x̂ to the normal equation is

x̂ =
(
AT A

)−1
AT b.

The components of x̂ provide the parameters for the best polynomial fitting the data in least
squares sense. C

7.2.3. Linear correlation. In statistics a correlation coefficient measures the departure of
two random variables from independence. For centered data, that is, for data with zero
average, the correlation coefficient can be viewed as the cosine of the angle in an abstract
Rn space between two vectors constructed with the random variables data. We now define
and find the correlation coefficient for two variables as given in Example 7.2.2.

Once again, suppose that the result of an experiment is the following collection of ordered
numbers {

(t1, b1), · · · , (tm, bm)
}
, m > 2. (7.5)

Introduce the vectors e, t, b ∈ Rm as follows,

e =




1
...
1


 , t =




t1
...

tm


 , b =




b1

...
bm


 .

Before introducing the correlation coefficient, let us use these vectors above to write down
the least squares coefficients x found in Example 7.2.2. The matrix of coefficients can be
written as A = [e, t], therefore,

AT A =
[
eT

tT

] [
e, t

]
=

[
e · e t · e
e · t t · t

]
, AT b =

[
eT

tT

]
b =

[
e · b
t · b

]
.

The least squares solution can be written as follows,
[
x̂1

x̂2

]
=

1
(e · e)(t · t)− (t · e)2

[
t · t −e · t
−e · t e · e

] [
e · b
t · b

]
,

that is,

x̂2 =
(e · e)(t · b)− (e · t)(e · b)

(e · e)(t · t)− (t · e)2 , x̂1 =
(e · b)(t · t)− (e · t)(t · b)

(e · e)(t · t)− (t · e)2 .

Introduce the average values

t =
e · t
e · e , b =

e · b
e · e .

These are indeed the average values of ti and bi, since

e · e = m, e · t =
m∑

i=1

ti, e · b =
m∑

i=1

bi.
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Introduce the zero-average vectors t̂ = (t− t e) and b̂ = (b− b e). The correlation coefficient
of the data given in (7.5) is given by

cor(t, b) =
t̂ · b̂
‖t̂‖ ‖b̂‖ .

Therefore, the correlation coefficient between the data vectors t and b is the angle between
the zero-average vectors t̂ and b̂ in Rm.

In order to understand what measures this angle, let us consider the case where all the
ordered pairs in (7.5) lies on a line, that is, there exists a solution x̂ of the linear system
Ax̂ = b (a solution, not only a least squares solution). In that case we have

x̂1e + x̂2t = b ⇒ x̂1 + x̂2t = b,

and this implies that

x̂2 (t− t e) = (b− b e) ⇔ x̂2 t̂ = b̂ ⇔ cor(t, b) = 1.

That is, in the case that t is linearly related to b we obtain that the zero-average vectors t̂
and b̂ are parallel, so the correlation coefficient is equal one.

7.2.4. QR-factorization. The Gram-Schmidt method can be used to factor any m × n
matrix A into a product of an m × n matrix Q with orthonormal column vectors and an
upper triangular n × n matrix R. We will see that the QR-factorization is useful to solve
the normal equation associated to a least squares problem.

Theorem 7.2.4. If the column vectors of matrix A ∈ Fm,n form a linearly independent set,
then there exist matrices Q ∈ Fm,n and R ∈ Fn,n satisfying that Q∗Q = In, matrix R is upper
triangular with positive diagonal elements, and the following equation holds

A = QR.

Proof of Theorem 7.2.4: Use the Gram-Schmidt method to obtain an orthonormal set
{q1, · · · , qn} from the column vectors of the m× n matrix A = [A:1, · · · , A:n], that is,

p1 = A:1 q1 =
p1

‖p1‖ ,

p2 = A:2 −
(
A:2 · q1

)
q1 q2 =

p2

‖p2‖ ,
...

...

pn = A:n −
(
A:n · q1

)
q1 − · · · −

(
A:n · qn−1

)
qn−1 qn =

pn

‖pn‖ .

Define matrix Q = [q1, · · · , qn], which then satisfies the equation Q∗Q = In. Notice that the
equations above can be expressed as follows,

A:1 = ‖p1‖ q1,

A:2 = ‖p2‖ q2 +
(
q1 · A:2

)
q1

...

A:n = ‖pn‖ qn +
(
q1 · A:n

)
q1 +

(
q2 · A:n

)
q2 + · · ·+ (

qn−1 · A:n

)
qn−1.
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After some time staring at the equations above, one can rewrite it as a matrix product

[
A:1, · · · ,A:n

]
=

[
q1, · · · , qn

]




‖p1‖ (q1 · A:2) · · · (q1 · A:n)
0 ‖p2‖ · · · (q2 · A:n)
...

...
...

0 0 · · · (qn−1 · A:n)
0 0 · · · ‖pn‖




(7.6)

Define matrix R by equation above as the matrix satisfying A = QR. Then, Eq. (7.6) says
that matrix R is n× n, upper triangular, with positive diagonal elements. This establishes
the Theorem. ¤

Example 7.2.4: Find the QR-factorization of matrix A =




1 2 1
1 1 1
0 0 1


.

Solution: First use the Gram-Schmidt method to transform the column vectors of matrix
A into an orthonormal set. This was done in Example 6.5.1. The result defines the matrix
Q as follows

Q =




1√
2

1√
2

0
1√
2
− 1√

2
0

0 0 1


 .

Having matrix A and Q, and knowing that Theorem 7.2.4 is true, then we can compute
matrix R by the equation R = QT A. Since the column vectors of Q form an orthonormal
set, we have that QT = Q−1, and in this particular case Q−1 = Q, so matrix R is given by

R = QA =




1√
2

1√
2

0
1√
2
− 1√

2
0

0 0 1







1 2 1
1 1 1
0 0 1


 ⇒ R =




√
2 3√

2

√
2

0 1√
2

0
0 0 1


 .

The QR-factorization of matrix A is then given by

A =




1√
2

1√
2

0
1√
2
− 1√

2
0

0 0 1







√
2 3√

2

√
2

0 1√
2

0
0 0 1


 .

C

The QR-factorization is useful to solve the normal equation in a least squares problem.

Theorem 7.2.5. Assume that the matrix A ∈ Fm,n admits the QR-factorization A = QR.
The vector x̂ ∈ Fn is solution of the normal equation A∗A x̂ = A∗b iff it is solution of

Rx̂ = Q∗b.

Proof of Theorem 7.2.5: Just introduce the QR-factorization into the normal equation
A∗A x̂ = A∗b as follows,(

R∗Q∗
)(

QR
)
x̂ = R∗Q∗b ⇔ R∗R x̂ = R∗Q∗b ⇔ R∗

(
R x̂− Q∗b

)
= 0.

Since R is a square, upper triangular matrix with non-zero coefficients, we conclude that R
is invertible. Therefore, from the last equation above we conclude that x̂ is solution of the
normal equation iff holds

Rx̂ = Q∗b.

This establishes the Theorem. ¤
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7.2.5. Exercises.

7.2.1.- Consider the matrix A and the vec-
tor b given by

A =

2
4

1 0
0 1
1 1

3
5 , b =

2
4

1
1
0

3
5 .

(a) Find the least-squares solution x̂ to
the linear system Ax = b.

(b) Verify that the solution x̂ satisfies

(Ax̂− b) ∈ R(A)⊥.

7.2.2.- Consider the matrix A and the vec-
tor b given by

A =

2
4

2 2
0 −1
−2 0

3
5 , b =

2
4

1
1
−1

3
5 .

(a) Find the least-squares solution x̂ to
the linear system Ax = b.

(b) Find the orthogonal projection of
the source vector b onto the sub-
space R(A).

7.2.3.- Find all the least-squares solutions
x̂ to the linear system Ax = b, where

A =

2
4

1 2
2 4
3 6

3
5 , b =

2
4

1
1
1

3
5 .

7.2.4.- Find the best line in least-squares
sense that fits the measurements, where
t1 is the independent variable and bi is
the dependent variable,

t1 = −2, b1 = 4,

t2 = −1, b2 = 3,

t3 = 0, b3 = 1,

t4 = 2, b4 = 0.

7.2.5.- Find the correlation coefficient cor-
responding to the measurements given
in Exercise 7.2.4 above.

7.2.6.- Use Gram-Schmidt method on the
columns of matrix A below to find its
QR factorization, where

A =

2
4

1 1
2 3
2 1

3
5 .

7.2.7.- Find the QR factorization of matrix

A =

2
4

1 1 0
1 0 1
0 1 1

3
5 .
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7.3. Finite difference method

A differential equation is an equation where the unknown is a function and both the
function itself and its derivatives appear in the equation. The differential equation is called
linear iff the unknown function and its derivatives appear linearly in the equation. Solutions
of linear differential equations can be approximated by solutions of appropriate n× n alge-
braic linear systems in the limit that n approaches infinity. The finite difference method is
a way to obtain an n× n linear system from the original differential equation. Derivatives
are approximated by difference quotients, thus reducing a differential equation to an alge-
braic linear system. Since a derivative can be approximated by infinitely many difference
quotients, there are infinitely many n × n linear systems that approximate a differential
equation. One tries to choose the linear system whose solution is the best approximation of
the solution of the original differential equation. Computers are used to find the vector in Rn

solution of the n× n linear system. Many approximations of the solution to the differential
equation are obtained from this array of n numbers. One way to obtain a function from a
vector in Rn is to find a degree n polynomial that contains all these n points. This is called
a polynomial interpolation of the algebraic solution. In this Section we only show how to
obtain n× n algebraic linear systems that approximate a simple differential equation.

7.3.1. Differential equations. A differential equation is an equation where the unknown
is a function and both the function and its derivatives appear in the equation. A simple
example is the following: Given a continuously differentiable function f : [0, 1]→ R, find a
function u : [0, 1]→ R solution of the differential equation

du

dx
(x) = f(x),

To find a solution to a differential equation requires to perform appropriate integrations,
thus integration constants are introduced in the solution. This suggests that the solution of
a differential equation is not unique, and extra conditions must be added to the problem to
select only one solution. In the differential equation above the solutions u are given by

u(x) =
∫ x

0

f(t) dt + c,

with c ∈ R. An extra condition is needed to obtain a unique solution, for example the
condition u(0) = 1. Then, the unique solution u is computed as follows

1 = u(0) =
∫ 0

0

f(t) dt + c ⇒ c = 1 ⇒ u(x) =
∫ x

0

f(t) dt + 1.

The example above is simple enough that no approximation is needed to obtain the solution.
An ordinary differential equation is a differential equation where the unknown function

u depends on one variable, as in the example above. A partial differential equation is a
differential equation where the unknown function depends on more than one variable and
the equation contains derivatives of more than one variable. In this Section we use the finite
difference method to find a solution to two different problems. The first one involves an
ordinary differential equation while the second one involves a partial differential equation,
called the heat equation.

The first problem is to find an approximate solution to a boundary value problem for an
ordinary differential equation: Given a continuously differentiable function f : [0, 1] → R,
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find a function u : [0, 1]→ R solution of the boundary value problem

d2u

dx2
(x) +

du

dx
(x) = f(x), (7.7)

u(0) = u(1) = 0. (7.8)

Finding the function u involves doing two integrations that introduce two integration con-
stants. These constants are determined by the two conditions on x = 0 and x = 1 above,
called boundary conditions, since they are conditions on the boundaries of the interval [0, 1].
Because of this extra condition on the ordinary differential equation this problem is called
a boundary value problem.

The second problem we study in this Section is to find an approximate solution to an
initial-boundary value problem for the heat equation: Given the set D = [0, π]× [0, T ], the
positive constant κ, and infinitely differentiable functions f : D → R and g : [0, π] → R,
find the function u : D → R solution of the problem

∂u

∂t
(x, t)− κ

∂2u

∂x2
(x, t) = f(x, t) (x, t) ∈ D, (7.9)

u(0, t) = u(π, t) = 0 t ∈ [0, T ], (7.10)

u(x, 0) = g(x) x ∈ [0, π]. (7.11)

The partial differential equation in Eq. (7.9) is called the one-dimensional heat equation,
since in the case that function u is the temperature of a material that depends on time t
and one spatial direction x, the equation describes how the material temperature changes
in time due to heat propagation. The positive constant κ is called the thermal diffusivity of
the material. The condition given in Eq. (7.10) is called a boundary condition, since they
are conditions on x = 0 and x = π that hold for all t ∈ [0, T ], see Fig. 49. The condition
given in Eq. (7.11) is called an initial condition, since it is a condition on the initial time
t = 0 for all x ∈ [0, π], see Fig. 49. Because of these two extra conditions on the partial
differential equation this problem is called an initial-boundary value problem for the heat
equation.

u( 0 , t ) = 0

T

D

g( x )

t

0 x

u(    , t ) = 0

Figure 49. The domain D = [0, π] × [0, T ] where the initial-boundary
value problem for the heat equation is set up. We indicate the boundary
data conditions u(0, t) = 0 and u(π, t) = 0, and the initial data function g.

7.3.2. Difference quotients. Finite difference methods transform a linear differential equa-
tion into an n × n algebraic linear system by replacing derivatives by difference quotients.
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Derivatives can be approximated by difference quotients in many different ways. For exam-
ple, a derivative of a function u can be expressed in the following equivalent ways,

du

dx
(x) = lim

∆x→0

u(x + ∆x)− u(x)
∆x

,

= lim
∆x→0

u(x)− u(x−∆x)
∆x

,

= lim
∆x→0

u(x + ∆x)− u(x−∆x)
2∆x

.

However, for a fixed nonzero value of ∆x, the expressions below are, in general, different.

Definition 7.3.1. The forward difference quotient d+ and the backward difference
quotient d- of a continuous function u : R→ R at x ∈ R are given by

d+u(x) =
u(x + ∆x)− u(x)

∆x
, d-u(x) =

u(x)− u(x−∆x)
∆x

.

The centered difference quotient dc of a continuous function u at x ∈ R is given by

dcu(x) =
u(x + ∆x)− u(x−∆x)

2∆x
. (7.12)

In the case that the function u has second continuous derivative, the Taylor Expansion
Theorem implies that the forward and backward differences differ from the actual derivative
by terms order ∆x. The proof is not difficult, since

u(x + ∆x) = u(x) +
du

dx
(x)∆x + O

(
(∆x)2

) ⇒ d+u(x) =
du

dx
(x) + O

(
∆x

)
,

u(x−∆x) = u(x)− du

dx
(x)∆x + O

(
(∆x)2

) ⇒ d-u(x) =
du

dx
(x) + O

(
∆x

)
,

where O
(
(∆x)n

)
denotes a function satisfying

[
O

(
(∆x)n

)]
/(∆x)n approaches a constant

as ∆x → 0. In the case that the function u has third continuous derivative, the Taylor
Expansion Theorem implies that the centered difference quotient differs from the actual
derivative by terms of order (∆x)2. Again, the proof is not difficult, and it is based on the
Taylor expansion of the function u. Compute this expansion in two different ways,

u(x + ∆x) = u(x) +
du

dx
(x)∆x +

1
2

d2u

dx2
(x) (∆x)2 + O

(
(∆x)3

)
, (7.13)

u(x−∆x) = u(x)− du

dx
(x)∆x +

1
2

d2u

dx2
(x) (∆x)2 + O

(
(∆x)3

)
, (7.14)

Subtracting the two expressions above we obtain that

u(x + ∆x)− u(x−∆x) = 2
du

dx
(x)∆x + O

(
(∆x)3

) ⇒ dcu(x) =
du

dx
(x) + O

(
(∆x)2

)
,

which establishes that centered difference quotients differ from the derivative by order (∆x)2.
If a function is infinitely continuously differentiable, centered difference quotients are more
accurate than forward or backward differences.

Second and higher derivatives of a function can also be approximated by difference quo-
tients. Again, there are infinitely many ways to approximate second derivatives by difference
quotients. The freedom to choose difference quotients is higher for second derivatives than
for first derivatives. We now present two difference quotients to give an idea of this freedom.
On the one hand, one possible approximation is to use the centered difference quotient twice,
since a second derivative is the derivative of the derivative function. Using the more precise
notation

dc∆xu(x) =
u(x + ∆x)− u(x−∆x)

2∆x
,
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it is not difficult to check that
(
dc∆x

)2 = dc∆x(dc∆x) is given by
(
dc∆x

)2
u(x) =

1
(2∆x)2

[
u(x + 2∆x) + u(x− 2∆x)− 2u(x)

]
. (7.15)

On the other hand, another approximation for the second derivative of a function can be ob-
tained directly from the Taylor expansion formulas in (7.13)-(7.14). Indeed, add Eqs. (7.13)-
(7.14), that is,

u(x + ∆x) + u(x−∆x) = 2u(x) +
d2u

dx2
(x) (∆x)2 + O

(
(∆x)3

)
.

This equation can be rewritten as

d2u

dx2
(x) =

u(x + ∆x) + u(x−∆x)− 2u(x)
(∆x)2

+ O
(
∆x

)
.

This equation suggests to introduce a second-order centered difference quotient (d2)c∆x as

(d2)c∆xu(x) =
1

(∆x)2
[
u(x + ∆x) + u(x−∆x)− 2u(x)

]
. (7.16)

Using this notation, the equation above is given by

d2u

dx2
(x) = (d2)c∆xu(x) + O

(
∆x

)
.

Therefore, both
(
dc∆x

)2 and (d2)c∆x are approximations of the second derivative of a func-
tion. However, they are not the same approximation, since comparing Eqs. (7.15) and (7.16)
it is not difficult to see that (

dc(∆x)/2

)2 = (d2)c∆x.

We conclude that there are many different ways to approximate second derivatives by dif-
ference quotients, many more ways than those to approximate first order derivatives. In
this Section we use the difference quotient in Eq. (7.16), and we use the simplified notation
given by d2

c = (d2)c∆x.

7.3.3. Method of finite differences. We now describe the finite difference method using
two examples. In the first example we find an approximate solution for the boundary value
problem in Eqs. (7.7)-(7.8). In the second example we find an approximate solution for the
initial-boundary value problem in Eqs. (7.9)-(7.11).

Example 7.3.1: Consider the boundary value problem for the ordinary differential equation
given in Eqs. (7.7)-(7.8).
(a) Divide the interval [0, 1] into n > 1 equal intervals and use the finite difference method

to find a vector u = [ui] ∈ Rn+1 that approximates the function u : [0, 1] → R solution
of that boundary value problem. Use centered difference quotients to approximate the
first and second derivatives of the unknown function u.

(b) Find the explicit form of the linear system in the case n = 6.
(c) Find the degree n polynomial pn that interpolates the approximate solution vector

u = [ui] ∈ Rn+1, which includes the boundary points.

Solution:
Part (a): Fix a positive integer n ∈ N, define the grid step size h = 1/n, and introduce

the uniform grid

{xi}, xi = ih, i = 0, 1, · · · , n, on [0, 1].

(See Fig. 50.) Introduce the numbers fi = f(xi). Finally, denote ui = u(xi). The numbers
xi and fi are known from the problem, and so are the u0 = u(0) = 0 and un = u(1) = 0,
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while the ui for i = 1, · · · , n − 1 are the unknowns. We now use the original differential
equation to construct an (n− 1)× (n− 1) linear system for these unknowns ui.

]
0 = 0 / 6 1 / 6 2 / 6 3 / 6 4 / 6 5 / 6 6 / 6 = 1

n = 6 x = 1 / 6 h = 1 / 6 =      x

[

Figure 50. A uniform grid for n = 6 on the domain [0, 1].

We use centered difference quotient given in Eqs. (7.12) and (7.16) to approximate the first
and second derivatives of the function u, respectively. We choose ∆x = h, and we denote
the difference quotients evaluated at grid points xi as follows,

dcu(xi) = dcui, d2
cu(xi) = d2

cui.

Therefore, we obtain the following formulas for the difference quotients,

dcui =
ui+1 − ui−1

2h
, d2

cui =
ui+1 + ui−1 − 2ui

h2
. (7.17)

Now we state the approximate problem we will solve: Given the constants {fi}n−1
i=1 , find

the vector u = [ui] ∈ Rn+1 solution of the (n − 1) × (n − 1) linear system and boundary
conditions, respectively,

d2
cui + dcui = fi, i = 1, · · · , n− 1, (7.18)

u0 = un = 0. (7.19)

Eq. (7.18) is indeed a linear system for u = [ui], since it is equivalent to the system

(2 + h)ui+1 − 4ui + (2− h)ui−1 = 2h2fi, i = 1, · · · , n− 1.

When the boundary conditions in Eq. (7.19) are introduced in the equation above, we obtain
an (n− 1)× (n− 1) linear system for the unknowns ui, where i = 1, · · · , (n− 1).

Part (b): In the case n = 6, we have h = 1/6, so we denote a = 2− 1/6, b = 2 + 1/6 and
c = 2/36. Also recall the boundary conditions u0 = u6 = 0. Then, the system above and
its augmented matrix are given by, respectively,

−4u1 + bu2 = c f1,

au1 − 4u2 + bu3 = c f2,

au2 − 4u3 + bu4 = c f3,

au3 − 4u4 + bu5 = c f4,

au4 − 4u5 = c f5,

⇔




−4 b 0 0 0
∣∣ c f1

a −4 b 0 0
∣∣ c f2

0 a −4 b 0
∣∣ c f3

0 0 a −4 b
∣∣ c f4

0 0 0 a −4
∣∣ c f5




.

We then conclude that the solution u of the boundary value problem in Eq. (7.7) can be
approximated by the solution u = [ui] ∈ R7 of the 5 × 5 linear system above plus the two
boundary conditions. The same type of approximate solution can be found for all n ∈ N.

Part (c): The output of the finite difference method is a vector u = [ui] ∈ R(n+1). An
approximate solution to the ordinary differential equation in Eqs. (7.7) can be constructed
from the vector u in many different ways. One way is polynomial interpolation, that is,
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to construct a polynomial of degree n whose graph contains all the points (xi, ui). Such
polynomial is given by

pn(x) =
n∑

i=0

ui qi(x), qi(x) =
∏

j 6=i

(x− xj)
(xi − xj)

.

It can be verified that the degree n polynomials qi when evaluated at grid points satisfies

qi(xj) =
{ 0 if i 6= j,

1 if i = j.

Therefore, the polynomial pn has degree n and satisfies that pn(xi) = ui. This polynomial
function pn approximates the solution u of the boundary value problem in Eqs. (7.7)-(7.8).

C

Example 7.3.2: Consider the boundary value problem for the partial differential equation
given in Eqs. (7.9)-(7.11). Use the finite difference method to find an approximate solution
of the function u : D → R solution of that initial-boundary value problem.

(a) Use centered difference quotients to approximate the spatial derivatives and forward
difference quotients to approximate time derivatives of the unknown function u.

(b) Repeat the calculations in part (a) now using backward difference quotients for the time
derivatives of the unknown function u.

Solution:
Part (a): Introduce a grid in the domain D = [0, π] × [0, T ] as follows: Fix the positive

integers nx, nt ∈ N, define the step sizes hx = π/nx and ht = T/nt, and then introduce the
uniform grids

{xi}, xi = ihx, i = 0, 1, · · · , nx, on [0, π]

{tj}, tj = jht, j = 0, 1, · · · , nt, on [0, T ].

A point of the form (xi, tj) ∈ D is called a grid point. (See Fig. 51.)

j

�
�
�
�

t

x0

T

n   = 9

tn   = 5

h   = T / 5t

h   =        / 9xx

( x  , t  )i

Figure 51. A rectangular grid with nx = 9 and nt = 5 on the domain
D = [0, π]× [0, T ].

We will compute the approximate solution values at grid points, and we use the notation
ui,j = u(xi, tj) and fi,j = f(xi, tj) to denote unknown and source function values at grid
points. We also denote gi = g(xi) for the initial data function values at grid points. In this
notation the boundary conditions in Eq. (7.10) have the form u0,j = 0 and unx,j = 0. We
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finally introduce the forward difference quotient in time d+t and the second order centered
difference quotient in space d2

cx as follows,

d+tui,j =
ui,(j+1) − ui,j

ht
, d2

cxui,j =
u(i+1),j + u(i−1),j − 2ui,j

h2
x

.

Now we state the approximate problem we will solve: Given the constants fi,j and gi, for
i = 0, 1, · · · , nx and j = 0, 1, · · · , ny, find the constants ui,j solution of the linear equations
and boundary conditions, respectively,

d+tui,j − κd2
cxui,j = fi,j , (7.20)

u0,j = unx,j = 0, (7.21)
ui,0 = gi. (7.22)

This system is simpler to solve than it looks at first sight. Let us rewrite it in as follows,
1
ht

(
ui,(j+1) − ui,j

)− κ

h2
x

(
u(i+1),j + u(i−1),j − 2ui,j

)
= fij ,

which is equivalent to the equation

ui,(j+1) = r
(
u(i+1),j + u(i−1),j

)
+ (1− 2r)ui,j + htfi,j , (7.23)

where r = κht/h2
cx. This last equation says that the solution at the time tj+1 can be

computed if the solution at the previous time tj is known. Since the solution at the initial
time t0 = 0 is known an equal to gi, and since solution at the boundary of the domain u0,j

and unx,j is known from the boundary conditions, then the solution ui,j can be computed
from Eq. (7.23) time step after time step. For this reason the linear system in Eqs. (7.20)-
(7.22) above is an example of an explicit method.

Part (b): We now repeat the calculations in part (a) using a backward difference quotient
in time. We introduce the notation d-t for the backward difference quotient in time, and we
keep the notation d2

cx for the second order centered difference quotient in space,

d-tui,j =
ui,j − ui,(j−1)

ht
, d2

cxui,j =
u(i+1),j + u(i−1),j − 2ui,j

h2
x

.

Now we state the approximate problem we will solve: Given the constants fi,j and gi, for
i = 0, 1, · · · , nx and j = 0, 1, · · · , ny, find the constants ui,j solution of the linear equations
and boundary conditions, respectively,

d-tui,j − κd2
cxui,j = fi,j , (7.24)

u0,j = unx,j = 0, (7.25)
ui,0 = gi. (7.26)

This system is simpler to solve than it looks at first sight. Let us rewrite it in as follows,
1
ht

(
ui,j − ui,(j−1)

)− κ

h2
x

(
u(i+1),j + u(i−1),j − 2ui,j

)
= fij ,

which is equivalent to the equation

(+2r)ui,j − r
(
u(i+1),j + u(i−1),j

)
= ui,(j−1) + htfi,j , (7.27)

where r = κht/h2
cx, as above. This last equation says that the solution at the time tj+1 can

be computed if the solution at the previous time tj is known. However, in this case we need
to solve an (nx−1)× (nx−1) linear system at each time step. Such system is similar to the
one that appeared in Example 7.3.1. Since the solution at the initial time t0 = 0 is known an
equal to gi, and since solution at the boundary of the domain u0,j and unx,j is known from
the boundary conditions, then the solution ui,j can be computed from Eq. (7.27) time step
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after time step. We emphasize that the solution is computed by solving an (nx−1)×(nx−1)
system at every time step. For this reason the linear system in Eqs. (7.24)-(7.26) above is
an example of an implicit method. C

What we have seen in this Section is just the first part of the story. We have seen
how we can use linear algebra to obtain approximate solutions of few problems involving
differential equations. The second part is to study how the solutions of the approximate
problems approaches the solution of the original problem as the grid step size approaches
zero. Consider the approximate solution u ∈ Rn+1 found in Example 7.3.1. Does the
interpolation polynomial pn constructed with the components of u approximate the function
u : [0, 1] → R solution to the boundary value problem in Eq. (7.7) in the limit n → ∞?
A similar question can be asked for the solutions {ui,j} obtained in parts (b) and (c) in
Example 7.3.2. We will study the answers to these questions in the following Chapters.

One last remark is the following. Comparing parts (a) and (b) in Example 7.3.2 we see
that explicit methods are simpler to solve than implicit methods. A matrix must be inverted
to solve an implicit method, while this is not needed to solve an explicit method. So, why
are implicit methods studied at all? The reason is that in the limit n→∞ the approximate
solutions of explicit methods do not approximate the solution of the original differential
equation as good as a solution of an implicit method. Moreover, the solution of an explicit
method may not converge at all, while the solutions of implicit methods always converges.

Further reading. See Section 1.4 in Meyer’s book [3] for a detailed discussion on dis-
cretizations of two-point boundary values problems.
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7.3.4. Exercises.

7.3.1.- Consider the boundary value prob-
lem for the function u given by

d2u

dx2
(x) = 25 x,

u(0) = 0, u(1) = 0,

x ∈ [0, 1].

Divide the interval [0, 1] into five equal
subintervals and use the finite difference
method to find an approximate solution
vector u = [ui] to the boundary value
problem above, where i = 0, · · · , 5. Use
centered difference quotients given in
Eq. (7.17) to approximate the deriva-
tives of function u.

7.3.2.- Given an infinite differentiable func-
tion u : R→ R. apply twice the forward
difference quotient d+ to show that the
second order forward difference quotient
has the form

d2
+u(x) =

u(x + 2∆x)− 2u(x + ∆x) + u(x)

(∆x)2
.

7.3.3.- Given an infinite differentiable func-
tion u : R → R. apply twice the back-
ward difference quotient d+ to show that
the second order backward difference
quotient has the form

d2
-u(x) =

u(x)− 2u(x−∆x) + u(x− 2∆x)

(∆x)2
.

7.3.4.- Consider the boundary value prob-
lem given in the Exercise 7.3.1. Di-
vide again the interval [0, 1] into five
equal subintervals and find the 4×4 lin-
ear system that approximates the orig-
inal problem using forward difference
quotients to approximate derivatives of
function u. You do not need to solve
the linear system.

7.3.5.- Consider the boundary value prob-
lem given Problem 7.3.1. Divide again
the interval [0, 1] into five equal subin-
tervals and find the 4× 4 linear system
that approximates the original problem
using backward difference quotients to
approximate derivatives of function u.
You do not need to solve the linear sys-
tem.

7.3.6.- Consider the boundary value prob-
lem for the function u given by

d2u

dx2
(x) + 2

du

dx
(x) = 25 x,

u(0) = 0, u(1) = 0,

x ∈ [0, 1].

Divide the interval [0, 1] into five equal
subintervals and use the finite differ-
ence method to find an algebraic lin-
ear system that approximates the origi-
nal boundary value problem above. Use
centered difference quotients given in
Eq. (7.17) to approximate derivatives of
function u. You do not need to solve the
linear system.
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7.4. Finite element method

The finite element method permits the computation of approximate solutions to dif-
ferential equations. Boundary value problems involving a differential equations are first
transformed into integral equations. The boundary conditions are included into the inte-
gral equation by performing integration by parts. The original problem is transformed into
inverting a bilinear form on a vector space. The approximate problem is obtained when
the integral equation is solved not on the whole vector space but on a finite dimensional
subspace. By a careful choice of the subspace, the calculations needed to obtain the approx-
imate solution can be simplified. In this Section we study the same differential equations
we have seen in Sect. 7.3 when we described the finite difference methods. Finite differ-
ence methods are different form finite element methods. The former method approximates
derivatives by difference quotients in order to obtain the approximate problem involving an
algebraic linear system. The latter method produces an algebraic linear system by restrict-
ing an integral version of the original differential equation onto a finite dimensional subspace
of the original vector space where the integral equation is defined.

7.4.1. Differential equations. We now recall the boundary value problem we are inter-
ested to study. This is the first problem we studied in Sect. 7.3, that is, to find an approxi-
mate solution to a boundary value problem for an ordinary differential equation: Given an
infinitely differentiable function f : [0, 1]→ R, find a function u : [0, 1]→ R solution of the
boundary value problem

d2u

dx2
(x) +

du

dx
(x) = f(x), (7.28)

u(0) = u(1) = 0. (7.29)

Recall that finding the function u involves doing two integrations that introduce two in-
tegration constants. These constants are determined by the two conditions on x = 0 and
x = 1 above, called boundary conditions, since they are conditions on the boundaries of
the interval [0, 1]. Because of this extra condition on the ordinary differential equation this
problem is called a boundary value problem.

This problem can be expressed using linear transformations on vector spaces. Consider
the inner product spaces

(
V, 〈 , 〉) and

(
W, 〈 , 〉), where V = C∞0 ([0, 1],R) is the space of

infinitely many differentiable functions that vanish at x = 0 and x = 1, W = C∞([0, 1],R)
is the space of infinitely many differentiable functions, while the inner product is defined as

〈f , g〉 =
∫ 1

0

f (x)g(x) dx.

Introduce the linear transformation L : V →W defined by

L(v) =
d2v

dx2
+

dv

dx

Then, the boundary value problem in Eqs. (7.28)-(7.29) can be expressed in the following
way: Given a vector f ∈W , find a vector u ∈ V solution of the equation

L(u) = f . (7.30)

Notice that the boundary conditions in Eq. (7.29) have been included into the definition of
the vector space V . The problem defined by Eqs. (7.28)-(7.29), which is equivalently defined
by Eq. (7.30), is called the strong formulation of the problem.

So, we have expressed a boundary value problem for a differential equation in terms of
linear transformations between appropriate infinite dimensional vector spaces. The next
step is to use the inner product defined on V and W to transform the differential equation
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in (7.30) into an integro-differential equation, which will be called the weak formulation of
the problem. This idea is summarized below.

7.4.2. The Galerkin method. The Galerkin method refers to a collection of ideas to
transform a problem involving a linear transformation between infinite dimensional inner
product spaces into a problem involving a matrix as a function between finite dimensional
subspaces. We describe in this Section the original idea, introduced by Boris Galerkin
around 1915. Galerkin worked only with partial differential equations, but we now know
that his idea works in the more general context of a linear transformation between infinite
dimensional inner product spaces. For this reason we describe Galerkin’s idea in this more
general context. The Galerkin method is to transform the strong formulation of the problem
in (7.30) into what is called the weak formulation of the problem. This transformation is
done using the inner product defined on the infinite dimensional vector spaces. Before we
describe this transformation we need few definitions.

7.4.3. Finite element method.
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7.4.4. Exercises.

7.4.1.- . 7.4.2.- .
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Chapter 8. Normed spaces

8.1. The p-norm

An inner product in a vector space always determines an inner product norm, which
satisfies the properties (a)-(c) in Theorem 6.2.5. However, the inner product norm is not
the only function V → R satisfying these properties.

Definition 8.1.1. A norm on a vector space V over the field F is any function function
‖ ‖ : V → R satisfying the following properties,
(a) (Positive definiteness) For all x ∈ V holds ‖x‖ > 0, and ‖x‖ = 0 iff x = 0;
(b) (Scaling) For all x ∈ V and all a ∈ F holds ‖ax‖ = |a| ‖x‖;
(c) (Triangle inequality) For all x, y ∈ V holds ‖x + y‖ 6 ‖x‖+ ‖y‖.
A normed space is a pair

(
V, ‖ ‖) of a vector space with a norm.

The inner product norm, ‖x‖ =
√
〈x,x〉 for all x ∈ V , defined in an inner product space(

V, 〈 , 〉), is thus an obvious example of a norm, since it satisfies the properties (a)-(c) in
Theorem 6.2.5, which are precisely the conditions given in Definition 8.1.1. It is important
to notice that alternative norms exist on inner product spaces. Moreover, a norm can be
introduced in a vector space without having an inner product structure. One particularly
important example of the former case is given by the p-norms defined on V = Fn.

Definition 8.1.2. The p-norm on the vector space Fn, with 1 6 p 6 ∞, is the function
‖ ‖p : Fn → R defined as follows,

‖x‖p =
(|x1|p + · · ·+ |xn|p

)1/p
, p ∈ [1,∞),

‖x‖∞ = max
{|x1|, · · · , |xn|

}
, (p =∞),

with x = [xi], for i = 1, · · · , n, the vector components in the standard ordered basis of Fn.

Since the dot product norm is given by ‖x‖ =
(|x1|2 + · · ·+ |xn|2

)1/2, it is simple to see
that ‖ ‖ = ‖ ‖2, that is, the case p = 2 coincides with the dot product norm on Fn. The
most commonly used norms, besides p = 2, are the cases p = 1 and p =∞,

‖x‖1 = |x1|+ · · ·+ |xn|, ‖x‖∞ = max
{|x1|, · · · , |xn|

}
.

Theorem 8.1.3. For each value of p ∈ [1,∞] the p-norm function ‖ ‖p : Fn → R introduced
in Definition 8.1.2 is a norm on Fn.

The Theorem above states that the function ‖ ‖p satisfies the properties (a)-(c) in Defi-
nition 8.1.1. Therefore, for each value p ∈ [1,∞] the space

(
Fn, ‖ ‖p

)
is a normed space. We

will see at the end of this Section that in the case p ∈ [1,∞] and p 6= 2 these norms are not
inner product norms. In other words, for these values of p there is no inner product 〈 , 〉p
defined on Fn such that ‖ ‖p =

√〈 , 〉p.
In order to prove that the p-norm is indeed a norm, we first need to establish the following

generalization of the Cauchy-Schwarz inequality, called Hölder inequality.

Theorem 8.1.4. (Hölder inequality) For all vectors x, y ∈ Fn and p ∈ [1,∞) holds that

|x∗y| 6 ‖x‖p ‖y‖q, with
1
p

+
1
q

= 1. (8.1)

Proof of Theorem 8.1.4: We first show that for all real numbers a > 0, b > 0 holds

aλb1−λ 6 (1− λ) b + λa λ ∈ [0, 1]. (8.2)
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This inequality can be shown using the auxiliary function

f(t) = (1− λ) + λ t− tλ.

Its derivative is f ′(t) = λ[1− t(λ−1)], so the function f satisfies

f(1) = 0, f ′(t) > 0 for t > 1, f ′(t) < 0 for 0 6 t < 1.

We conclude that f(t) > 0 for t ∈ [0,∞). Given two real numbers a > 0, b > 0, we have
proven that f(a/b) > 0, that is,

aλ

bλ
6 (1− λ) + λ

a

b
⇔ aλb1−λ 6 (1− λ) b + λa.

Having established Eq. (8.2), we use it to prove Hölder inequality. Let x = [xi], y = [yj ] ∈ Fn

be arbitrary vectors, where i, j = 1, · · · , n, and introduce the rescaled vectors

x̂ =
x

‖x‖p , ŷ =
y

‖y‖q ,
1
p

+
1
q

= 1.

These rescaled vectors satisfy that ‖x̂‖p = 1 and ‖ŷ‖q = 1. Denoting x̂ = [x̂i] and ŷ = [ŷi],
use the inequality in Eq. (8.2) in the case that a = x̂i, b = ŷi and λ = 1/p, as follows,

|x̂iŷi| =
( |xi|p∑n

j=1 |xj |p
) 1

p
( |yi|q∑n

j=1 |yj |q
)1− 1

p

6
(
1− 1

p

)( |yi|q∑n
j=1 |yj |q

)
+

1
p

( |xi|p∑n
j=1 |xj |p

)

6 1
q
|ŷi|q +

1
p
|x̂i|p.

Adding up over all components,

|x̂∗ŷ| 6
n∑

i=1

|x̂iŷi| 6 1
q
|ŷi|q +

1
p
|x̂i|p =

1
q
‖ŷ‖qq +

1
p
‖x̂‖pp =

1
q

+
1
p

= 1.

Therefore, |x̂∗ŷ| 6 1, which is equivalent to
∣∣∣ x∗

‖x‖p
y

‖y‖q
∣∣∣ 6 1 ⇔ |x∗y| 6 ‖x‖p ‖y‖q.

This establishes the Theorem. ¤
The Hölder inequality plays an important role to show that the p-norms satisfy the

triangle inequality. We saw the same situation when the Cauchy-Schwarz inequality played
a crucial role to prove that the inner product norm satisfied the triangle inequality.
Proof of Theorem 8.1.3: We show the proof for p ∈ [1,∞). The case p = ∞ is left as
an exercise. So, we assume that p ∈ [1,∞), we introduce q by the equation 1

p + 1
q = 1.

In order to show that the p-norm is a norm we need to show that the p-norm satisfies the
properties (a)-(c) in Definition 8.1.1. The first two properties a simple to prove. The p-norm
is positive, since for all x ∈ Fn holds

‖x‖p =
( n∑

i=1

|xi|p
) 1

p > 0, and
( n∑

i=1

|xi|p
) 1

p

= 0 ⇔ |xi| = 0 ⇔ x = 0.

The p-norm satisfies the scaling property, since for all x ∈ Fn and all a ∈ F holds

‖ax‖p =
( n∑

i=1

|axi|p
) 1

p

=
( n∑

i=1

|a|p |xi|p
) 1

p

=
(
|a|p

n∑

i=1

|xi|p
) 1

p

= |a| ‖x‖p.
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The difficult part is to establish that the p-norm satisfies the triangle inequality. We start
proving the following statement: For all real numbers a, b holds

|a + b|p 6 |a| |a + b| pq + |b| |a + b| pq . (8.3)

This is indeed the case, since

|a + b|p = |a + b| |a + b|p−1, and
1
q

= 1− 1
p

=
p− 1

p
⇔ p

q
= p− 1,

so we conclude that

|a + b| = |a + b| |a + b| pq 6 (|a|+ |b|) |a + b| pq ,

which is the inequality in Eq. (8.3). This inequality will be used in the following calculation.
Given arbitrary vectors x = [xi], y = [yi] ∈ Fn, for i = 1, · · · , n, the following inequalities
hold

‖x + y‖pp =
n∑

i=1

|xi + yi|p 6
n∑

i=1

(
|xi| |xi + yi|

p
q + |yi| |xi + yi|

p
q

)
, (8.4)

where Eq. (8.3) was used to obtain the last inequality. Now the Hölder inequality implies
both

n∑

i=1

|xi| |xi + yi|
p
q 6

( n∑

i=1

|xi|p
) 1

p
( n∑

i=1

|xi + yi|p
) 1

q

,

n∑

i=1

|yi| |xi + yi|
p
q 6

( n∑

i=1

|yi|p
) 1

p
( n∑

i=1

|xi + yi|p
) 1

q

.

Inserting these expressions in Eq. (8.4) we obtain

‖x + y‖pp 6 ‖x‖p
(‖x + y‖p

) p
q + ‖y‖p

(‖x + y‖p
) p

q .

Recalling that p
q = p− 1, we obtain the inequality

‖x + y‖pp 6
(‖x‖p + ‖y‖p

) ‖x + y‖(p−1)
p ⇔ ‖x + y‖p 6 ‖x‖p + ‖y‖p.

This establishes the Theorem for p ∈ [1,∞). ¤

Example 8.1.1: Find the length of x =




1
2
−3


 in the norms ‖ ‖1, ‖ ‖2 and ‖ ‖∞.

Solution: A simple calculations shows,

‖x‖1 = |1|+ |2|+ | − 3| = 6,

‖x‖2 =
[
12 + 22 + (−3)2

]1/2 =
√

14 = 3.74,

‖x‖∞ = max
{|1|, |2|, | − 3|} = 3.

Notice that for the vector x above holds

‖x‖∞ 6 ‖x‖2 6 ‖x‖1. (8.5)

One can prove that the inequality in Eq. (8.5) holds for all x ∈ Fn. C

Example 8.1.2: Sketch on R2 the set of vectors Bp =
{
x ∈ R2 : ‖x‖p = 1

}
for the cases

p = 1, p = 2, and p =∞.



248 G. NAGY – LINEAR ALGEBRA july 15, 2012

Solution: Recall we use the standard basis to express x =
[
x1

x2

]
. We start with the set B2,

which is the circle of radius one in Fig. 52, that is,

(x1)2 + (x2)2 = 1.

The set B1 is the square of side one given by

|x1|+ |x2| = 1.

The sides are given by the lines ±x1 ± x2 = 1. See Fig. 52. The set B∞ is the square of
side two given by

max
{|x1|, |x2|

}
= 1.

The sides are given by the lines x1 = ±1 and x2 = ±1. See Fig. 52.

1

1

−1

2
x

x 1−1

1

1

−1

2
x

x 1−1

1

1

−1

x 1

2
x

−1

Figure 52. Unit sets in R2 for the p-norms, with p = 1, 2,∞, respectively.

C

Example 8.1.3: Show that for every x ∈ R2 holds

‖x‖∞ 6 ‖x‖2 6 ‖x‖1.

Solution: Introducing the unit disks Dp =
{
x ∈ R2 : ‖x‖p 6 1

}
, with p = 1, 2,∞, then

Fig. 53 shows that D1 ⊂ D2 ⊂ D∞. Let us choose y ∈ R2 such that ‖y‖2 = 1, that is, a
vector on the circle, for example the vector given in second picture in Fig. 53. Since this
vector is outside the disk D1, that implies ‖y‖1 > 1, and since this vector is inside the disk
D∞, that implies ‖y‖∞ 6 1. The three conditions together say

‖y‖∞ 6 ‖y‖2 6 ‖y‖1.
The equal signs correspond to the cases where y is a horizontal or a vertical vector. Since
any vector x ∈ R2 is a scaling of an appropriate vector y on the border of D2, that is, x = c y,
with 0 6 c ∈ R, then, multiplying the inequality above by c we obtain

‖x‖∞ 6 ‖x‖2 6 ‖x‖1, ∀ x ∈ R2.

C

The p-norms can be defined on infinite dimensional vector spaces like function spaces.
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1

1

−1

2
x

x 1−1

y

1

−1

2
x

x 1−1

1

Figure 53. A comparison of the unit sets in R2 for the p-norms, with p = 1, 2,∞.

Definition 8.1.5. The p-norm on the vector space V = Ck([a, b],R), with 1 6 p 6 ∞, is
the function ‖ ‖p : V → R defined as follows,

‖f ‖p =
(∫ b

a

|f (x)|p dx
)1/p

, p ∈ [1,∞),

‖f ‖∞ = max
x∈[a,b]

|f (x)|, (p =∞).

One can show that the p-norms introduced in Definition 8.1.5 are indeed norms on the
vector space Ck([a, b],R). The proof of this statement follows the same ideas given in the
proofs of Theorems 8.1.4 and 8.1.3 above, and we do not present it in these notes.

Example 8.1.4: Consider the normed space
(
C0([−1, 1],R), ‖ ‖p

)
for any p ∈ [1,∞] and

find the p-norm of the element f (x) = x.

Solution: In the case of p ∈ [1,∞) we obtain

‖f ‖pp =
∫ 1

−1

|x|p dx = 2
∫ 1

0

xp dx = 2
x(p+1)

(p + 1)

∣∣∣
1

0
=

2
p + 1

⇒ ‖f ‖p =
( 2

p + 1

) 1
p

.

In the case of p =∞ we obtain

‖f ‖∞ = max
x∈[−1,1]

|x| ⇒ ‖f ‖∞ = 1.

Relations between the p-norms of a given vector f analogous to those relations found in
Example 8.1.3 are not longer true. The volume of the integration region, the interval [a, b],
appears in any relation between p-norms of a fixed vector. We do not address such relations
in these notes. C

8.1.1. Not every norm is an inner product norm. Since every inner product in a
vector space determines a norm, the inner product norm, it is natural to ask whether the
converse property holds: Does every norm in a vector space determine an inner product?
The answer is no. Only those norms satisfying an extra condition, called the parallelogram
identity, define an inner product.
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Definition 8.1.6. A norm ‖ ‖ in a vector space V satisfies the polarization identity iff
for all vectors x, y ∈ V holds

‖x + y‖2 + ‖x− y‖2 = 2
(‖x‖2 + ‖y‖2).

The polarization identity (also referred as parallelogram identity) is a well-known property
of the dot product norm, which is geometrically described in Fig. 54 in the case of the vector
space R2. It turns out that this property is crucial to determine whether a norm is an inner
product norm for some inner product.

x

x

y

x+y

y

x+yx−y

Figure 54. The polarization identity says that the sum of the squares of
the diagonals in a parallelogram is twice the sum of the squares of the sides.

Theorem 8.1.7. Given a normed space
(
V, ‖ ‖), the norm ‖ ‖ is an inner product norm

iff the norm ‖ ‖ satisfies the polarization identity.

It is not difficult to see that an inner product norm satisfies the polarization identity; see
the first part in the proof below. It is rather involved to show the converse statement. If
the norm ‖ ‖ satisfies the polarization identity and V is a real vector space, then one shows
that the function 〈 , 〉 : V × V → R given by

〈x,y〉 =
1
4

(‖x + y‖2 − ‖x− y‖2)

is an inner product on V ; in the case that V is a complex vector space, then one shows that
the function 〈 , 〉 : V × V → C given by

〈x,y〉 =
1
4

(‖x + y‖2 − ‖x− y‖2) +
i

4
(‖x + iy‖2 − ‖x− iy‖2)

is an inner product on V .
Proof of Theorem 8.1.7:

(⇒) Consider the inner product space
(
V, 〈 , 〉) with inner product norm ‖ ‖. For all

vectors x, y ∈ V holds

‖x + y‖2 = 〈(x + y), (x + y)〉 = ‖x‖2 + 〈x,y〉+ 〈y,x〉+ ‖y‖2,
‖x− y‖2 = 〈(x− y), (x− y)〉 = ‖x‖2 − 〈x,y〉 − 〈y,x〉+ ‖y‖2.

Adding both equations above up we obtain that

‖x + y‖2 + ‖x− y‖2 = 2
(‖x‖2 + ‖y‖2).

(⇐) We only give the proof for real vector spaces. The proof for complex vector spaces
is left as an exercise. Consider the normed space

(
V, ‖ ‖) and assume that V is a real vector

space. In this case, introduce the function 〈 , 〉 : V × V → R as follows,

〈x,y〉 =
1
4

(‖x + y‖2 − ‖x− y‖2).
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Notice that this function satisfies 〈x,0〉 = 1
4

(‖x‖2 − ‖x‖2) = 0 for all x ∈ V . We now show
that this function 〈 , 〉 is an inner product on V . It is positive definite, since

〈x,x〉 =
1
4
‖2x‖2 = ‖x‖2

and the norm is positive definite, so we obtain that

〈x,x〉 > 0, and 〈x,x〉 = 0 ⇔ x = 0.

The function 〈 , 〉 is symmetric, since

〈x,y〉 =
1
4

(‖x + y‖2 − ‖x− y‖2) =
1
4

(‖y + x‖2 − ‖y− x‖2) = 〈y,x〉.
The difficult part is to show that the function 〈 , 〉 is linear in the second argument. Here is
where we need the polarization identity. We start with the following expressions, which are
obtained from the polarization identity,

‖x + y + z‖2 + ‖x + y− z‖2 = 2 ‖x + y‖2 + 2 ‖z‖2,
‖x− y + z‖2 + ‖x− y− z‖2 = 2 ‖x− y‖2 + 2 ‖z‖2.

If we subtract the second equation from the first one, and ordering the terms conveniently,
we obtain,
[
‖x+(y+z)‖2−‖x− (y+z)‖2

]
+

[
‖x+(y−z)‖2−‖x− (y−z)‖2

]
= 2

[
‖x+y‖2−‖x−y‖2

]

which can be written in terms of the function 〈 , 〉 as follows,

〈x, (y + z)〉+ 〈x, (y− z)〉 = 2〈x,y〉. (8.6)

Several relations come from this equation. For the first relation, take y = z, and recall that
〈x,0〉 = 0, then we obtain

〈x, 2y〉 = 2 〈x,y〉. (8.7)

The second relation derived from Eq. (8.6) is obtained renaming the vectors y + z = u and
y− z = v, that is,

〈x,u〉+ 〈x, v〉 = 2
〈
x,

(u + v)
2

〉
= 〈x, (u + v)〉,

where the equation on the far right comes from Eq. (8.7). We have shown that for all x, u,
v ∈ V holds

〈x, (u + v)〉 = 〈x,u〉+ 〈x, v〉
which is a particular case of the linearity in the second argument property of an inner
product. We only need to show that for all x, y ∈ V and all a ∈ R holds

〈x, ay〉 = a 〈x,y〉.
We have proven the case a = 2 in Eq. (8.7). The case a = n ∈ N is proven by induction: If
〈x, ny〉 = n 〈x,y〉, then the same relation holds for (n + 1), since

〈x, (n + 1)y〉 = 〈x, (ny + y)〉
= 〈x, ny〉+ 〈x,y〉
= n 〈x,y〉+ 〈x,y〉
= (n + 1) 〈x,y〉.

The case a = 1/n with n ∈ N comes from the relation

〈x,y〉 =
〈
x,

n

n
y
〉

= n
〈
x,

1
n
y
〉
⇒

〈
x,

1
n
y
〉

=
1
n
〈x,y〉.
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These two cases show that for any rational number a = p/q ∈ Q holds
〈
x,

p

q
y
〉

= p
〈
x,

1
q
y
〉

=
p

q
〈x,y〉. (8.8)

Finally, the same property holds for all a ∈ R by the following continuity argument. Fix
arbitrary vectors x, y ∈ V and define the function f : R→ R by

a 7→ f(a) = 〈x, ay〉.
We left as an exercise to show that f is a continuous function. Now, using Eq. (8.8) we
know that this function satisfies

f(a) = a f(1) ∀ a ∈ Q.

Let {ak}∞k=1 ⊂ Q be a sequence of rational numbers that converges to a ∈ R. Since f is a
continuous function we know that limk→∞ f(ak) = f(a). Since the sequence is constructed
with rational numbers, for every element in this sequence holds

f(ak) = ak f(1)

which implies that
lim

k→∞
f(ak) =

(
lim

k→∞
ak

)
f(1) = a f(1).

So we have shown that for all a ∈ R holds f(a) = a f(1), that is,

〈x, ay〉 = a 〈x,y〉.
Since x, y ∈ V are fixed but arbitrary, we have shown that the function 〈 , 〉 in linear in the
second argument. We conclude that this function is an inner product on V . This establishes
the Theorem in the case that V is a real vector space. ¤

Example 8.1.5: Show that for p 6= 2 the p-norm on the vector space Fn introduced in
Definition 8.1.2 does not satisfy the polarization identity.

Solution: Consider the vectors e1 and e2, the first two columns of the identity matrix In.
It is simple to compute,

‖e1 + e2‖2p = 22/p, ‖e1 − e2‖2p = 22/p, ‖e1‖2p = ‖e2‖2p = 1

therefore,
‖e1 + e2‖2p + ‖e1 − e2‖2p = 2

p+2
p and 2

(‖e1‖2p + ‖e2‖2p
)

= 4.

We conclude that the p-norm satisfies the polarization identity only in the case p = 2. C

8.1.2. Equivalent norms. We have seen that a norm in a vector space determines a notion
of distance between vectors given by the norm distance introduced in Definition 6.2.6. The
notion of distance is the structure needed to define the convergence of an infinite sequence
of vectors. A sequence of vectors {xi}∞i=1 in a normed space

(
V, ‖ ‖) converges to a vector

x ∈ V iff
lim

k→∞
‖x− xk‖ = 0,

that is, for every ε > 0 there exists n ∈ N such that for all k > n holds that ‖x − xk‖ < ε.
With the notion of convergence of a sequence it is possible to introduce concepts like the
continuous and differentiable functions defined on the vector space. Therefore, the calculus
can be extended from Rn to any normed vector space.

We have also seen that there is no unique norm in a vector space. This implies that there
is no unique notion of norm distance. It is important to know whether two different norms
provide the same notion of convergence of a sequence. By this we mean that every sequence
that converges (diverges) with respect to one norm distance also converges (diverges) with
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respect to the other norm distance. In order to answer this question it is useful the following
notion.

Definition 8.1.8. The norms ‖ ‖a and ‖ ‖b defined on a vector space V are called to be
equivalent iff there exist real constants K > k > 0 such that for all x ∈ V holds

k ‖x‖b 6 ‖x‖a 6 K ‖x‖b.
It is simple to see that if two norms defined on a vector space are equivalent, then they

have the same notion of convergence. What it is non-trivial to prove is that the converse
also holds. Since two norms have the same notion of convergence iff they are equivalent, it
is important to know whether a vector space can have non-equivalent norms. The following
result addresses the case of finite dimensional vector spaces.

Theorem 8.1.9. If V is a finite dimensional, then all norms defined on V are equivalent.

This result says that there is a unique notion of convergence in any finite dimensional
vector space. So, functions that are continuous or differentiable with respect to one norm
are also continuous or differentiable with respect to any other norm. This is not the case
of infinite dimensional vector spaces. It is possible to find non-equivalent norms on infinite
dimensional vector spaces. Therefore, functions defined on such a vector space can be
continuous with respect to one norm and discontinuous with respect to the other norm.
Proof of Theorem 8.1.9: Let ‖ ‖a and ‖ ‖b be two norms defined on a finite dimensional
vector space V . Let dimV = n, and fix a basis V = {v1, · · · , vn} of V . Then, any vector
x ∈ V can be decomposed in terms of the basis vectors as

x = x1v1 + · · ·+ xnvn.

Since ‖ ‖a is a norm, we can obtain the following bound on ‖x‖a for every x ∈ V in terms
of (

∑n
i=1 |xi|) as follows.

‖x‖a = ‖x1v1 + · · ·+ xnvn‖a
6 |x1| ‖v1‖a + · · ·+ |xn| ‖vn‖a

6
(|x1|+ · · ·+ |xn|

)
amax ⇒ ‖x‖a 6

( n∑

i=1

|xi|
)

amax.

where amax = max{‖v1‖a, · · · , ‖vn‖a}. A lower bound can also be found as follows. Intro-
duce the set

S =
{

[x̂i] ∈ Fn :
n∑

i=1

|x̂i| = 1
}
⊂ Fn,

and then introduce the function fa : S → R as follows

fa([x̂i]) =
∥∥∥

n∑

i=1

x̂ivi

∥∥∥
a
.

Since function fa is a continuous and defined on a closed and bounded set of Fn, then fa

has attains a maximum and a minimum values on S. We are here interested only in the
minimum value. If [ŷi] ∈ S is a point where fa takes its minimum value, let let us denote

fa([ŷi]) = amin.
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Since the norm ‖ ‖a is positive, we know that amin > 0. The existence of this minimum
value of fa implies the following bound on ‖x‖a for all x ∈ V , namely,

‖x‖a =
∥∥∥

n∑

i=1

xivi

∥∥∥
a

=

(∑n
j=1 |xj |

)
(∑n

j=1 |xj |
)

∥∥∥
n∑

i=1

xivi

∥∥∥
a

=
( n∑

j=1

|xj |
)∥∥∥

n∑

i=1

[ xi(∑n
j=1 |xj |

)
]
vi

∥∥∥
a

=
( n∑

j=1

|xj |
)∥∥∥

n∑

i=1

x̂i vi

∥∥∥
a

=
( n∑

j=1

|xj |
)

fa([x̂i]) ⇒ ‖x‖a >
( n∑

j=1

|xj |
)

amin.

Summarizing, we have found real numbers amax > amin > 0 such that the following inequal-
ity holds for all x ∈ V ,

amin

( n∑

j=1

|xj |
)

6 ‖x‖a 6
( n∑

j=1

|xj |
)

amax.

Since no special property of norm ‖ ‖a has been used, the same type of inequality holds
for norm ‖ ‖b, that is, there exist real numbers bmax > bmin > 0 such that the following
inequality holds for all x ∈ B,

bmin

( n∑

j=1

|xj |
)

6 ‖x‖b 6
( n∑

j=1

|xj |
)

bmax.

These inequalities imply that norms ‖ ‖a and ‖ ‖b are equivalent, since

‖x‖b amin

bmax
6 bmax

bmax
amin

( n∑

j=1

|xj |
)

6 ‖x‖a 6
( n∑

j=1

|xj |
)

amax
bmin

bmin
6 amax

bmin
‖x‖b.

(Start reading the inequality form the center, at ‖x‖a, and first see the inequalities to
the right; then go to the center again and read the inequalities to the left.) Denoting
k = amin/bmax and K = amax/bmin, we have obtained that

k ‖x‖b 6 ‖x‖a 6 K ‖x‖b ∀ x ∈ V.

This establishes the Theorem. ¤
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8.1.3. Exercises.

8.1.1.- Consider the vector space C4 and for
p = 1, 2,∞ find the p-norms of the vec-
tors

x =

2
664

2
1
−4
−2

3
775 , y =

2
664

1 + i
1− i

1
4i

3
775 .

8.1.2.- Determine which of the following
functions ‖ ‖ : R2 → R defines a norm
on R2. We denote x = [xi] the com-
ponents of x in a standard basis of R2.
Justify your answers.

(a) ‖x‖ = |x1|;
(b) ‖x‖ = |x1 + x2|;
(c) ‖x‖ = |x1|2 + |x2|2;
(d) ‖x‖ = 2|x1|+ 3|x2|.

8.1.3.- True or false? Justify your answer:
If ‖ ‖a and ‖ ‖b are two norms on a
vector space V , then ‖ ‖ defined as

‖x‖ = ‖x‖a + ‖x‖b ∀ x ∈ V

is also a norm on V .

8.1.4.- Consider the space P2([0, 1]) with
the p-norm

‖q‖p =
“Z 1

0

|q(x)|p dx
” 1

p
,

for p ∈ [1,∞). Find the p-norm of
the vector q(x) = −3x2. Also find the
supremum norm of q, defined as

‖q‖∞ = max
x∈[0,1]

|q(x)|.
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8.2. Operator norms

We have seen that the space of all linear transformations L(V, W ) between the vector
spaces V and W is itself a vector space. As in any vector space, it is possible to define
norm functions ‖ ‖ : L(V,W ) → R on the vector space L(V,W ). For example, We will see
that in the case where V = Fn and W = Fm, one of such norms is the Frobenius norm,
which is the inner product norm corresponding to the Frobenius inner product introduced
in Section 6.2. More precisely, the Frobenius norm is given by

‖A‖F =
√
〈A, A〉F ∀ A ∈ Fm,n.

It is simple to see that

‖A‖F =
√

tr
(
A∗A

)
=

( m∑

i=1

n∑

j=1

|Aij |2
) 1

2
.

However, in the case where V and W are normed spaces with norms ‖ ‖v and ‖ ‖w, there
exists a particular norm on L(V, W ) which is induced from the norms on V and W . This
induced norm can be defined on elements L(V, W ) by recalling that the element T ∈ L(V,W )
as a function T : V →W .

Definition 8.2.1. Let
(
V, ‖ ‖v

)
and

(
W, ‖ ‖w

)
be finite dimensional normed spaces. The

induced norm on the space L(V,W ) of all linear transformations T : V →W is a function
‖ ‖ : L(V,W )→ R given by

‖T ‖ = max
‖x‖v=1

‖T(x)‖w.

In the particular case that V = W and ‖ ‖v = ‖ ‖w = ‖ ‖, the induced norm on L(V ) is
called the operator norm, and is given by

‖T ‖ = max
‖x‖=1

‖T(x)‖.

The definition above says that given arbitrary norms on the vector spaces V and W ,
they induce a norm on the vector space L(V, W ) of linear transformations T : V → W . A
particular case of this definition is when V = Fn and W = Fm, we fix standard bases on V
and W , and we introduce p-norms on these spaces. So, the normed spaces

(
Fn, ‖ ‖p

)
and(

Fm, ‖ ‖q
)

induce a norm on the vector space Fm,n as follows.

Definition 8.2.2. Consider the normed spaces
(
Fn, ‖ ‖p

)
and

(
Fm, ‖ ‖q

)
, with p, q ∈ [1,∞].

The induced (p, q)-norm on the space L(Fn,Fm) is the function ‖ ‖p,q : L(Fn,Fm) → R
given by

‖T ‖p,q = max
‖x‖p=1

‖T(x)‖q ∀T ∈ L(Fn,Fm).

In the particular case of p = q we denote ‖ ‖p,p = ‖ ‖p. In the case p = q and n = m the
induced norm on L(Fn) is called the p-operator norm and is given by

‖T ‖p = max
‖x‖p=1

‖T(x)‖p ∀T ∈ L(Fn).

In the case p = q above we use the same notation ‖ ‖p for the p-norm on Fn, the (p, p)-
norm on L(Fn,Fm) and the p-operator nor in L(Fn). The context should help to decide
which norm we use on every particular situation.

Example 8.2.1: Consider the particular case V = W = R2 with standard ordered bases
and the p = 2 norms in both, V and W . In this case, the space L(R2) can be identified with
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the space R2,2 of all 2× 2 matrices. The induced norm on R2,2, denoted as ‖ ||2 and called
the operator norm, is the following:

‖A‖2 = max
‖x‖2=1

‖Ax‖2, ∀ A ∈ R2,2.

The meaning of this norm is deeply related with the interpretation of the matrix A as a
linear operator A : R2 → R2. Suppose that the action of the operator A on the unit circle
(B2 in the notation of Example 8.1.2) is given in Fig. 55. Then the value of the operator
norm ‖A‖2 is the size measured in the 2-norm of the maximum deformation by A of the unit
circle.

2

1 x 1 x 11

2
x 2

A x

|| A
 ||

Figure 55. Geometrical meaning of the operator norm on R2,2 induced
by the 2-norm on R2.

C

Example 8.2.2: Consider the normed space
(
R2, ‖ ‖2

)
, and let A : R2 → R2 be the matrix

A =
[
A11 0
0 A22

]
with |A11| 6= |A22|.

Find the 2-operator norm induced on A.

Solution: Since the norm on R2 is the 2-norm, the induced norm on A is given by

‖A‖2 = max
‖x‖2=1

‖Ax‖2.

We need to find the maximum of ‖Ax‖2 among all x subject to the constraint ‖x‖2 = 1.
So, this is a constrained maximization problem, that is, a maxima-minima problem where
the variable x is restricted by a constraint equation. In general, this type of problems can
be solved using the Lagrange multipliers method. Since this example is simple enough, we
solve it in a simpler way. We first solve the constraint equation on x, and we then find the
maxima of ‖Ax‖2 among these solutions only. The general solution of the equation

‖x‖2 = 1 ⇔ (x1)2 + x2)2 = 1

is given by

x(θ) =
[
cos(θ)
sin(θ)

]
with θ ∈ [0, 2π).

Introduce this general solution into ‖Ax‖2 we obtain

‖Ax‖2 =
√

(A11)2 cos2(θ) + (A22)2 sin2(θ).
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Since the maximum in θ of the function ‖Ax‖2 is the same as the maximum of ‖Ax‖22, we
need to find the maximum on θ of the function f(θ) = ‖Ax(θ)‖22, that is,

f(θ) = (A11)2 cos2(θ) + (A22)2 sin2(θ).

The solution is simple, find θ solutions of

f ′(θ) =
df

dθ
(θ) = 0 ⇒ 2

[−(A11)2 + (A22)2
]
sin(θ) cos(θ) = 0.

Since we assumed that |A11| 6= |A22|, then

sin(θ) = 0 ⇒ θ1 = 0, θ2 = π,

cos(θ) = 0 ⇒ θ3 =
π

2
, θ4 =

3π

2
.

We obtained four solutions for θ. We evaluate f at these solutions,

f(0) = f(π) = (A11)2, f
(π

2
)

= f
(3π

2
)

= (A22)2.

Recalling that ‖Ax(θ)‖2 =
√

f(θ), we obtain

‖A‖2 = max
{|A11|, |A22|

}
.

C

It was mentioned in Example 8.2.2 above that finding the operator norm requires solving
a constrained maximization problem. In the case that the operator norm is induced from a
dot product norm, the constrained maximization problem can be solved in an explicit form.

Proposition 8.2.3. Consider the vector spaces Rn and Rm with inner product given by the
dot products, inner product norms ‖ ‖2, and the vector space L(Rn,Rm) with the induced
2-norm.

‖A‖2 = max
‖x‖2=1

‖Ax‖2 ∀ A ∈ L(Rn,Rm).

Introduce the scalars λi ∈ R, with i = 1, · · · , k 6 n, as all the roots of the polynomial

p(λ) = det
(
AT A− λ In

)
.

Then, all scalars λi are non-negative real numbers and the induced 2-norm of the transfor-
mation A is given by

‖A‖2 = max
{
λ1, · · · , λk

}
.

Proof of Proposition 8.2.3: Introduce the functions f : Rm → R and g : Rn → R as
follows,

f(x) = ‖Ax‖22 =
(
Ax

) · (Ax
)

= xT AT Ax, g(x) = ‖x‖22 = x · x = xT x.

To find the induced norm of T is then equivalent to solve the constrained maximization
problem: Find the maximum of f(x) for x ∈ Rn subject to the constraint g(x) = 1. The
vectors x that provide solutions to the constrained maximization problem must we solutions
of the Euler-Lagrange equations

∇f = λ∇g (8.9)
where λ ∈ R, and we introduced the gradient row vectors

∇f =
[

∂f

∂x1
· · · ∂f

∂xn

]
, ∇f =

[
∂g

∂x1
· · · ∂g

∂xn

]
.

In order to understand why the solution x must satisfy the Euler-Lagrange equations above
we need to recall two properties of the gradient vector. First, the gradient of a function
f : Rn → R is a vector that determines the direction on Rn where f has the maximum
increase. Second, which is deeply related to the first property, the gradient vector of a
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function is perpendicular to the surfaces where the function has a constant value. The
surfaces of constant value of a function are called level surfaces of the function. Therefore,
the function f has a maximum or minimum value at x on the constraint level surface g = 1
if ∇f is perpendicular to the level surface g = 1 at that x. (Proof: Suppose that at a
particular x on the constraint surface g = 1 the projection of ∇f onto the constraint surface
is nonzero; then the values of f increase along that direction on the constraint surface; this
means that f does not attain a maximum value at that x on g = 1.) We conclude that both
gradients ∇f and ∇g are parallel, which is precisely what Eq. (8.9) says. In our particular
problem we obtain for f and g the following:

f(x) = xT AT Ax ⇒ ∇f(x) = 2xT AT A,

g(x) = xT x ⇒ ∇g(x) = 2xT .

We must look for x 6= 0 solution of the equation

xT AT A = λ xT ⇔ AT Ax = λ x,

where the condition x 6= 0 comes from ‖x‖2 = 1. Therefore, λ must not be any scalar but the
precise scalar or scalars such that the matrix (AT A − λ In) is not invertible. An equivalent
condition is that

p(λ) = det
(
AT A− λ In

)
= 0.

The function p is a polynomial of degree n in λ so it has at most n real roots. Let us denote
these roots by λ1, · · · , λk, with 1 6 k 6 n. For each of these values λi the matrix AT A−λi In
is not invertible, so N(AT A− λi In) is non-trivial. Let xi be any element in N(AT A− λi In),
that is,

AT Axi = λi xi, i = 1, · · · , k.

At this point it is not difficult to see that λi > 0 for i = 0, · · · , k. Indeed, multiply the
equation above by xT

i , that is,
xT
i AT Axi = λi xT

i xi.

Since both xT
i AT Axi and xT

i xi are non-negative numbers, so is λi. Returning to xi, only
these vectors are the candidates to find a solution to our maximization problem, and f has
the values

f(xi) = xT
i AT Axi = λi xT

i xi = λi ⇒ f(xi) = λi, i = 1, · · · , k.

The induced 2-norm of A is the maximum of these scalar λi. This establishes the Proposition.
¤

Example 8.2.3: Consider the vector spaces R3 and R2 with the dot product. Find the
induced 2-norm of the 2× 3 matrix

A =
[
1 0 1
0 1 −1

]
.

Solution: Following the Proposition 8.2.3 the value of the induced norm ‖A‖2 is the
maximum of the λi roots of the polynomial

p(λ) = det
(
AT A− λ I3

)
= 0.

We start computing

AT A =




1 0
0 1
1 −1




[
1 0 1
0 1 −1

]
=




1 0 1
0 1 −1
1 −1 2


 .
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The next step is to find the polynomial

p(λ) =

∣∣∣∣∣∣

(1− λ) 0 1
0 (1− λ) −1
1 −1 (2− λ)

∣∣∣∣∣∣
= (1− λ)

[
(1− λ)(2− λ)− 1

]
+ (1− λ),

therefore, we obtain p(λ) = −λ(λ− 1)(λ− 3). We have three roots

λ1 = 0, λ2 = 1, λ3 = 3.

We then conclude that the induced norm of A is given by

‖A‖2 = 3.

C

In the case that the norm in a normed space is not an inner product norm the induced
norm on linear operators is not simple to evaluate. The constrained maximization problem
is in general complicated to solve. Two particular cases can be solved explicitly though,
when the operator norm is induced from the p-norms with p = 1 and p =∞.

Proposition 8.2.4. Consider the normed spaces
(
Rn, ‖ ‖p

)
and

(
Rm, ‖ ‖p

)
and the vector

space L(Rn,Rm) with the induced p-norm.

‖A‖p = max
‖x‖p=1

‖A(x)‖p ∀ A ∈ L(Rn,Rm).

If p = 1 or p =∞, then the following formulas hold, respectively,

‖A‖1 = max
j∈{1,··· ,n}

m∑

i=1

|Aij |, ‖A‖∞ = max
i∈{1,··· ,m}

n∑

j=1

|Aij |.

Proof of proposition 8.2.4: From the definition of the induced p-norm for p = 1,

‖A‖1 = max
‖x‖1=1

‖Ax‖1.

From the p-norm on Rm we know that ‖Ax‖1 =
m∑

i=1

∣∣∣
n∑

j=1

Aijxj

∣∣∣, therefore,

‖Ax‖1 6
m∑

i=1

n∑

j=1

|Aij | |xj | =
n∑

j=1

|xj |
m∑

i=1

|Aij | 6
( n∑

j=1

|xj |
)

max
j∈{1,··· ,n}

( m∑

i=1

|Aij |
)
;

and introducing the condition ‖x‖1 = 1 we obtain the inequality

‖Ax‖1 6 max
j∈{1,··· ,n}

m∑

i=1

|Aij |.

Recalling the column vector notation A =
[
A:1, · · · , A:n

]
, we notice that ‖A:j‖1 =

∑m
i=1 |Aij |,

so the inequality above can be expressed as

‖Ax‖1 6 max
j∈{1,··· ,n}

‖A:j‖1.

Since the left hand side is independent of x, the inequality also holds for the maximum in
‖x‖1 = 1, that is,

‖A‖1 6 max
j∈{1,··· ,n}

‖A:j‖1.
It is now clear that the equality has to be achieved, since the ‖Ax‖1 in the case x = ej , with
ej a standard basis vector, takes the value ‖Aej‖1 = ‖A:j‖1. Therefore,

‖A‖1 = max
j∈{1,··· ,n}

‖A:j‖1.
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The second part of Proposition 8.2.4 can be proven as follows. From the definition of the
induced p-norm for p =∞ we know that

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞.

From the p-norm on Rm we see

‖Ax‖∞ = max
i∈{1,··· ,m}

∣∣∣
n∑

j=1

Aijxj

∣∣∣ 6 max
i∈{1,··· ,m}

n∑

j=1

|Aij | |xj | 6 max
i∈{1,··· ,m}

n∑

j=1

|Aij |.

Since the far right hand side does not depend on x, the inequality must hold for the maximum
in x with ‖x‖∞ = 1, so we conclude that

‖A‖∞ 6 max
i∈{1,··· ,m}

n∑

j=1

|Aij |.

As in the previous p = 1 case, the value on the right hand side above is achieved for ‖Ax‖∞
in the case of x with components ±1 depending on the sign of Aij . More precisely, choose
x as follows,

xj =
{ 1 if Aij > 0,

−1 if Aij < 0,
⇒

n∑

j=1

Aijxj =
n∑

j=1

|Aij |, i = 1, · · · ,m.

Therefore, for that x we have ‖x‖∞ = 1 and ‖Ax‖∞ = max
i∈{1,··· ,m}

n∑

j=1

|Aij |. So, we conclude

‖A‖∞ = max
i∈{1,··· ,m}

n∑

j=1

|Aij |.

This establishes the Proposition ¤
Example 8.2.4: Find the induced p-norm, where p = 1,∞, for the 2× 3 matrix

A =
[
1 4 1
2 1 −1

]
.

Solution: Proposition 8.2.4 says that ‖A‖1 is the largest absolute value sum of components
among columns of A, while ‖A‖∞ is the largest absolute value sum among rows of A. In the
first case we have:

‖A‖1 = max
j=1,2,3

2∑

i=1

|Aij |;

since
2∑

i=1

|Ai1| = 3,

2∑

i=1

|Ai2| = 5,

2∑

i=1

|Ai3| = 2,

therefore, ‖A‖1 = 5. In the second case e have:

‖A‖∞ = max
i=1,2

2∑

j=1

|Aij |;

since
3∑

j=1

|A1j | = 6,

3∑

j=1

|A2j | = 4,

therefore, ‖A‖∞ = 6. C
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8.2.1. Exercises.

8.2.1.- Evaluate the induced p-norm, where
p = 1, 2,∞, for the matrices

A =

»
1 −2
−1 2

–
, B =

2
4

0 1 0
0 0 1
1 0 0

3
5 .

8.2.2.- In the normed space
`
R2, ‖ ‖2

´
, find

the induced norm of A : R2 → R2

A =
1√
3

»
3 −1

0
√

8

–
.

8.2.3.- Consider the space
`
Fn, ‖ ‖p

´
and

the space Fn,n with the induced norm
‖ ‖p. Prove that for all A, B ∈ Fn,n and
all x ∈ Fn holds

(a) ‖Ax‖p 6 ‖A‖p ‖x‖p;
(b) ‖AB‖p 6 ‖A‖p ‖B‖p.
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8.3. Condition numbers

In Sect. 1.5 we discussed several types of approximations errors that appear when solving
an m × n linear system in a floating-point number set using rounding. In this Section we
discuss a particular type of square linear systems with unique solutions that are greatly
affected by small changes in the coefficients of their augmented matrices. We will call such
systems ill-conditioned. When an ill-conditioned n×n linear system is solved on a floating-
point number set using rounding, a small rounding error in the coefficients of the system
may produce an approximate solution that differs significantly from the exact solution.

Definition 8.3.1. An n×n linear system having a unique solution is ill-conditioned iff a
1% perturbation in a coefficient of its augmented matrix produces a perturbed linear system
still having a unique solution which differs from the unperturbed solution in a 100% or more.

We remark that the choice of the values 1% and 100% in the above definition is not a
standard choice in the literature. While these values may change on different books, the
idea behind the definition of an ill-conditioned system is still the same, that a small change
in a coefficient of the linear system produces a big change in its solution.

We also remark that our definition of an ill-conditioned system applies only to square
linear system having a unique solution, and such that the perturbed linear system also has
a unique solution. The concept of ill-conditioned system can be generalized to other linear
systems, but we do not study those cases here.

The following example gives some insight to understand what causes a 2 × 2 system to
be ill-conditioned.

Example 8.3.1: It is not difficult to understand when a 2×2 linear system is ill-conditioned.
The solution of a 2× 2 linear system can be thought as the intersection of two lines on the
plane, where each line represents the solution of each equation of the system. A 2× 2 linear
system is ill-conditioned when these intersecting lines are almost parallel. Then, a small
change in the coefficients of the system produces a small change in the lines representing
the solution of each equation. Since the lines are almost parallel, this small change on the
lines may produce a large change of the intersection point. This situation is sketched on
Fig. 56.

x 1

2x

x 1

2x

Figure 56. The intersection point of almost parallel lines represents a
solution of an ill-conditioned 2 × 2 linear system. A small perturbation in
the coefficients of the system produces a small change in the lines, which
in turn produces a large change in the solution of the system.

C

Example 8.3.2: Show that the following 2× 2 linear system is ill-conditioned:

0.835 x1 + 0.667 x2 = 0.168,

0.333 x1 + 0.266 x2 = 0.067.
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Solution: We first note that the solution to the linear system above is given by

x1 = 1, x2 = −1.

In order to show that the system above is ill-conditioned we only need to find a coefficient
in the system such that a small change in that coefficient produces a large change in the
solution. Consider the following change on the second source coefficient:

0.067→ 0.066.

One can check that the solution to the new system

0.835 x1 + 0.667 x2 = 0.168,

0.333 x1 + 0.266 x2 = 0.066,

is given by
x1 = −666, x2 = 834.

We then conclude that the system is ill-conditioned. C

Summarizing, solving a linear system in a floating-point number set using rounding in-
troduces approximation errors in the coefficients of the system. The modified Gauss-Jordan
method on the floating point number set also introduces approximation errors in the solution
of the system. Both type of approximation errors can be controlled, that is, be kept small,
choosing a particular scheme of Gauss operations; for example partial pivoting and complete
pivoting. However, if the original linear system we solve is ill-conditioned, then even very
small approximation errors in the system coefficients and in the Gauss operations may result
in a huge error in the solutions. Therefore, it is important to prevent solving ill-conditioned
systems when approximation errors are unavoidable. How handle such situations is one
important research area in numerical analysis.
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8.3.1. Exercises.

8.3.1.- Consider the ill-conditioned system
from Example 8.3.2,

0.835 x1 + 0.667 x2 = 0.168,

0.333 x1 + 0.266 x2 = 0.067.

(a) Solve this system in F5,10,6 without
scaling, partial or complete pivot-
ing.

(b) Solve this system in F6,10,6 without
scaling, partial or complete pivot-
ing.

(c) Compare the results found in parts
(a) and (b) with the result in R.

8.3.2.- Perturb the ill-conditioned system
given in Exercise 8.3.1 as follows,

0.835 x1 + 0.667 x2 = 0.1669995,

0.333 x1 + 0.266 x2 = 0.066601.

Find the solution of this system in R
and compare it with the solution in Ex-
ercise 8.3.1.

8.3.3.- Find the solution in R of the follow-
ing system

8 x1 + 5 x2 + 2 x3 = 15,

21 x1 + 19 x2 + 16 x3 = 56,

39 x1 + 48 x2 + 53 x3 = 140.

Then, change 15 to 14 in the first equa-
tion and solve it again in R. Is this sys-
tem ill-conditioned?
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Chapter 9. Spectral decomposition

In Sect.5.4 we discussed the matrix representation of linear transformations defined on
finite dimensional vector spaces. We saw that this representation is basis-dependent. The
matrix of a linear transformation can be complicated in one basis and simple in another
basis. In the case of linear operators sometimes there exists a special basis where the
operator matrix is the simplest possible: A diagonal matrix. In this Chapter we study those
linear operators on finite dimensional vector spaces having a diagonal matrix representation,
called normal operators. We start introducing the eigenvalues and eigenvectors of a linear
operator. Later on we present the main result, the Spectral Theorem for normal operators.
We use this result to define functions of operators. We finally mention how to apply these
ideas to find solutions to a linear system of ordinary differential equations.

9.1. Eigenvalues and eigenvectors

9.1.1. Main definitions. Sometimes a linear operator has the following property: The
image under the operator of a particular line in the vector space is again the same line. In
that case we call the line special, eigen in German. Any non-zero vector in that line is also
special and is called an eigenvector.

Definition 9.1.1. Let V be a finite dimensional vector space over the field F. The scalar
λ ∈ F and the non-zero vector x ∈ V are called eigenvalue and eigenvector of the linear
operator T ∈ L(V ) iff holds

T(x) = λx. (9.1)

The set σT ⊂ F of all eigenvalues of the operator T is called the spectrum of T. The
subspace Eλ = N(T − λ I) ⊂ V , the null space of the operator (T − λ I), is called the
eigenspace of T corresponding to λ.

An eigenvector of a linear operator T : V → V is a vector that remain invariant except by
scaling under the action of T. The change in scaling of the eigenvector x under T determines
the eigenvalue λ. Since the operator T is linear, given an eigenvector x and any non-zero
scalar a ∈ F, the vector ax is also an eigenvector. (Proof: T(ax) = aT(x) = λ(ax).) The
elements of the eigenspace Eλ are all eigenvectors with eigenvalue λ and the zero vector.
Indeed, a vector x ∈ Eλ iff holds (T− λ I)(x) = 0, where I ∈ L(V ) is the identity operator,
and this equation implies that x = 0 or T(x) = λx.

Eigenvalues and eigenvectors are notions defined on an operator, independently of any
basis on the vector space. However, given a basis in a vector space, the eigenvalue-eigenvector
equation can be expressed in terms of a matrix-vector product. This is summarized in the
following result.

Theorem 9.1.2. If Tvv ∈ Fn,n is the matrix of a linear operator T ∈ L(V ) in any ordered
basis V ⊂ V , then the eigenvalue λ ∈ F and eigenvector components xv ∈ Fn of the operator
T satisfy the eigenvalue-eigenvector equation

Tvvxv = λ xv. (9.2)

The eigenvalues and eigenvectors of a linear operator are the eigenvalues and eigenvectors
of any matrix representation of the operator on any ordered basis of the vector space.
Proof of Theorem 9.1.2: The eigenvalue-eigenvector equation in (9.1) written in an
ordered basis V ⊂ V is given by

[
T(x1v1 + · · ·+ xnvn)

]
v

= λ[x]v ⇔ [
[T(v1)]v, · · · , [T(vn)]v

]
[x]v = λ[x]v,
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that is, we obtain Eq. (9.2). It is simple to see that Eq. (9.2) is invariant under similarity
transformations of the matrix Tvv. This property says that the components equation in (9.2)
looks the same in any basis. Indeed, given any other ordered basis Ṽ of the vector space V ,
denote the change of basis matrix P = Iṽv. Then, multiply Eq. (9.2) by P−1, that is,

P−1Tvvxv = λP−1xv ⇔ (P−1TvvP )(P−1xv) = λ (P−1xv);

using the change of basis formulas Tṽṽ = P−1TvvP and xṽ = P−1xv we conclude that

Tṽṽ xṽ = λ xṽ.

This establishes the Theorem. ¤

Example 9.1.1: Consider the vector space R2 with the standard basis S. Find the eigen-
values and eigenvectors of the linear operator T : R2 → R2 with matrix in the standard
basis given by

T =
[
0 1
1 0

]
.

Solution: This operator makes a reflection along the line x1 = x2, that is,

Tx =
[
0 1
1 0

] [
x1

x2

]
=

[
x2

x1

]
.

From this definition we see that any non-zero vector proportional to v1 =
[
1
1

]
is left invariant

by T, that is, [
0 1
1 0

] [
1
1

]
=

[
1
1

]
⇔ T(v1) = v1.

So we conclude that v1 is an eigenvector of T with eigenvalue λ1 = 1. Analogously, one can

check that the vector v2 =
[−1

1

]
satisfies the equation

[
0 1
1 0

] [−1
1

]
=

[
1
−1

]
= −

[−1
1

]
⇔ T(v2) = −v2.

So we conclude that v2 is an eigenvector of T with eigenvalue λ2 = −1. See Fig. 57.

x  = x

x

2x

1

1

−1
−1

u

v

1 2

T ( v )

T ( u )

2

x

2x

1

1

−1
−1

x  = x1 2

T ( v  ) = v

T ( v  ) = − v

v
1 1

2

2

Figure 57. On the first picture we sketch the action of matrix T in Ex-
ample 9.1.1, and on the second picture, and we sketch the eigenvectors v1

and v2 with eigenvalues λ1 = 1 and λ2 = −1, respectively.
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In this example the spectrum is σT = {1,−1} and the respective eigenspaces are

E1 = Span
({[

1
1

]})
, E−1 = Span

({[−1
1

]})
.

C

Example 9.1.2: Not every linear operator has eigenvalues and eigenvectors. Consider the
vector space R2 with standard basis and fix θ ∈ (0, π). The linear operator T : R2 → R2

with matrix

T =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

acts on the plane rotating every vector by an angle θ counterclockwise. Since θ ∈ (0, π),
there is no line on the plane left invariant by the rotation. Therefore, this operator has no
eigenvalues and eigenvectors. C

Example 9.1.3: Consider the vector space R2 with standard basis. Show that the linear

operator T : R2 → R2 with matrix T =
[
1 3
3 1

]
has the eigenvalues and eigenvectors

v1 =
[
1
1

]
, λ1 = 4, and v2 =

[
1
−1

]
, λ2 = −2.

Solution: We only verify that Eq. (9.1) holds for the vectors and scalars above, since

Tv1 =
[
1 3
3 1

] [
1
1

]
=

[
4
4

]
= 4

[
1
1

]
= λ1v1 ⇒ Tv1 = λ1v1

Tv2 =
[
1 3
3 1

] [
1
−1

]
=

[−2
2

]
= −2

[
1
−1

]
= λ2v2 ⇒ Tv2 = λ2v2.

In this example the spectrum is σT = {4,−2} and the respective eigenspaces are

E4 = Span
({[

1
1

]})
, E−2 = Span

({[
1
−1

]})
.

C

Example 9.1.4: Consider the vector space V = C∞(R,R). Show that the vector f (x) = eax,
with a 6= 0, is an eigenvector with eigenvalue a of the linear operator D : V → V , given by

D(f )(x) =
df

dx
(x).

Solution: The proof is straightforward, since

D(f )(x) =
df

dx
(x) = aeax = a f (x) ⇒ D(f )(x) = a f (x).

C

Example 9.1.5: Consider again the vector space V = C∞(R,R) and show that the vector
f (x) = cos(ax), with a 6= 0, is an eigenvector with eigenvalue −a2 of the linear operator

T : V → V , given by T(f )(x) =
d2f

dx2
(x).

Solution: Again, the proof is straightforward, since

T(f )(x) =
d2f

dx2
(x) = −a2 cos(ax) = −a2 f (x) ⇒ T(f )(x) = −a2 f (x).

C
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We know that an eigenspace of a linear operator is not only a subset of the vector space,
it is a subspace. Moreover, it is not any subspace, it is an invariant subspace under the
linear operator. Given a vector space V and a linear operator T ∈ L(V ), the subspace
W ⊂ V is invariant under T iff holds T(W ) ⊂W .

Theorem 9.1.3. The eigenspace Eλ of the linear operator T ∈ L(V ) corresponding to the
eigenvalue λ is an invariant subspace of the vector space V under the operator T.

Proof of Theorem 9.1.3: We first show that Eλ is a subspace. Indded, pick up any
vectors x, y ∈ Eλ, that is, T(x) = λx and T(y) = λy. Then, for all a, b ∈ F holds,

T(ax + by) = aT(x) + bT(y) = aλx + bλy = λ (ax + by) ⇒ (ax + by) ∈ Eλ.

This shows that Eλ is a subspace. Now we need to show that T(Eλ) ⊂ Eλ. This is
straightforward, since for every vector x ∈ Eλ we know that

T(x) = λx ∈ Eλ,

since the set Eλ is a subspace. Therefore, T (Eλ) ⊂ Eλ. This establishes the Theorem. ¤
9.1.2. Characteristic polynomial. We now address the eigenvalue-eigenvector problem:
Given a finite-dimensional vector space V over F and a linear operator T ∈ L(V ), find a
scalar λ ∈ F and a non-zero vector x ∈ V solution of T(x) = λx. This problem is more
complicated than solving a linear system of equations T(x) = b, since in our case the source
vector is b = λx, which is not a given but part of the unknowns. One way to solve the
eigenvalue-eigenvector problem is to first solve for the eigenvalues λ and then solve for the
eigenvectors x.

Theorem 9.1.4. Let V be a finite-dimensional vector space over F and let T ∈ L(V ).
(a) The scalar λ ∈ F is an eigenvalue of T iff λ is solution of the equation

det(T− λ I) = 0.

(b) Given λ ∈ F eigenvalue of T, the corresponding eigenvectors x ∈ V are the non-zero
solutions of the equation

(T− λ I)(x) = 0.

Remark: The determinant of a linear operator on a finite-dimensional vector space V was
introduced in Def. 5.5.6 as the determinant of its associated matrix in any ordered basis
of V . This definition is independent of the basis chosen in V , since the operator matrix
transforms by a similarity transformation under a change of basis and the determinant is
invariant under similarity transformations.
Proof of Theorem 9.1.4:

Part (a): The scalar λ and the vector x are eigenvalue and eigenvector of T iff holds

T(x) = λx ⇔ (T− λ I)x = 0 ⇔ det(T− λ I) = 0.

Part (b): This is simpler. Since λ is the scalar such that the operator (T − λ I) is not
invertible, this means that N(T− λ I) 6= {0}, that is, there exists a solution x to the linear
equation (T− λ I)x = 0. It is simple to see that this solution is an eigenvector of T. This
establishes the Theorem. ¤
Definition 9.1.5. Given a finite-dimensional vector space V and a linear operator T ∈
L(V ), the function p(λ) = det(T− λ I) is called the characteristic polynomial of T.

The function p defined above is a polynomial in λ, which can be seen from the defini-
tion of determinant of a matrix. The eigenvalues of a linear operator are the roots of its
characteristic polynomial.



270 G. NAGY – LINEAR ALGEBRA july 15, 2012

Example 9.1.6: Find the eigenvalues and eigenvectors of the linear operator T : R2 → R2,

given by T =
[
1 3
3 1

]
.

Solution: We start computing the eigenvalues, which are the roots of the characteristic
polynomial

p(λ) = det(T− λ I) = det
([

1 3
3 1

]
−

[
λ 0
0 λ

])
=

∣∣∣∣
(1− λ) 3

3 (1− λ)

∣∣∣∣ ,

hence p(λ) = (1− λ)2 − 9. The roots are

(λ− 1)2 = 32 ⇒
{

λ1 = 4,

λ2 = −2.

We now find the eigenvector for the eigenvalue λ1 = 4. We solve the system (T− 4 I) x = 0
performing Gauss operation in the matrix

T− 4 I =
[−3 3

3 −3

]
→

[
1 −1
0 0

]
⇒

{
x1 = x2,

x2 free.

Choosing x2 = 1 we obtain the eigenvector x1 =
[
1
1

]
. In a similar way we find the eigenvector

for the eigenvalue λ2 = −2. We solve the linear system (T + 2 I) x = 0 performing Gauss
operation in the matrix

T + 2 I =
[
3 3
3 3

]
→

[
1 1
0 0

]
⇒

{
x1 = −x2,

x2 free.

Choosing x2 = −1 we obtain the eigenvector x2 =
[

1
−1

]
. These results λ1, x1 and λ2, x2

agree with Example 9.1.3. C

9.1.3. Eigenvalue multiplicities. We now introduce two numbers that give information
regarding the size of eigenspaces. The first number determines the maximum possible size
of an eigenspace, while the second number characterizes the actual size of an eigenspace.

Definition 9.1.6. Let λi ∈ F, for i = 1, · · · , k be all the eigenvalues of a linear operator
T ∈ L(V ) on a vector space V over F. Express the characteristic polynomial p associated
with T as follows,

p(λ) = (λ− λ1)r1 · · · (λ− λk)rkq(λ), with q(λi) 6= 0,

and denote by si = dim Eλi , the dimension of the eigenspaces corresponding to the eigenvalue
λi. Then, the numbers ri are called the algebraic multiplicity of the eigenvalue λi; and
the numbers si are called the geometric multiplicity of the eigenvalue λi.

Remark: In the case that F = C, hence the characteristic polynomial is complex-valued,
the polynomial q(λ) = 1. Indeed, when p is an n-degree complex-valued polynomial the Fun-
damental Theorem of Algebra says that p has n complex roots. Therefore, the characteristic
polynomial has the form

p(λ) = (λ− λ1)r1 · · · (λ− λk)rk ,

where r1 + · · · + rk = n. On the other hand, in the case that F = R the characteristic
polynomial is real-valued. In this case the polynomial q may have degree greater than zero.
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Example 9.1.7: For the following matrices find the algebraic and geometric multiplicities
of their eigenvalues,

A =
[
3 2
0 3

]
, B =




3 1 1
0 3 2
0 0 1


 , C =




3 0 1
0 3 2
0 0 1


 .

Solution: The eigenvalues of matrix A are the roots of the characteristic polynomial

pa(λ) =
∣∣∣∣
(3− λ) 2

0 (3− λ)

∣∣∣∣ = (λ− 3)2 ⇒ λ1 = 3, r1 = 2.

So, the eigenvalue λ1 = 3 has algebraic multiplicity r1 = 2. To find the geometric multiplicity
we need to compute the eigenspace Eλ1 , which is the null space of the matrix (A− 3I), that
is,

A− 3 I2 =
[
0 2
0 0

]
⇒ x2 = 0, x1 free ⇒ x1 =

[
1
0

]
x1.

We have obtained

Eλ1 = Span
({[

1
0

]})
⇒ s1 = dim Eλ1 = 1.

In the case of matrix A the algebraic multiplicity is greater than the geometric multiplicity,
2 = r1 > s1 = 1, since the greatest linearly independent set of eigenvectors for the eigenvalue
λ1 contains only one vector.

The algebraic and geometric multiplicities for matrices B and C is computed in a similar
way. These matrices differ only in one single matrix coefficient, the coefficient (1, 2). This
difference does not affect their eigenvalues, since we will show that both matrices B and C
have the same eigenvalues with the same algebraic multiplicities. However, this difference is
enough to change their eigenvectors, since we will show that matrices B and C have different
eigenvectors with different geometric multiplicities. We start computing the characteristic
polynomial of matrix B,

pb(λ) =

∣∣∣∣∣∣

(3− λ) 1 1
0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣
= −(λ− 3)2(λ− 1),

which implies that λ1 = 3 has algebraic multiplicity r1 = 2 and λ2 = 1 has algebraic
multiplicity r2 = 1. To find the geometric multiplicities we need to find the corresponding
eigenspaces. We start with λ1 = 3,

B− 3 I3 =




0 1 1
0 0 2
0 0 −2


→




0 1 0
0 0 1
0 0 0


 ⇒





x1 free,
x2 = 0,

x3 = 0,

which implies that

Eλ1 = Span
({




1
0
0




})
⇒ s1 = 1.

The geometric multiplicity for the eigenvalue λ2 = 1 is computed as follows,

B− I3 =




2 1 1
0 2 2
0 0 0


→




1 0 0
0 1 1
0 0 0


 ⇒





x1 = 0,

x2 = −x3,

x3 free,
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which implies that

Eλ2 = Span
({




0
−1
1




})
⇒ s2 = 1.

We then conclude 2 = r1 > s1 = 1 and r2 = s2 = 1.
Finally, we compute the characteristic polynomial of matrix C,

pc(λ) =

∣∣∣∣∣∣

(3− λ) 0 1
0 (3− λ) 2
0 0 (1− λ)

∣∣∣∣∣∣
= −(λ− 3)2(λ− 1)

so, we obtain the same eigenvalues we had for matrix B, that is, λ1 = 3 has algebraic
multiplicity r1 = 2 and λ2 = 1 has algebraic multiplicity r2 = 1. The geometric multiplicity
of λ1 is computed as follows,

C− 3 I3 =




0 0 1
0 0 2
0 0 −2


→




0 0 1
0 0 0
0 0 0


 ⇒





x1 free,
x2 free,
x3 = 0,

which implies that

Eλ1 = Span
({




1
0
0


 ,




0
1
0




})
⇒ s1 = 2.

In this case we obtained 2 = r1 = s1. The geometric multiplicity for the eigenvalue λ2 = 1
is computed as follows,

C− I3 =




2 0 1
0 2 2
0 0 0


→




1 0 1
2

0 1 1
0 0 0


 ⇒





x1 = −1
2

x3,

x2 = −x3,

x3 free,

which implies that (choosing x3 = 2),

Eλ2 = Span
({



−1
−2
2




})
⇒ s2 = 1.

We then conclude r1 = s1 = 2 and r2 = s2 = 1.
Remark: Comparing the results for matrix B and C we see that a change in just one
matrix coefficient can change the eigenspaces even in the case where the eigenvalues do not
change. In fact, it can be shown that the eigenvalues are continuous functions of the matrix
coefficients while the eigenvectors are not continuous functions. This means that a small
change in the matrix coefficients produces a small change in the eigenvalues but it might
produce a big change in the eigenvectors, just like in this Example. C

9.1.4. Operators with distinct eigenvalues. The eigenvectors corresponding to distinct
eigenvalues form a linearly independent set. In other words, eigenspaces corresponding to
different eigenvalues have trivial intersection.

Theorem 9.1.7. If the eigenvalues λ1, · · · , λk ∈ F, with k > 1, of the linear operator
T ∈ L(V ) are all different, then the set of corresponding eigenvectors {x1, · · · ,xk} ⊂ V is
linearly independent.
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Proof of Theorem 9.1.7: If k = 1, the Theorem is trivially true, so assume k > 2. Let
c1, · · · , ck ∈ F be scalars such that

c1x1 + · · ·+ ckxk = 0. (9.3)

Now perform the following two steps: First, apply the operator T to both sides of the
equation above. Since T(xi) = λixi, we obtain,

c1λ1 x1 + · · ·+ ckλk xk = 0. (9.4)

Second, multiply Eq. (9.3) by λ1 and subtract it from Eq.(9.4). The result is

c2(λ2 − λ1)x2 + · · ·+ ck(λk − λ1)xk = 0. (9.5)

Notice that all factors λi−λ1 6= 0 for i = 2, · · · , k. Repeat these two steps: First, apply the
operator T on both sides of Eq. (9.5), that is,

c2(λ2 − λ1)λ2 x2 + · · ·+ ck(λk − λ1) λk xk = 0; (9.6)

second, multiply Eq. (9.5) by λ2 and subtract it from Eq. (9.6), that is,

c2(λ2 − λ1) (λ3 − λ2)x3 + · · ·+ ck(λk − λ1) (λk − λ2)xk = 0. (9.7)

Repeat the idea in these two steps until one reaches the equation

ck(λk − λ1) · · · (λk − λk−1)xk = 0.

Since the eigenvalues λi are all different, we conclude that ck = 0. Introducing this infor-
mation at the very begining we get that

c1x1 + · · ·+ ck−1xk−1 = 0.

Repeating the whole procedure we conclude that ck−1 = 0. In this way one shows that all
coefficient c1 = · · · = ck = 0. Therefore, the set {x1, · · · ,xk} is linearly independent. This
establishes the Theorem. ¤

Further reading. A detailed presentation of eigenvalues and eigenvectors of a matrix can
be found in Sections 5.1 and 5.2 in Lay’s book [2], while a shorter and deeper summary can
be found in Section 7.1 in Meyer’s book [3]. Also see Chapter 4 in Hassani’s book [1].
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9.1.5. Exercises.

9.1.1.- Find the spectrum and all eigen-
spaces of the operators A : R2 → R2

and B : R3 → R3,

A =

»−10 −7
14 11

–
,

B =

2
4

1 1 0
0 3 1
1 −1 2

3
5 .

9.1.2.- Show that for θ ∈ (0, π) the rota-
tion operator R(θ) : R2 → R2 has no
eigenvalues, where

R(θ) =

»
cos(θ) − sin(θ)
sin(θ) cos(θ)

–
.

Consider now matrix above as a linear
operator R(θ) : C2 → C2. Show that
this linear operator has eigenvalues, and
find them.

9.1.3.- Let A : R3 → R3 be the linear oper-
ator given by

A =

2
4

2 −1 3
0 1 h
0 0 2

3
5 .

(a) Find all the eigenvalues and their
corresponding algebraic multiplici-
ties of the matrix A.

(b) Find the value(s) of h ∈ R such
that the matrix A above has a two-
dimensional eigenspace, and find a
basis for this eigenspace.

(c) Set h = 1, and find a basis for all
the eigenspaces of matrix A above.

9.1.4.- Find all the eigenvalues with their
corresponding algebraic multiplicities,
and find all the associated eigenspaces
of the matrix A ∈ R3,3 given by

A =

2
4

2 1 1
0 2 3
0 0 1

3
5 .

9.1.5.- Let k ∈ R and consider the matrix
A ∈ R4,4 given by

A =

2
664

2 −2 4 −1
0 3 k 0
0 0 2 4
0 0 0 1

3
775 .

(a) Find the eigenvalues of A and their
algebraic multiplicity.

(b) Find the number k such that ma-
trix A has an eigenspace Eλ that is
two dimensional, and find a basis
for this Eλ.

9.1.6.- Comparing the characteristic poly-
nomials for A ∈ Fn,n and AT , show that
these two matrices have the same eigen-
values.

9.1.7.- Let A ∈ R3,3 be an invertible matrix
with eigenvalues 2, −1 and 3. Find the
eigenvalues of:

(a) A−1.

(b) Ak, for any k ∈ N.
(c) A2 − A.
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9.2. Diagonalizable operators

9.2.1. Eigenvectors and diagonalization. In this Section we study linear operators on
a finite dimensional vector space that have a complete set of eigenvectors. This means that
there exists a basis of the vector space formed with eigenvectors of the linear operator. We
show that these operators are diagonalizable, that is, the matrix of the operator in the basis
of its own eigenvectors is diagonal. We end this Section showing that it is not difficult to
define functions of operators in the case that the operator is diagonalizable.

Definition 9.2.1. A linear operator T ∈ L(V ) defined on an n-dimensional vector space
V has a complete set of eigenvectors iff there exists a linearly independent set formed
with n eigenvectors of T.

In other words, a linear operator T has a complete set of eigenvectors iff there exists a
basis of V formed by eigenvectors of T. Not every linear operator has a complete set of
eigenvectors. For example, a linear operator without a complete set of eigenvectors is a
rotation on a plane R(θ) : R2 → R2 by an angle θ ∈ (0, π). This particular operator has
not eigenvectors at all.

Example 9.2.1: Matrix B in Example 9.1.7 does not have a complete set of eigenvectors.
The largest linearly independent set of eigenvectors of matrix B contains only two vectors,
one possibility is shown below.

B =




3 1 1
0 3 2
0 0 1


 , X =

{
x1 =




1
0
0


 , x2 =




0
−1
1




}
.

Matrix C in Example 9.1.7 has a complete set of eigenvectors, indeed,

C =




3 0 1
0 3 2
0 0 1


 , X =

{
x1 =




1
0
0


 , x2 =




0
1
0


 , x3 =




1
−2
2




}
.

C

We now introduce the notion of a diagonalizable operator.

Definition 9.2.2. A linear operator T ∈ L(V ) defined on a finite dimensional vector space
V is called diagonalizable iff there exists a basis Ṽ of V such that the matrix Tṽṽ is
diagonal.

Recall that a square matrix D = [Dij ] is diagonal iff Dij = 0 for i 6= j. We denote
an n × n diagonal matrix by D = diag[D1, · · · , Dn], so we use only one index to label the
diagonal elements, Dii = Di. Examples of 3× 3 diagonal matrices are given by

A =




1 0 0
0 2 0
0 0 3


 , B =




2 0 0
0 0 0
0 0 4


 , D =




D11 0 0
0 D22 0
0 0 D33


 .

Our first result is to show that these two notions given in Definitions 9.2.1 and 9.2.2 are
equivalent.

Theorem 9.2.3. A linear operator T ∈ L(V ) defined on an n-dimensional vector space is
diagonalizable iff the operator T has a complete set of eigenvectors. Furthermore, if λi,xi,
for i = 1, · · · , n, are eigenvalue-eigenvector pairs of T, then the matrix of the operator T
in the ordered eigenvector basis Ṽ = (x1, · · · ,xn) is diagonal with the eigenvalues on the
diagonal, that is, Tṽṽ = diag[λ1, · · · , λn].
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Proof of Theorem 9.2.3:
(⇒) Since T is diagonalizable, we know that there exists a basis Ṽ = (x1, · · · ,xn) such

that its matrix is diagonal, that is, Tṽṽ = diag[λ1, · · · , λn]. This implies that for i = 1, · · · , n
holds

Tṽṽ xiṽ = λi xiṽ ⇔ T(xi) = λi xi.

We then conclude that xi is an eigenvector of the operator T with eigenvalue λi. Since
Ṽ is a basis of the vector space V , this means that the operator T has a complete set of
eigenvectors.

(⇐) Since the set of eigenvectors Ṽ = (x1, · · · ,xn) of the operator T with corresponding
eigenvalues λ1, · · · , λn form a basis of V , then the eigenvalue-eigenvector equation for i =
1, · · · , n

T(xi) = λi xi.

imply that the matrix Tṽṽ is diagonal, since

Tṽṽ =
[
[T(x1)]ṽ, · · · , [T(xn)]ṽ

]
=

[
λ1 [x1]ṽ, · · · , λn [xn]ṽ

]
=

[
λ1 e1, · · · , λn en

]
,

so we arrive at the equation Tṽṽ = diag[λ1, · · · , λn]. This establishes the Theorem. ¤

Example 9.2.2: Show that the linear operator T ∈ L(R2) with matrix Tss =
[
1 3
3 1

]
in the

standard basis of S of R2 is diagonalizable.

Solution: In Example 9.1.6 we obtained that the eigenvalues and eigenvectors of matrix
Tss are given by

λ1 = 4, x1 =
[
1
1

]
and λ2 = −2, x2 =

[
1
−1

]
.

We now affirm that the matrix of the linear operator T is diagonal in the ordered basis
formed by the eigenvectors above,

Ṽ =
([

1
1

]
,

[
1
−1

])
.

First notice that the set Ṽ is linearly independent, so it is a basis for R2. Second, the change
of basis matrix P = Iṽs is given by

P =
[
1 1
1 −1

]
⇒ P−1 =

1
2

[
1 1
1 −1

]
.

Third, the result of the change of basis is a diagonal matrix:

P−1TssP =
1
2

[
1 1
1 −1

] [
1 3
3 1

] [
1 1
1 −1

]
=

1
2

[
1 1
1 −1

] [
4 −2
4 2

]
=

[
4 0
0 −2

]
= Tṽṽ.

As stated in Theorem 9.2.3, the diagonal elements in Tṽṽ are precisely the eigenvalues of
the operator T, in the same order as the eigenvectors in the ordered basis Ṽ. C

The statement in Definition 9.2.2 can be expressed as a statement between matrices. A
matrix A ∈ Fn,n is diagonalizable if there exists an invertible matrix P ∈ Fn,n and a diagonal
matrix D ∈ Fn,n such that

A = PDP−1.

These two notions are equivalent, since A is the matrix of an linear operator T ∈ L(V )
in the standard basis S of V , that is, A = Tss. The similarity transformation above can
expressed as

D = P−1 Tss P.
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Denoting P = Iṽs as the change of basis matrix from the standard basis S to a basis Ṽ, we
conclude that

D = Tṽṽ,

That is, the matrix of operator T is diagonal in the basis Ṽ. Furthermore, Theorem 9.2.3
can also be expressed in terms of similarity transformations between matrices as follows:
A square matrix has a complete set of eigenvectors iff the matrix is similar to a diagonal
matrix. This active point of view is common in the literature.

Example 9.2.3: Show that the linear operator T : R2 → R2 with matrix T =
[
1 2
3 6

]
in

the standard basis of R2 is diagonalizable. Find a similarity transformation that converts
matrix T into a diagonal matrix.

Solution: To find out whether T is diagonalizable or not we need to compute its eigen-
vectors, so we start with its eigenvalues. The characteristic polynomial is

p(λ) =
∣∣∣∣
(1− λ) 2

3 (6− λ)

∣∣∣∣ = λ(λ− 7) = 0 ⇒
{

λ1 = 0,

λ2 = 7.

Since the eigenvalues are different, we know that the corresponding eigenvectors form a
linearly independent set (by Theorem 9.1.7), and so matrix T has a complete set of eigen-
vectors. So A is diagonalizable. The corresponding eigenvectors are the non-zero vectors in
the null spaces N(T) and N(T− 7 I2), which are computed as follows:

[
1 2
3 6

]
→

[
1 2
0 0

]
⇒ x1 = −2x2 ⇒ x1 =

[−2
1

]
;

[−6 2
3 −1

]
→

[
3 −1
0 0

]
⇒ 3x1 = x2 ⇒ x2 =

[
1
3

]
.

Since the set V = {x1, x2} is a complete set of eigenvectors of T, we conclude that T is
diagonalizable. Proposition 9.2.3 says that

D = P−1T P, where D =
[
0 0
0 7

]
, P =

[−2 1
1 3

]
.

We finally verify this the equation above is correct:

PD P−1 =
[−2 1

1 3

] [
0 0
0 7

]
1
7

[−3 1
1 2

]
=

[−2 1
1 3

] [
0 0
1 2

]
=

[
1 2
3 6

]
= T.

C

9.2.2. Functions of diagonalizable operators. We have seen in Section 5.3 that the set
of all linear operators L(V ) on a vector space V is itself an algebra, since both the linear
combination of linear operators in L(V ) and the composition of linear operators in L(V )
are again linear operators in L(V ). We have also seen that this algebra structure on L(V )
makes possible to introduce polynomial functions of linear operators. Indeed, given scalars
a0, · · · , an ∈ F, an operator-valued polynomial of degree n is a function p : L(V )→ L(V ),

p(T ) = a0IV + a1T + · · ·+ anT
n.

In this Section we introduce, on the one hand, functions of operators more general than
polynomial functions, but on the other hand, we define these functions only on diagonalizable
operators. The reason of this restriction is that functions of diagonalizable operators are
simple to define. It is possible to define general functions of non-diagonalizable operators,
but they are more involved, and will no be studied in these notes.
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Before computing a general function of a diagonalizable operator, we start finding simple
expressions for the power function and a polynomial function of a diagonalizable operator.
These formulas simplify the results we have found in Section 5.3.

Theorem 9.2.4. If T ∈ L(V ) is a diagonalizable linear operator with matrix T = PD P−1

in the standard ordered basis of an n-dimensional vector space V , where D, P ∈ Fn,n are a
diagonal and an invertible matrix, respectively, then, for every k ∈ N holds

Tk = P Dk P−1.

Proof of Theorem 9.2.4: Consider the case k = 2. A simple calculation shows

T2 = TT = PD P−1 PD P−1 = PD D P−1 = PD2 P−1.

Suppose now that the formula holds for k ∈ N, that is, Tk = PDk P−1, and let us show that
it also holds for k + 1. Indeed,

T(k+1) = TTk = PD P−1 PDk P−1 = PD Dk P−1 = PD(k+1) P−1.

This establishes the Theorem. ¤

Example 9.2.4: Given the matrix T ∈ R3,3, compute Tk, where k ∈ N and T =
[
1 2
3 6

]
.

Solution: From Example 9.2.3 we know that T is diagonalizable, and that

D =
[
0 0
0 7

]
, P =

[−2 1
1 3

]
⇒ P−1 =

1
7

[−3 1
1 2

]
.

Therefore,

Tk = PDk P−1 =
[−2 1

1 3

] [
0 0
0 7k

]
1
7

[−3 1
1 2

]
= 7(k−1)

[−2 1
1 3

] [
0 0
0 7

]
1
7

[−3 1
1 2

]
.

The final result is
Tk = 7(k−1) T.

C

It is simple to generalize Theorem 9.2.4 to polynomial functions.

Theorem 9.2.5. Assume the hypotheses given in Theorem 9.2.4 and denote the diagonal
matrix as D = diag[λ1, · · · , λn]. If p : F→ F is a polynomial of degree k ∈ N, then holds

p(T) = P p(D)P−1, where p(D) = diag[p(λ1), · · · , p(λn)].

Proof of Theorem 9.2.5: Given scalars a0, · · · , ak ∈ F, denote the polynomial p by

p(x) = a0 + a1x + · · ·+ akxk.

Then,

p(T) = a0 In + a1 T + · · ·+ ak Tk

= a0 PP−1 + a1 P DP−1 + · · ·+ ak PDk P−1

= P (a0 In + a1 D + · · ·+ ak Dk)P−1.

Noticing that

p(D) = a0 In + a1 D + · · ·+ ak Dk = diag [p(λ1), · · · , p(λn)],

we conclude that
p(T) = P p(D)P−1.

This establishes the Theorem. ¤



G. NAGY – LINEAR ALGEBRA July 15, 2012 279

9.2.3. The exponential of diagonalizable operators. Functions that admit a conver-
gent power series expansion can defined on diagonalizable operators in the same way as
polynomial functions in Theorem 9.2.5. We consider first an important particular case, the
exponential function f(x) = ex. The exponential function is usually defined as the inverse
of the natural logarithm function g(x) = ln(x), which in turns is defined as the area under
the graph of the function h(x) = 1/x from 1 to x, that is,

ln(x) =
∫ x

1

1
y

dy x ∈ (0,∞).

It is not clear how to use this definition of the exponential function on real numbers to
extended it to operators. However, one shows that the exponential function on real numbers
has several properties, among them that it can be expressed as a convergent infinite power
series,

ex =
∞∑

k=0

xk

k!
= 1 + x +

x2

2!
+ · · ·+ xk

k!
+ · · · .

It can be proven that defining the exponential function on real numbers as the convergent
power series above is equivalent to the definition given earlier as the inverse of the natural
logarithm. However, only the power series expression provides the path to generalize the
exponential function to a diagonalizable linear operator.

Definition 9.2.6. The exponential of a linear operator T ∈ L(V ) on a finite dimensional
vector space, denoted as eT, is given by the infinite sum

eT =
∞∑

k=0

T k

k!
.

The following result says that the infinite sum of operators given in the Definition 9.2.6
converges in the case that the operator is diagonal or the operator is diagonalizable.

Theorem 9.2.7. If a linear operator T ∈ L(V ) on a finite dimensional vector space is
diagonal, that is, there exists an ordered basis such that T = diag[λ1, · · · , λn], then

eT = diag[eλ1 , · · · , eλn ].

If a linear operator T ∈ L(V ) on a finite dimensional vector space is diagonalizable, that is,
there exists an ordered basis such that T = PDP−1, where D = diag[λ1, · · · , λn], then

eT = P eD P−1.

Proof of Theorem 9.2.7: Let T be the matrix of the operator T ∈ L(V ) in an ordered
basis V ⊂ V . For every N ∈ N introduce the partial sum SN(T) as follows,

SN(T) =
N∑

k=0

Tk

k!
,

which is a well defined polynomial in T. Assume now that T is diagonalizable, so there
exist an invertible matrix P and a diagonal matrix D such that T = PDP−1. Then, a
straightforward computation shows that

SN(T) =
N∑

k=0

PDk P−1

k!
= P

( N∑

k=0

Dk

k!

)
P−1. (9.8)
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In the particular case that T is diagonal, then P = In and T = diag[λ1, · · · , λn], so the
equation above reduced to

SN(T) =
N∑

k=0

Tk

k!
= diag

[ N∑

k=0

λk
1

k!
, · · · ,

N∑

k=0

λk
n

k!

]
.

In the expression above we can compute the limit as N →∞, obtaining

eT = diag
[
eλ1 , · · · , eλn

]
.

This result establishes the first part in Theorem 9.2.7. In the case that T is diagonalizable,
we go back to Eq. (9.8), where we now denote D = diag[λ1, · · · , λn]. Since D is a diagonal
matrix, we can compute the limit N →∞ in Eq. (9.8), that is,

eT = S∞(T) = P eD P−1,

where we have denoted eD = diag[eλ1 , · · · , eλn ]. This establishes the Theorem. ¤

Example 9.2.5: For every t ∈ R find the value of the exponential function eA t, where

A =
[
1 3
3 1

]
.

Solution: From Example 9.2.2 we know that A is diagonalizable, and that A = PD P−1,
where

D =
[
4 0
0 −2

]
, P =

[
1 1
1 −1

]
⇒ P−1 =

1
2

[
1 1
1 −1

]
.

Therefore,

A t =
[
1 1
1 −1

] [
4t 0
0 −2t

]
1
2

[
1 1
1 −1

]

and Theorem 9.2.7 imply that

eA t =
[
1 1
1 −1

] [
e4t 0
0 e−2t

]
1
2

[
1 1
1 −1

]
.

C

The function introduced in Example 9.2.5 above can be seen as an operator-valued func-
tion f : R→ R2,2 given by

f(t) = eA t, A ∈ R2,2.

It can be shown that this function is actually differentiable, and that

df

dt
(t) = A eA t.

A more precise statement is the following.

Theorem 9.2.8. If T ∈ L(V ) is a diagonalizable operator on a finite dimensional vector
space over R, then the operator-valued function F : R → L(V ), defined as F(x) = eT x for
all x ∈ R, is differentiable and

dF

dx
(x) = T eT x = eT x T.
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Proof of Theorem 9.2.8: Fix an ordered basis V ⊂ V and denote by T the matrix of
T in that basis. Since T is diagonalizable, then T = PDP−1, with D = diag[λ1, · · · , λn].
Denoting by F the matrix of F in the basis V, it is simple to see that

dF

dx
(x) =

d

dx

(
P eD x P−1

)
= P

( d

dx
eD x

)
P−1.

It is not difficult to see that the expression of the far right in equation above is given by
d

dx
eD x = diag

[ d

dx

(
eλ1x

)
, · · · , d

dx

(
eλnx

)]
= diag [λ1e

λ1x, · · · , λneλnx] = D eD x = eD x D,

where we used the expression D = diag[λ1, · · · , λn]. Recalling that

PD eD x P−1 = PD P−1 P eD x P−1 = T eT x,

we conclude that
d

dx
eT x = T eT x = eT x T.

This establishes the Theorem. ¤

Example 9.2.6: Find the derivative of f(t) = eA t, where A =
[
1 3
3 1

]
.

Solution: From Example 9.2.5 we know that

eA t =
[
1 1
1 −1

] [
e4t 0
0 e−2t

]
1
2

[
1 1
1 −1

]
.

Then, Theorem 9.2.8 implies that
d

dt
eA t =

[
1 1
1 −1

] [
4e4t 0
0 −2e−2t

]
1
2

[
1 1
1 −1

]
.

C

We end this Section presenting a result without proof, that says that given any scalar-
valued function with a convergent power series, that function can be extended into an
operator-valued function in the case that the operator is diagonalizable.

Theorem 9.2.9. Let f : F→ F be a function given by a power series

f(z) =
∞∑

k=0

ck(z − z0)k,

which converges for |z−z0| < r, for some positive real number r. If LD(V ) is the subspace of
diagonalizable operators on the finite dimensional vector space V , then the operator-valued
function F : LD(V )→ LD(V ) given by

F(T ) =
∞∑

k=0

ck(T− z0 IV )k

converges iff every eigenvalue λi of T satisfies that |λi − z0| < r for all i = 1, · · · , n.
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9.2.4. Exercises.

9.2.1.- Which of the following matrices can-
not be diagonalized?

A =

»
2 −2
2 −2

–
,

B =

»
2 0
2 −2

–
,

C =

»
2 0
2 2

–
.

9.2.2.- Verify that the matrix

A =

»
7/5 1/5
−1 1/2

–

has eigenvalues λ1 = 1 and λ2 = 9/10
and associated eigenvectors

x1 =

»−1
2

–
, x2 =

»−2
5

–
.

Use this information to compute

lim
k→∞

Ak.

9.2.3.- Given the matrix and vector ,

A =

»
1 3
3 1

–
, x0 =

»
2
1

–

compute the function x : R→ R2

x(t) = eA tx0.

Verify that this function is solution of
the differential equation

d

dt
x(t) = Ax(t)

and satisfies that x(t = 0) = x0.

9.2.4.- Let A ∈ R3,3 be a matrix with eigen-
values 2, −1 and 3. Find the determi-
nant of A.

9.2.5.- Let A ∈ R4,4 be a matrix that can
be decomposed as A = PDP−1, with
matrix P an invertible matrix and the
matrix

D = diag(2,
1

4
, 2, 3).

Knowing only this information about
the matrix A, is it possible to compute
the det(A)? If your answer is no, ex-
plain why not; if your answer is yes,
compute det(A) and show your work.

9.2.6.- Let A ∈ R4,4 be a matrix that can
be decomposed as A = PDP−1, with
matrix P an invertible matrix and the
matrix

D = diag(2, 0, 2, 5).

Knowing only this information about
the matrix A, is it possible to whether A
invertible? Is it possible to know tr (A)?
If your answer is no, explain why not; if
your answer is yes, compute tr (A) and
show your work.



G. NAGY – LINEAR ALGEBRA July 15, 2012 283

9.3. Differential equations

Eigenvalues and eigenvectors of a matrix are useful to find solutions to systems of dif-
ferential equations. In this Section we first recall what is a system of first order, linear,
homogeneous, differential equations with constant coefficients. Then we use the eigenvalues
and eigenvectors of the coefficient matrix to obtain solutions to such differential equations.

In order to introduce a linear, first order system of differential equations we need some
notation. Let A : R → Rn,n be a real matrix-valued function, x, b : R → Rn be real
vector-valued functions, with values A(t), x(t), and b(t) given by

A(t) =




A11(t) · · · A1n(t)
...

...
An1(t) · · · Ann(t)


 , x(t) =




x1(t)
...

xn(t)


 , b(t) =




b1(t)
...

bn(t)


 .

So, A(t) is an n × n matrix for each value of t ∈ R. An example in the case n = 2 is the
matrix-valued function

A(t) =
[
cos(2πt) − sin(2πt)
sin(2πt) cos(2πt)

]
.

The values of this function are rotation matrices on R2, counterclockwise by an angle 2πt.
So the bigger the parameter t the bigger the is rotation. Derivatives of matrix- and vector-
valued functions are computed component-wise, and we use the notation ˙ = d

dt ; for example

dx

dt
(t) =




dx1

dt
(t)

...
dxn

dt
(t)




is denoted as ẋ(t) =




ẋ1(t)
...

ẋn(t)


 .

We are now ready to introduce the main definitions.

Definition 9.3.1. A system of first order linear differential equations on n un-
knowns, with n > 1, is the following: Given a real matrix-valued function A : R → Rn,n,
and a real vector-valued function b : R → Rn, find a vector-valued function x : R → Rn

solution of
ẋ(t) = A(t) x(t) + b(t). (9.9)

The system in (9.9) is called homogeneous iff b(t) = 0 for all t ∈ R. The system in (9.9)
is called of constant coefficients iff the matrix- and vector-valued functions are constant,
that is, A(t) = A0 and b(t) = b0 for all t ∈ R.

The differential equation in (9.9) is called first order because it contains only first deriva-
tives of the the unknown vector-valued function x; it is called linear because the unknown
x appears linearly in the equation. In this Section we are interested in finding solutions to
an initial value problem involving a constant coefficient, homogeneous differential system.

Definition 9.3.2. An initial value problem (IVP) for an homogeneous constant coeffi-
cients linear differential equation is the following: Given a matrix A ∈ Rn,n and a vector
x0 ∈ Rn, find a vector-valued function x : R → Rn solution of the differential equation and
initial condition

ẋ(t) = Ax(t), x(0) = x0.

In this Section we only consider the case where the coefficient matrix A ∈ Rn,n has a
complete set of eigenvectors, that is, matrix A is diagonalizable. In this case it is possible to
find all solutions of the initial value problem for an homogeneous and constant coefficient
differential equation. These solutions are linear combination of vectors proportional to the
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eigenvectors of matrix A, where the scalars involved in the linear combination depend on
the eigenvalues of matrix A. The explicit form of the solution depends on these eigenvalues
and can be classified in three groups: Non-repeated real eigenvalues, non-repeated complex
eigenvalues, and repeated eigenvalues. We consider in these notes only the first two cases
of non-repeated eigenvalues. In this case, the main result is the following.

Theorem 9.3.3. Assume that matrix A ∈ Rn,n has a complete set of eigenvectors denoted as
V = {v1, · · · , vn} with corresponding eigenvalues {λ1, · · · , λn}, all different, and fix x0 ∈ Rn.
Then the initial value problem

ẋ(t) = Ax(t), x(0) = x0, (9.10)

has a unique solution given by
x(t) = eAt x0, (9.11)

where
eAt = P eDt P−1, P =

[
v1, · · · , vn

]
, eDt = diag

[
eλ1t, · · · , eλnt

]
.

The solution given in Eq. (9.11) is often written in an equivalent way, as follows:

x(t) = P eDt P−1 x0 =
(
P eDt

) (
P−1 x0

)
,

then, introducing the notation

P eDt =
[
v1 eλ1t, · · · , vn eλnt

]
, c = P−1 x0, c =




c1

...
cn


 ,

we write the solution x(t) in the form

x(t) = c1 v1 eλ1t + · · ·+ cn vn eλnt, P c = x0.

This latter notation is common in the literature on ordinary differential equations. The
solution x(t) is expressed as a linear combination of the eigenvectors vi of the coefficient
matrix A, where the components are functions of the variable t given by cie

λit, for i =
1, · · · , n. So the eigenvalues and eigenvectors of matrix A are the crucial information to find
the solution x(t) of the initial value problem in Eq. (9.3.2), as can be seen from the following
calculation: Consider the function

yi(t) = eλitvi, i = 1, · · · , n.

This function is solution of the differential equation above, since

ẏi(t) =
d

dt

(
eλit

)
vi = λie

λit vi = eλit (λivi) = eλitAvi = A (eλitvi) = A yi(t),

hence, ẏi(t) = A yi(t). This calculation is the essential part in the proof of Theorem 9.3.3.
Proof of Theorem 9.3.3: Since matrix A has a complete set of eigenvectors V, then for
every value of t ∈ R there exist t dependent scalars c1(t), · · · , cn(t) such that

x(t) = c1(t) v1 + · · ·+ cn(t) vn. (9.12)

The t-derivative of the expression above is

ẋ(t) = ċ1(t) v1 + · · ·+ ċn(t) vn.

Recalling that Avi = λi vi, the action of matrix A in Eq. (9.12) is

Ax(t) = c1(t) λ1 v1 + · · ·+ cn(t) λn vn.

The vector x(t) is solution of the differential equation in (9.3.2) iff ẋ(t) = Ax(t), that is,

ċ1(t) v1 + · · ·+ ċn(t) vn. = c1(t)λ1 v1 + · · ·+ cn(t)λn vn,
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which is equivalent to

[ċ1(t)− λ1 c1(t)] v1 + · · ·+ [ċn(t)− λn cn(t)] vn = 0.

Since the set V is a basis of Rn, each term above must vanish, that is, for all i = 1, · · · , n
holds

ċi(t) = λi ci(t) ⇒ ci(t) = cie
λit.

So we have obtained the general solution

x(t) = c1e
λ1t v1 + · · ·+ cneλnt vn.

The initial condition x(0) = x0 fixes a unique set of constants ci as follows

x(0) = c1 v1 + · · ·+ cn vn = x0,

since the set V is a basis of Rn. This expression of the solution can be rewritten as follows:
Using the matrix notation P =

[
v1, · · · , vn

]
, we see that the vector c satisfies the equation

P c = x0. Also notice that
P eDt =

[
v1 eλ1t, · · · , vn eλnt

]
,

therefore, the solution x(t) can be written as

x(t) =
(
P eDt

) (
P−1x0

)
=

(
P eDt P−1

)
x0.

Since eAt = P eDt P−1, we conclude that x(t) = eAt x0. This establishes the Theorem. ¤

Example 9.3.1: (Non-repeated, real eigenvalues) Given the matrix A ∈ R2,2 and vector
x0 ∈ R2 below, find the function x : R→ R2 solution of the initial value problem

ẋ(t) = Ax(t), x(0) = x0,

where

A =
[
1 3
3 1

]
, x0 =

[
6
4

]
.

Solution: Recall that matrix A has a complete set of eigenvectors, with

V =
{

v1 =
[
1
1

]
, v2 =

[−1
1

]
.
}

, {λ1 = 4, λ2 = −2}.

Then, Theorem 9.3.3 says that the general solution of the differential equation above is

x(t) = c1 eλ1t v1 + c2 eλ2t v2 ⇔ x(t) = c1 e4t

[
1
1

]
+ c2 e−2t

[−1
1

]
.

The constants c1 and c2 are obtained from the initial data x0 as follows

x(0) = c1

[
1
1

]
+ c2

[−1
1

]
= x0 =

[
6
4

]
⇒

[
1 −1
1 1

] [
c1

c2

]
=

[
6
4

]
.

The solution of this linear system is
[
c1

c2

]
=

1
2

[
1 1
−1 1

] [
6
4

]
=

[
5
−1

]
.

Therefore, the solution x(t) of the initial value problem above is

x(t) = 5 e4t

[
1
1

]
− e−2t

[−1
1

]
.

C
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9.3.1. Non-repeated real eigenvalues. We present a qualitative description of the solu-
tions to Eq. (9.10) in the particular case of 2 × 2 linear ordinary differential systems with
matrix A having two real and different eigenvalues. The main tool will be the sketch of
phase diagrams, also called phase portraits. The solution at a particular value t is given
by a vector

x(t) =
[
x1(t)
x2(t)

]

so it can be represented by a point on a plane, while the solution function for all t ∈ R
corresponds to a curve on that plane. In the case that the solution vector x(t) represents a
position function of a particle moving on the plane at the time t, the curve given in the phase
diagram is the trajectory of the particle. Arrows are added to this trajectory to indicate
the motion of the particle as time increases.

Since the eigenvalues of the coefficient matrix A are different, Theorem 9.3.3 says that
there always exist two linearly independent eigenvectors v1 and v2 associated with the eigen-
values λ1 and λ2, respectively. The general solution to the Eq. (9.10) is then given by

x(t) = c1 v1 eλ1t + c2 v2 eλ2t.

A phase diagram contains several curves associated with several solutions, that correspond
to different values of the free constants c1 and c2. In the case that the eigenvalues are non-
zero, the phase diagrams can be classified into three main classes according to the relative
signs of the eigenvalues λ1 6= λ2 of the coefficient matrix A, as follows:

(i) 0 < λ2 < λ1, that is, both eigenvalues positive;
(ii) λ2 < 0 < λ1, that is, one eigenvalue negative and the other positive;
(iii) λ2 < λ1 < 0, that is, both eigenvalues negative.
The study of the cases where one of the eigenvalues vanishes is simpler and is left as an
exercise. We now find the phase diagrams for three examples, one for each of the classes
presented above. These examples summarize the behavior of the solutions to 2 × 2 linear
differential systems with coefficient matrix having two real, different and non-zero eigen-
values λ2 < λ1. The phase diagrams can be sketched following these steps: First, plot
the eigenvectors v2 and v1 corresponding to the eigenvalues λ2 and λ1, respectively. Second,
draw the whole lines parallel to these vectors and passing through the origin. These straight
lines correspond to solutions with one of the coefficients c1 or c2 vanishing. Arrows on these
lines indicate how the solution changes as the variable t grows. If t is interpreted as time,
the arrows indicate how the solution changes into the future. The arrows point towards the
origin if the corresponding eigenvalue λ is negative, and they point away form the origin
if the eigenvalue is positive. Finally, find the non-straight curves correspond to solutions
with both coefficient c1 and c2 non-zero. Again, arrows on these curves indicate the how
the solution moves into the future.

Example 9.3.2: (Case 0 < λ2 < λ1.) Sketch the phase diagram of the solutions to the
differential equation

ẋ = Ax, A =
1
4

[
11 3
1 9

]
. (9.13)

Solution: The characteristic equation for matrix A is given by

det(A− λ I2) = λ2 − 5λ + 6 = 0 ⇒
{

λ1 = 3,

λ2 = 2.

One can show that the corresponding eigenvectors are given by

v1 =
[
3
1

]
, v2 =

[−2
2

]
.
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So the general solution to the differential equation above is given by

x(t) = c1 v1e
λ1t + c2 v2e

λ2t ⇔ x(t) = c1

[
3
1

]
e3t + c2

[−2
2

]
e2t.

In Fig. 58 we have sketched four curves, each representing a solution x(t) corresponding to
a particular choice of the constants c1 and c2. These curves actually represent eight different
solutions, for eight different choices of the constants c1 and c2, as is described below. The
arrows on these curves represent the change in the solution as the variable t grows. Since
both eigenvalues are positive, the length of the solution vector always increases as t grows.
The straight lines correspond to the following four solutions:

c1 = 1, c2 = 0, Line on the first quadrant, starting at the origin, parallel to v1;
c1 = 0, c2 = 1, Line on the second quadrant, starting at the origin, parallel to v2;
c1 = −1, c2 = 0, Line on the third quadrant, starting at the origin, parallel to −v1;
c1 = 0, c2 = −1, Line on the fourth quadrant, starting at the origin, parallel to −v2.

1

x
2

x1

v2

v

Figure 58. The graph of several solutions to Eq. (9.13) corresponding to
the case 0 < λ2 < λ1, for different values of the constants c1 and c2. The
trivial solution x = 0 is called an unstable point.

Finally, the curved lines on each quadrant start at the origin, and they correspond to the
following choices of the constants:

c1 > 0, c2 > 0, Line starting on the second to the first quadrant;
c1 < 0, c2 > 0, Line starting on the second to the third quadrant;
c1 < 0, c2 < 0, Line starting on the fourth to the third quadrant,
c1 > 0, c2 < 0, Line starting on the fourth to the first quadrant.

C

Example 9.3.3: (Case λ2 < 0 < λ1.) Sketch the phase diagram of the solutions to the
differential equation

ẋ = Ax, A =
[
1 3
3 1

]
. (9.14)
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Solution: We known from the calculations performed in Example 9.3.1 that the general
solution to the differential equation above is given by

x(t) = c1 v1e
λ1t + c2 v2e

λ2t ⇔ x(t) = c1

[
1
1

]
e4t + c2

[−1
1

]
e−2t,

where we have introduced the eigenvalues and eigenvectors

λ1 = 4, v1 =
[
1
1

]
and λ2 = −2, v2 =

[−1
1

]
.

In Fig. 59 we have sketched four curves, each representing a solution x(t) corresponding to a
particular choice of the constants c1 and c2. These curves actually represent eight different
solutions, for eight different choices of the constants c1 and c2, as is described below. The
arrows on these curves represent the change in the solution as the variable t grows. The
part of the solution with positive eigenvalue increases exponentially when t grows, while the
part of the solution with negative eigenvalue decreases exponentially when t grows. The
straight lines correspond to the following four solutions:

c1 = 1, c2 = 0, Line on the first quadrant, starting at the origin, parallel to v1;
c1 = 0, c2 = 1, Line on the second quadrant, ending at the origin, parallel to v2;
c1 = −1, c2 = 0, Line on the third quadrant, starting at the origin, parallel to −v1;
c1 = 0, c2 = −1, Line on the fourth quadrant, ending at the origin, parallel to −v2.

1

x

x 1

2

v2 v1

1−1

−1

Figure 59. The graph of several solutions to Eq. (9.14) corresponding to
the case λ2 < 0 < λ1, for different values of the constants c1 and c2. The
trivial solution x = 0 is called a saddle point.

Finally, the curved lines on each quadrant correspond to the following choices of the
constants:

c1 > 0, c2 > 0, Line from the second to the first quadrant,
c1 < 0, c2 > 0, Line from the second to the third quadrant,
c1 < 0, c2 < 0, Line from the fourth to the third quadrant,
c1 > 0, c2 < 0, Line from the fourth to the first quadrant.

C
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Example 9.3.4: (Case λ2 < λ1 < 0.) Sketch the phase diagram of the solutions to the
differential equation

ẋ = Ax, A =
1
4

[−9 3
1 −11

]
. (9.15)

Solution: The characteristic equation for this matrix A is given by

det(A− λ I) = λ2 + 5λ + 6 = 0 ⇒
{

λ1 = −2,

λ2 = −3.

One can show that the corresponding eigenvectors are given by

v1 =
[
3
1

]
, v2 =

[−2
2

]
.

So the general solution to the differential equation above is given by

x(t) = c1 v1e
λ1t + c2 v2e

λ2t ⇔ x(t) = c1

[
3
1

]
e−2t + c2

[−2
2

]
e−3t.

In Fig. 60 we have sketched four curves, each representing a solution x(t) corresponding
to a particular choice of the constants c1 and c2. These curves actually represent eight
different solutions, for eight different choices of the constants c1 and c2, as is described
below. The arrows on these curves represent the change in the solution as the variable t
grows. Since both eigenvalues are negative, the length of the solution vector always decreases
as t grows and the solution vector always approaches zero. The straight lines correspond to
the following four solutions:

c1 = 1, c2 = 0, Line on the first quadrant, ending at the origin, parallel to v1;
c1 = 0, c2 = 1, Line on the second quadrant, ending at the origin, parallel to v2;
c1 = −1, c2 = 0, Line on the third quadrant, ending at the origin, parallel to −v1;
c1 = 0, c2 = −1, Line on the fourth quadrant, ending at the origin, parallel to −v2.

2

v2

v 1

x1

x

Figure 60. The graph of several solutions to Eq. (9.15) corresponding to
the case λ2 < λ1 < 0, for different values of the constants c1 and c2. The
trivial solution x = 0 is called a stable point.
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Finally, the curved lines on each quadrant start at the origin, and they correspond to the
following choices of the constants:

c1 > 0, c2 > 0, Line entering the first from the second quadrant;
c1 < 0, c2 > 0, Line entering the third from the second quadrant;
c1 < 0, c2 < 0, Line entering the third from the fourth quadrant,
c1 > 0, c2 < 0, Line entering the first from the fourth quadrant.

C

9.3.2. Non-repeated complex eigenvalues. The complex eigenvalues of a real valued
matrix A ∈ Rn,n are always complex conjugate pairs, as it is shown below.

Lemma 9.3.4. (Conjugate pairs) If a real valued matrix A ∈ Rn, has a complex eigen-
value λ with eigenvector v, then λ and v are also an eigenvalue and eigenvector of matrix
A.

Proof of Lemma 9.3.4: Complex conjugate the eigenvalue-eigenvector equation for λ and
v and recalling that A = A, we obtain

A v = λ v ⇔ A v = λ v.

¤
Since the complex eigenvalues of a matrix with real coefficients are always complex con-

jugate pairs, there is an even number of complex eigenvalues. Denoting the eigenvalue pair
by λ± and the corresponding eigenvector pair by v±, it holds that λ+ = λ− and v+ = v−.
Hence, an eigenvalue and eigenvector pairs have the form

λ± = α± iβ, v± = a± ib, (9.16)

where α, β ∈ R and a, b ∈ Rn. It is simple to obtain two linearly independent solutions to
the differential equation in Eq. (9.10) in the case that matrix A has a complex conjugate pair
of eigenvalues and eigenvectors. These solutions can be expressed both as complex-valued
or as real-valued functions.

Theorem 9.3.5. (Conjugate pairs) Let λ± = α± iβ be eigenvalues of a matrix A ∈ Rn,n

with respective eigenvectors v± = a± ib, where α, β ∈ R, while a, b ∈ Rn, and n > 2. Then
a linearly independent set of complex valued solutions to the differential equation in (9.10)
is formed by the functions

x+ = v+ eλp-t, x− = v− eλ-t, (9.17)

while a linearly independent set of real valued solutions to Eq. (9.10) is given by the functions

x1 =
[
a cos(βt)− b sin(βt)

]
eαt, x2 =

[
a sin(βt) + b cos(βt)

]
eαt. (9.18)

Proof of Theorem 9.3.5: We know from Theorem 9.3.3 that two linearly independent
solutions to Eq. (9.10) are given by Eq. (9.17). The new information in Theorem 9.3.5 above
is the real-valued solutions in Eq. (9.18). They can be obtained from Eq. (9.17) as follows:

x± = (a± ib) e(α±iβ)t

= eαt(a± ib) e±iβt

= eαt(a± ib)
[
cos(βt)± i sin(βt)

]

= eαt
[
a cos(βt)− b sin(βt)

]± ieαt
[
a sin(βt) + b cos(βt)

]
.
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Since the differential equation in (9.10) is linear, the functions below are also solutions,

x1 =
1
2
(
x+ + x−

)
= eαt

[
a cos(βt)− b sin(βt)

]
,

x2 =
1
2i

(
x+ − x−

)
= eαt

[
a sin(βt) + b cos(βt)

]
.

This establishes the Theorem. ¤

Example 9.3.5: Find a real-valued set of fundamental solutions to the differential equation

ẋ = Ax, A =
[

2 3
−3 2

]
, (9.19)

and then sketch a phase diagram for the solutions of this equation.

Solution: Fist find the eigenvalues of matrix A above,

0 =
∣∣∣∣

(2− λ) 3
−3 (2− λ)

∣∣∣∣ = (λ− 2)2 + 9 ⇒ λ± = 2± 3i.

We then find the respective eigenvectors. The one corresponding to λ+ is the solution of
the homogeneous linear system with coefficients given by

[
2− (2 + 3i) 3
−3 2− (2 + 3i)

]
=

[−3i 3
−3 −3i

]
→

[−i 1
−1 −i

]
→

[
1 i
−1 −i

]
→

[
1 i
0 0

]
.

Therefore the eigenvector v+ =
[
v1

v2

]
is given by

v1 = −iv2 ⇒ v2 = 1, v1 = −i, ⇒ v+ =
[−i

1

]
, λ+ = 2 + 3i.

The second eigenvectors is the complex conjugate of the eigenvector found above, that is,

v− =
[
i
1

]
, λ− = 2− 3i.

Notice that

v± =
[
0
1

]
±

[−1
0

]
i.

Hence, the real and imaginary parts of the eigenvalues and of the eigenvectors are given by

α = 2, β = 3, a =
[
0
1

]
, b =

[−1
0

]
.

So a real-valued expression for a fundamental set of solutions is given by

x1 =
([

0
1

]
cos(3t)−

[−1
0

]
sin(3t)

)
e2t ⇒ x1 =

[
sin(3t)
cos(3t)

]
e2t,

x2 =
([

0
1

]
sin(3t) +

[−1
0

]
cos(3t)

)
e2t ⇒ x2 =

[− cos(3t)
sin(3t)

]
e2t.

The phase diagram of these two fundamental solutions is given in Fig. 61 below. There
is also a circle given in that diagram, corresponding to the trajectory of the vectors

x̃1 =
[
sin(3t)
cos(3t)

]
x̃2 =

[− cos(3t)
sin(3t)

]
.

The trajectory of these vectors is a circle since their length is constant equal to one.
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(2)

b

a

x2

1x

x (1)

x

Figure 61. The graph of the fundamental solutions x1 and x2 of the Eq. (9.19).

In the particular case that the matrix A in Eq. (9.10) is 2 × 2, then any solutions is a
linear combination of the solutions given in Eq. (9.18). That is, the general solution of given
by

x(t) = c1 x1(t) + c2 x2(t),
where

x1 =
[
a cos(βt)− b sin(βt)

]
eαt, x2 =

[
a sin(βt) + b cos(βt)

]
eαt.

We now do a qualitative study of the phase diagrams of the solutions for this case. We first
fix the vectors a and b, and the plot phase diagrams for solutions having α > 0, α = 0,
and α < 0. These diagrams are given in Fig. 62. One can see that for α > 0 the solutions
spiral outward as t increases, and for α < 0 the solutions spiral inwards to the origin as t
increases..

(2)x
2

x1

a
b

x (1)

x

x

x
2

x1

a
b

(2)

(1)x
(1)

x
2

x1

a
b

x

x

(2)

Figure 62. The graph of the fundamental solutions x1 and x2 (dashed line)
of the Eq. (9.18) in the case of α > 0, α = 0, and α < 0, respectively.

Finally, let us study the following cases: We fix α > 0 and the vector a, and we plot
the phase diagrams for solutions with two choices of the vector b, as shown in Fig. 63. It
can then bee seen that the relative directions of the vectors a and b determines the rotation
direction of the solutions as t increases.
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(2)x
2

x1

a
b

x (1)

x
(2)x

2

x1

a

b

x

x(1)

Figure 63. The graph of the fundamental solutions x1 and x2 (dashed
line) of the Eq. (9.18) in the case of α > 0, for a given vector a and for
two choices of the vector b. The relative positions of the vectors a and b
determines the rotation direction.
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9.3.3. Exercises.

9.3.1.- Given the matrix A ∈ R2,2 and vec-
tor x0 ∈ R2 below, find the function
x : R → R2 solution of the initial value
problem

ẋ(t) = Ax(t), x(0) = x0,

where

A =

»
1 3
3 1

–
, x0 =

»
3
4

–
.

9.3.2.- Given the matrix A and the vector
x0 in Exercise 9.3.1 above, compute the
operator valued function eA t and verify
that the solution x of the initial value
problem given in Exercise 9.3.1 can be
written as

x(t) = eA t x0.

9.3.3.- Given the matrix A ∈ R2,2 below,
find all functions x : R → R2 solutions
of the differential equation

ẋ(t) = Ax(t),

where

A =

»
1 −1
5 −3

–
.

Since this matrix has complex eigenval-
ues, express the solutions as linear com-
bination of real vector valued functions.

9.3.4.- Given the matrix A ∈ R3,3 and vec-
tor x0 ∈ R3 below, find the function
x : R → R3 solution of the initial value
problem

ẋ(t) = Ax(t), x(0) = x0,

where

A =

2
4

3 0 1
0 2 2
0 0 1

3
5 , x0 =

2
4

1
2
3

3
5 .
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9.4. Normal operators

In this Section we introduce a particular type of linear operators called normal operators,
which are defined on vector spaces having an inner product. Particular cases are Hermitian
operators and unitary operators, which are widely used in physics. Rotations in space are
examples of unitary operators on real vector spaces, while physical observables in quantum
mechanics are examples of Hermitian operators. In this Section we restrict our description
to finite dimensional inner product spaces. These definitions generalize the notions of uni-
tary and Hermitian matrices already introduced in Chapter 2. We first describe the Riesz
Representation Theorem, needed to verify that the notion of adjoint of a linear operator is
well-defined. After reviewing the commutator of two operators we then introduce normal
operators and discuss the particular cases of unitary and Hermitian operators. Finally we
comment on the relations between these notions and the unitary and Hermitian matrices
already introduced in Chapter 2.

The Riesz Representation Theorem is a statement concerning linear functionals on an
inner product space. Given a vector space V over the scalar field F, a linear functional
is a scalar-valued linear function f : V → F, that is, for all x, y ∈ V and all a, b ∈ F holds
f(ax + by) = a f(x) + b f(y) ∈ F. An example of a linear functional on R3 is the function

R3 3 x =




x1

x2

x3


 7→ f(x) = 3x1 + 2x2 + x3 ∈ R.

This function can be expressed in terms of the dot product in R3 as follows

f(x) = u · x, u =




3
2
1


 .

The Riesz Representation Theorem says that what we did in this example can be done in the
general case. In an inner product space

(
V, 〈 , 〉) every linear functional f can be expressed

in terms of the inner product.

Theorem 9.4.1. Consider a finite dimensional inner product space
(
V, 〈 , 〉) over the scalar

field F. For every linear functional f : V → F there exists a unique vector uf ∈ V such that
holds

f(v) = 〈uf , v〉 ∀v ∈ V.

Proof of Theorem 9.4.1: Introduce the set

N = {v ∈ V : f(v) = 0 } ⊂ V.

This set is the analogous to linear functionals of the null space of linear operators. Since f is
a linear function the set N is a subspace of V . (Proof: Given two elements v1, v2 ∈ N and
two scalars a, b ∈ F, holds that f(av1 +bv2) = a f(v1)+b f(v2) = 0+0, so (av1 +bv2) ∈ N .)
Introduce the orthogonal complement of N , that is,

N⊥ = {w ∈ V : 〈w, v〉 = 0 ∀v ∈ V },

which is also a subspace of V . If N⊥ = {0}, then N =
(
N⊥)⊥ =

({0})⊥ = V . Since the
null space of f is the whole vector space, the functional f is identically zero, so only for the
choice uf = 0 holds f(v) = 〈0, v〉 for all v ∈ V .

In the case that N⊥ 6= {0} we now show that this space cannot be very big, in fact it
has dimension one, as the following argument shows. Choose ũ ∈ N⊥ such that f(ũ) = 1.
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Then notice that for every w ∈ N⊥ the vector w− f(w)ũ is trivially in N⊥ but it is also in
N , since

f
(
w− f(w) ũ

)
= f(w)− f(w) f(ũ) = f(w)− f(w) = 0.

A vector both in N and N⊥ must vanish, so w = f(w) ũ. Then every vector in N⊥ is
proportional to ũ, so dim N⊥ = 1. This information is used to split any vector v ∈ V as
follows v = a ũ + x where x ∈ V and a ∈ F. It is clear that

f(v) = f(a ũ + x) = a f(ũ) + f(x) = a f(ũ) = a.

However, the function with values g(v) =
〈 ũ

‖ũ‖2 , v
〉

has precisely the same values as f ,

since for all v ∈ V holds

g(v) =
〈 ũ

‖ũ‖2 , v
〉

=
〈 ũ

‖ũ‖2 , (a ũ + x)
〉

=
a

‖ũ‖2 〈ũ, ũ〉+ 1
‖ũ‖2 〈ũ,x〉 = a.

Therefore, choosing uf = ũ/‖ũ‖2, holds that

f(v) = 〈uf , v〉 ∀v ∈ V.

Since dim N⊥ = 1, the choice of uf is unique. This establishes the Theorem. ¤
Given a linear operator defined on an inner product space, a new linear operator can be

defined through an equation involving the inner product.

Proposition 9.4.2. Let T ∈ L(V ) be a linear operator on a finite-dimensional inner product
space

(
V, 〈 , 〉). There exists one and only one linear operator T ∗ ∈ L(V ) such that

〈v,T ∗(u)〉 = 〈T(v),u〉
holds for all vectors u, v ∈ V .

Given any linear operator T on a finite-dimensional inner product space, the operator
T ∗ whose existence is guaranteed in Proposition 9.4.2 is called the adjoint of T.
Proof of Proposition 9.4.2: We first establish the following statement: For every vector
u ∈ V there exists a unique vector w ∈ V such that

〈T(v),u〉 = 〈v,w〉 ∀v ∈ V. (9.20)

The proof starts noticing that for a fixed u ∈ V the scalar-valued function fu : V → F
given by fu(v) = 〈u,T(v)〉 is a linear functional. Therefore, the Riesz Representation
Theorem 9.4.1 implies that there exists a unique vector w ∈ V such that fu(v) = 〈w, v〉.
This establishes that for every vector u ∈ V there exists a unique vector w ∈ V such that
Eq. (9.20) holds. Now that this statement is proven we can define a map, that we choose
to denote as T ∗ : V → V , given by u 7→ T ∗(u) = w. We now show that this map T ∗ is
linear. Indeed, for all u1, u2 ∈ V and all a, b ∈ F holds

〈v,T ∗(au1 + bu2)〉 = 〈T(v), (au1 + bu2)〉 ∀v ∈ V,

= a 〈T(v),u1〉+ b 〈T(v),u2)〉
= a〈v,T ∗(u1)〉+ b〈v,T ∗(u2)〉
=

〈
v,

[
aT ∗(u1) + bT ∗(u2)

]〉 ∀v ∈ V,

hence T ∗(au1 + bu2) = aT ∗(u1) + bT ∗(u2). This establishes the Proposition. ¤
The next result relates the adjoint of a linear operator with the concept of the adjoint

of a square matrix introduced in Sect. 2.2. Recall that given a basis in the vector space,
every linear operator has associated a unique square matrix. Let us use the notation [T ]
and [T ∗] for the matrices on a given basis of the operators T and T ∗, respectively.
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Proposition 9.4.3. Let
(
V, 〈 , 〉) be a finite-dimensional vector space, let V be an orthonor-

mal basis of V , and let [T ] be the matrix of the linear operator T ∈ L(V ) in the basis V.
Then, the matrix of the adjoint operator T ∗ in the basis V is given by [T ∗] = [T ]∗.

Proposition 9.4.3 says that the matrix of the adjoint operator is the adjoint of the matrix
of the operator, however this is true only in the case that the basis used to compute the
respective matrices is orthonormal. If the basis is not orthonormal, the relation between
the matrices [T ] and [T ∗] is more involved.
Proof of Proposition 9.4.3: Let V = {e1, · · · , en} be an orthonormal basis of V , that is,

〈ei, ej〉 =
{ 0 if i 6= j,

1 if i = j.

The components of two arbitrary vectors u, v ∈ V in the basis V is denoted as follows

u =
∑

i

uiei, v =
∑

i

viei.

The action of the operator T can also be decomposed in the basis V as follows

T(ej) =
∑

i

[T ]ijei, [T ]ij = [T(ej)]i.

We use the same notation for the adjoint operator, that is,

T ∗(ej) =
∑

i

[T ∗]ijei, [T ∗]ij = [T ∗(ej)]i.

The adjoint operator is defined such that the equation 〈v,T ∗(u)〉 = 〈T(v),u〉 holds for all
u, v ∈ V . This equation can be expressed in terms of components in the basis V as follows

∑

ijk

〈
viei, uj [T ∗(ej)]kek

〉
=

∑

ijk

〈
vi[T(ei)]kek, ujej

〉
,

that is, ∑

ijk

viuj [T ∗]kj〈ei, ek〉 =
∑

ijk

vi[T ]kiuj〈ek, ej〉.

Since the basis V is orthonormal we obtain the equation
∑

ij

viuj [T ∗]ij =
∑

ijk

vi[T ]jiuj ,

which holds for all vectors u, v ∈ V , so we conclude

[T ∗]ij = [T ]ji ⇔ [T ∗] = [T ]
T ⇔ [T ∗] = [T ]∗.

This establishes the Proposition. ¤

Example 9.4.1: Consider the inner product space
(
C3, ·). Find the adjoint of the linear

operator T with matrix in the standard basis of C3 given by

[T(x)] =




x1 + 2ix2 + ix3

ix1 − x3

x1 − x2 + ix3


 , [x] =




x1

x2

x3


 .

Solution: The matrix of this operator in the standard basis of C3 is given by

[T ] =




1 2i i
i 0 −1
1 −1 i


 .
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Since the standard basis is an orthonormal basis with respect to the dot product, Proposi-
tion 9.4.3 implies that

[T ∗] = [T ]∗ =




1 2i i
i 0 −1
1 −1 i



∗

=




1 −i 1
−2i 0 −1
−i −1 −i


 ⇒ [T ∗(x)] =




x1 − ix2 + x3

−2ix1 − x3

−ix1 − x2 − ix3


 .

C

Recall now that the commutator of two linear operators T, S ∈ L(V ) is the linear operator
[T,S] ∈ L(V ) given by

[T,S](u) = T(S(u))− S(T(u)) ∀u ∈ V.

Two operators T, S ∈ L(V ) are said to commute iff their commutator vanishes, that is,
[T,S] = 0. Examples of operators that commute are two rotations on the plane. Examples
of operators that do not commute are two arbitrary rotations in space.

Definition 9.4.4. A linear operator T defined on a finite-dimensional inner product space(
V, 〈 , 〉) is called a normal operator iff holds [T,T ∗] = 0, that is, the operator commutes

with its adjoint.

An interesting characterization of normal operators is the following: A linear operator
T on an inner product space is normal iff ‖T(u)‖ = ‖T ∗(u)‖ holds for all u ∈ V . Normal
operators are particularly important because for these operators hold the Spectral Theorem,
which we study in Chapter 9.

Two particular cases of normal operators are often used in physics. A linear operator T
on an inner product space is called a unitary operator iff T ∗ = T−1, that is, the adjoint
is the inverse operator. Unitary operators are normal operators, since

T ∗ = T−1 ⇒
{

TT ∗ = I,

T ∗T = I,
⇒ [T,T ∗] = 0.

Unitary operators preserve the length of a vector, since

‖v‖2 = 〈v, v〉 = 〈v,T−1(T(v))〉 = 〈v,T ∗(T(v))〉 = 〈T(v),T(v)〉 = ‖T(v)‖2.
Unitary operators defined on a complex inner product space are particularly important in
quantum mechanics. The particular case of unitary operators on a real inner product space
are called orthogonal operators. So, orthogonal operators do not change the length of a
vector. Examples of orthogonal operators are rotations in R3.

A linear operator T on an inner product space is called an Hermitian operator iff
T ∗ = T, that is, the adjoint is the original operator. This definition agrees with the
definition of Hermitian matrices given in Chapter 2.

Example 9.4.2: Consider the inner product space
(
C3, ·) and the linear operator T with

matrix in the standard basis of C3 given by

[T(x)] =




x1 − ix2 + x3

ix1 − x3

x1 − x2 + x3


 , [x] =




x1

x2

x3


 .

Show that T is Hermitian.

Solution: We need to compute the adjoint of T. The matrix of this operator in the
standard basis of C3 is given by

[T ] =




1 −i 1
i 0 −1
1 −1 1


 .



G. NAGY – LINEAR ALGEBRA July 15, 2012 299

Since the standard basis is an orthonormal basis with respect to the dot product, Proposi-
tion 9.4.3 implies that

[T ∗] = [T ]∗ =




1 −i 1
i 0 −1
1 −1 1



∗

=




1 −i 1
i 0 −1
1 −1 1


 = [T ].

Therefore, T ∗ = T. C
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9.4.1. Exercises.

9.4.1.- . 9.4.2.- .
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Chapter 10. Appendix

10.1. Review exercises

Chapter 1: Linear systems

1.- Consider the linear system

2x1 + 3x2 − x3 = 6

−x1 − x2 + 2x3 = −2

x1 + 2x3 = 2

(a) Use Gauss operations to find the
reduced echelon form of the aug-
mented matrix for this system.

(b) Is this system consistent? If “yes,”
find all the solutions.

2.- Find all the solutions x to the linear sys-
tem Ax = b and express them in vector
form, where

A =

2
4

1 −2 −1
2 1 8
1 −1 1

3
5 , b =

2
4

1
2
1

3
5 .

3.- Consider the matrix and the vector

A =

2
4

1 −2 7
1 1 1
2 2 2

3
5 , b =

2
4

0
1
3

3
5 .

Is the vector b a linear combination of
the column vectors of A?

4.- Let s be a real number, and consider the
system

sx1 − 2sx2 = −1,

3x1 + 6sx2 = 3.

(a) Determine the values of the param-
eter s for which the system above
has a unique solution.

(b) For all the values of s such that the
system above has a unique solution,
find that solution.

5.- Find the values of k such that the sys-
tem below has no solution; has one so-
lution; has infinitely many solutions;

kx1 + x2 = 1

x1 + kx2 = 1.

6.- Find a condition on the components of
vector b such that the system Ax = b is
consistent, where

A =

2
4

1 1 −1
2 0 −6
3 1 −7

3
5 , b =

2
4

b1

b2

b3

3
5 .

7.- Find the general solution to the homo-
geneous linear system with coefficient
matrix

A =

2
4

1 3 −1 5
2 1 3 0
3 2 4 1

3
5 ,

and write this general solution in vector
form.

8.- (a) Find a value of the constants h and
k such that the non-homogeneous
linear system below is consistent
and has one free variable.

x1 + h x2 + 5x3 = 1,

x2 − 2x3 = k,

x1 + 3x2 − 3x3 = 5.

(b) Using the value of the constants h
and k found in part (a), find the
general solution to the system given
in part (a).

9.- (a) Find the general solution to the sys-
tem below and write it in vector
form,

x1 + 2x2 − x3 = 2,

3x1 + 7x2 − 3x3 = 7,

x1 + 4x2 − x3 = 4.

(b) Sketch a graph on R3 of the general
solution found in part (a).
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Chapter 2: Matrix algebra

1.- Consider the vectors

u =

»
1
1

–
, v =

»
1
−1

–
,

and the linear function T : R2 → R2

such that

T (u) =

»
1
3

–
, T (v) =

»
3
1

–
.

Find the matrix A = [T (e1), T (e2)] of
the linear transformation, where

e1 =
1

2
(u + v), e2 =

1

2
(u− v).

Show your work.

2.- Find the matrix for the linear transfor-
mation T : R2 → R2 representing a re-
flection on the plane along the vertical
axis followed by a rotation by θ = π/3
counterclockwise.

3.- Which of the following matrices below
is equal to (A + B)2 for every square
matrices A and B?

(B + A)2,

A2 + 2AB + B2,

(A + B)(B + A),

A2 + AB + BA + B2,

A(A + B) + (A + B)B.

4.- Find a matrix A solution of the matrix
equation

AB + 2 I2 =

»
5 4
−2 3

–
,

where

B =

»
7 3
2 1

–
.

5.- Consider the matrix

A =

2
4

5 3 s
1 2 −1
2 1 1

3
5 .

Find the value(s) of the constant s such
that the matrix A is invertible.

6.- Let A be an n × n matrix, D be and
m×m matrix, and C be and m×n ma-
trix. Assume that both A and D are
invertible matrices and denote by A−1,
D−1 their respective inverse matrices.
Let M be the (n + m) × (n + m) ma-
trix

M =

»
A 0
C D

–
.

Find an m×n matrix X (in terms of any
of the matrices A, D, A−1, D−1, and C)
such that M is invertible and the inverse
is given by

M−1 =

»
A−1 0
X D−1

–
.

7.- Consider the matrix and the vector

A =

2
4

1 −2 7
1 1 1
2 2 2

3
5 , b =

2
4

0
1
3

3
5 .

(a) Does vector b belong to the R(A)?
(b) Does vector b belong to the N(A)?

8.- Consider the matrix

A =

2
4

1 2 6 −7
−2 3 2 0
0 −1 −2 2

3
5 .

Find N(A) and the R(AT ).

9.- Consider the matrix

A =

2
4

2 1 3
4 5 7
6 9 12

3
5 .

(a) Find the LU-factorization of A.
(b) Use the LU-factorization above to

find the solutions x1 and x2 of the
systems Ax = e1 and Ax2 = e2,
where

e1 =

2
4

1
0
0

3
5 , e2 =

2
4

0
1
0

3
5 .

(c) Use the LU-factorization above to
find A−1.
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Chapter 3: Determinants

1.- Find the determinant of the matrices

A =

»
1 + i −3i
−4i 1− 2i

–
,

B =

2
664

0 −1 0 0
0 −2 3 −2
0 0 −1 −3
−2 0 0 1

3
775 ,

C =

»
cos(θ) − sin(θ)
sin(θ) cos(θ)

–
.

2.- Given matrix A below, find the cofac-
tors matrix C, and explicitly show that
ACT = det(A) I3, where

A =

2
4

1 3 −1
4 0 1
2 1 3

3
5 .

3.- Given matrix A below, find the coeffi-
cients (A−1)13 and (A−1)23 of the in-
verse matrix A−1, where

A =

2
4

5 3 1
1 2 −1
2 1 1

3
5 .

4.- Find the change in the area of the par-
allelogram formed by the vectors

u =

»
1
2

–
, v =

»
2
1

–
,

when this parallelogram is transformed
under the following linear transforma-
tion, A : R2 → R2,

A =

»
2 1
1 2

–
.

5.- Find the volume of the parallelepiped
formed by the vectors

v1 =

2
4

1
2
3

3
5 , v2 =

2
4

3
2
1

3
5 , v3 =

2
4

1
1
−1

3
5 .

6.- Consider the matrix

A =

»
4 2
1 3

–
.

Find the values of the scalar λ such that
the matrix (A− λ I2) is not invertible.

7.- Prove the following: If there exists an
integer k > 1 such that A ∈ Fn,n satis-
fies Ak = 0, then det(A) = 0.

8.- Assume that matrix A ∈ Fn,n satisfies
the equation A2 = In. Find all possible
values of det(A).

9.- Use Cramer’s rule to find the solution
of the linear system Ax = b, where

A =

2
4

1 4 −1
1 1 1
2 0 3

3
5 , b =

2
4

1
0
0

3
5 .
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Chapter 4: Vector spaces

1.- Determine which of the following sub-
sets of R3,3 are subspaces:

(a) The symmetric matrices.
(b) The skew-symmetric matrices.
(c) The matrices A with A2 = A.
(d) The matrices A with tr (A) = 0.
(e) The matrices A with det(A) = 0.

In the case that the set is a subspace,
find a basis of this subspace.

2.- Find the dimension and give a basis of
the subspace W ⊂ R3 given by

n
2
4
−a + b + c− 3d

b + 3c− d
a + 2b + 8c

3
5with a, b, c, d ∈ R

o
.

3.- Find the dimension of both the null
space and the range space of the matrix

A =

2
4

1 1 1 5 2
2 1 4 7 3
0 −1 2 −3 −1

3
5 .

4.- Consider the matrix

A =

2
4

1 −1 5
0 1 −2
1 3 −3

3
5 .

(a) Find a basis for the null space of A.
(b) Find a basis for the subspace in R3

consisting of all vectors b ∈ R3 such
that the linear system Ax = b is
consistent.

5.- Show whether the following statement
is true or false: Given a vector space V ,
if the set

{v1, v2, v3} ⊂ V

is linearly independent, then so is the
set

{w1, w2, w3},
where

w1 = (v1 + v2),

w2 = (v1 + v3),

w3 = (v2 + v3).

6.- Show that the set U ⊂ P3 given by all
polynomials satisfying the condition

Z 1

0

p(x) dx = 0

is a subspace of P3. Find a basis for U .

7.- Determine whether the set U ⊂ P2 of
all polynomials of the form

p(x) = a + ax + ax2

with a ∈ F, is a subspace of P2.
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Chapter 5: Linear transformations

1.- Consider the matrix

A =

2
4

1 2 6 −7
−2 3 2 0
0 −1 −2 2

3
5 .

(1) Find a basis for R(A).
(2) Find a basis for N(A).
(3) Consider the linear transfor-

mation A : R4 → R3 deter-
mined by A. Is it injective? Is
it surjective? Justify your an-
swers.

2.- Let T : R3 → R2 be the linear transfor-
mation given by

[T (xs)]s̃ =

»
2x1 + 6x2 − 2x3

3x1 + 8x2 + 2x3

–

s

,

[x]s =

2
4

x1

x2

x3

3
5 ,

where S and S̃ are the standard bases
in R3 and R2, respectively.

(a) Is T injective? Is T surjective?
(b) Find all solutions of the linear sys-

tem T (xs) = bs̃, where

bs̃ =

»
2
−1

–
.

(c) Is the set of all solutions found in
part (b) a subspace of R3?

3.- Let A : C3 → C4 be the linear transfor-
mation

A =

2
664

1 0 i
0 i 1

1− i 0 1 + i
i 1 0

3
775 .

Find a basis for N(A) and R(A).

4.- Let D : P3 → P3 be the differentiation
operator,

D(p)(x) =
dp

dx
(x),

and I : P3 → P3 the identity operator.
Let S = (1, x, x2, x3) be the standard
ordered basis of P3. Show that the ma-
trix of the operator

(I−D2) : P3 → P3

in the basis S is invertible.
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Chapter 6: Inner product spaces

1.- Let
`
V, 〈 , 〉´ be a real inner product

space. Show that (x − y) ⊥ (x + y) iff
‖x‖ = ‖y‖.

2.- Consider the inner product space given
by
`
Fn, · ´. Prove that for every matrix

A ∈ Fn,n holds

x · (Ay) = (A∗x) · y.

3.- A matrix A ∈ Fn,n is called unitary iff

AA∗ = A∗A = In.

Show that a unitary matrix does not
change the norm of a vector in the in-
ner product space

`
Fn, · ´, that is, for all

x ∈ Fn and all unitary matrix A ∈ Fn,n

holds
‖Ax‖ = ‖x‖.

4.- Find all vectors in the inner product
space

`
R4, · ´ perpendicular to both

v =

2
664

1
4
4
1

3
775 and u =

2
664

2
9
8
2

3
775 .

5.- Consider the inner product space given
by
`
C3, · ´ and the subspace W ⊂ C3

spanned by the vectors

u =

2
4

1 + i
1
i

3
5 , v =

2
4
−1
0

2− i

3
5 .

(a) Use the Gram-Schmidt method to
find an orthonormal basis for W .

(b) Extend the orthonormal basis of W
into an orthonormal basis for C3.
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Chapter 7: Approximation methods

1.- . 2.- .
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Chapter 8: Normed spaces

1.- . 2.- .
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Chapter 9: Spectral decomposition

1.- . 2.- .
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10.2. Practice Exams

Instructions to use the Practice Exams. The idea of these lecture notes is to help anyone
interested in learning linear algebra. More often than not such person is a college student.
An unfortunate aspect of our education system is that students must pass an exam to prove
they understood the ideas of a given subject. To prepare the student for such exam is the
purpose of the practice exams in this Section.

These practice exams once were actual exams taken by student in previous courses. These
exams can be useful to other students if they are used properly; one way is the following:
Study the course material first, do all the exercises at the end of every Section; do the review
problems in Section 10.1; then and only then take the first practice exam and do it. Think
of it as an actual exam. Do not look at the notes or any other literature. Do the whole
exam. Watch your time. You have only two hours to do it. After you finish, you can grade
yourself. You have the solutions to the exam at the end of the Chapter. Never, ever look at
the solutions before you finish the exam. If you do it, the practice exam is worthless. Really,
worthless; you will not have the solutions when you do the actual exam. The story does not
finish here. Pay close attention at the exercises you did wrong, if any. Go back to the class
material and do extra problems on those subjects. Review all subjects you think you are
not well prepared. Then take the second practice exam. Follow a similar procedure. Review
the subject related to the practice exam exercises you had difficulties to solve. Then, do the
next practice exam. You have three of them. After doing the last one, you should have a
good idea of what your actual grade in the class should be.
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Practice Exam 1. (Two hours.)

1. Consider the matrix A =




5 3 1
1 2 −1
2 1 1


. Find the coefficients (A−1)21 and (A−1)32 of the

matrix A−1, that is, of the inverse matrix of A. Show your work.

2. (a) Find k ∈ R such that the volume of the parallelepiped formed by the vectors below
is equal to 4, where

v1 =




1
2
3


 , v2 =




3
2
1


 , v3 =




k
1
1




(b) Set k = 1 and define the matrix A = [v1, v2, v3]. Matrix A determines the linear
transformation A : R3 → R3. Is this linear transformation injective (one-to-one)? Is
it surjective (onto)?

3. Determine whether the subset V ⊂ R3 is a subspace, where

V =
{



−a + b
a− 2b
a− 7b


 with a, b ∈ R

}
.

If the set is a subspace, find an orthogonal basis in the inner product space
(
R3, · ).

4. True or False: (Justify your answers.)
(a) If the set of columns of A ∈ Fm,n is a linearly independent set, then Ax = b has

exactly one solution for every b ∈ Fm.
(b) The set of column vectors of an 5× 7 is never linearly independent.

5. Consider the vector space R2 with the standard basis S and let T : R2 → R2 be the
linear transformation

[T ]ss =
[
1 2
2 3

]

ss

.

Find [T ]bb, the matrix of T in the basis B, where B =
{

[b1]s =
[
1
2

]

s

, [b2]s =
[

1
−2

]

s

}
.

6. Consider the linear transformations T : R3 → R2 and S : R3 → R3 given by

[
T

(



x1

x2

x3




s3

)]
s2

=
[

x1 − x2 + x3

−x1 + 2x2 + x3

]

s2

,
[
S
(



x1

x2

x3




s3

)]
s3

=




3x3

2x2

x1




s3

,

where S3 and S2 are the standard basis of R3 and R2, respectively.
(a) Find a matrix [T ]s3s2 and the matrix [S ]s3s3 . Show your work.
(b) Find the matrix of the composition T ◦ S : R3 → R2 in the standard basis, that is,

find [T ◦ S ]s3s2 .
(c) Is T ◦ S injective (one-to-one)? Is T ◦ S surjective (onto)? Justify your answer.

7. Consider the matrix A =




1 1
1 2
2 1


 and the vector b =




2
1
1


.
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(a) Find the least-squares solution x̂ to the matrix equation Ax = b.
(b) Verify whether the vector A x̂−b belong to the space R(A)⊥? Justify your answers.

8. Consider the matrix A =
[−1/2 −3

1/2 2

]
.

(a) Show that matrix A is diagonalizable.
(b) Using that A is diagonalizable, find the lim

k→∞
Ak.

9. Let
(
V, 〈 , 〉) be an inner product space with inner product norm ‖ ‖. Let T : V → V be

a linear transformation and x, y ∈ V be vectors satisfying the following conditions:

T(x) = 2x, T(y) = −3y, ‖x ‖ = 1/3, ‖y ‖ = 1, x ⊥ y.

(a) Compute ‖v ‖ for the vector v = 3x− y.
(b) Compute ‖T(v)‖ for the vector v given above.

10. Consider the matrix A =




2 −1 2
0 1 h
0 0 2


.

(a) Find all eigenvalues of matrix A and their corresponding algebraic multiplicities.
(b) Find the value(s) of the real number h such that the matrix A above has a two-

dimensional eigenspace, and find a basis for this eigenspace.
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Practice Exam 2. (Two hours.)

1. Consider the matrix A =



−2 3 −1
1 2 −1
−2 −1 1


. Find the coefficients (A−1)13 and (A−1)21 of

the inverse matrix of A. Show your work.

2. Consider the vector space P3([0, 1]) with the inner product

〈p, q 〉 =
∫ 1

0

p(x)q(x) dx.

Given the set U = {p1 = x2, p2 = x3}, find an orthogonal basis for the subspace
U = Span

(U)
using the Gram-Schmidt method on the set U starting with the vector p1.

3. Consider the matrix A =




1 3 1 1
2 6 3 0
3 9 5 −1


.

(a) Verify that the vector v =




3
1
−4
−2


 belongs to the null space of A.

(b) Extend the set {v} into a basis of the null space of A.

4. Use Cramer’s rule to find the solution to the linear system

2x1 + x2 − x3 = 0
x1 + x3 = 1

x1 + 2x2 + 3x3 = 0.

5. Let S3 and S2 be standard bases of R3 and R2, respectively, and consider the linear
transformation T : R3 → R2 given by

[
T

(



x1

x2

x3




s3

)]
s2

=
[−x1 + 2x2 − x3

x1 + x3

]

s2

,

and introduce the bases U ⊂ R3 and V ⊂ R2 given by

U =
{

[u1]s3 =




1
1
0




s3

, [u2]s3 =




1
0
1




s3

, [u3]s3 =




0
1
1




s3

}
,

V =
{

[v1]s2 =
[
1
2

]

s2

, [v2]s2 =
[−3

2

]

s2

}
.

Find the matrices [T ]s3s2 and [T ]uv. Show your work.

6. Consider the inner product space
(
R2,2, 〈 , 〉F

)
and the subspace

W = Span
{

E1 =
[
0 1
1 0

]
, E2 =

[
1 0
0 −1

]}
⊂ R2,2.

Find a basis for W⊥, the orthogonal complement of W .
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7. Consider the matrix A =




1 2
1 −1
−2 1


 and the vector b =




0
1
0


.

(a) Find the least-squares solution x̂ to the matrix equation Ax = b.
(b) Verify that the vector A x̂−b, where x̂ is the least-squares solution found in part (7a),

belongs to the space R(A)⊥, the orthogonal complement of R(A).

8. Suppose that a matrix A ∈ R3,3 has eigenvalues λ1 = 1, λ2 = 2, and λ3 = 4.
(a) Find the trace of A, find the trace of A2, and find the determinant of A.
(b) Is matrix A invertible? If your answer is “yes”, then prove it and find det(A−1); if

your answer is “no”, then prove it.

9. Consider the matrix A =
[
7 5
3 −7

]
.

(a) Find the eigenvalues and eigenvectors of A.
(b) Compute the matrix eA.

10. Find the function x : R→ R2 solution of the initial value problem
d

dt
x(t) = A x(t), x(0) = x0,

where the matrix A =
[ −5 2
−12 5

]
and the vector x0 =

[
1
1

]
.
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Practice Exam 3. (Two hours.)

1. (a) Find the LU-factorization of the matrix A =




1 2 3
−1 2 2
2 −8 −3


.

(b) Use the LU-factorization above to find the solution of the linear system Ax = b,

where b =




1
−2
−1


.

2. Determine whether the following sets W1 and W2 are subspaces of the vector space
P2

(
[0, 1]

)
. If your answer is “yes,” find a basis of the subspace.

(a) W1 = {p ∈ P2

(
[0, 1]

)
:

∫ 1

0

p(x) dx 6 1 };

(b) W2 = {p ∈ P2

(
[0, 1]

)
:

∫ 1

0

xp(x) dx = 0 }.
3. Find a basis of R4 containing a basis of the null space of matrix

A =




1 2 −4 3
2 1 1 3
1 1 −1 2
3 2 0 5


 .

4. Given a matrix A ∈ Fn,n, introduce its characteristic polynomial pA(λ) = det(A− λ In).
This polynomial has the form pA(λ) = a0 + a1λ + · · · + anλn for appropriate scalars
a0, · · · , an. Now introduce a matrix-valued function PA : Fn,n → Fn,n as follows

PA(X) = a0 In + a1X + · · ·+ anXn.

Determine whether the following statement is true or false and justify your answer: If
matrix A ∈ Fn,n is diagonalizable, then PA(A) = 0. (That is, PA(A) is the zero matrix.)

5. Consider the vector space R2 with ordered bases

S =
(
e1s =

[
1
0

]

s

, e2s =
[
0
1

]

s

)
, U =

(
u1s =

[
2
1

]

s

, u2s =
[
1
2

]

s

)
.

Let T : R2 → R2 be a linear transformation given by

[T (u1)]s =
[−3

1

]

s

, [T (u2)]s =
[
1
3

]

s

.

(a) Find the matrix Tss.
(b) Find the matrix Tuu.

6. Consider the matrix A =




1 2
2 −1
1 1


 and the vector b =




1
1
1


.

(a) Find the least-squares solution x̂ to the matrix equation Ax = b.
(b) Find the vector on R(A) that is the closest to the vector b in R3.

7. Consider the inner product space
(
C3, ·) and the subspace W ⊂ C3 given by

W = Span
({




i
1
i




})
.

(a) Find a basis for W⊥, the orthogonal complement of W .
(b) Find an orthonormal basis for W⊥.
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8. (a) Find the eigenvalues and eigenvectors of matrix A =
[
5 4
4 5

]
, and show that A is

diagonalizable.
(b) Knowing that matrix A above is diagonalizable, explicitly find a square root of

matrix A, that is, find a matrix X such that X2 = A. How many square roots does
matrix A have?

9. Consider the matrix A =
[
8 −18
3 −7

]
.

(a) Find the eigenvalues and eigenvectors of A.
(b) Compute explicitly the matrix-valued function eA t for t ∈ R.

10. Find the function x : R→ R2 solution of the initial value problem
d

dt
x(t) = A x(t), x(0) = x0,

where the matrix A =
[−7 12
−4 7

]
and the vector x0 =

[
1
1

]
.
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10.3. Answers to exercises

Chapter 1: Linear systems

Section 1.1: Row and Column Pictures

1.1.1.- x = 2, y = 3.

1.1.2.- The system is not consistent.

1.1.3.- The nonlinear system has two
solutions,

`
x =

√
2, y =

√
2
´
,

`
x = −

√
2, y = −

√
2
´
.

1.1.4.- The system is inconsistent.

1.1.5.- Subtract the first equation from
the second. To the resulting equation
subtract the third equation. One gets
0 = 1. The system is inconsistent.

1.1.6.- k = ±2.

1.1.7.- The system is consistent. The
solution is

x1 = −1, x2 = 1.

1.1.8.-

(a) The vectors A1 and A2 are collinear,
while vector b is not parallel to A1

and A2.
(b) The system is not consistent.
(c) The system is consistent and the so-

lution is not unique. The solutions
are x1 = 3 + x2/2 and x2 arbitrary.

1.1.9.- h = 1.

1.1.10.- A3 = −A1 + 2A2. The system

A1x1 + A2x2 + A3x3 = 0

is consistent with infinitely many solu-
tions given by

x1 = x3, x2 = −2x3,

and x3 arbitrary.

Section 1.2: Gauss-Jordan method

1.2.1.- x1 = 1, x2 = 0, x3 = 0.

1.2.2.- x1 = 3, x2 = 1, x3 = 0.

1.2.3.- x1 = 1, x2 = 0, x3 = −1.

1.2.4.- x1 = 2, x2 = 4, x3 = 5.
x1 = −4, x2 = −7, x3 = −8.

1.2.5.- x1 = 1, x2 = 1, x3 = 1.
x1 = 1, x2 = 2, x3 = 2.
x1 = 1, x2 = 2, x3 = 3.

Section 1.3: Echelon forms

1.3.1.- rank(A) = 2, pivot columns are
the first and fourth.

1.3.2.- x1 = −x4, x2 = 0, x3 = −2x4

and x4 is a free variable.

1.3.3.- x1 = −1 + 2x3, x2 = 2 − 3x3

and x3 is a free variable.

1.3.4.- For example:

A =

2
4

1 0 1 1
0 1 1 1
0 0 0 0

3
5 b =

2
4

1
1
0

3
5 c =

2
4

0
0
1

3
5 .

1.3.5.- Matrix A has a reduced echelon
form EA with a pivot on every column,
therefore EA has no row with all coef-
ficients zero. Hence, any system with
such coefficient matrix A is always con-
sistent.

1.3.6.-

(a) k = −1.

(b) x =

»−1/2
1

–
.
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Section 1.4: Non-homogeneous equations

1.4.1.- x =

2
664

−2
1
0
0

3
775x2 +

2
664

−1
0
−1
1

3
775x4.

1.4.2.- x =

2
4

1
0
0

3
5+

2
4
−3
−2
1

3
5x3.

1.4.3.- Hint: Recall that the matrix-
vector product is a linear operation.

1.4.4.- x =

2
664

−2
1
0
0

3
775x2+

2
664

−1
0
−1
1

3
775x4.+

2
664

1
0
2
0

3
775.

1.4.5.- x =

2
4

5
−2
0

3
5+

2
4

4
−7
1

3
5x3. Writing

the solution as x = y + zx3, the solution
vectors have end points on line passing
through the end point of y and the line
is tangent to the line parallel to z.

1.4.6.- x =

2
664

0
8
2
0

3
775 +

2
664

3
4
−5
1

3
775x4. Writing

the solution as x = y + zx4, the solution
vectors have end points on line passing
through the end point of y and the line
is tangent to the line parallel to z.

1.4.7.-

(a) For k 6= 3 there exists a unique so-
lution.

(b) If k = 3 the solutions are

x =

2
4

1
−1
0

3
5+

2
4

0
−3/2

1

3
5x3.

Section 1.5: Floating-point numbers

1.5.1.-

(a) x1 = 0, x2 = −1.
(b) Hint: Modify the coefficients of the

original system so that the approx-
imate solution is an exact solution
of the modified system.
One answer is: We keep the first
equation coefficients and we modify
the sources:

10−3x1 − x2 = 1

x1 + x2 = −1.

(c) x1 = 1, x2 = −1.
(d) One answer is: We keep the first

equation coefficients and we modify
the sources:

10−3x1 − x2 = 1 + 10−3

x1 + x2 = 0.

(e) x1 =
1

1 + 10−3
, x2 =

−1

1 + 10−3
.

(f) x1 = 0.999, x2 = −0.999.

1.5.2.-

(a) x1 = 0, x2 = 1.
(b) x1 = 2, x2 = 1.
(c) x1 = 2, x2 = 1.
(d) x1 = 2, x2 = 1.

(e) x1 =
2

1 + 10−3
,

x2 =
1 + 3× 10−3

1 + 10−3
.

1.5.3.- Without partial pivoting:

x1 = 1.01, x2 = 1.03.

With partial pivoting:

x1 = 1, x2 = 1.

Solution in R:

x1 = 1, x2 = 1.
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Chapter 2: Matrix algebra

Section 2.1: Linear transformations

2.1.1.-

(a) T is not linear.
(b) T is linear.
(c) T is not linear.

2.1.2.- x =

»−1
3

–
.

2.1.3.- x =

2
4

3
1
0

3
5+

2
4
−3
−2
1

3
5x3.

2.1.4.- T
“»x1

x2

–”
=

»
3x1 + x2

x1 + 3x2

–
.

2.1.5.-

(a) Rotation by an angle π.
(b) Expansion by 2.
(c) Projection onto x2 axis.
(d) Reflection along the line x1 = x2.

2.1.6.- A =

»−2 7
5 −3

–
.

Section 2.2: Linear combinations

2.2.1.-

(a) A =

2
4

0 0 0
0 0 0
0 0 0

3
5.

(b) A =

2
4

1 2 3
2 5 4
3 4 6

3
5.

(c) A =

2
4

1 2 + i 3
2− i 5 4− i

3 4 + i 6

3
5.

2.2.2.- x = −1/2, y = −6, z = 0.

2.2.3.- Hint: Compute the transpose
of A + AT . Do the same with A− AT .

2.2.4.- Hint: Express A = C + D, with
C symmetric and D skew-symmetric.
Find the expressions of matrices C and
D in terms of matrix A.

2.2.5.-

(a) Hint: Introduce i = j in the skew-
symmetric matrix component con-
dition.

(b) Hint: Introduce i = j in the skew-
Hermitian matrix component con-
dition.

(c) Hint: Compute BT .

2.2.6.- Hint: Use the properties of the
adjoint (complex conjugate and trans-
pose) operation.

2.2.7.- Hint: See the proof of Theo-
rem 2.2.8.
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Section 2.3: Matrix multiplication

2.3.1.-

(a) BA, CB not possible,

AB =

2
4

10 15
12 8
28 52

3
5 , CT B =

ˆ
10 31

˜
.

(b) B2 is not possible, and

A2 =

2
4

13 −1 19
16 13 12
36 −17 64

3
5 ,

CT C =
ˆ
14
˜
, CCT =

2
4

1 2 3
2 4 6
3 6 9

3
5 .

2.3.2.-

(a) [A, B] =

»
0 0
0 0

–
.

(b) ABC =

»
9 26
12 33

–
.

2.3.3.-

A2 =

2
4

0 0 1
0 0 0
0 0 0

3
5 , A3 =

2
4

0 0 0
0 0 0
0 0 0

3
5 .

2.3.4.- An =

»
1 na
0 1

–
.

2.3.5.- Hint: Expand (A + B)2 and re-
call that AB = BA iff [A, B] = 0.

2.3.6.- If B = a

2
4

1 1 1
1 1 1
1 1 1

3
5, then

A =

2
664

I3
... B

. . . . . . . . .

0
... B

3
775 .

Recalling that a = 1/3, we obtain,

An =

2
664

I3
... 2(n−1)B

. . . . . . . . . . . . . . .

0
... B

3
775 .

2.3.7.- Hint: Write down in compo-
nents each side of the equation.

2.3.8.- Hint: Express tr (AT A) in com-
ponents, and show that it is the sum of
squares of every component of matrix
A.

2.3.9.- Hint: Recall that AB is sym-
metric iff (AB)T = AB.

2.3.10.- Hint: Take the trace on each
side of [A, X] = I and use the properties
of the trace to get a contradiction.
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Section 2.4: Inverse matrix

2.4.1.-

(a) A−1 =

»
3 −2
−1 1

–
.

(b) A−1 =

2
4
−2 3 −10
0 −1 3
−1 1 −4

3
5.

(c) A is not invertible.

2.4.2.- k = 2 or k = −3.

2.4.3.-

(a) A−1 =

2
4

1/2 1/2 1/2
−1 0 0
−1 0 −1

3
5.

(b) x =

2
4

3/2
−1
−4

3
5.

2.4.4.- Hint: Just write down the com-
mutator of two matrices:

[A, B] = AB− BA,

with B = A−1.

2.4.5.- X =

2
4

2 4
−1 −2
3 3

3
5.

2.4.6.- Hint: Use that`
A−1´T =

`
AT ´−1

.

2.4.7.- Hint: Generalize for matrices
the identity for real numbers,

(1− a)(1 + a) = 1− a2.

2.4.8.- Hint: Generalize for matrices
the identity for real numbers,

(1− a)(1 + a + a2) = 1− a3.

2.4.9.-

(a) Hint: Use Theorem 2.4.3.
(b) Hint: Use Theorem 2.4.3.
(c) Hint: tr (AB) = tr (BA).

2.4.10.- Hint: Multiply the matrices
using block multiplication.
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Section 2.5: Null and Range spaces

2.5.1.-

R(A) = Span
“n
2
4

1
2
3

3
5 ,

2
4

2
1
1

3
5
o”

,

R(AT ) = Span
“n
2
664

1
2
2
3

3
775 ,

2
664

2
4
1
3

3
775
o”

.

2.5.2.-
N(A) =

Span
“n
2
66664

−2
1
0
0
0

3
77775

,

2
66664

2
0
−3
1
0

3
77775

,

2
66664

−1
0
−4
0
1

3
77775
o”

,

R(A) = Span
“n
2
4

1
−2
1

3
5 ,

2
4

1
0
2

3
5
o”

,

N(AT ) = Span
“n
2
4
−2
−1/2

1

3
5
o”

,

R(AT ) = Span
“n
2
66664

1
2
1
1
5

3
77775

,

2
66664

−2
−4
0
4
−2

3
77775
o”

.

2.5.3.-

(a) The system Ax = b is consistent
since b ∈ R(A), because of

b =

2
4

1
8
5

3
5 = 3

2
4

1
2
3

3
5− 2

2
4

1
−1
2

3
5 ∈ R(A).

(b) Since N(A) 6= {0}, given any solu-
tion x of the system Ax = b, then
another solution is

x̃ = x + c

2
4
−2
1
0

3
5 ,

for any c ∈ R.

2.5.4.-

(a) A linear system Ax = b is consistent
iff b is a linear combination of the
columns of A iff b ∈ R(A).

(b) Hint: A(x+ x̂) = Ax for every vector
x̂ ∈ N(A).

2.5.5.- Theorem 2.4.3 part (c) says
that A is invertible iff EA = I, which
is equivalent to say that R(A) = Fn.

2.5.6.-

N(A) = N(AT ) = {0},
R(A) = R(AT ) = Fn.

2.5.7.-

(a) No, since EAT 6= EBT .
(b) Yes, since EA = EB.
(c) Yes, since EA = EB.
(d) No, since EAT 6= EBT .
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Section 2.6: LU-factorization

2.6.1.- A = LU where

L =

»
1 0
−3 1

–
, U =

»
5 2
0 3

–
.

2.6.2.- A = LU where

L =

»
1 0
2 1

–
, U =

»
2 1 3
0 4 1

–
.

2.6.3.- A = LU where

L =

2
4

1 0 0
2 1 0
3 −2 1

3
5 , U =

2
4

2 1 2
0 3 1
0 0 1

3
5 .

2.6.4.- Matrix A does not hav an LU-
factorization.

2.6.5.- T = LU where

L =

2
664

1 0 0 0
−1/2 1 0 0

0 −2/3 1 0
0 0 −3/4 1

3
775 ,

U =

2
664

2 −1 0 0
0 3/2 −1 0
0 0 4/3 −1
0 0 0 1/4

3
775 .

2.6.6.- A = LU where

L =

2
4

1 0 0
2 1 0
3 4 1

3
5 , U =

2
4

2 2 2
0 3 3
0 0 4

3
5 .

Then,

y =

2
4

12
0

−24

3
5 , x =

2
4

6
6
−6

3
5 .

2.6.7.- c = 0 or c = ±√2.



324 G. NAGY – LINEAR ALGEBRA july 15, 2012

Chapter 3: Determinants

Section 3.1: Definitions and properties

3.1.1.- det(A) = 8 and det(B) = −8.

3.1.2.- V = 14.

3.1.3.-

det(U) = (1)(4)(6) = 24,

det(L) = (1)(3)(6) = 18.

3.1.4.- det(A) = −8.

3.1.5.- For example:

A =

»
1 0
0 0

–
, B =

»
0 0
0 1

–
.

On the one hand det(A + B) = 1, while
on the other hand det(A) = det(B) = 0.

3.1.6.-

det(2A) = 2n det(A)

det(−A) = (−1)n det(A)

det(A2) =
ˆ
det(A)

˜2
.

3.1.7.-

det(B) = det(P−1AP)

= det(P−1) det(A) det(P)

=
1

det(P)
det(A) det(P)

= det(A).

3.1.8.-

det(A∗) = det
`
A

T ´

= det
`
A
´

= det(A).

3.1.9.-

det
`
A∗A

´
= det

`
A∗
´

det(A)

= det(A) det(A)

=
˛̨
det(A)

˛̨2 > 0.

3.1.10.-

det(kA) =
˛̨
kA1, · · · , kAn

˛̨

= kn
˛̨
A1, · · · , An

˛̨

= kn det(A).

3.1.11.-

det(A) = det
`
AT ´

= det(−A)

= (−1)n det(A)

= − det(A) ⇒ 2 det(A) = 0.

Therefore, det(A) = 0.

3.1.12.-

1 = det(In)

= det
`
AT A

´

= det
`
AT ´ det(A)

=
ˆ
det(A)

˜2 ⇒ det(A) = ±1.

Section 3.2: Applications

3.2.1.- A−1 =
1

8

2
4

0 1 −1
−8 4 4
16 −6 −2

3
5.

3.2.2.-
`
A−1´

12
=

8

41
,
`
A−1´

32
= −19

41
.

3.2.3.- det(A) = 10 and det(B) = 0.

3.2.4.- Hint:
˛̨
˛̨
˛̨
1 a a2

1 b b2

1 c c2

˛̨
˛̨
˛̨ =

˛̨
˛̨
˛̨
1 a a2

0 (b− a) (b2 − a2)
0 0 (c− a)(c− b)

˛̨
˛̨
˛̨ .

3.2.5.- k 6= ±1.

3.2.6.- x =
1

(ad− bc)

»
d
−c

–
.

3.2.7.- x =

2
4
−2
4
−1

3
5.
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Chapter 4: Vector Spaces

Section 4.1: Spaces and subspaces

4.1.1.-

(a) No.
(b) Yes.
(c) No.
(d) Yes.
(e) No.
(f) No.

4.1.2.-

(a) Yes.
(b) No.
(c) No.
(d) Yes.
(e) No.
(f) Yes.
(g) Yes.

4.1.3.- The result is W1+W2 = R3. An
example is W1 = Span

`{e1, e2}
´
, and

W2 = Span
`{e3}

´
. Then,

W1 + W2 = Span
`{e1, e2, e3}

´
= R3.

4.1.4.-

(a) The line Span
“n
2
4

1
2
3

3
5
o”

.

(b) The plane Span
“n
2
4

1
0
0

3
5 ,

2
4

0
1
0

3
5
o”

.

(c) The space R3.

4.1.5.- If S1 = {u1, · · · ,uk} and S2 =
{v1, · · · , vl}, then

Span(S1 ∪ S2) =

{(a1u1+· · ·+akuk)+(b1v1+· · ·+blvl)}
for every set of scalars a1, · · · , ak ∈ F,
b1 · · · , bl ∈ F. From the definition of
sum of subspaces we see that this last
subspace can be rewritten as

Span(S1 ∪ S2) =

{a1u1 + · · ·+akuk}+{b1v1 + · · ·+ blvl}
= Span(S1) + Span(S2).

4.1.6.- Find a vector not in Span(W1).

Denoting u =

2
4

u1

u2

u3

3
5, we compute

2
4

1 1 u1

2 0 u2

3 1 u3

3
5→

→
2
4

1 1 u1

0 −2 u2 − 2u1

0 0 u3 − u1 − u2

3
5 .

Choose any solution of u3−u1−u2 6= 0.

For example, u =

2
4

1
0
0

3
5, and

W2 = Span({u}).

Section 4.2: Linear dependence
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4.2.1.-

(a) Linearly dependent.
(b) Linearly dependent. (A four vector

set in R3 is always linearly depen-
dent.)

(c) Linearly independent.

4.2.2.-

(a) One possible solution is:

n
2
4

1
2
3

3
5 ,

2
4

1
1
2

3
5 ,

2
4

0
2
3

3
5
o

.

(b) 11 sets.

4.2.3.- If S = {0, v1, · · · , vk}, then

10 + 0v1 + · · ·+ 0vk = 0.

4.2.4.- Hint: Show that the constants
c1, c2 sastisfying

c1(v + w) + c2(v−w) = 0

are both zero iff the constants c̃1, c̃2 sat-
isfying

c̃1v + c̃2w = 0

are both zero. Once that is proven, and
since the latter statement is true, so is
the former.

4.2.5.- Linearly dependent.

4.2.6.- Hint: Use the definition. Prove
that there are non-zero constants c1, c2,
c3, c4 solutions of

c1 + c2c + c3x
2 + c4(1 + x + x2) = 0.

4.2.7.- Linearly independent.
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Section 4.3: Bases and dimension

4.3.1.- Bases are not unique. Here are
possible choices:

NA =
n
2
664

−2
1
0
0

3
775 ,

2
664

−1
0
−1
1

3
775
o

,

RA =
n
2
4

1
2
3

3
5 ,

2
4

2
1
1

3
5
o

,

NAT =
n
2
4

1/3
−5/3

1

3
5
o

,

RAT =
n
2
664

1
2
2
3

3
775 ,

2
664

2
4
1
3

3
775
o

.

4.3.2.- The dimension is 3.

4.3.3.-

(a) dimPn = n + 1.
(b) dimFm,n = mn.
(c) dim(Symn) = n(n + 1)/2.
(d) dim(SkewSymn) = n(n− 1)/2.

4.3.4.- One example is the following:
v1 = e1, v2 = e2, and

W = Span
“n»1

1

–o”
.

4.3.5.- To verify that v ∈ N(A) com-
pute Av and check that the result is 0.
A basis for N(A) containing v is

N =
n
2
66664

−8
1
3
3
0

3
77775

,

2
66664

−2
1
0
0
0

3
77775

,

2
66664

−1
0
−2
0
1

3
77775
o

.

4.3.6.- The set B is a basis of that
subspace.
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Section 4.4: Vector components

4.4.1.-

vu =

2
4

1
1
0

3
5 .

4.4.2.-

vu =

2
4

9
2
−3

3
5 .

4.4.3.-

(a) rs =

2
4

2
3
−1

3
5.

(b) rq =

2
4

6
−4
−1

3
5.

4.4.4.-

(a) Hint: Prove that Span(M) = R2,2,
and thatM is linearly independent.
For the first part, show that for ev-
ery matrix

B =

»
B11 B12

B21 B22

–

there exist constants c1, c2, c3, c4

solution of

c1M1 + c2M2 + c3M3 + c4M4 = B.

For the second part, choose B = 0
and show that the only constants
c1, c2, c3, c4 solution of

c1M1 + c2M2 + c3M3 + c4M4 = 0

are c1 = c2 = c3 = c4 = 0.
(b)

A =
5

2
M1 +

1

2
M2 +

5

2
M3 − 3

2
M4.

Using the notation

DM =

»
d1 d2

d3 d4

–
⇔

D = d1M1 + d2M2 + d3M3 + d4M4

then we get

AM =
1

2

»
5 1
5 −3

–
.
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Chapter 5: Linear transformations

Section 5.1: Linear transformations

5.1.1.- The projection A neither injec-
tive nor surjective.

5.1.2.- The rotation R(θ) is both injec-
tive and surjective for θ ∈ [0, 2π).

5.1.3.-

(a) Linear.
(b) Linear.
(c) Non-linear.
(d) Linear.
(e) Linear.

5.1.4.- Hint: Show that

T(ax + by) = aT(x) + bT(y)

for all x, y ∈ Fn and all a, b ∈ F.
T is not a linear operator, it is a linear
functional.

5.1.5.- Hint: Show that

∆(ap + bq) = a∆(p) + b∆(q)

for all p,p ∈ P3 and all a, b ∈ F.
∆ is not injective, but it is surjective.

5.1.6.- Hint: Recall the definition of a
linearly independent set.

5.1.7.- Hint: Recall the Nullity-Rank
Theorem 5.1.6.

5.1.8.- Hint: Recall the Nullity-Rank
Theorem 5.1.6.

Section 5.2: The inverse transformations

5.2.1.- Hint: Show that T is bijective.
The inverse transformation is

T−1
“»y1

y2

–”
=

1

5

»
2y1 + y2

3y1 − y2

–
.

5.2.2.- Hint: Show that ∆ is bijective.
The inverse transformation is

∆−1(b0 + b1x + b2x
2) =

b0

2
x2 +

b1

6
x3 +

b2

12
x4.

5.2.3.- Hint: Choose any isomorphism
T : V → W and use the Nullity-Rank
Theorem.

5.2.4.- Hint: Use the coordinate map
to find an isomorphism between these
spaces.

5.2.5.- Hint: Generalize the proof in
Exercise 5.2.4.

5.2.6.- Hint: Generalize the proof in
Example 5.2.8.

5.2.7.- Hint: Use the ideas given in
Example 5.2.9.

5.2.8.- The basis {φ1, φ2} is given by

φ1

“»x1

x2

–”
= −x1 + 3x2,

φ2

“»x1

x2

–”
= x1 − 2x2.

Using row vector notation,

[φ1] =
ˆ−1, 3

˜
,

[φ2] =
ˆ
1,−2

˜
.
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Section 5.3: The algebra of linear operators

5.3.1.-

(a) (3T− 2S)
“»x1

x2

–”
=

»
3x2

x1

–
.

(b) (T ◦ S )
“»x1

x2

–”
=

»
x1

0

–
.

(S ◦T )
“»x1

x2

–”
=

»
0
x2

–
.

(c) T 2
“»x1

x2

–”
=

»
x1

x2

–
.

S 2
“»x1

x2

–”
=

»
0
0

–
.

5.3.2.- dim L(F4) = 16, dim L(P2) = 9,
dim L(F3,2) = 36.

5.3.3.-

T−2
“»x1

x2

–”
=

»
x1/4

−x1 + x2

–
.

5.3.4.-

p(T )
“»x1

x2

–”
=

»
2x1 + 6x2

9x1 + 11x2

–
.

5.3.5.- Hint: Use that cos2(α) +
sin2(α) = 1.

5.3.6.- Hint: Use the definition of the
commutator.

Section 5.4: Transformation components

5.4.1.- Tuu =

»
2 0
0 3

–
.

5.4.2.-

(a) Tuu =
1

2

2
4

2 −3 1
−2 1 1
0 1 −1

3
5.

(b) To verify [T(v)]u = Tuuvu one must
compute the left-hand side and the
right-hand side, and check one ob-
tains the same result. For the left-
hand side:

[T(vs)]s =

2
4

0
0
−1

3
5

s

and 2
4

0
0
−1

3
5

s

=
1

2

2
4
−1
−1
1

3
5

u

.

For the right-hand side:

vu =

2
4

1
1
0

3
5

u

,

and Tuuvu is given by

1

2

2
4

2 −3 1
−2 1 1
0 1 −1

3
5
2
4

1
1
0

3
5

u

=
1

2

2
4
−1
−1
1

3
5

u

.

5.4.3.- Hint: Recall the definition

Tss̃ =
ˆ
[T(e1)]s̃, · · · [T(en)]s̃

˜
.

If A = [A1, · · · , An], then for i = 1, · · ·n
holds [T(ei)]s̃ = Aei = Ai. Therefore,

Tss̃ = A.

5.4.4.- Tss̃ =

2
4

0 −1 2 0
0 0 −2 6
0 0 0 −3

3
5.

5.4.5.-

(D ◦ S)ss̃ =

2
4

1 0 0
0 1 0
0 0 1

3
5 .

(S ◦ D)s̃s =

2
664

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3
775 .
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Section 5.5: Change of basis

5.5.1.-

(a) Ius =

»
2 1
−9 8

–
,

Isu =
1

25

»
8 −1
9 2

–
.

(b) xs =

»
5

−10

–
, xu =

»
2
1

–
.

5.5.2.-

(a) Ibc =
1

9

2
4
−1 −6 −2
2 3 4
−5 −3 −1

3
5,

Icb =

2
4

1 0 −2
−2 −1 0
1 3 1

3
5.

(b) xb =

2
4
−3
0
−3

3
5, xc =

2
4

1
−2
2

3
5.

5.5.3.-

(a) xs =

»
7
8

–
.

(b) e1u =
1

3

»−1
2

–
, e2u =

1

3

»
2
−1

–
.

5.5.4.-

(a) xs =

»−1
5

–
.

(b) xb =
1

4

»
3
−7

–
.

5.5.5.- b1s =

»−3
2

–
, b2s =

»
2
−1

–
.

5.5.6.- Hint: Find an invertible matrix
P such that C = P−1AP.

5.5.7.-

Tss =

2
4

1 2 −1
0 −1 0
1 0 7

3
5 ,

Tuu =

2
4

1 4 3
−1 −2 −9
1 1 8

3
5 .

5.5.8.-

Tus =

»
1 3
3 1

–
, Tss =

»
2 −1
2 1

–
,

Tuu =

»
2 2
−1 1

–
, Tsu =

»
2 0
0 −1

–
.
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Chapter 6: Inner product spaces

Section 6.1: The dot product

6.1.1.- ‖u‖ = 5, ‖v‖ = 2,

d(u, v) =
√

31, θ = arccos(−1/10).

6.1.2.-

u =
1√
13

»−2
3

–
, v =

1√
13

»
2
−3

–
.

6.1.3.- u =
1√
10

»
1 + 2i
2− i

–
.

6.1.4.-

(a)
n»1

0

–
,

»
1
1

–o
.

(b)
n»0

0

–
,

»
1
1

–o
.

6.1.5.- Hint: Expand the expression

‖x− y‖2 = (x− x) · (x− y).

6.1.6.-

(a) Hint: For every x, y ∈ Rn holds

Re(x · y) = 0 ⇔ x · y = 0.

(b) Hint: For x, y ∈ Cn satisfying Im(x ·
y) 6= 0 holds

Re(x · y) = 0 6⇒ x · y = 0.

6.1.7.- Hint: Use Problem 6.1.5.

Section 6.2: Inner product

6.2.1.-

(a) No.
(b) No.
(c) Yes.
(d) No.

6.2.2.-

(a) Hint: Choose a particular x.
(b) Hint: Use the properties of the in-

ner product.

6.2.3.-

(a) Yes.
(b) No.
(c) No.

6.2.4.- Hint: N(A) = {0} is needed
to show the positivity property of the
inner product.

6.2.5.- k = −3.

6.2.6.- ‖A‖F =
√

10, ‖B‖F =
√

3.

6.2.7.- Hint: Use properties of the
trace operation.

6.2.8.- q = ±1

2
(3− 5x2).
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Section 6.3: Orthogonal vectors

6.3.1.- Hint: (⇐): choose particular
values for a, b. Choose b = 1, a = 〈x, y〉.

6.3.2.- x ∈ Span
“n
2
4
−2
1
0

3
5 ,

2
4
−3
0
1

3
5
o”

.

6.3.3.- x ∈ Span
“n
2
4
−1
−1
1

3
5
o”

.

6.3.4.- Hint: Compute all inner prod-
ucts 〈pi,pj〉 for i, j = 0, 1, 2, 3.

6.3.5.-

(a) Show that UT U = I3, where the
columns in U are the basis vectors
in U .

(b) [x]u = Ux =
1√
6

2
4
√

3

−√2
−5

3
5.

6.3.6.-

(a) Hint: Compute all inner products
〈Ei, Ej〉 for i, j = 1, 2, 3, 4.

(b) Hint: Use the definition,
[A]i = 〈Mi, A〉F .

6.3.7.- θ = π/2.

6.3.8.- U:3 =
1√
42

2
4
−5
4
1

3
5.

Section 6.4: Orthogonal projections

6.4.1.- x =

2
4

2
2
2

3
5+

2
4
−1
0
1

3
5.

6.4.2.-

(a) w2 =

2
4

1/2
1

1/2

3
5+

2
4

3/2
−2
5/2

3
5.

(b) x =
5

3

2
4

1
2
1

3
5+

1

3

2
4

7
−1
−5

3
5.

6.4.3.- x =
1

3

2
4

2
1
−4

3
5+

1

3

2
4

1
2
1

3
5.

6.4.4.- R⊥ =
n
2
4

2
−4
1

3
5
o

.

6.4.5.-

(a) W⊥ =
n
2
4

1
1
0

3
5 ,

2
4
−2
0
1

3
5
o

.

(b) W̃⊥ =
n
2
4

1
1
0

3
5 ,

2
4
−1
1
1

3
5
o

.

6.4.6.- W⊥ =
n
2
664

−2
1
0
0

3
775 ,

2
664

−3
0
0
1

3
775
o

.

6.4.7.-

(a) Hint: Use the definition of the or-
thogonal complement of a subspace.

(b) Hint: Show (X + Y )⊥ ⊂ X⊥ ∩ Y ⊥

using (a). Show the other inclusion,

X⊥∩Y ⊥ ⊂ (X+Y )⊥ using the def-
inition of orhtogonal complement of
a subspace.

(c) Hint: Use part (b), that is,

(X̃ + Ỹ )⊥ = X̃⊥∩ Ỹ ⊥, for X̃ = X⊥

and Ỹ = Y ⊥.
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Section 6.5: Gram-Schmidt method

6.5.1.-
n1

3

2
4
−2
2
−1

3
5 ,

1√
2

2
4
−1
−1
0

3
5
o

.

6.5.2.-

(a)
n
2
4

0
1
0

3
5 ,

1

5

2
4

3
0
4

3
5
o

.

(b) x =
1

5

2
4

9
5
12

3
5+

4

5

2
4

4
0
−3

3
5.

6.5.3.-

n 1√
2

2
4

1
0
1

3
5 ,

1√
6

2
4

1
2
−1

3
5 ,

1√
3

2
4

1
−1
−1

3
5
o

.

6.5.4.-
n 1√

2

2
4

1
0
1

3
5 ,

1√
6

2
4

1
2
−1

3
5
o

.

6.5.5.-
n
q0 = 1, q1 = −1

2
+ x,

q2 =
1

6
− x + x2

o
.

Section 6.6: The adjoint operator

6.6.1.- 6.6.2.-
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Chapter 7: Approximation methods

Section 7.1: Best approximation

7.1.1.- 7.1.2.-

Section 7.2: Least squares

7.2.1.- 7.2.2.-

Section 7.3: Finite difference method

7.3.1.- 7.3.2.-

Section 7.4: Finite element method

7.4.1.- 7.4.2.-
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10.4. Solutions to Practice Exams

Solutions to Practice Exam 1.

1. Consider the matrix A =

2
4

5 3 1
1 2 −1
2 1 1

3
5. Find the coefficients (A−1)21 and (A−1)32 of the matrix

A−1, that is, of the inverse matrix of A. Show your work.

Solution: The formula for the inverse matrix A−1 = CT / det(A) implies that

`
A−1´

21
=

C12

det(A)

`
A−1´

32
=

C23

det(A)
.

We start computing the det(A), that is,
˛̨
˛̨
˛̨
5 3 1
1 2 −1
2 1 1

˛̨
˛̨
˛̨ = 5

˛̨
˛̨2 −1
1 1

˛̨
˛̨− 3

˛̨
˛̨1 −1
2 1

˛̨
˛̨+
˛̨
˛̨1 2
2 1

˛̨
˛̨ = 15− 9− 3 ⇒ det(A) = 3.

Now the cofactors,

C12 = (−1)(1+2)

˛̨
˛̨1 −1
2 1

˛̨
˛̨ = −3, C23 = (−1)(2+3)

˛̨
˛̨5 3
2 1

˛̨
˛̨ = 1.

Therefore, we conclude that

`
A−1´

21
= −1 ,

`
A−1´

32
=

1

3
.

C

2. (a) Find k ∈ R such that the volume of the parallelepiped formed by the vectors below is equal
to 4, where

v1 =

2
4

1
2
3

3
5 , v2 =

2
4

3
2
1

3
5 , v3 =

2
4

k
1
1

3
5

(b) Set k = 1 and define the matrix A = [v1, v2, v3]. Matrix A determines the linear transfor-
mation A : R3 → R3. Is this linear transformation injective (one-to-one)? Is it surjective
(onto)?

Solution:
(a) The volume of a parallelepiped formed with vectors v1, v2, and v3 is the absolute value of

the determinant of a matrix with these vectors as column vectors. In this case that determinant
is given by ˛̨

˛̨
˛̨
1 3 k
2 2 1
3 1 1

˛̨
˛̨
˛̨ =

˛̨
˛̨2 1
1 1

˛̨
˛̨− 3

˛̨
˛̨2 1
3 1

˛̨
˛̨+ k

˛̨
˛̨2 2
3 1

˛̨
˛̨ = 4− 4k.

The volume of the parallelepiped is V = 4 iff holds

4 = |4− 4k| ⇒
8
<
:

4 = 4− 4k ⇒ k = 0 ,

4 = −4 + 4k ⇒ k = 2 .

(b) If k = 1, then det(A) = 0. This implies that the set {v1, v2v3} is linearly dependent, so
N(A) 6= {0}, which implies that A is not injective. This matrix is also not surjective, since
the Nullity-Rank Theorem implies

3 = dim N(A) + dim R(A) > 1 + dim R(A) ⇒ dim R(A) 6 2.

This establishes that R(A) 6= R3. C
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3. Determine whether the subset V ⊂ R3 is a subspace, where

V =
n
2
4
−a + b
a− 2b
a− 7b

3
5 with a, b ∈ R

o
.

If the set is a subspace, find an orthogonal basis in the inner product space
`
R3, · ´.

Solution: Vectors in V can be written as follows,2
4
−a + b
a− 2b
a− 7b

3
5 =

2
4
−1
1
1

3
5 a +

2
4

1
−2
−7

3
5 b

which implies that

V = Span
“n

v1 =

2
4
−1
1
1

3
5 , v2 =

2
4

1
−2
−7

3
5
o”

⇒ V is a subspace.

A basis for this subspace V is the set {v1, v2} since these vectors are not collinear. This basis
is not orthogonal though, because

v1 · v2 = −10 6= 0.

We construct and orthogonal basis for V by projecting v2 onto v1. That is, let us find the vector

v2 p− = v2 − v1 · v2

‖v1‖2 v2 −
2
4

1
−2
−7

3
5− (−10)

3

2
4
−1
1
1

3
5 =

1

3

“
2
4

3
−6
−21

3
5+

2
4
−10
10
10

3
5
”

⇒ v2 p− =
1

3

2
4
−7
4

−11

3
5 .

Since any non-zero vector proportional v2 p− is orthogonal to v1, an orthogonal basis for the
subspace V is

n
2
4
−1
1
1

3
5 ,

2
4
−7
4

−11

3
5
o

.

C

4. True or False: (Justify your answers.)
(a) If the set of columns of A ∈ Fm,n is a linearly independent set, then Ax = b has exactly one

solution for every b ∈ Fm.
(b) The set of column vectors of an 5× 7 is never linearly independent.

Solution:
(a) False. The reason why this statement is false lies in the part of the sentence “for every

b ∈ Fm”. Do not get confused by the “exactly one solution” part. We now give an example of
a system where the set of coefficient column vectors is linearly independent but the system has
no solution. Take A ∈ R3,2 and b ∈ R3 given by,

A =

2
4

1 0
0 1
0 0

3
5 , b =

2
4

0
0
1

3
5 .

In this case Ax = b has no solution.
(b) True. The biggest linearly independent set in R5 contains five vectors, so any set

containing seven vectors is linearly dependent. C

5. Consider the vector space R2 with the standard basis S and let T : R2 → R2 be the linear
transformation

[T ]ss =

»
1 2
2 3

–

ss

.
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Find [T ]bb, the matrix of T in the basis B, where B =
n

[b1]s =

»
1
2

–

s

, [b2]s =

»
1
−2

–

s

o
.

Solution: From the change of basis formulas we know that

[T ]bb = P−1[T ]ssP, P = Ibs =

»
1 1
2 −2

–
, P−1 =

1

4

»
2 1
2 −1

–
.

Therefore, we obtain

[T ]bb =
1

4

»
2 1
2 −1

– »
1 2
2 3

–

ss

»
1 1
2 −2

–
⇒ [T ]bb =

1

2

»
9 −5
1 −1

–
.

C

6. Consider the linear transformations T : R3 → R2 and S : R3 → R3 given by

h
T
“
2
4

x1

x2

x3

3
5

s3

”i
s2

=

»
x1 − x2 + x3

−x1 + 2x2 + x3

–

s2

,
h
S
“
2
4

x1

x2

x3

3
5

s3

”i
s3

=

2
4

3x3

2x2

x1

3
5

s3

,

where S3 and S2 are the standard basis of R3 and R2, respectively.
(a) Find a matrix [T ]s3s2 and the matrix [S ]s3s3 . Show your work.
(b) Find the matrix of the composition T ◦ S : R3 → R2 in the standard basis, that is, find

[T ◦ S ]s3s2 .
(c) Is T ◦ S injective (one-to-one)? Is T ◦ S surjective (onto)? Justify your answer.

Solution:
(a) From the definition of the matrix of a linear transformation we get,

[T ]s3s2 =

»
1 −1 1
−1 2 1

–
, [S ]s3s3 =

2
4

0 0 3
0 2 0
1 0 0

3
5 .

(b) Recalling the formula [T ◦ S ]s3s2 = [T ]s3s2 [S ]s3s3 , we obtain

[T ◦ S ]s3s2 =

»
1 −1 1
−1 2 1

– 2
4

0 0 3
0 2 0
1 0 0

3
5 ⇒ [T ◦ S ]s3s2 =

»
1 −2 3
1 4 −3

–
.

(c) We now obtain the reduced echelon form of matrix [T ◦ S ]s3s2 to find out whether this
composition is injective or surjective.

[T ◦ S ]s3s2 =

»
1 −2 3
1 4 −3

–
→
»
1 −2 3
0 6 −6

–
→
»
1 0 1
0 1 −1

–
.

Since dim N(T ◦ S) = 3 − rank(T ◦ S) = 1, we conclude that T ◦ S is not injective. Since
dim R(T ◦ S) = 2 = dimR2 and R(T ◦ S) ⊂ R2, we conclude that R(T ◦ S) = R2, which shows
that T ◦ S is surjective.. C

7. Consider the matrix A =

2
4

1 1
1 2
2 1

3
5 and the vector b =

2
4

2
1
1

3
5.

(a) Find the least-squares solution x̂ to the matrix equation Ax = b.

(b) Verify whether the vector A x̂− b belong to the space R(A)⊥? Justify your answers.

Solution:
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(a) We find the normal equation AT Ax̂ = AT b for x̂ and we solve it as follows.

AT A =

»
1 1 2
1 2 1

– 2
4

1 1
1 2
2 1

3
5 ⇒ AT A =

»
6 5
5 6

–
.

AT b =

»
1 1 2
1 2 1

– 2
4

2
1
1

3
5 ⇒ AT b = 5

»
1
1

–
.

The normal equation is

»
6 5
5 6

–
x̂ = 5

»
1
1

–
⇒ x̂ =

1

(36− 25)

»
6 −5
−5 6

–
5

»
1
1

–
⇒ x̂ =

5

11

»
1
1

–
.

(b) We first compute the vector

(A x̂− b) =

2
4

1 1
1 2
2 1

3
5 5

11

»
1
1

–
−
2
4

2
1
1

3
5 =

5

11

2
4

2
3
3

3
5− 11

11

2
4

2
1
1

3
5 =

1

11

2
4
−12

4
4

3
5 .

We conclude that

(A x̂− b) =
4

11

2
4
−3
1
1

3
5 .

Now it is simple to verify that (A x̂− b) ∈ R(A)⊥, since
2
4
−3
1
1

3
5 ·
2
4

1
1
2

3
5 = 0,

2
4
−3
1
1

3
5 ·
2
4

1
2
1

3
5 = 0 ⇒ (A x̂− b) ∈ R(A)⊥ .

C

8. Consider the matrix A =

»−1/2 −3
1/2 2

–
.

(a) Show that matrix A is diagonalizable.

(b) Using that A is diagonalizable, find the lim
k→∞

Ak.

Solution:
(a) We need to compute the eigenvalues and eigenvectors of matrix A. The eigenvalues are

the solutions of the characteristic equation

p(λ) =

˛̨
˛̨
˛

“
− 1

2
− λ

”
−3

1
2

(2− λ)

˛̨
˛̨
˛ = (λ− 2)

“
λ +

1

2

”
+

3

2
= λ2 − 3

2
λ +

1

2
= 0.

We then obtain,

λ+ = 1 , λ− =
1

2
.

The eigenvector corresponding to λ+ = 1 is a non-zero solution of A − I2)v
+ = 0. The Gauss

method implies,

»− 3
2

−3
1
2

1

–
→
»
1 2
0 0

–
⇒ v+

1 = −2v+
2 ⇒ v+ =

»−2
1

–
.

The eigenvector corresponding to λ− = 1/2 is a non-zero solution of A − I2)v
+ = 0 and it is

computed as follows,

»−1 −3
1
2

3
2

–
→
»
1 3
0 0

–
⇒ v−1 = −3v−2 ⇒ v− =

»−3
1

–
.
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WE now know that matrix A is diagonalizable since {v+, v−} is linearly independent. Introduc-
ing matrices P and D as follows,

P =

»−2 −3
1 1

–
, D =

»
1 0
0 1

2

–
,

we conclude that A = PDP−1, that is,

A =

»−2 −3
1 1

– »
1 0
0 1

2

– »
1 3
−1 −2

–
.

(b) Knowing that A is diagonalizable it is simple to compute limk→∞ Ak. The calculation is

lim
k→∞

Ak = lim
k→∞

»−2 −3
1 1

– "1 0

0
“

1
2

”k

# »
1 3
−1 −2

–

=

»−2 −3
1 1

– »
1 0
0 0

–

=

»−2 0
1 0

– »
1 3
−1 −2

–
⇒ lim

k→∞
Ak =

»−2 −6
1 3

–
.

C

9. Let
`
V, 〈 , 〉´ be an inner product space with inner product norm ‖ ‖. Let T : V → V be a linear

transformation and x, y ∈ V be vectors satisfying the following conditions:

T(x) = 2 x, T(y) = −3 y, ‖x ‖ = 1/3, ‖y ‖ = 1, x ⊥ y.

(a) Compute ‖v ‖ for the vector v = 3x− y.
(b) Compute ‖T(v)‖ for the vector v given above.

Solution:
(a)

‖v‖2 = ‖3x− y‖2
= 〈(3x− y), (3x− y)〉
= 9‖x‖2 + ‖y‖2 − 3〈x, y〉 − 3〈y, x〉
= 9‖x‖2 + ‖y‖2

= 9
“1

3

”2

+ 1 ⇒ ‖v‖ =
√

2 .

(b) We first compute T(v) = T(3x−y) = 3T(x)−T(y). Recall that T(x) = 2x, T(y) = −3y,
we conclude that T(v) == 6x− 3y. Then, it is simple to see that

‖T(v)‖2 = ‖6x− 3y‖2
= 〈(6x− 3y), (6x− 3y)〉
= 36‖x‖2 + 9‖y‖2

= 36
“1

3

”2

+ 9

= 4 + 9 ⇒ ‖T(v)‖ =
√

13 .

C

10. Consider the matrix A =

2
4

2 −1 2
0 1 h
0 0 2

3
5.

(a) Find all eigenvalues of matrix A and their corresponding algebraic multiplicities.
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(b) Find the value(s) of the real number h such that the matrix A above has a two-dimensional
eigenspace, and find a basis for this eigenspace.

Solution:
(a) Since matrix A is upper triangular, its eigenvalues are the diagonal elements. Denoting

by λ the eigenvalues and r their corresponding algebraic multiplicities we obtain,

λ1 = 2, r1 = 2 , and λ2 = 1, r2 = 1 .

(b) Since the eigenvalue λ2 = 1 has algebraic multiplicity r2 = 1, this eigenvalue cannot have
a two-dimensional eigenspace, since dimFλ2 6 r2 = 1. The only candidate is the eigenspace
Eλ1 . Let us compute the non-zero elements in this eigenspace,

A− 2I3 =

2
4

0 −1 2
0 −1 h
0 0 0

3
5→

2
4

0 1 −2
0 0 h− 2
0 0 0

3
5 .

We look for the value of h such that the eigenspace Eλ1 is two-dimensional, which means that
the reduced echelon form associated with the matrix above has rank equal to one. This means
that this matrix has only one pivot, which in turns is a condition on h. The condition is

h = 2 .

In this case, the eigenspace is given by the solutions of the homogeneous linear system with the
coefficient matrix2

4
0 1 −2
0 0 0
0 0 0

3
5 ⇒


x2 = −2x3

x1, x3 free.
⇒ x =

2
4

1
0
0

3
5 x2 +

2
4

0
−2
1

3
5 x3.

Therefore, a basis for Eλ1 is given by

n
2
4

1
0
0

3
5 ,

2
4

0
−2
1

3
5
o

.

C
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Solutions to Practice Exam 2.

1. Consider the matrix A =

2
4
−2 3 −1
1 2 −1
−2 −1 1

3
5. Find the coefficients (A−1)13 and (A−1)21 of the

inverse matrix of A. Show your work.

Solution: The formula for the inverse matrix A−1 = CT / det(A) implies that

`
A−1´

13
=

C31

det(A)

`
A−1´

21
=

C12

det(A)
.

We start computing the det(A), that is,
˛̨
˛̨
˛̨
−2 3 −1
1 2 −1
−2 −1 1

˛̨
˛̨
˛̨ = −2

˛̨
˛̨ 2 −1
−1 1

˛̨
˛̨− 3

˛̨
˛̨ 1 −1
−2 1

˛̨
˛̨−
˛̨
˛̨ 1 2
−2 −1

˛̨
˛̨ = −2 + 3− 3,

which gives us the result det(A) = −2. Now the cofactors,

C31 = (−1)(3+1)

˛̨
˛̨3 −1
2 −1

˛̨
˛̨ = −1, C12 = (−1)(1+2)

˛̨
˛̨ 1 −1
−2 1

˛̨
˛̨ = 1.

Therefore, we conclude that

`
A−1´

13
=

1

2
,

`
A−1´

12
= −1

2
.

C

2. Consider the vector space P3([0, 1]) with the inner product

〈p, q 〉 =

Z 1

0

p(x)q(x) dx.

Given the set U = {p1 = x2, p2 = x3}, find an orthogonal basis for the subspace U = Span
`U´

using the Gram-Schmidt method on the set U starting with the vector p1.

Solution: We call the orthogonal basis {q1, q2}. Stating with vector p1 means q1 = p1, hence

q1(x) = x2 .

The vector q2 is found with the formula

q2 = p2 −
〈q1,p2〉
‖q1‖2

q1.

We need to compute the scalars

‖q1‖2 =

Z 1

0

x4 dx =
x5

5

˛̨
˛
1

0
⇒ ‖q1‖2 =

1

5
.

〈q1,p2〉 =

Z 1

0

x5 dx =
x6

6

˛̨
˛
1

0
⇒ 〈q1,p2〉 =

1

6
.

Therefore, we conclude that

q2 = x3 − 5

6
x2 .

C

3. Consider the matrix A =

2
4

1 3 1 1
2 6 3 0
3 9 5 −1

3
5.
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(a) Verify that the vector v =

2
664

3
1
−4
−2

3
775 belongs to the null space of A.

(b) Extend the set {v} into a basis of the null space of A.

Solution:
(a) The vector v belongs to N(A), since

Av =

2
4

1 3 1 1
2 6 3 0
3 9 5 −1

3
5

2
664

3
1
−4
−2

3
775 =

2
4

3 + 3− 4− 2
6 + 6− 12 + 0
9 + 9− 20 + 2

3
5 =

2
4

0
0
0

3
5 ⇒ Av = 0 .

(b) We first need to find a basis for the N(A). So we find all solutions to the homogeneous
equation Ax = 0. We perform Gauss operations on matrix A;

A →
2
4

1 3 1 1
0 0 1 −2
0 0 2 −4

3
5→

2
4

1 3 0 3
0 0 1 −2
0 0 0 0

3
5 3R


x1 = −3x2 − 3x4,

x3 = 2x4.

Therefore, the solution x has the form

x =

2
664

−3
1
0
0

3
775x2 +

2
664

−3
0
2
1

3
775x4 ⇒ U =

n
2
664

−3
1
0
0

3
775 ,

2
664

−3
0
2
1

3
775
o

is a basis of N(A).

The following calculations is useful to find a basis of N(A) containing v:

2
664

3 −3 −3
1 1 0
−4 0 2
2 0 1

3
775→

2
664

1 −1 −1
1 1 0
−4 0 2
2 0 1

3
775→

2
664

1 −1 −1
0 2 1
0 −4 2
0 −2 3

3
775 .

From the last matrix we know that the pivot columns are the first and second columns. That
says that the set N below form a basis to the N(A), where

N =
n
2
664

3
1
−4
2

3
775 ,

2
664

−3
1
0
0

3
775
o

.

This set includes vector v. C

4. Use Cramer’s rule to find the solution to the linear system

2x1 + x2 − x3 = 0

x1 + x3 = 1

x1 + 2x2 + 3x3 = 0.

Solution: If we write this system in the form Ax = b, then

A =

2
4

2 1 −1
1 0 1
1 2 3

3
5 , b =

2
4

0
1
0

3
5 .
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Following Cramer’s rule, the components of the solution vector x = [xi], for i = 1, 2, 3, are given
by xi = det(Ai)/ det(A). Since

det(A) =

˛̨
˛̨
˛̨
2 1 −1
1 0 1
1 2 3

˛̨
˛̨
˛̨ = −(3− 1)− 2(2 + 1) ⇒ det(A) = −8,

we obtain,

x1 =
1

(−8)

˛̨
˛̨
˛̨
2 1 −1
1 0 1
1 2 3

˛̨
˛̨
˛̨ =

−(3 + 2)

(−8)
⇒ x1 =

5

8
;

x2 =
1

(−8)

˛̨
˛̨
˛̨
2 1 −1
1 0 1
1 2 3

˛̨
˛̨
˛̨ =

(6 + 1)

(−8)
⇒ x2 = −7

8
;

x3 =
1

(−8)

˛̨
˛̨
˛̨
2 1 −1
1 0 1
1 2 3

˛̨
˛̨
˛̨ =

−(4− 1)

(−8)
⇒ x3 =

3

8
.

We conclude that

v =
1

8

2
4

5
−7
3

3
5 .

C

5. Let S3 and S2 be standard bases of R3 and R2, respectively, and consider the linear transfor-
mation T : R3 → R2 given by

h
T
“
2
4

x1

x2

x3

3
5

s3

”i
s2

=

»−x1 + 2x2 − x3

x1 + x3

–

s2

,

and introduce the bases U ⊂ R3 and V ⊂ R2 given by

U =
n

[u1]s3 =

2
4

1
1
0

3
5

s3

, [u2]s3 =

2
4

1
0
1

3
5

s3

, [u3]s3 =

2
4

0
1
1

3
5

s3

o
,

V =
n

[v1]s2 =

»
1
2

–

s2

, [v2]s2 =

»−3
2

–

s2

o
.

Find the matrices [T ]s3s2 and [T ]uv. Show your work.

Solution: Matrix [T ]s3s2 =
ˆ
T(e1)]s2 , T(e2)]s2 , T(e3)]s2

˜
, that is,

[T ]s3s2 =

»−1 2 −1
1 0 1

–
.

The matrix [T ]uv can be computed with the change of basis formula

[T ]uv = Q−1[T ]s3s2P

where the change of basis matrices Q and P are given by

Q = Ivs2 =

»
1 −3
2 2

–
⇒ Q−1 = Is2v =

1

8

»
2 −2
3 1

–
, P = Ius3 =

2
4

1 1 0
1 0 1
0 1 1

3
5 .
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Therefore, the matrix [T ]uv is given by

[T ]uv =
1

8

»
2 −2
3 1

– »−1 2 −1
1 0 1

– 2
4

1 1 0
1 0 1
0 1 1

3
5

=
1

8

»
2 −2
3 1

– »
1 −2 1
1 2 1

–
⇒ [T ]uv =

1

8

»
5 2 5
−1 6 −1

–
.

C

6. Consider the inner product space
`
R2,2, 〈 , 〉F

´
and the subspace

W = Span
n

E1 =

»
0 1
1 0

–
, E2 =

»
1 0
0 −1

–o
⊂ R2,2.

Find a basis for W⊥, the orthogonal complement of W .

Solution: We first find the whole subspace W⊥ and afterwards we find a basis. The matrix
X ∈ W |⊥ iff 〈E1, X〉F = 0 and 〈E2, X〉F = 0. If we denote

X =

»
x11 x12

x21 x22

–
,

then the equations above have the form

0 = 〈E1, X〉F

= tr
“»0 1

1 0

– »
x11 x12

x21 x22

–”

= x21 + x12;

0 = 〈E2, X〉F

= tr
“»1 0

0 −1

– »
x11 x12

x21 x22

–”

= x11 − x22.

We can express the solutions in the following way,

x11 = x22, x21 = −x12.

Then, a general element X ∈ W⊥ has the form

X =

»
x22 x12

−x12 x22

–
=

»
1 0
0 1

–
x22

»
0 1
−1 0

–
x12

for arbitrary scalars x22, x12. So a basis of W⊥ is given by

n»1 0
0 1

–
,

»
0 1
−1 0

–o
.

C

7. Consider the matrix A =

2
4

1 2
1 −1
−2 1

3
5 and the vector b =

2
4

0
1
0

3
5.

(a) Find the least-squares solution x̂ to the matrix equation Ax = b.
(b) Verify that the vector A x̂ − b, where x̂ is the least-squares solution found in part (7a),

belongs to the space R(A)⊥, the orthogonal complement of R(A).

Solution:
(a) We first compute the normal equation AT Ax̂ = AT b. The coefficient matrix is

AT A =

»
1 1 −2
2 −1 1

– 2
4

1 2
1 −1
−2 1

3
5 =

»
6 −1
−1 6

–
;
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while the source vector is

AT b =

»
1 1 −2
2 −1 1

– 2
4

0
1
0

3
5 =

»
1
−1

–
.

Therefore, the least-squares solution x̂ is obtained as follows,
»

6 −1
−1 6

– »
x̂1

x̂2

–
=

»
1
−1

–
⇒

»
x̂1

x̂2

–
=

1

35

»
6 1
1 6

– »
1
−1

–
⇒ x̂ =

1

7

»
1
−1

–
.

(b) We first compute the vector (Ax̂− b), which is given by

(Ax̂− b) =

2
4

1 2
1 −1
−2 1

3
5 =

1

7

»
1
−1

–
−
2
4

0
1
0

3
5 =

1

7

2
4
−1
2
−3

3
5−

2
4

0
1
0

3
5 ⇒ (Ax̂− b) =

1

7

2
4
−1
−5
−3

3
5 .

It is simple to see that
2
4

1
1
−2

3
5 ·
2
4
−1
−5
−3

3
5 = −1− 5 + 6 = 0 ,

2
4

2
−1
1

3
5 ·
2
4
−1
−5
−3

3
5 = −2 + 5− 3 = 0 .

C

8. Suppose that a matrix A ∈ R3,3 has eigenvalues λ1 = 1, λ2 = 2, and λ3 = 4.
(a) Find the trace of A, find the trace of A2, and find the determinant of A.
(b) Is matrix A invertible? If your answer is “yes”, then prove it and find det(A−1); if your

answer is “no”, then prove it.

Solution: Since Matrix A is 3× 3 and has three different eigenvalues, then A is diagonalizable.
Therefore, there exists an invertible matrix P such that A = PDp−1, where D = diag[1, 2, 4].

(a)

tr (A) = tr
`
PD P−1´ = tr

`
P−1PD

´
= tr

`
D
´

= 1 + 2 + 4 ⇒ tr (A) = 7 .

tr (A2) = tr
`
PD2 P−1´ = tr

`
P−1PD2´ = tr

`
D2´ = 1 + 4 + 16 ⇒ tr (A2) = 21 .

det(A) = det
`
PD P−1´ = det(P−1) det(D) det(P) =

1

det(P)
det(D) det(P) = det(D).

Since det(D) = (1)(2)(4), we conclude that

det(A) = 8 .

(b) Since matrix A has non-zero determinant, then it is invertible. We also know that
det
`
A−1

´
= 1/ det(A), therefore

det
`
A−1´ =

1

8
.

C

9. Consider the matrix A =

»
7 5
3 −7

–
.

(a) Find the eigenvalues and eigenvectors of A.
(b) Compute the matrix eA.

Solution:
(a) The eigenvalues are the roots of the characteristic polynomial,

p(λ) =

˛̨
˛̨(7− λ) 5

3 (−7− λ)

˛̨
˛̨ = (λ− 7)(λ + 7)− 15 = λ2 − 64.
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Therefore, the eigenvalues are

λ+ = 8 , λ− = −8 .

The corresponding eigenvectors are the following: For λ+ = 8 we obtain,

A− 8 I2 =

»−1 5
3 −15

–
→
»
1 −5
0 0

–
⇒ v+

1 = 5v+
2 ⇒ v+ =

»
5
1

–
.

For λ− = −8 we obtain

A + 8 I2 =

»
15 5
3 1

–
→
»
3 1
0 0

–
⇒ 3v−1 = −v−2 ⇒ v− =

»
1
−3

–
.

(b) Since A = PDP−1, then eA = PeAP−1, where

P =

»
5 1
1 −3

–
⇒ P−1 =

1

16

»
3 1
1 −5

–
.

Therefore, it is simple to compute

eA =

»
5 1
1 −3

– »
8 0
0 −8

–
1

16

»
3 1
1 −5

–
,

=
1

2

»
5 −1
1 3

– »
3 1
1 −5

–
,

=
1

2

»
14 10
6 −14

–
⇒ eA =

»
7 5
3 −7

–
.

C

10. Find the function x : R→ R2 solution of the initial value problem

d

dt
x(t) = Ax(t), x(0) = x0,

where the matrix A =

» −5 2
−12 5

–
and the vector x0 =

»
1
1

–
.

Solution: We first need to compute the eigenvalues and eigenvectors of matrix A. The eigen-
values are the roots of the characteristic polynomial,

p(λ) =

˛̨
˛̨(−5− λ) 2
−12 (5− λ)

˛̨
˛̨ = (λ + 5)(λ− 5) + 24 = λ2 − 1.

Therefore, the eigenvalues are

λ+ = 1 , λ− = −1 .

The corresponding eigenvectors are the following: For λ+ = 1 we obtain,

A− I2 =

» −6 2
−12 4

–
→
»−3 1

0 0

–
⇒ 3v+

1 = v+
2 ⇒ v+ =

»
1
3

–
.

For λ− = −1 we obtain

A + I2 =

»−4 2
12 6

–
→
»−2 1

0 0

–
⇒ 2v−1 = v−2 ⇒ v− =

»
1
2

–
.

Since the general solution to the differential equation above is

x(t) = c+v+eλ+t + c−v−eλ−t,

we conclude that

x(t) = c+

»
1
3

–
et + c−

»
1
2

–
e−t.
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The initial condition implies that»
1
1

–
= x0 = x(0) = c+

»
1
3

–
+ c−

»
1
2

–
.

We need to solve the linear system»
1 1
3 2

– »
c+

c−

–
=

»
1
1

–
⇒

»
c+

c−

–
=

1

(−1)

»
2 −1
−3 1

– »
1
1

–
⇒

»
c+

c−

–
=

»−1
2

–
.

So the solution to the initial value problem above is

x(t) = −
»
1
3

–
et + 2

»
1
2

–
e−t .

C
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Solutions to Practice Exam 3.

1. (a) Find the LU-factorization of the matrix A =

2
4

1 2 3
−1 2 2
2 −8 −3

3
5.

(b) Use the LU-factorization above to find the solution of the linear system Ax = b, where

b =

2
4

1
−2
−1

3
5.

Solution:
(a) We use Gauss operations to transform matrix A into upper triangular, as follows,

A =

2
4

1 2 3
−1 2 2
2 −8 −3

3
5→

2
4

1 2 3
0 4 5
0 −12 −9

3
5→

2
4

1 2 3
0 4 2
0 0 6

3
5 = U .

The factors used to construct matrix U define the lower triangular matrix L as follows,

L =

2
4

1 0 0
−1 1 0
2 −3 1

3
5 .

(b) We find the solution x of Ax = b using the LU-factorization A = LU as follows:

LU x = b ⇔


L y = b,

U x = y.

We first find vector y using forward substitution,
2
4

1 0 0
−1 1 0
2 −3 1

3
5
2
4

y1

y2

y3

3
5 =

2
4

1
−2
−1

3
5 ⇒ y =

2
4

1
−1
−6

3
5 .

We now solve for vector x using back substitution,

2
4

1 2 3
0 4 5
0 0 6

3
5
2
4

x1

x2

x3

3
5 =

2
4

1
−1
−6

3
5 ⇒ x =

2
4

2
1
−1

3
5 .

C

2. Determine whether the following sets W1 and W2 are subspaces of the vector space P2

`
[0, 1]

´
.

If your answer is “yes,” find a basis of the subspace.

(a) W1 = {p ∈ P2

`
[0, 1]

´
:

Z 1

0

p(x) dx 6 1 };

(b) W2 = {p ∈ P2

`
[0, 1]

´
:

Z 1

0

xp(x) dx = 0 }.

Solution:

(a) W1 is not a subspace. Take any element p ∈ W1 satisfying

Z 1

0

p(x) dx < −1. Multiply

that element by (−1). The result is not in W1, since

Z 1

0

−p(x) dx > 1.

(b) W2 is a subspace. Proof: given two elements p ∈ W2, q ∈ W2, that is,

Z 1

0

xp(x) dx = 0,

Z 1

0

x q(x) dx = 0,
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then an arbitrary linear combination (ap + bq) also belongs to W2, since
Z 1

0

x
`
ap(x) + bq(x)

´
dx = a

Z 1

0

xp(x) dx + b

Z 1

0

x q(x) dx = 0.

C

3. Find a basis of R4 containing a basis of the null space of matrix

A =

2
664

1 2 −4 3
2 1 1 3
1 1 −1 2
3 2 0 5

3
775 .

Solution: We first find a basis of N(A) using the Gauss method,
2
664

1 2 −4 3
2 1 1 3
1 1 −1 2
3 2 0 5

3
775→

2
664

1 2 −4 3
0 −3 9 −3
0 −1 3 −1
0 −4 12 −4

3
775→

2
664

1 2 −4 3
0 1 −3 1
0 0 0 0
0 0 0 0

3
775→

2
664

1 0 2 1
0 1 −3 1
0 0 0 0
0 0 0 0

3
775

Therefore, a vector x = [xi] ∈ R4 belongs to N(A) iff

x1 = −2x3 − x4,

x2 = 3x3 − x4,

ff
⇒ x =

2
664

−2
3
1
0

3
775 x3 +

2
664

−1
−1
0
1

3
775 x4,

so a basis for N(A) is the set

N =
n
2
664

−2
3
1
0

3
775 ,

2
664

−1
−1
0
1

3
775
o

.

Now we can find a basis of R4 containing N as follows. We start with any basis of R4, say the
standard basis, and we construct a matrix, B as follows:

B =

2
664

−2 −1 1 0 0 0
3 −1 0 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

3
775 .

We then transform B into reduced echelon form using Gauss operations. The pivot positions
indicate the vectors forming a linearly independent set:
2
664

−2 −1 1 0 0 0
3 −1 0 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

3
775→

2
664

1 0 0 0 1 0
0 1 0 0 0 1
−2 −1 1 0 0 0
3 −1 0 1 0 0

3
775→

2
664

1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 2 1
0 0 0 1 −3 1

3
775 .

Therefore, a basis of R4 containing N is the following,

n
2
664

−2
3
1
0

3
775 ,

2
664

−1
−1
0
1

3
775 ,

2
664

1
0
0
0

3
775 ,

2
664

0
1
0
0

3
775
o

.

C
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4. Given a matrix A ∈ Fn,n, introduce its characteristic polynomial pA(λ) = det(A − λ In). This
polynomial has the form pA(λ) = a0 +a1λ+ · · ·+anλn for appropriate scalars a0, · · · , an. Now
introduce a matrix-valued function PA : Fn,n → Fn,n as follows

PA(X) = a0 In + a1X + · · ·+ anXn.

Determine whether the following statement is true or false and justify your answer: If matrix
A ∈ Fn,n is diagonalizable, then PA(A) = 0. (That is, PA(A) is the zero matrix.)

Solution: We start with a comment: PA(X) 6= det(A−X I). Notice that the left-hand side is a
matrix while the right hand side is a scalar. So an argument saying that the statement is true
because det(A− A) = 0 is wrong. Once again, PA(A) ∈ Fn,n and det(A− A) = 0 ∈ F.

Having clarified that, let us start saying that matrix A is diagonalizable, that is, there exists
an invertible matrix P and a diagonal matrix D = diag[λ1, · · · , λn] such that A = PDP−1,
where λ1, · · · , λn are eigenvalues of matrix A. Therefore,

PA(A) = PA

`
PDP−1´

= a0 PP−1 + a1 PD P−1 + · · ·+ an PDnP−1

= P
`
a0 I+a1D + · · ·+ an Dn´P−1

= Pdiag
ˆ
pA(λ1), · · · , pA(λn)

˜
P−1.

Since λ1, · · · , λn are eigenvalues of matrix A, we get that

pA(λ1) = 0, · · · , pA(λn) = 0.

We then conclude that PA(A) = 0. So the statement is true. C

5. Consider the vector space R2 with ordered bases

S =
“
e1s =

»
1
0

–

s

, e2s =

»
0
1

–

s

”
, U =

“
u1s =

»
2
1

–

s

, u2s =

»
1
2

–

s

”
.

Let T : R2 → R2 be a linear transformation given by

[T (u1)]s =

»−3
1

–

s

, [T (u2)]s =

»
1
3

–

s

.

(a) Find the matrix Tss.
(b) Find the matrix Tuu.

Solution:
(a) From the data of the problem we get matrix

Tus =

»−3 1
1 3

–
.

We compute matrix Tss with the change of basis formula

Tss = Q−1TusP, P = Isu, Q = Iss.

From the data of the problem we get

Ius =

»
2 1
1 2

–
⇒ P =

1

3

»
2 −1
−1 2

–
.

Therefore,

Tss =

»−3 1
1 3

–
1

3

»
2 −1
−1 2

–
⇒ Tss =

1

3

»−7 5
−1 5

–
.

(b) We compute matrix Tuu with the change of basis formula

Tuu = Q−1TusP, P = Iuu, Q = Ius =

»
2 1
1 2

–
.
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Therefore,

Tuu =
1

3

»
2 −1
−1 2

– »−3 1
1 3

–
⇒ Tuu =

1

3

»−7 −1
5 5

–
.

C

6. Consider the matrix A =

2
4

1 2
2 −1
1 1

3
5 and the vector b =

2
4

1
1
1

3
5.

(a) Find the least-squares solution x̂ to the matrix equation Ax = b.
(b) Find the vector on R(A) that is the closest to the vector b in R3.

Solution:
(a) We first compute the normal equation AT Ax̂ = AT b. The coefficient matrix is

AT A =

»
1 2 1
2 −1 1

– 2
4

1 2
2 −1
1 1

3
5 =

»
6 1
1 6

–
;

while the source vector is

AT b =

»
1 2 1
2 −1 1

– 2
4

1
1
1

3
5 =

»
4
2

–
.

Therefore, the least-squares solution x̂ is obtained as follows,

»
6 1
1 6

– »
x̂1

x̂2

–
=

»
4
2

–
⇒

»
x̂1

x̂2

–
=

1

35

»
6 −1
−1 6

– »
4
2

–
⇒ x̂ =

2

35

»
11
4

–
.

(b) The vector in R(A) that is the closest to b is the vector bq = Ax̂, that is,

Bq = Ax̂ =

2
4

1 2
2 −1
1 1

3
5 =

2

35

»
11
4

–
⇒ bq =

2

35

2
4

19
18
15

3
5 .

We now check if the above result is true. If bq is correct, then (b− bq) ∈ R(A)⊥. Let us verify
this last condition: We first compute the vector (b− bq), which is given by

(b− bq) =
1

35

“
2
4

35
35
35

3
5−

2
4

38
36
30

3
5
”

⇒ (b− bq) =
1

35

2
4
−3
−1
5

3
5 .

It is simple to see that
2
4

1
2
1

3
5 ·
2
4
−3
−1
5

3
5 = −3− 2 + 5 = 0,

2
4

2
−1
1

3
5 ·
2
4
−3
−1
5

3
5 = −6 + 1 + 5 = 0.

C

7. Consider the inner product space
`
C3, ·´ and the subspace W ⊂ C3 given by

W = Span
“n
2
4

i
1
i

3
5
o”

.

(a) Find a basis for W⊥, the orthogonal complement of W .
(b) Find an orthonormal basis for W⊥.
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Solution:
(a) The vector w ∈ W⊥ iff holds

0 =

2
4

i
1
i

3
5 ·
2
4

w1

w2

w3

3
5 =

ˆ−i 1 −i
˜ ·
2
4

w1

w2

w3

3
5 = −iw1 + w2 − iw3 ⇒ w1 = −iw2 − w3.

Therefore,

w =

2
4
−i
1
0

3
5w2 +

2
4
−1
0
1

3
5w3.

A basis for W⊥ is the set U given by

U =
n

u1 =

2
4
−i
1
0

3
5 , u2 =

2
4
−1
0
1

3
5
o

.

(b) The basis above is not orthonormal, since
2
4
−i
1
0

3
5 ·
2
4
−1
0
1

3
5 =

ˆ
i 1 0

˜
2
4
−1
0
1

3
5 = −i 6= 0.

We use the Gram-Schmidt method to find an orthonormal basis,

u2p− = u2 − u1 · u2

‖u1‖2 u1.

We already computed u1 · u2 = −i, while we also need

‖u1‖2 =

2
4
−i
1
0

3
5 ·
2
4
−i
1
0

3
5 =

ˆ
i 1 0

˜
2
4
−i
1
0

3
5 = 2.

Then,

u2p− =

2
4
−1
0
1

3
5− (−i)

2

2
4
−i
1
0

3
5 =

1

2

“
2
4
−2
0
2

3
5+

2
4

1
i
0

3
5
”

⇒ w2p− =
1

2

2
4
−1
i
2

3
5 .

It is simple to see that an orthonormal basis of W⊥ is given by

V =
n

v1 =
1√
2

2
4
−i
1
0

3
5 , v2 =

1√
6

2
4
−1
i
2

3
5
o

.

C

8. (a) Find the eigenvalues and eigenvectors of matrix A =

»
5 4
4 5

–
, and show that A is diago-

nalizable.
(b) Knowing that matrix A above is diagonalizable, explicitly find a square root of matrix A,

that is, find a matrix X such that X2 = A. How many square roots does matrix A have?

Solution:
(a) The eigenvalues are the roots of the characteristic polynomial,

p(λ) =

˛̨
˛̨(5− λ) 4

4 (5− λ)

˛̨
˛̨ = (λ− 5)2 − 16 = λ2 − 10λ + 9.

Therefore, the eigenvalues are computed by the well-known formula

λ± =
1

2

`
10±√100− 36

´
=

1

2

`
10±

√
64
´

= 5± 4 ⇒
λ+ = 9 ,

λ− = 1 .
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The corresponding eigenvectors are the following: For λ+ = 9 we obtain,

A− 9 I2 =

»−4 4
4 −4

–
→
»
1 −1
0 0

–
⇒ v+

1 = v+
2 ⇒ v+ =

»
1
1

–
.

For λ− = 1 we obtain

A− I2 =

»
4 4
4 4

–
→
»
1 1
0 0

–
⇒ v−1 = −v−2 ⇒ v− =

»−1
1

–
.

Introducing the matrices

P =

»
1 −1
1 1

–
, D =

»
9 0
0 1

–
, P−1 =

1

2

»
1 1
−1 1

–
,

it is simple to see that A is diagonalizable, that is,

A =

»
1 −1
1 1

– »
9 0
0 1

–
1

2

»
1 1
−1 1

–
.

(b) Since matrix X satisfies that X2 = A = PDP−1, matrix X2 is diagonalizable, sharing the
eigenvectors and eigenvalues with matrix A, that is,

X2 = P

»
9 0
0 1

–
P−1,

We also know that a matrix X and its squared X2 share their eigenvectors with the eigenvalues
of the latter being the squares of the eigenvalues of the former, that is,

X = P

»
X11 0
0 X22

–
P−1, with x11 = ±3, X22 = ±1.

The equation above says that there are four square-roots of matrix A. These matrices are the
following,

X1 = P

»
3 0
0 1

–
P−1 , X2 = P

»−3 0
0 1

–
P−1 ,

X3 = P

»
3 0
0 −1

–
P−1 , X4 = P

»−3 0
0 −1

–
P−1 .

C

9. Consider the matrix A =

»
8 −18
3 −7

–
.

(a) Find the eigenvalues and eigenvectors of A.

(b) Compute explicitly the matrix-valued function eA t for t ∈ R.

Solution:
(a) The eigenvalues are the roots of the characteristic polynomial,

p(λ) =

˛̨
˛̨(8− λ) −18

3 (−7− λ)

˛̨
˛̨ = (λ + 7)(λ− 8) + 54 = λ2 − λ− 2.

Therefore, the eigenvalues are computed by the well-known formula

λ± =
1

2

`
1±√1 + 8

´
=

1

2
(1± 3) ⇒

λ+ = 2 ,

λ− = −1 .

The corresponding eigenvectors are the following: For λ+ = 2 we obtain,

A− 2 I2 =

»
6 −18
3 −9

–
→
»
1 −3
0 0

–
⇒ v+

1 = 3v+
2 ⇒ v+ =

»
3
1

–
.
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For λ− = −1 we obtain

A + I2 =

»
9 −18
3 −6

–
→
»
1 −2
0 0

–
⇒ v−1 = 2v−2 ⇒ v− =

»
2
1

–
.

(b) Since matrix A is diagonalizable, we know that

eAt = p eDt P−1, where P =

»
3 2
1 1

–
, D =

»
2 0
0 −1

–
,

that is,

eAt =

»
3 2
1 1

– »
e2t 0
0 e−t

– »
1 −2
−1 3

–
.

C

10. Find the function x : R→ R2 solution of the initial value problem

d

dt
x(t) = Ax(t), x(0) = x0,

where the matrix A =

»−7 12
−4 7

–
and the vector x0 =

»
1
1

–
.

Solution: We first need to compute the eigenvalues and eigenvectors of matrix A. The eigen-
values are the roots of the characteristic polynomial,

p(λ) =

˛̨
˛̨(−7− λ) 12

−4 (7− λ)

˛̨
˛̨ = (λ + 7)(λ− 7) + 48 = λ2 − 1.

Therefore, the eigenvalues are

λ+ = 1 , λ− = −1 .

The corresponding eigenvectors are the following: For λ+ = 1 we obtain,

A− I2 =

»−8 12
−4 6

–
→
»
2 −3
0 0

–
⇒ 2v+

1 = 3v+
2 ⇒ v+ =

»
3
2

–
.

For λ− = −1 we obtain

A + I2 =

»−6 12
−4 8

–
→
»
1 −2
0 0

–
⇒ v−1 = 2v−2 ⇒ v− =

»
2
1

–
.

Since the general solution to the differential equation above is

x(t) = c+v+eλ+t + c−v−eλ−t,

we conclude that

x(t) = c+

»
3
2

–
et + c−

»
2
1

–
e−t.

The initial condition implies that»
1
1

–
= x0 = x(0) = c+

»
3
2

–
+ c−

»
2
1

–
.

We need to solve the linear system»
3 2
2 1

– »
c+

c−

–
=

»
1
1

–
⇒

»
c+

c−

–
=

1

(−1)

»
1 −2
−2 3

– »
1
1

–
⇒

»
c+

c−

–
=

»
1
−1

–
.

So the solution to the initial value problem above is

x(t) =

»
3
2

–
et −

»
2
1

–
e−t .

C
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