- Prof.: Jin Young Choi, jychoi@snu.ac.kr, 010-4106-8372, Buld. 133, Room 406
- TA: KyuWang Lee, kyuewang5056@ gmail.com, 010-5594-2818, Buld. 133, Room 412
- TA: DaeHo UM, umdaeho1 @ gmail.com, 010-2908-5397, Buld. 133, Room 412
- Text Book: Linear Algebra; S. H. Friedberg, et. al.; Prentice Hall
- Exam.: 1st 9/21, 2nd 10/19, 3rd 11/16, final 12/14
- Grade: A 30%, B 30%, C/D/F 40%
- 1차 동영상 upload: 일요일 09:00, Quiz 마감: 화요일 24:00 2차 동영상 upload: 수요일 09:00, Quiz 마감: 금요일 24:00
- Week 1: Field, vector space, subspace (Sec 1.1, 1.2, 1.3)
- Week 2: Linear combination, linear dependence, linear independence, basis, dimension (Sec 1.4, 1.5, 1.6)
- Week 3: Linear transformations, null spaces, ranges, matrix representation of a linear transformation (Sec 2.1, 2.2)
- Week 4: composition of linear transformation, matrix multiplication, invertibility, isomorphism (Sec 2.3, 2.4)
- Week 5: The change of coordinate matrix, elementary matrix operations, elementary matrices, the rank of a matrix, matrix inverses (Sec 2.5, 3.1, 3.2)
- Week 6: System of linear equations (Sec 3.3, 3.4)
- Week 7: determinants (Sec 4.1, 4.2, 4.3, 4.4)
- Week 8: Eigenvalues, eigenvectors, diagonalizability (Sec 5.1, 5.2)
- Week 9: Invariant subspaces, Cayley-Hamilton theorem (Sec 5.4)
- Week 10: inner products, norms, The Gram-Schmidt orthogonalization process, (Sec 6.1)
- Week 11: orthogonal complements (Sec 6.2)
- Week 12: The adjoint of a linear operator (Sec 6.3)
- Week 13: normal operators, self-adjoint operators, unitary operators, orthogonal operators (Sec 6.4, 6.5)
- Week 14: Orthogonal projections, spectral theorem, singular value decomposition and pseudo inverse, brief introduction of Jordan canonical forms (Sec 6.6, 6.7, Ch 7)
- Week 15: Final exam

Double 3P

- 3P Ability
\Rightarrow Problem finding (기획, 창의성)
\Rightarrow Problem solving (실행, 문제해결능력)
\Rightarrow Presentation (Oral, Written, 논리력)
- 3P Achievement
\Rightarrow Product (Usefulness, 혁신기술)
\Rightarrow Patent (New, Completeness, 독창성)
\Rightarrow Paper (Analysis, Proof, 기술문서)
- Language, Tools, Knowledge,
\rightarrow Korean, English, Computer Language, Mathematics
- Potential
\rightarrow Question, Inference, Logical Thinking, Proof, Validation

Chapter 1 Vector Spaces

- mathematical spaces
- The physical space around us is called the 3-dimensional Euclidean space.
- It is commonly defined by real coordinates.
- A vector has a magnitude and a direction

.. We will focus on linear vector spaces.
- We will "define" vectors and scalars using only sets and algebraic operations.
- Forget about vectors you are accustomed to, with magnitude and direction, with arrow marks on the top, and with coordinates.
- They are vectors in the Euclidean space and only an example, a special kind of vectors.
- We want more general definitions that, to begin with, do not require magnitude, direction, or orthogonality.
- According to the new definition,
- a continuous function can be a vector;
- an infinite sequence can be a vector;
- a matrix can be a vector.
- So a vector will now be a more abstract, flexible thing than what you are used to.
- So be ready to accept new concepts that seem at first strange, and you will feel comfortable with them later in this course.
- This will be useful for applications such as machine learning, least square approximation, regression, electric circuits, graph theory, and cryptography etc.

Field and vector space

.- field: $(F,+, \cdot)$ such that

1. $\forall a, b \in F, a+b$ and $a \cdot b$ are unique in F
2. $\forall a, b, c \in F$, the following hold:

F1 commutativity: $a+b=b+a ; a \cdot b=b \cdot a$
F2 associativity: $(a+b)+c=a+(b+c) ;(a \cdot b) \cdot c=a \cdot(b \cdot c)$
F3 identity:
additive: $\exists 0 \in F$ such that $a+0=a$
multiplicative: $\exists 1 \in F$ such that $a \cdot 1=a$

F4 inverse:
additive: $\exists d \in F$ such that $a+d=0$
multiplicative: $\exists e \in F$ such that, for $a \neq 0, a \cdot e=1$
F5 distributivity: $a \cdot(b+c)=a \cdot b+a \cdot c$

- Commonly, the operations + and \cdot become implicit, and the set F is called the field, ex, $1+1=0$ for binary(prime-2) field.
- An element of a field is called a scalar.
- The additive inverse d of a is commonly denoted by $-a$.
- The multiplicative inverse e of a is commonly denoted by a^{-1}.
- example: field
- set of real numbers with the ordinary operations
- set of rational numbers with the ordinary operations
- set of complex numbers with the ordinary operations
- A field with a finite number of elements are called a finite field.
- For a prime number $n,\{0,1, \cdots, n-1\}$ with modulo- n operations is a prime- n field.
- example: field
- $\{0,1\}$ with the modulo- 2 operations: prime-2 field
- $\{0,1,2,3,4\}$ with the modulo- 5 operations: prime- 5 field
prime-2 field

a	b	+	\cdot				
0	0	0	0				
0	1	1	0				
1	0	1	0				
1	1	0	1	\quad	a	$-a$	a^{-1}
:---	:---:	:---:					
0	0						
1	1	1					

prime-5 field

a	$-a$	a^{-1}
0	0	
1	4	1
2	3	3
3	2	2
4	1	4

- How about the set of integers or the set of irrational numbers?
\rightarrow no multiplicative inverse, no multiplicative identity.
- vector space over a field $F:(V(F),+, \cdot)$ such that

1. $\forall a \in F, \forall x, y \in V, x+y$ and $a \cdot x=a x$ are unique in V.
2. $\forall a, b \in F, \forall x, y, z \in V$, the following hold:

VS1 commutativity: $x+y=y+x$
VS2 associativity: $(x+y)+z=x+(y+z)$
VS3 identity: $\exists 0 \in V$ such that $x+0=x$
VS4 inverse: $\exists u \in V$ such that $x+u=0$
VS5 identity: $1 x=x$
VS6 associativity: $(a b) x=a(b x)$
VS7 distributivity: $a(x+y)=a x+a y$
VS8 distributivity: $(a+b) x=a x+b x$

- Commonly, the operations + and •(and F) are defined, and the set $V(F)$ (or V) is called the vector space.
- An element of a vector space is called a vector.
- The additive inverse u of x is commonly denoted by $-x$.
- Note that multiplication is always between a scalar and a vector, so the inverse is always additive.
- example: vector space
- the set of n-tuples $F^{n}=\left\{\left(a_{1}, \cdots, a_{n}\right): a_{i} \in F\right\}$
- the set of $m \times n$ matrices

$$
M_{m \times n}(F)=\left\{\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right): a_{i j} \in F\right\}
$$

- the set of functions $\mathcal{F}(S, F)=\{f: S \rightarrow F\}$
- the set of polynomials

$$
P(F)=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n}: n=0,1,2, \cdots, a_{i} \in F\right\}
$$

- the set of infinite sequences $F^{\infty}=\left\{\left(a_{1}, a_{2}, a_{3}, \cdots\right): a_{i} \in F\right\}$
- example: not a vector space
- $\left(\mathbb{R}^{2},+, \cdot\right)$ where + and \cdot are defined by
$\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2}-b_{2}\right) ; c\left(a_{1}, a_{2}\right)=\left(c a_{1}, c a_{2}\right)$
not commutative [VS1], not associative [VS2]
- $\left(\mathbb{R}^{2},+, \cdot\right)$ where + and \cdot are defined by
$\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(0, a_{2}+b_{2}\right) ; c\left(a_{1}, a_{2}\right)=\left(0, c a_{2}\right)$
no identity [VS3], no inverse [VS4], $1\left(a_{1}, a_{2}\right) \neq\left(a_{1}, a_{2}\right)$ [VS5]
lack of uniqueness of +
- What is your motivation to take the linear algebra course?
- Explain why the set of integers and the set of irrational numbers can not be a Field?
- Determine whether the set of functions can be a vector space or not? Why?
- Prof.: Jin Young Choi, jychoi@snu.ac.kr, 010-4106-8372, Buld. 133, Room 406
- TA: KyuWang Lee, kyuewang5056@ gmail.com, 010-5594-2818, Buld. 133, Room 412
- TA: DaeHo UM, umdaeho1 @ gmail.com, 010-2908-5397, Buld. 133, Room 412
- Text Book: Linear Algebra; S. H. Friedberg, et. al.; Prentice Hall
- Exam.: 1st 9/21, 2nd 10/19, 3rd 11/16, final 12/14
- Grade: A 30%, B 30%, C/D/F 40%
- 1차 동영상 upload: 일요일 09:00, Quiz 마감: 화요일 24:00 2차 동영상 upload: 수요일 09:00, Quiz 마감: 금요일 24:00
- Week 1: Field, vector space, subspace (Sec 1.1, 1.2, 1.3)
- Week 2: Linear combination, linear dependence, linear independence, basis, dimension (Sec 1.4, 1.5, 1.6)
- Week 3: Linear transformations, null spaces, ranges, matrix representation of a linear transformation (Sec 2.1, 2.2)
- Week 4: composition of linear transformation, matrix multiplication, invertibility, isomorphism (Sec 2.3, 2.4)
- Week 5: The change of coordinate matrix, elementary matrix operations, elementary matrices, the rank of a matrix, matrix inverses (Sec 2.5, 3.1, 3.2)
- Week 6: System of linear equations (Sec 3.3, 3.4)
- Week 7: determinants (Sec 4.1, 4.2, 4.3, 4.4)
- Week 8: Eigenvalues, eigenvectors, diagonalizability (Sec 5.1, 5.2)
- Week 9: Invariant subspaces, Cayley-Hamilton theorem (Sec 5.4)
- Week 10: inner products, norms, The Gram-Schmidt orthogonalization process, (Sec 6.1)
- Week 11: orthogonal complements (Sec 6.2)
- Week 12: The adjoint of a linear operator (Sec 6.3)
- Week 13: normal operators, self-adjoint operators, unitary operators, orthogonal operators (Sec 6.4, 6.5)
- Week 14: Orthogonal projections, spectral theorem, singular value decomposition and pseudo inverse, brief introduction of Jordan canonical forms (Sec 6.6, 6.7, Ch 7)
- Week 15: Final exam

Double 3P

- 3P Ability
\Rightarrow Problem finding (기획, 창의성)
\Rightarrow Problem solving (실행, 문제해결능력)
\Rightarrow Presentation (Oral, Written, 논리력)
- 3P Achievement
\Rightarrow Product (Usefulness, 혁신기술)
\Rightarrow Patent (New, Completeness, 독창성)
\Rightarrow Paper (Analysis, Proof, 기술문서)
- Language, Tools, Knowledge,
\rightarrow Korean, English, Computer Language, Mathematics
- Potential
\rightarrow Question, Inference, Logical Thinking, Proof, Validation

Chapter 1 Vector Spaces

- mathematical spaces
- The physical space around us is called the 3-dimensional Euclidean space.
- It is commonly defined by real coordinates.
- A vector has a magnitude and a direction

.. We will focus on linear vector spaces.
- We will "define" vectors and scalars using only sets and algebraic operations.
- Forget about vectors you are accustomed to, with magnitude and direction, with arrow marks on the top, and with coordinates.
- They are vectors in the Euclidean space and only an example, a special kind of vectors.
- We want more general definitions that, to begin with, do not require magnitude, direction, or orthogonality.
- According to the new definition,
- a continuous function can be a vector;
- an infinite sequence can be a vector;
- a matrix can be a vector.
- So a vector will now be a more abstract, flexible thing than what you are used to.
- So be ready to accept new concepts that seem at first strange, and you will feel comfortable with them later in this course.
- This will be useful for applications such as machine learning, least square approximation, regression, electric circuits, graph theory, and cryptography etc.

Field and vector space

.- field: $(F,+, \cdot)$ such that

1. $\forall a, b \in F, a+b$ and $a \cdot b$ are unique in F
2. $\forall a, b, c \in F$, the following hold:

F1 commutativity: $a+b=b+a ; a \cdot b=b \cdot a$
F2 associativity: $(a+b)+c=a+(b+c) ;(a \cdot b) \cdot c=a \cdot(b \cdot c)$
F3 identity:
additive: $\exists 0 \in F$ such that $a+0=a$
multiplicative: $\exists 1 \in F$ such that $a \cdot 1=a$

F4 inverse:
additive: $\exists d \in F$ such that $a+d=0$
multiplicative: $\exists e \in F$ such that, for $a \neq 0, a \cdot e=1$
F5 distributivity: $a \cdot(b+c)=a \cdot b+a \cdot c$

- Commonly, the operations + and \cdot become implicit, and the set F is called the field, ex, $1+1=0$ for binary(prime-2) field.
- An element of a field is called a scalar.
- The additive inverse d of a is commonly denoted by $-a$.
- The multiplicative inverse e of a is commonly denoted by a^{-1}.
- example: field
- set of real numbers with the ordinary operations
- set of rational numbers with the ordinary operations
- set of complex numbers with the ordinary operations
- A field with a finite number of elements are called a finite field.
- For a prime number $n,\{0,1, \cdots, n-1\}$ with modulo- n operations is a prime- n field.
- example: field
- $\{0,1\}$ with the modulo- 2 operations: prime-2 field
- $\{0,1,2,3,4\}$ with the modulo- 5 operations: prime- 5 field
prime-2 field

a	b	+	\cdot				
0	0	0	0				
0	1	1	0				
1	0	1	0				
1	1	0	1	\quad	a	$-a$	a^{-1}
:---	:---:	:---:					
0	0						
1	1	1					

prime-5 field

a	$-a$	a^{-1}
0	0	
1	4	1
2	3	3
3	2	2
4	1	4

- How about the set of integers or the set of irrational numbers?
\rightarrow no multiplicative inverse, no multiplicative identity.
- vector space over a field $F:(V(F),+, \cdot)$ such that

1. $\forall a \in F, \forall x, y \in V, x+y$ and $a \cdot x=a x$ are unique in V.
2. $\forall a, b \in F, \forall x, y, z \in V$, the following hold:

VS1 commutativity: $x+y=y+x$
VS2 associativity: $(x+y)+z=x+(y+z)$
VS3 identity: $\exists 0 \in V$ such that $x+0=x$
VS4 inverse: $\exists u \in V$ such that $x+u=0$
VS5 identity: $1 x=x$
VS6 associativity: $(a b) x=a(b x)$
VS7 distributivity: $a(x+y)=a x+a y$
VS8 distributivity: $(a+b) x=a x+b x$

- Commonly, the operations + and •(and F) are defined, and the set $V(F)$ (or V) is called the vector space.
- An element of a vector space is called a vector.
- The additive inverse u of x is commonly denoted by $-x$.
- Note that multiplication is always between a scalar and a vector, so the inverse is always additive.
- example: vector space
- the set of n-tuples $F^{n}=\left\{\left(a_{1}, \cdots, a_{n}\right): a_{i} \in F\right\}$
- the set of $m \times n$ matrices

$$
M_{m \times n}(F)=\left\{\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right): a_{i j} \in F\right\}
$$

- the set of functions $\mathcal{F}(S, F)=\{f: S \rightarrow F\}$
- the set of polynomials

$$
P(F)=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n}: n=0,1,2, \cdots, a_{i} \in F\right\}
$$

- the set of infinite sequences $F^{\infty}=\left\{\left(a_{1}, a_{2}, a_{3}, \cdots\right): a_{i} \in F\right\}$
- example: not a vector space
- $\left(\mathbb{R}^{2},+, \cdot\right)$ where + and \cdot are defined by
$\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2}-b_{2}\right) ; c\left(a_{1}, a_{2}\right)=\left(c a_{1}, c a_{2}\right)$
not commutative [VS1], not associative [VS2]
- $\left(\mathbb{R}^{2},+, \cdot\right)$ where + and \cdot are defined by
$\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(0, a_{2}+b_{2}\right) ; c\left(a_{1}, a_{2}\right)=\left(0, c a_{2}\right)$
no identity [VS3], no inverse [VS4], $1\left(a_{1}, a_{2}\right) \neq\left(a_{1}, a_{2}\right)$ [VS5]
lack of uniqueness of +
- What is your motivation to take the linear algebra course?
- Explain why the set of integers and the set of irrational numbers can not be a Field?
- Determine whether the set of functions can be a vector space or not? Why?

