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4 Chapter 1 Matrices and Systems of Equations

Therefore, any solution of system (b) must also be a solution of system (a). By a
similar argument, it can be shown that any solution of (a) is also a solution of (b). This
can be done by subtracting the first equation from the second:

x2 = 3
3x1 + 2x2 − x3 = −2

−3x1 − x2 + x3 = 5

Then add the first and third equations:

33x1 + 2x2 − x3 = −2
2x3 = 4

3x1 + 2x2 + x3 = 2

Thus, (x1, x2, x3) is a solution of system (b) if and only if it is a solution of system (a).
Therefore, both systems have the same solution set, {(−2, 3, 2)}.

Definition Two systems of equations involving the same variables are said to be equivalent if
they have the same solution set.

Clearly, if we interchange the order in which two equations of a system are written,
this will have no effect on the solution set. The reordered system will be equivalent to
the original system. For example, the systems

x1 + 2x2 = 4
3x1 − x2 = 2
4x1 + x2 = 6

and
4x1 + x2 = 6
3x1 − x2 = 2

x1 + 2x2 = 4

both involve the same three equations and, consequently, they must have the same
solution set.

If one equation of a system is multiplied through by a nonzero real number, this
will have no effect on the solution set, and the new system will be equivalent to the
original system. For example, the systems

x1 + x2 + x3 = 3
−2x1 − x2 + 4x3 = 1

and
2x1 + 2x2 + 2x3 = 6

−2x1 − x2 + 4x3 = 1

are equivalent.
If a multiple of one equation is added to another equation, the new system will

be equivalent to the original system. This follows since the n-tuple (x1, . . . , xn) will
satisfy the two equations

ai1x1 + · · · + ainxn = bi

a j1x1 + · · · + a jnxn = b j

if and only if it satisfies the equations

ai1x1 + · · · + ainxn = bi

(a j1 + αai1)x1 + · · · + (a jn + αain)xn = b j + αbi
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8 Chapter 1 Matrices and Systems of Equations

Returning to the example, we find that the first row is used to eliminate the ele-
ments in the first column of the remaining rows. We refer to the first row as the pivotal
row. For emphasis, the entries in the pivotal row are all in bold type and the entire row
is color shaded. The first nonzero entry in the pivotal row is called the pivot.

(pivot a11 = 1)
entries to be eliminated

a21 = 3 and a31 = 2

}
→

⎧⎪⎪⎪⎪⎪⎩1 2 1 3
3 −1 −3 −1
2 3 1 4

⎫⎪⎪⎪⎪⎪⎭
← pivotal row

By using row operation III, 3 times the first row is subtracted from the second row and
2 times the first row is subtracted from the third. When this is done, we end up with
the matrix ⎧⎪⎪⎪⎪⎪⎩

1 2 1 3
0 −7 −6 −10
0 −1 −1 −2

⎫⎪⎪⎪⎪⎪⎭ ← pivotal row

At this step we choose the second row as our new pivotal row and apply row opera-
tion III to eliminate the last element in the second column. This time, the pivot is −7
and the quotient −1

−7 = 1
7 is the multiple of the pivotal row that is subtracted from the

third row. We end up with the matrix⎧⎪⎪⎪⎪⎪⎩
1 2 1 3
0 −7 −6 −10
0 0 − 1

7 − 4
7

⎫⎪⎪⎪⎪⎪⎭
This is the augmented matrix for the strictly triangular system, which is equivalent to
the original system. The solution of the system is easily obtained by back substitution.

EXAMPLE 4 Solve the system
4 − x2 − x3 + x4 = 0

x1 + x2 + x3 + x4 = 6
2x1 + 4x2 + x3 − 2x4 = −1
3x1 + x2 − 2x3 + 2x4 = 3

Solution
The augmented matrix for this system is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 −1 −1 1 0
1 1 1 1 6
2 4 1 −2 −1
3 1 −2 2 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Since it is not possible to eliminate any entries by using 0 as a pivot element, we will
use row operation I to interchange the first two rows of the augmented matrix. The new
first row will be the pivotal row and the pivot element will be 1:

(pivot a11 = 1)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 1 1 1 6
0 −1 −1 1 0
2 4 1 −2 −1
3 1 −2 2 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
← pivot row
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1.2 Row Echelon Form 25

8. Consider a linear system whose augmented matrix
is of the form

⎧⎪⎪⎪⎪⎪⎩
1 2 1 1

−1 4 3 2
2 −2 a 3

⎫⎪⎪⎪⎪⎪⎭
For what values of a will the system have a unique
solution?

9. Consider a linear system whose augmented matrix
is of the form

⎧⎪⎪⎪⎪⎪⎩
1 2 1 0
2 5 3 0

−1 1 β 0

⎫⎪⎪⎪⎪⎪⎭
(a) Is it possible for the system to be inconsistent?

Explain.

(b) For what values of β will the system have in-
finitely many solutions?

10. Consider a linear system whose augmented matrix
is of the form

⎧⎪⎪⎪⎪⎪⎩
1 1 3 2
1 2 4 3
1 3 a b

⎫⎪⎪⎪⎪⎪⎭
(a) For what values of a and b will the system have

infinitely many solutions?

(b) For what values of a and b will the system be
inconsistent?

11. Given the linear systems

(a) x1 + 2x2 = 2

3x1 + 7x2 = 8

(b) x1 + 2x2 = 1

3x1 + 7x2 = 7

solve both systems by incorporating the right-hand
sides into a 2 × 2 matrix B and computing the re-
duced row echelon form of

(A |B) =
⎧⎪⎩1 2 2 1

3 7 8 7

⎫⎪⎭
12. Given the linear systems

(a) x1 + 2x2 + x3 = 2

−x1 − x2 + 2x3 = 3

2x1 + 3x2 = 0

(b) x1 + 2x2 + x3 = −1

−x1 − x2 + 2x3 = 2

2x1 + 3x2 = −2

solve both systems by computing the row echelon
form of an augmented matrix (A |B) and perform-
ing back substitution twice.

13. Given a homogeneous system of linear equations,
if the system is overdetermined, what are the possi-
bilities as to the number of solutions? Explain.

14. Given a nonhomogeneous system of linear equa-
tions, if the system is underdetermined, what are
the possibilities as to the number of solutions? Ex-
plain.

15. Determine the values of x1, x2, x3, and x4 for the
following traffic flow diagram:

x4

x1

x2

x3

380

430 450

400540

420 470

420

16. Consider the traffic flow diagram that follows,
where a1, a2, a3, a4, b1, b2, b3, b4 are fixed positive
integers. Set up a linear system in the unknowns x1,
x2, x3, x4 and show that the system will be consis-
tent if and only if

a1 + a2 + a3 + a4 = b1 + b2 + b3 + b4

What can you conclude about the number of auto-

Leon: Linear Algebra with Applications 8/E 6/22/07 10:42 Page 25

sleon
Pencil

sleon
Sticky Note
Delete the arrow here. There should be no arrows in the intersections.



26 Chapter 1 Matrices and Systems of Equations

mobiles entering and leaving the traffic network?

x1 a4b1

x4

a3

b4

x3a2 b3

x2

a1

b2

17. Let (c1, c2) be a solution of the 2 × 2 system

a11x1 + a12x2 = 0

a21x1 + a22x2 = 0

Show that, for any real number α, the ordered pair
(αc1, αc2) is also a solution.

18. In Application 3, the solution (6, 6, 6, 1) was ob-
tained by setting the free variable x4 = 1.
(a) Determine the solution corresponding to x4 =

0. What information, if any, does this solution
give about the chemical reaction? Is the term
“trivial solution” appropriate in this case?

(b) Choose some other values of x4, such as 2, 4, or
5, and determine the corresponding solutions.
How are these nontrivial solutions related?

19. Liquid benzene burns in the atmosphere. If a cold
object is placed directly over the benzene, water
will condense on the object and a deposit of soot
(carbon) will also form on the object. The chemi-
cal equation for this reaction is of the form

x1C6H6 + x2O2 → x3C + x4H2O

Determine values of x1, x2, x3, and x4 to balance
the equation.

20. Nitric acid is prepared commercially by a series of
three chemical reactions. In the first reaction, nitro-
gen (N2) is combined with hydrogen (H2) to form
ammonia (NH3). Next, the ammonia is combined
with oxygen (O2) to form nitrogen dioxide (NO2)
and water. Finally, the NO2 reacts with some of the
water to form nitric acid (HNO3) and nitric oxide
(NO). The amounts of each of the components of

these reactions are measured in moles (a standard
unit of measurement for chemical reactions). How
many moles of nitrogen, hydrogen, and oxygen are
necessary to produce 8 moles of nitric acid?

21. In Application 4, determine the relative values of
x1, x2, and x3 if the distribution of goods is as de-
scribed in the following table:

F M C

F 1
3

1
3

1
3

M 1
3

1
2

1
6

C 1
3

1
6

1
2

22. Determine the amount of each current for the fol-
lowing networks:
(a)

A B

3 ohms

16 volts

2 ohms

2 ohms

i1

i2

i3

(b)

A B

2 ohms

20 volts 4 ohms

2 ohms i1

i2

i3

(c)

A B

4 ohms

8 volts

4 ohms

5 ohms

2 ohms

C D

i1

i4i3

10 volts
i6

i2

i5
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1.4 Matrix Algebra 49

If we let ei denote the average number of eggs laid by a member of stage i (i = 2, 3, 4)
in 1 year and form the matrix

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
p1 e2 e3 e4

q1 p2 0 0
0 q2 p3 0
0 0 q3 p4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ (3)

then L can be used to predict the turtle populations at each stage in future years. A
matrix of the form (3) is called a Leslie matrix, and the corresponding population
model is sometimes referred to as a Leslie population model. Using the figures from
Table 1, the Leslie matrix for our model is

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 127 79

0.67 0.7394 0 0
0 0.0006 0 0
0 0 0.81 0.8077

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
Suppose that the initial populations at each stage were 200,000, 300,000, 500,

and 1500, respectively. If we represent these initial populations by a vector x0, the
populations at each stage after 1 year are determined with the matrix equation

x1 = Lx0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 0 127 79

0.67 0.7394 0 0
0 0.0006 0 0
0 0 0.81 0.8077

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩

200,000
300,000

500
1,500

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
182,000
355,820

180
1,617

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
(The computations have been rounded to the nearest integer.) To determine the popu-
lation vector after 2 years, we multiply again by the matrix L:

x2 = Lx1 = L2x0

In general, the population after k years is determined by computing xk = Lkx0. To
see longer range trends, we compute x10, x25, and x50. The results are summarized in
Table 2. The model predicts that the total number of breeding-age turtles will decrease
by 80 percent over a 50-year period.

Table 2 Loggerhead Sea Turtle Population Projections

Stage Initial 10 25 50
Number population years years years

1 200,000 114,264 74,039 35,966

2 300,000 329,212 213,669 103,795

3 500 214 139 68

4 1,500 1,061 687 334

A seven-stage model describing the population dynamics is presented in refer-
ence [1] to follow. We will use the seven-stage model in the computer exercises at the
end of this chapter. Reference [2] is the original paper by Leslie.
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54 Chapter 1 Matrices and Systems of Equations

Symmetric Matrices and Networks

Recall that a matrix A is symmetric if AT = A. One type of application that leads to
symmetric matrices is problems involving networks. These problems are often solved
with the techniques of an area of mathematics called graph theory.

APPLICATION 3 Networks and Graphs

Graph theory is an important areas of applied mathematics. It is used to model prob-
lems in virtually all the applied sciences. Graph theory is particularly useful in appli-
cations involving communication networks.

A graph is defined to be a set of points called vertices, together with a set of
unordered pairs of vertices, which are referred to as edges. Figure 1.4.2 gives a geo-
metrical representation of a graph. We can think of the vertices V1, V2, V3, V4, and V5

as corresponding to the nodes in a communication network.

V1 V2

V3

V4V5

Figure 1.4.2.

The line segments joining the vertices correspond to the edges:

{V1, V2}, {V2, V5}, {V3, V4}, {V3, V5}, {V4, V5}
Each edge represents a direct communication link between two nodes of the network.

An actual communication network could involve a large number of vertices and
edges. Indeed, if there are millions of vertices, a graphical picture of the network would
be quite confusing. An alternative is to use a matrix representation for the network. If
the graph contains a total of n vertices, we can define an n × n matrix A by

ai j =
{

1 if {Vi , Vj } is an edge of the graph
0 if there is no edge joining Vi and Vj

The matrix A is called the adjacency matrix of the graph. The adjacency matrix for the
graph in Figure 1.4.2 is given by

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 1 0 0 0
1 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 1 1 1 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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1.5 Elementary Matrices 67

(g)

⎧⎪⎪⎪⎪⎪⎩
−1 −3 −3

2 6 1
3 8 3

⎫⎪⎪⎪⎪⎪⎭ (h)

⎧⎪⎪⎪⎪⎪⎩
1 0 1

−1 1 1
−1 −2 −3

⎫⎪⎪⎪⎪⎪⎭
11. Given

A =
⎧⎪⎩3 1

5 2

⎫⎪⎭ and B =
⎧⎪⎩1 2

3 4

⎫⎪⎭
compute A−1 and use it to
(a) find a 2 × 2 matrix X such that AX = B.

(b) find a 2 × 2 matrix Y such that Y A = B.

12. Let

A =
⎧⎪⎩5 3

3 2

⎫⎪⎭ , B =
⎧⎪⎩6 2

2 4

⎫⎪⎭ , C =
⎧⎪⎩ 4 −2

−6 3

⎫⎪⎭
Solve each of the following matrix equations:
(a) AX + B = C (b) XA + B = C

(c) AX + B = X (d) XA + C = X

13. Is the transpose of an elementary matrix an elemen-
tary matrix of the same type? Is the product of two
elementary matrices an elementary matrix?

14. Let U and R be n ×n upper triangular matrices and
set T = UR. Show that T is also upper triangular
and that t j j = u j jr j j for j = 1, . . . , n.

15. Let A be a 3 × 3 matrix and suppose that

2a1 + a2 − 4a3 = 0

How many solutions will the system Ax = 0 have?
Explain. Is A nonsingular? Explain.

16. Let A be a 3 × 3 matrix and suppose that

a1 = 3a2 − 2a3

Will the system Ax = 0 have a nontrivial solution?
Is A nonsingular? Explain your answers.

17. Let A and B be n × n matrices and let C = A − B.
Show that if Ax0 = Bx0 and x0 �= 0, then C must
be singular.

18. Let A and B be n × n matrices and let C = AB.
Prove that if B is singular, then C must be singular.
[Hint: Use Theorem 1.5.2.]

19. Let U be an n × n upper triangular matrix with
nonzero diagonal entries.
(a) Explain why U must be nonsingular.

(b) Explain why U−1 must be upper triangular.

20. Let A be a nonsingular n ×n matrix and let B be an
n × r matrix. Show that the reduced row echelon
form of (A |B) is (I |C), where C = A−1 B.

21. In general, matrix multiplication is not commuta-
tive (i.e., AB �= B A). However, in certain special
cases the commutative property does hold. Show
that
(a) if D1 and D2 are n × n diagonal matrices, then

D1 D2 = D2 D1.

(b) if A is an n × n matrix and

B = a0 I + a1 A + a2 A2 + · · · + ak Ak

where a0, a1, . . . , ak are scalars, then
AB = B A.

22. Show that if A is a symmetric nonsingular matrix,
then A−1 is also symmetric.

23. Prove that if A is row equivalent to B, then B is
row equivalent to A.

24. (a) Prove that if A is row equivalent to B and B is
row equivalent to C , then A is row equivalent
to C .

(b) Prove that any two nonsingular n × n matrices
are row equivalent.

25. Let A and B be m × n matrices. Prove that if B is
row equivalent to A and U is any row echelon form
A, then B is row equivalent to U .

26. Prove that B is row equivalent to A if and only
if there exists a nonsingular matrix M such that
B = MA.

27. Is it possible for a singular matrix B to be row
equivalent to a nonsingular matrix A? Explain.

28. Given a vector x ∈ R
n+1, the (n + 1) × (n + 1)

matrix V defined by

vi j =
{

1 if j = 1

x j−1
i for j = 2, . . . , n + 1

is called the Vandermonde matrix.
(a) Show that if

V c = y

and

p(x) = c1 + c2x + · · · + cn+1xn

then

p(xi ) = yi , i = 1, 2, . . . , n + 1

(b) Suppose that x1, x2, . . . , xn+1 are all distinct.
Show that if c is a solution to V x = 0, then the
coefficients c1, c2, . . . , cn must all be zero and
hence V must be nonsingular.
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82 Chapter 1 Matrices and Systems of Equations

then

AB =
⎧⎪⎩4 5

7 10

⎫⎪⎭ and B A =
⎧⎪⎩11 7

4 3

⎫⎪⎭
This proves that statement (ii) is false.

1. If the row echelon form of A involves free vari-
ables, then the system Ax = b will have infinitely
many solutions.

2. Every homogeneous linear system is consistent.

3. An n × n matrix A is nonsingular if and only if the
reduced row echelon form of A is I (the identity
matrix).

4. If A is nonsingular, then A can be factored into a
product of elementary matrices.

5. If A and B are nonsingular n × n matrices, then
A + B is also nonsingular and

(A + B)−1 = A−1 + B−1.

6. If A = A−1, then A must be equal to either I or
−I .

7. If A and B are n × n matrices, then

(A − B)2 = A2 − 2AB + B2.

8. If AB = AC and A �= O (the zero matrix), then
B = C .

9. If AB = O , then B A = O .

10. If A is a 3 × 3 matrix and a1 + 2a2 − a3 = 0, then
A must be singular.

11. If A is a 4 × 3 matrix and b = a1 + a3, then the
system Ax = b must be consistent.

12. Let A be a 4 × 3 matrix with a2 = a3. If b =
a1 + a2 + a3, then the system Ax = b will have
infinitely many solutions.

13. If E is an elementary matrix, then E T is also an
elementary matrix.

14. The product of two elementary matrices is an ele-
mentary matrix.

15. If x and y are nonzero vectors in R
n and A = xyT ,

then the row echelon form of A will have exactly
one nonzero row.

CHAPTER TEST B

1. Find all solutions of the linear system

x1 − x2 + 3x3 + 2x4 = 1

−x1 + x2 − 2x3 + x4 = −2

2x1 − 2x2 + 7x3 + 7x4 = 1

2. (a) A linear equation in two unknowns corre-
sponds to a line in the plane. Give a similar
geometric interpretation of a linear equation in
three unknowns.

(b) Given a linear system consisting of two equa-
tions in three unknowns, what is the possible
number of solutions? Give a geometric expla-
nation of your answer.

(c) Given a homogeneous linear system consisting
of two equations in three unknowns, how many
solutions will it have? Explain.

3. Let Ax = b be a system of n linear equations in
n unknowns, and suppose that x1 and x2 are both
solutions and x1 �= x2.
(a) How many solutions will the system have? Ex-

plain.
(b) Is the matrix A nonsingular? Explain.

4. Let A be a matrix of the form

A =
⎧⎪⎩ α β

2α 2β

⎫⎪⎭

where α and β are fixed scalars not both equal to 0.
(a) Explain why the system

Ax =
⎧⎪⎩3

1

⎫⎪⎭
must be inconsistent.

(b) How can one choose a nonzero vector b so that
the system Ax = b will be consistent? Ex-
plain.

5. Let

A =
⎧⎪⎪⎪⎪⎪⎩

2 1 3
4 2 7
1 3 5

⎫⎪⎪⎪⎪⎪⎭ B =
⎧⎪⎪⎪⎪⎪⎩

2 1 3
1 3 5
4 2 7

⎫⎪⎪⎪⎪⎪⎭
C =

⎧⎪⎪⎪⎪⎪⎩
0 1 3
0 2 7

−5 3 5

⎫⎪⎪⎪⎪⎪⎭
(a) Find an elementary matrix E such that

E A = B.
(b) Find an elementary matrix F such that

AF = C .

6. Let A be a 3 × 3 matrix and let

b = 3a1 + a2 + 4a3

Will the system Ax = b be consistent? Explain.
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152 Chapter 3 Vector Spaces

the transition matrix from [1, 2x, 4x2 − 2] to [1, x, x2]. Since

1 = 1 · 1 + 0x + 0x2

2x = 0 · 1 + 2x + 0x2

4x2 − 2 = −2 · 1 + 0x + 4x2

the transition matrix is

S =
⎧⎪⎪⎪⎪⎪⎩

1 0 −2
0 2 0
0 0 4

⎫⎪⎪⎪⎪⎪⎭
The inverse of S will be the transition matrix from [1, x, x2] to [1, 2x, 4x2 − 2]:

S−1 =
⎧⎪⎪⎪⎪⎪⎪⎪⎩

1 0 1
2

0 1
2 0

0 0 1
4

⎫⎪⎪⎪⎪⎪⎪⎪⎭
Given any p(x) = a + bx + cx2 in P3, to find the coordinates of p(x) with respect to
[1, 2x, 4x2 − 2], we simply multiply⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 1
2

0 1
2 0

0 0 1
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎩

a
b
c

⎫⎪⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
c

1
2 b
1
4 c

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Thus,

p(x) = (a + 1
2 c) · 1 + ( 1

2 b) · 2x + 1
4 c · (4x2 − 2)

We have seen that each transition matrix is nonsingular. Actually, any nonsingular
matrix can be thought of as a transition matrix. If S is an n × n nonsingular matrix and
{v1, . . . , vn} is an ordered basis for V , then define {w1, w2, . . . , wn} by (4). To see that
the w j ’s are linearly independent, suppose that

n∑
j=1

x j w j = 0

It follows from (4) that
n∑

i=1

(
n∑

j=1

si j x j

)
v j = 0

By the linear independence of the vi ’s, it follows that

n∑
j=1

si j x j = 0 i = 1, . . . , n

or, equivalently,
Sx = 0
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248 Chapter 5 Orthogonality

Theorem 5.5.7 Let S be a subspace of an inner product space V and let x ∈ V . Let {u1, u2, . . . , un}
be an orthonormal basis for S. If

p =
n∑

i=1

ci ui (3)

where
ci = 〈x, ui 〉 for each i (4)

then p − x ∈ S⊥ (see Figure 5.5.2).

x

p
S

p – x

Figure 5.5.2.

Proof We will show first that (p − x) ⊥ ui for each i :

〈ui , p − x〉 = 〈ui , p〉 − 〈ui , x〉
= 〈xi ,

n∑
j=1

c j u j 〉 − ci

=
n∑

j=1

c j 〈ui , u j 〉 − ci

= 0

So p − x is orthogonal to all the ui ’s. If y ∈ S, then

y =
n∑

i=1

αi ui

and hence

〈p − x, y〉 = 〈p − x,

n∑
i=1

αi ui 〉 =
n∑

i=1

αi 〈p − x, ui 〉 = 0

If x ∈ S, the preceding result is trivial, since, by Theorem 5.5.2, p − x = 0. If
x 	∈ S, then p is the element in S closest to x.

Theorem 5.5.8 Under the hypothesis of Theorem 5.5.7, p is the element of S that is closest to x; that
is,

‖y − x‖ > ‖p − x‖
for any y 	= p in S.
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6.4 Hermitian Matrices 335

2. Let

z1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 + i

2

1 − i

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ and z2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
i√
2

− 1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(a) Show that {z1, z2} is an orthonormal set in C

2.

(b) Write the vector z =
⎧⎪⎩2 + 4i

−2i

⎫⎪⎭ as a linear

combination of z1 and z2.

3. Let {u1, u2} be an orthonormal basis for C
2, and let

z = (4 + 2i)u1 + (6 − 5i)u2.
(a) What are the values of uH

1 z, zH u1, uH
2 z, and

zH u2?

(b) Determine the value of ‖z‖.

4. Which of the matrices that follow are Hermitian?
Normal?

(a)
⎧⎪⎩1 − i 2

2 3

⎫⎪⎭ (b)
⎧⎪⎩ 1 2 − i

2 + i −1

⎫⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

− 1√
2

1√
2

1√
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1√
2

i
1√
2

1√
2

− 1√
2

i

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
0 i 1
i 0 −2 + i

−1 2 + i 0

⎫⎪⎪⎪⎪⎪⎭
(f)

⎧⎪⎪⎪⎪⎪⎩
3 1 + i i

1 − i 1 3
−i 3 1

⎫⎪⎪⎪⎪⎪⎭
5. Find an orthogonal or unitary diagonalizing matrix

for each of the following:

(a)
⎧⎪⎩2 1

1 2

⎫⎪⎭ (b)
⎧⎪⎩ 1 3 + i

3 − i 4

⎫⎪⎭
(c)

⎧⎪⎪⎪⎪⎪⎩
2 i 0

−i 2 0
0 0 2

⎫⎪⎪⎪⎪⎪⎭ (d)

⎧⎪⎪⎪⎪⎪⎩
2 1 1
1 3 −2
1 −2 3

⎫⎪⎪⎪⎪⎪⎭
(e)

⎧⎪⎪⎪⎪⎪⎩
0 0 1
0 1 0
1 0 0

⎫⎪⎪⎪⎪⎪⎭ (f)

⎧⎪⎪⎪⎪⎪⎩
1 1 1
1 1 1
1 1 1

⎫⎪⎪⎪⎪⎪⎭
(g)

⎧⎪⎪⎪⎪⎪⎩
4 2 −2
2 1 −1

−2 −1 1

⎫⎪⎪⎪⎪⎪⎭

6. Show that the diagonal entries of a Hermitian ma-
trix must be real.

7. Let A be a Hermitian matrix and let x be a vector
in C

n . Show that if c = xAxH , then c is real.

8. Let A be a Hermitian matrix and let B = i A. Show
that B is skew Hermitian.

9. Let A and C be matrices in C
m×n and let B ∈ C

n×r .
Prove each of the following rules:
(a) (AH )H = A
(b) (αA + βC)H = αAH + βC H

(c) (AB)H = B HAH

10. Let A and B be Hermitian matrices. Answer true
or false for each of the statements that follow. In
each case, explain or prove your answer.
(a) The eigenvalues of AB are all real.
(b) The eigenvalues of AB A are all real.

11. Show that
〈z, w〉 = wH z

defines an inner product on C
n .

12. Let x, y, and z be vectors in C
n and let α and β be

complex scalars. Show that

〈z, αx + βy〉 = α〈z, x〉 + β〈z, y〉
13. Let {u1, . . . , un} be an orthonormal basis for a com-

plex inner product space V , and let

z = a1u1 + a2u2 + · · · + anun

w = b1u1 + b2u2 + · · · + bnun

Show that

〈z, w〉 =
n∑

i=1

bi ai

14. Given that

A =
⎧⎪⎪⎪⎪⎪⎩

4 0 0
0 1 i
0 −i 1

⎫⎪⎪⎪⎪⎪⎭
find a matrix B such that B H B = A.

15. Let U be a unitary matrix. Prove that
(a) U is normal.
(b) ‖Ux‖ = ‖x‖ for all x ∈ C

n .
(c) if λ is an eigenvalue of U , then |λ| = 1.

16. Let u be a unit vector in C
n and define U =

I − 2uuH . Show that U is both unitary and Her-
mitian and, consequently, is its own inverse.

17. Show that if a matrix U is both unitary and Hermi-
tian, then any eigenvalue of U must equal either 1
or −1.

18. Let A be a 2 × 2 matrix with Schur decomposition
U T U H and suppose that t12 �= 0. Show that
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318 Chapter 6 Eigenvalues

color-blind men is p and, over a number of generations, no outsiders have entered the
population, there is justification for assuming that the proportion of genes for color
blindness in the female population is also p. Since color blindness is recessive, we
would expect the proportion of color-blind women to be about p2. Thus, if 1 percent
of the male population is color blind, we would expect about 0.01 percent of the female
population to be color blind.

The Exponential of a Matrix

Given a scalar a, the exponential ea can be expressed in terms of a power series

ea = 1 + a + 1

2!a
2 + 1

3!a
3 + · · ·

Similarly, for any n × n matrix A, we can define the matrix exponential eA in terms of
the convergent power series

eA = I + A + 1

2! A2 + 1

3! A3 + · · · (6)

The matrix exponential (6) occurs in a wide variety of applications. In the case of a
diagonal matrix

D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
λ1

λ2
. . .

λn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
the matrix exponential is easy to compute:

eD = lim
m→∞

(
I + D + 1

2! D2 + · · · + 1

m! Dm

)

= lim
m→∞

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
k=1

1

k!λ
k
1

. . .
m∑

k=1

1

k!λ
k
n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
eλ1

eλ2

. . .

eλn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
It is more difficult to compute the matrix exponential for a general n × n matrix A. If,
however, A is diagonalizable, then

Ak = XDk X−1 for k = 1, 2, . . .

eA = X

(
I + D + 1

2! D2 + 1

3! D3 + · · ·
)

X−1

= XeD X−1

EXAMPLE 6 Compute eA for

A =
⎧⎪⎩−2 −6

1 3

⎫⎪⎭
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6.5 The Singular Value Decomposition 343

then
‖A − A′‖F = (

σ 2
k+1 + · · · + σ 2

n

)1/2 = min
S∈M ‖A − S‖F

Proof Let X be a matrix in M satisfying (7). Since A′ ∈ M, it follows that

‖A − X‖F ≤ ‖A − A′‖F = (
σ 2

k+1 + · · · + σ 2
n

)1/2
(8)

We will show that
‖A − X‖F ≥ (

σ 2
k+1 + · · · + σ 2

n

)1/2

and hence that equality holds in (8). Let Q�PT be the singular value decomposition
of X , where

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω1

ω2
. . . O

ωk

O O

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎩�k O
O O

⎫⎪⎭

If we set B = QT AP , then A = Q PT , and it follows that

‖A − X‖F = ‖Q(B − �)PT ‖F = ‖B − �‖F

Let us partition B in the same manner as �:

B =
⎧⎪⎪⎪⎪⎩ B11 B12

B21 B22

⎫⎪⎪⎪⎪⎭
k×k︷ ︸︸ ︷ k×(n−k)︷ ︸︸ ︷

︸ ︷︷ ︸
(m−k)×k

︸ ︷︷ ︸
(m−k)×(n−k)

It follows that

‖A − X‖2
F = ‖B11 − �k‖2

F + ‖B12‖2
F + ‖B21‖2

F + ‖B22‖2
F

We claim that B12 = O . If not, then define

Y = Q
⎧⎪⎩ B11 B12

O O

⎫⎪⎭ PT

The matrix Y is in M and

‖A − Y‖2
F = ‖B21‖2

F + ‖B22‖2
F < ‖A − X‖2

F

But this contradicts the definition of X . Therefore, B12 = O . In a similar manner, it
can be shown that B21 must equal O . If we set

Z = Q
⎧⎪⎩ B11 O

O O

⎫⎪⎭ PT
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6.6 Quadratic Forms 353

y

x

(i)  Circle

y

x

(ii)  Ellipse

y

x

(iii)  Hyperbola

y

x

(iv)  Parabola

Figure 6.6.1.

Case 3. The conic section has been rotated from the standard position by an angle θ

that is not a multiple of 90.◦ This occurs when the coefficient of the xy term is nonzero
(i.e., b �= 0).

In general, we may have any one or any combination of these three cases. To graph
a conic section that is not in standard position, we usually find a new set of axes x ′ and
y′ such that the conic section is in standard position with respect to the new axes. This
is not difficult if the conic has only been translated horizontally or vertically, in which
case the new axes can be found by completing the squares. The following example
illustrates how this is done:

EXAMPLE 1 Sketch the graph of the equation

9x2 − 18x + 4y2 + 16y − 11 = 0

Solution
To see how to choose our new axis system, we complete the squares:

9(x2 − 2x + 1) + 4(y2 + 4y + 4) − 11 = 9 + 16

This equation can be simplified to the form

(x − 1)2

22
+ (y + 2)2

32
= 1

If we let
x ′ = x − 1 and y′ = y + 2

the equation becomes
(x ′)2

22
+ (y′)2

32
= 1

which is in standard form with respect to the variables x ′ and y′. Thus, the graph, as
shown in Figure 6.6.2, will be an ellipse that is in standard position in the x ′y′-axis
system. The center of the ellipse will be at the origin of the x ′y′-plane [i.e., at the point
(x, y) = (1, −2)]. The equation of the x ′-axis is simply y′ = 0, which is the equation
of the line y = −2 in the xy-plane. Similarly, the y′-axis coincides with the line x = 1.
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7.4 Matrix Norms and Condition Numbers 415

11. Let A = wyT , where w ∈ R
m and y ∈ R

n . Show
that

(a)
‖Ax‖2

‖x‖2
≤ ‖y‖2‖w‖2 for all x �= 0 in R

n .

(b) ‖A‖2 = ‖y‖2‖w‖2

12. Let

A =
⎧⎪⎪⎪⎪⎪⎩

3 −1 −2
−1 2 −7

4 1 4

⎫⎪⎪⎪⎪⎪⎭
(a) Determine ‖A‖∞.
(b) Find a vector x whose coordinates are each

±1 such that ‖Ax‖∞ = ‖A‖∞. (Note that
‖x‖∞ = 1, so ‖A‖∞ = ‖Ax‖∞/‖x‖∞.)

13. Theorem 7.4.2 states that

‖A‖∞ = max
1≤i≤m

(
n∑

j=1

|ai j |
)

Prove this in two steps.
(a) Show first that

‖A‖∞ ≤ max
1≤i≤m

(
n∑

j=1

|ai j |
)

(b) Construct a vector x whose coordinates are
each ±1 such that

‖Ax‖∞
‖x‖∞

= ‖Ax‖∞ = max
1≤i≤m

(
n∑

j=1

|ai j |
)

14. Show that ‖A‖F = ‖AT ‖F .

15. Let A be a symmetric n × n matrix. Show that
‖A‖∞ = ‖A‖1.

16. Let A be a 5 × 4 matrix with singular values σ1 =
5, σ2 = 3, and σ3 = σ4 = 1. Determine the values
of ‖A‖2 and ‖A‖F .

17. Let A be an m × n matrix.
(a) Show that ‖A‖2 ≤ ‖A‖F .
(b) Under what circumstances will ‖A‖2 = ‖A‖F ?

18. Let ‖ · ‖ denote the family of vector norms and let
‖ · ‖M be a subordinate matrix norm. Show that

‖A‖M = max
‖x‖=1

‖Ax‖

19. Let A be an m × n matrix and let ‖ · ‖v and ‖ · ‖w

be vector norms on R
n and R

m , respectively. Show
that

‖A‖v,w = max
x�=0

‖Ax‖w

‖x‖v

defines a matrix norm on R
m×n .

20. Let A be an m × n matrix. The 1,2-norm of A is
given by

‖A‖1,2 = max
x�=0

‖Ax‖2

‖x‖1

(See Exercise 19.) Show that

‖A‖1,2 = max (‖a1‖2, ‖a2‖2, . . . , ‖an‖2)

21. Let A be an m × n matrix. Show that
‖A‖1,2 ≤ ‖A‖2

22. Let A be an m × n matrix and let B ∈ R
n×r . Show

that
(a) ‖Ax‖ ≤ ‖A‖1,2‖x‖1 for all x in R

n .
(b) ‖AB‖1,2 ≤ ‖A‖2‖B‖1,2

23. Let A be an n × n matrix and let ‖ · ‖M be a ma-
trix norm that is compatible with some vector norm
on R

n . Show that if λ is an eigenvalue of A, then
|λ| ≤ ‖A‖M .

24. Use the result from Exercise 23 to show that if λ is
an eigenvalue of a stochastic matrix, then |λ| ≤ 1.

25. Sudoku is a popular puzzle involving matrices. In
this puzzle, one is given some of the entries of a
9 × 9 matrix A and asked to fill in the missing en-
tries. The matrix A has block structure

A =
⎧⎪⎪⎪⎪⎪⎩

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎫⎪⎪⎪⎪⎪⎭
where each submatrix Ai j is 3 × 3. The rules of the
puzzle are that each row, each column, and each of
the submatrices of A must be made up of all of the
integers 1 through 9. We will refer to such a matrix
as a sudoku matrix. Show that if A is a sudoku
matrix, then λ = 45 is its dominant eigenvalue.

26. Let Ai j be a submatrix of a sudoku matrix A (see
Exercise 25). Show that if λ is an eigenvalue of Ai j ,
then |λ| ≤ 22.

27. Let A be an n × n matrix and x ∈ R
n . Prove:

(a) ‖Ax‖∞ ≤ n1/2‖A‖2‖x‖∞
(b) ‖Ax‖2 ≤ n1/2‖A‖∞‖x‖2

(c) n−1/2‖A‖2 ≤ ‖A‖∞ ≤ n1/2‖A‖2

28. Let A be a symmetric n × n matrix with eigen-
values λ1, . . . , λn and orthonormal eigenvectors
u1, . . . , un . Let x ∈ R

n and let ci = uT
i x for

i = 1, 2, . . . , n. Show that

(a) ‖Ax‖2
2 =

n∑
i=1

(λi ci )
2

(b) If x �= 0, then

min
1≤i≤n

|λi | ≤ ‖Ax‖2

‖x‖2
≤ max

1≤i≤n
|λi |
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22. Let A ∈ Rm×n and B ∈ Rn×r. Show that


(a) ‖Ax‖2 ≤ ‖A‖1,2‖x‖1 for all x in Rn.


(b) ‖AB‖1,2 ≤ ‖A‖2‖B‖1,2


(c) ‖AB‖1,2 ≤ ‖A‖1,2‖B‖1
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474 Answers to Selected Exercises

5. (a) det(A) = 0, so A is singular.

(b) adj A =
⎧⎪⎪⎪⎪⎪⎩

−1 2 −1
2 −4 2

−1 2 −1

⎫⎪⎪⎪⎪⎪⎭ and

A adj A =
⎧⎪⎪⎪⎪⎪⎩

0 0 0
0 0 0
0 0 0

⎫⎪⎪⎪⎪⎪⎭
9. (a) det(adj(A)) = 8 and det(A) = 2

(b) A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 0 0
0 4 −1 1
0 −6 2 −2
0 1 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭
14. DO YOUR HOMEWORK.

CHAPTER TEST A
1. True 2. False 3. False 4. True 5. False
6. True 7. True 8. True 9. False 10. True

Chapter 3
3.1 1. (a) ‖x1‖ = 10, ‖x2‖ = √

17

(b) ‖x3‖ = 13 < ‖x1‖ + ‖x2‖
2. (a) ‖x1‖ = √

5, ‖x2‖ = 3
√

5

(b) ‖x3‖ = 4
√

5 = ‖x1‖ + ‖x2‖
7. If x + y = x for all x in the vector space, then

0 = 0 + y = y.

8. If x + y = x + z, then

−x + (x + y) = −x + (x + z)

and the conclusion follows from axioms 1, 2,
3, and 4.

11. V is not a vector space. Axiom 6 does not
hold.

3.2 1. (a) and (c) are subspaces; (b), (d), and (e) are
not.

2. (b) and (c) are subspaces; (a) and (d) are not.

3. (a), (c), (e), and (f) are subspaces; (b), (d),
and (g) are not.

4. (a) {(0, 0)T }
(b) Span((−2, 1, 0, 0)T , (3, 0, 1, 0)T )

(c) Span((1, 1, 1)T )

(d) (−1, 1, 0, 0)T , Span((−5, 0, −3, 1)T )

5. Only the set in part (c) is a subspace of P4.

6. (a), (b), and (d) are subspaces.

11. (a), (c), and (e) are spanning sets.

12. (a) and (b) are spanning sets.

16. (b) and (c)

3.3 1. (a) and (e) are linearly independent (b), (c),
and (d) are linearly dependent.

2. (a) and (e) are linearly independent (b), (c),
and (d) are not.

3. (a) and (b) are all of 3-space

(c) a plane through (0, 0, 0)

(d) a line through (0, 0, 0)

(e) a plane through (0, 0, 0)

4. (a) linearly independent

(b) linearly independent

(c) linearly dependent

8. (a) and (b) are linearly dependent while (c)
and (d) are linearly independent.

11. When α is an odd multiple of π/2. If the
graph of y = cos x is shifted to the left or
right by an odd multiple of π/2, we obtain
the graph of either sin x or − sin x .

3.4 1. Only in parts (a) and (e) do they form a basis.

2. Only in part (a) do they form a basis.

3. (c) 2

4. 1

5. (c) 2

(d) a plane through (0, 0, 0) in 3-space

6. (b) {(1, 1, 1)T }, dimension 1

(c) {(1, 0, 1)T , (0, 1, 1)T }, dimension 2

7. {(1, 1, 0, 0)T , (1, −1, 1, 0)T , (0, 2, 0, 1)T }
11. {x2 + 2, x + 3}
12. (a) {E11, E22} (c) {E11, E21, E22}

(e) {E12, E21, E22}
(f) {E11, E22, E21 + E12}

13. 2

14. (a) 3 (b) 3 (c) 2 (d) 2

15. (a) {x, x2} (b) {x − 1, (x − 1)2}
(c) {x(x − 1)}

3.5 1. (a)
⎧⎪⎩1 −1

1 1

⎫⎪⎭ (b)
⎧⎪⎩1 2

2 5

⎫⎪⎭
(c)

⎧⎪⎩0 1
1 0

⎫⎪⎭
2. (a)

⎧⎪⎪⎪⎪⎪⎩
1
2

1
2

− 1
2

1
2

⎫⎪⎪⎪⎪⎪⎭ (b)
⎧⎪⎩ 5 −2

−2 1

⎫⎪⎭
(c)

⎧⎪⎩0 1
1 0

⎫⎪⎭
3. (a)

⎧⎪⎪⎪⎪⎪⎩
5
2

7
2

− 1
2 − 1

2

⎫⎪⎪⎪⎪⎪⎭ (b)
⎧⎪⎩ 11 14

−4 −5

⎫⎪⎭
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