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Preface

This textbook covers the standard linear algebra material taught at the University
Politehnica of Bucharest, and is designed for a 1-semester course.

The prerequisites are high–school algebra and geometry.
Chapters 1–4 are intended to introduce first year students to the basic notions

of vector space, linear transformation, eigenvectors and eigenvalues, bilinear and
quadratic forms, and to the usual linear algebra techniques.

The linear algebra language is used in Chapters 5, 6, 7 to present some notions and
results on vectors, straight lines and planes, transformations of coordinate systems.

We end with some exam samples. Each sample involves facts from two or more
chapters.

The topics treated in this book and the presentation of the material are similar
to those in several of the first author’s previous works [19]–[25]. Parts of some linear
algebra sections follow [1]. The selection of topics and problems relies on the teaching
experience of the authors at the University Politehnica of Bucharest, including lectures
and seminars taught in English at the Department of Engineering Sciences.

The publication of this volume was supported by MEN Grant #21815, 28.09.98,
CNCSU-31; this support provided the oportunity to include the present textbook in
the University Lectures Series published by the Editorial House of Balkan Society of
Geometers.

We wish to thank our colleagues for helpful discussions on the problems and topics
treated in this book and on our teaching activities. Any further suggestions will be
greatly appreciated.

The authors
July 12, 2000

iii



Contents

1 Vector Spaces 1
1 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Vector Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Linear Dependence. Linear Independence . . . . . . . . . . . . . . . . 7
4 Bases and Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 Coordinates.

Isomorphisms. Change of Coordinates . . . . . . . . . . . . . . . . . . 11
6 Euclidean Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Linear Transformations 25
1 General Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2 Kernel and Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3 The Matrix of a Linear Transformation . . . . . . . . . . . . . . . . . 31
4 Particular Endomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . 34
5 Endomorphisms of Euclidean Vector Spaces . . . . . . . . . . . . . . . 37
6 Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Eigenvectors and Eigenvalues 45
1 General Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2 The Characteristic Polynomial . . . . . . . . . . . . . . . . . . . . . . 47
3 The Diagonal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4 The Canonical Jordan Form . . . . . . . . . . . . . . . . . . . . . . . . 54
5 The Spectrum of Endomorphisms on Euclidean Spaces . . . . . . . . . 61
6 Polynomials and Series of Matrices . . . . . . . . . . . . . . . . . . . . 63
7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Bilinear Forms. Quadratic Forms 67
1 Bilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2 Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3 Reduction of Quadratic Forms to

Canonical Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4 The Signature of a Real Quadratic Form . . . . . . . . . . . . . . . . . 76
5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

v



vi CONTENTS

5 Free Vectors 81
1 Free Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2 Addition of Free Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3 Multiplication by Scalars . . . . . . . . . . . . . . . . . . . . . . . . . 84
4 Collinearity and Coplanarity . . . . . . . . . . . . . . . . . . . . . . . 85
5 Inner Product in V3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6 Vector (cross) Product in V3 . . . . . . . . . . . . . . . . . . . . . . . 90
7 Mixed Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Straight Lines and Planes in Space 95
1 Cartesian Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2 Equations of Straight Lines in Space . . . . . . . . . . . . . . . . . . . 96
3 Equations of Planes in Space . . . . . . . . . . . . . . . . . . . . . . . 97
4 The Intersection of Two Planes . . . . . . . . . . . . . . . . . . . . . . 100
5 Orientation of Straight Lines and Planes . . . . . . . . . . . . . . . . . 101
6 Angles in Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7 Distances in Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Transformations of Coordinate Systems 109
1 Translations of Cartesian Frames . . . . . . . . . . . . . . . . . . . . . 109
2 Rotations of Cartesian Frames . . . . . . . . . . . . . . . . . . . . . . 110
3 Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4 Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Exam Samples 119

Bibliography 131



Chapter 1

Vector Spaces

1 Vector Spaces

The vector space structure is one of the most important algebraic structures.
The basic models for (real) vector spaces are the spaces of n–dimensional row or
column matrices:

M1,n(R) =
{
v = [a1, . . . , an] ; aj ∈ R, j = 1, n

}

Mn,1(R) =





v =




a1

...
an


 ; aj ∈ R, j = 1, n





.

We will identify Rn with either one of M1,n(R) or Mn,1(R). A row (column)
matrix is also called a row (column) vector.

The definition of matrix multiplication makes the use of column vectors more
convenient for us. We will also write a column vector in the form t[a1, . . . , an] or
t(a1, . . . , an), as the transpose of a row vector, in order to save space.

An abstract vector space is endowed with two operations: addition of vectors
and multiplication by scalars, where the scalars will be the elements of a field. For
the examples above, these are just the usual matrix addition and multiplication of a
matrix by a real number:




a1

...
an


 +




b1

...
bn


 =




a1 + b1

...
an + bn




k




a1

...
an


 =




ka1

...
kan


 , where k ∈ R .

Let us first recall the definition of a field.

1



2 CHAPTER 1. VECTOR SPACES

DEFINITION 1.1 A field K is a set endowed with two laws of composition:

K×K −→ K, (a, b) −→ a + b
K×K −→ K, (a, b) −→ ab ,

called addition and respectively multiplication, satisfying the following axioms :

i) (K, +) is an abelian group. Its identity element is denoted by 0.

ii) (K?, ·) is an abelian group, where K? = K\{0}. Its identity element is denoted
by 1.

iii) Distributive law: (a + b)c = ac + bc, ∀ a, b, c ∈ K.

Examples of fields

(a) K = R, the field of real numbers;

(b) K = C, the field of complex numbers;

(c) K = Q, the field of rational numbers;

(d) K = Q[
√

2] = {a + b
√

2 ; a, b ∈ Q}.

DEFINITION 1.2 A vector space V over a field K (or a K–vector space) is a set
endowed with two laws of composition:

(a) addition : V×V −→ V, (v, w) −→ v + w

(b) multiplication by scalars : K×V −→ V, (k, v) −→ kv

satisfying the following axioms:

(i) (V, +) is an abelian group

(ii) multiplication by scalars is associative with respect to multiplication in K:

k(lv) = (kl)v, ∀k, l ∈ K, ∀v ∈ V

(iii) the element 1 ∈ K acts as identity:

1v = v, ∀v ∈ V

(iv) the distributive laws hold:

k(v + w) = kv + kw,
(k + l)v = kv + lv, ∀k, l ∈ K, ∀v, w ∈ V.

The elements of K are usually called scalars and the elements of V vectors. A
vector space over C is called a complex vector space; a vector space over R is called
a real vector space. When K is not specified, we understand K = R or K = C.
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Examples of vector spaces

(i) K as a vector space over itself, with addition and multiplication in K.

(ii) Kn is a K–vector space.

(iii) Mm,n(K) with usual matrix addition and multiplication by scalars is a K–vector
space.

(iv) The set of space vectors V3 is a real vector space with addition given by the
parallelogram law and scalar multiplication given as follows:

if k ∈ R, v ∈ V3, then kv ∈ V3 and:

– the length of kv is the length of v multiplied by | k |;
– the direction of kv is the direction of v;

– the sense of kv is the sense of v if k > 0, and the opposite sense of v if k < 0.

(v) If S is a nonempty set and W is a K–vector space, then V = {f | f : S −→ W}
becomes a K–vector space with:

(f + g)(x) = f(x) + g(x), (kf)(x) = kf(x), for all k ∈ K, f, g ∈ V.

(vi) The solution set of an algebraic linear homogeneous system with n unknowns
and coefficients in K is a K–vector space with the operations induced from Kn.

(vii) The solution set of an ordinary linear homogeneous differential equation is a
real vector space with addition of functions and multiplication of functions by
scalars.

(viii) The set K[X] of all polynomials with coefficients in K is a K–vector space.

THEOREM 1.3 Let V be a K–vector space. Then V has the following properties:

(i) 0K v = 0V , ∀v ∈ V

(ii) k 0V = 0V , ∀k ∈ K

(iii) (−1) v = −v, ∀v ∈ V.

Proof. To see (i) we use the distributive law to write

0K v + 0K v = (0K + 0K) v = 0K v + 0V .

Now 0K v cancels out (in the group (V, +)), so we obtain 0K v = 0V . Similarly,

k 0V + k 0V = k(0V + 0V ) = k 0V

implies k 0V = 0V .
For (iii), v + (−1) v = (1 + (−1)) v = 0K v = 0V . Hence (−1) v is the additive

inverse of v. QED
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COROLLARY 1.4 Let V be a K–vector space. Then:

(i) −(k v) = (−k) v = k (−v), for all k ∈ K, v ∈ V

(ii) (k − l) v = k v − l v, for all k ∈ K, v ∈ V

(iii) k v = 0V ⇐⇒ v = 0V or k = 0K

(iv) k v = l v, v 6= 0V =⇒ k = l

(v) k v = k w, k 6= 0K =⇒ v = w

We leave the proof of the corollary as an exercise; all properties follow easily from
Theorem 1.3 and the definition of a vector space.

We will usually write ”0” instead of 0K or 0V , since in general it is clear whether
we refer to the number or to the vector zero.

2 Vector Subspaces

Throughout this paragraph V denotes a K–vector space and S a nonempty subset of
V.

DEFINITION 2.1 A vector subspace W of V is a nonempty subset with the fol-
lowing properties:

(i) If u, v ∈ W, then u + w ∈ W

(ii) If u ∈ W, k ∈ K, then k u ∈ W.

REMARKS 2.2 (i) If W is a vector subspace, then 0V ∈ W.

(ii) W is a vector subspace if and only if W is a vector space with the operations
induced from V.

(iii) W is a vector subspace if and only if

k, l ∈ K, u, w ∈ V =⇒ k u + l w ∈ W .

Examples of vector subspaces

(i) {0V } and V are vector subspaces of V. Any other vector subspace is called a
proper vector subspace.

(ii) The straight lines through the origin are proper vector subspaces of R2.

(iii) The straight lines and the planes through the origin are proper vector subspaces
of R3.

(iv) The solution set of an algebraic linear homogeneous system with n unknowns is
a vector subspace of Kn.
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(v) The set of odd functions and the set of even functions are vector subspaces of
the space of real functions defined on the interval (−a, a), a ∈ R?

+.

DEFINITION 2.3 (i) Let v1, . . . , vp ∈ V. A linear combination of the vectors
v1, . . . , vp is a vector of the form

w = k1v1 + . . . + kpvp , kj ∈ K .

(ii) Let S be a nonempty subset (possibly infinite) of V. A vector of the form

w = k1v1 + . . . + kpvp , p ∈ N?, kj ∈ K, vj ∈ S

is called a finite linear combination of vectors of S.
The set of all finite linear combinations of vectors of S is denoted by Span S or

L(S). By definition, Spanφ = {0}.

THEOREM 2.4 Span S is a vector subspace of V.

Proof. Let u =
p∑

i=1

kiui ∈ Span S and w =
q∑

j=1

ljwj ∈ Span S, with ki, lj ∈

K, ui, wj ∈ S.

Then ku + lv =
p∑

i=1

(kki) ui +
q∑

j=1

(llj) wj is also a finite linear combination with

elements of S. It follows that SpanS is a vector subspace, by Remark 2.2(iii). QED

SpanS is called the subspace spanned by S, or the linear covering of S.

PROPOSITION 2.5 If S is a subset of V and W is a vector subspace of V such
that S ⊂ W, then Span S ⊂ W.

This is obvious, for any finite linear combination of vectors from S is also a finite
linear combination of vectors from W, and W is closed under addition and scalar
multiplication.

THEOREM 2.6 If W1, W2 are two vector subspaces of V, then:

(i) W1 + W2 = {v = v1 + v2 | v1 ∈ W1, v2 ∈ W2} is a vector subspace, called the
sum of the vector subspaces W1 and W2.

(ii) W1 ∩W2 is a vector subspace of V . More generally, if {Wi}i∈I is a family of
vector subspaces, then

⋂
i∈I Wi is a vector subspace.

(iii) W1 ∪W2 is a vector subspace of V if and only if W1 ⊆ W2 or W2 ⊆ W1.

Proof. (i) Let u, w ∈ W1 + W2, u = u1 + u2, w = w1 + w2, with u1, w1 ∈ W1,
u2, w2 ∈ W2.

Let k, l ∈ K. Then ku + lw = (ku1 + lw1) + (ku2 + lw2) is in W1 + W2, as
ku1 + lw1 ∈ W1, and ku2 + lw2 ∈ W2 (using Remark 2.2 (iii) for the subspaces W1,
W2). It follows that W1 + W2 is a subspace.
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(ii) Exercise !
(iii) The implication from the right to the left is obvious. For the other one, assume

by contradiction that none of the inclusions holds. Then we can take u1 ∈ W1 \W2,
u2 ∈ W2 \W1.

Now u1, u2 ∈ W1 ∪W2 implies u1 + u2 ∈ W1 ∪W2 since W1 ∪W2 is a vector
subspace.

But either u1 + u2 ∈ W1 or u1 + u2 ∈ W2 contradicts u2 /∈ W1 or u1 /∈ W2

respectively. Therefore W1 ⊆ W2 or W2 ⊆ W1. QED

REMARKS 2.7 (i) Span (W1 ∪W2) = W1 + W2.

(ii) Span (S1 ∪ S2) = SpanS1 + SpanS2.

These are straightforward from Proposition 2.5 and Theorem 2.6

PROPOSITION 2.8 Let W1, W2 be vector subspaces of V. Then, the decompo-
sition

v = v1 + v2 , v1 ∈ W1 , v2 ∈ W2

is unique for each v ∈ W1 + W2 if and only if W1 ∩W2 = {0}.
Proof. Assume the uniqueness of the decomposition and let v ∈ W1 ∩ W2 ⊆

W1 + W2. Then
v = v + 0 , v ∈ W1 , 0 ∈ W2

and

v = 0 + v , 0 ∈ W1 , v ∈ W2

represent the same decomposition, implying v = 0.
Conversely, asume W1 ∩W2 = {0} and let v ∈ W1 + W2, v = v1 + v2 = v′1 + v′2

with v1, v
′
1 ∈ W1, v2, v

′
2 ∈ W2. Then v1 − v′1 = v′2 − v2 ∈ W1 ∩W2, thus v1 − v′1 =

0 = v2 − v′2. Consequently, v1 = v′1, v2 = v′2. QED

DEFINITION 2.9 If W1, W2 are vector subspaces with W1 ∩ W2 = {0}, then
W1 + W2 is called the direct sum of W1 and W2 and we write W1 ⊕W2; W1 and
W2 are called independent vector subspaces.

If V = W1 ⊕W2, then W1 and W2 are called supplementary subspaces; each of
W1 and W2 is the supplement of the other one.

Examples

(i) Set
V = {f | f : (−a, a) −→ R} , a > 0 ,
W1 = {f ∈ V | f is an odd function} ,
W2 = {f ∈ V | f is an even function} .

Then V = W1 ⊕W2.

(To see this, write f(x) =
f(x)− f(−x)

2
+

f(x) + f(−x)
2

, for any f ∈ V and

any x ∈ (−a, a).)
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(ii) Set
D1 = {(x, y) | 2x + y = 0}
D2 = {(x, y) | x− y = 0}

Then R2 = D1 ⊕D2.

3 Linear Dependence. Linear Independence

Let V be a K–vector space and S ⊆ V, S 6= ∅.

DEFINITION 3.1 (i) Let S = {v1, . . . , vp} be a finite subset of V, where vi 6= vj if
i 6= j. The set S is called linearly dependent (the vectors v1, . . . , vp are called linearly
dependent) if there exist k1, . . . , kp ∈ K not all zero such that

p∑

i=1

kivi = 0 .

(ii) An infinite subset S of V is called linearly dependent if there exists a finite
subset of S which is linearly dependent.

(iii) A set which is not linearly dependent is called linearly independent.

In order to study the linear dependence or independence of the vectors v1, . . . , vp

we usually exploit the equality
p∑

i=1

kivi = 0. If this relation implies the existence of

(k1, . . . , kp) 6= (0, . . . , 0), then the vectors v1, . . . , vp are linearly dependent; if the
relation implies (k1, . . . , kp) = (0, . . . , 0), then the vectors are linearly independent.

REMARKS 3.2 (i) Let S be an arbitrary nonempty subset of V. Then S is linearly
dependent if and only if S contains a linearly dependent subset.

(ii) Let S be an arbitrary nonempty subset of V. Then S is linearly independent
if and only if all finite subsets of S are linearly independent.

(iii) Let v1, . . . , vn ∈ Km. Denote by A = [v1, . . . , vn] ∈ Mm,n(K), the matrix
whose columns are v1, . . . , vn. Then v1, . . . , vn are linearly independent if and only if
the system

A




x1

...
xn


 = 0

admits only the trivial solution, and this is equivalent to rank A = n.

Examples

(i) {0} is linearly dependent; if 0 ∈ S, then S is linearly dependent.

(ii) If v ∈ V, v 6= 0, then {v} is linearly independent.

(iii) A set {v1, v2} of two vectors is linearly dependent if and only if either v1 = 0 or
else v2 is a scalar multiple of v1.
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(iv) If f1(x) = ex; f2(x) = e−x; f3(x) = sh x, then {f1, f2, f3} is linearly dependent
since f1 − f2 − 2f3 = 0.

PROPOSITION 3.3 Let L, S be nonempty subsets of V, v ∈ V \L and L linearly
independent. Then:

(i) S is linearly dependent if and only if there exists an element w ∈ S such that
w ∈ Span (S \ {w}).

(ii) L ∪ {v} is linearly independent if and only if v /∈ Span L.

Proof. (i) Assume that S is linearly dependent. Then, there exist distinct elements
v1, . . . , vp ∈ S and k1, . . . , kp ∈ K not all zero, such that

p∑

i=1

kivi = 0 .

We may assume without loss of generality that k1 6= 0. Then

v1 = −
p∑

i=2

ki

k1
vi ∈ Span (S− {v1}) .

Conversely, if w ∈ S and w ∈ Span (S \ {w}), then it can be written as w =
q∑

j=1

cjwj

for some q ≥ 1, cj ∈ K, wj ∈ S \ {w}. It follows that

w +
q∑

j=1

(−cj)wj = 0 ,

therefore the set {w, w1, . . . , wq} is linearly dependent. Then S is linearly dependent
since it contains a linearly dependent subset.

(ii) Now (i) applies for S = L∪{v}, S \ {v} = L. Since L is linearly independent,
it follows that L∪{v} is linearly dependent if and only if v ∈ SpanL, or equivalently
L ∪ {v} is linearly independent if and only if v /∈ SpanL. QED

PROPOSITION 3.4 Let S = {v1, . . . , vp} ⊂ V be a linearly independent set and
denote by SpanS the vector subspace spanned by S. Then any distinct p+1 elements
of Span S are linearly dependent.

Proof. Let wj =
p∑

i=1

aijvi ∈ Span S, j = 1, . . . , p + 1 and k1, . . . , kp+1 ∈ K such

that
p+1∑

j=1

kjwj = 0 .(3.1)

We replace the vectors wj to obtain

p+1∑

j=1

kjwj =
p+1∑

j=1

kj

p∑

i=1

aijvi =
p∑

i=1




p+1∑

j=1

kjaij


 vi .
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Then
p∑

i=1




p+1∑

j=1

kjaij


 vi = 0 is equivalent to

p+1∑

j=1

kjaij = 0 , i = 1, . . . , p ,(3.2)

since v1, . . . , vp are linearly independent.
But (3.2) is a linear homogeneous system with p equations and p + 1 unknowns

k1, . . . , kp+1. Such a system admits nontrivial solutions. Thus, there exist k1, . . . , kp+1,
not all zero, such that (3.1) holds, which means that w1, . . . , wp+1 are linearly depen-
dent. QED

4 Bases and Dimension

V is a K vector space. Let B ⊂ V be a linearly independent set. Then Span B
is a vector subspace of V. A natural question concerns the existence of B linearly
independent such that Span B = V.

DEFINITION 4.1 A subset B of V which is linearly independent and also spans
V, is called a basis of V.

It can be shown that any nonzero vector space admits a basis. We are going to
use this general fact without proof. The results we are proving in this section concern
only a certain class of vector spaces – the finitely generated ones.

DEFINITION 4.2 V is called finitely generated if there exists a finite set which
spans V, or if V = {0}.

Note that not all vector spaces are finitely generated. For example, the real vector
space Rn[X] is finitely generated, while R[X] is not.

THEOREM 4.3 Let V 6= {0} be a finitely generated vector space. Any finite set
which spans V contains a basis.

Proof. Let S be a finite set such that SpanS = V and set

S = {v1, . . . , vp} , vi 6= vj if i 6= j .

If S is linearly independent, then S is a basis. If S is not linearly independent,
then there exist k1, . . . , kp ∈ K, not all zero, such that

k1v1 + . . . + kpvp = 0 .

Assume without loss of generality kp 6= 0; then vp ∈ Span{v1, . . . vp−1}, which
implies SpanS = Span{v1, . . . , vp−1} = V.

We repeat the above procedure for S1 = {v1, . . . , vp−1}. Continuing this way, we
eventually obtain a subset of S which is linearly dependent but still spans V. QED
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COROLLARY 4.4 Any nonzero finitely generated vector space admits a finite basis.

Using Prop.3.4, the next consequences of the theorem are straightforward.

COROLLARY 4.5 (i) Any linearly independent subset of a finitely generated vector
space is finite.

(ii) Any basis of a finitely generated vector space is finite.

THEOREM 4.6 Let V be a finitely generated vector space, V 6= {0}. Then any
two bases have the same number of elements.

Proof. Let B, B′ be two bases of V. Assume that B has n elements and B′ has
n′ elements. We have V = Span B, since the basis B spans V. By Proposition 3.4,
no linearly independent subset of V could have more than n elements. The basis B′

is linearly independent, therefore n′ ≤ n.
The same argument works for B′ instead of B, yielding n ≤ n′. Therefore n = n′.

QED

DEFINITION 4.7 Let V be finitely generated.
If V 6= {0}, then the dimension of V is the number of vectors in a basis of V. The

dimension is denoted by dimV.
If V = {0}, then dim {0} = 0 by definition.

Finitely generated vector spaces are also called finite dimensional vector spaces.
The other vector spaces, which have infinite bases are called infinite dimensional.

The dimension of a finite dimensional vector space is a natural number; dimV = 0
if and only if V = {0}.

When it is necessary to specify the field, we write dimKV instead of dimV. For
example, dimCC = 1, dimRC = 2, since C can be regarded as a complex vector
space, as well as a real vector space.
Examples

(i) e1 = (1, 0, . . . , 0); e2 = (0, 1, . . . , 0); . . . en = (0, 0, . . . , 1) form a basis of Kn,
and dimKn = n.

(ii) B = {Eij |1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis of Mm,n(K), where Eij is the matrix
whose (i, j)–entry is 1 and all other entries are zero; dimMm,n(K) = mn.

(iii) B = {1, X, . . . , Xn} is a basis of Kn[X]; dimKn[X] = n + 1.

(iv) B = {1, X, . . . , Xn, . . .} is a basis of K[X]; K[X] is infinite dimensional.

(v) The solution set of a linear homogeneous system of rank r with n unknowns
and coefficients in K is a K-vector space of dimension n− r.

THEOREM 4.8 Let V 6= {0} be a finitely generated vector space. Any linearly
independent subset of V is contained into a basis.

Proof. Let L be a linearly independent subset of V and S be a finite set which
spans V. Since V is finitely generated, the set L is finite, by the previous corollary.
If S ⊂ SpanL, then L is a basis.

If S 6⊂ SpanL, then choose v ∈ S, v /∈ SpanL. It follows that L ∪ {v} is linearly
independent, by Proposition 3.3. Continue until we get a basis. QED
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COROLLARY 4.9 Let L, S be finite subsets of V such that L is linearly indepen-
dent and V = Span (S). Then:

(i) card L ≤ dim V ≤ card S;

(ii) card L = dim V if and only if L is a basis;

(iii) card S = dim V if and only if S is a basis.

PROPOSITION 4.10 If W is a vector subspace of V and dimV = n, n ≥ 1, then
W is finite–dimensional and dim W ≤ n. Equality holds only if W = V.

Proof. Assume W 6= {0} and let v1 ∈ W, v1 6= 0. Then {v1} is linearly indepen-
dent.

If W = Span {v1}, then we are done. If W 6⊇ Span {v1}, then there exists
v2 ∈ W \ Span {v1}. Proposition 3.3 (ii) applies for L = {v1}, v = v2, so {v1, v2} is
linearly independent.

Now either W = Span{v1, v2} or there exists v3 ∈ W\Span{v1, v2}. In the latter
case we apply again Proposition 3.3 (ii) and we continue the process. The process
must stop after at most n steps, otherwise at step n+1 we would find vn+1 such that
{v1, . . . , vn, vn+1} is linearly independent, which contradicts Proposition 3.4.

By the above procedure we found a basis of W which contains at most n vectors,
thus W is finite dimensional and dimV ≤ n.

Assume that dimW = n. Then any basis of W is linearly independent in V and
contains n elements; by the previous corollary it is also a basis of V. QED

THEOREM 4.11 If U, W are finite–dimensional vector subspaces of V, then U+
W and U ∩W are finite dimensional and

dim U + dim W = dim (U + W) + dim (U ∩W) .

Sketch of proof. The conclusion is obvious if U∩W = U or U∩W = W. If not,
assume U ∩W 6= {0} and let {v1, . . . , vp} be a basis of U ∩W. Then, there exist
up+1, . . . , up+q ∈ U and wp+1, . . . , wp+r ∈ W such that

{v1, . . . , vp, up+1, . . . , up+q} is a basis of U,

{v1, . . . , vp, wp+1, . . . , wp+r} is a basis of W,

and show that {v1, . . . , vp, up+1, . . . , up+q, wp+1, . . . , wp+r} is a basis of U + W.
The idea of proof is similar if U ∩W = {0}. QED

5 Coordinates.
Isomorphisms. Change of Coordinates

Let V be a finite dimensional vector space. In this section we are going to make
explicit computations with bases. For, it will be necessary to work with (finite)
ordered sets of vectors. Consequently, a finite basis B of V has three qualities: it is
linearly independent, it spans V, and it is ordered.
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PROPOSITION 5.1 The set B = {v1, . . . , vn} ⊂ V is a basis if and only if every
vector x ∈ V can be written in a unique way in the form

x = x1v1 + . . . + xnvn , xj ∈ K , j = 1, . . . , n .(5.1)

Proof. Suppose that B is a basis. Then every x ∈ V can be written in the form
(5.1) since V = SpanB. If also x = x′1v1 + . . . x′nvn, then

0 = x− x = (x1 − x′1)v1 + . . . + (xn − x′n)vn .

By the linear independence of B it follows that x1 − x′1 = . . . = xn − x′n = 0.
Conversely, the existence of the representation (5.1) for each vector implies V =

SpanB. The uniqueness applied for x = 0 = 0v1 + . . .+0vn gives the linear indepen-
dence of B. QED

DEFINITION 5.2 The scalars xj are called the coordinates of x with respect to
the basis B. The column vector

X =




x1

...
xn




is called the coordinate vector associated to x.

DEFINITION 5.3 Let V and W be two vector spaces over the same field K. A
map T : V −→ W compatible with the vector space operations, i.e. satisfying:

(a) T (x + y) = T (x) + T (y) , ∀x, y ∈ V (T is additive)

(b) T (kx) = kT (x) , ∀ k ∈ K, ∀x ∈ V (T is homogeneous),

is called a linear transformation (or a vector space morphism).
A bijective linear transformation is called an isomorphism.
If there exists an isomorphism T : V −→ W, then V and W are isomorphic and

we write V ' W.

REMARKS 5.4 It is straightforward that:

(i) The composite of two linear transformations is a linear transformation.

(ii) If a linear transformation T is bijective, then its inverse T −1 is a linear trans-
formation.

(iii) ”'” is an equivalence relation on the class of vector spaces over the same field K
(i.e. ∀V, V ' V; ∀V,W, V ' W =⇒ W ' V; ∀V,W,U, U ' W and W '
V =⇒ U ' V).

(iv) T (0) = 0, for any linear transformation T .

(v) (a) and (b) in Definition 5.3 are equivalent to:

T (kx + ly) = kT (x) + lT (y) , ∀ k, l ∈ K, ∀x, y ∈ V ,
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(i.e. T is compatible with linear combinations)

PROPOSITION 5.5 Every vector space V of dimension n is isomorphic to the
space Kn.

Proof. Let B = {v1, . . . , vn} be a basis of V. Define T : V −→ Kn by T (x) =
(x1, . . . , xn), where x1, . . . , xn are the coordinates of v with respect to the basis B.
The map T is well defined and bijective, by Proposition 5.1. It is obvious that T is
linear. QED

The linear map used in the above proof is called the coordinate system associated
to the basis B.

LEMMA 5.6 Let T : V −→ W be a linear transformation. Then the following are
equivalent:

(i) T is injective.

(ii) T (x) = 0 =⇒ x = 0.

(iii) For any linearly independent set S in V, T (S) is linearly independent in W.

Proof. (i) =⇒ (ii) Assume T injective. If T (x) = 0, then T (x) = T (0) by Remark
5.4 (iv). Now injectivity gives x = 0.

(ii) =⇒ (i) Assume (ii) and let x, y ∈ V, T (x) = T (v). Then T (x − y) = 0, so
x− y = 0 by (ii). Thus x = y.

(ii) =⇒ (iii) It suffices to prove (iii) for S finite (for, see Remark 3.2). Let
S = (v1, . . . , vp) and k1T (v1) + . . . + kpT (vp) = 0. By the linearity of T , T (k1v1 +
. . . + kpvp) = 0; then k1v1 + . . . + kpvp = 0, by (ii). S linearly independent implies
k1 = . . . = kp = 0, thus T (S) is linearly independent.

(iii) =⇒ (ii) Note that (ii) is equivalent to: T (x) 6= 0, for all x 6= 0. Let x 6= 0
and S = {x} in (iii). Then {T (x)} is linearly independent, i.e. T (x) 6= 0. QED

THEOREM 5.7 Two finite dimensional vector spaces V and W are isomorphic if
and only if dim V = dim W.

Proof. Suppose that V and W are isomorphic i.e. there exists a bijective linear
transformation T : V −→ W. Let n = dimV and choose a basis B = (v1, . . . , vn) of
V. Then T (B) is linearly independent by the previous lemma and the injectivity of
T .

It remains to show that W = SpanT (B). For, let y ∈ W. Then, there exists x ∈ V
such that T (x) = y, since T is surjective. But x can be written as x = x1v1+. . .+xnvn

since x ∈ SpanB. Then

y = T (x1v1 + . . . + xnvn) = x1T (v1) + . . . + xnT (vn) ∈ Span T (B) .

We proved that T (B) is a basis of W. Since card T (B) = n, it follows that
dimV = dimW.

Conversely, suppose dim V = dim W = n. Then V ' Kn and W ' Kn imply
V ' W (see Remarks 5.4). QED

We will use quite often the following lemma. (See the Linear Algebra highschool
manual for a proof.)
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LEMMA 5.8 Let A = [aij ] 1 ≤ i ≤ m
1 ≤ j ≤ n

∈ Mm,n(K). Then the rank of A is equal to the

maximal number of linearly independent columns.

THEOREM 5.9 (the change of basis) Let B = {v1, . . . , vn} be a basis of V and
B′ = {w1, . . . , wn} an ordered subset of V, with

wj =
n∑

i=1

cijvi , ∀ j = 1, . . . , n .

Then B′ is another basis of V if and only if det [cij ] 6= 0.

Proof. Let T : V −→ Kn be the coordinate system associated to B. Then

T (vi) = ei and T (wj) =




c1j

...
cnj


. Denote C = [cij ]i,j ∈ Mn,n(K). It follows that

T (wj) is the j’th column of C. Then:

detC 6= 0 if and only if rank C = n;

rank C = n if and only if T (B′) is linearly independent, by Lemma 5.8;

Lemma 5.6 applies for T and T −1, thus B′ is linearly independent if and only
if T (B′) is linearly independent;

B′ is a basis of W if and only if B′ is linearly independent, by Corollary 4.9,

and the conclusion follows. QED

DEFINITION 5.10 If B′ in the previous theorem is a basis, then the matrix C is
called the matrix of change of basis from B to B′.

Note that in this case the matrix of change from B′ to B is C−1.

COROLLARY 5.11 (the coordinate transformation formula) Let B, B′ be
two bases of V, dim V = n, C the matrix of change from B to B′, and x ∈ V.

If X = t(x1, . . . , xn) and X ′ = t(x′1, . . . , x
′
n) are the coordinates of x with respect

to B and B′ respectively, then X = CX ′.

Proof. We write

x =
n∑

j=1

x′jwj =
n∑

j=1

x′j

(
n∑

i=1

cijvi

)
=

n∑

i=1




n∑

j=1

cijxj


 vi .

By the uniqueness of the representation of x with respect to the basis B, we get

xi =
n∑

j=1

cijx
′
j , ∀ i = 1, . . . , n. This means X = CX ′. QED
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6 Euclidean Vector Spaces

Unless otherwise specified, K will denote either one of the fields R or C. Euclidean
vector spaces are real or complex vector spaces with an additional operation that will
be used to define the length of a vector, the angle between two vectors and orthogo-
nality in a way which generalizes the usual geometric properties of space vectors in
V3. The Euclidean vector space V3 will make the object of a separate chapter.

DEFINITION 6.1 Let V be a real or complex vector space. An inner (scalar, dot)
product on V is a map 〈 , 〉 : V × V −→ K which associates to each pair (v, w) a
scalar denoted by 〈v, w〉, satisfying the following properties:

(i) Linearity in the first variable:

〈v1 + v2, w〉 = 〈v1, w〉+ 〈v2, w〉 , ∀ v1, v2, w ∈ W (additivity)
〈kv, w〉 = k〈v, w〉 , ∀ k ∈ K, ∀ v, w ∈ W (homogeneity)

(ii) Hermitian symmetry (symmetry in the real case):

〈w, v〉 = 〈v, w〉 ,

where the bar denotes complex conjugation.

(iii) Positivity:
〈v, v〉 > 0, ∀ v 6= 0, v ∈ V .

REMARKS 6.2 (i) Note that linearity in the first variable means that if w is
fixed, then the resulting function of one variable is a linear transformation from
V into K.

(ii) If K = R, then the second equality in (ii) is equivalent to: 〈v, kw〉 = k〈v, w〉,
implying linearity in the second variable too, and (iii) is equivalent to 〈w, v〉 =
〈v, w〉.

(iii) By (i) and (ii) in the definition we deduce the conjugate linearity (linearity in
the real case) in the second variable:

〈v, w1 + w2〉 = 〈v, w1〉+ 〈v, w2〉 (additivity)
〈v, kw〉 = k〈v, w〉 . (conjugate homogeneity)

(iv) Additivity implies that 〈v, 0〉 = 0 = 〈0, w〉, ∀ v, w ∈ V. In particular 〈0, 0〉 = 0.
Combining this with positivity, it follows that:

〈v, v〉 ≥ 0 , ∀ v ∈ V and 〈v, v〉 = 0 if and only if v = 0 .

(v) 〈v, w〉 = 0 , ∀w ∈ V =⇒ v = 0 and

〈v, w〉 = 0 , ∀ v ∈ V =⇒ w = 0 , since 〈v, v〉 = 0 =⇒ v = 0.

(vi) Hermitian symmetry implies 〈v, v〉 ∈ R , ∀ v ∈ V (without imposing posi-
tivity).
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DEFINITION 6.3 A real or a complex vector space endowed with a scalar product
is called a Euclidean vector space.

Examples of canonical Euclidean vector spaces

1) Rn with 〈x, y〉 = x1y1 + . . . + xnyn, where x = (x1, . . . , xn), y = (y1, . . . , yn).

2) Cn with 〈x, y〉 = x1y1 + . . . + xnyn, where x = (x1, . . . , xn), y = (y1, . . . , yn).

3) V3 with 〈ā, b̄〉 = ‖ā‖ · ‖b̄‖ cos θ, where ‖ā‖, ‖b̄‖ are the lengths of ā and b̄
respectively, and θ is the angle between ā and b̄.

4) V = {f | f : [a, b] −→ R , f continuous} is a real Euclidean vector space with
the scalar product given by

〈f, g〉 =

b∫

a

f(t)g(t) dt .

5) V = {f | f : [a, b] −→ C , f continuous} is a complex Euclidean vector space
with the scalar product given by

〈f, g〉 =

b∫

a

f(t)g(t) dt .

THEOREM 6.4 (the Cauchy–Schwarz inequality) Let V be a Euclidean vector
space. Then

| 〈v, w〉 |2≤ 〈v, v〉〈w, w〉 , ∀ v, w ∈ V .(6.1)

Equality holds if and only if v, w are linearly dependent (collinear ).

Proof. The case w = 0 is obvious. Assume w 6= 0. By positivity

〈v + αw, v + αw〉 ≥ 0 , ∀α ∈ K .(6.2)

Take α = − 〈v, w〉
〈w, w〉 and expand to obtain (6.1).

If equality holds in (6.1), then equality holds in (6.2) for α = − 〈v, w〉
〈w,w〉 . Then

v − 〈v, w〉
〈w, w〉w = 0 by positivity. Thus v, w are linearly dependent.

Conversely, suppose v = λw. Then

| 〈v, w〉 |2 =| 〈v, λv〉 |2=| λ〈v, v〉 |2=| λ |2 〈v, v〉2 = λλ〈v, v〉〈v, v〉
= 〈v, v〉〈λv, λv〉 = 〈v, v〉〈w, w〉 . QED

DEFINITION 6.5 Let V be a real or complex vector space.
The function ‖ ‖ : V −→ R is called a norm on V if it satisfies:

(i) ‖v‖ ≥ 0 , ∀ v ∈ V and ‖v‖ = 0 if and only if v = 0 (positivity)
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(ii) ‖kv‖ =| k | ‖v‖ , ∀ k ∈ K, ∀ v ∈ V

(iii) ‖u + v‖ ≤ ‖u‖+ ‖v‖ , ∀u, v ∈ V (the triangle inequality).

A vector space endowed with a norm is called a normed vector space.

PROPOSITION 6.6 Let V be a Euclidean vector space. Then the function defined
by ‖v‖ =

√
〈v, v〉 is a norm on V.

Proof. Properties (i) and (ii) in Definition 6.5 are straightforward from the posi-
tivity and (conjugate) linearity of the inner product. For (iii)

‖u + v‖2 ≤ 〈u + v, u + v〉 = 〈u, u〉+ 2Re〈u, v〉+ 〈v, v〉
≤ ‖u‖2 + ‖v‖2 + 2 | 〈u, v〉 | , since Rez ≤| z | for any z ∈ C
≤ ‖u‖2 + ‖v‖2 + 2‖u‖ · ‖v‖ , by Cauchy’s inequality
≤ (‖u‖+ ‖v‖)2 . QED

The norm defined by an inner product as in the previous proposition is called a
Euclidean norm.

REMARK 6.7 Let (V, ‖ ‖) be a (real or complex) vector space. If ‖ ‖ is a Euclidean
norm, then it is easy to see that:

‖u + v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2) , ∀u, v ∈ V (the parallelogram law) .

Note that not all norms satisfy the parallelogram law. For example, let ‖ ‖∞ :
Rn −→ [0,∞), n ≥ 2 defined by ‖x‖∞ = max{| x1 |, . . . , | xn |} and take u =
(1, 0, . . . , 0), v = (1, 1, 0, . . . , 0).

DEFINITION 6.8 A vector u ∈ V with ‖u‖ = 1 is called a unit vector or versor.
Any vector v ∈ V \ {0} can be written as v = ‖v‖u, where u is a unit vector. The

vector u =
1
‖v‖ v is called the unit vector in the direction of v.

If v, w ∈ V \ {0} and K = R, then the Cauchy inequality is equivalent to

−1 ≤ 〈v, w〉
‖v‖ · ‖w‖ ≤ 1 .(6.3)

This double inequality allows the following definition.

DEFINITION 6.9 Let V be a real Euclidean vector space and v, w ∈ V \ {0}.
Then the number θ ∈ [0, π] defined by

cos θ =
〈v, w〉

‖v‖ · ‖w‖
is called the angle between v and w.
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THEOREM 6.10 Let V be a real or complex normed vector space. The function
d : V ×V −→ R, defined by d(v, w) = ‖v − w‖ is a distance (metric) on V, i.e. it
satisfies the following properties:

(i) d(v, w) ≥ 0, ∀ v, w ∈ V and d(v, w) = 0 if and only if v = w.

(ii) d(v, w) = d(w, v), ∀ v, w ∈ V

(iii) d(u, v) ≤ d(u,w) + d(w, v), ∀ u, v, w ∈ V.

The proof is straightforward from the properties of the norm.
A vector space endowed with a distance (i.e. a map satisfying (i), (ii), (iii) in the

previous theorem) is called a metric space. If the distance is defined by a Euclidean
norm, then it is called a Euclidean distance.

7 Orthogonality

Let V be a Euclidean vector space. In the last section, we defined the angle between
two nonzero vectors. The definition of orthogonality will be compatible with the
definition of the angle.

DEFINITION 7.1 (i) Two vectors v, w ∈ V are called orthogonal (or perpendicu-
lar) if 〈v, w〉 = 0. We write v ⊥ w when v and w are orthogonal.

(ii) A subset S 6= ∅ is called orthogonal if its vectors are mutually orthogonal, i.e.
〈v, w〉 = 0, ∀ v, w ∈ S, v 6= w.

(iii) A subset S 6= ∅ is called orthonormal if it is orthogonal and each vector of S
is a unit vector (i.e. ∀ v ∈ S, ‖v‖ = 1).

PROPOSITION 7.2 Any orthogonal set of nonzero vectors is linearly independent.

Proof. Let S be orthogonal. In order to show that S is linearly independent, we
may assume S finite (see Remark 3.2 (iii)), S = {v1, . . . , vp}, where v1, . . . , vp are
distinct. Let k1, . . . , kp ∈ K such that k1v1 + . . . + kpvp = 0. Right multiplication by
vj in the sense of the inner product yields

k1〈v1, vj〉+ . . . + kp〈vp, vj〉 = 〈0, vj〉 = 0 , ∀ j = 1, . . . , p .

By the orthogonality of S, 〈vi, vj〉 = 0 for i 6= j, thus

kj〈vj , vj〉 = 0 , ∀ j = 1, . . . , p .

But vj 6= 0, since 0 /∈ S, so 〈vj , vj〉 6= 0 and it follows that kj = 0, ∀ j = 1, . . . , p,
which shows that S is linearly independent. QED

Combining the above result and Corollary 4.8 (iii) we obtain the following result.

COROLLARY 7.3 If dim V = n, n ≥ 1, then any orthogonal set of n nonzero
vectors is a basis of V.
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THEOREM 7.4 (the Gram–Schmidt procedure) If dimV = n, n ≥ 2 and B =
{v1, . . . , vn} is a basis of V, then there exists an orthonormal basis B′ = {u1, . . . , un}
of V, such that

Span {v1, . . . , vm} = Span {u1, . . . , um} , ∀m = 1, . . . , n .

Proof. Consider the set B′′ = {w1, . . . , wn}, whose elements are defined by

w1 = v1

w2 = v2 + k12w1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
wm = vm + k1mw1 + . . . + km−1,mwm−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
wn = vn + k1nw1 + . . . + kn−1,nwn−1 , kij ∈ K, i, j ∈ {1, . . . , n}, i < j .

It is easy to prove by induction that Span{v1, . . . , vm} = Span{w1, . . . , wm} and
wm 6= 0, for all m = 1, . . . , n. This is trivial for m = 1. Let 2 ≤ m ≤ n and assume

Span {v1, . . . , vm−1} = Span {w1, . . . , wm−1} .

Then
Span{v1, . . . , vm} = Span{v1, . . . , vm−1}+ Span{vm}

= Span{w1, . . . , wm−1}+ Span{vm} (by the induction hypothesis)
= Span{w1, . . . , wm−1, vm}
= Span{w1, . . . , wm−1, wm} (by the definition of wm) .

Now suppose wm = 0 for some m ≥ 2. Then vm ∈ Span{w1, . . . , wm−1} =
Span{v1, . . . , vm−1} implies {v1, . . . , vm} linearly dependent, by Prop. 3.3. This
yields a contradiction.

The scalars kij can be chosen such that B′′ will become an orthogonal set as
follows.

〈w2, w1〉 = 0 ⇐⇒ 〈v2, w1〉+ k12〈w1, w1〉 = 0 ⇐⇒ k12 = − 〈v2, w1〉
〈w1, w1〉 .

Assume that kij are scalars such that {w1, . . . , wm−1} is orthogonal. Then, using
the fact that 〈wj , wi〉 = 0, ∀ i, j ∈ {1, . . . , m−1}, i 6= j, we get for all i = 1, . . . , m−1:

〈wm, wi〉 = 0 ⇐⇒ 〈vm, wi〉+ kim〈wi, wi〉 = 0 ⇐⇒ kim = −〈vm, wi〉
〈wi, wi〉 .

Note that 〈wi, wi〉 6= 0 since wi 6= 0.
We showed that B′′ is an orthogonal set of nonzero vectors, hence an orthogonal

basis, where:

w1 = v1

w2 = v2 − 〈v2, w1〉
〈w1, w1〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wm = vm − 〈vm, w1〉
〈w1, w1〉 w1 − . . .− 〈vm, wm−1〉

〈wm−1, wm−1〉 wm−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wn = vn − 〈vn, w1〉
〈w1, w1〉 w1 − . . .− 〈vn, wn−1〉

〈wn−1, wn−1〉 wn−1 ,
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and Span {v1, . . . , vm} = Span {w1, . . . , wm}, ∀m = 1, . . . , n.

Now set uj =
1

‖wj‖ wj , j = 1, . . . , n. The set B′ = {u1, . . . , un} fulfils all the

required properties. QED

COROLLARY 7.5 Any finite dimensional Euclidean space has an orthonormal ba-
sis.

THEOREM 7.6 If dim V = n and B = {u1, . . . , un} is an orthogonal basis, then
the representation of x ∈ V with respect to the basis B is

x =
〈x, u1〉
〈u1, u1〉 u1 + . . . +

〈x, un〉
〈un, un〉 un .

In particular, if B is an orthonormal basis, then

x = 〈x, u1〉u1 + . . . + 〈x, un〉un .

Proof. The vector x has an unique representation with respect to the basis B:

x =
n∑

i=1

xiui . (see (5.1))

We multiply this equality by each uj , j = 1, . . . , n in the sense of the inner product.
It follows that

〈x, uj〉 =
n∑

i=1

xi〈ui, uj〉 = xj〈uj , uj〉 , ∀ j = 1, . . . , n ,

thus

xj =
〈x, uj〉
〈uj , uj〉 , ∀ j = 1, . . . , n .

If B is an orthonormal basis, then 〈uj , uj〉 = 1, so xj = 〈x, uj〉. QED

DEFINITION 7.7 Let ∅ 6= S ⊂ V.
A vector v ∈ V is orthogonal to S if v ⊥ w, ∀w ∈ S.
The set of all vectors orthogonal to S is denoted by S⊥ and is called S–orthogonal.
It is easy to see that S⊥ is a vector subspace of V.
If W is a vector subspace of V, then W⊥ is called the orthogonal complement of

W.

Examples
(i) {0}⊥ = V, since 〈v, 0〉 = 0, ∀ v ∈ V.
(ii) V⊥ = {0}, since

〈v, w〉 = 0 , ∀w ∈ V =⇒ 〈v, v〉 = 0 =⇒ v = 0 .

(iii) If S = {(1, 1, 0), (1, 0, 1)} ⊂ R3, then

S⊥ = {(x, y, z) ∈ R3 ; x + y = 0, x + z = 0} .
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REMARKS 7.8 (i) S⊥ = (SpanS)⊥.
(ii) If W is a vector subspace, then W ∩W⊥ = {0}. (For, let w ∈ W ∩W⊥. It

follows that 〈w,w〉 = 0, thus w = 0.)

THEOREM 7.9 Let W be a vector subspace of a Euclidean vector space V, dimW =
n, n ∈ N∗. Then V = W⊕W⊥. Moreover, if v = w +w⊥, w ∈ W, w⊥ ∈ W⊥, then
the Pythagorean theorem holds, i.e. ‖v‖2 = ‖w‖2 + ‖w⊥‖2.

Proof. Let B = {u1, . . . , un} be an orthonormal basis of W and v ∈ V. Take
w = 〈v, u1〉u1 + . . . + 〈v, un〉un, and w⊥ = v − w. Obviously w ∈ W and for any
j = 1, . . . , n we get

〈w⊥, uj〉 = 〈v − w, uj〉 = 〈v, uj〉 −
n∑

i=1

〈v, ui〉〈ui, uj〉 = 〈v, uj〉 − 〈v, uj〉 = 0 .

We showed that w⊥ ∈ B⊥ = W⊥, therefore V = W + W⊥. The sum is direct
since W ∩W⊥ = {0}. It follows that the decomposition

v = w + w⊥ , w ∈ W, w⊥ ∈ W⊥

is unique. Also

‖v‖2 = 〈v, v〉 = 〈w, w〉+ 〈w, w⊥〉+ 〈w⊥, w〉+ 〈w⊥, w⊥〉 = ‖w‖2 + ‖w⊥‖2 ,

since 〈w,w⊥〉 = 〈w⊥, w〉 = 0. QED

The vector w ∈ W in the decomposition of v with respect to V = W ⊕W⊥ is
called the orthogonal projection of v onto W.

PROPOSITION 7.10 Let V be a Euclidean vector space, dim V = n, n ∈ N∗,

B = {u1, . . . , un} an orthonormal basis and x =
n∑

j=1

xjuj, y =
n∑

j=1

yjuj ∈ V. If V is

a real vector space, then 〈x, y〉 =
n∑

j=1

xjyj and ‖x‖2 =
n∑

j=1

x2
j .

If V is a complex vector space, then 〈x, y〉 =
n∑

j=1

xjyj and ‖x‖2 =
n∑

j=1

| xj |2.

Proof. Assume V is a complex vector space. Then

〈x, y〉 =

〈
n∑

i=1

xiui,

n∑

j=1

yjuj

〉
=

n∑
i=1

n∑
j=1

〈xiui, yjuj〉

=
n∑

i=1

n∑

j=1

xiyj〈ui, uj〉 =
n∑

i=1

n∑

j=1

xiyjδij =
n∑

j=1

xjyj .

The real case is similar. QED

We conclude this section with a generalization of Theorem 7.4.
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THEOREM 7.11 (Gram–Schmidt– infinite dimensional case) If V is infi-
nite dimensional and L = {v1, . . . , vk, . . .} ⊂ V is a countable, infinite, linearly
independent set of distinct elements, then there exists an orthonormal set L′ =
{u1, . . . , uk, . . .} such that

Span {v1, . . . , vk} = Span {u1, . . . , uk} , ∀ k ∈ N∗.

The proof is based on the construction used in Theorem 7.4, i.e.

w1 = v1

w2 = v2 − 〈v2, w1〉
〈w1, w1〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wk = vk − 〈vk, w1〉
〈w1, w1〉 w1 − . . .− 〈vk, wk−1〉

〈wk−1, wk−1〉 wk−1, ∀k ≥ 2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

then uj =
1

‖wj‖ wj , ∀k ∈ N∗.

8 Problems

1. Let V be a vector space over the field K and S a nonempty set. We define
F = {f |f : S → V},

(f + g)(x) = f(x) + g(x), for all f, g ∈ F,

(tf)(x) = tf(x), for all t ∈ K, f ∈ F.

Show that F is a vector space over K.

2. Let F be the real vector space of the functions f : R → R. Show that

cos t, cos2 t, . . . , cosn t, . . .

is a linearly independent system in F .

3. Let V be the real vector space of functions obtained as the composite of a
polynomial of degree at most three and the cosine function (polynomials in cosx, of
degree at most three). Write down the transformation of coordinates corresponding to
the change of basis from {1, cos x, cos2 x, cos3 x} to the basis {1, cosx, cos 2x, cos 3x},
and find the inverse of this transformation. Generalization.

4. Let V be the real vector space of the real sequences {xn} with the property
that the series

∑
x2

n is convergent. Let x = {xn}, y = {yn} be two elements of V.
1) Show that the series

∑
xnyn is absolutely convergent.

2) Prove that the function defined by 〈x, y〉 =
∑

xnyn is a scalar product on V.

5. Let V = {x| x ∈ R, x > 0}. For any x, y ∈ V, and any s ∈ R, we define

x⊕ y = xy, s¯ x = xs.

Show that (V,⊕,¯) is a real vector space.
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6. Is the set Kn[X] of all polynomials of degree at most n, a vector space over
K? What about the set of the polynomials of degree at least n?

7. Show that the set of all convergent sequences of real (complex) numbers is a
vector space over R (C) with respect to the usual addition of sequences and multi-
plication of a sequence by a number.

8. Prove that the following sets are real vector spaces with respect to the usual
addition of functions and multiplication of a function by a real number.

1) {f | f : I → R, I = interval ⊆ R, f differentiable}
2) {f | f : I → R, I = interval ⊆ R, f admits antiderivatives}
3) {f | f : [a, b] → R, f integrable}.
9. Which of the following pairs of operations define a real vector space structure

on R2?
1) (x1, x2) + (y1, y2) = (x1 + x2, x2y2), k(x1, x2) = (kx1, kx2), k ∈ R
2) (x1, x2) + (y1, y2) = (x1 + y1, x2 + y2), k(x1, x2) = (x1, kx2), k ∈ R
3) (x1, x2) + (y1, y2) = (x1 + y1, x2 + y2), k(x1, x2) = (kx1, kx2), k ∈ R.

10. Let Pn be the real vector space of real polynomial functions of degree at most
n. Study which of the following subsets are vector subspaces, then determine the sum
and the intersection of the vector subspaces you found.

A = {p| p(0) = 0}, B = {p| p(0) = 1}, C = {p| p(−1) + p(1) = 0}.
11. Study the linear dependence of the following sets:
1) {1, 1, 1), (0,−3, 1), (1,−2, 2)} ⊂ R3,

2)
{[

1 0
0 1

]
,

[
i 0
0 −i

]
,

[
0 1
−1 0

]
,

[
0 i
−i 0

]}
⊂M∈×∈(C),

3) {1, x, x2}, {ex, xex, x2ex}, {ex, e−x, sinhx}, {1, cos2 x, cos 2x} ⊂ C∞(R) = the
real vector space of C∞ functions on R.

12. Show that the solution set of a linear homogeneous system with n unknowns
(and coefficients in K) is a vector subspace of Kn. Determine its dimension.

13. Consider V = Kn. Prove that every subspace W of V is the solution set of
some linear homogeneous system with n unknowns.

14. A straight line in R2 is identified to the solution set of a (nontrivial) linear
equation with two unknowns. Similarly, a plane in R3 is identified to the solution
set of a linear equation with three unknowns; a straight line in R3 can be viewed as
the intersection of two planes, so it may be identified to the solution set of a linear
system of rank two, with three unknowns.

(a) Prove that the only proper subspaces of R2 are the straight lines passing
through the origin.

(b) Prove that the only proper subspaces of R3 are the planes passing through the
origin, and the straight lines passing through the origin.

15. Which of the following subsets of R3 are vector subspaces?

D1 :
x

1
=

y

2
=

z

−1
, D2 :

x− 1
−1

=
y

1
=

z − 2
−1
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P1 : x + y + z = 0, P2 : x− y − z = 1.

Determine the intersection and the sum of the vector spaces found above.

16. In R3, we consider the vector subspaces P : x+2y−z = 0 and Q : 2x−y+2z =
0. For each of them, determine a basis and a supplementary vector subspace. Find a
basis of the sum P + Q and a basis of the intersection P ∩Q.

17. Let S be a subset of R3 made of the vectors
1) v1 = (1, 0, 1), v2 = (−1, 0,−1), v3 = (3, 0, 3)
2) v1 = (−1, 1, 1), v2 = (1,−1, 1), v3 = (0, 0, 1), v4 = (1,−1, 2).
In each case, determine the dimension of the subspace spanned by S and point

out a basis contained in S. What are the Cartesian equations of the subspace ?

18. In each case write down the coordinate transformation formulas corresponding
to the change of basis.

1) e1 = (−1, 2, 1), e2 = (1,−2, 1), e3 = (0, 1, 1) in R3

e′1 = (1,−1, 1), e′2 = (0, 1,−1), e′3 = (1, 1, 0).
2) e1 = 1, e2 = t, e3 = t2, e4 = t3 in P3

e′1 = 1− t, e′2 = 1 + t2, e′3 = t2 − t, e′4 = t3 + t2.

19. Let V be a real vector space. Show that V × V is a complex vector space
with respect to the operations

(u, v) + (x, y) = (u + x, v + y)

(a + ib)(u, v) = (au− bv, bu + av).

This complex vector space is called the complexification of V and is denoted by
CV. Show that:

1) CRn = Cn;
2) if S is a linearly independent set in V, then S × {0} is a linearly independent

set in CV;
3) if {e1, . . . , en} is a basis of V, then {(e1, 0), . . . , (en, 0)} is a basis of CV, and

dimC
CV = dimRV.

20. Let V be a complex vector space. Consider the set V with the same additive
group structure, but scalar multiplication restricted to multiplication by real numbers.
Prove that the set V becomes a real vector space in this way.

Denote this real vector space by RV. Show that
1) RCn = R2n,
2) if dimV = n, then dimRV = 2n.

21. Explain why the following maps are not scalar products:

1) ϕ : Rn ×Rn → R, ϕ(x, y) =
n∑

i=1

|xiyi|
3) ϕ : C0([0, 1])× C0([0, 1]) → R, ϕ(f, g) = f(0)g(0).

22. In the canonical Euclidean space R3, consider the vector v = (2, 1,−1) and
the vector subspace P : x − y + 2z = 0. Find the orthogonal projection w of v on P
and the vector w⊥.

23. Let R4 be the canonical Euclidean space of dimension 4. Find an orthonormal
basis for the subspace generated by the vectors

u = (0, 1, 1, 0), v = (1, 0, 0, 1), w = (1, 1, 1, 1).



Chapter 2

Linear Transformations

1 General Properties

Throughout this section V and W will be vector spaces over the same field K.
We used linear linear transformations, in particular the notion of isomorphism

for the the identification of an n–dimensional vector space with Kn (see Prop. 5.5,
Chap.1). In this chapter we will study linear transformations in more detail.

Recall (Def. 5.3) that a linear transformation T from V into W is a map T :
V → W satisfying

T (x + y) = T (x) + T (y) , ∀x, y ∈ V (additivity)(1.1)

T (kx) = kT (x) , ∀ k ∈ K, ∀x ∈ V (homogeneity).(1.2)

The definition is equivalent to

T (kx + ly) = kT (x) + lT (y) , ∀ k, l ∈ K, ∀x, y ∈ V, (linearity)(1.3)

as we pointed out in Chap. 1, Remarks 5.4 (v).
We will write sometimes T x instead of T (x).
We are actually quite familiar with some examples of linear transformations. One

of them is the following, which is in fact the main example.

MAIN EXAMPLE: left multiplication by a matrix
Let A ∈ Mm,n(K) and consider A as an operator on column vectors. It defines a

linear transformation A : Kn −→ Km by

X −→ AX , where X =




x1

...
xn


 ;

A(x) =t(AX) , x = (x1, . . . , xn) ∈ Kn , X =tx .

Obviously, A is linear by the known properties of the matrix multiplication.
Note that each component of the vector A(x) is a linear combination of the com-

ponents of x.

25
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Consider the particular case A =




2 1
3 0

−1 5


 ∈ M3,2(R) ; then

A

[
x1

x2

]
=




2x1 + x2

3x1

−x1 + 5x2




and
A(x) = (2x1 + x2, 3x1, −x1 + 5x2) .

Conversely, any map A : Kn −→ Km with the property that each component
of A(x) is a linear combination with constant coefficients of the components of x, is
given by a matrix A ∈ Mm,n(K as above; A is the coefficient matrix of t (A(x)), i.e.
if for any x ∈ Kn, the i’th component of A(x) is k1x1 + . . . + knxn, then the i’th row
of A is (k1, . . . , kn).

If m = n = 1, then A = [a] for some a ∈ K, and A : K −→ K, A(x) = ax.
Linear transformations are also called vector space homomorphisms (or morphisms),

or linear operators, or just linear maps. Their compatibility with the operations can
be regarded as a kind of ”transport” of the algebraic structure of V to W.

Note that (1.1) says that T is a homomorphism of additive groups.
A linear map F : V −→ K (i.e. W = K) is also called a linear form on V.

More examples of linear transformations

(i) V = Pn = the vector space of real polynomial functions of degree ≤ n, W =
Pn−1 and T (p) = p′.

(ii) V = C1(a, b), W = C0(a, b), T (f) = f ′.

(iii) V = C0[a, b], W = R, T (f) =

b∫

a

f(t) dt.

(iv) V = W, c ∈ K, T : V −→ V, T (x) = cx, ∀x ∈ V. (For c = 1, T is the identity
map of V)

In Chapter 1, Rem. 5.4 we mentioned that T (0) = 0, for any linear transformation
T . We will show next that more properties of V are transfered to W via T .

THEOREM 1.1 Let T : V −→ W be a linear transformation.

(i) If U is a vector subspace of V, then T (U) is a vector subspace of W.

(ii) If v1, . . . , vp ∈ V are linearly dependent vectors, then T (v1), . . . , T (vp) are lin-
early dependent vectors in W.

Proof. (i) Let w1, w2 ∈ T (U) and k, l ∈ K. Then w1 = T (v1), w2 = T (v2), for
some v1, v2 ∈ U and

kw1 + lw2 = kT (v1) + lT (v2) = T (kv1 + lv2) , by (1.3) .
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On the other hand kv1+lv2 ∈ U since U is a subspace of V. Therefore kw1+lw2 ∈
T (U).

(ii) By the linear dependence of v1, . . . , vp there exist k1, . . . , kp, not all zero such
that k1v1 + . . . + kpvp = 0. Then T (k1v1 + . . . + kpvp) = T (0) = 0. Now the linearity
of T implies that k1T (v1) + . . . + kpT (vp) = 0. QED

REMARK 1.2 Note that if in (ii) of the previous theorem we replace ”dependent”
by ”independent”, the statement we obtain is no longer true. The linear independence
of vectors is preserved only by injective linear maps (see Chap. 1, Lemma 5.6).

THEOREM 1.3 Assume dimV = n and let B = {e1, . . . , en} be a basis of V, and
w1, . . . , wn arbitrary vectors in W.

(i) There is a unique linear transformation T : V −→ W such that

T (ej) = wj , ∀ j = 1, . . . , n .(1.4)

(ii) The linear transformation T defined by (1.4) is injective if and only if w1, . . . , wn

are linearly independent.

Proof. (i) If x ∈ V, then x can be represented as x =
n∑

j=1

xjej , xj ∈ K. Define

T (x) =
n∑

j=1

xjwj ∈ W. This definition of T implies T (ej) = wj , ∀ j = 1, . . . , n. Let

also y =
n∑

j=1

yjej ∈ V, and k, l ∈ K. Then

T (kx + ly) =
n∑

j=1

(kxj + lyj)wj = k

n∑

j=1

xjwj + l

n∑

j=1

yjwj = kT (x) + lT (y) ,

hence T is linear. For the uniqueness, suppose T1(ej) = wj , ∀ j.

For any x =
n∑

j=1

xjej ∈ V it follows that T1(x) =
n∑

j=1

xjT1(ej) =
n∑

j=1

xjwj , by the

linearity of T1. Hence T1(x) = T (x), ∀x ∈ V.

(ii) In Chap. 1, Lemma 5.6 we gave necessary and sufficient conditions for the
injectivity of a linear transformation. From condition (iii) of that result, here it only
remains to show that

w1, . . . , wn linearly independent =⇒ T injective .

Let x =
n∑

j=1

xjej , y =
n∑

j=1

yjej ∈ V such that T (x) = T (y). Then T (x − y) =

n∑

j=1

(xj − yj)wj = 0. The linear dependence of w1, . . . , wn implies that xj = yj , ∀ j,

thus x = y. QED
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Operations with Linear Transformations

Denote by L(V,W) the set of all linear maps defined on V with values into
W. Addition and scalar multiplication for the elements of L(V,W) are the usual
operations for maps with values into an K–vector space. (see Examples of vector
spaces (v) Chapter 1); if S, T ∈ L(V,W) then S + T and kT are defined by

(S + T )(x) = S(x) + T (x) , ∀x ∈ V(1.5)

(kT )(x) = kT (x) , ∀x ∈ V, ∀ k ∈ K .(1.6)

It is easy to see that S + T , kT ∈ L(V,W). Moreover, L(V,W) becomes a
K–vector space with the operations defined by (1.5), (1.6).

The elements of L(V,V) are called endomorphisms of V. Another notation for
L(V,V) is End (V).

The vector space L(V,K) of all linear forms on V is called the dual of V.
Let U, V, W be vector spaces over the same field K and S ∈ L(U,V), T ∈

L(V,W). Then the composite T ◦ S makes sense as a map from U into W. It is
straightforward that T ◦ S ∈ L(U,W). The map T ◦ S is also written as T S and is
called the product of T and S. The following properties are immediate:

(kA+ lB)C = kAC + lBC , ∀ k, l ∈ K, A,B ∈ L(U,V), C ∈ L(V,W) .(1.7)

C(kA+ lB) = kCA+ lCB , ∀ k, l ∈ K, A,B ∈ L(V,W), C ∈ L(U,V) .(1.8)

If T ∈ End (V), denote

T 0 = I , T 2 = T ◦ T , . . . , T n = T n−1 ◦ T = T ◦ T n−1 ,

where n ≥ 1 and I is the identity map of V.
The product of endomorphisms is a binary operation on End (V).
We mentioned in Chap. 1, Rem. 5.4 that the inverse of a bijective linear trans-

formation is linear too (it is an easy exercise to prove it).
An injective homomorphism is called a monomorphism.
A surjective homomorphism is called an epimorphism.
A bijective homomorphism is called an isomorphism (see also Chap. 1, Def. 5.3,

Rem. 5.4).

REMARK 1.4 Let us return to the main example. Let A ∈ L(Kn,Km), B ∈
L(Km,Kp) be defined as left multiplication by A ∈ Mm,n(K) and B ∈ Mn,p(K)
respectively. Then:

(i) BA ∈ L(Kn,Kp) is the left multiplication by the matrix AB ∈ Mm,p(K).

(ii) A is bijective ⇐⇒ m = n and A is invertible.

In this case A−1 is the left multiplication by the matrix A−1.
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2 Kernel and Image

Let V and W be two vector spaces and T ∈ L(V,W).

DEFINITION 2.1 The set

Ker T = {x ∈ V ; T (x) = 0} ⊂ V

is called the kernel of T .
The image of T is the usual

Im T = T (V) = {y ∈ W ; ∃x ∈ V such that y = T (x)} ⊂ W .

REMARKS 2.2 Recall that:

(i) T (0) = 0, so 0V ∈ Ker T and 0W ∈ Im T .

(ii) Ker T = {0} if and only if T is injective.

THEOREM 2.3 (i) Ker T is a subspace of V.
(ii) Im T is a subspace of W.

Proof. (i) Let u, v ∈ Ker T , i.e. T (u) = T (v) = 0. Then

T (ku + lv) = kT (u) + lT (v) = k0 + l0 = 0 , ∀ k, l ∈ K .

Thus ku + lv ∈ Ker T , ∀ k, l ∈ K.
(ii) This is a particular case of Thm. 1.1 (i). QED

Example. Let T : R3 −→ R2, T (x) = (2x1 − x2, x1 + x2 + 3x3). We find

Ker T = {(x1, x2, x3) ; 2x1 − x2 = 0, x1 + x2 + 3x3 = 0 }
= {(α, 2α,−α) ; α ∈ R } = Span {(1, 2,−1)} .

Im T =
{

(y1, y2) ; the system
{

2x1 − x2 = y1

2x1 + x2 + 3x3 = y2
is compatible

}
= R2 .

Note that T is surjective, but not injective. We will see later in this section that
a linear transformation between two finite dimensional spaces of the same dimension
is surjective if and only if it is injective.

DEFINITION 2.4 The dimensions of Im T and Ker T are called the rank and
nullity of T respectively.

PROPOSITION 2.5 Let y ∈ Im T . The general solution of the equation

T (x) = y(2.1)

is the sum of the general solution of T (x) = 0 and a particular solution of (2.1).
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Proof. Denote Sy = {x ; T (x) = y} = T −1(y), S0 = {x ; T (x) = 0} = Ker T ,
and fix xp ∈ Sy. We must show that Sy = S0 + {xp}.

For, let x̃ ∈ Sy. Then x̃ = (x̃− xp) + xp ∈ S0 + {xp}, since T (x̃− xp) = T (x̃)−
T (xp) = y − y = 0. Conversely, let x0 ∈ S0; then T (x0 + xp) = T (x0) + T (xp) = y,
hence x0 + xp ∈ Sy. QED

THEOREM 2.6 (The dimension formula) Let T : V −→ W be a linear trans-
formation and assume that V is finite dimensional. Then

dim V = dim (Ker T ) + dim (Im T ) .(2.2)

Proof. Say that dim V = n. Then Ker T is finite dimensional too as a subspace
of V. Let p = dim (Ker T ), 1 ≤ p ≤ n − 1 and B1 = {u1, . . . , up} a basis of Ker T
(the cases p = 0, p = n are left to the reader). Extend B1 to a basis of V (see Chap.
1, Thm. 4.8):

B = {u1, . . . , up, v1, . . . , vn−p} .

Denote wj = T (vj), j = 1, . . . , n− p and B2 = {w1, . . . , wn−p}.
If we show that B2 is a basis of ImT , it will follow that dim (ImT ) = n− p, and

the proof of the theorem will be done. For, let y ∈ Im T . Then y = T (x), for some
x ∈ V. We write x in terms of the basis B of V:

x = a1u1 + . . . + apup + b1v1 + . . . + bn−pvn−p ,

and apply T , using T (ui) = 0. We obtain:

y = T (x) = b1T (v1) + . . . + bn−pT (vn−p) = b1w1 + . . . + bn−pwn−p .

This proves that Im T = SpanB2.
Now suppose that

k1w1 + . . . + kn−pwn−p = 0 , k1, . . . , kn−p ∈ K .(2.3)

From wj = T (vj) it follows that

k1T (v1) + . . . + kn−pT (vn−p) = T (k1v1 + ... + kn−pvn−p) = 0 .

Denote v = k1v1 + . . . + kn−pvn−p; thus v ∈ Ker T . So we may write v in terms
of the basis B1 of Ker T , say v = c1u1 + . . . + cpup. Then

c1u1 + . . . + cpup − k1v1 − . . .− kn−pvn−p = 0 .

By the linear independence of B, c1 = . . . = cp = k1 = . . . = kn−p = 0. Therefore
all scalars in (2.3) vanish, which shows that B2 is linearly independent. Consequently,
B2 is a basis of Im T . QED

In Chapter 1, Lemma 5.6 we proved that for a linear map T there are equivalent
characterizations of injectivity. Using the dimension formula, we can now state more
such characterizations.
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COROLLARY 2.7 Let T ∈ L(V,W), dim V = n, n ∈ N∗. Then the following
statements are equivalent:

(i) T is injective.

(ii) dim (Im T ) = n.

(iii) If {v1, . . . , vn} is a basis of V, then {T (v1), . . . , T (vn)} is a basis of Im T .

Proof. ”(i) =⇒ (ii)” T injective=⇒ Ker T = {0} =⇒ dim (Ker T ) = {0} =⇒
dim (Im T ) = dimV− 0 = n, by the dimension formula (2.3).

”(ii) =⇒ (iii)” It is straightforward that {T (v1), . . . , T (vn)} spans Im T . Then
dim (Im T ) = n implies that {T (v1), . . . , T (vn)} is a basis of Im T (see Cor. 4.8,
Chap. 1).

”(iii) =⇒ (i)” (iii) says that Im T has a basis with n elements, so dim (Im T ) =
n = dim V. By the dimension formula, dim (Ker T ) = 0, so Ker T = {0}, which is
equivalent to (i). QED

3 The Matrix of a Linear Transformation

Throughout this section V and W denote two finite dimensional vector spaces over
the same field K, of dimensions n and m respectively; T : V −→ W is a linear
transformation.

Let B = {v1, . . . , vn} and C = {w1, . . . , wm} be bases of V and W respectively.

DEFINITION 3.1 The matrix T ∈ Mm,n(K) whose j′th column is the coordinate
column vector of T (vj), ∀j ∈ {1, ..., n}, is called the matrix associated to T (or the
matrix of T ) with respect to the bases B and C.

So, if for each j ∈ {1, ..., n} we write T (vj) =
m∑

i=1

tijwi, then T = [tij ] 1 ≤ i ≤ m
1 ≤ j ≤ n

.

Examples

(i) T : R2 −→ R3, T (x) = (2x1 + x2, 3x1, −x1 + 5x2).

Let B = {v1, v2}; C = {w1, w2 w3} be the canonical bases of R2 and R3 respec-
tively. Denote by T the associated matrix.

T = MT
B,C.

Using the definition we find:

T (v1) = T (1, 0) = (2, 3,−1) = 2f1 + 3f2 − f3;

T (v2) = T (0, 1) = (1, 0, 5) = f1 + 5f3.

Thus the 1’st column of T is




2
3

−1


 and the 2’nd column of T is




1
0
5


 ;

T =




2 1
3 0

−1 5


 .



32 CHAPTER 2. LINEAR TRANSFORMATIONS

(ii) V = Span {f1, f2} ⊂ C∞(R); f1(x) = ex cos x, f2(x) = ex sin x, ∀x ∈ R.
T : V −→ V, T (f) = f ′. B = C = {f1, f2} is a basis of V.

T (f1)(x) = f ′1(x) = ex cos x− ex sin x, ∀x ∈ R. So, T (f1) = f1 − f2. Similarly,

T (f2) = f1 + f2. Then T =
[

1 1
−1 1

]
.

REMARKS 3.2 (i) T is uniquely determined by T and T is uniquely determined
by T . (This is immediate, since a linear transformation is uniquely determined
by its values on the basis B, and each T (vj) has a unique representation w.r.t
the basis C.)

(ii) Note that in example (i) above, using the definition of the associated matrix
w.r.t. the canonical bases we recovered the matrix mentioned in a particular
case of the main example; if T : Kn −→ Km, is defined by

T (x) = (
n∑

j=1

t1jxj , ...,

n∑

j=1

tmjxj),

then, according to Definition 3.1, the matrix associated to T w.r.t. the canonical
bases of Kn and Km is obviously the same as the coefficient matrix of the column
t(T (x)), namely T = [tij ].

So, T acts as left multiplication by T .

Moreover, the next proposition points out that any linear transformation of finite
dimensional vector spaces reduces to left multiplication by a matrix. This is why left
multiplication by a matrix was called “the main example”.

PROPOSITION 3.3 (the matrix of a linear transformation)
Let V, W, B, C, T , T as in Def.3.1.

Let also x ∈ V, x =
n∑

j=1

xjvj, and y ∈ W, y =
m∑

i=1

yiwi such that y = T (x).

Denote X =t [x1, ..., xn], Y =t [y1, ..., yn]. Then T can be written in the matrix form
as:

Y = TX, i.e. yi =
n∑

j=1

tijxj , ∀i = 1, ...,m.(3.4)

Proof. T (vj) =
m∑

i=1

tijwi, ∀j = 1, ..., n, since T is the matrix of T .

Then y = T (x) =
n∑

j=1

xj

m∑
i=1

tijwi =
m∑

i=1

(
n∑

j=1

tij)wi.

By the uniqueness of the representation of y in the basis C, yi =
n∑

j=1

tijxj , ∀i =

1, ..., m. QED

COROLLARY 3.4 Let U be another finite dimensional vector space, of basis D,
T ∈ L(V,W), S ∈ L(W,U),

T = the matrix of T w.r.t. B and C;
S = the matrix of S w.r.t. C and D.
Then ST = the matrix of ST w.r.t. B, D.
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PROPOSITION 3.5 Let r = rank T .
Then dim (ImT ) = r and dim (KerT ) = n− r.

Proof. Denote Cj =t [t1j , ..., tmj ] the j’th column of T . By Lemma 5.8 in Chapter
1, we may assume without loss of generality, that C1, ..., Cr are linearly independent
in Mm,1 ' Km and any p columns of T are linearly dependent for p ≥ r+1 (if r < n).

Consider the coordinate system ψ : W → Km associated to the basis C, ψ(y) =

(y1, ..., ym), for y =
m∑

i=1

yiwi. Then ψ(T (vj)) =t Cj . Since ψ is an isomorphism, it

preserves the linear dependence and the linear independence of vectors, and so does
ψ−1. Thus T (v1), ..., T (vr) are linearly independent and any p ≥ r + 1 elements of
{T (v1), ..., T (vn)} are linear dependent.

On the other hand, Im T = Span (T (v1), ..., T (vn)). It follows that {T (v1), ..., T (vr)}
is a basis of Im T , therefore dim (Im T ) = r, then we apply the dimension formula.
QED

We notice that the rank of the associated matrix T does not depend on the chosen
bases. Also, the notation rank T = dim (Im T ) makes now more sense, since the
previous result shos that dim (Im T ) is indeed the rank of a certain matrix.

Using the above result, it is not hard to deduce the next corollary.

COROLLARY 3.6 Let T ∈ L(V,W), V, W finite dimensional, T = the matrix
of T w.r.t. B and C.

(i) T is surjective if and only if dimW = rank T.

(ii) T is injective if and only if dimV = rank T.

(iii) T is bijective if and only if dimV = dimW = rank T.

In this case T is invertible, and the matrix of T −1 w.r.t. C, B is T−1.

(iv) If dimV = dimW = n, then:

T is injective ⇐⇒ T is surjective ⇐⇒ T is bijective ⇐⇒ n = rank T.

Note that a particular case of (iv) is the case V = W, i.e. T ∈ End(V), V finite
dimensional.

PROPOSITION 3.7 Let T ∈ End(V), dimV = n, n ∈ N and B = {v1, . . . , vn}
B′ = {v′1, . . . , v′n} two bases of V. Denote by A and B the matrices associated to
T w.r.t. the basis B, and B′ respectively.

Then B = C−1AC, where C is the matrix of change from B to B′.

Proof. Let C = [cij ], A = [aij ], B = [bij ] and C−1 = [dij ]. Then

v′j =
n∑

i=1

cijvi, vj =
n∑

i=1

dijv
′
i, ∀j = 1, ..., n.(3.5)

T (vi) =
n∑

k=1

akivk, ∀i = 1, ..., n; T (v′j) =
n∑

l=1

bljv
′
l, ∀j = 1, ..., n.(3.6)
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Combining (3.5) and (3.6) we obtain:

T (v′j) =
n∑

i=1

cijT (vi) =
n∑

i=1

n∑

k=1

cijakivk =
n∑

i=1

n∑

k=1

cijaki

n∑

l=1

dlkv′l =

=
n∑

l=1

(
n∑

i=1

n∑

k=1

dlkakicij)v′l, ∀j = 1, ...n.

By the uniqueness of the representation of T (v′j) w.r.t. B′ and (3.6), it follows that

blj =
n∑

k=1

n∑
i=1

dlkakicij , ∀ l, j = 1, ..., n, thus B = C−1AC. QED

DEFINITION 3.8 The matrices A,B ∈ Mn,n(K) are called similar if there exists
a nonsingular matrix C ∈ Mn,n(K), such that B = C−1AC.

By the previous proposition, two matrices are similar if and only if they represent
the same endomorphism (with respect to different bases).

REMARKS 3.9 Properties of similar matrices

(i) Similarity of matrices is an equivalence relation on Mn,n(K).

(ii) Similar matrices have the same rank.

(iii) Nonsingular similar matrices have the same determinant. As a consequence, it
makes sense to define the determinant of an endomorphism as the determinant
of the associated matrix with respect to an arbitrary basis.

4 Particular Endomorphisms

DEFINITION 4.1 Let V be a K-vector space and F ∈ L(V,V).

(i) F is an automorphism if it is bijective.

(ii) F is a projection if F2 = F .

(iii) F is an involution if F2 = idV .

(iv) F is a complex structure if F2 = −idV , for K=R.

(v) F is nilpotent of index p if Fp−1 6= 0, Fk = 0, ∀k ≥ p, where p ∈ {2, 3, . . .}.

Denote Gl(V) = {F ∈ L(V,V)| F is an automorphism }. Gl(V) is not a vector
space, but it is a group with respect to the product (composition) of automorphisms.

Gl(V) is called the general linear group of V.

THEOREM 4.2 If F : V → V is a projection, then V = Ker F ⊕ Im F .
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Proof. Let v ∈ V, F(v) ∈ ImF , w = v−F(v) ∈ V. Then F(w) = F(v)−F2(v) =
0, thus w ∈ KerF , which shows that V = KerF + ImF . By the dimension formula,
dim V = dim Ker F + dim Im F , therefore dim (KerF ∩ Im F) = 0, so the sum is
direct. QED

Obviously if F is a projection, then idV − F is a projection too. The theorem
could be reformulated:

If F1 and F2 are projections such that F1+F2 = idV, then V = ImF1 ⊕ ImF2.
The latter form has the following generalization.

THEOREM 4.3 If Fi : V → V, i = 1, ..., p are projections such that FiFj =

0, ∀i 6= j and
p∑

i=1

Fi = idV , then V = Im F1 ⊕ ...⊕ Im Fp.

Proof. The conclusion follows easily from the previous theorem, by induction.
Note that for the induction step we need F1 + ... +Fp−1 to be a projection. To show
this, use F2

i = Fi, and FiFj = 0, ∀i 6= j.
The details of the proof are left to the reader. QED

THEOREM 4.4 A finite dimensional real vector space V admits a complex struc-
ture if and only if dimV is even.

Proof. Suppose dimV = n = 2m. Let B = {e1, ..., em, em+1, ..., e2m} be a basis of
V. Define the endomorphism F : V → V by

F(ei) = em+i, F(em+i) = −ei, i = 1, ...,m.

Then F(ej) = −ej , ∀j = 1, ..., n, so F2 = −idV . Conversely, let F be a complex
struture on V. Choose v1 ∈ V, v1 6= 0; then v1, F(v1) are linearly independent.
For, suppose by contradiction that F(v1) = kv1, for some k ∈ R. It follows that
−v1 = F2(v1) = kF(v1) = k2v1; but this is impossible for k ∈ R.

If dimV > 2, then we can choose v2 ∈ V such that v1, v2, F(v1) are linearly
independent. We can show similarly that v1, v2, F(v1), F(v2), are linearly indepen-
dent. Continuing the process we obtain a basis which has an even number of elements.
QED

Note that the matrix associated to the complex structure F with respect to the

basis {v1, ..., vm,F(v1), ...F(vm)} is
[

0 −Im

−Im 0

]
.

THEOREM 4.5 If N ∈ L(V,V) is a nilpotent endomorphism of index p, and
x0 ∈ V such that N p−1 6= 0, then the vectors x0, ,N (x0), ...,N p−1(x0) are linearly
independent.

Proof. Let k0, ..., kp−1 ∈ K such that

p−1∑

i=0

kiN i(x0) = 0.

Applying N p−1 to this equality we obtain k0 = 0. Next, apply successively N p−2,
. . . , N 2, N to obtain k1 = ... = kp−1 = 0. QED

Note that Span {x0, N (x0), ...N p−1(x0)} is an invariant subspace of V.
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THEOREM 4.6 If dimV = n ≥ 1, T ∈ L(V,V), then there exist two subspaces U
and W of V, invariant with respect to T such that:

(i) V = U⊕W;

(ii) T |U is nilpotent;

(iii) T |W is invertible, when W 6= {0}.
Proof. Denote Nk = Ker (T k) and Rk = Im (T k), k ∈ N?. Obviously, these are

invariant subspaces with respect to T , and

Nk ⊆ Nk+1, Rk ⊇ Rk+1, ∀k.

Moreover,
Nk = Nk+1 ⇒ Nk+1 = Nk+2 and Rk = Rk+1(4.7)

Let us prove (4.7). Assume Nk = Nk+1 and v ∈ Nk+2.

T k+1(T v) = 0 ⇒ T v ∈ Nk+1 = Nk ⇒ T k(T v) = 0 ⇒ v ∈ Nk+1.

To prove Rk = Rk+1, use the dimension formula

dimV = dimNk + dimRk = dimNk+1 + dimRk+1,

which implies dimRk = dimRk+1, thus Rk = Rk+1, as Rk ⊇ Rk+1.
Now, since V is finite dimensional, there exists the smallest p ∈ N? such that

N1 ⊂ N2 ⊂ ... ⊂ Np = Np+1 = Np+2 = ...

and R1 ⊃ R2 ⊃ ... ⊃ Rp = Rp+1 = Rp+2 = ...

Take U = Np, W = Rp. Using the dimension formula it suffices to prove either
V = U + W or U ∩W = {0} in order to obtain (i). Let v ∈ U ∩W. Then T pv = 0
and v = T pw for some w; it follows that w ∈ N2p. But N2p = Np, so T pw = 0, which
proves U ∩W = {0}, therefore (i).
Since U is T -invariant, we can consider T |U : U → U; by the definition of p and Np

it follows that T p(Np) = {0} and T p−1(Np) 6= {0}, so T |U is nilpotent of index p.
For (iii), assume W 6= {0}. If w ∈ W and T w = 0, then w = T pu, some u; it

follows that u ∈ Np+1. From Np = Np+1 follows w = 0. This shows that
T |W : W → W is injective, hence invertible (as W is finite dimensional). QED

Examples

(i) T : R3 → R3 defined by the matrix T =




1 1 1
0 1 1
0 0 1


 is nilpotent of index 2

since T 2 = 0.

(ii) Let D : P3 → P3, where P3 is the space of polynomials of degree less or equal
to 3, with real coefficients, D(p) = p′. Then D is nilpotent of index 4, because
p(4) = 0, ∀ p ∈ P3, while D3 6= 0, since the third derivative of polynomials of
degree 3 is not 0.
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5 Endomorphisms of Euclidean Vector Spaces

Let (V, 〈 , 〉) be a Euclidean K-vector space, K = R or K = C, and T ∈ End(V).
When V is finite dimensional it is not hard to prove that there exists an endo-

morphism T ∗ ∈ End(V), uniquely determined by T which satisfies

〈x, T y〉 = 〈T ∗x, y〉 , ∀x, y ∈ V .(5.1)

We will accept without proof that all (possibly infinite dimensional) Euclidean
vector spaces we are working with in this course have the property mentioned above
for the finite dimensional case. Then the following definition makes sense.

DEFINITION 5.1 The endomorphism T ∗ defined by (5.1) is called the adjoint of
T . If K = R, then T ∗ is also called the transpose of T .

REMARKS 5.2

(i) id∗V = idV.

(ii) Note that (5.1) is eqiuvalent to

〈T x, y〉 = 〈x, T ∗y〉 , ∀x, y ∈ V .(5.2)

(iii) (T ∗)∗ = T , ∀ T ∈ End(V).

DEFINITION 5.3 If T = T ∗, then T is called Hermitian, when K = C,
and symmetric when K = R, or
self adjoint in both cases (either K = C or K = R).

If T = −T ∗, then T is called skew Hermitian when K = C,
and skew symmetric (or antisymmetric), when K = R.

If T satisfies

〈T x, T y〉 = 〈x, y〉 , ∀x, y ∈ V (i.e. T preserves the scalar product),(5.3)

then T is called unitary, when K = C,
and orthogonal, when K = R.

The notions of Hermitian, symmetric, unitary etc. are used for matrices too. A
matrix A ∈ Mn,n(C) is called

symmetric if A = tA

Hermitian if A = tA

skew symmetric if A = − tA

skew Hermitian if A = −tA

orthogonal if A tA = I and A ∈ Mn,n(R)

unitary if A tA = I and A ∈ Mn,n(C)
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We will see later that the definitions given above for endomorphisms and matrices
are related in a natural way.

PROPOSITION 5.4 Let T , S ∈ End(V).

(i) (T S)∗ = S∗T ∗.
(ii) If T is invertible, then T ∗ is invertible too; moreover, (T ∗)−1 = (T −1)∗.

(iii) (T + S)∗ = T ∗ + S∗.
(iv) If K = C, k ∈ C, then (kT )∗ = kT ∗.
(v) If K = R, k ∈ R, then (kT )∗ = kT ∗.

Proof.

(i) 〈x, (T S)y〉 = 〈x, T (Sy)〉 = 〈T ∗x,Sy〉 = 〈S∗(T ∗x), y〉 = 〈(S∗T ∗)x, y〉.
The adjoint of T S is unique, thus (T S)∗ = S∗T ∗.

(ii) We have already noticed that idV
∗ = idV. If we take the adjoint of both

sides in T T −1 = idV and T −1T = idV, and apply (i), we get (T −1)∗T ∗ = idV =
T ∗(T −1)∗.

(iii) is immediate by the additivity of the inner product with respect to each
argument.

Now, let us prove (iv).

〈x, (kT )y〉 = 〈x, k(T y)〉 = k〈x, T y〉 by conjugate linearity

= k〈T ∗x, u〉 = 〈(kT ∗)x, y〉.
Again, apply the uniqueness of the adjoint.

To prove (v) we proceed like in (iv), but use linearity with respect to the second
argument instead of conjugate linearity. QED

We deduce easily the next corollary for self-adjoint endomorphisms.

COROLLARY 5.5 Let T , S be two self-adjoint endomorphisms of V (K = R or
K = C) and k ∈ R. Then

(i) The endomorphism T S is self-adjoint if and only if T S = ST .
(ii) If T is invertible, then T −1 is self-adjoint too.
(iii) kT + S is self-adjoint.

THEOREM 5.6 Assume K = C. Then T is Hermitian if and only if

〈x, T x〉 ∈ R , ∀x ∈ V .

Proof. If T = T ∗, then 〈T x, x〉 = 〈x, T x〉, by (5.1). But 〈x, T x〉 = 〈T x, x〉, by
Hermitian symmetry of the inner product, so the scalar product 〈x, T x〉 = 〈T x, x〉 is
real, ∀x ∈ V.

Conversely, if 〈x, T x〉 ∈ R, ∀x ∈ V, it follows that

〈x, T x〉 = 〈x, T x〉 = 〈T ∗x, x〉 = 〈x, T ∗x〉 , ∀x ∈ V .



5. ENDOMORPHISMS OF EUCLIDEAN VECTOR SPACES 39

Then 〈x, (T − T ∗)x〉 = 0, ∀x ∈ V. If we replace x by x + αy, α ∈ C, we obtain

α〈y, (T − T ∗)x〉+ α〈x, (T − T ∗)y〉 = 0 , ∀x, y ∈ V , ∀α ∈ C .

Now take α = 1, then α = i to get 〈x, (T − T ∗)y〉 = 0, ∀x, y ∈ V. If in the last
equality x = (T − T ∗)y, it follows that T − T ∗ = 0. QED

THEOREM 5.7 The endomorphism T preserves the scalar product if and only if it
preserves the norm, i.e.

〈T x, T y〉 = 〈x, y〉 , ∀x, y ∈ V ⇐⇒ ‖T x‖ = ‖x‖ , ∀x ∈ V .

Proof. ”⇒” For y = x we obtain ‖T x‖2 = ‖x‖2, thus ‖T x‖ = ‖x‖.
”⇐” If K = C, then

〈x, y〉 =
1
4
(‖x + y‖2 − ‖x− y‖2 + i‖x + iy‖2 − i‖x− iy‖2) ;

If K = R, then

〈x, y〉 =
1
4
(‖x + y‖2 − ‖x− y‖2) .

In the left hand side of each identity replace 〈x, y〉 by 〈T x, T y〉, then use ‖T (x +
cy)‖ = ‖x + cy‖, c ∈ {±1,±i}, to end up with 〈x, y〉. QED

PROPOSITION 5.8 T preserves the inner product if and only if T ∗T = idV.

Proof.

〈T x, T y〉 = 〈x, y〉, ∀x, y ∈ V ⇔ 〈T ∗T x, y〉 = 〈x, y〉, ∀x, y ∈ V
⇔ 〈(T ∗T − idV)x, y〉 = 0, ∀x, y ∈ V
⇔ T ∗T = idV. QED

REMARKS 5.9
(i) If T preserves the inner product, then T is injective. (This may be deduced

either from Prop.5.8 or Thm.5.7. By Prop.5.8, T admits a left inverse, thus it is
injective. It is an easy exercise for the reader to prove that Ker T = {0} using Thm.
5.7.

(ii) If V is finite dimensional, then T preserves the inner product if and only if
T ∗T = T T ∗ = idV.

In some books an unitary endomorphism T is defined as an endomorphism which
satisfies T ∗T = T T ∗ = idV. This condition is stronger than the one we used in the
definition here, but they are equivalent in the finite dimensional case. The equivalence
comes up easily from Prop.5.8, if we recall that a linear transformation of finite
dimensional vector spaces is injective if and only if it is bijective.

THEOREM 5.10 Let V be finite dimensional, dimV = n, B = {e1, . . . , en} an
orthonormal basis of V, and T = [tij ] the matrix of T w.r.t. B.

(I) Assume K = C. Then:

(I.i) T is Hermitian ⇔ T is Hermitian.
(I.ii) T is skew Hermitian ⇔ T is skew Hermitian.
(I.iii) T is unitary ⇔ T is unitary.
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(II) Assume K = R. Then:

(II.i) T is symmetric ⇔ T is symmetric.
(II.ii) T is skew symmetric ⇔ T is skew symmetric.
(II.iii) T is orthogonal ⇔ T is orthogonal.

Proof. The proofs of (II) are almost the same as the ones for (I). We will only
prove (I.i), leaving the rest to the reader.

Denote by [t∗ij ] the matrix of T ∗ w.r.t. B. Multiplying T ej =
n∑

k=1

tkjek by ei in

the sense of the inner product, we obtain

〈T ej , ei〉 =
〈 ∑

k

tkjek, ei

〉
= tij .(5.4)

Similarly, 〈T ∗ej , ei〉 = t∗ij . But

〈T ∗ej , ei〉 = 〈ej , T ei〉 = 〈T ei, ej〉 = tji .(5.5)

If T is Hermitian, i.e. T = T ∗, from (5.4), (5.5) follows tij = tji , ∀ i, j, hence
T = tT .

Conversely, assume tij = tji , ∀ i, j. then

〈x, T x〉 =
〈 n∑

j=1

xjej ,

n∑

k=1

xkT ek

〉
=

n∑

j,k=1

xj xk 〈ej , T ek〉

=
n∑

j,k=1

xj xk 〈T ek, ej〉 =
n∑

j,k=1

xj xk tjk =
n∑

j,k=1

xj xk tkj

=
n∑

k,j=1

xk xj tkj = 〈x, T x〉 ,

thus 〈x, T x〉 ∈ R and T is Hermitian by Theorem 5.6. QED
Note that the theorem is no longer true if we remove the condition on the basis

to be orthonormal, as we see in the next example.

Example
Let T : C2 −→ C2 such that the matrix of T with respect to the canonical basis

B is T =
[

0 i
−i 2

]
. The canonical basis of C2 is orthonormal, and T = tT , thus

T is Hermitian by the theorem. Consider the basis B1 =
{
f1 = (1, 0), f2 = (1, 1)

}
;

〈f1, f2〉 = 1 6= 0. Denote by T1 the matrix of T w.r.t. B1. Then T1 =
[

2− i i
2 + 2i −i

]
,

which is not a Hermitian matrix.
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6 Isometries

Throughout this section V denotes a real Euclidean vector space, and d : V×V → R is
the Euclidean distance. Orthogonal endomorphisms of V preserve the inner product,
therefore they preserve the Euclidian norm and the Euclidean distance. The origin is
a fixed point for any endomorphism. Let us introduce other maps which are distance
preserving, but in general do not fix the origin.

DEFINITION 6.1 Let a ∈ V. The map T : V → V defined by T (x) = x + a,
∀x ∈ V, is called the translation by the vector a. In order to avoid confusion we
denote sometimes this map by Ta.

Note that in general translations are not linear; the only linear translation is the
one corresponding to a = 0, namely the identity map.

The next properties of translations are straightforward.

THEOREM 6.2 If a, b ∈ V and Ta, Tb are the translations by a, and b respectively,
then

1) Ta ◦ Tb = Tb ◦ Ta = Ta+b;
2) Ta is bijective, and its inverse is (Ta)−1 = T−a.

It follows that composition of functions defines an abelian group structure on the
set of all translations of V, and this group is isomorphic to the additive group (V,+).

PROPOSITION 6.3 Translations are distance preserving, i.e.

d(T (x), T (y)) = d(x, y), ∀x, y ∈ V.

Proof.

d(T (x), T (y)) = ‖(y + a)− (x + a)‖ = ‖y − x‖ = d(x, y), ∀x, y ∈ V. QED

DEFINITION 6.4 An isometry of V is a surjective map F : V → V which pre-
serves the Euclidean distance, i.e.

d(F(x),F(y)) = d(x, y), ∀x, y ∈ V.

REMARKS 6.5 1) By the properties of distance, it is obvious that any distance
preserving map is injective, therefore isometries are bijective maps.

2) Surjective orthogonal transformations are isometries.
3) Orthogonal transformations of finite dimensional Euclidean vector spaces are

isometries.
4) Translations are isometries.
5) The product (composite map) of two isometries is an isometry. Moreover, the

product of maps defines a group structure on the set of all isometries of the Euclidean
vector space V. The group of translations is a subgroup in this group.

The next theorem is the main step in proving that any isometry is the product of
a translation and an orthogonal transformation.
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THEOREM 6.6 An isometry F : V → V satisfying F(0) = 0 is an orthogonal
transformation.

Proof. It is easy to see that F preserves the norm:

‖F(x)‖ = ‖F(x)− 0‖ = d(0,F(x)) = d(F(0),F(x)) =

= d(0, x) = ‖x− 0‖ = ‖x‖, ∀x ∈ V.

Using this property, we show next that F preserves the inner product.

d(F(x),F(y)) = d(x, y) ⇔ ‖F(y)−F(x)‖ = ‖y − x‖ ⇔
〈F(y)−F(x),F(y)−F(x)〉 = 〈y − x, y − x〉 ⇔

〈F(y),F(x)〉 = 〈x, y〉, ∀x, y ∈ V.

It remains to show that F is linear. We show first that F is homogeneous.

〈F(kx),F(y)〉 = 〈kx, y〉 = k〈x, y〉 =

= k〈F(x),F(y)〉 = 〈kF(x),F(y)〉, ∀x, y ∈ V, ∀k ∈ R.

Then

〈F(kx),F(y)〉 = 〈kF(x),F(y)〉 ⇒ 〈F(kx)− kF(x),F(y)〉 = 0, ∀x, y ∈ V, ∀k ∈ R.

Fix now x ∈ V and k ∈ R. By the surjectivity of F , there exits y ∈ V such that
F(kx) − kF(x) = F(y). For this y, using the positivity of the inner product we get
F(kx)− kF(x) = 0, thus F is homogeneous.

We proceed similarly to prove the additivity of F . Let x, y ∈ V.

〈F(x + y),F(z)〉 = 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉 =

= 〈F(x),F(z)〉+ 〈F(y),F(z)〉 = 〈F(x) + F(y),F(z)〉.
Then

〈F(x + y)−F(x)−F(y),F(z)〉 = 0, ∀z ∈ V.

Take z such that F(x+ y)−F(x)−F(y) = F(z), then use the positivity of the inner
product to obtain F(x + y)−F(x)−F(y) = 0, i.e. F additive. QED

THEOREM 6.7 (characterization of isometries) If F is an isometry, then there
exist a translation T and an orthogonal transformation R such that F = T ◦ R.

Proof. Let T be the translation by vector F(0). Then T −1 is the translation by
−F(0). The map T −1 ◦ F is an isometry which fixes the origin. By the previuos
theorem, T −1 ◦ F is an orthogonal transformation. Denote R = T −1 ◦ F . Then
F = T ◦ R. QED

Suppose now dimV = n ∈ N? and consider an orthonormal basis B = {e1, . . . , en}.
If R is an orthogonal transformation, {R(e1), . . . ,R(en)} is an orthonormal basis
too. The matrix R associated to R w.r.t. B is orthogonal, thus (detR)2 = 1. If
detR = +1, R is called a rotation.

If F = T ◦ R is an isometry such that R is a rotation, F is said to be a positive
(or orientation preserving) isometry. When detR = −1, F is said to be a negative
(or orientation reversing) isometry.
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7 Problems

1. Let ā 6= 0̄ be a fixed vector in the space of the free vectors V3, and the map
T : V3 → V3, T (x̄) = ā× x̄.

1) Show that T is a linear transformation.
2) Show that T is neither injective, nor surjective.
3) Find Ker(T ), Im(T ), and show that Ker(T )⊕ Im(T ) = V3.

2. Let Pn be the complex vector space of the polynomial functions of degree at
most n. Show that the map T : Pn → Pn, defined by T p(x) = p(x + 3) − p(x),
∀x ∈ C, is a linear transformation. Is T injective?

3. In each of the following cases determine the matrix associated to T with respect
to the canonical bases, the rank, and the nullity of T .

1) T : R3 → C3, T (x) = ix.

2) T : M2×2(K) →M2×2(K), T (A) = tA.

3) T : C →M2×2(C), T (x) = x

[
1 i
−i 1

]
.

4. Let ā 6= 0̄ be a fixed vector in V3, and the map T : V3 → R, T (x) = 〈ā, x̄〉.
1) Show that T is a linear form.
2) Study the injectivity and the surjectivity T .
3) Determine Ker(T ), Im(T ) and their dimensions.

5. Which of the following maps is a linear transformation? Determine its kernel
and its image.

1) T : R3 → R3, T (x) = (x1 + x2, x1 − x2, 2x1 + x2 − x3)

2) T : R3 → R3, T (x) = (x1 + x2, x1 − x2 + 5, 2x1 + x2 − x3)

6. Determine the matrices of the endomorphisms Tj : R3 → R3, j = 1, 2, with
respect to the basis {v1 = (1, 1, 1), v2 = (1, 0, 1), v3 = (0, 1, 1)}, knowing that

1) T1 =




0 1 −1
1 1 2
3 2 1


 , 2) T2 =



−1 0 1
2 1 2
0 1 2




are the matrices of the transformations, with respect to the basis {w1 = (1, 2, 3),
w2 = (3, 1, 2), w3 = (2, 3, 1)}.

7. 1) Show that the endomorphism T : M3×3(R) → M3×3(R), T (A) = tA is a
symmetric involution.

2) Let V be the real Euclidean vector space of C∞ functions f defined on [a,b],
with f(a) = f(b). Show that the differentiation operator D : V → V, D(f) = f ′ is
antisymmetric.

3) Show that the endomorphism T : R2 → R2,

T (x) = (x1 cosα− x2 sin α, x1 sin α + x2 cosα), α ∈ R,

is orthogonal.
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8. The endomorphism T : R3 → R3 is defined by

T (x, y, z) = (x− y + z, y, y).

1) Show that T is a projection.
2) Determine the dimension and a basis for Ker(T ) and for Im(T ).

9. Let T : C2 → C2 be the endomorphism defined by the matrix

T =
[

6− 2i 2i
4 + 8i 0

]

with respect to the canonical basis of the complex vector space C2.
Find the Hermitian endomorphisms T1 and T2 such that T = T1 + iT2, and their

matrices w.r.t. the canonical basis.



Chapter 3

Eigenvectors and Eigenvalues

1 General Properties

Let V be a K-vector space, and T : V → V an endomorphism.
The concept of eigenvector is closely related to that of invariant subspace.

DEFINITION 1.1 A vector x ∈ V\{0} is an eigenvector of T if there exists λ ∈ K
such that

T x = λx.(1.1)

The scalar λ is called the eigenvalue associated to the eigenvector x. The set of all
eigenvalues of the endomorphism T is called the spectrum of T and is denoted by
Spec T .

Obviously, an eigenvector can be described as a basis of a one-dimensional T -
invariant subspace.

Geometrically, an eigenvector is a nonzero vector v, such that v and T v are
collinear.

If dimV = n and v is an eigenvector of T , T v = λv, we can extend {v} to a basis
{v1 = v, v2, . . . , vn}. Then the matrix of T with respect to this basis will be of the

form: T =
[

λ A
0 B

]
, for some A ∈ M1,n−1(K), B ∈ Mn−1,n−1(K).

DEFINITION 1.2 Let T be an n× n matrix with entries in K. An eigenvector of
T is a column vector X ∈ Kn \ {0}, which is an eigenvector for left multiplication by
T, i.e. ∃λ ∈ K such that

TX = λX,(1.2)

As above, λ is called an eigenvalue (of the matrix T ).

REMARK 1.3 Let V be finite dimensional, B a fixed basis, T the matrix of T
w.r.t. B, x ∈ V, λ ∈ K, and X ∈ Kn the coordinate column of x with respect to B.
Then

T x = λx ⇐⇒ TX = λX.(1.3)

45
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We saw in Chap.2, Section 3 that similar matrices represent the same endomorphism
(with respect to different bases). By (1.1), (1.2), (1.3) follows that similar matrices
have the same eigenvalues; if B = C−1AC and X an eigenvector for A, then C−1X
is an eigenvector for B corresponding to the same eigenvalue.

Sometimes eigenvectors and eigenvalues are called characteristic (or proper) vectors,
and characteristic (or proper) values, respectively.

DEFINITION 1.4 Let λ ∈ K and denote

S(λ) = {x ∈ V | T x = λx}.

If λ is an eigenvalue of T , S(λ) is called the eigenspace of λ.

The following proposition is immediate; this type of result, that describes eigen-
values without involving eigenvectors will prove very helpful.

PROPOSITION 1.5 (i) S(λ) = Ker (T − λ idV ).
(ii) λ is an eigenvalue of T if and only if Ker (T − λ idV ) 6= {0}.

From (i) follows that S(λ) is a subspace of V, since it is the kernel of a linear
operator.

Examples

(i) Consider V = C∞(R) and the endomorphism D : V → V, D(f) = f ′.

Each λ ∈ R is an eigenvalue of D; it is easy to check that the function fλ,
fλ(x) = eλx is an eigenvector for λ. Moreover, for a fixed λ we can solve the
differential equation f ′ = λf whose solution is

S(λ) = {f | f(x) = ceλx, ∀x ∈ R, for some c ∈ R} = Span {fλ}.
In this example it happens that all eigenspaces are one-dimensional.

(ii) V = R3, T : V → V, T (x, y, z) = (4x + 6y, −3x− 5y, −3x− 6y + z).

We can check that λ1 = −2 is an eigenvalue with a corresponding eigenvector
v1 = (1,−1, 3), and λ2 = 1 is an eigenvalue with a corresponding eigenvector
v2 = (−2, 1, 0), and another one v3 = (0, 0, 1).

At the end of the next section it will be striaghtforward that that -2 and 1 are the
only eigenvalues, and S(−2) = {(x, y, z) |x+y = 0, x−2y+z = 0} = Span {v1},
S(1) = {(x, y, z) |x + 2y = 0} = Span {v2, v3}; dimS(−2) = 1, S(−2) is a
straight line, and dimS(1) = 2, S(1) is a plane.

THEOREM 1.6 (i) For an eigenvector of T corresponds a single eigenvalue.
(ii) Eigenvectors corresponding to distinct eigenvalues are linearly independent.
(iii) S(λ) is an invariant subspace of T .
(iv) Eigenspaces corresponding to two distinct eigenvalues are independent.

Proof. (i) Let v ∈ V \ {0} such that T v = λv and T v = λ1v. Then (λ−λ1)v = 0,
v 6= 0 imply λ = λ1.
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(ii) Let v1, . . . , vp be eigenvectors, corresponding to the distinct eigenvalues
λ1, . . . , λp. We proceed by induction on p. For p = 1, (ii) is obvious since v1 6= 0, as
v1 is an eigenvector. Assume (ii) is true for p− 1, p ≥ 2. Suppose that

k1v1 + . . . + kpvp = 0.(1.4)

Then T (k1v1 + . . . + kpvp) = 0, and thus

k1λ1v1 + . . . + kpλpvp = 0(1.5)

If we multiply (1.4) by λp and subtract from (1.5), we get

k1(λ1 − λp)v1 + . . . + kp−1(λp−1 − λp)vp−1 = 0

By the inductive hypothesis this yields k1 = . . . = kp−1 = 0, since λj are distinct.
Replacing in (1.4), follows kpvp = 0, therefore kp = 0.

(iii) We have already noticed that S(λ) is a subspace. If x ∈ S(λ), then T (T x) =
T (λx) = λ(T x). Thus T x ∈ S(λ).

(iv) Let λ1, λ2 be distinct eigenvalues. We will show that S(λ1) ∩ S(λ2) = {0},
i.e. S(λ1) and S(λ2) are independent. Let v ∈ S(λ1)∩S(λ2); T v = λ1v = λ2v implies
(λ1 − λ2)v = 0. Since λ1 6= λ2, it follows that v = 0. QED.

2 The Characteristic Polynomial

Throughout this section, V denotes a finite dimensional K-vector space, K = R or
K = C, dimKV = n, and T : V → V is an endomorphism.

Let also A = [aij ] be a n× n matrix with entries in K.

LEMMA 2.1 Let T be the matrix of T with respect to an arbitrary basis, and λ ∈ K.
Then λ is an eigenvalue of T if and only if det (T − λI) = 0.

Proof. We saw that λ is an eigenvalue of T if and only if it is an eigenvalue
for T . The existence of an eigenvector of T is equivalent to the fact that the linear
homogeneous system (T − λI)X = 0 has nontrivial solutions. A necessary and suffi-
cient condition for the existence of nontrivial solutions is that the determinant of the
system is zero. QED

Now, in order to determine the eigenvalues of T , it suffices to solve a polynomial
equation of degree n. Once the eigenvalues are found, for each of them it remains to
solve a linear system.

Next we will take a closer look to the case of matrices. For the matrix A = [aij ] ∈
Mn,n(K), the matrix equation (A− λI)X = 0 can be written as a system





(a11 − λ)x1 + a12x2 + . . . + a1nxn = 0
a21x1 + (a22 − λ)x2 + . . . + a2nxn = 0
...........................................................
an1x1 + an2x2 + . . . + (ann − λ)xn = 0
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which has nontrivial solutions if and only if

det(A− λI) =

∣∣∣∣∣∣∣∣∣

a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n

. . .
an1 an2 . . . ann − λ

∣∣∣∣∣∣∣∣∣
= 0.

DEFINITION 2.2 The polynomial P (λ) = det(A− λI) is called the characteristic
polynomial of the matrix A, and the equation P (λ) = det(A − λI) = 0, λ ∈ K, is
called the characteristic equation of the matrix A. Sometimes we write PA(λ) in order
to avoid confusion.

The eigenvalues of the matrix A are the solutions of its characteristic equation. This
equation has always n complex solutions, counted with their multiplicities (the funda-
mental theorem of algebra!), but it might have no real ones. Sometimes the eigenvalues
of A are understood to be complex, even if K = R; in this case the corresponding
eigenvectors are in the complexification of Rn, denoted by CRn ' Cn.

THEOREM 2.3 (i) The characteristic polynomial of A has the form

P (λ) = (−1)n[λn − (tr A)λn−1 + . . . + (−1)ndetA]

(ii) Similar matrices have the same characteristic polynomial.
(iii) The matrices A and tA have the same characteristic polynomial.

Proof. (i) We omit the general proof; it can be shown that the coefficient of
λk is the sum of principal minors of order k of A, multiplied by (−1)k. A direct
computation sorts out the problem for low dimensional cases.

For instance, suppose A is of order 3. Then

P (λ) =

∣∣∣∣∣∣

a11 − λ a12 a1n

a21 a22 − λ a2n

a31 a32 a33 − λ

∣∣∣∣∣∣
= −λ3 + λ2(tr A)− λJ + detA,

where tr A = a11 + a22 + a33, J =
∣∣∣∣

a11 a12

a21 a22

∣∣∣∣ +
∣∣∣∣

a11 a13

a31 a33

∣∣∣∣ +
∣∣∣∣

a22 a23

a32 a33

∣∣∣∣ .

(ii) Assume B = C−1AC. Then

det (B − λI) = det (C−1AC − λI) = det (C−1(A− λI)C)
= detC−1det (A− λI)detC = det (A− λI).

(iii) PA(λ) = det (A− λI) = det t(A− λI) = det (tA− λI) = PtA(λ).

THEOREM 2.4 The eigenvalues of a complex Hermitian matrix are real. In par-
ticular, all eigenvalues of a symmetric real matrix are real.

Proof. Recall that a Hermitian matrix A is equal to the complex conjugate of its
transpose: A = tA, or equvalently A = tA.

Let λ be an eigenvalue of A, and X an associated eigenvector. By conjugating the
relation

(?) AX = λX, we find (??) ĀX = λ̄X.
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In (?) we left multiply by tX, then take the transpose of both sides to get tXtAX =
λtXX. Left multiplicatin by tX in (??) implies tXĀX = λ̄ tXX. Then (λ− λ̄)tXX = 0
since Ā = tA. But X 6= 0 since it is an eigenvector, so tXX = ‖X‖2 6= 0. Therefore
λ = λ̄, i.e. λ ∈ R. QED.

DEFINITION 2.5 Let T be the matrix of T associated to an arbitrary basis. The
polynomial P (λ) = det(T − λI) is called the characteristic polynomial of the en-
domorphism T . When we want to point out the endomorphism in order to avoid
confusion, we will use the notation PT (λ). The equation P (λ) = 0, λ ∈ K, is called
the characteristic equation of the endomorphism T

Note that for each fixed λ ∈ K, PT (λ) does not depend on the basis we choose; for
any other basis the matrix of (T − λ idV) is similar to T − λI, thus it has the same
determinant. This shows that the characteristic polynomial of an endomorphism of a
finite dimensional vector space depends on the endomorphism only, so the definition
makes sense.

We may also define the terms trace and determinant of T to be those obtained
using the matrix of T with respect to an arbitrary basis: tr T = tr T, det T = det T ,
since these are coefficients of PT (λ), thus independent of the choice of basis (see also
Chap2, Remarks 3.9).

The degree of P (λ) is n, since dimV = n = the order of the matrix (T − λI). It
follows that T has at most n distinct eigenvalues in K. If this is this is the case, and
we pick one eigenvector for each eigenvalue, we obtain a basis (see Thm 1.6 (ii)). The
associated matrix of T is a diagonal matrix whose diagonal entries are the eigenvalues
of T . In the next section we will see what happens when P (λ) has multiple roots.

Examples

(i) Consider again the endomorphism T : R3 → R3, T (x, y, z) = (4x + 6y, −3x−
5y, −3x− 6y + z), from the previous section. Our purpose is to determine all eigen-
values and the eigenvectors of T .

The associated matrix with respect to the canonical basis is T =




4 6 0
−3 −5 0
−3 −6 1


 ,

and the characteristic polynomial

P (λ) =

∣∣∣∣∣∣

4− λ 6 0
−3 −5− λ 0
−3 −6 1− λ

∣∣∣∣∣∣
= −(λ + 2)(λ− 1)2.

Then the eigenvalues are the roots of P (λ), namely -2 and 1. In order to find the
eigenvectors, for each eigenvalue λ we solve the system (T − λI)X = 0. Here, for
λ = −2, we have to solve:

(T + 2I)X = 0 ⇔




6x + 6y = 0
−3x− 3y = 0
−3x− 6y + 3z = 0

⇔
{

x + y = 0
−x− 2y + z = 0

⇔




x = α
y = −α
z = −α

⇔ X =




α
−α
−α


 = α




1
−1
−1


 , α ∈ R.
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The eigenspace of λ = −2 is the solution space of the above system, namely S(−2) =
Span {(1,−1,−1)}

For λ = 1, solve

(T − I)X = 0 ⇔




3x + 6y = 0
−3x− 6y = 0
−3x− 6y = 0

⇔ x + 2y = 0

⇔ X =




−2α
α
β


 = α



−2

1
0


 + β




0
0
1


 , α, β ∈ R.

and S(1) = Span {(−2, 1, 0), (0, 0, 1)}.
The eigenvectors associated to an eigenvalue λ are all the nonzero elements of

S (λ). We accept, however the answer of this problem given in the form:
“the eigenvalues are: λ1 = −2, with eigenvector v1 = (1,−1, 3); λ2 = 1 with

eigenvectors v2 = (−2, 1, 0) and v3 = (0, 0, 1).” We will understand that for each
eigenspace the answer points out the vectors of a basis.

(ii) Let P3 be the vector space of polynomials with real coefficients, of degree at
most 3, and T : P3 → P3, T (p) = q, where q(X) = p(X + 1). We want to determine
the eigenvalues and the eigenvectors of T .

First we need to fix a basis of P3. Let us choose the canonical basis {1, X, X2, X3}.

The associated matrix is T =




1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1


 , and P (λ) = (λ − 1)4 with the only

root λ = 1, of multiplicity 4. The coordinates of the eigenvectors are the nontrivial
solutions of the system

(T − I)X = 0 ⇔




x2 + x3 + x4 = 0
2x3 + 3x4 = 0
3x4 = 0

⇔ X = α




1
0
0
0


 , α ∈ R.

The column t[1, 0, 0, 0] represents the constant polynomial 1; S(1) = Span {1} =
{the constant polynomials} ' R.

(iii) Let us determine also the eigenvalues and the eigenvectors of the matrix

A =




0 1 0
1 1 1
0 1 0


 .

From

P (λ) =

∣∣∣∣∣∣

−λ 1 0
1 1− λ 1
0 1 −λ

∣∣∣∣∣∣
= −λ(λ2 − λ− 2)

we obtain: λ1 = −1, with eigenvector v1 = t[1, 0,−1]; λ2 = 0, with eigenvector
v2 = t[1,−1, 1]; λ3 = 2, with eigenvector v3 = t[1, 2, 1].
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3 The Diagonal Form

V, K and T are as in the previous section; n = dimKV.

Working with endomorphisms of finite dimensinal spaces, usually requires a choice
of basis. It is desirable to choose a basis such that the associated matrix is as simple
as possible. We noticed that when the characteristic polynomial has n distinct roots
in K, there exists a basis made of eigenvectors; the matrix of T with respect to that
basis is diagonal.

DEFINITION 3.1 The endomorphism T is called diagonalizable if there exists a
basis of V such that the matrix of T with respect to this basis is diagonal.

A matrix A ∈ Mn,n(K) is diagonalizable if it is similar to a diagonal matrix.

REMARK 3.2 Let T be the matrix of T with respect to an arbitrary basis. Then T
is diagonalizable if and only if T is diagonalizable.

In this section we will give necessary and sufficient conditions for an endomorphism
of a finite dimensional vector space (and for a square matrix) to be diagonalizable.

We call diagonalization of a (diagonalizable) endomorphism T the process of
finding a basis with the property in Definition 3.1; we say that T has a diagonal form
with respect to that basis.

For a matrix A of order n we call diagonalization of A the process of finding
(if possible) an invertible matrix C and a diagonal matrix D of order n such that
D = C−1AC; the matrix D is called a diagonal form of A and the matrix C is called
the diagonalizing matrix.

PROPOSITION 3.3 The endomorphism T is digonalizable if and only if there
exists a basis made up of eigenvectors of T .

Proof. If T is diagonalizable, then there exists a basis B = {e1, . . . , en} such that

MT
B = D is diagonal. Let D =




d1 0 . . . 0
0 d2 . . . 0

. . .
0 0 . . . dn


 .

This means that T ej = djej j = 1, ..., n i.e. the vectors in B are eigenvectors of
T , and d1, ..., dn are the associated (not necessarily distinct) eigenvalues.

Conversely, If B1 = {v1, ..., vn} is a basis of V such that each vj is an eigenvector,
then T vj = λjvj , for some λj ∈ K. It follows that the matrix of T with respect to
B1 is



λ1 0 . . . 0
0 λ2 . . . 0

. . .
0 0 . . . λn


 (where the eigenvalues λj need not be distinct). QED

THEOREM 3.4 The dimension of an eigenspace of the endomorphism T is less
or equal to the multiplicity order of the corresponding eigenvalue, as a root of the
characteristic polynomial.
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Proof. Let λ0 be an eigenvalue of multiplicity order m. Denote dimS(λ0) = p.
If p = n, then S(λ0) = V and T = λ0idV . It follows that P (λ) = (λ0 − λ)n, thus
m = n > p.

Assume now p < n. Let {v1, ..., vp} be a basis of S(λ0). We extend this basis
to a basis B of V, B = {v1, ..., vp, vp+1, ..., vn}. Since the first p vectors of B are
eigenvectors associated to λ0, we have:

T (vj) = λ0vj , j = 1, ..., p; T (vj) =
n∑

k=1

akjej , j = p + 1, ..., n.

The matrix of T with respect to B is

T =




λ0 . . . 0 a1p+1 . . . a1n

. . .
0 . . . λ0 app+1 . . . apn

. . . . . . . . . . . . . . . . . .
0 . . . 0 anp+1 . . . ann




,

thus P (λ) = (λ0 − λ)pD(λ), where D(λ) is a determinant of order n− p.
On the other hand, the multiplicity of λ0 as a root of P (λ) is m, so P (λ) =

(λ − λ0)mQ(λ), for some polynomial Q(λ) such that λ0 is not a root of Q(λ). From
these two factorizations of P (λ) follows that p ≤ m. QED

THEOREM 3.5 The endomorphism T is diagonalizable if and only if its charac-
teristic polynomial has all its n roots (counted with their multiplicities) in K, and the
dimension of each eigenspace is equal to the multiplicity order of the corresponding
eigenvalue.

Proof. Let λ1, λ2, . . . , λp ∈ K be the distinct eigenvalues of T , and denote by
m(λj) = mj the multiplicity of λj , j = 1, ..., p. Then P (λ) = (λ − λ1)m1(λ −
λ2)m2 . . . (λ − λp)mpQ(λ), and

p∑
j=1

mj ≤ n. Obviously, the condition that P (λ) has

all roots in K is equivalent to
p∑

j=1

mj = n; if this is the case, Q(λ) ≡ 1.

Suppose first that T is diagonalizable, so there is a basis B = {e1, . . . , en} of V,
made up of eigenvectors.

Denote sj = the number of vectors in B which are eigenvectors for λj , and pj =
dimS(λj). The elements of B are linearly independent, thus sj ≤ pj . Since cardB =

n, and each eigenvector corresponds to a single eigenvalue, it follows that
p∑

j=1

sj = n.

By the previous theorem, pj ≤ mj . Now

sj ≤ pj ≤ mj , ∀j = 1, ..., p and
p∑

j=1

mj ≤ n =
p∑

j=1

sj

force sj = pj = mj , ∀j, and
p∑

j=1

mj = n.

Conversely, assume that
p∑

j=1

mj = n and dimS(λj) = mj , ∀j. Consider the

ordered set B1 = {v1, ..., vn} whose n elements are chosen such that the first m1 form
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a basis in S(λ1), the next m2 form a basis in S(λ2), and so on, up to the last mp

elements which form a basis in S(λp). Then the elements of B are distinct eigenvectors
(see Thm. 1.6 (iv)). Moreover, using induction on p, one shows that B is a basis of
V. By Prop. 3.3, this means that T is diagonalizable. QED

COROLLARY 3.6 If T is diagonalizable and λ1, λ2, . . . , λp are its distinct eigen-
values, then

V = S(λ1)⊕ . . .⊕ S(λp).

It is clear now that not all endomorphisms of finite dimensional spaces (and not
all matrices) are diagonalizable.

From the proof of Theorem 3.5 follows that for diagonalizable endomorphisms
(matrices) the diagonal form is unique up to the order of the diagonal entries. The
diagonalizing matrix is not unique either. Moreover, there are infinitely many diago-
nalizing matrices corresponding to the same diagonal form.

Diagonalization Algorithm

1) Fix a basis of V and determine the matrix T of T with respect to that basis.
2) Determine the eigenvalues of T by solving the characteristic equation, P (λ) = 0.

3) If K = R and there are non-real roots of P (λ), then we stop with the conclusion
that T is not diagonalizable.

Otherwise, move to step 4).
4) For each eigenvalue λj check whether the multiplicity mj is equal to dimS(λj).

For, it suffices to verify if

mj = n− rank (T − λjI), ∀j.

If there exists at least one j such that mj > n− rank (T − λjI), then we stop; T
is not diagonalizable, by Thm. 3.5.

If all equalities hold, point out that T is diagonalizable and go to step 5).
5) Solve the p systems (T −λjI)X = 0, where p is the number of distinct eigenva-

lues. For each system chose mj independent solutions, that represent the coordinates
of vectors of a basis in S(λj). Form a basis of V such that the first m1 vectors form
a basis of S(λ1), the next m2 form a basis of S(λ2), and so on.

6) The matrix of T associated to the basis formed in 4) is diagonal; its diagonal
entries are:

λ1, . . . λ1; λ2, . . . , λ2; λp, . . . , λp

where each λj appears mj times. Let us denote this diagonal matrix by D.
7) The diagonalizing matrix is C whose columns are the solutions of the systems

in 5), i.e. the coordinate-change matrix from the initial basis to the basis formed by
eigenvectors.

Examples

(i) The endomorphism T : R3 → R3, T (x, y, z) = (4x+6y, −3x−5y, −3x−6y+z).
studied in the previous sections is diagonalizable. Its matrix with respect to the basis
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{v1 = (1,−1,−1), v2 = (−2, 1, 0), v3 = (0, 0, 1)} is D =



−2 0 0

0 −2 0
0 0 1


 . The

diagonalizing matrix is C =




1 −2 0
−1 1 0
−1 0 1


, which satisfies D = C−1TC.

(ii) The endomorphism T : P3 → P3, T (p) = q, q(X) = p(X + 1) whose eigehen-
values and eigenspaces were determined in Section 2 is not diagonalizable, nor is its

matrix with respect to the canonical basis, T =




1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1


 .

We saw that λ = 1 is the only eigenvalue and m(1) = 4, while dimS(1) =
4− rank (T − I) = 1.

4 The Canonical Jordan Form

Let V be a finite dimensional K−vector space, K = R or K = C as before; n =
dimKV, T : V → V an endomorphism, T = the matrix of T with respect to an
arbitrary basis, A ∈ Mn,n(K).

In this section we will see that even when an endomorphism (or matrix) is not
diagonalizable, but all its eigenvalues are in K, it is still possible to find a “canonical”
form that is convenient to work with.

DEFINITION 4.1 Let λ ∈ K, k ∈ N∗. The matrix



λ 1 0 . . . 0 0
0 λ 1 . . . 0 0

. . . . . .
. . . . . .

0 0 . . . . . . λ 1



∈ Mk,k(K)

is said to be the Jordan cell (or Jordan block) of order k associated to the scalar λ.

The Jordan cells of order 1, 2 and 3 respectively are:

[λ],
[

λ 1
0 λ

]
,




λ 1 0
0 λ 1
0 0 λ


 .

DEFINITION 4.2 We say that the endomorphism T is Jordanizable (or admits a
canonical Jordan form) if there exists a basis in V such the associated matrix of T
has the form

J =




J1 0 . . . 0
0 J2 . . . 0

. . .
0 0 . . . Js


 (the canonical Jordan form,)(4.1)
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where each Ji is a Jordan cell associated to some scalar λi.; λ1, ..., λs are not neces-
sarily distinct.

A matrix J of type (4.1) is said to be in Jordan form or to be a Jordan matrix.
We call the matrix A Jordanizable if it is similar to a Jordan matrix; if J =

C−1AC, then C is called the Jordanizing matrix of A.
If T is the matrix of T with respect to the basis B, and the matrix of T with

respect to some other basis B1 is the Jordan matrix J , let us denote by C the
coordinate-change matrix from B to B1.Then J = C−1TC, so the endomorphism
T is Jordanizable if and only if its matrix T is Jordanizable.

The basis B1 is called a Jordan basis.

We saw that if an endomorphism admits a diagonal form, the corresponding basis
is made up of eigenvectors. Let us take a closer look at the Jordan basis.

Let J be a Jordan matrix, which is the matrix of T , {e1, ..., en} the correspoding
Jordan basis, and J1 the first cell of J . Assume J1 is of dimension k1 ≥ 2 and its
diagonal entries are equal to λ1 ∈ K. Then we observe that

T e1 = λ1e1, T e2 = e1 + λ1e2, ..., T ek1 = ek1−1 + λ1ek1 ,(4.2)

Therefore λ1 is an eigenvalue of T with eigenvector e1. The vectors e2, ..., ek1 are
called principal vectors associated to the eigenvector e1.

Similarly, the scalar on the diagonal of each Jordan block is an eigenvalue, and for
each Ji of dimension ki corresponds a sequence of ki basis vectors, such that the first
one is an eigenvector; if ki ≥ 2, the other ki − 1 are principal vectors.

REMARKS 4.3 (i) The diagonal form is a particular case of the Jordan form,
where the dimension of each cell is 1.

(ii) The Jordan form is unique up to the permutation of blocks.

(iii) The order of the diagonal blocks depends on the order of basis vectors.

(iv) Assume e1, . . . , ek1 are nonzero vectors satisfying (4.2). Then

(T − λ1idV)e1 = 0, (T − λ1idV)2e2 = 0, (T − λ1idV)k1ek1 = 0.

Moreover, ei ∈ Ker (T − λ1idV)i \Ker (T − λ1idV)i−1, ∀i = 1, . . . , k1.

Now it takes two more lines to show that e1, . . . , ek1 are linearly independent.

(v) Let L be an ordered set of distinct t vectors formed by l ≥ 2 sequences, each of
length si ∈ N?, ∀i = 1, . . . , l such that the first vector in each sequence is an
eigenvector, and the next ones are associated principal vectors; assume also that
the subset of L formed with all eigenvectors in L (which need not correspond
to distinct eigenvalues) is linearly independent.

Then it can be shown by induction on t that L is linearly independent.

Note that if we are able to produce such a set L with t = n, then we deduce
that T is Jordanizable and L is a Jordan basis.
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Based on the fact that if λ is an eigenvalue for the matrix T , then λm is an
eigenvalue for Tm, ∀m ∈ N∗, we deduce the next lemma; the details of its proof are
left as an execise.

LEMMA 4.4 The only complex eigenvalue of a nilpotent matrix (nilpotent endo-
morphism of a finite dimensional complex vector space) is zero.

THEOREM 4.5 If λ1, ..., λp are the distinct eigenvalues of T , with multiplicities

m(λj) = mj , j = 1, ..., p and
p∑

j=1

mj = n, then there exist p T -invariant subspaces

Vj ⊂ V, j = 1, . . . , p such that:

(i) dimVj = mj , j = 1, . . . , p

(ii) V = V1 ⊕V2 ⊕ . . .⊕Vp

(iii) T |Vj
= N| + λ|〉dV, | = ∞, . . . ,√ where N∞, . . . ,N√ are nilpotent endomor-

phisms of various orders.

Proof. for each fixed j ∈ {1, . . . , p}, consider the endomorphisms Tj = T − λjidV
and apply Thm. 4.6, Chap.2 to obtain the subspaces Vj and Wj such that V =
Vj ⊕Wj , and Tj |Vj

is nilpotent and Tj |Wj
is invertible. Since Vj is Tj-invariant,

it follows that it is also T = Tj + λjidV-invariant.
Let T |Vj

∈ End (Vj) and T |Wj
∈ End (Wj) be the restrictions of calT to V− j

and to Wj respectively. From V = Vj ⊕Wj follows

det(T − λidV) = det(T |Vj
− λidVj

)det(T |Wj
− λidWj

), ; as polynomials in λ.

Then λj is an eigenvalue for T |Vj
, of multiplicity mj , since T |Wj

− λjidWj
is

invertible. On the other hand, λj is the only eigenvalue of T |Vj
since 0 is the only

eigenvalue of the nilpotent endomorphism Tj |Vj
, by the lemma.

It is clear now that the degree of the polynomial det(T |Vj
− λidVj

) is mj , thus
dimVj = mj . Therefore (i) and (iii) are proved.

(ii) is immediate by induction on p, using
p∑

j=1

mj = n.

We will accept the next theorem without proof, but we note that the missing proof
relies on Thm. 4.5.

THEOREM 4.6 (Jordan) The endomorphism T admits a Jordan form if and only
if its characteristic polynomial has all its n roots (counted with their multiplicities) in
K.

COROLLARY 4.7 Any endomorphism of a finite dimensional complex vector space
(and any complex matrix) admits a Jordan form.

REMARKS 4.8 We would like to point out in more detail the relationship of the
Jordan form J and the decomposition in Theorem 4.5. In the next set of remarks we
keep the notation used in Thm. 4.5. Denote also the Jordan basis corresponding to
J by B1, and dj = dimS(λj).
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(i) The number of Jordan cells having λj on the diagonal is dj , i.e. the maximal
number of linearly independent eigenvectors.

(ii) mj = dimVj= the sum of dimensions of Jordan cells corresponding to λj .

(iii) Assuming that the Jordan blocks of J are ordered such that the first d1 corre-
spond to λ1, the next d2 correspond to λ2, and so on, it follows that the first
d1 vectors of B1 form a basis of V1, the next d2 form a basis of V2, and so on,
up to the last dp vectors of B1 which form a basis of Vp.

In practice, if all multiplicities are small enough we may use the following algo-
rithm.

Algorithm for Finding the Jordan Form and the Jordan Basis
1) Find the matrix T of the endomorphism with respect to an arbitrary (fixed)

basis.
2) Solve the characteristic equation. If this equation has all n roots in K, then

the endomorphism is Jordanizable, otherwise it is not.
3) Compute dimS(λj) = n− rank (T −λjI) ≤ mj . We have already noticed that

the number of Jordan blocks corresponding to the eigenvalue λj is equal to dimS(λj).
Sometimes, for small values of mj this fact allows us to figure out the Jordan blocks
corresponding to λj (see the Remark below).

If dimS(λj) = mj , then there are mj Jordan cells of dimension 1, corresponding
to λj .

4) For each eigenvalue λj determine the eigenspace S(λj), by solving the linear
homogeneous system

(Syst.1) (T − λjI)X = 0.

Denote the general solution of (Syst.1) by X1.
5) If dimS(λj) < mj , some of the eigenvectors admit principal vectors. We impose

the compatibility conditions on X1 and require X1 6= 0, to solve the system

(Syst.2) (T − λjI)X = X1.

Denote general solution of (Syst.2) by X2. We continue to determine the sequence of
principal vectors (actually we determine their coordinates with respect to the basis
fixed in 1)) by trying to solve

(Syst.3) (T − λjI)X = X2.

This process stops when the compatibility of

(Syst.k) (T − λjI)X = Xk

leads to a contradiction. The number k = k(λj) found in this way represents the
dimension of the largest Jordan cell having λj on the diagonal.

6) Pick particular values for the parameters which appear in X1, . . . , Xk to obtain
the basis vectors corresponding to the part of the Jordan matrix that has λj on
the diagonal. These particular values must be chosen such that the compatibility
conditions are all satisfied, and the eigenvectors are linearly independent.
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REMARK 4.9 Suppose λj = α is an eigenvalue with m(α) = m. Sometimes it
is possible to find out the part of the Jordan matrix with diagonal entries α using
dimS(α) only, without determining the corresponding part of the basis. For m small,
we list below all possible combinations of Jordan blocks with α on the diagonal.

m = 1 [α] ( the only possibility) .

m = 2
[

α 1
0 α

]
if dimS(α) = 1;

[
α 0
0 α

]
if dimS(α) = 2.

m = 3




α 1 0
0 α 1
0 0 α


 if dimS(α) = 1;




α 1 0
0 α 0
0 0 α


 if dimS(α) = 2;




α 0 0
0 α 0
0 0 α


 if dimS(α) = 3.

m = 4




α 1 0 0
0 α 1 0
0 0 α 1
0 0 0 α


 if dimS(α) = 1;




α 1 0 0
0 α 1 0
0 0 α 0
0 0 0 α


 or




α 1 0 0
0 α 0 0
0 0 α 1
0 0 0 α


 if dimS(α) = 2;




α 1 0 0
0 α 0 0
0 0 α 0
0 0 0 α


 if dimS(α) = 3;




α 0 0 0
0 α 0 0
0 0 α 0
0 0 0 α


 if dimS(α) = 4.

Note that dimS(α) distinguishes all above cases except for m = 4, dimS(α) = 2.

Examples (i) Find the Jordan form and the Jordan basis for the endomorphism
T : R4 → R4,

T (x) = (3x1 − x2 − x3 − 2x4, x1 + x2 − x3 − x4, x1 − x4, −x2 + x3 + x4).

We apply the algorithm.

1) The matrix of T with respect to the canonical basis is

T =




3 −1 −1 −2
1 1 −1 −1
1 0 0 −1
0 −1 1 1


 .
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2) P (λ) = (λ− 1)3(λ− 2) with roots: λ1 = 1, λ2 = 2; m(1) = 3, m(2) = 1. All
roots are in R (m(1) + m(2) = dimR4), thus T admits a Jordan form.

3) dimS(1) = 4− rank (T − I) = 2 < m(1), so there are 2 Jordan cells with 1
on the diagonal (see the remark above). For the eigenvalue λ2 = 2, the multiplicity
m(2) = 1 forces dimS(2) = 1 (Why?). It follows that T admits a canonical Jordan
form

J =




1 1
0 1

1
2


 .

This is the matrix of T with respect to a Jordan basis B = {e1, e2, e3, e4}, where
e1, e3 are linearly independent eigenvectors in S(1), e2 is a principal vector for e1,
and e4 is an eigenvector in S(2).

We will apply the rest of the algorithm for λ1, then for λ2.

For λ1 = 1:
4) Solve

(Syst.1) (T − I)X = 0; X1 =t [α α− β α− β β], α, β ∈ R.

e1 and e3 are of the form X1 with α and β chosen for each of them, such that e1, e3

are linearly independent, and e1 admits a principal vector.
5) The system

(Syst.2) (T − I)X =t [α α− β α− β β]

requires the compatibility condition α− β = 0, so e1 = (α, 0, 0, α), α 6= 0.
For α = β, the general solution of (Syst.2) is

X2 =t [α + γ + δ γ α + γ δ], γ, δ ∈ R.

We know from 3) that there is no need to look for more principal vectors.
6) For e1, choose α = 1 = β in X1; e1 = (1, 0, 0, 1). For e2, α = 1 (like in e1),

and pick γ = −1, δ = 0, which give e2 = (0,−1, 0, 0).
If in X1 we take α = 1, β = 0 for e3, we obtain e3 = (1, 1, 1, 0).

For λ2 = 2:
4) The system (T − 2I)X = 0 has the general solution t[2a a a 0] a ∈ R.

Any nontrivial solution does the job for e4; let us take a = 1. Then e4 = (2, 1, 1, 0).

The problem is now completely solved. The Jordanizing matrix is

C =




1 0 1 2
0 −1 1 1
0 0 1 1
1 0 0 0


 .

We may check that J = C−1TC, or equivalently, CJ = TC.

Note that we determined the Jordan form J immediately after we found out
dimS(1); then it was clear that an eighenvector associated to the eigenvalue λ1 = 1
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admits either one principal vector, or none, so we stoped looking for principal vectors
after solving (Syst.2). Let us see what would happen if we tried to determine one
more principal vector, namely to solve

(T − I) =t [α + γ + δ γ α + γ δ].

The compatibility condition for this system is α = 0, that contradicts e1 6= 0.

(ii) Determine the Jordan form and the Jordanizing matrix of

A =




4 −1 −1 1
1 2 0 1
0 0 3 0
0 0 1 3


 ∈ M4,4(R).

We find P (λ) = (λ− 3)4, λ1 = 3, m(3) = 4 = dimR4, thus A is Jordanizable.
dimS(3) = 4−rank (A−3I) = 2, thus the Jordan form of A is one of the following:

J̃ =




3 1 0 0
0 3 0 0
0 0 3 1
0 0 0 3


 or ˜̃J =




3 1 0 0
0 3 1 0
0 0 3 0
0 0 0 3


 .

We will find out which of J̃ or ˜̃J is the correct one, while looking for the Jordan
basis. The system

(Syst.1) (T − I)X = 0

has the general solution X1 =t [α β 0 − α + β], α, β ∈ R.
The next system,

(Syst.2) (T − 3I)X =t [α β 0 − α + β]

is compatible for ∀α, β ∈ R; its general solution is X2 =t [a b −α+β β−a+ b].
Following the algorithm, we try to solve the system:

(Syst.3) (T − 3I)X =t [a b − α + β β − a + b],

which is compatible if and only if α = β = 0. But this contradicts e1 6= 0.
Therefore no eigenvector admits sequences of 2 principal vectors.
Consequently, the Jordan form is J = J̃ . Each eigenvector e1, e3 of the Jordan

basis {e1, e2, e3, e4} is followed by one principal vector.
We may pick any linearly independent e1, e3 ∈ S(3), and for each of them we may

take any values of a and b to obtain e2 and e4. For α = 1, β = 0, a = b = 0, we
get e1 = (1, 0, 0,−1), e2 = (0, 0,−1, 0), and for α = 0, β = 1, a = b = 0, we get
e3 = (0, 1, 0, 1), e4 = (0, 0, 1, 1).

The Jordanizing matrix C =




1 0 0 0
0 0 1 0
0 −1 0 1

−1 0 1 1


 and the Jordan form

J =




3 1 0 0
0 3 0 0
0 0 3 1
0 0 0 3


 will certainly satisfy J = C−1AC.
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5 The Spectrum of Endomorphisms on Euclidean
Spaces

V is an Euclidean K-vector space, K = R or K = C, T ∈ End(V). Recall that the
spectrum of T is

Spec(T ) = {λ ∈ K | ∃v 6= 0, T v = λv} = the set of all eigenvalues .

REMARK 5.1 If λ is an eigenvalue of T and v a corresponding eigenvector, then

λ =
〈T v, v〉
〈v, v〉 .

THEOREM 5.2 If K = C and T is Hermitian, then

(i) Spec(T ) ⊂ R

(ii) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

(iii) If dimV = n ∈ N∗, then there exists an orthonormal basis of V, made up of
eigenvectors. Thus a Hermitian endomorphism is always diagonalizable.

Proof. 〈x, T y〉 = 〈T x, y〉, ∀x, y ∈ V, by hypothesis.
(i) Assume λ is an eigenvalue and v a corresponding eigenvector. Then

λ =
〈T v, v〉
〈v, v〉 =

〈v, T v〉
〈v, v〉 =

〈T v, v〉
〈v, v〉 = λ.

Thus λ ∈ R.
(ii) Let λ1 6= λ2 be eigenvalues with corresponding eigenvectors v1 and v2 respec-

tively. From

λ1〈v1, v2〉 = 〈T v1, v2〉 = 〈v1, T v2〉 = λ2〈v1, v2〉 = λ2〈v1, v2〉,

follows (λ1 − λ2)〈v1, v2〉 = 0, i.e. 〈v1, v2〉 = 0, as λ1 6= λ2.
(iii) will be proved by induction on n. For n = 1 it is trivially true. Let n ≤ 2

and assume (iii) is true for vector spaces of dimension n − 1. From (i) follows that
T has at least one real eigenvalue λ1. Let v1 be an eigenvector associated to λ1 and
denote U = {v1}⊥. We know from Chapter 1 that U is a subspace of V; moreover,
V = Span {v1} ⊕ U , thus dimU = n− 1.

In order to apply the inductive hypothesis for U we need to show that U is T -
invariant. For, let x ∈ U ; then 〈T x, v1〉 = 〈x, T v1〉 = λ1〈x, v1〉, thus T x ∈ U.
The restriction T |U : U → U is Hermitian too, so by the inductive hypothesis
there exists an orthonormal basis {u2, . . . , un} of U , made up of eigenvectors. Then

{ 1
||v1||v1, u2, . . . , un} is the required basis of V. QED.

Translating the theorem in matrix form we obtain

COROLLARY 5.3 Let A ∈ Mn,n(C), A Hermitian. Then
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(i) A is diagonalizable.

(ii) If D is a diagonal form of A, then D ∈ Mn,n(R).

(iii) There exists a diagonalizing unitary matrix (in Mn,n(C).)

REMARK 5.4 Let A ∈ Mn(R), A symmetric. Since real symmetric matrices are
particular cases of Hermitian matrices, the previous corollary applies, thus all eigen-
values of A are real and A is diagonalizable; there exists a diagonalizing orthogonal
matrix C ∈ Mn,n(R). In particular. Theorem 2.4 comes out as corollary of (i).

COROLLARY 5.5 If K = R and T is symmetric, then

(i) Assuming V finite dimensional, all roots of the characteristic polynomial of T
are real.

(ii) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

(iii) If dim(V) = n ∈ N∗, then there exists an orthonormal basis of V, made up of
eigenvectors. Thus a symmetric endomorphism is always diagonalizable.

Similarly we can deduce some properties of eigenvalues and eigenvectors of skew
Hermitian and skew symmetric endomorphisms.

REMARK 5.6 (i) The eigenvalues of a skew Hermitian endomorphism are purely
imaginary or zero. Assuming V finite dimensional over R, it follows that all
roots of the characteristic polynomial are purely imaginary or zero.

(ii) Eigenvectors corresponding to distinct eigenvalues of a skew Hermitian endo-
morphism are orthogonal.

(iii) Note that skew symmetric endomorphisms are not necessarily diagonalizable.

THEOREM 5.7 Let V be a complex (real) Euclidian space and T ∈ End(V) an
unitary (orthogonal) endomorphism.

(i) If there exist any eigenvalues, their absolute value is 1.

(ii) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

(iii) If K = C, V is finite dimensional, and T is unitary, then T is diagonalizable
and V admits an orthonormal basis made up of eigenvalues.

(iv) If K = R, V is finite dimensional, T is orthogonal and the characteristic
polynomial has no other roots in C besides 1 or -1, then T is diagonalizable and
V admits an orthonormal basis made up of eigenvectors.
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6 Polynomials and Series of Matrices

V will denote a K–vector space, dimV = n ∈ N?, and A : V → V an endomorphism.
The matrix of A w.r.t. a fixed basis of V is A = [aij ] ∈ Mn,n(K).

DEFINITION 6.1 Consider the polynomial Q(t) ∈ K[t], Q(t) = amtm+am−1t
m−1+

. . . + a1t + a0. The matrix

Q(A) = amAm + am−1A
m−1 + . . . + a1A + a0I

is called the value of Q for the matrix A. The endomorphism

Q(A) = amAm + am−1Am−1 + . . . + a1A+ a0idV

is called the value of Q for A.
Q(A) is also called polynomial of matrix or matrix polynomial; Q(A) is called

polynomial of endomorphism.
Since endomorphisms (of finitely dimensional vector spaces) are completely de-

termined by their associated matrices, it suffices to study matrix polynomials. All
results about matrices may be reformulated in terms of endomorphisms.

REMARK 6.2 If the matrix A admits the canonical Jordan form J , then the fol-
lowing observations make the computation of Q(A) easier.

A = CJC−1, A2 = CJ2C−1, . . . , Am = CJmC−1.

If A admits the diagonal form, i.e. J = D is a diagonal matrix, then the diagonal
form D of A is even more convenient to use for computing powers of A.

A = CDC−1, A2 = CD2C−1, . . . , Am = CDmC−1,

since D = diag(d1, . . . , dn) ⇒ Dk = diag(dk
1 , . . . , dk

n), ∀k ∈ N.

THEOREM 6.3 (Cayley–Hamilton) If P (λ) is the characteristic polynomial of
the matrix A, then P (A) = 0

Proof. Recall that for any matrix M = mij ∈ Mn,n(K), there exists a matrix
M+, called the reciprocal of M such that

M ·M+ = (detM)I.

(Some books use the notation M∗ instead of M+ and call it the adjoint of M instead
of the reciprocal; here reciprocal and adjoint have different meanings.)

The (i, j) entry of M+ is the algebraic complement of mji in M . For M = A−λI,
we obtain

(A− λI)(A− λI)+ = P (λ)I,(6.1)

since P (λ) = det(A − λI). Moreover, by the construction of the reciprocal matrix
follows that each entry of (A − λI)+ is a polynomial in λ of degree at most n − 1;
consequently, we can express

(A− λI)+ = Bn−1λ
n−1 + Bn−2λ

n−2 + . . . + B0,(6.2)
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where Bi ∈ Mn,n(K), i = 0, . . . , n− 1. Let

P (λ) =
n∑

k=0

akλk, ak ∈ K.(6.3)

Replacing (6.2), (6.3) in (6.1) we obtain

(A−λI)(Bn−1λ
n−1+Bn−2λn−2+. . .+B1λ+B0) = (an−1λ

n−1+an−2λn−2+. . .+a1λ+a0)I

or

(Bn−1)λn+(ABn−1−Bn−2)λn−1+. . .+(AB1−B0)λ+AB0 = (anI)λn+. . .+(a1I)λ+a0I.

Now we identify the coefficients

−Bn−1 = anI, ABn−1 −Bn−2 = an−1I, . . . , AB1 −B0 = a1I, AB0 = a0I.

Multiplying on the left by An, An−1, . . ., A, I and adding up each side we get

P (A) = anAn + an−1A
n−1 + . . . + a1A + a0I

= −AnBn−1+
+AnBn−1 −An−1Bn−2+
+An−1Bn−2 −An−2Bn−3+
+ . . . . . . . . . . . . . . . . . . +
+A2B1 −AB0+
+AB0 =

= 0

. QED.

COROLLARY 6.4 If dimV = n ∈ N?, A : V → V is an endomorphism, and
P (λ) the characteristic polynomial of A, then P (A) = 0.

THEOREM 6.5 If A ∈ Mn,n(K), then the value at A of any polynomial of degree
at least n can be expressed as a matrix polynomial in A, of degree at most n− 1.

Proof. Let P (λ) be the characteristic polynomial of A. By the Cayley-Hamilton
Theorem, P (A) = 0. Since the degree of P is n, the coefficient of An in P (A) is not
zero, thus we can express

An = bn−1A
n−1 + . . . + b0I

This proves the theorem in the case of polynomials of degree n. If we multiply the
equality by A and replace An, we get An+1 as a linear combination of An−1, . . . , A, I.
Inductively, the same holds for An+p, ∀p ∈ N. QED.

Assume now K = C or R and consider the power series f(t) =
∑
m

amtm with

coefficients in K. Such a series makes sense for t ∈ V, when V is endowed with
multiplication, such that the powers tm are well defined. If V is a Euclidean vector
space, we consider the Euclidean metric on V, and we can discuss about the conver-
gence of the series. In particular, we are interested in V = Mn,n(K) ' Kn2

with the
Euclidean norm

‖A‖ =
√ ∑

1≤i,j≤n

|aij |.
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DEFINITION 6.6 Let A : V → V be an endomorphism, dimV = n ∈ N?and A
the associated basis w.r.t. a fixed basis. We define a series of matrices and a series
of endomorphisms by

∑
m

amAm, and
∑
m

amAm respectively.

If the series are convergent, their sums are denoted by f(A), and f(A) respectively,
where f is the function defined by the convergent series f(t) =

∑
m

amtm, t ∈ K.

f(A) is called function of matrix or matrix function, and f(A) is called function of
endomorphism.

On finite dimensional vector spaces, the study of series of endomorphisms reduces
to the study of matrix series. On the other hand, as a consequence of theorem Cayley–
Hamilton,

∑
m

amAm can be expressed as a matrix polynomial Q(A), of degree n − 1

whose coefficients are numerical series. If
∑
m

amAm is convergent, then the coefficients

of Q(A) are convergent numerical series.

If A admits distinct eigenvalues λ1, . . . , λn, then the polynomial of degree n − 1
associated to

∑
m

amAm can be written in the Lagrange form

f(A) =
n∑

j=1

(A− λ1I) . . . (A− λj−1I)(A− λj+1I) . . . (A− λnI)
(λj − λ1) . . . (λj − λj−1)(λj − λj+1) . . . (λj − λn)

f(λj),

or

f(A) =
n∑

j=1

Zjf(λj),

where Zj ∈ Mn,n(K) are matrices independent of the function f .
If A has multiple eigenvalues, a more general formula works

f(A) =
p∑

k=1

mk−1∑

j=0

Zkjf
(j)(λk),

where f (j) denotes the derivative of order j of the funtion f , and Zkj are matrices
independent of f .

The following series are convergent for any matrix A.

eA =
∞∑

m=0

1
m!

Am, sin A =
∞∑

m=0

(−1)m

(2m + 1)!
A2m+1, cos A =

∞∑
m=0

(−1)m

(2m)!
A2m.

We will also consider the series

etA =
∞∑

m=0

tm

m!
Am, where t ∈ K.

This series is very useful in the theory of linear differential with constant coefficients.
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7 Problems

1. Determine the eigenvalues and the eigenvectors of the endomorphisms in pro-
blems 4 - 7, Chapter 2.

2. Let V be the real Euclidean vector space of the continuous real functions on
[0, 2π]. Let T : V → V be the endomorphism defined by

g = T (f), g(x) =

2π∫

0

[1 + cos(x− t)] · f(t)dt, x ∈ [0, 2π].

1) Show that the subspace Im(T ) is finite dimensional and find an orthogonal
basis of this subspace of V.

2) Determine Ker(T ).
3) Show that T is symmetric; find its eigenvalues and eigenvectors.

3. Determine the diagonal form and the corresponding basis, then compute eA.

1) A : R3 → R3, A =




7 4 −1
4 7 −1
−4 4 4


 2)A : R3 → R3, A =




4 6 0
−3 −5 0
−3 −6 1




3) A : R4 → R4, A =




1 0 0 1
0 1 0 0
0 0 1 −2
1 0 −2 5




4. Determine the canonical forms (diagonal or Jordan) of the following endomor-
phisms, and the corresponding bases.

1) A : R3 → R3, A =



−1 0 −3
3 2 3
−3 0 −1


 2) A : R3 → R3, A =




6 6 −15
1 5 −5
1 2 −2




3) A : R2 → R2, A =
[

2 −1
−1 4

]
4) A : R3 → R3, A =




0 1 0
0 0 1
2 −5 4




5) A : R4 → R4, A =




2 0 0 0
1 3 1 1
0 0 0 −1
−1 −1 0 2




5. For each matrix A in the previous problem compute An, eA, sinA, cos A using
the Cayley-Hamilton theorem.

6. Use the Cayley - Hamilton theorem to determine A−1 and the value of the
matrix polynomial Q(A) = A4 + 3A3 − 9A2 − 28A, where

A =



−1 2 2
2 −1 2
2 2 −1


 .



Chapter 4

Bilinear Forms. Quadratic
Forms

1 Bilinear Forms

Let V be K-vector space.
The basic example for bilinear forms is the canonical inner product on Rn. On the
other hand, the notion of bilinear form extends the one of linear form. Recall that a
linear form on V is a linear map ω : V → K.

DEFINITION 1.1 A map A : V ×V → K is called a bilinear form on V if it is
linear in each argument i.e.

A(kx + ly, z) = kA(x, z) + lA(y, z),

A(x, ky + lz) = kA(x, y) + lA(x, z), ∀x, y, z ∈ V, ∀ k, l ∈ K.

Example Any inner product on a real vector space is a bilinear form.

Counterexample An inner product on a complex vector space is not a bilinear form,
since it is not C-linear in the second argument.

Denote by B(V,K) the set of all bilinear forms on V. Addition and multiplication
of bilinear forms are defined in the usual way for K-valued functions. These operations
define a K-vector space structure on B(V,K).

REMARK 1.2 Assume that V is finite dimensional, dimV = n ∈ N?, and let

B = {e1, . . . , en} be a basis of V. Let x, y ∈ V, x =
n∑

i=1

xiei, y =
n∑

j=1

yjej . If

A ∈ B(V,K), then

A(x, y) = A
( n∑

i=1

xiei,

n∑

j=1

yjej

)
=

n∑

i=1

n∑

j=1

xiyjA(ei, ej),

which shows that A is uniquely determined by its values on B×B.

67



68 CHAPTER 4. BILINEAR FORMS. QUADRATIC FORMS

Using the notation aij = A(ei, ej), A = [aij ] ∈ Mn,n(K), we may describe the
bilinear form A by the one of the following equalities

A(x, y) =
n∑

i=1

n∑

j=1

aijxiyj (the analytic expression of A)

or
A(x, y) = tXAY (the matrix expression of A),

where X, Y represent as usually the coordinate columns of x and y respectively.
A is called the matrix associated to A w.r.t. the basis B. It is straightforward

that the correspondence between a bilinear form and its associated matrix w.r.t.
a fixed basis defines an isomophism from B(V,K) onto Mn,n(K). It follows that
dimB(V,K) = n2.

Example Consider the cannonical inner product on Rn,

〈x, y〉 = x1y1 + . . . + xnyn.

If B is the canonical basis, then the associated matrix is the n×n identity matrix In,
since 〈ei, ej〉 = δij .

DEFINITION 1.3 The bilinear form A is said to be symmetric if

A(x, y) = A(y, x), ∀x, y ∈ V.

The bilinear form A is said to be skew symmetric if

A(x, y) = −A(y, x), ∀x, y ∈ V.

From the definition of the inner product on a real vector space follows that inner
products on real vector spaces are symmetric bilinear forms.

THEOREM 1.4 Let A : V × V → K be a bilinear form and dimV = n ∈ N?.
Then A is symmetric (skew symmetric) if and only if the associated matrix w.r.t. a
fixed basis is symmetric (skew symmetric).

Proof. Fix a basis B = {e1, . . . , en} in V. Denote A = [aij ] the associated matrix.
Assume A symmetric. Then aij = A(ei, ej) = A(ej , ei) = aji, ∀i, j = 1, . . . , n,

thus A = tA.
Conversely, assume A = tA. Then

A(y, x) = tY AX = t( tY AX) = tX tAY = tXAY = A(x, y), ∀x, y ∈ V.

The skew symmetric case is similar. QED.

THEOREM 1.5 Let A be a bilinear form on V, dimV = n ∈ N?, B and B′ two
bases in V with C ∈ Mn,n(K)-the matrix of change from B to B′.

If A and B ∈ Mn,n(K) are the matrices associated to A w.r.t. B and B′ respec-
tively, then

B = tCAC.
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Proof. Let x, y ∈ V arbitrary, and X, Y the coordinate columns of x, respectively y
w.r.t. B. Denote by X ′, Y ′ the coordinate columns of the same x, y w.r.t. B′. The
coordinate columns are related by X = CX ′, Y = CY ′. Starting with the matrix
form of A w.r.t. B we obtain

A(x, y) = tXAY = t(CX ′)A(CY ′) = t(X ′)( tCAC)(Y ′).

On the other hand, the matrix form of A w.r.t. B′ is A(x, y) = t(X ′)B(Y ′), and
B is uniquely determined by this equality; therefore B = tCAC. QED.

DEFINITION 1.6 If A is nonsingular (singular), then the bilinear form A is called
nondegenerate (degenerate). The rank of A is also called the rank of the bilinear form
A.

The rank of the associated matrix is the same regardless the choice of basis (see
Corollary 1.8), so the above definition makes sense.

DEFINITION 1.7 Let A : V×V → K be a symmetric bilinear form. The set

KerA = {x ∈ V| A(x, y) = 0, ∀y ∈ V}
is called the kernel of the form A.

PROPOSITION 1.8 KerA is a vector subspace of V.

Proof. Let u, v ∈ KerA i.e. A(u, y) = 0, A(v, y) = 0 ∀y ∈ V. If k, l ∈ K, then

A(ku + lv, y) = kA(u, y) + lA(v, y) = 0,

thus ku + lv ∈ KerA. QED.

THEOREM 1.9 If A : V × V → K is a symmetric bilinear form, and dimV =
n ∈ N?, then

rankA = n− dimKerA.

Proof. Let {e1, . . . , en} be a basis of V and A = [aij ], aij ∈ K the matrix associ-

ated to A w.r.t. this basis. If x, y ∈ V are arbitrary, x =
n∑

i=1

xiei, y =
n∑

j=1

yjej ,

A(x, y) =
n∑

i=1

n∑

j=1

aijxiyj =
n∑

j=1

( n∑

i=1

aijxi

)
yj

which shows that x ∈ KerA if and only if x is a solution of the linear homogeneous
system

n∑

i=1

aijxi = 0 j = 1, . . . , n.

So KerA is isomorphic to the solution space of this system, whose dimension is
n− rank A = n− rankA. QED.

COROLLARY 1.10 (i) rankA is independent of the choice of basis; it depends
only on the symmetric bilinear form A.

(ii) A is nondegenerate ⇔ KerA = {0}.
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2 Quadratic Forms

Throughout the section V denotes a K-vector space and A a symmetric bilinear form
on V.

DEFINITION 2.1 A map Q : V → K is called a quadratic form on V if there
exists a symmetric bilinear form A such that Q(x) = A(x, x), ∀x ∈ V.

REMARK 2.2 In the definition of the quadratic form, Q and A are uniquely de-
termined by each other. Obviously Q is determined by A. For the converse, the
following computation gives a formula for A in terms of Q.

Q(x + y) = A(x + y, x + y) = A(x, x) +A(y, y) +A(x, y) +A(y, x).

From the symmetry of A,

Q(x + y) = A(x, x) +A(y, y) + 2A(x, y), therefore

A(x, y) =
1
2
(Q(x + y)−Q(x)−Q(y)).

The symmetric bilinear form A associated to Q is called the polar of Q.

Example The quadratic form corresponding to the inner product on a real vector
space is the square of the Euclidean norm

Q(x) = 〈x, x〉 = ‖x‖2, x ∈ V.

Assume dimV = n ∈ N?; let {e1, . . . , en} be a basis of V and A = [aij ] the matrix

of A w.r.t. this basis. For any x ∈ V, x =
n∑

i=1

xiei,

Q(x) = A(x, x) =
n∑

i=1

n∑

j=1

aijxixj = tXAX,

where X = t[x1, . . . , xn]. It follows that the matrix A characterizes Q as well as
A. The symmetric matrix A is also called the matrix of the quadratic form Q; by
definition, the rank of Q is the rank of the matrix A, so rank Q = rank A = rankA.

DEFINITION 2.3 Let A : V ×V → K be a symmetric bilinear form and Q the
associated quadratic form. The vectors x, y ∈ V are said to be orthogonal w.r.t. A
(or Q) if A(x, y) = 0.

DEFINITION 2.4 Let U ⊂ V, a vector subspace of V. The vector space

U⊥ = {y ∈ V | A(x, y) = 0, ∀x ∈ V}

is called the orthogonal complement of U in V w.r.t. A.
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THEOREM 2.5 Let A : V×V → K be a symmetric bilinear form. Denote by A|U
the restriction of A to U×U.

(i) U⊥ is a vector subspace of V.

(ii) If {u1, u2, . . . , up} is a basis in U, then

y ∈ U⊥ ⇔ A(u1, y) = A(u2, y) = . . .A(up, y) = 0.(2.1)

(iii) If dimV = n ∈ N?, then dimU + dimU⊥ ≥ dimV; equality holds if and only
if A|U is nondegenerate.

(iv) If dimV = n ∈ N?, then

U⊕U⊥ = V ⇔ A|U is nondegenerate.

Proof. (i) Let y1, y2 ∈ U⊥, i.e. A(x, y1) = 0, A(x, y2) = 0, ∀x ∈ U. For any
k, l ∈ K

A(x, ky1 + ly2) = kA(x, y1) + lA(x, y2) = 0,

thus ky1 + ly2 ∈ U⊥.

(ii) y ∈ U⊥ implies A(x, y) = 0, ∀x ∈ U; in particular A(ui) = 0, ∀i = 1, . . . , p,

since ui ∈ U. Conversely, if x ∈ U, then x =
n∑

i=1

xiui, using the given basis of U.

Then

A(x, y) =
n∑

i=1

xiA(ui, y) = 0, i.e. y ∈ U⊥.

(iii) If V is finite dimensional, so is U. Fix a basis of U using the notation of (ii),
and complete it to a basis of V; in (2.1) write y as a linear combination of this basis.
Then the rank of the system in (2.1) is at most p. Consequently, dimU⊥ ≥ n− p, so
dimU + dimU⊥ = n. Equality holds when the rank of the system is exactly p, i.e.
dimU = rankA|U; but this means that A|U is nondegenerate (see the last part of
Section 1).

(iv) As a consequence of (iii), it suffices to show that

U ∩U⊥ = {0} ⇔ A|U is nondegenerate.

But this is obvious by Corollary 1.10. QED.

Example Note that if a symmetric bilinear form A (or the quadratic form Q) is
nondegenerate on the space V , it might happen that its restriction to some sub-
space of V is degenerate. For example, Q(x) = x2

1 − x2
2 + x2

3 is nondegenerate on
R3; however, the restriction of Q to U = {x ∈ R3 |x1 + x2 = 0} is degenerate,
as 0 6= x = (1,−1, 0) ∈ Ker(A|U). Indeed, for A(x, y) = x1y1 − x2y2 + x3y3,
A((1,−1, 0), (a,−a, b)) = 0, ∀a, b ∈ R.
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DEFINITION 2.6 Let A : V × V → K be a symmetric bilinear form. A basis
{e1, . . . , en} is called an orthogonal basis w.r.t. the form A (or w.r.t. the quadratic
form Q) if A(ei, ej) = 0 for i 6= j, i, j = 1, . . . , n, i.e. the vectors of this basis are
pairwise orthogonal. The associated matrix is a diagonal matrix. If we denote its
diagonal entries by ai = aii = A(ei, ei), i = 1, . . . , n, then the corresponding analytic
expressions of A and Q

A(x, y) =
n∑

i=1

aixiyi, Q(x) =
n∑

i=1

aix
2
i

are called canonical expressions of A and Q respectively.

3 Reduction of Quadratic Forms to
Canonical Expression

Let V be a K-vector space, K = R or K = C, dimV = n ∈ N? and Q(x) = tXAX,
a quadratic form on V, expressed by the associated matrix A w.r.t. a fixed basis of
V. A change of basis corresponds to X = CX ′, where C is the matrix of change. The
matrix associated w.r.t. the new basis is B = tCAC. Note that both A and B are
symmetric matrices.

THEOREM 3.1 (Gauss method) If Q : V → R is a quadratic form, then there
exists a basis of V which is orthogonal w.r.t. Q (the associated analytic expression is
canonical).

Proof. We will describe an inductive algorithm which reduces the problem to the
case of a quadratic form defined on a vector space of smaller dimension.

Denote by {e1, . . . , en} the initial basis and by A = [aij ] the associated matrix.

Suppose that the analytic expression Q(x) =
n∑

i=1

n∑
j=1

aijxixj is not canonical and Q is

not identically zero (otherwise the problem is solved and nothing needs to be done).

Case 1. There exists i such that aii 6= 0.
We may assume without loss of generality that i = 1, so we can write

Q(x) = a11x
2
1 + 2

n∑

j=2

a1jx1xj +
n∑

i=2

n∑

j=2

aijxixj .

By factoring out
1

a11
, from the terms which contain x1, then completing the square

we obtain

Q(x) =
1

a11
(a11x1 + a12x2 + . . . + a1nxn)2 +

n∑

i=2

n∑

j=2

a′ijxixj .

The change of coordinates

x′1 = a11x1 + a12x2 + . . . + a1nxn; x′j = xj , j = 2, . . . n,
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which correspond to a new basis {e′1, e′2 = e2, . . . , e
′
n = en} with matrix of change

C ′ =




1
a11

−a12

a11
. . . −a1n

a11

0 1 . . . 0
. . . . . . . . . . . .

0 0 . . . 1




,

gives

Q(x) =
1

a11
x′21 +

n∑

i=2

n∑

j=2

a′ijx
′
ix
′
j .

Now
n∑

i=2

n∑
j=2

a′ijxixj is the analytic expression of a quadratic form on Span {e′2, . . . , e′n};
if this new quadratic form is identically zero, or in canonical form, the reduction is
done, otherwise we continue by applying the algorithm for this new quadratic form,
which is defined on a vector space of dimension n− 1.

Case 2. aii = 0, ∀i = 1, . . . , n.
As Q is not identically zero, there is at least one element aij 6= 0, i 6= j. After the

change of coordinates

xi = x′i + x′j , xj = x′i − x′j , xk = x′k, k 6= i, j

the expression of the quadratic form becomes Q(x) =
n∑

i=1

n∑
j=1

a′′ijx
′
ix
′
j where a′′ii 6= 0,

since xixj = x′2i −x′2j . The matrix of change of basis which corresponds to this change
of coordinates is the nonsingular matrix

C ′′ =




1 0 . . . 0 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 . . . 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 . . . −1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 . . . 0 . . . 1




.

Now Case 1. applies for the new analytic expression of Q.
After at most n− 1 steps we obtain an orthogonal basis w.r.t. Q.
The corresponding canonical expression represents a linear combination of squares

of linearly independent forms. The number of these squares in the canonical expression
is minimal, and it is equal to rank Q. QED.

Example 1. Determine the canonical form of Q : R3 → R, Q(x) = 2x1x2 + 2x1x3,
using Gauss method. Point out the change of coordinates and the matrix of change.

Solution. Note that aii = 0, i = 1, 2, 3, so we need to start with a change of
coordinates described in Case 2. Let

x1 = x′1 + x′2 , x′2 = x′1 − x′2 , x3 = x′3 ,
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as a12 = 1 6= 0. Then Q(x) = 2x′21 − 2x′22 + 2x′1x
′
3 + 2x′2x

′
3.

Next, we follow Case 1 and obtain Q(x) =
1
2
(2x′1 + x′3)

2 − 1
2
x′23 − 2x′22 + 2x′2x

′
3.

The change of coordinates

x′′1 = 2x′1 + x′3 , x′′2 = x′2 , x′′3 = x′3 ,

leads to Q(x) =
1
2
x′′21 − 1

2
x′′22 .

Combining the two changes of coordinates we get

x′′1 = x1 + x2 + x3 , x′2 =
1
2
x′1 −

1
2
x′2 , x3 = x′3.

The corresponding matrix of change is

C =




1 1 0
1 −1 0
0 0 1







1/2 0 −1/2
0 1 0
0 0 1


 =




1/2 1 −1/2
1/2 −1 −1/2
0 0 1


 ;

C−1 =




1 1 1
1/2 −1/2 0
0 0 1


 .

The columns of C represent the coordinates of the vectors of the new basis w.r.t.

the initial basis. Thus the new basis is {f1, f2, f3}, f1 =
1
2
e1 +

1
2
e2, f2 = e1 − e2,

f3 = −1
2
e1 − 1

2
e2 + e3.

THEOREM 3.2 (Jacobi’s method) Let Q : V → R be a quadratic form, and
A = [aij ] the associated matrix w.r.t. an arbitrary fixed basis B = {e1, . . . , en}.

Denote ∆0 = 1. If all the determinants

∆1 = a11, ∆2 =
∣∣∣∣

a11 a12

a21 a22

∣∣∣∣ , ∆3 =

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
, . . . , ∆n = detA

are not zero, then there exists a basis B1 = {f1, . . . , fn} such that the expression of
Q w.r.t. this new basis is

Q(x) =
n∑

i=1

∆i−1

∆i
x′2i ,(3.1)

where x′i, i = 1, . . . , n are the coordinates of x w.r.t. the basis B1.

Proof. We are looking for the vectors f1, . . . , fn of the form

f1 = c11e1, f2 = c12e1 + c22e2, . . . fn = c1ne1 + c2ne2 + . . . cnnen(3.2)

satisfying

A(ei, fj) = 0, if 1 ≤ i < j ≤ n, A(ei, fi) = 1, i = 1, . . . n(3.3)
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where A is the polar of the quadratic form Q. We will prove that this is the desired
basis. Using the bilinearity of A in (3.3), we obtain the system

A(e1, fi) = c1ia11 + c2ia12 + . . . + ciia1i = 0
A(e2, fi) = c1ia21 + c2ia22 + . . . + ciia2i = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
A(ei−1, fi) = c1iai−1,1 + c2iai−1,2 + . . . + ciiai−1,i = 0
A(ei, fi) = c1iai1 + c2iai2 + . . . + ciiaii = 1

of i equations, with i unknowns: c1i, c2i, . . . , cii.
The determinant of this system is ∆i 6= 0, thus the solution is unique. By Cramer’s

rule we obtain

cii =




a11 . . . a1,i−1 0
. . . . . . . . . . . .

ai−1,1 . . . ai−1,i−1 0
ai1 . . . ai,i−1 1


 =

∆i−1

∆i
.

So the basis B1 = {f1, . . . , fn} is uniquely determined by (3.2), (3.3). It remains to
show that the matrix B = [bij ] associated to Q w.r.t. this basis is diagonal, with the
required diagonal entries. For, compute

bij = A(fi, fj) = . . . = c1iA(e1, fj) + . . . + ciiA(ei, fj), i ≤ j.

Using (3.2), it follows that bij = 0, if i < j, and bii = cii =
∆i−1

∆i
. The matrix B is

symmetric, since A is symmetric (as the polar of a quadratic form), thus bij = 0, for
i > j too. QED.

Note that Jacobi’s method does not apply for Example 1.

THEOREM 3.3 (eigenvalues method) Let V be a real n-dimensional vector
space as before, Q : V → R a quadratic form, and A = [aij ] the matrix of Q w.r.t.
an arbitrary fixed basis B. Then there exists a basis B1 = {f1, . . . , fn} such that the
associated expression of Q is

Q(x) =
n∑

i=1

λix
′2
i ,

where λi, i = 1, . . . , n are the eigenvalues of A (each eigenvalue appears as many
times as its algebraic multiplicity), and x′i, i = 1, . . . , n are the coordinates of x w.r.t.
the basis B1.

Proof. The matrix associated to a quadratic form is always symmetric, thus A
has n real eigenvalues (counted with their multiplicities) and admits a diagonal form
over R. Moreover, there is a basis B1 = {f1, . . . , fn} made of eigenvectors whose
coordinate columns w.r.t. the initial basis B are orthonormal in Rn, or equivalently,
the matrix of change C is orthogonal (tC = C−1). Denote D = diag(λ1, . . . , λn) the
diagonal matrix whose diagonal entries are the eigenvalues of A. Then

D = C−1AC = tCAC

implies that D is the matrix associated to Q w.r.t. the basis B1. It follows that the
expression of Q w.r.t. B1 is the one in the conclusion of the theorem. QED.
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REMARKS 3.4 Comparison of the three methods
1) Gauss method is the most elementary and it provides a sequence of coordinate

changes, not the new basis (which can be deduced by multiplying the corresponding
matrices of change obtained at each step). The basis corresponding to the canonical
expression has no special properties.

2) Jacobi’s method is the most recommended (if it applies) when we need a canon-
ical expression, and we are not interested in the corresponding basis, since it takes
longer to deduce it.

3) The eigenvalues method is the most convenient for further purposes. If on
V we consider the scalar product which makes the initial basis into an orthonormal
basis, then the basis corresponding to the canonical expression is orthonormal too.
For example, if V = Rn and the initial basis is the canonical basis in Rn, then the
new basis is orthonormal (w.r.t. the canonical inner product).

The method provides the canonical expression and the corresponding basis. The
basis has additional useful properties.

4 The Signature of a Real Quadratic Form

Real quadratic forms of constant sign are useful in many applications, for example
in extemum problems for functions of several real variables. This why it is helpful
to study these forms, and state some methods which indicate whether the sign is
constant or not.
V will denote a real vector space.

DEFINITION 4.1 A quadratic form Q : V → R is said to be:

(i) positive definite if Q(x) > 0, ∀x ∈ V \ {0};

(ii) negative definite if Q(x) < 0, ∀x ∈ V \ {0};

(iii) positive semidefinite if Q(x) ≥ 0, ∀x ∈ V;

(iv) negative semidefinite if Q(x) > 0, ∀x ∈ V;

(v) indefinite if ∃x1, x2 ∈ V such that Q(x1) > 0 and Q(x2) < 0.

The notions defined above are used for symmetric bilinear forms too, with the
obvious meaning. A real symmetric bilinear form A : V×V → R is positive definite
if the associated quadratic form Q(x) = A(x, x) is positive definite, etc.

Example The inner product on a real vector space is a positive definite symmetric
bilinear form.

From now on, throughout the section we assume that dimV = n ∈ N?.

The following remarks are easy observations relating some of the resuls in this
chapter.
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REMARKS 4.2 1) The number of nonzero terms in a canonical expression of Q is
the same, regardless the method used, and it is equal to rank Q.

2) If Q is positive or negative definite, then Q is nondegenrate, i.e., in the canonical
expression appear n nonzero terms.

3) Q is positive definite⇔ in a fixed canonical expression all coefficients are strictly
positive.

In particular, from the eigenvalues method follows that: Q is positive definite ⇔
all eigenvalues of Q are strictly positive.

4) Q is negative definite ⇔ in a fixed canonical expression all coefficients are
strictly negative.

From the eigenvalues method follows that: Q is negative definite ⇔ all eigenvalues
of Q are strictly negative.

If we combine Remarks 3), 4) above and Jacobi’s method we obtain the following
result.

THEOREM 4.3 (Sylvester’s criterion) If the hypotheses of Jacobi’s method are
fulfilled, then
(i) Q is positive definite ⇔ all determinants ∆i, i = 1, . . . , n are strictly positive.
(ii) Q is negative definite ⇔ the determinants ∆i, i = 1, . . . , n have alternating signs:
∆1 < 0, ∆2 > 0, ∆3 < 0, . . ., (−1)k∆k > 0, . . ..

DEFINITION 4.4 Let Q(x) =
n∑

i=1

aix
2
i be a canonical expression of Q : V → R,

dimV = n ∈ N?, where p of the coefficients a1, . . . , an are strictly positive, q are
strictly negative, and d = n− (p + q) coefficients are equal to zero.

The triplet (p, q, d) ∈ N3 is called the signature of the form Q and is denoted by
sign Q.

As we have seen, the canonical expression of a quadratic form is not unique. The
next result states that the signature depends only on the quadratic form.

THEOREM 4.5 (Inertia law) The signature of a quadratic form Q is the same,
for any canonical expression of Q.

Proof. Consider two bases B = {e1, . . . , en} and B′ = {e′1, . . . , e′n} in V such that
the expression of Q w.r.t. each of them is canonical

Q(x) =
n∑

i=1

aix
2
i and Q(x) =

n∑

i=1

a′ix
′2
i respectively.

We may assume that in the expression of Q w.r.t. B (B′) the first p (p′) coefficients
are strictly positive, the next q (q′) are strictly negative, and the last d (d′) are zero.
Morever, we may assume that ai, a

′
i ∈ {−1, 0, 1}. Then

Q(x) =
p∑

i=1

x2
i −

p+q∑

i=p+1

x2
i =

p′∑

i=1

x′2i −
p′+q′∑

i=p′+1

x′2i .(4.1)
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We need to show that p = p′, q = q′. Suppose p 6= p′ and assume p > p′. Let U =
Span(e1, . . . , ep) and U′ = Span(e′p′+1, . . . , e

′
n), thus dimU = p, dimU′ = n − p′.

This yields
dimU + dimU′ = p + n− p′ > n,

which shows that the subspaces U, U′ are not independent. Therefore there exists
x ∈ U ∩U′, x 6= 0, and x can be written as

x = x1e1 + . . . + xp = x′p′+1e
′
p′+1 + . . . + x′ne′n.

Replacing this particular x in (4.1) we obtain

0 ≤ x2
1 + . . . + x2

p = Q(x) = −x′2p′+1 − . . .− x′2n ≤ 0.

But this implies
x1 = . . . = xp = 0; x′p′+1 = . . . = x′n = 0,

thus x = 0 which contradicts the choice of x. It follows that p = p′. Similarly, q = q′,
hence d = d′ and (p, q, d) = (p′, q′, d′). QED.

COROLLARY 4.6 1)The quadratic form Q : V ↔ R, dimV = n ∈ N?is positive
definite if and only if one of the following conditions is satisfied:

(i) sign Q = (n, 0, 0);

(ii) the determinants ∆i, i = 1, . . . , n are strictly positive;

(iii) the eigenvalues of the matrix of Q are all strictly positive.

2) Q is negative definite if and only if one of the following conditions is satisfied:

(i) sign Q = (0, 0, n);

(ii) (−1)i∆i > 0, i = 1, . . . , n ;

(iii) the eigenvalues of the matrix of Q are all strictly negative.

Example 2. Determine the canonical form of Q : R3 → R, Q(x) = x2
1 + 7x2

2 + x2
3 −

8x1x2− 16x1x3− 8x2x3, and the corresponding basis. Use Jacobi’s method, then the
eigenvalues method. Check the inertia law.

Solution.

A =




1 −4 −8
−4 7 −4
−8 −4 1


 ;

∆0 = 1, ∆1 = a11 = 1, ∆2 =
∣∣∣∣

1 −4
−4 7

∣∣∣∣ = −9, ∆3 = detA = −729.

Using formula (3.1) we obtain Q(x) = x′21 −
1
9
x′22 +

1
81

x′23 .

We look for the corresponding basis B1 = {f1, f2, f3} of the form (3.2). The coeffi-
cients cij , 1 ≤ i < j ≤ n = 3 are given by the solutions of the linear equations (3.3)
as follows.

A(e1, f1) = 1 ⇒ c11 = 1.
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{ A(e1, f2) = 0
A(e2, f2) = 1 ⇒

{
c12 − 4c22 = 0
−4c12 + 7c22 = 1 ⇒ c12 =

−4
9

; c22 =
−1
9

.




A(e1, f3) = 0
A(e2, f3) = 0
A(e3, f3) = 1

⇒




c13 − 4c23 − 8c33 = 0
−4c13 + 7c23 − 4c33 = 0
−8c13 − 4c23 + c33 = 0

⇒ c13 =
−8
81

; c23 =
−4
81

; c23 =
1
81

.

It follows that f1 = e1, f2 = −4
9
e1− 1

9
e2, f3 = − 8

81
e1− 4

81
e2 +

1
81

e3, and the matrix
of change is

C =




1 −4/9 −8/81
0 −1/9 −4/81
0 0 1/81


 .

Next we will use the eigenvalues method.
The eigenvalues of A are λ1 = 9, λ2 = 9, λ3 = −9. Therefore Q(x) = 9y2

1 +
9y2

2 − 9y2
3 , where y1, y2, y3 are the coordinates of x w.r.t. a basis made up of eigen-

vectors, such that the matrix of change is orthogonal. To determine such a basis
{u1, u2, u3}, pick first some linearly independent eigenvectors. Let us take v1 =
(−1, 0, 1), v2 = (−1, 2, 0), v3 = (2, 1, 2). Using the Gram-Schmidt procedure for
the first two (which happen not to be orthogonal, as they correspond to the same
eigenvalue), and normalizing the third we obtain the u1 = (−1/

√
2, 0, 1/

√
2), u2 =

(−√2/6, 2
√

2/3,−√2/6), u3 = (2/3, 1/3, 2/3).
As the inertia law states, from either one of the canonical expressions obtained

using different methods, the signature is (2, 1, 0).

5 Problems

1. Let V be a real vector space and ω : V → R a linear form. Show that
Q(x, y) = ω(x)ω(y), x, y ∈ V is a positive semidefinite symmetric bilinear form on V .

2. Let P3 be the real vector space of the polynomial functions of degree at most
two and Q : P3 × P3 → R, Q(x, y) =

∫ 1

0

∫ 1

0
x(t)y(s)dtds.

1) Show that Q is a positive semidefinite symmetric bilinear form.
2) Determine the matrices of Q with respect to the bases {1, t, t2} and {1−t, 2t, 1+

t + t2}. What is the relationship between these matrices ?
3) What is the canonical expression of g ?

3. Consider the bilinear form

Q(x, y) = x1y2 − x2y1 + x1y3 − x3y1 + x1y4 − x4y1 + x4y4.

1) Write Q(x, y) in matrix form.
2) Find the matrix associated to Q with respect to the basis f1 = (1, 1, 0, 1),

f2 = (0, 1, 1, 0), f3 = (0, 1, 0, 1), f4 = (1, 0, 0, 1).

4. Reduce the quadratic forms to the canonical expression using orthogonal trans-
formations, determine the signatures and the sets of constant level.
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1) 5x2
1 + 4x2

2 + 6x2
3 + 4x1x2 + 4x1x3,

2) 3x2
1 − 5x2

2 − 7x2
3 − 8x1x2 + 8x2x3,

3) 2x1x2 + 2x3x4

5. Show that the quadratic forms
1) Q(x) = 3x2

1 + 4x2
2 + 5x2

3 + 4x1x2 − 4x2x3,
2) Q(x) = 2x2

1 + 5x2
2 + 5x2

3 + 4x1x2 − 4x1x3 − 8x2x3,
are positive definite.



Chapter 5

Free Vectors

1 Free Vectors

E3 will denote the 3-dimensional space of elementary geometry.

For any two fixed points A,B ∈ E3 consider the oriented segment
−→
AB.

A is called the origin of
−→
AB and B the vertex of

−→
AB (Fig. 1).

Fig. 1

If A 6= B, the straight line AB is called the supporting line of the oriented segment
−→
AB. The length (module or norm) of

−→
AB is the length of the segment AB and it is

denoted by ‖
−→
AB ‖, AB or d(A,B).

If A = B we say that
−→
AB=

−→
AA is the zero oriented segment with the origin at A.

The zero segment has length zero.

Note that
−→
AB and

−→
BA are distinct oriented segments if A 6= B.

We say that 2 oriented segments have the same direction if their supporting lines
are parallel or identical.

Since each straight line admits two different orientations, a nonzero oriented seg-
ment is characterized by its direction, sense, length and origin.

DEFINITION 1.1 Two nonzero oriented segments are said to be equipolent if they
have the same direction, sense and length (but possibly different origins).

By definition, all zero oriented segments are equipolent.

If
−→
AB and

−→
CD are equipolent, we write

−→
AB∼

−→
CD (Fig. 2).

81
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Fig. 2

PROPOSITION 1.2 The equipolence relation is an equivalence relation on the set
of all oriented segments in E3, i.e., it satisfies the following properties

(i)
−→
AB∼

−→
AB, for any A,B ∈ E3 (reflexivity)

(ii)
−→
AB∼

−→
CD⇒

−→
CD∼

−→
AB (symmetry)

(iii)
−→
AB∼

−→
CD and

−→
CD∼

−→
EF⇒

−→
AB∼

−→
EF (transitivity).

DEFINITION 1.3 A free vector is an equivalence class of the equipolence relation.
The set of all free vectors is denoted by V3.

The equivalence class of the oriented segment
−→
AB is denoted by AB and it is

called the free vector AB. Thus AB = {
−→
CD |

−→
CD∼

−→
AB}, and

−→
AB∈ AB. Any element

of a free vector is called a representative of that free vector.
−→
AB is a reprezentative

of AB; if
−→
AB∼

−→
MN (or equivalently,

−→
MN∈ AB), then

−→
MN is another representative

of AB, and AB = MN .
The equivalence class of all zero oriented segments is called zero free vector and

is denoted by 0̄. Arbitrary free vectors will be denoted by overlined letters ā, b̄, c̄ . . ..
According to the previous notation that involves a representative of the free vector, we

may write either
−→
AB∈ ā or AB = ā, if ā is the set of all oriented segments equipolent

to
−→
AB.

DEFINITION 1.4 The length (norm) of a free vector ā is the length of a represen-

tative
−→
AB,

−→
AB∈ ā.

We denote the length of ā by ‖ā‖. Thus ‖ā‖ = ‖AB‖ = ‖
−→
AB ‖ = d(A, B).

It follows that ‖ā‖ is a positive real number and ‖ā‖ = 0 ⇔ ā = 0̄. Similarly,
the direction and sense of a nonzero free vector are the direction and respectively the
sense of a representative.

The above definitions are correct since all representatives of AB have the same
length, same direction and same sense (for A 6= B).

A free vector of length one is called a unit vector or a versor and it is usually
denoted by ē or ū.

Nonzero free vectors are characterized by direction, sense and length. The length
zero determines the zero free vector.

PROPOSITION 1.5 For any P in E3 and any free vector ā ∈ V3, there exists a

unique oriented segment
−→
PA (i.e. a unique vertex A) such that

−→
PA∈ ā.
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This proposition allows us to use representatives which have a convenient origin.
In E3 we fix a point O, called the origin of the space E3. By the previous proposi-

tion there is a bijective correspondence between V3 and the set of all oriented segments
which have the origin at O.

E3 can be viewed as the set of all vertices of the oriented segments which have the
origin at O. Therefore there is also a bijective correspondence between E3 and V3.

DEFINITION 1.6 Two nonzero free vectors of same direction are called collinear
vectors (Fig. 3).

By definition, 0̄ is collinear with any other vector.
Three nonzero vectors are called coplanar if there is a plane containing their di-

rections (Fig. 4).
By definition, 0̄ and any other two vectors are coplanar.

REMARKS 1.7 (i) Let ā = PA, b̄ = PB ∈ V3 \ {0}. Then ā, b̄, are collinear ⇔
the points P,A, B are collinear.

(ii) Let ā = PA, b̄ = PB, c̄ = PC ∈ V3 \ {0}. Then ā, b̄, c̄ are coplanar ⇔ the
points P, A,B,C are coplanar.

The collinear vectors AB and BA are called opposite vectors. It follows that the
opposite of 0̄ is 0̄. If ā 6= 0̄, then the opposite of ā is the unique free vector which has
the same direction and the same length as ā, but it has opposite sense. In the picture
below −ā is the opposite of ā (Fig. 3).

Fig. 3 Fig. 4

2 Addition of Free Vectors

DEFINITION 2.1 Let ā, b̄ ∈ V3 such that PA = ā and AB = b̄, where P is an
arbitrary point in E3.

The sum of ā, b̄ is the free vector denoted by c̄ = ā + b̄ and defined by (Fig. 5)

ā + b̄ = PB

Fig. 5
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This addition rule is called the triangle law.
If ā, b̄ are not collinear, we may use the equivalent parallelogram law and define

ā + b̄ as the class of the oriented diagonal
−→
PB of the parallelogram PABC, where

PA = ā, PC = b̄.
Addition of free vectors + : V3 × V3 → V3 is a well defined binary operation

since it does not depend on the choice of the point P .

THEOREM 2.2 Addition of free vectors has the following properties:
(i) ∀ā, b̄, c̄ ∈ V3, ā + (b̄ + c̄) = (ā + b̄) + c̄ (associativity)
(ii) ∀ā, b̄ ∈ V3, ā + b̄ = b̄ + ā (commutativity)
(iii) ∀ā ∈ V3, ā + 0̄ = 0̄ + ā = ā (0̄ is the identity element)
(iv) ∀ā ∈ V3 ∃− ā ∈ V3 such that ā + (−ā) = (−ā) + ā = 0̄ (each vector has an

inverse with respect to ′′+′′)

Proof. (ii) and (iii) are immediate from the definition.
For (iv) we check easily that −ā is the opposite of ā, i.e. if ā = PA, then −ā = AP .
If ā, b̄, c̄ are pairwise not collinear, then associativity follows from Fig. 6.

Fig. 6 Fig. 7

COROLLARY 2.3 (V3,+) is an abelian group.

Like in any abelian group with additive notation, we may define the subtraction
(difference) of vectors. The difference ā − b̄ is the unique solution of the equation
b̄ + x̄ = ā; this is x̄ = ā + (−b̄).

If ā = AB and b̄ = AD, then x̄ = ā− b̄ = DB (Fig. 7).
By the observation which proves (iv), it makes sense to write AB = −BA, for any

A,B ∈ E3.

3 Multiplication by Scalars

In this section we will define on V3 a natural structure of a real vector space. Addition
of free vectors was already defined. We still need an external operation R×V3 → V3

which satisfies the definition of the vector space.

DEFINITION 3.1 (multiplication of free vectors by scalars, Fig. 8).
Let k ∈ R and ā ∈ V3. Then kā ∈ V3 is defined as follows
(i) if ā = 0̄ or k = 0, then kā = 0̄;
(ii) if ā 6= 0̄ and k 6= 0, then kā is the vector which has the direction of ā, length

|k| ‖ā‖, the sense of ā for k > 0, and the sense of −ā for k < 0.

Note that ā and kā are collinear, and ‖kā‖ = |k| · ‖ā‖ ∀ k ∈ R, ā ∈ V3.
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Fig. 8

THEOREM 3.2 Multiplication of free vectors by real scalars has the following prop-
erties:

(i) ∀k, l ∈ R, ∀ā ∈ V3, k(lā) = (kl)ā
(ii) ∀ā ∈ V3, 1ā = ā
(iii) ∀k, l ∈ R, ∀ā ∈ V3, (k + l)ā = kā + lā
(iv) ∀k ∈ R, ∀ā, b̄ ∈ V3, k(ā + b̄) = kā + kb̄.

Proof. (i)− (iii) are left to the reader.
We will prove (iv) for ā, b̄ not collinear. The collinear case is left to the reader as

well.
Let OA = ā and AB = b̄. Then ā + b̄ = OA + AB = OB.
Suppose k > 0. Then there is A′ such that OA′ = kā and B′ such that OB′ =

k(ā + b̄).

Fig. 9

The triangles 4OAB and 4OA′B′ are similar since they have a common angle
whose sides are proportional. This similarity implies AB‖A′B′ and ‖A′B′‖ = k‖AB‖.
The same orientation of OA, OA′ and OB, OB′ gives the same orientation of AB and
A′B′, thus A′B′ = kAB (Fig. 9).

The case k < 0 is similar to k > 0, and the case k = 0 is trivial. QED.

COROLLARY 3.3 V3 is a real vector space.

4 Collinearity and Coplanarity

The collinearity and coplanarity of free vectors are notions we defined geometrically.
In this section we will see they are related to the algebraic structure of a real vector
space that was defined on V3.

PROPOSITION 4.1 If the free vectors ā and b̄ are collinear and ā 6= 0̄, then there
exists a unique real number k such that b̄ = kā.

Proof. If b̄ = 0̄, pick k = 0.
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If b̄ 6= 0̄ and b̄ has the sense of ā, then

b̄ =
‖b̄‖
‖ā‖ ā,

since
‖b̄‖
‖ā‖ ā has the direction, sense and length of b̄.

Similarly, if b̄ 6= 0 and the sense of b̄ is opposite to sense of ā (i.e., b̄ has the sense

of −ā), b̄ = −‖b̄‖‖ā‖ ā, and the existence of k is proved.

For the uniqueness, let k, l ∈ R such that b̄ = kā = lā. Then k = l since ā 6= 0,
by the properties of vector space operations. QED

COROLLARY 4.2 (i) The vectors ā, b̄ are collinear if and only if they are linearly
dependent.

(ii) If ā 6= 0, then the set V1 = {b̄| ā, b̄ collinear} is a 1-dimensional vector space.
More precisely, V1 = {b̄| ∃k ∈ R, b̄ = kā} = Span {ā}.

(iii) Two noncollinear vectors are linearly independent.

PROPOSITION 4.3 If the vectors ā, b̄, c̄ are coplanar and ā, b̄ are not collinear,
then there exist the unique numbers s, t ∈ R such that c̄ = sā + tb̄.

Proof. If c̄ = 0̄, take s = t = 0. If c̄ and ā are collinear, take s such that c̄ = sā
and t = 0.

If c̄ and ā are not collinear and c̄, b̄ are not collinear either, let A, B, C such that
OA = ā, OB = b̄, OC = c̄. Then O, A, B, C are coplanar points.

Fig. 10

The parallel lines through C to the supporting lines of OA and OB respectively,
determine the vectors OE and OF such that (Fig. 10):

OC = OE+OF , OA and OE collinear, and OB, OF collinear. Then we can write
OE = sOA, OF = sOB for some s, t ∈ R, and the existence of the decomposition is
proved.

For the uniqueness assume

c̄ = sā + tb̄ = s1ā + t1b̄

Then (s−s1)ā+(t−t1)b̄ = 0̄. Since ā, b̄ are not collinear, they are linearly independent,
so s− s1 = 0 and t− t1 = 0. QED

COROLLARY 4.4 (i) The vectors ā, b̄, c̄ are coplanar if and only if they are lin-
early dependent.

(ii) If ā, b̄ are not collinear, then the set V2 = {c̄| ā, b̄, c̄ coplanar} is a 2-
dimensional vector space. More precisely, V2 = {c̄ = sā+ tb̄| s, t ∈ R} = Span {ā, b̄}.

(iii) Three noncoplanar vectors are linearly independent.
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THEOREM 4.5 V3 is a 3-dimensional real vector space.

Proof. We saw that any three vectors which are not coplanar, are linearly inde-
pendent. Let ā = OA, b̄ = OB, c̄ = OC such that O,A, B, C are not coplanar. We
will show that ā, b̄, c̄ span V3.

Let d̄ = OD ∈ V3. If d̄ is coplanar with 2 of the vectors ā, b̄, c̄, we are done.
Assume it is not. Then the planes through D which are parallel to the planes
(OAB), (OAC), (OBC) determine a parallelipiped.

Fig. 11

OD is an oriented diagonal of this parallelipiped and it decomposes as (Fig. 11)

OD = OD1 + OD2 + OD3 = rOA + sOB + tOC.

Therefore d̄ = OD ∈ Span {ā, b̄, c̄}. QED

5 Inner Product in V3

DEFINITION 5.1 Let ā, b̄ ∈ V3 \ {0̄} and ā = OA, b̄ = OB.
The angle 6 (ā, b̄) between ā and b̄ is the angle 6 AOB ∈ [0, π] of their representa-

tives
→

OA and
→

OB.

Fig. 12

The definition of the angle does not depend on the representatives chosen.

DEFINITION 5.2 Let ū ∈ V3 be a versor, b̄ 6= 0̄ and θ = 6 (ū, b̄).
The vector πūb̄ = ‖b̄‖ cos θ ū is called the orthogonal projection of b̄ onto ū.

Fig. 13
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The number prūb̄ = ‖b̄‖ cos θ is called the algebraic measure of the orthogonal
projection of b̄ onto ū (Fig. 13).

By definition πū0̄ = 0̄, prū0̄ = 0.
Note that

prūb̄ < 0 ⇔ θ ∈
(π

2
, π

]
; prūb̄ = 0 ⇔ θ =

π

2
or b̄ = 0̄.

LEMMA 5.3 For any versor ū, the functions πū : V3 → V3 and prū : V3 → R are
linear transformations.

We leave the proof as an exercise. The picture below (Fig. 14) describes one of
the cases that arise in order to prove additivity, where OA is collinear to ū, OB = b̄,
OC = c̄, OABC is a parallelogram, BB′ ⊥ OA, CC ′ ⊥ OA, DD′ ⊥ OA.

Then AD = b̄ + c̄, πūb̄ = OB′ = C ′D′, πūc̄ = OC ′, πū(b̄ + c̄) = πū(OD) = OD′.
The additivity of πū follows from OD′ = OC ′ + C ′D′.

Fig. 14

THEOREM 5.4 The function 〈, 〉 : V3 ×V3 → R defined by

〈ā, b̄〉 =

{ ‖ā‖ ‖b̄‖ cos θ, if ā 6= 0̄, b̄ 6= 0 and θ = 6 (ā, b̄)

0, if ā = 0̄ or b̄ = 0̄

is a scalar (dot, inner) product in V3.

Proof. We need to check the symmetry (commutativity), homogeneity, additivity
and positivity of the function defined above (see the definition of the scalar product
on a real vector space). All are straightforward except for additivity. Let us prove
the additivity of 〈, 〉 with respect to the second argument. For, assume ā 6= 0̄ (the

case ā = 0̄ is obvious), and let ū =
ā

‖ā‖ be the versor of ā. Then

〈ā, b̄ + c̄〉 = 〈‖ā‖ū, b̄ + c̄〉 = ‖ā‖〈ū, b̄ + c̄〉, by homogeneity.

From the definitions
prūb̄ = 〈ū, b̄〉, ∀b̄ ∈ V3.

Then
〈ū, b̄ + c̄〉 = 〈ū, b̄〉+ 〈ū, c̄〉 by the previous lemma.
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It follows that
〈ā, b̄ + c̄〉 = ‖ā‖(〈ū, b̄〉+ 〈ū, c̄〉)

= 〈‖ā‖ū, b̄〉+ 〈‖ā‖ū, c̄〉
= 〈ā, b̄〉+ 〈ā, c̄〉.

The scalar product defined above is called the canonical scalar product on V3.

COROLLARY 5.5 V3 is a Euclidean vector space.

REMARKS 5.6 1) ‖ā‖ =
√
〈ā, ā〉, ∀ā ∈ V3. Therefore the length of a free vector

is the Euclidean norm of that vector with respect to the canonical scalar product.
2) The Cauchy-Schwarz inequality follows directly from the definition using:

| cos θ| ≤ 1 ⇒ |〈ā, b̄〉| ≤ ‖ā‖ · ‖b̄‖.

3) 〈ā, b̄〉 = 0 ⇔ ā = 0 or b̄ = 0̄ or 6 (ā, b̄) =
π

2
.

As in a general Euclidean vector space, the free vectors ā, b̄ are called orthogonal
if 〈ā, b̄〉 = 0.

It is convenient to work with orthonormal bases.
The coordinates of a vector with respect to an orthonormal basis are called Eu-

clidean coordinates.

Fig. 15

Let {̄i, j̄, k̄} be an orthonormal basis (Fig. 15), i.e. the values of the scalar products
are given by the table

〈, 〉 ī j̄ k̄

ī 1 0 0
j̄ 0 1 0
k̄ 0 0 1

which leads to the canonical expression of the scalar product of ā = a1ī + a2j̄ + a3k̄
and b̄ = b1ī + b2j̄ + b3k̄, namely

〈ā, b̄〉 = a1b1 + a2b2 + a3b3.

In particular the norm of ā is ‖ā‖ =
√

a2
1 + a2

2 + a2
3 and

cos θ =
〈ā, b̄〉

‖ā‖ · ‖b̄‖ =
a1b1 + a2b2 + a3b3√

a2
1 + a2

2 + a2
3 ·

√
b2
1 + b2

2 + b2
3

, for ā 6= 0̄, b̄ 6= 0̄, θ ∈ [0, π].
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6 Vector (cross) Product in V3

Let ā, b̄ ∈ V3. If ā 6= 0̄ and b̄ 6= 0̄, then θ denotes the angle of ā and b̄.

DEFINITION 6.1 The vector denoted ā× b̄ and defined by (Fig. 16)

ā× b̄ =
{ ‖ā‖ ‖b̄‖ sin θē, if ā, b̄ noncollinear

0̄, if ā, b̄ collinear (in particular ā = 0̄ or b̄ = 0̄),

where ē is a versor whose direction is given by ē ⊥ ā, ē ⊥ b̄ and the sense of ē is given
by the right-hand rule for (ā, b̄, ē) is called the vector (or cross) product of ā and b̄.

Fig. 16

The function: V3 ×V3 → V3, (ā, b̄) → ā × b̄ is bilinear. This follows from the
proposition below.

PROPOSITION 6.2 The vector product has the following properties:
(1) ā× b̄ = 0̄ ⇔ ā, b̄ collinear; in particular ā× 0̄, ā× ā = 0̄
(2) b̄× ā = −ā× b̄ (anticommutativity)
(3) t(ā× b̄) = (tā)× b̄ = ā× (tb̄), ∀t ∈ R (homogeneity)
(4) ā× (b̄ + c̄) = ā× b̄ + ā× c̄ (additivity or distributivity)
(5) ‖ā× b̄‖2 = ‖ā‖2 · ‖b̄‖2 − 〈ā, b̄〉2 (the Lagrange identity)
(6) If ā, b̄ are not collinear, then ‖ā × b̄‖ represents the area of the parallelogram

determined by ā and b̄.

Proof. (1), (2), (3) are immediate from the definition. For (5) multiply

sin2 θ = 1− cos2 θ

by ‖ā‖2 · ‖b̄‖2. The area of the parallelogram in Fig.16 is

‖ā‖ · ‖b̄‖ sin θ = ‖ā× b̄‖,

so 6) is an obvious geometric interpretation of the vector product. For (4) assume
that ā is a versor and let α be a plane perpendicular on ā (Fig. 17). Let also b̄′ and
c̄′ be the projections of b̄ respectively c̄ onto the plane P (i.e. b̄′ is determined by the
intersections of the lines passing through O and B and perpendicular to P , and P ,
where b̄ = OB)

Then
ā× b̄ = ā× b̄′, ā× c̄ = ā× c̄′

and
ā× b̄′, ā× c̄′, ā× (b̄′ + c̄′)
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are obtained from b̄′, c̄′, b̄′+ c̄′ respectively, by a rotation of angle
π

2
about the axis ā.

Since the rotation of the sum is the sum of rotations, i.e.

ā× (b̄′ + c̄′) = ā× b̄′ + ā× c̄′,

it follows that
ā× (b̄ + c̄) = ā× b̄ + ā× c̄.

Fig. 17

From now on the canonical basis {̄i, j̄, k̄} of V3 is an orthonormal basis satisfying
also k̄ = ī× j̄ (Fig. 15).

i.e. ī, j̄, k̄ are the versors of a Cartesian system of coordinate axes in E3.
Then the cross products of these basis vectors are in the following table

× ī j̄ k̄

ī 0̄ k̄ −j̄
j̄ −k̄ 0̄ ī
k̄ j̄ −ī 0̄

and the expression of ā× b̄ can be written as a symbolic determinant,

ā× b̄ =

∣∣∣∣∣∣

ī j̄ k̄
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
= (a2b3 − a3b2)̄i + (a3b1 − a1b3)j̄ + (a1b2 − a2b1)k̄.

DEFINITION 6.3 The vector ā×(b̄× c̄) is called the double vector product of ā, b̄, c̄.

Fig. 18

It can be shown that

ā× (b̄× c̄) =
∣∣∣∣

b̄ c̄
〈ā, b̄〉 〈ā, c̄〉

∣∣∣∣ = 〈ā, c̄〉b̄− 〈ā, b̄〉c̄.

Note that w̄ = ā×(b̄× c̄), b̄, c̄ are coplanar (Fig. 18). In general ā×(b̄× c̄) 6= (ā× b̄)× c̄
thus the vector product is not associative.
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7 Mixed Product

DEFINITION 7.1 Let ā, b̄, c̄ ∈ V3. The number 〈ā, b̄ × c̄〉 is called the mixed
product of the vectors ā, b̄, c̄.

PROPOSITION 7.2 (1) 〈ā, b̄× c̄〉 = 0 ⇔ ā, b̄, c̄ are coplanar.
(2) If ā, b̄, c̄ are not coplanar, then the absolute value |〈ā, b̄ × c̄〉| represents the

volume of the parallelepiped determined by the representatives with common origin of
ā, b̄, c̄ (Fig. 19).

Fig. 19

Proof. (1) Assume b̄, c̄ noncollinear (otherwise b̄ × c̄ = 0̄ and the equivalence is
obvious). Then

〈ā, b̄× c̄〉 = 0 ⇔ ā ⊥ b̄× c̄
⇔ ā = 0̄ or the direction of ā

is parallel to a plane containing the directions of b̄ and c̄
⇔ ā, b̄, c̄ coplanar.

Let V be the volume

V = ‖b̄× c̄‖ · h = ‖b̄× c̄‖ · ‖ā‖ · | cosϕ|,
where ϕ = 6 (ā, b̄ × c̄). Since ‖b̄ × c̄‖ is the area of the parallelipiped basis. Then
V = |〈ā, b̄, c̄〉|.
PROPOSITION 7.3 (Properties of the mixed product)

(1) If
ā = a1ī + a2j̄ + a3k̄
b̄ = b1ī + b2j̄ + b3k̄
c̄ = c1ī + c2j̄ + c3k̄

, then 〈ā, b̄× c̄〉 =

∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
.

(2)
〈ā, b̄× c̄〉 = 〈c̄, ā× b̄〉 = 〈b̄, c̄× ā〉

= −〈ā, c̄× b̄〉
= 〈ā× b̄, c̄〉.

(3) 〈tā, b̄× c̄〉 = 〈ā, (tb̄)× c̄〉 = 〈ā, b̄× tc̄〉 = t〈ā, b̄× c̄〉.
(The mixed product is linear in each of its three arguments).

(4) 〈ū + v̄, b̄× c̄〉 = 〈ū, b̄× c̄〉+ 〈v̄, b̄× c̄〉.
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(5) 〈ā× b̄, c̄× d̄〉 =
∣∣∣∣
〈ā, c̄〉 〈ā, d̄〉
〈b̄, c̄〉 〈b̄, d̄〉

∣∣∣∣ (the Lagrange identity.)

Proof. We will prove only (5) leaving the other proofs to the reader. Note that (1)
is a straightforward computation using the formula for b̄× c̄ and the known products
of ī, j̄, k̄; (2), (3), (4) are easy consequences of (1). For (5) denote w̄ = ā× b̄. Then

〈w̄, c̄× d̄〉 = 〈d̄, w̄ × c̄〉 =
= −〈d̄, c̄× w̄〉 by (2)

But

c̄× w̄ = c̄× (ā× b̄) =
∣∣∣∣

ā b̄
〈c̄, ā〉 〈c̄, b̄〉

∣∣∣∣
by the formula for the double vector product. We replace and get

〈w̄, c̄× d̄〉 = −〈d̄, 〈c̄, b̄〉ā− 〈c̄, ā〉b̄〉
= −〈c̄, b̄〉〈d̄, ā〉+ 〈c̄, ā〉〈d̄, b̄〉 =

∣∣∣∣
〈ā, c̄〉 〈ā, d̄〉
〈b̄, c̄〉 〈b̄, d̄〉

∣∣∣∣ .

A basis {ā, b̄, c̄} of V3 is said to have positive orientation if 〈ā, b̄ × c̄〉 is strictly
positive, and negative orientation if 〈ā, b̄× c̄〉 is strictly negative.

The canonical basis {̄i, j̄, k̄} has positive orientation since 〈̄i, j̄ × k̄〉 = 1.
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8 Problems

1. Let A(1, 2, 0), B(−1, 0, 3), C(2, 1,−1) be points in E3. Are these points
collinear? Find the area of the triangle ABC, and the altitude from the base BC to
the vertex A.

2. Given the points A(1, 1,−2), B(2, 3, 0), C(0, 1, 1), D(−1, 2,−3), compute:
1) the mixed product 〈AB, AC ×AD〉; are the points coplanar?
2) the volume of the tetrahedron ABCD;
3) the altitude of the tetrahedron, from the base ACD to the vertex B.

3. Show that
ā× (b̄× c̄) + b̄× (c̄× ā) + c̄× (ā× b̄) = 0̄

〈ā× (b̄× c̄), (b̄× (c̄× ā))× (c̄× (ā× b̄))〉 > 0.

4. Solve the equations: 1) 〈ā, x̄〉 = α, 2) ā× x̄ = b̄.

5. Find the volume of the parallelipiped constructed on some representatives with
common origin of the vectors ā = 2ū− v̄ + w̄, b̄ = ū− w̄, c̄ = ū + w̄, where

‖ū‖ = 1, ‖v̄‖ = 2, ‖w̄‖ = 3, 6 (ū, v̄) =
π

2
, 6 (ū, w̄) =

π

3
, 6 (v̄, w̄) =

π

4
.

6. Consider the vectors ā = λī + 4j̄ + 6k̄, b̄ = ī + λj̄ + 3k̄, c̄ = λī + 4j̄. If the
vectors are coplanar, determine the possible values of λ. In this case, decompose ā
along b̄ and c̄.

7. Show that if ā× b̄ + b̄× c̄ + c̄× ā = 0̄, then the vectors ā, b̄, c̄ are coplanar.

8. Let ā, b̄, c̄ ∈ V3 be noncoplanar vectors such that 〈ā, b̄〉 6= 0. Compute

E =
〈

ā× b̄

〈ā, b̄〉 ,
ā× (b̄× c̄)
〈ā, b̄× c̄〉

〉
+ 2.

9. Given the points A(4,−2, 2), B(3, 1, 1), C(4, 2, 0), determine the vertex D of
the tetrahedron ABCD such that D ∈ Oz and the volume of ABCD is 4. Determine
also the altitude from the base ABC to D.



Chapter 6

Straight Lines and Planes in
Space

1 Cartesian Frames

We mentioned that a fixed origin O ∈ E3 provides a natural one-to-one correspon-
dence between E3 and V3, assigning to each point M ∈ E3 a unique vector r̄ = OM ∈
V3, called the position vector of M . Each fixed basis of V3 determines a bijective
correspondence between V3 and R3.

Throughout this chapter, O ∈ E3 will be a fixed origin and {̄i, j̄, k̄} a fixed or-
thonormal basis of V3. The set {O; ī, j̄, k̄} is called a Cartesian frame in E3. The
point O is called the origin of the frame, and {̄i, j̄, k̄} is the basis of the frame.
The Euclidean coordinates of the position vector OM are also called the Cartesian
coordinates of the point M with respect to the orthonormal frame {O; ī, j̄, k̄}. If
OM = xī + yj̄ + zk̄, we write M(x, y, z).

The bijection between E3 and R3 determined by a fixed Cartesian frame is called
a Cartesian coordinate system in E3.

The bijections mentioned above allow the identification of E3, V3 and R3.
The basis {̄i, j̄, k̄} will also be assumed to have positive (or right-handed) orien-

tation in V3, i.e. 〈̄i, j̄ × k̄〉 = 1, or equivalently ī× j̄ = k̄.
The oriented lines Ox, Oy, Oz passing through O, of direction and sense given

by ī, j̄, k̄ respectively are called the Cartesian axes of the frame {O; ī, j̄, k̄}. The
Cartesian coordinates of the point M are the algebraic measures of the orthogonal
projections of OM onto the coordinate axis (Fig. 20).

Fig. 20
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The axes are characterized by the equations

Ox :
{

y = 0
z = 0 , Oy :

{
z = 0
x = 0 , Oz :

{
x = 0
y = 0 .

Any two axes determine a plane called a coordinate plane. The coordinate planes
xOy, yOz, zOx are characterized by the equations

xOy : z = 0, yOz : x = 0, zOx : y = 0.

2 Equations of Straight Lines in Space

A straight line in E3 may be determined by either:
– a point and a nonzero vector,
– two distinct points,
– the intersection of two planes, etc.

2.1. The Line Determined by a Point and a Nonzero Vector
The point M0(x0, y0, z0) and ā = l̄i + mj̄ + nk̄ ∈ V3 \ {0̄} determine a straight

line D passing through M0, and having the direction of ā (Fig. 21).
Let M(x, y, z) ∈ E3, r̄ = OM, r̄0 = OM0. Then M ∈ D ⇔ M0M and ā are

collinear i.e.
(r̄ − r̄0)× ā = 0̄ (the vector equation of D)(2.1)

The vector ā is called a director vector of D. Any vector of the form kā, k ∈ R\{0̄}
is another director vector of D and may be used to obtain the equations of D, instead
of using ā.

Fig. 21

The position vector r̄ = OM of an arbitrary point M ∈ D is of the form

r̄ = r̄0 + tā, t ∈ R,(2.2)

which is another equivalent condition to the collinearity of r̄ − r̄0 and ā. The vector
equation of D is equivalent to





x = x0 + lt
y = y0 + mt
z = z0 + nt

, t ∈ R (the parametric equations of D in R3)(2.3)

or to

x− x0

l
=

y − y0

m
=

z − z0

n

(the canonical Cartesian equations of D

in R3),
(2.4)
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with the convention that if a denominator is zero , then the corresponding numerator
is zero too. More precisely,

(1) if l = 0, mn 6= 0, then

x = x0,
y − y0

m
=

z − z0

n

and D ‖ yOz;
(2) if l = m = 0, then

x = x0, y = y0

and D ‖ Oz.
Note that ā 6= 0̄, thus at most two of the coordinates of ā could possibly be zero.

2.2 The Line Determined by Two Distinct Points
Let M1(x1, y1, z1) 6= M2(x2, y2, z2) ∈ E3, and D =the straight line M1M2. Then

ā = M1M2 = (x2 − x1)̄i + (y2 − y1)j̄ + (z2 − z1)k̄ is a director vector of D. In the
previous equations we may replace ā by M1M2 and M0 by M1 (Fig. 22). For example
the canonical Cartesian equations (2.4) become

(2.5)
x− x1

x2 − x1
=

y − y1

y2 − y1
=

z − z1

z2 − z1
.

Fig. 22

3 Equations of Planes in Space

A plane in E3 may be determined by either:
- a point and a normal direction,
- three noncollinear points,
- a straight line and an exterior point,
- two concurrent straight lines,
- two parallel straight lines, etc.

3.1. The Plane Determined by a Point and a Nonzero Vector
The plane determined by M0(x0, y0, z0) and a nonzero vector n̄ = aī + bj̄ + ck̄ is

the unique plane P passing through M0 such that the line D through M0 of direction
n̄ is perpendicular onto P (Fig. 23).

n̄ is called a normal vector to the plane P .
D is normal line of P .
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Fig. 23

Let M(x, y, z). Then

M ∈ P ⇔ M0M ⊥ n̄ ⇔ 〈M0,M, n̄〉 = 0.

The last equality is called the vector equation of the plane. Replacing M0M and n̄ by
their analytic expressions it follows that

(3.1) a(x− x0) + b(y − y0) + c(z − z0) = 0

(the Cartesian equation in R3 of the plane passing through M0, perpendicular to n̄).

If we denote d = −(ax0 + by0 + cz0), the previous equation becomes

(3.2) ax + by + cz + d = 0 (the general Cartesian equation of a plane).

Conversely, any equation of the form (3.2) with a2 + b2 + c2 6= 0 represents a plane of
normal vector n̄ = aī + bj̄ + ck̄.

3.2. Particular Planes

1) The coordinate planes and planes parallel to these planes are described by the
following particular forms of (3.2). We start with the coordinate planes,

xOy : z = 0; yOz : x = 0; zOx : y = 0.

k̄ is a normal vector for xOy and for any plan P parallel to xOy. Then (Fig. 24)

P : z = a, a ∈ R \ {0}, for P‖xOy.

Fig. 24

Similarly, since ī is normal to yOz and ̄ is normal to zOx we obtain

P : x = a, a ∈ R \ {0}, for P‖yOz

P : y = a, a ∈ R \ {0}, for P‖zOx.

2) The equations of planes perpendicular to the coordinate planes are:

P : ax + by + d = 0 a2 + b2 6= 0, if P ⊥ xOy

P : by + cz + d = 0 b2 + c2 6= 0, if P ⊥ yOz

P : ax + cz + d = 0 a2 + c2 6= 0, if P ⊥ zOx.
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3) The equation of a plane passing through O(0, 0, 0) is

ax + by + cz = 0.

4) The equations of planes containing one of the coordinate axes Oz, Ox, Oy are

ax + by = 0, by + cz = 0, and ax + cz = 0 respectively.

3.3. The Plane Determined by Three Noncollinear Points
Given the noncollinear points Mi(xi, yi, zi), i = 1, 2, 3 there exists a unique plane P
containing M1, M2,M3 (Fig. 25). If M(x, y, z) is another point, then

M ∈ P ⇔ M, M1,M2,M3 are coplanar in E3

⇔ M1M, M1M2,M1M3 are coplanar in V3

⇔ 〈M1M, M1M2 ×M1M3〉 = 0 the vector equation of P.

The above vector equation is equivalent to the equation

(3.3)

∣∣∣∣∣∣∣∣

x− x1 y − y1 z − z1

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

∣∣∣∣∣∣∣∣
= 0

in R3 or to

(3.4)

∣∣∣∣∣∣∣∣∣∣∣

x y z 1

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

∣∣∣∣∣∣∣∣∣∣∣

= 0 (the equation of the plane determined
by three points; coplanarity of four points).

Fig. 25

A particular case of a plane determined by three points is M1(a, 0, 0) ∈ Ox,
M2(0, b, 0) ∈ Oy, M3(0, 0, c) ∈ Oz, a, b, c ∈ R∗ (i.e. 0 /∈ P and M1, M2,M3 are the
intersections of P with the coordinate axes). Replacing in (3.3) or (3.4) we obtain

x

a
+

y

b
+

z

c
− 1 = 0 (the intercept form of the equation of a plane, Fig. 26).

Fig. 26
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3.4. The Plane Determined by a Point and
Two Noncollinear Vectors

There exists a unique plane P passing through a given point M0(x0, y0, z0) and
containing lines of directions v̄1 = l1ī+m1j̄+n1k̄ and v̄2 = l2ī+m2j̄+n2k̄ respectively,
where v̄1, v̄2 are noncollinear (Fig. 27).

Let M1,M2 such that v̄1 = M0M1, v̄2 = M0M2. Then P is determined by
M0,M1,M2. It follows that M(x, y, z) ∈ P if and only if M0M , M0M1, M0M2

are coplanar, this is equivalent to M0M = rv̄1 + sv̄2 for some r, s ∈ R. Identifying
the coordinates we obtain

(3.6)





x = x0 + rl1 + sl2

y = y0 + rm1 + sm2

z = z0 + rn1 + sn2

r, s ∈ R

(the parametric equations of the plane in R3).

The coplanarity of M0M , M0M1, M0M2 is also equivalent to 〈M0M, v̄1× v̄2〉 = 0,
i.e.,

(3.7)

∣∣∣∣∣∣∣∣

x− x0 y − y0 z − z0

l1 m1 n1

l2 m2 n2

∣∣∣∣∣∣∣∣
= 0.

Fig. 27

4 The Intersection of Two Planes

It is known that any two distinct planes are either parallel or they have a common
line.

Let Pi : aix + biy + ciz + di = 0. a2
i + b2

i + c2
i 6= 0, i = 1, 2, n̄i = aiī + bij̄ + cik̄,

and consider the system

(4.1)

{
a1x + b1y + c1z + d1 = 0

a2x + b2y + c2z + d2 = 0 .

The planes P1, P2 are identical ⇔ their equations are equivalent, i.e.,
a1

a2
=

b1

b2
=

c1

c2
=

d1

d2
. This means that the system is compatible of rank 1. The planes are parallel

⇔ n̄1, n̄2 are collinear but the system is not compatible, i.e.,

a1

a2
=

b1

b2
=

c1

c2
6= d1

d2
.



5. ORIENTATION OF STRAIGHT LINES AND PLANES 101

The planes intersect along a straight line D ⇔ the system (4.1) is compatible of
rank 2. In this case the equations (4.1) represent the line D = P1 ∩ P2.

The set of all planes passing through the straight line D is called the pencil of
planes determined by P1 and P2. The line D is called the axes of the pencil (Fig. 28).

The equation of an arbitrary plane of the pencil is

(4.2) r(a1x + b1y + c1z + d1) + s(a2x + b2y + c2z + d2) = 0, s, t ∈ R, s2 + t2 6= 0,

which also said to be the equation of the pencil.
The set of all planes parallel or coincident to a given plane P1 is called a pencil of

parallel planes, whose equations are of the form:

a1x + b1y + c1z + λ = 0, λ ∈ R.

Note that from (4.1) one can deduce easily the equations of the line D = P1 ∩ P2

in any of the forms studied previously, using the director vector ā = n̄1 × n̄2 and
M0(x0, y0, z0), where (x0, y0, z0) is a particular solution of the system (4.1)

Fig. 28

5 Orientation of Straight Lines and Planes

5.1. Oriented Straight Lines

An oriented straight line D is a straight line together with a chosen sense of way
along D. Choosing a sense on D is equivalent to choosing a director vector ā of D.
We say that the pair (D, ā) represents an oriented line.

Any line admits two orientations: the one given by ā (or by any vector kā, k > 0)
and the orientation given by −ā (or by any vector kā, k < 0). If ā is fixed, we agree
to call the orientation given by ā the positive sense on D, and the other the negative
sense on D. For example the coordinate axes Ox, Oy,Oz are oriented by ī, j̄ and k̄
respectively.

The orientation given by ā is uniquelly determined by the versor ē =
ā

‖ā‖ . There-

fore an oriented straight line may be seen as a pair (D, ē), where D is a line and ē
one of the two versors of direction D (Fig. 29).

The angles α = 6 (ē, ī), β = 6 (ē, j̄), γ = 6 (ē, k̄) are called the director angles of
(D, ē), where

ē = cos αī + cos βj̄ + cos γk̄.
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Fig. 29

The numbers cos α, cosβ, cos γ are called the director cosines of (D, ē). From
‖ē‖ = 1 follows

cos2 α + cos2 β + cos2 γ = 1.

If ē =
ā

‖ā‖ , ā = l̄i + mj̄ + nk̄, then

cos α =
l√

l2 + m2 + n2
, cos β =

m√
l2 + m2 + n2

, cos γ =
n√

l2 + m2 + n2
.

5.2. Orientation of a Plane. Semispaces

An oriented plane is a plane together with a choice of a normal vector i.e. a pair
(P, n̄). Intuitively, a plane has two faces; the face which corresponds to the sense of
a fixed normal vector n̄ is denoted by “+”, and the opposite one denoted by “-”. Of
course, a plane may be oriented according to the right hand rule.

Any plane admits two orientations.
Let n̄ = aī + bj̄ + ck̄ be a fixed normal vector of P : ax + by + cz + d = 0. Denote

f(x, y, z) = ax + by + cz + d. Then E3 = S+ ∪ P ∪ S− where (Fig. 30)

S+ = {(x, y, z)|f(x, y, z) > 0}, S− = {(x, y, z)|f(x, y, z) < 0}

Fig. 30

6 Angles in Space

6.1. The Angle between Two Oriented Lines

If D1, D2 are two lines oriented by ā = l1ī + m1j̄ + n1k̄ and b̄ = l2ī + m2j̄ + n2k̄
respectively, the angle of (D1, ā) and (D2, b̄) is the angle θ = 6 (ā, b̄), given by (Fig.
31)

cos θ =
〈ā, b̄〉

‖ā‖ · ‖b̄‖ =
l1l2 + m1m2 + n1n2√

l21 + m2
1 + n2

1 ·
√

l22 + m2
2 + n2

2

, θ ∈ [0, π].
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Fig. 31

Note that
(1) D1 ⊥ D2 ⇔ 〈ā, b̄〉 = 0 ⇔ l1l2 + m1m2 + n1n2 = 0
(2) D1‖D2 ⇔ ā× b̄ = 0, D1 6= D2

⇔ l1
l2

=
m1

m2
=

n1

n2
, D1 6= D2.

6.2. The Angle between Two Oriented Planes
The dihedral angle of (P1, n̄1) and (P2, n̄2) is the angle of their normals n̄1, n̄2

(Fig. 32)

Fig. 32

Denote this angle by θ. Then

cos θ =
〈n̄1, n̄2〉

‖n1‖ · ‖n2‖ =
a1a2 + b1b2 + c1c2√

a2
1 + b2

1 + c2
1 ·

√
a2
2 + b2

2 + c2
2

, θ ∈ [0, π],

where n̄i = aiī + bij̄ + cik̄, i = 1, 2.

6.3 The Angle between an Oriented Straight Line and
an Oriented Plane

Let (D, ā) be an oriented line and (P, n̄) an oriented plane (Fig. 33).

Fig. 33

The angle between (D, ā) and (P, n̄) is the angle ϕ between ā and the projection
of ā onto P . It turns out that θ + ϕ = 90◦ where θ = 6 (ā, n̄). Then

sin ϕ = cos θ =
〈ā, n̄〉

‖ā‖ · ‖n̄‖ =
al + bm + cn√

a2 + b2 + c2 · √l2 + m2 + n2
.

D‖P or D ⊂ P ⇔ 〈ā, n̄〉 = 0,

D ⊥ P ⇔ ā× n̄ = 0̄ ⇔ a

l
=

b

m
=

c

n
.
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7 Distances in Space

7.1. The Distance from a Point to a Straight Line
The distance from a point A to the line D passing through M0(x0, y0, z0), and of

director vector ā is

d(A;D) =
‖ā×M0A‖

‖ā‖
since d(A; D) = AA′ is the height of a parallelogram constructed on ā and M0A (if
A /∈ D) corresponding to the basis of length ‖ā‖. If A ∈ D, the formula is still true
since d(A;D) = 0.

7.2. The Distance from a Point to a Plane
Let M0(x0, y0, z0) and P : ax + by + cz + d = 0, M0 /∈ P (Fig. 34).

Fig. 34

If M1 is the projection of M0 onto P , then d(M0, P ) = ‖M1M0‖.
The collinearity of n̄ = aī + bj̄ + ck̄ and M1M0 implies cos(n̄,M1M0) =+1. This

means
|〈n̄, M1M0〉|
‖n̄‖ · ‖M1M0‖

= 1.

Then

d(M0, P ) = ‖M1M0‖ =
|〈n̄, M1M0〉|

‖n̄‖ =
|ax0 + by0 + cz0 + d|√

a2 + b2 + c2
.

The formula still works when M0 ∈ P , i.e., d(M0, P ) = 0.

7.3. The Common Perpendicular of two Noncoplanar Lines
Consider the straight lines D1 and D2 of director vectors ā1 and ā2 respectively.

D1 and D2 are noncoplanar if and only if D1 ∩D2 = ∅ and ā1, ā2 are noncollinear.
In this case there exists a unique straight line D such that D ⊥ D1, D ⊥ D2 and
D ∩D1 6= ∅, D ∩D2 6= ∅. The line D is called the common perpendicular of D1 and
D2 (Fig. 35).

Obviously, a director vector of D is n̄ = ā1 × ā2.

Fig. 35
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In order to find out the equations of D we may consider the plane P1 determined
by D and D1, and the plane P2 determined by D and D2; since D = P1 ∩ P2, we are
going to use the equations of P1 and P2 (see Section 4, (4.1)).

For i = 1, 2 let Mi be an arbitrary fixed point on Di; it turns out that Pi is the
plane determined by Mi and the noncollinear vectors n̄ and āi. As we have seen at
the end of Section 3, it follows that

Pi : 〈MiM, āi × n̄〉 = 0, i = 1, 2,

where M is the current point of Pi.
Consequently, the equations of the common perpendicular are

D :
{ 〈M1M, ā1 × n̄〉 = 0
〈M2M, ā2 × n̄〉 = 0

,

where M is the current point of D.

7.4. The Distance between two Straight Lines
Let D1, D2 be two straight lines. It is known that the number inf{d(M, N)|M ∈

D1, N ∈ D2} is called the the distance between D1 and D2 and it is denoted by
d(D1, D2). It is also known that d(D1, D2) may be computed as follows (Fig. 36):

1) if D1 ∩D2 6= ∅, then d(D1, D2) = 0;
2) if D1||D2, pick a point M1 ∈ D1; then d(D1, D2) = d(M1, D2);
3) if D1 and D2 are noncoplanar, then d(D1, D2) = d(A,B) = ‖AB‖, where

{A} = D ∩D1, {B} = D ∩D2, and D is the common perpendicular of D1 and D2.
Using the equations of D found previously we may compute the coordinates of A

and B for the given lines D1, D2. However it is more convenient to regard ‖AB‖ as
the height of a certain parallelepiped in the following way.

Let M1, M2 be arbitrary fixed points on D1 and D2 respectively. Consider the
straight line D′

2 passing through M1, parallel to D2. Denote by Q1 the plane deter-
mined by D1 and D′

2.

Fig. 36

Then Q1 is the plane parallel to D2, passing through D1, and ‖AB‖ is the distance
from B to Q1. But d(B,Q1) = d(M2, Q1) = d(D2, Q1), since D2‖Q1. On the other
hand d(M2, Q1) is the height of the parallelepiped constructed on the supports of the
vectors M1M2, ā1, ā2, that corresponds to the basis determined by ā1, ā2. Then

d(D1, D2) =
|〈M1M2, ā1 × ā2〉|

‖ā1 × ā2‖ .
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8 Problems

1. Write the equations of a straight line passing through the point A(1, 1,−2) and
parallel to the straight line D.

1) D :
x− 4

2
=

y + 2
3

=
z + 1

4

2) D :
{

x− y − 3z + 2 = 0
2x− y + 2z − 3 = 0

2. Compute the distance from the point A(1, 1, 1) to the straight line D.

1) D :
x− 1

2
=

y + 1
1

=
z − 1

3

2) D :
{

x− y + z = 0
x + y − z = 0

3. Write the equation of the plane passing through A(1, 1,−1) and perpendicular
to D.

1) D :
x

1
=

y − 1
2

=
z + 1
−1

2) D :
{

x− y = 0
x + 2y − z + 1 = 0

4. Write the equation of the plane which passes through the point A(0, 1,−1) and
through the straight line D given as follows:

1) D : x = 4 + 2t, y = −2 + 3t, z = −1 + 4t;

2) D :
{

2x− y + z + 1 = 0
x + y + z = 0.

5. Consider the planes

P : x− 2y + 2z − 7 = 0, Q : 2x− y − 2z + 1 = 0, R : 2x + 2y + z − 2 = 0.

1) Show that the planes are pairwise perpendicular.
2) Find the common point of these three planes.
3) Find the distance from A(2, 4, 7) to the plane P .

6. Determine the projection of the straight line D onto the plane
P : 2x + 3y + 4z − 10 = 0, where D is given by:

1) D :
{

x− y − 3z + 2 = 0
2x− y + 2z − 3 = 0;

2) D :
x− 4

2
=

y + 2
3

=
z + 1

4
;

3) D :
x− 1

3
=

y + 2
−2

=
z + 1

0
.

7. Consider the straight lines D1, D2 of equations
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D1 :
x

1
=

y

2
=

z

3
, D2 :

x− 1
2

=
y − 1
−1

=
z

1
.

Prove that D1, D2 are noncoplanar, determine the equations of their common
perpendicular, and the distance between D1 and D2.

8. Write down the equation of the plane P which contains the point A(3,−1, 2)
and the line

D :
{

2x− y − 3z − 2 = 0
x + 3y − z + 4 = 0.

Determine also the distance from A to D.

9. Consider the point A(1,−2, 5) and the plane Q : x + 2y + 2z + 1 = 0. Find the
projection of A onto Q, the symmetric of A w.r.t. Q, and the distance from A to Q.

10. Given the points A(3,−1, 3), B(5, 1,−1), C(0, 4,−3), determine:
1) the parametric equations of the straight lines AB and AC
2) the angle between AB and AC
3) the distance from A to the straight line BC.

11. If the point M(3, 4, 2) is the projection of the origin onto the plane P , deter-
mine the equation of P .

12. Determine the parameters λ, µ such that the planes

P : 2x− y + 3z − 1 = 0, Q : x + 2y − z + µ = 0, R : x + λy − 6z + 10 = 0

1) have exactly one common point;
2) have a common straight line;
3) intersect about three parallel and distinct straight lines.

13. Consider the points A(1, 3, 2), B(−1, 2, 1), C(0, 1,−1), D(2, 0,−1), and the
plane P : 2x + y − z − 1 = 0. Which of the given points is on the same side as the
origin, with respect to the plane P?



Chapter 7

Transformations of
Coordinate Systems

Changes of Cartesian frames are related to isometries of R3. Using the group of
isometries of R3 we may define in a natural way the congruence of space figures in
E3. On the other hand, isometries may be described geometrically. It turns out
that the fundamental isometries are: rotation, translation, symmetry w.r.t. a plane,
symmetry w.r.t. a point, and translation. Any isometry is a composite of isometries
listed above.

Rotations and symmetries are called orthogonal transformations and they actually
correspond to linear orthogonal transformations on V3 ' R3.

As we have seen, any isometry is the product of a translation and an orthogonal
transformation.

Let I = T ◦ R be an isometry determined by the frames F = {O, ī, j̄, k̄} and
F′ = {O′; ī′, j̄′, k̄′}. The isometry I is said to be positive (displacement) if the basis
{̄i, j̄, k̄} has positive orientation, and negative (antidisplacement) otherwise.

Translations and rotations are positive isometries; symmetries are negative isome-
tries.

1 Translations of Cartesian Frames

We say that the Cartesian frame O′x′y′z′ is obtained by the translation of the Carte-
sian frame Oxyz, if the axes of the new frame O′x′y′z′ are parallel and of the same
sense as the axes of the initial frame (Fig. 37).

The translation T is described by:

O′ = T (O), ī′ = T (̄i) = ī, j̄′ = T (j̄) = j̄, k̄′ = T (k̄) = k̄.
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Fig. 37

If the coordinates of the new origin w.r.t. the initial frame are O′(a, b, c), let us
determine now the relationship between the coordinates x, y, z and x′, y′, z′ of the
same point M w.r.t each coordinate system. For, note that OM = OO′ + O′M . In
terms of the basis {̄i, j̄, k̄}, this relation becomes

xī + yj̄ + zk̄ = aī + bj̄ + ck̄ + x′ī + y′j̄ + z′ k̄,

thus
x = x′ + a, y = y′ + b, z = z′ + c.

In matrix form we obtain



x
y
z


 =




a
b
c


 +




x′

y′

z′


 =




a
b
c


 +




1 0 0
0 1 0
0 0 1







x′

y′

z′


 .

Particular case. A translation in the plane xOy is described by

x = x′ + a, y = y′ + b.

2 Rotations of Cartesian Frames

Rotating the Cartesian frame {O; ī, j̄, k̄} means passing from this frame to a new one
{O; ī′, j̄′, k̄′}, keeping the same origin O and changing the orthonormal basis {̄i, j̄, k̄}
of V3 into another orthonormal basis {ī′, j̄′, k̄′}, such that {ī′, j̄′, k̄′} has positive
orientation. If the coordinates of the new basis vectors w.r.t. the old basis are known
(i.e. the matrix of change is known), then we can express a relationship between the
coordinates x, y, z and x′, y′, z′ of the same point M w.r.t each coordinate system.
This is immediate since

OM = xī + yj̄ + zk̄ = x′ī′ + y′j̄′ + z′k̄′.

Denote the matrix of change by R = [aij ] ∈ M3,3(R). Then



x
y
z


 = R




x′

y′

z′


 .(2.1)
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Since both bases are orthonormal, the linear transformation sending {̄i, j̄, k̄} to {ī′, j̄′, k̄′}
is an orthogonal transformation R of V3 whose associated matrix w.r.t. {̄i, j̄, k̄} is
R. The entries of R can be expressed in terms of inner products of the bases vectors
(see Chapter 1, section 7) as follows

R(̄i) = ī′ = 〈ī′, ī〉̄i + 〈ī′, j̄〉j̄ + 〈ī′, k̄〉k̄

R(j̄) = j̄′ = 〈j̄′, i〉̄i + 〈j̄′, j̄〉j̄ + 〈j̄′, k̄〉k̄

R(k̄) = k̄′ = 〈k̄′, ī〉̄i + 〈k̄′, j̄〉j̄ + 〈k̄′, k̄〉k̄.

Then
a11 = 〈ī′, ī〉, a21 = 〈ī′, j̄〉, a31 = 〈ī′, k̄〉,
a12 = 〈j̄′, ī〉, a22 = 〈j̄′, j̄〉, a32 = 〈j̄′, k̄〉,
a13 = 〈k̄′, ī〉, a23 = 〈k̄′, j̄〉, a33 = 〈k̄′, k̄〉.

Since ī′, j̄′, k̄′ are pairwise orthonormal unit vectors, their coordinates represent
director cosines, which implies that R is an orthogonal matrix, i.e. R tR = I =
tRR, or R−1 = tR. (As we mentioned above, it is a general fact that a linear
transformation of a Euclidean space, which sends an orthonormal basis to another
orthonormal basis, is an orthogonal transformation, therefore its associated matrix
w.r.t. any orthonormal basis is an orthogonal matrix.) An equivalent form of (2.1) is




x′

y′

z′


 = tR




x
y
z


 .

The positive orientation of {̄i, j̄, k̄} means 〈ī′, j̄′, k̄′〉 = 1. But 〈ī′, j̄′, k̄′〉 = detR,
thus R is a rotation.

If we do not impose the positive orientation of the new frame, then the determinant
of the matrix of change can be -1. This is the case of a symmetry, or rotation followed
by a symmetry.

Particular cases.
1) Rotation about the Oz axis. Denote by θ the rotation angle (Fig. 38).
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Fig. 38

From the figure above it follows that

R(̄i) = ī′ = ī cos θ + j̄ sin θ

R(j̄) = j̄′ = −ī sin θ + j̄ cos θ

R(k̄) = k̄′ = k̄.

Therefore R is described by

R :





x = x′cos θ − y′sin θ
y = x′sin θ + y′cos θ
z = z′.

Obviously, the determinant of the associated matrix is +1, thus R is a positive iso-
metry. In particular, a rotation in the xOy plane, of angle θ is described by

R :
{

x = x′cos θ − y′sin θ
y = x′sin θ + y′cos θ.

The composite of a translation and a rotation is called a roto-translation (Fig.
39). Any roto-translation in the xOy plane is characterized by

R :
{

x = x′cos θ − y′sin θ + a
y = x′sin θ + y′cos θ + b.

Fig. 39

2) Symmetry with respect to a plane. Consider the Cartesian frame {O; ī, j̄, k̄}
and S the symmetry w.r.t. the plane (O; ī, j̄). Then

S (̄i) = ī′ = ī; S(j̄) = j̄′ = j̄; S(k̄) = k̄′ = −k̄.
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Fig. 40

By xī + yj̄ + zk̄ = x′ī + y′j̄ + z′ k̄, it follows

S : x = x′, y = y′, z = −z′

or in matrix form 


x
y
z


 =




1 0 0
0 1 0
0 0 −1







x′

y′

z′


 .

The determinant of S is -1, thus S is a negative isometry.

3 Cylindrical Coordinates

Let Oxyz be a fixed Cartesian system of coordinates in E3. Any point M is uniquelly
determined by its Cartesian coordinates (x, y, z). Denote E∗3 = E3 \ Oz. The point
M is also characterized by the ordered triplet (ρ, θ, z), where ρ is the distance from
the origin to the projection M ′ of M onto the xOy plane, ρ =

√
x2 + y2, and θ is the

angle of the semilines Ox and OM (Fig. 41).

Fig. 41
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The numbers ρ, θ, z are called the cylindrical coordinates of the point M . The
cylindrical coordinates and the Cartesian coordinates of M are related by





x = ρ cos θ
y = ρ sin θ
z = z.

If we impose ρ > 0, θ ∈ [0, 2π), then the above relations give a one-to-one correspon-
dence between E3 \Oz and (0,∞)× [0, 2π)×R.

Coordinate sufaces
ρ = ρ0 : circular cylinder with generator lines parallel to Oz.
θ = θ0: semiplane bounded by Oz.
z = z0: plane parallel to xOy, without the point (0, 0, z0).

Coordinate curves
θ = θ0, z = z0: semiline parallel to xOy, with the origin on Oz.
ρ = ρ0, z = z0: circle whose center is on Oz, contained in a plane parallel to xOy.
θ = θ0, ρ = ρ0: line parallel to Oz.

The coordinate curves of different types are orthogonal, so the coordinate surfaces
of different types are orthogonal too.

Consider the point M(ρ, θ, z). The unit vectors ēρ, ēθ, ēz tangent to the coordinate
curves passing through M are pairwise orthogonal. The moving orthonormal frame
{M(ρ, θ, z); ēρ, ēθ, ēz} is called cylindrical frame (Fig. 42)

Fig. 42

The change from the Cartesian frame {O; ī, j̄, k̄} to the cylindrical frame
{M(ρ, θ, z); ēρ, ēθ, ēz} is described by





ēρ = cos θ ī + sin θ j̄
ēθ = −sin θ ī + cos θ j̄
ēz = k̄.

These formulas are based on the rule which gives the components of a vector w.r.t. an
orthonormal basis as projections of that vector onto the basis vectors. For example

ēρ = 〈ēρ, ī〉̄i + 〈ēρ, j̄〉j̄ + 〈ēρ, k̄〉k̄ = cos θ ī + sin θ j̄.
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4 Spherical Coordinates

Sometimes it is convenient to characterize the position of a point M ∈ E∗3 = E3 \Oz
using the ordered triplet (r, ϕ, θ), where r represents the distance d(O, M), θ is the
angle of the semilines Ox and OM ′, and ϕ is the angle between Oz and OM . M ′

denotes the projection of M onto xOy (Fig. 43).

Fig. 43

The numbers r, ϕ, θ are called the spherical coordinates of the point M . The
Cartesian and the spherical coordinates of M are related by





x = r sin ϕ cos θ
y = r sin ϕ sin θ
z = z cos ϕ.

These formulas provide a one-to-one correspondence between the sets E3 \Oz and
(0,∞)× (0, π)× [0, 2π).

Coordinate sufaces
r = r0 : sphere of radius r, center at O, without the north and the south poles.
θ = θ0: semiplane bounded by Oz.
ϕ = ϕ0: semicone without vertex (the origin).

Coordinate curves
θ = θ0, ϕ = ϕ0: semiline with origin at O.
r = r0, ϕ = ϕ0: circle whose center is on Oz, contained in a plane parallel to xOy.
θ = θ0, r = r0: open semicircle.

The coordinate curves of different types are orthogonal, so the coordinate surfaces
of different types are orthogonal too.

Consider the point M(r, θ, ϕ). The unit vectors ēr, ēϕ, ēθ tangent to the coordinate
curves passing through M are pairwise orthogonal. The moving orthonormal frame
{M(r, ϕ, θ); ēr, ēϕ, ēθ} is called spherical frame (Fig.44).
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Fig. 44

The change from the Cartesian frame {O; ī, j̄, k̄} to the spherical frame
{M(r, ϕ, θ); ēr, ēϕ, ēθ} is described by





ēr = sinϕ cos θ ī + sinϕ sin θ j̄ + cosϕ k̄
ēϕ = cosϕ cos θ ī + cosϕ sin θ j̄ − sinϕ k̄
ēθ = −sin θ ī + cos θ j̄.

5 Problems

1. If the spherical coordinates of a point are r = 5, θ = 600, ϕ = 450, determine
its cylindrical coordinates and its Cartesian coordinates.

2. Express the cylindrical coordinates of an arbitrary point in terms of its spherical
coordinates.

3. Express the spherical coordinates of an arbitrary point in terms of its cylindrical
coordinates.

4. Determine the change of coordinates formulas for the following transformation:
O = O′; the Ox′ axis is contained in the xOy plane, and the angle (as oriented straight
lines) between Ox′ and Ox is acute; the Oz′ axis has the same direction and the same
sense as the vector v̄ = 2̄i+ j̄ +2k̄; the Oy′ axis is such that the new Cartesian system
Ox′y′z′ has positive orientation.

5. Consider the Cartesian frame Oxyz, and the the points A(3, 0, 0), B(0, 2, 0),
C(0, 0, 6). After a rotation we obtain the Cartesian frame Ox′y′z′ such that: Oz′ has
the direction and sense of the height OO′ of the tetrahedron OABC; Oy′ is parallel
to O′A′, where A′ is the orthogonal projection of A onto (ABC), and the Ox′ axis is
such that the the system O′x′y′z′ has positive orientation.

Write the matrix of the rotation and determine its invariant direction (its real
1-dimensional eigenspace).

6. Let D be a straight line of equations

D :
x− 2

2
=

y + 1
1

=
z − 3
−2

.

Let ī′ be the unit director vector of D (choose a sense on D). Let j̄′ be a versor
contained in yOz and perpendicular on D, and the versor k̄′ such that {ī′, j̄′, k̄′} is
an orthonormal basis.
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Find out the change of basis formulas and compare the orientations of the two
frames.

7. Consider three points given by their cylindrical coordinates:

A(5,
π

3
, 4), B(7,

4π

3
,−2), C(2,

5π

6
,−1).

Show that A and B belong to a plane passing through Oz; determine the Cartesian
coordinates of A and C, and the distance d(A,C).

8. Write the following equations in spherical coordinates.

(x2 + y2 + z2)2 = 3(x2 + y2); (x2 + y2 + z2)2(x2 + y2) = 4x2y2.
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Exam Samples

I.
1. Eigenvalues and eigenvectors; characteristic polynomial.

2. Determine the equation of the plane equidistant from

D1 :
x− 1

1
=

y + 1
−1

=
z

1
, D2 :

x

2
=

y

−1
=

z − 1
1

.

3. Find the canonical form of x1x2 + x2x3 + x3x1.

II.
1. Bases and dimension.

2. Prove the identity

〈ā× b̄, c̄× d̄〉 =

∣∣∣∣∣
〈ā, c̄〉 〈ā, d̄〉
〈b̄, c̄〉 〈b̄, d̄〉

∣∣∣∣∣ .

3. Determine the canonical form of the matrix



5 −6 −6
−1 4 2

3 −6 −4


 .

III.
1. Scalar product and vector product of free vectors.

2. Choose the basis {1, x, x2, x3} in the vector space Vof all real polynomials of de-
gree ≤ 3. Let D denote the differentation operator and T : V → V, T (p)(x) = xp′(x).
Determine the matrix of each of the following linear transformations: D, T , DT , T D.
Find the eigenvalues and eigenvectors of T .

3. Let V be the real vector space of all polynomials of order ≤ 2 and

A(x, y) =
∫ 1

0

∫ 1

0

x(t)y(s)dtds.
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Show that A is a bilinear form which is symmetric and positive semidefinite. Find
the matrix of A with respect to the basis {1, t, t2}.

IV.
1. Euclidean vector spaces.

2. Show that if the vector b̄ is perpendicular to c̄, then (ā× b̄)× c̄ = b̄〈ā, c̄〉.
Give sufficient conditions for the orthogonality of (ā× b̄)× c̄ and c̄.

3. Let V be the vector space of all real polynomials p(x) of degree ≤ n. Define
T : V → V, T (p) = q, q(t) = p(t+1). Determine the eigenvalues and the eigenvectors
of T .

V.
1. Linear transformations: general properties, kernel and image.

2. Show that the area of a figure F contained in the plane P : z = px+ qy + l and
the area of its projection F̄ onto the xOy plane are related by

S(F ) =
√

1 + p2 + q2S(F̄ ).

3. Show that 〈f, g〉 =
∫ b

a

f(t)g(t)dt is a scalar product on the real vector of all

continuous functions on [a, b].

VI.
1. Scalar product and mixed product of free vectors.

2. Let V and W be vector spaces, each of dimension 2, and {e1, e2} a basis in
Vand {f1, f2} a basis in W. Let T : V → W, T (e1 +e2) = 3f1 +9f2, T (3e1 +2e2) =
7f1 +23f2, be a linear transformation. Compute T (e2−e1) and determine the nullity
and rank of T . Determine T −1.

3. Determine an orthogonal matrix C which reduces the quadratic form Q(x) =
2x2

1 + 4x1x2 + 5x2
2 to a diagonal form.

VII.
1. The matrix of a linear transformation. Particular endomorphisms.

2. Find the equation of the plane P passing through the point (1,1,1), which is
perpendicular to the planes Q1 : x + y + z + 1 = 0, Q2 : x − y + z = 0. Using the
normal vectors of P, Q1, Q2 and the Gram-Schmidt procedure, find an orthonormal
basis of R3.

3. Determine the canonical form of

Q(x) = 3x2
1 − 5x2

2 − 7x2
3 − 8x1x2 + 8x2x3.
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VIII.
1. Free vectors: collinearity, coplanarity.

2. Let V be the vector space of all continuous functions on (−∞,∞) and such that

the integral

x∫

−∞
f(t)dt exists for all x. Define T : V → V, g = T (f), g(x) =

x∫

−∞
f(t)dt.

Prove that every positive real number λ is an eigenvalue for T and determine the
eigenfunctions corresponding to λ.

3. Let Q : R3 → R, Q(x) = x1x2 + x2x3 + x3x1. Determine the canonical form
of Q and the image of

D :
x1 − 1

1
=

x2

−1
=

x3

2
by Q.

IX.
1. Vectors spaces. Vector subspaces.

2. Let T : C3 → C3 be represented by the matrix



a
i√
4

−1 + 2i√
12

b
1 + i√

4
1− i√

12
c

−1√
4

2− i√
12




.

Determine a, b and c so that T is unitary (for C3 with the usual inner product).

3. Find the projection of

D :
x− 1

2
=

y

1
=

z − 2
−2

onto
P : x + y + z = 0

and the symmetric of P with respect to D.

X.
1. The spectrum of endomorphisms on Euclidean spaces.

2. Determine the relation between a, b, c, d, α, β, γ, δ, λ, µ such that the three planes
ax + by + cz + d = 0, αx + βy + γz + δ = 0, λ(ax + by + cz) + µ(αx + βy + γz) = 0
have no points in common.

3. Let {x, y} be a linearly independent set in a Euclidean space V.
Define f : R → R by f(α) = ‖x− αy‖.
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(a) Where does f take on its minimum value ?
(b) Give a geometric interpretation of (a). What happens if f : C → R ?

XI.
1. Diagonal form of an endomorphism.

2. Let P : x+y−2z = 0. Find the equation of the plane Q symmetric to P about
xOy (about the origin O).

3. Let A : R4 ×R4 → R,

A(x, y) = x1y2 − x2y1 + x1y3 − x3y1 + x1y4 − x4y1 + x4y4.

Find the matrix of A with respect to the basis f1 = (1, 1, 0, 0), f2 = (0, 1, 1, 0),
f3 = (0, 1, 0, 1), f4 = (1, 0, 0, 1).

XII.
1. Basic facts on straight lines and planes.

2. Let P4 denote the space of all polynomials in t of degree at most 3. Find the

matrix representation of T : P4 → P4, y = T x, y(t) =
d

dt

(
(t2 − 1)

dx

dt

)
with respect

to the basis B =
{

1, t,
3
2
t2 − 1

2
,
5
2
t3 − 3

2
t

}
.

3. Let V consist of all infinite sequences x = {xn} of real numbers for which
the series

∑
x2

n converges. Define 〈x, y〉 =
∑

xnyn. Prove that this series converges

absolutely and 〈x, y〉 is a scalar product. Compute 〈x, y〉 if xn =
1
n

and yn =
1

n + 1
.

XIII.
1. Quadratic forms.

2. Let ā, b̄, c̄ ∈ V3 such that b̄ perpendicular to c̄. Show that (ā× b̄)× c̄ = b̄〈ā, c̄〉.

3. Let V = C[0, T ] and define (Px)(t) = x(0)(1− t), for 0 ≤ t ≤ T . Show that P
is a projection and determine the range of P.

XIV.
1. Polar, cylindrical and spherical coordinates.

2. Consider the linear transformation T : V → V given by y = T x, where

y(t) =
∫ 2π

0

x(0)4 cos 2(t− s)ds, and V = L{1, cos s, cos 2s, sin s, sin 2s}.
(a) Express T as a matrix.
(b) Is T one-to-one ?



EXAM SAMPLES 123

(c) Does it map V onto itself ?

3. Let V be the vector space of all real-valued functions defined on the real line.
Which of the subsets {1, eax, xeax}, {1, cos 2x, sin2 x} is linearly independent in V?
Compute the dimension of the subspace spanned by each subset.

XV.
1. Equations of a straight line.

2. Let V = L2[−π, π], and V1 = L(A1), V2 = L(A2), where A1 = {1, cos t, cos 2t, . . .},
A2 = {sin t, sin 2t, . . .}. Show that A1, A2 are linearly independent, and the sum of
V1 and V2 is direct.

3. Let T : V → V, g = T (f), g(x) =
∫ π

−π

(1 + cos(x− t))f(t)dt. Find a basis for

T (V).
(a) Determine the kernel of T .
(b) Find the eigenvalues of T .

XVI.
1. Equation of a plane in space.

2. Let V be the real vector space of all functions of the form x(t) = a cos(ωt + φ),
where ω is fixed. Show that B = {cos ωt, sin ωt} is a basis of V. Give examples of
linear transformations on V.

3. Let V be the real Euclidean space of real polynomial functions on [-1,1]. Deter-
mine which of the following linear transformations is symmetric or skew symmetric:
T (f)(x) = f(−x), T (f)(x) = f(x) + f(−x), T (f)(x) = f(x)− f(−x).

XVII.
1. Transformations of Cartesian frames.

2. Let V denote the real vector space of all polynomials in t, of degree at most

four, and define T : V → V by T = D2 + 2D + I, where Dx =
dx

dt
(differential

operator).
(a) Represent T by a matrix T w.r.t. the basis {1, t, t2, t3, t4}.
(b) Represent T 2 by a matrix.

3. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. Find out whether 〈x, y〉 =
n∑

i=1

xi

n∑
y=1

yj , 〈x, y〉 =

∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ are scalar products or not. When 〈x, y〉 is not a scalar

product, point out the axioms which are not fulfilled.

XVIII.
1. Jordan form of an endomorphism.
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2. What is the locus of points with the property that the ratio of distances to two
given planes is constant?

3. In the linear space of all real polynomials, with scalar product 〈x, y〉 =∫ 0

1

x(t)y(t)dt, let xn(t) = tn for n = 0, 1, 2, . . .. Prove that the functions y0(t) = 1,

y1(t) =
√

3(2t − 1), y2(t) =
√

5(6t2 − 6t + 1) form an orthonormal set spanning the
same subspace as {x0, x1, x2}.

XIX.
1. Free vectors: addition, multiplication of a vector by a scalar.

2. Let V be the vector space of all continuous functions defined on (−∞,∞), and

such that the integral
∫ x

−∞
tf(t)dt exists for all real numbers x. Define T : V → V,

g = T (f), g(x) =
∫ x

−∞
tf(t)dt. Prove that every negative λ is a proper value for T

and determine the eigenvectors corresponding to λ.

3. Determine the signature of the quadratic form

Q(x) = 3x2
1 − 5x2

2 + x2
3 − 2x1x2 + x2x3.

XX.
1. Linear transformations on Euclidean spaces.

2. Show that the locus of points equidistant from three pairwise non-parallel
planes is a straight line.

3. Show that the quadratic forms

Q(x) = 3x2
1 + 4x2

2 + 5x2
3 + 4x1x2 − 4x2x3,

Q(x) = 2x2
1 + 5x2

2 + 5x2
3 + 4x1x2 − 4x1x3 − 8x2x3

are positive definite.

XXI.
1. Isometries.

2. Write the equations of the straight line D passing through the point (1,1,1)
and parallel to the planes P : x− y + z = 0, Q : x + 2y− z = 0. Find the points of P
which are at the distance 2 from D.

3. Define T : C2 → C2 by
[

y1

y2

]
=

[
a b
c d

] [
x1

x2

]
,
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where a, b, c, d are complex numbers. Determine necessary and sufficient conditions
on a, b, c, d such that T is self-adjoint, or unitary.

XXII.
1. Polynomials of matrices. Functions of matrices.

2. Find out the angles between the coordinate axes and the plane P : x+y+2z = 0.

Determine the symmetric of P with respect to the line D :
x

1
=

y − 1
−1

=
z

1
.

3. Let x, y be vectors in a Euclidean space Vand assume that

‖λx + (1− λ)y‖ = ‖x‖, ∀λ ∈ [0, 1].

Show that x = y.

XXIII.
1. Orthogonality. The Gram-Schmidt orthogonalization procedure.

2. Prove that: if the vectors ā and b̄ are perpendicular to the vector c̄, then
(ā× b̄)× c̄ = 0. Give sufficient conditions for the collinearity of (ā× b̄)× c̄ and c̄.

3. Find the canonical form of T : R3 → R3,

T =




7 4 −1
4 7 −1

−4 −4 4


 .

XXIV.
1. Linear dependence and independence.

2. Find the angles between the coordinate planes and the straight line

D :
x− 1

1
=

y

−2
=

z + 2
−1

.

Determine the equations of the symmetric of D with respect to the plane

P : x + y + z = 0.

3. Determine the canonical form of T : R3 → R3 given by

T =




0 −1 0
0 0 1

−1 −3 3


 .
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XXV.
1. Bilinear forms.

2. Prove that the straight lines joining the mid-points of the opposite edges of a
tetrahedron intersect at one point. Express the coordinates of this point in terms of
the coordinates of the vertices of the tetrahedron.

3. Show that the set of all functions xn(t) = eint, n = 0, 1, 2, . . . is linearly
independent in L2[0, 2π].

XXVI.
1. Eigenvalues and eigenvectors of an endomorphism.

2. Given the point A(0, 1, 2) and the line

D :
{

x + y = 0
x + z + 1 = 0,

detemine the symmetric of A with respect to D and the symmetric of D w.r.t. A.

3. Let Q : R3 → R,

Q(x) = 4x2
1 + x2

2 + 9x2
3 + 4x1x2 − 12x1x3 − 6x2x3.

Reduce Q to the canonical expression using the eigenvalues method; determine
the corresponding basis.

Use another method of reduction to the canonical form and check the inertia law.

XXVII.
1. The common perpendicular of two noncoplanar straight lines. The distance

between two noncoplanar straight lines.

2. Consider the real vector space V = C∞(R) and D : V → V, D(f) = f ′.
Find the eigenvalues and the eigenvectors of D. Is λ = 2 an eigenvalue? What is the
dimension of S(2)?

3. Let T : R2[X] → R2[X] be a linear map such that

T (1 + X) = X2, T (X + X2) = 1−X, T (1 + X + X2) = X + X2.

Find the matrix associated to T w.r.t. canonical basis of R2[X]. Determine the
dimension and a basis for each of Ker(T ) and Im(T ).

XXVIII.
1. Endomorphisms of Euclidean vector spaces.

2. Consider v = (14,−3,−6) ∈ R3 and S = {v1, v2, v3}, where v1 = (−3, 0, 7),
v2 = (1, 4, 3), v3 = (2, 2,−2). Determine the orthogonal projection w of v on Span S
and the vector w⊥.
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3. Let T : R3 → R3 be an endomorphism, and

T =




4 6 0
−3 −5 0
−3 −6 1




the matrix of T w.r.t. the canonical basis. Find the diagonal form of T and the
corresponding basis. Is T injective? Is T surjective?

XXIX.
1. The vector space of free vectors: mixed product - properties, geometric inter-

pretation.

2. Let T : R3 → R3 be an endomorphism such that T (1, 0, 0) = (3, 1, 0),
T (0, 0, 1) = (1, 2, 0), Ker T = {(α, 2α, 3α) |α ∈ R}. Determine a basis for Ker T
and Im T respectively; determine also the matrix of T w.r.t. the canonical basis.

3. Given

A =




1 −1 −2
−1 3 −1
−2 −1 1


 ,

find the canonical expression of the quadratic form Q : R3 → R, Q(x) = tXAX and
the correspoding change of coordinates.

XXX.
1. Matrix polynomials.

2. Consider the vectors v1 = (3, 2,−1), v2 = (1,−2, 1), v3 = (1, 0, 2). Prove that
there exists a unique linear form f : R3 → R such that f(v1) = 5, f(v2) = −3,
f(v3) = 6. Write f(x) in terms of the components of x, for x arbitrary in R3, and
determine an orthonormal basis of Ker f . Is Im f a proper subspace of R?

3. Let M(1,−2, 5) and Q : x + 2y + 2z + 1 = 0. Determine the projection of the
point M onto the plane Q, the symmetric of M w.r.t. Q, the distance from M to Q,
and the symmetric of Q w.r.t. M .

XXXI.
1. Bilinear forms.

2. Use the Cayley-Hamilton theorem to determine the inverse of the matrix

A =



−1 2 2
2 −1 2
2 2 −1




and the value of the matrix polynomial R(A) = A3 + 3A2 − 8A− 27I.
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3. Let V = C0[0, 2π], S = {f0, f1, . . . , fk . . .} ⊂ V , where f0(x) = 1, f2n−1(x) =
cosnx, f2n(x) = sin nx, n ∈ N∗, x ∈ [0, π].

Prove that S is linearly independent and determine an orthonormal basis of
Span S.

XXXII.
1. Quadratic forms.

2. If ā, b̄, c̄ ∈ V3 are noncoplanar vectors such that 〈ā, b̄〉 6= 0, show that

E =
〈

ā× b̄

〈ā, b̄〉 ,
ā× (b̄× c̄)
〈ā, b̄× c̄〉

〉

does not depend on ā, b̄, c̄.

3. Determine the eigenvalues and the eigenvectors of the linear transformation
T : R3 → R3, T (x) = (x1 − 2x2 − x3,−x1 + x2 + x3, x1 − x3).

(a) Is T diagonalizable? (b) Find orthonormal bases in KerT and ImT .

XXXIII.
1. Kernel and image of a linear transformation.

2. Given the vectors

ā = ī− αj̄ + 3k̄, b̄ = αī− j̄ + k̄, c̄ = 3̄i + j̄ − k̄,

find the value of α ∈ R such that ā, b̄, c̄ are coplanar.
For α = 2, determine the altitude of the parallelipiped constructed on some repre-

sentatives with common origin of the vectors ā, b̄, c̄, corresponding to the base whose
sides are the representatives of ā and b̄.

3. Let

T =




4 2 −6
2 1 −3
−6 −3 9




be the matrix associated to the endomorphism T : R3 → R3 w.r.t. the canonical
basis of R3.

(a) Find out whether T admits a Jordan form or not.
(b) Compute T n, n ∈ N∗.
(c) Is T an injective endomorphism?

XXXIV.
1. Collinearity and coplanarity in V3.
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2. (a) Write the analytic expression of the bilinear form A : R3 ×R3 → R, if the
associated matrix w.r.t. the canonical basis is

A =




1 2 −1
−1 2 3
3 0 1


 .

(b) Is A a symmetric bilinear form?
(c) Let Q : R3 → R be a quadratic form,

Q(x) = x2
1 + 8x2

2 + x2
3 + 16x1x2 + 4x1x3 + 4x2x3.

Determine the canonical form of Q and the corresponding basis, using Jacobi’s
method.

3. Prove that the straight lines

D1 :
x

1
=

y

2
=

z

3
,

D2 :
x− 1

2
=

y − 1
−1

=
z

1
are noncoplanar, determine the equations of their common perpendicular and the
distance between D1 and D2.

XXXV.
1. Linear dependence. Linear independence.

2. Consider the straight line D and the plane P of equations

D :
x

−1
=

y

2
=

z

1

P : x− 2y + z = 0.

(a) Find the projection of D onto P .
(b) If D and P are viewed as vector subspaces of R3, determine D + P , D ∩ P

and an orthonormal basis of P .

3. Given the matrix

A =




1 0 1
0 2 0
0 0 3


 ,

use the Cayley - Hamilton theorem in order to:
(a) write A−1 as a polynomial of degree 2 in A;
(b) show that

An =




1 0 (3n − 1)/2
0 2n 0
0 0 3n


 .
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şi ecuaţii diferenţiale (in Romanian), Editura Didactică şi Pedagogică, Bu-
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