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� Week 1: Field, vector space, subspace (Sec 1.1, 1.2, 1.3)

� Week 2: Linear combination, linear dependence, linear indepen-
dence, basis, dimension (Sec 1.4, 1.5, 1.6)

� Week 3: Linear transformations, null spaces, ranges, matrix repre-
sentation of a linear transformation (Sec 2.1, 2.2)

� Week 4: composition of linear transformation, matrix multiplica-
tion, invertibility, isomorphism (Sec 2.3, 2.4)

� Week 5: The change of coordinate matrix, elementary matrix oper-
ations, elementary matrices, the rank of a matrix, matrix inverses
(Sec 2.5, 3.1, 3.2)

� Week 6: System of linear equations (Sec 3.3, 3.4)

� Week 7: determinants (Sec 4.1, 4.2, 4.3, 4.4)
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� Week 8: Eigenvalues, eigenvectors, diagonalizability (Sec 5.1, 5.2)

� Week 9: Invariant subspaces, Cayley-Hamilton theorem (Sec 5.4)

� Week 10: inner products, norms, The Gram-Schmidt orthogonal-
ization process, (Sec 6.1)

� Week 11: orthogonal complements (Sec 6.2)

� Week 12: The adjoint of a linear operator (Sec 6.3)

� Week 13: normal operators, self-adjoint operators, unitary opera-
tors, orthogonal operators (Sec 6.4, 6.5)

� Week 14: Orthogonal projections, spectral theorem, singular value
decomposition and pseudo inverse, brief introduction of Jordan
canonical forms (Sec 6.6, 6.7, Ch 7)

� Week 15: Final exam
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• Language, Tools, Knowledge, ....

→ Korean, English, Computer Language, Mathematics

• Potential

→ Question, Inference, Logical Thinking, Proof, Validation
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Chapter 1 Vector Spaces

�� mathematical spaces

� The physical space around us is called the 3-dimensional Eu-
clidean space.

� It is commonly defined by real coordinates.

� A vector has a magnitude and a direction
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�� We will focus on linear vector spaces.

� We will ”define” vectors and scalars using only sets and alge-
braic operations.

� Forget about vectors you are accustomed to, with magnitude
and direction, with arrow marks on the top, and with coordi-
nates.

� They are vectors in the Euclidean space and only an example,
a special kind of vectors.

� We want more general definitions that, to begin with, do not
require magnitude, direction, or orthogonality.
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�� According to the new definition,

� a continuous function can be a vector;

� an infinite sequence can be a vector;

� a matrix can be a vector.

� So a vector will now be a more abstract, flexible thing than
what you are used to.

� So be ready to accept new concepts that seem at first strange,
and you will feel comfortable with them later in this course.

�� This will be useful for applications such as machine learning, least
square approximation, regression, electric circuits, graph theory,
and cryptography etc.
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Field and vector space

�� field: (F,+, ·) such that

1. ∀a, b ∈ F , a + b and a · b are unique in F

2. ∀a, b, c ∈ F , the following hold:

F1 commutativity: a + b = b + a; a · b = b · a
F2 associativity: (a + b) + c = a + (b + c); (a · b) · c = a · (b · c)
F3 identity:

additive: ∃0 ∈ F such that a + 0 = a

multiplicative: ∃1 ∈ F such that a · 1 = a
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F4 inverse:

additive: ∃d ∈ F such that a + d = 0

multiplicative: ∃e ∈ F such that, for a 6= 0, a · e = 1

F5 distributivity: a · (b + c) = a · b + a · c
� Commonly, the operations + and · become implicit, and the set
F is called the field, ex, 1 + 1 = 0 for binary(prime-2) field.

� An element of a field is called a scalar.

� The additive inverse d of a is commonly denoted by −a.

� The multiplicative inverse e of a is commonly denoted by a−1.
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�� example: field

� set of real numbers with the ordinary operations

� set of rational numbers with the ordinary operations

� set of complex numbers with the ordinary operations

� A field with a finite number of elements are called a finite
field.

� For a prime number n, {0, 1, · · · , n− 1} with modulo-n oper-
ations is a prime-n field.
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�� example: field

� {0, 1} with the modulo-2 operations: prime-2 field

� {0, 1, 2, 3, 4} with the modulo-5 operations: prime-5 field

� How about the set of integers or the set of irrational numbers?

→ no multiplicative inverse, no multiplicative identity.
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�� vector space over a field F : (V (F ),+, ·) such that

1. ∀a ∈ F , ∀x, y ∈ V , x + y and a · x = ax are unique in V .
2. ∀a, b ∈ F , ∀x, y, z ∈ V , the following hold:

VS1 commutativity: x + y = y + x

VS2 associativity: (x + y) + z = x + (y + z)

VS3 identity: ∃0 ∈ V such that x + 0 = x

VS4 inverse: ∃u ∈ V such that x + u = 0
VS5 identity: 1x = x

VS6 associativity: (ab)x = a(bx)

VS7 distributivity: a(x + y) = ax + ay

VS8 distributivity: (a + b)x = ax + bx

� Commonly, the operations + and ·(and F ) are defined, and the
set V (F )(or V ) is called the vector space.
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� An element of a vector space is called a vector.

� The additive inverse u of x is commonly denoted by −x.

� Note that multiplication is always between a scalar and a vector,
so the inverse is always additive.

�� example: vector space

� the set of n-tuples Fn = {(a1, · · · , an) : ai ∈ F}
� the set of m× n matrices

Mm×n(F ) =


 a11 · · · a1n

... ...
am1 · · · amn

 : aij ∈ F


� the set of functions F(S, F ) = {f : S → F}
� the set of polynomials

P (F ) = {a0 + a1x + · · · + anx
n : n = 0, 1, 2, · · · , ai ∈ F}
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� the set of infinite sequences F∞ = {(a1, a2, a3, · · · ) : ai ∈ F}

�� example: not a vector space

� (R2,+, ·) where + and · are defined by

(a1, a2) + (b1, b2) = (a1 + b1, a2 − b2); c(a1, a2) = (ca1, ca2)

not commutative [VS1], not associative [VS2]

� (R2,+, ·) where + and · are defined by

(a1, a2) + (b1, b2) = (0, a2 + b2); c(a1, a2) = (0, ca2)

no identity [VS3], no inverse [VS4], 1(a1, a2) 6= (a1, a2) [VS5]

lack of uniqueness of +
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• What is your motivation to take the linear algebra course?

• Explain why the set of integers and the set of irrational numbers
can not be a Field?

• Determine whether the set of functions can be a vector space or
not? Why?
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