Linear Combinations of GNSS Phase Observables to Improve and Assess TEC Estimation Precision

Brian Breitsch Advisor: Jade Morton Committee: Charles Rino, Anton Betten

Background and Motivation

Linear Estimation of GNSS Parameters

TEC Estimate Error Residuals

Application to Real GPS Data

Earth's lonosphere

Ionosphere Effects on Electromagnetic Propagation

ionosphere = cold, collisionless, magnetized plasma

for L-band frequencies (1-2 GHz) refractive index given by:

О

 $n=1-rac{1}{2}X\pm \mathcal{O}(rac{1}{f^3})$.

 $X=rac{\omega_p^2}{\omega^2}$ $\omega=2\pi f$ $\omega_p=\sqrt{rac{N_e e^2}{\epsilon_0 m}}$

higher-order terms on the order of a few cm

ionospher

f = wave frequency e = full

 N_e = plasma density

e =fundamental charge

m = electron rest mass

 ϵ_0 = permittivity of free space

Global Navigation Satellite Systems (GNSS)

…a useful everyday radio source for geophysical remote-sensing!

GPS GLONASS Beidou Galileio ...etc.

GPS - Global Positioning System

- 32-satellite constellation
- transmit dual-frequency BPSK-moduled signals
- new Block-IIF and next-gen Block-III satellites transmitting triple-frequency signals

Signal	Frequency (GHz)		
L1CA	1.57542		
L2C	1.2276		
L5	1.17645		

GNSS Carrier Phase Observable

accumulated phase (in meters) of demodulated GNSS signal at receiver for a particular satellite and signal carrier frequency f_i

Ionosphere Range Error

consider first-order term in ionosphere refractive index

$$npprox 1-rac{1}{2}X=1-rac{\kappa}{f_i^2}N_e$$
 $\kappa=rac{e^2}{8\pi^2\epsilon_0m_e}pprox 40.308$

$$I_{i} = \int_{rx}^{tx} (n-1) \ ds \approx -\frac{\kappa}{f_{i}^{2}} \int_{rx}^{tx} N_{e} \ ds$$

$$I_{rx} = \int_{rx}^{tx} (n-1) \ ds \approx -\frac{\kappa}{f_{i}^{2}} \int_{rx}^{tx} N_{e} \ ds$$

$$I_{rx} = IO_{i} = IO_$$

Ionosphere Plasma Density

TEC and vertical TEC (vTEC) used to image plasma density structures

8

TEC Estimation Using Dual-Frequency GNSS

neglecting systematic and stochastic error terms:

$$\begin{split} \Phi_1 - \Phi_2 &= (I_1 - I_2) + (\lambda_1 N_1 - \lambda_2 N_2) + (H_1 - H_2) \\ &\approx -\kappa \left(\frac{1}{f_1^2} - \frac{1}{f_2^2}\right) \text{TEC} + \left(\lambda_1 N_1 - \lambda_2 N_2\right) + \Delta H_{1,2} \\ &\overset{\text{carrier}}{\overset{\text{carrier}}{\overset{\text{mbiguities}}} \\ &\text{after resolving bias terms:} \end{split}$$

$$\overline{ ext{TEC}} = rac{\Phi_2 - \Phi_1}{\kappa \left(rac{1}{f_1^2} - rac{1}{f_2^2}
ight)}$$

bias terms

Resolving Bias Terms

carrier ambiguity resolution

- LAMBDA
- code-carrier-levelling
- [3] derives improved code-carrier leveling / ambiguity resolution using triple-frequency GNSS

hardware bias estimation

- must apply ionosphere model
 - e.g. global ionosphere model using data assimilation and receiver networks
 - e.g. single receiver and linear 2D-gradient in vTEC (such as work by [2])

Example of L1/L2 TEC before and after codecarrier-levelling / ambiguity estimation, for satellite G01 and receiver at Poker Flat, Alaska.

Examples of Dual-Frequency TEC Estimates

Using methods similar to [2] and [3] to solve for bias terms, we compute dual-frequency TEC estimate TEC_{L1,L2} and TEC_{L1,L5}

TEC_{L1,L5} – TEC_{L1,L2}

Can we characterize / find the source of these discrepancies? Can we relate them to errors in dual-frequency TEC estimates?

Systematic Errors in GNSS Observations hardware bias

multipath reflected signals interfere with primary signal at receiver → causes fluctuations in phase / signal amplitude

ray-path bending

 $r \neq$ line-of-sight range

hardware bias drifts *H_i* terms not constant

antenna phase effects

relative displacement of satellite antenna phase centers changes as satellite moves / rotates

13

higher-order ionosphere terms need to consider orientation / strength of geomagnetic field

Objectives

Derive optimal triple-frequency estimation of TEC

Investigate the discrepancy in TEC_{L1,L5} – TEC_{L1,L2}

Provide a (partial) characterization of TEC estimate residual errors

Motivation

Improve / understand TEC estimate precision

- Push the boundaries of **TID signature detection** from earthquakes, explosions, etc.
- Understand / address the **errors** in TEC estimates from **low-elevation satellites**
- **Improve user range error** for precise positioning applications

Approach

Develop framework for linear estimation of GNSS parameters

Apply framework to derive triple-frequency estimates of TEC and systematic errors

Relate to impact on TEC estimate error residuals

Background and Motivation

Linear Estimation of GNSS Parameters

TEC Estimate Error Residuals

Application to Real GPS Data

Linear Inverse Problem

 $\mathbf{\Phi} = \mathbf{A}\mathbf{m} + \epsilon$

$$oldsymbol{\Phi} = [\Phi_1, \cdots, \Phi_m]^T$$
 $oldsymbol{m} = [G, \mathrm{TEC}, S_1, \cdots, S_m]^T$ observations model parameters

$$\mathbf{A} = egin{bmatrix} 1 & -rac{\kappa}{f_1^2} & 1 & 0 & \cdots & 0 \ 1 & -rac{\kappa}{f_2^2} & 0 & 1 & \cdots & 0 \ dots & & & \ddots & \ 1 & -rac{\kappa}{f_m^2} & 0 & \cdots & & 1 \end{bmatrix}$$

$$\epsilon = [\epsilon_1, \cdots, \epsilon_m]^T$$

stochastic error

forward model

Linear Estimation

 $\hat{\mathbf{m}} pprox \mathbf{A}^* \mathbf{\Phi}$

 $\hat{\mathbf{m}}$

model estimate

 $A^* = ?$

model estimator

Poor results; treats each parameter with equal weight

We must apply **a priori information** about model parameters

A Priori Information

Under normal conditions, we know that:

$$|G| \gg |I_i| \gg |S_i|$$

 $G\sim\,$ 20,000 km

 $I\sim$ 1 - 150 m

 $S\sim\,$ several cm

Using A Priori Information

We *could* apply $|G| \gg |I_i| \gg |S_i|$ using Gaussian priors

Instead we derive each row separately:

How to Choose Optimal C

Linear combination *E* given by inner-product:

$$E = \langle \mathbf{C} | \mathbf{\Phi}
angle$$

Goals:

produce desired parameter with unity coefficient
 remove / reduce all other terms

Approach:

First, constrain **C** to satisfy Goal 1 Then, constrain / optimize **C** to achieve Goal 2

Linear Coefficient Constraints

Use one or two of the following constraints to reduce search space for optimal estimator coefficients:

$$\sum_i c_i = 0$$

geometry-free

$$\sum_i rac{c_i}{f_i^2} = 0$$

ionosphere-free

$$\sum_i c_i = 1$$

geometry-estimator

$$\sum_i -rac{\kappa}{f_i^2}c_i = 1$$

TEC-estimator 24

Reduction of Error

Linear combination stochastic error variance:

$$\sigma_{\epsilon}^2 = \mathbf{C}^T \mathbf{\Sigma}_{\epsilon} \mathbf{C}$$

where $\boldsymbol{\Sigma}_{\epsilon}$ is the covariance matrix between ϵ_i

Optimal ${\bf C}$ for minimizing stochastic error variance:

$$\mathbf{C}^* = rg\min_{\mathbf{C}} \mathbf{C}^T \Sigma_{\epsilon} \mathbf{C}$$

 ϵ_i equal-amplitude and uncorrelated

$$\mathbf{C}^* = rg \min_{\mathbf{C}} \sum_i c_i^2$$

TEC Estimator

1. apply **TECu-estimator constraint**

2. apply **geometry-free constraint** (since $|G| \gg |I_i|$)

Dual-Frequency Example

TEC-estimator
$$-rac{\kappa}{f_1^2}c_1-rac{\kappa}{f_2^2}c_2=1$$

geometry-free $c_1+c_2=0 \Rightarrow c_1=-c_2$

$$\Rightarrow - \kappa c_1 \left(rac{1}{f_1^2} - rac{1}{f_2^2}
ight) = 1$$

recall:

$$\Rightarrow c_1 = -rac{1}{\kappa\left(rac{1}{f_1^2}-rac{1}{f_2^2}
ight)}$$

$$ext{TEC} = rac{\Phi_2 - \Phi_1}{\kappa \left(rac{1}{f_1^2} - rac{1}{f_2^2}
ight)}$$

Triple-Frequency TEC Estimator

Applying constraints yields following system of coefficients (with free parameter denoted *x*:

 \boldsymbol{x}

 c_3

To satisfy
$$\mathbf{C}^* = \arg \min_{\mathbf{C}} \sum_i c_i^2$$
, choose

$$x^* = \frac{\frac{1}{\kappa} \left(\frac{2}{f_3^2} - \frac{1}{f_2^2} - \frac{1}{f_1^2}\right)}{\left(\frac{1}{f_1^2} - \frac{1}{f_2^2}\right)^2 + \left(\frac{1}{f_2^2} - \frac{1}{f_3^2}\right)^2 + \left(\frac{1}{f_3^2} - \frac{1}{f_1^2}\right)^2}$$
denote corresponding coefficient vector
 $\mathbf{C}_{\mathsf{TEC}_{1,2,3}}$ and its corresponding estimate $\mathsf{TEC}_{1,2,3}$

TEC Estimator Using Triple-Frequency GPS 60 40 20 0 -20 \sum_{c^2} c_1 -40 c_2 C_3 -60 -60 $\begin{array}{c|c} & \mathbf{C}_{\mathrm{TEC}_{\mathrm{L1},\mathrm{L2},\mathrm{L5}}} \\ & \mathbf{C}_{\mathrm{TEC}_{\mathrm{L1},\mathrm{L5}}} \\ & \mathbf{C}_{\mathrm{TEC}_{\mathrm{L1},\mathrm{L2}}} \\ & \mathbf{C}_{\mathrm{TEC}_{\mathrm{L1},\mathrm{L2}}} \\ & \mathbf{C}_{\mathrm{TEC}_{\mathrm{L2},\mathrm{L5}}} \end{array}$ -50 -40 -30 -20 -10 10 0 $\sum_i c_i^2$ Estimate C_1 C_3 c_2 $\mathrm{TEC}_{\mathrm{L1,L2,L5}}$ 8.29410.314 -2.883-5.411 $TEC_{L1,L5}$ 7.7620 -7.76210.977 $TEC_{L1,L2}$ 9.518-9.51813.4600

 $\mathrm{TEC}_{\mathrm{L}2,\mathrm{L}5}$

42.080

0

-42.080

28

20

59.510

Geometry Estimator

apply geometry-estimator constraint
 apply ionosphere-free constraint since *I_i* are the next-largest terms

Geometry Estimator Using Triple-Frequency GPS

Estimate

 $G_{
m L1,L2,L5}$

 $G_{
m L1,L5}$

 $G_{
m L1,L2}$

 $G_{
m L2,L5}$

 $\begin{array}{c|c} & \mathbf{C}_{G_{\mathrm{L1,L2,L5}}} \\ & \mathbf{C}_{G_{\mathrm{L1,L5}}} \\ & \mathbf{C}_{G_{\mathrm{L1,L2}}} \\ & \mathbf{C}_{G_{\mathrm{L1,L2}}} \\ & \mathbf{C}_{G_{\mathrm{L2,L5}}} \end{array}$

Systematic Error Estimator

Since $|G| \gg |I_i| \gg |S_i|$, must apply both **geometry**free and **ionosphere-free** constraints

note this requires $m \ge 3$

For triple-frequency GNSS:

$$egin{aligned} c_1 &= x rac{rac{1}{f_3^2} - rac{1}{f_2^2}}{rac{1}{f_2^2} - rac{1}{f_1^2}} \ c_2 &= -x rac{rac{1}{f_3^2} - rac{1}{f_1^2}}{rac{1}{f_2^2} - rac{1}{f_1^2}} \ c_3 &= x \end{aligned}$$

system is linear subspace

Geometry-Ionosphere-Free Combination

We call the linear combination that applies both **geometry-free** and **ionospherefree** constraints the geometry-ionosphere-free combination (**GIFC**)

FACT: The difference between any two TEC estimates produces some scaling of the GIFC

 $\mathbf{C}_{\mathrm{TEC}_{1,2,3}}$ **FACT:** C_{GIFC} and $C_{TEC_{1,2,3}}$ are $\mathbf{C}_{\mathrm{GIFC}}$ perpendicular, i.e. $\langle \mathbf{C}_{ ext{GIFC}} | \mathbf{C}_{ ext{TEC}_{1,2,3}}
angle = 0$ FACT: $\frac{\langle \mathbf{C}_{\text{TEC}} | \mathbf{C}_{\text{TEC}_{1,2,3}} \rangle}{||\mathbf{C}_{\text{TEC}_{1,2,3}}||} = ||\mathbf{C}_{\text{TEC}_{1,2,3}}||$ i.e. C_{TEC} projected onto direction $C_{TEC_{1,2,3}}$ lands at $C_{TEC_{1,2,3}}$

GIFC Triple-Frequency GPS

We (arbitrarily) choose:

$$egin{aligned} \mathbf{C}_{ ext{GIFC}_{ ext{L1,L2,L5}}} &= \mathbf{C}_{ ext{TEC}_{ ext{L1,L5}}} - \mathbf{C}_{ ext{TEC}_{ ext{L1,L2}}} \ &= [-1.756, 9.520, -7.764]^T \end{aligned}$$

Note: the triple-frequency GIFC **does not have** a **welldefined unit**.

GIFC in our results section have the scaling shown here.

Background and Motivation

Linear Estimation of GNSS Parameters

TEC Estimate Error Residuals

Application to Real GPS Data

Estimate Residual Error

Define the error residual vector ${f R}$ with components:

$$R_i = S_i + \epsilon_i$$

The residual error impacting the TEC estimate is:

 $R_{ ext{TEC}} = \langle \mathbf{C}_{ ext{TEC}} | \mathbf{R}
angle$

Note that:

$$\mathrm{GIFC} = \langle \mathbf{C}_{\mathrm{GIFC}} | \mathbf{R} \rangle$$

A Convenient Basis

TEC Estimate Residual Error

TEC Estimate Residual Error Discussion

Term $\frac{\langle \mathbf{C}_{GIFC} | \mathbf{C}_{TEC} \rangle}{||\mathbf{C}_{GIFC}||^2}$ = amplitude of **GIFC residual error** component in TEC estimate

TEC_{1,2,3} is optimal in the sense that it **completely removes the GIFC component** of residual error

Term $R_{\text{TEC}_{1,2,3}}$ = unobservable "**TEC-like**" residual error component

But can we say anything about the **overall** TEC estimate residual error?

Argument for Using GIFC to Assess Overall Residual Error

Assume **R** has an **overall distribution** that is **joint symmetric** about the origin with distribution function $f_R(x)$

R_i equal amplitude and uncorrelated

By definition, $\mathbf{UR} \sim \text{symmetric with } f_R(x)$ for any orthonormal transformation \mathbf{U}

The distribution of a scaled version $a\mathbf{R}$ for some scalar a is $f_R(\frac{x}{a})$

Overall TEC Residual Error Discussion

The assumption that ${\bf R}$ has joint symmetric distribution is wrong

We can do better by carefully assessing a priori knowledge about the error components in each Φ_i

• investigating GIFC is first-step in this process

$$f_{R_{\text{TEC}}}(x) = f_{\text{GIFC}}\left(\frac{||\mathbf{C}_{\text{GIFC}}||}{||\mathbf{C}_{\text{TEC}}||}x\right)$$
 is a coarse approximation

- relates deviations as: $dev R_{TEC} \approx \frac{||\mathbf{C}_{TEC}||}{||\mathbf{C}_{GIEC}||} dev GIFC$
- could be very wrong if $R_{\text{TEC}_{1,2,3}} \gg GIFC$

Relation Between GIFC and TEC Estimate Residual Errors

Background and Motivation

Linear Estimation of GNSS Parameters

TEC Estimate Error Residuals

Application to Real GPS Data

Experiment Data

- Alaska, Hong Kong, Peru
- 2013, 2014, 2015, 2016
- Septentrio PolarXs
- 1 Hz GPS L1/L2/L5 measurements

Data Alignment and Correction

align data by sidereal day = 23h 55m 54.2 s

GPS orbital period ≈ 1/2 sidereal day

must remove jumps in GIFC data due to ionosphere activity / multipath / interference

Outlier segments (IGIFCI > 2) are removed from analysis

GIFC Examples Alaska

GIFC Examples Hong Kong

GIFC Examples Peru

GIFC Calendar Alaska

GIFC Calendar Hong Kong

GIFC Calendar Peru

Satellite Antenna Phase Effects?

angle cosine between Earth center, satellite, and Sun

antenna phase effects

relative displacement of satellite antenna phase centers changes as satellite moves / rotates

GIFC Heatmap Alaska

GIFC Heatmap Hong Kong

GIFC Heatmap Peru

GIFC Deviations and TEC Residual Error Estimates

	Percentile	Overall
GIFC percentile	50	0.11
deviations computed	75	0.19
over aggregate of all	90	0.21
data	50	0.21

GIFC deviation multiplied by scaling factor

$rac{\langle \mathbf{C}_{ ext{GIFC}} \mathbf{C}_{ ext{TEC}} angle}{ \mathbf{C}_{ ext{GIFC}} ^2}$	$egin{array}{c} ext{Percentile} \ & 50 \ & 75 \ & 90 \end{array}$		${{ m TEC_{L1,L5}}\ 0.033}\ 0.058\ 0.064$	$\begin{array}{c} {\rm TEC_{L1,L2}} \\ 0.077 \\ 0.132 \\ 0.146 \end{array}$	${{ m TEC}_{{ m L2,L5}}}\ 0.520\ 0.897\ 0.992$	I
$\frac{ \mathbf{C}_{\mathrm{TEC}} }{ \mathbf{C}_{\mathrm{GIFC}} }$	Percentile 50 75 90	${{ m TEC}_{{ m L1,L2,L5}}}\ 0.091\ 0.158\ 0.175$	${{ m TEC_{L1,L5}}\ 0.097}\ 0.168\ 0.186$	$\begin{array}{c} {\rm TEC_{L1,L2}} \\ 0.119 \\ 0.206 \\ 0.228 \end{array}$	${{ m TEC}_{{ m L2,L5}}}\ 0.528\ 0.911\ 1.007$	I

[TECu]

55

Recap

Discussion

TEC_{L1,L2} residual error on order of 0.2 TECu

- includes large-scale trend → for TID detection, trend is removed and precision improves
- [4] cites 0.05 TECu fluctuations to be above noise for TID detection

Improvement of $TEC_{L1,L2,L5}$ over $TEC_{L1,L5}$ seems minor:

$$egin{aligned} ||\mathbf{C}_{ ext{TEC}_{ ext{L1,L2,L5}}}|| &= 10.314 \ ||\mathbf{C}_{ ext{TEC}_{ ext{L1,L5}}}|| &= 10.977 \ ||\mathbf{C}_{ ext{TEC}_{ ext{L1,L2}}}|| &= 13.460 \end{aligned}$$

...but it does eliminate GIFC component in TEC residual error

Next Steps

Use characterization of GIFC to address residual errors

Is the GIFC trend variation due to satellite antenna phase effects?

Can we obtain and apply better information on residual error components R_i ?

Can we use GIFC to validate mitigation techniques for multipath, higher-order ionosphere terms, ray-path bending, antenna phase effects?

→ enable TEC estimation from **low-elevation satellites**

Acknowledgements

This research was supported by the Air Force Research Laboratory and NASA.

Thank you to my advisor, committee members, and all who provided me with feedback and criticism!

References

[1] Saito A., S. Fukao, and S. Miyazaki, *High resolution mapping of TEC perturbations with the GSI GPS network over Japan*, Geophys. Res. Lett., 25, 3079-3082, 1998.

[2] Bourne, Harrison W. *An algorithm for accurate ionospheric total electron content and receiver bias estimation using GPS measurements*. Diss. Colorado State University. Libraries, 2016.

[3] Spits, Justine. *Total Electron Content reconstruction using triple frequency GNSS signals*. Diss. Université de Liège, Belgique, 2012.

[4] M. Nishioka, A. Saito, and T. Tsugawa, "Occurrence characteristics of plasma bubble derived from global ground-based GPS receiver networks," Journal of Geophysical