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Abstract 

Results of the linear closed form solution of an active or adaptive tensegrity unit, as well as its numerical analysis using 
finite element method are presented. The shape of the unit is an octahedral cell and it is formed by thirteen members (eight 
cables, four edge struts and one central strut). The central strut is designed as an actuator that allows for an adjustment of 
the shape of the unit which leads to changes of tensile forces in the cables. Since the unit is diagonally symmetrical, it may 
be simply solved as planar biconvex cable system with one central strut. 
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1. Introduction 

In general, a structural response to external loads (internal forces, stresses, deflection) can be solved 
analytically or numerically. Analytical methods provide linear or non-linear closed-form solutions and they are 
particularly suitable for the simple structures with explicitly defined geometry and simple boundary conditions. 
For more complicated structures or load cases the results obtained by analytical solutions are less accurate and 
they are suitable only for preliminary design [1]. 

 
The paper presents a linear analytical close-form solution of an active or adaptive tensegrity unit and its 

numerical analysis using finite element method (FEM). 
 
The active tensegrity unit presented, as well as the whole test facility was developed at the Institute of 

Structural Engineering of the Faculty of Civil Engineering in Košice. Its production was performed in 
cooperation with INOVA Praha Ltd. This active tensegrity unit was developed and manufactured in order to 
test the possibility of active control of tensegrity systems through an activator or action member [2]. 
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2. Prototype of active tensegrity structure 

The chosen tensegrity unit consists of a strut that is centered in the rectangular base and stiffened by crossed 
cables. This unit is also known as a tensegric unit cell of type I [3], or like a crystal pyramid [4] and it is 
suitable for the generation of line structures or plate structures with a straight or curved central line. 

 
The theoretical dimensions of the square base of the active tensegrity unit are 2.000 x 2.000 mm and its 

theoretical height is 800 mm. The unit consists of thirteen members (four circumferential compressed members,  
eight cables and one central strut) as is introduced in Table 1. The unit is also equipped with six strain gauges 
SG1 - SG6 and four load cells FT1 - FT4 (Fig. 1, 2). 

             

Fig. 1. (a) the active tensegrity unit suspended on the self-supporting frame - inactive state; (b) detailed view of the central strut - actuator; 
(c) hydraulic load cylinder 

        

Fig. 2. (a) isometric diagram of the unit; (b) diagonal A-A section 

Table 1. Members of the active tensegrity unit and their properties 

     Member Cross-section A (mm2) Material E (MPa) 

     Compressed  members - struts  51 / 3.2 mm As = 475.9 steel S 235 Es = 210 000 

     Upper and bottom cables  6 mm Ac = 15.14 steel cable 7x7 Ec = 120 000 

     Central or active member - - steel S235 Es = 210 000 

 
The central strut is designed as an actuator or active member that allows to adjust the shape of the unit which 

leads to changes of tensile forces in the cables. All members are mutually connected in nodes by hinge joints. 

(a) (b) (c) 

(a) (b) 
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3. Linear analytical solution 

The above tensegrity unit can be simply solved as planar biconvex cable system with one central strut. This 
system is symmetrical along longitudinal x-axis (if we neglect the asymmetry caused by the own weight of the 
members), therefore d = db = dt and its geometry is given by Fig. 3. Another assumption is that the cables are 
perfectly flexible, working only in tension and have zero stiffness in compression and bending.   

x/Ldz 21  for 20;L/x , (1a) 

x/LLdz 22  for ;LL/x 2 . (1b) 

 

Fig. 3. Geometry of the simplified biconvex cable system 

Following Irvine [5], vertical equilibrium equations at a cross section of the planar biconvex cable system 
are in the forms 

2
2 1

tb
1 P

dx
dzHH

dx
dwH  for 20;L/x , (2a) 

2
2 2

tb
2 P

dx
dzHH

dx
dwH  for ;LL/x 2 . (2b) 

Movement of the action member (central strut) to value AM,i  0 causes a change of its height, then 

22 AM,iAM,0tb //Lddd . (3) 

The tensile forces in the top and bottom cables then increase to value (4) and horizontal component of these 
forces can be solved as (5) 

it,ib,i,c, NNN , (4) 

ic,ic,i,c, cosNH , (5) 

where c,i is deflection of the cables from the horizontal plane formed by the peripheral struts. If the system is 
loaded with a nodal vertical load 2jLC,j, /PP , applied in the middle of the span, change of the horizontal 
component of tension forces in the top and bottom cables is calculated from the following equation 

L/dAE/LH
dP

HHH 2
cceic,

j
ji,t,ji,b,ji,c, 42

1 , (6) 



208   S. Kmeť and P. Platko  /  Procedia Engineering   40  ( 2012 )  205 – 210 

where L/dLLLL 2
etebe 6 . Vertical deflection in the middle of the span (for x = L/2) is 

dH
LP

H
w ,i,j ji,c,

j

ic,
1 2

42
1 . (7) 

Assume that the tensegrity unit system is in a prestressed state i (total length of the central strut is 
AM,0iAM, LL ), then it is loaded with a nodal vertical load Pj. That results to the increase of the tensile forces in 

the bottom cables and  to the decrease of the tensile forces in the top cables. Their horizontal components are 

ji,c,ic,ji,b, HHH ,     and     ji,c,ic,ji,t, HHH . (8) 

The resulting values of the tensile forces in the bottom and top cables are given by 

ji,b,ji,b,ji,b, cos/HN ,     and     ji,t,ji,t,ji,t, cos/HN , (9) 

where the final rotation of the bottom and top cables are 

)2()( j1,i,jb,i, /L/wdarctan ,     and     )2()( ji,1,ji,t, /L/wdarctan . (10) 

4. Results of analytical and numerical solution 

4.1. Linear closed-form solution 

If the prestressed active tensegrity unit is not loaded by a nodal vertical load Pj a movement of the action 
member with a value of AM,i  0 causes a change of its geometry and a change of the lengths of cable 
members. The initial lengths of cables Lc,0 are changed into Lc,i and corresponding strain is calculated from the 
equation (11). From a known initial geometry (assuming that nodes 3 and 2 are unmoved and Hooke's law, 
hence cccc EA/N  is valid) the change of the tensile force in the cable can by determined from the 
simplified expression (12). 

1c,0ic,ic, L/L  (11) 

1902501
ciAM,c,0

2
iAM,

2
c,0

c,0
ccic,ccic, )cos(ΔLΔ,L

L
AEAEN o  (12) 

The linear closed-form solution, as well as finite element analysis was carried out for various values of the 
initial prestressing forces in the top and bottom cables (Table 2). 

Table 2. Movement of the action member and the initial prestressing forces 

     AM,i (mm) LAM,i (mm) db = dc  (mm) Nc,i (kN) c,i (N) 

     17.65 817.65 408.83 3.0 0.001651 

     34.96 834.96 417.48 6.0 0.003303 

     51.95 851.95 425.98 9.0 0.004954 
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4.2. FEM analysis 

To verify results obtained by linear closed-form solution, the finite element analysis (geometrically 
nonlinear and physically linear) of the active tensegrity unit in ANSYS 12 Classic software was performed. 
The following types of finite elements were used [6]: 
 LINK10 tension-only spar for the top and bottom cables, 
 LINK10 compression-only spar for the compressed members, 
 LINK11 linear actuator for the active member (AM). 

 
The finite element model was supported at the nodes 1, 2, 3 a 4 as is shown in Fig. 2. The real constants and 

material properties of the members are shown in Table 1. 

4.3. Comparison of the results 

Comparison of the analytically (linear closed-form solution) and numerically (finite element method 
analysis) obtained values of the change of the tensile forces in the top cables and in the bottom cables and 
vertical deflection of the node 5 for various values of the nodal loads and initial prestressing forces are shown 
in Fig. 4, Fig 5 and Fig 6.  

 

Fig. 4. Comparison of the analytically and numerically obtained values of the change of the tensile forces in the top cables for various 
values of the nodal loads and initial prestressing forces 

 

Fig. 5. Comparison of the analytically and numerically obtained values of the change of the tensile forces in the bottom cables for various 
values of the nodal loads and initial prestressing forces 
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Fig. 6. Comparison of the analytically and numerically obtained values of the vertical deflection of the node 5 for various values of the 
nodal loads and initial prestressing forces 

5. Conclusion 

In this paper the linear close-form solution of the active or adaptive tensegrity unit has been presented. This 
method offers a relatively simple and effective tool to analyze nodal loaded structural systems in the shape of a 
crystal pyramid with simple boundary conditions. 

 
Fig. 4, Fig. 5 and Fig. 6 shown that the results (tensile forces in the top and bottom cables and vertical 

deflection in the mid-span of the simplified planar biconvex cable system) obtained by the presented linear 
closed-form solution are in a very good agreement with those obtained by the geometrically nonlinear and 
physically linear finite element analysis when ANSYS 12 Classic software was used. 

 
The obtained results confirmed the correctness of the derived equations and their mathematical and physical 

importance (at the given geometry and the load range). 

Acknowledgements 

    This research has been carried out in terms of the projects VEGA No. 1/0321/12 and NFP26220120037 
Centre of excellent research of the progressive building structures, materials and technologies, supported from 
the European Union Structural funds.  

References 

[1] Kmet, S.: Metal membranes in the innovative structures of fixed and retractable roofs.  Košice, Elfa Press, 1999, 170 p., (in Slovak). 
[2] Platko,P.: Theoretical and experimental analysis of tensegrity structures. PhD Thesis, Košice, TUKE, FCE, 2010, 150 s., (in Slovak). 
[3] Saitoh, M.: “Beyond the tensegrity, a new challenge toward the tensegric world,” Theory, design and realization of shell and spatial 

structures - H. Kunieda (ed.), International Symposium of IASS, Nagoya, Japan, IASS, 2001, TP 141. 
[4] Wang, B.: “Simplexes in tensegrity systems”, Journal of the IASS. 40, 1999, 1, p. 57-64. 
[5] Irvine, H. M.: Cable structures, The MIT Press, Cambridge, Massachusetts, 1981. 259 p. 
[6] ANSYS, Inc., Release documentation of Ansys 11.0, Southpointe, 275 Technology Drive, Canonsburg, 2005. 


