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Preface

Linear algebra is part of the standard undergraduate mathematics curricu-
lum because it is of central importance in pure and applied mathematics. It was
not always so. The wide acceptance of vector methods did not occur until early
in the twentieth century. The pioneers were two physicists: the Englishman
Oliver Heaviside and the American Josiah Willard Gibbs, beginning in the late
1870’s. Linear algebra allows easy algebraic manipulation of vectors. But it is
not the latest word on the algebraic manipulation of geometric objects.

Geometric algebra is an extension of linear algebra pioneered by the Ameri-
can physicist David Hestenes in the 1960’s. Geometric algebra and its extension
to geometric calculus unify, simplify, and generalize vast areas of mathematics,
including linear algebra, vector calculus, exterior algebra and calculus, tensor al-
gebra and calculus, quaternions, real analysis, complex analysis, and euclidean,
noneuclidean, and projective geometries. They provide a common mathematical
language for many areas of physics (classical and quantum mechanics, electro-
dynamics, special and general relativity), computer science (graphics, robotics,
computer vision), engineering, and other fields.1

Just as linear algebra algebraically manipulates one dimensional objects (rep-
resented by vectors) in a coordinate-free manner, geometric algebra algebraically
manipulates higher dimensional objects – lines, planes, ... (represented by mul-
tivectors) in a coordinate-free manner. Even within linear algebra, many topics
are improved by using geometric algebra.

Geometric algebra subsumes, unifies, simplifies, and generalizes the vector,
complex, quaternion, exterior (Grassmann), and tensor algebras.

I believe that it is past time to incorporate some geometric algebra in the
introductory linear algebra course. This book provides a text for such a course.
Single variable calculus is not a prerequisite. But for most students a mathe-
matical maturity equivalent to that gained in such a course probably is.

1Several advanced geometric algebra books have appeared since 2007: Understanding Ge-
ometric Algebra: Hamilton, Grassmann, and Clifford for Computer Vision and Graphics
(2015); Understanding Geometric Algebra for Electromagnetic Theory (2011); Geometric Al-
gebra with Applications in Engineering (2009); Invariant Algebras and Geometric Reasoning
(2008); Geometric Algebra for Physicists (2007); Geometric Algebra for Computer Science
(2007).

My A Survey of Geometric Algebra and Geometric Calculus provides an introduction for
someone who already knows linear algebra. It contains a guide to further reading, online and
off. It is available at this book’s webpage.



Part I of this book is standard linear algebra. Part II introduces geometric
algebra. Part III covers linear transformations and their geometric algebra
extensions, called outermorphisms.

A majority of the topics in the traditional linear algebra course is treated.
The major exception is algorithms. For example, the algorithm for inverting a
matrix is not covered. The concept and applications of the inverse are impor-
tant. They are used in many places in this book. But the algorithm to compute
the inverse teaches little about the concept or its applications. Similar remarks
apply to algorithms for row reduction, solving systems of linear equations, eval-
uating determinants, computing eigenvalues and eigenvectors, etc.

To me, the benefit/cost of including the algorithms is too low. I do not need
them for the theoretical development. No one applies them by hand anymore
– except for exercises in linear algebra textbooks! They take up a substantial
fraction of the standard syllabus, time that can be better spent on other topics –
like geometric algebra. Why teach them in an elementary linear algebra course?

Some exercises and problems in the text require the use of the free multiplat-
form Python module GAlgebra. It is based on the Python symbolic computer
algebra library SymPy (Symbolic Python). The file GAlgebraPrimer.pdf at the
book’s web site describes the installation and use of the module.

The book covers matrix arithmetic, the application of matrices to systems
of linear equations, the matrix representation of linear transformations, the ma-
trix version of the singular value decomposition, and several matrix applications.
However, matrices play a smaller role than in most linear algebra texts. A ma-
jor reason is that matrices are used in the omitted algorithms. Also, geometric
algebra often replaces matrices with better alternatives. For example, the geo-
metric algebra definition of a determinant is intuitive and simple and does not
involve matrices. And geometric algebra provides better representations than
matrices for important classes of linear transformations, as shown in the text
for projections, rotations, reflections, and orthogonal and skew transformations.

There are over 200 exercises interspersed with the text. They are designed to
test understanding of and/or give simple practice with a concept just introduced.
My intent is that students attempt them while reading the text. Then they
immediately confront the concept and get feedback on their understanding.
There are over 300 more challenging problems at the end of most sections.

The exercises replace the “worked examples” common in most mathematical
texts, which serve as “templates” for problems assigned to students. We teachers
know that students often do not read the text. Instead, they solve assigned
problems by looking for the closest template in the text, often without much
understanding. My intent is that success with the exercises requires engaging
the text.

Everyone has their own teaching style, so I would ordinarily not make sug-
gestions about this. However, I believe that the unusual structure of this text
(exercises instead of worked examples), requires an unusual approach to teach-
ing from it. I have placed some thoughts about this in the file “LAGA Instruc-
tor.pdf” at the book’s web site. Take it for what it is worth.
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There is plenty of material here for a one semester course. The actual text
is only about 190 pages, rather short for a linear algebra text, much less for one
incorporating geometric algebra. One reason is that I have tried to avoid the
“bloated textbook syndrome”. Another is that the exercises mean that a reader
will spend more time per page than is usual in an elementary mathematics text.

An instructor should be wary of adopting a nonstandard text such as this
for a course as fundamental as linear algebra. It might allay worries about this
to know that this book can be used as a linear algebra text, without geometric
algebra. Chapters 1-4 and Sections 8.1, 8.2, 9.1-9.4, and 9.7 use no geometric
algebra.2 They cover the majority of topics in the traditional linear algebra
course, with the exception of the aforementioned algorithms and determinants.
Thus an instructor can include geometric algebra as time permits, or teach a
two track course, with some students studying geometric algebra and some not.

The first part of the index is a symbol index.

Please send corrections, typos, or any other comments about the book to
me. I will post them on the book’s web site as appropriate.

Geometric calculus is a powerful extension of vector calculus, just as geo-
metric algebra is a powerful extension of vector algebra. The divergence and
Stokes’ theorems are special cases of a very general theorem relating derivatives
to integrals. Also, complex variable theory extends to arbitrary (even and odd)
dimensions. I have published a sequel to this book, Vector and Geometric Cal-
culus. That book’s website is http://faculty.luther.edu/~macdonal/vagc/.

Acknowledgements. I thank Ian-Charles Coleman, Gabriel Demuth, Peeter
Joot, Gez Keenan, Adem Semiz, Dr. Vijay Sonnad, Quirino M. Sugon Jr., and
Ginanjar Utama for helpful comments. I thank Martin Barrett, Professor Philip
Kuntz, James Murphy, Robert Rowley, and Professor John Synowiec for reading
all/most of the text and providing extensive and helpful comments and advice.

I am especially grateful to Professor Leo Dorst for providing helpful expert
commentary and to Allan Cortzen, who has improved this book in many ways,
including providing better proofs of several theorems.

I also thank Alan Bromborsky, author of GAlgebra, for making changes which
make it more useful to readers of this book.

Finally, I thank Professor Kate Martinson for help with the cover design.

Printings

From time to time I issue new printings of this book, with corrections and
improvements. The printing version is shown on the title page. They are listed
below.

2Except for the definition of determinants (p. 157). Note however that determinants are
not a prerequisite for anything important in the linear algebra part of the book. In particular,
they are not used in the discussion of eigenvalues.
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Second Printing. I thank George Craig, who asked several penetrating ques-
tions which have improved the exposition.

Fourth Printing. I have removed the old Appendix B, Software, which doc-
umented Alan Bromborsky’s Python module GAlgebra. The documentation
there became out of date as the module improved.

A new Chapter 10 is devoted to the increasingly important conformal model
of geometric algebra. It can be skipped to after reading Part II, Geometric
Algebra, as the chapter does not reference Part III, Linear Transformations.
I have written a Jupyter notebook cm3.ipynb based on GAlgebra for making
calculations in the 3D conformal model.

The current versions of GAlgebraPrimer.pdf and cm3.ipynb are available at
the book’s website and are bundled with the GAlgebra distribution.

I give a special thanks to Gregory Grunberg, who has done much to improve
this book, especially the new Chapter 10. The book is better for his efforts.

November 2019 Printing. Theorem 6.1-G6, G7 of the previous printing of
have been replaced with a new G6, which better captures the idea of a k-vector.
The definition of a blade has been changed to an equivalent one and moved to
Section 6.1. As a result, Sections 6.1-6.5 have been rearranged.

April 2020 Printing. There are several improvements in the presentation.

October 2020 Printing. There are several improvements in the presentation.

June 2021 Printing. I thank J. M. Caillol, Pr, for helping me to get G6 of
Theorem 6.1 right, and for suggesting Problem 6.2.9. The extended fundamental
identity (Theorem 6.28) has been given the prominence it deserves. There are
several improvements in the presentation. All errors known to me have been
corrected.

Jan 2022 Printing. There are several improvements in the presentation. All
errors known to me have been corrected.

August 2022 Printing. All errors known to me have been corrected.

In general the position as regards all such new calculi is this - That
one cannot accomplish by them anything that could not be accom-
plished without them. However, the advantage is that, provided
such a calculus corresponds to the inmost nature of frequent needs,
anyone who masters it thoroughly is able - without the unconscious
inspiration of genius which no one can command - to solve the re-
spective problems, indeed to solve them mechanically in complicated
cases in which, without such aid, even genius becomes powerless.
Such is the case with the invention of general algebra, with the dif-
ferential calculus, ... . Such conceptions unite, as it were, into an
organic whole countless problems which otherwise would remain iso-
lated and require for their separate solution more or less application
of inventive genius. – C. F. Gauss
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To the Student

Linear algebra is indispensable in many disciplines, including mathemat-
ics, statistics, physics, computer science, chemistry, biology, engineering, and
economics. Linear algebra is more widely used than any other college level
mathematics, with the possible exception of calculus. You can see yourself that
it is widely used: whenever a new concept is introduced in the text, Google it.
You will find many links.

Most of the mathematics taught in single variable calculus courses has been
known for 250 years. But mathematics is not a fixed body of knowledge, un-
changed for hundreds of years. You are used to the fact that technology advances
year by year. Mathematics also advances, though not as rapidly.

Linear algebra as we know it today is the result of a vast undertaking of
abstraction, over centuries, unifying common aspects of many problems in many
areas of mathematics and its applications. Do not translate “abstract” as “of
no practical value”: abstraction gives linear algebra much of its practical power.
I hope that you will appreciate this by the time you finish the book.

The central theoretical importance of linear algebra started to be recognized
early in the twentieth century. A sophomore linear algebra course has been
part of the standard mathematics curriculum only since the early 1970’s. The
recent availability of cheap powerful computers has made it possible to solve
more practical applications of linear algebra, causing an explosion of its use.

Geometric algebra is an extension of linear algebra. It originated in the
1960’s and is under vigorous development today. It has found important appli-
cations in computer science, engineering, and physics. It is available to game
developers for the Xbox and PlayStation video game consoles. This text is an
attempt to keep up with these modern developments.

Most students find linear algebra hard, even many who have done well in
previous mathematics courses. There are several reasons for this:

• Linear algebra has little connection to earlier courses. For example, this
text makes only occasional, nonessential, reference to calculus.

• The large number of definitions and theorems can be overwhelming.

• Reasoning dominates calculation in linear algebra. The reasoning requires
what has been called “a mathematical frame of mind”. This is a new way
of thinking, difficult to describe to those who have not acquired it.



How should you cope with these difficulties? Research clearly shows that
actively engaging course material improves learning and retention. Here are
some ways to actively engage the material in this book:

• Don’t just read the text, study the text. This may not be your habit,
but many parts of this book require reading and rereading and rereading
again later before you understand.

• Instructors in your previous mathematics courses have probably urged
you to try to understand, rather than simply memorize. That advice is
especially appropriate for this text.

• Many statements in the text require some thinking on your part to under-
stand. Take the time to do this instead of simply moving on. Sometimes
this involves a small computation, so have paper and pencil on hand.

• Definitions are important. Take the time to understand them. You cannot
know a foreign language if you do not know the meaning of its words. So
too with mathematics. You cannot know an area of mathematics if you
do not know the meaning of its defined concepts.

• Theorems are important. Take the time to understand them. If you
do not understand what a theorem says, then you cannot understand its
applications.

• Exercises are important. Attempt them as you encounter them in the text.
They are designed to test your understanding of what you have just read.
Some are trivial, there just to make sure that you are paying attention.
Do not expect to solve them all. Even if you cannot solve an exercise you
have learned something: you have something to learn!

The exercises require you to think about what you have just read, think
more, perhaps, than you are used to when reading a mathematics text.
This is part of my attempt to help you start to acquire that “mathematical
frame of mind”.

Write your solutions neatly in clear correct English.

• Proofs are important, but perhaps less so than the above. On a first read-
ing, don’t get bogged down in a difficult proof. On the other hand, one
goal of this course is for you to learn to read and construct mathemat-
ical proofs better. So go back to those difficult proofs later and try to
understand them.

• Take the above points seriously!

Appendix A, Prerequisites, describes the mathematical background neces-
sary to read this text. You might want to look it over now, to make sure that
you are ready.

Some exercises and problems in the text require calculations unfeasible to
perform by hand. GAlgebraPrimer.pdf, available at the book’s webpage, de-
scribes how to install and use the computer algebra system GAlgebra for this.
It is written in Python, a free multiplatform language.

xii



Index

∗
adjoint, 144
dual, 109
transpose, 41

A†, 98
C[a, b], 26, 60
C1[a, b], 137
E, 192
I, 99
[A,B]

multivectors, 118
[f, g]

linear transformation, 179
[i]B′B, 44
&, 202
G3, 81
Gn, 93
Gn+, 97
I, 84
L3, 7
P, 17
Pn, 17
Rn, 12, 56
Rn vector, 12
Rr,s, 189
U⊥, 66
f∗, 144
∞, 190
∩, 201
◦, 206
×, 112
∪, 201
†, 97
eJ , 99
e±, 190
ej , 52
∞, 190

i, 84
⇔, 202
⇒, 202
∈, /∈, 201
··· (inner product)

Gn, 101
Rn, 56
inner product space, 57
oriented lengths, 51

c, 101
MB, 128
PB, 122
PU(v), 67
Pu(v), 52
Riθ, 89, 126
i, 151
7→, 205
,̂ 113
L(U,V), 143
〈A 〉j , 96
〈M 〉k, 96
N (A), 47
N (f), 140
⊕, 66
∧ (outer product)

G3, 76
Gn, 101

Rn
, 193

⊥, 64, 66
R(f), 140
eiθ, 85
sgn, 118
⊆, 201
→, 205
f, 148, 149
v‖,v⊥, 66
| | (norm)



Gn, 99
Rn, 14
complex number, 86
inner product space, 58
oriented area, 73
oriented length, 3
oriented solid, 79
vector space, 61

|f|F , 164
|f|O, 143
|h|F , 185
|h|O, 184
{ }, 201
j - vector part, 96
k-blade, 94
k-vector, 93, 94
k-volume, 64, 103
o, 190

additive inverse, 18
adjoint, 144
Aida, 90
angle, 89

between subspaces, 124
between vectors, 59
bivector, 85, 89

antisymmetrized geometric product,
118

associated homogeneous equation, 47
associative, 6
axial vector, 114

basis, 27
G3, 82
reciprocal, 113, 118, 119, 147

bivector, 81
direction, 197

blade, 94, 103
bound vector, 11

canonical basis, 82, 95
car analogy, 13, 17
Cartan-Dieudonné theorem, 175
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oriented length, 52

projection, 52, 122, 125
proof, 203

by contradiction, 203
proposition, 202
pseudoscalar, 96, 99

unit, 84
pseudovector, 114
Pythagorean theorem, 58

areas, 77

quaternion, 87

range, 140
rank

GAlgebra, 50
linear transformation, 147
matrix, 146

reciprocal basis, 113, 118, 119, 147
reflect, 128

Gn, 128
Gn+1,1, 194

reject
Gn, 121
inner product space, 67

relativity
general, 132
special, 61, 189

reverse, 97, 98
Rodrigues’ formula, 92

rotate
G3, 89
Gn, 126
Gn+1,1, 193

rotation
two reflections, 131

row rank, 146
row space, 146

scalar, 4
set, 201
similar matrices, 158
simultaneous diagonalizability, 165
singular value decomposition

linear transformation, 181
matrix, 182

singular values, 181
skew

matrix, 177
transformation, 177

spacetime, 61, 189
span

subspaces, 66
vectors, 22

spectral theorem, 170
standard basis, 27, 56
standard inner product, 57
standard model, 190
subset, 201
subspace, 20
subtraction, 6
Sylvester’s law of inertia, 189
symbols, ix
symmetric

matrix, 169
SymPy, viii
system of linear equations, 45

tail-to-head, 5
tail-to-tail, 5
theorem, 203
torque, 114
trace

linear transformation, 164
matrix, 44

transformation
self-adjoint, 169
symmetric, 169

transition matrix, 44
translation, 193
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transpose, 41
triangle inequality, 59
trivector, 81

union, 201
unit pseudoscalar, 84

vector, 3, 81
bound, 11
direction, 3, 194
free, 3
normal, 55, 191, 193
tangent, 199
unit, 52

vector equation, 11

vector operations
oriented lengths, 4

vector space, 7, 13, 15
volume, 64, 103

well defined, 75
Rr,s, 189
det(A), 157, 159
tr (f), 164
bivector addition, 75
norm, 99
projection, 122
reflection, 129
reverse, 97
rotation, 126
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