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a b s t r a c t

The supermodular covering knapsack set is the discrete upper level set of a non-
decreasing supermodular function. Submodular and supermodular knapsack sets
arise naturally when modeling utilities, risk and probabilistic constraints on discrete
variables. In a recent paper Atamtürk and Narayanan (2009) study the lower level
set of a non-decreasing submodular function.

In this complementary paper we describe pack inequalities for the supermodular
covering knapsack set and investigate their separation, extensions and lifting. We
give sequence-independent upper bounds and lower bounds on the lifting coefficients.
Furthermore, we present a computational study on using the polyhedral results
derived for solving 0–1 optimization problems over conic quadratic constraints with
a branch-and-cut algorithm.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A set function f : 2N → R is supermodular on finite ground set N [22] if

f(S) + f(T ) ≤ f(S ∪ T ) + f(S ∩ T ), ∀S, T ⊆ N.

By abuse of notation, for S ⊆ N we refer to f(S) also as f(χS), where χS denotes the binary characteristic
vector of S. Given a non-decreasing supermodular function f on N and d ∈ R, the supermodular covering
knapsack set is defined as

K :=


x ∈ {0, 1}N : f(x) ≥ d

,

that is, the discrete upper level set of f . Since K ⊆ {0, 1}N , its convex hull, conv(K), is a polyhedral set.
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Our main motivation for studying the supermodular covering knapsack set is to address linear 0–1 covering
constraints with uncertain coefficients. If the coefficients ũi, i ∈ N , of the constraint are random variables,
then a probabilistic (chance) constraint

Prob(ũ′x ≥ d) ≥ 1− ϵ (1)

on x ∈ {0, 1}N with, 0 < ϵ < 0.5, can be modeled as a conic quadratic 0–1 covering knapsack

KCQ :=

x ∈ {0, 1}N : u′x − Ω∥Dx∥ ≥ d


,

where ui is a nominal value and di is a deviation statistic for ũi, i ∈ N,D = diag(d1, d2, . . . , d|N |), Ω > 0.
Indeed, the set of 0–1 solutions for the probabilistic covering constraint (1) is precisely KCQ for normally dis-
tributed independent random variables ũi, by letting ui and di be the mean and standard deviation of ũi, and
Ω(ϵ) = −φ−1(ϵ) with 0 < ϵ < 0.5, where φ is the standard normal CDF [20]. On the other hand, if ũi’s are
known only through their first two moments ui and σ2i , then any point in KCQ with Ω(ϵ) =


(1− ϵ)/ϵ satis-

fies the probabilistic constraint (1) [15,23]. Alternatively, if ũi’s are only known to be symmetric with support
[ui−di, ui+di], then points inKCQ with Ω(ϵ) =


ln(1/ϵ) satisfy constraint (1) [13,14]. Therefore, under vari-

ous models of uncertainty, one arrives at different instances of the conic quadratic covering knapsack setKCQ.
For a vector v ∈ RN and S ⊆ N we use v(S) to denote


i∈S vi. Now, consider f : 2N → R defined as

f(S) = u(S)− g(c(S)), (2)

where g : R → R is a concave function and u, c ∈ RN . It is easily checked that if c ≥ 0, then f is
supermodular on N (e.g. Ahmed and Atamtürk [2]). Letting ci = Ω2d2i for i ∈ N , we see that

f(S) = u(S)−


c(S) ≥ d (3)

if and only if χS ∈ KCQ. Moreover, f is non-decreasing if ui ≥ Ωdi for i ∈ N .
Although the polyhedral results in this paper are for the more general supermodular covering knapsack

polytope conv(K), we give examples and a separation algorithm for a specific set function of form (2).
Because K reduces to the linear 0–1 covering knapsack set when f is modular, optimization over K is
NP-hard.

For notational simplicity, we denote a singleton set {i} with its unique element i. For an ordered set
{s1, s2, . . . , sn}, the subset {si, si+1, . . . , sj} = ∅, ∀i > j. For a set function f on N and i ∈ N , let its
difference function be

ρi(S) := f(S ∪ i)− f(S) for S ⊆ N \ i.

Note that f is supermodular if and only if ρi(S) ≤ ρi(T ), ∀S ⊆ T ⊆ N \ i and i ∈ N ; that is, the difference
function ρi is non-decreasing on N \ i (e.g. Schrijver [37]). Furthermore, f is non-decreasing on N if and
only if ρi(·) ≥ 0 for all i ∈ N .
Relevant literature. In a closely related paper, Atamtürk and Narayanan [6] study the lower level set of
a non-decreasing submodular function. Negating inequality (3) yields a knapsack set with non-increasing
submodular function −f , and, therefore, their results are not applicable here. Indeed, as the upper level set
of a non-decreasing supermodular function is equivalent to the lower level set of a non-increasing submodular
function, the current paper closes a gap by covering the case complementary to the one treated in Atamtürk
and Narayanan [6].

Although there is a rich body of literature in approximation algorithms for submodular or supermodular
functions, polyhedral results are scarce. Nemhauser et al. [36], Sviridenko [38], Iwata and Nagano [28], Lee
et al. [32] give approximation algorithms for optimizing submodular/supermodular functions over various
constraints. There is an extensive literature on the polyhedral analysis of the linear knapsack set. The poly-
hedral analysis of the linear knapsack set was initiated by Balas [9], Hammer et al. [25], and Wolsey [39]. For
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a recent review of the polyhedral results on the linear knapsack set we refer the reader to Atamtürk [4,5].
Martello and Toth [33] present a survey of solution procedures for linear knapsack problems. Covering knap-
sack has also been extensively studied in the purview of approximation algorithms and heuristics [21,16].
Carnes and Shmoys [18] study the flow cover inequalities (Aardal, Pochet and Wolsey [1]) in the context of the
deterministic minimum knapsack problem. The majority of the research on the nonlinear knapsack problem
is devoted to the case with separable nonlinear functions (Morin [35]). Hochbaum [27] maximizes a separa-
ble concave objective function, subject to a packing constraint. There are fewer studies on the nonseparable
knapsack problem, most notably on the knapsack problem with quadratic objective and linear constraint.
Helmberg et al. [26] give semidefinite programming relaxations of knapsack problems with quadratic objec-
tive. Ahmed and Atamtürk [2] consider maximizing a submodular function over a linear knapsack constraint.
We refer the reader to also Bretthauer et al. [17], Kellerer [29] for a survey of nonlinear knapsack problems.

On the conic integer optimization Atamtürk and Narayanan [7] describe a general mixed-integer rounding
approach for conic quadratic mixed-integer sets. Atamtürk and Narayanan [8] describe lifting techniques for
conic discrete optimization. Çezik and Iyengar [19] study techniques for generating valid convex constraints
for mixed 0–1 conic programs and show that many of the techniques developed for generating linear cuts
for linear mixed 0–1 optimization, such as the Gomory cuts, the lift-and-project cuts, and cuts from other
hierarchies of tighter relaxations, extend to conic mixed 0–1 optimization. Belotti et al. [12] give conic cuts
for conic quadratic integer optimization. Anderson and Jensen [3] give intersection cuts for conic quadratic
mixed-integer sets. Kılınç [30] describes minimal inequalities for conic mixed-integer programs. Modaresi
et al. [34] give split cuts and extended formulations for conic quadratic mixed-integer programming. Kılınç-
Karzan and Yıldız [31] describe two-term disjunction inequalities for the second-order cone. These papers
are on general conic quadratic discrete optimization and do not exploit any special structure associated with
the problem studied here.
Outline. The rest of the paper is organized as follows: Section 2 describes the main polyhedral results.
It includes pack inequalities, their extensions and lifting. The lifting problems of the pack inequalities
are themselves optimization problems over supermodular covering knapsack sets. We derive sequence-
independent upper bounds and lower bounds on the lifting coefficients. In Section 3 we give a separation
algorithm for the pack inequalities for the conic quadratic case. In Section 4 we present a computational
study on using the results for solving 0–1 optimization problems with conic quadratic constraints.

2. Polyhedral analysis

In this section we analyze the facial structure of the supermodular knapsack covering polytope. In
particular, we introduce the pack inequalities and discuss their extensions and lifting. Throughout the
rest of the paper we make the following assumptions:

(A.1) f is non-decreasing,
(A.2) f(∅) = 0,
(A.3) f(N \ i) ≥ d for all i ∈ N .

Because f is supermodular, assumption (A.1) is equivalent to ρi(∅) ≥ 0, ∀ i ∈ N , which can be checked
easily. Assumption (A.1) holds, for instance, for a function f of the form (3) if ui ≥ Ωdi,∀ i ∈ N . Assumption
(A.2) can be made without loss of generality as f can be translated otherwise. Finally, if (A.3) does not
hold, i.e., ∃ i ∈ N : f(N \ i) < d, then xi equals one in every feasible solution.

We start with a few basic results that easily follow from the assumptions above.

Proposition 1. Conv(K) is a full-dimensional polytope.
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Proposition 2. Inequality xi ≤ 1, i ∈ N , is facet-defining for conv(K).

Proposition 3. Inequality xi ≥ 0, i ∈ N , is facet-defining for conv(K) if and only if f(N \ {i, j}) ≥ d,∀ j ∈
N \ {i}.

We refer to the facets defined in Propositions 2–3 as the trivial facets of conv(K).

Proposition 4. If inequality

j∈N πjxj ≥ π0 defines a non-trivial facet of conv(K), then π0 > 0 and

0 ≤ πj ≤ π0,∀ j ∈ N .

2.1. Pack inequalities

In this section we define the first class of valid inequalities for K.

Definition 1. A subset P of N is a pack for K if δ := d − f(P ) > 0. A pack P is maximal if f(P ∪ i) ≥ d,
∀ i ∈ N \P.

For a pack P ⊂ N for K, let us define the corresponding pack inequality as

x(N \P ) ≥ 1. (4)

The pack inequality simply states that at least one element outside the pack P has to be picked to satisfy the
knapsack cover constraint f(x) ≥ d. Consider the non-empty restriction K(P ) = {x ∈ K : xi = 1,∀ i ∈ P}
of K.

Proposition 5. If P ⊂ N is a pack for K, then the pack inequality (4) is valid for K. Moreover, it defines
a facet of conv(K(P )) iff P is a maximal pack.

Proof. Define K̄ :=


x ∈ {0, 1}N : x(N \P ) < 1


. It is sufficient to show that f(x) < d for all x ∈ K̄. Since
∀x ∈ K̄, we have x(N \P ) = 0, implying x ≤ y, ∀x ∈ K̄, and ∀y ∈ K(P ); implying

f(x) ≤ f(P ) < d,

where the first inequality follows from assumption (A.1), that f is non-decreasing.

For the second part, consider the |N\P | points

xk ∈ {0, 1}N such that xkj =


1 if j ∈ P ∪ k,
0 if j ∈ N \ {P ∪ k},

∀ k ∈ N \ P. (5)

Since f is non-decreasing and P is a maximal pack, we have xk ∈ K, ∀ k ∈ N \ P . The |N \ P | points
xk, k ∈ N \ P are in conv(K(P )) and satisfy (4) as equality. It is easily seen that these |N \ P | points are
linearly independent. Hence for a maximal pack P , (4) defines a facet of conv(K(P )).

Conversely suppose that pack P is not maximal. Thus, ∃ i ∈ N\P such that f(P ∪ i) < d. Then the
corresponding valid pack inequality

x(N\(P ∪ i)) ≥ 1

and xi ≥ 0 dominate (4). �

Example. Consider the conic-quadratic covering knapsack set

K =


x ∈ {0, 1}4 : x1 + 2.5x2 + 3x3 + 3x4 −

x23 + x24 ≥ 5.5


.
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The maximal packs for K and the corresponding pack inequalities are

{1, 2} : x3 + x4 ≥ 1 {1, 3} : x2 + x4 ≥ 1 {1, 4} : x2 + x3 ≥ 1
{2, 3} : x1 + x4 ≥ 1 {2, 4} : x1 + x3 ≥ 1 {3, 4} : x1 + x2 ≥ 1.

2.2. Extended pack inequalities

The pack inequalities (4), typically, do not define facets of conv(K); however, they can be strengthened
by extending them with the elements of the pack. Though unlike in the linear case, for the supermodular
covering knapsack set, even simple extensions are sequence-dependent. Proposition 6 describes such an
extension of the pack inequalities (4).

Definition 2. Let P ⊂ N be a pack and π = (π1, π2, . . . , π|P |) be a permutation of the elements of P . Define
Pi := P \ {π1, π2, . . . , πi} for i = 1, . . . , |P | with P0 = P . The reduction of P with respect to π is defined as
Rπ(P ) := P \ Uπ(P ), where

Uπ(P ) :=

πj ∈ P : max

i∈N\P
ρi(N\i) ≤ ρπj (Pj)


. (6)

For a given pack P and reduction Rπ(P ) = P \ Uπ(P ), we define the extended pack inequality as

x(N \Rπ(P )) ≥ |Uπ(P )|+ 1. (7)

Proposition 6. If P ⊂ N is a pack for K and Uπ(P ) is defined as in (6), then the extended pack inequality (7)
is valid for K.

Proof. Let L ⊆ N\Rπ(P ) with |L| ≤ |Uπ(P )|. To prove the validity of (7) it suffices to show that f(Rπ(P )
∪L) < d. Let J = Uπ(P )\L =:


j1, j2, . . . , j|J|


be indexed consistently with π. Note that for Q = Uπ(P )∩L,

we have |L\Q| ≤ |J |. Then

f(Rπ(P ) ∪ L) = f(Rπ(P ) ∪Q) + ρL\Q(Rπ(P ) ∪Q)

≤ f(Rπ(P ) ∪Q) +

ℓ∈L\Q

ρℓ(N\ℓ)

≤ f(Rπ(P ) ∪Q) +

πj∈J
ρπj (Pj)

≤ f(Rπ(P ) ∪Q) +

ji∈J
ρji

Rπ(P ) ∪Q ∪


ji+1, . . . , j|J|


= f(P ) < d,

where the first and third inequalities follow from supermodularity of f and the second one from (6),
|L\Q| ≤ |J |, and (A.1). �

We now provide a sufficient condition for the extended pack inequality to be facet-defining for
conv(K(Rπ(P ))).

Proposition 7. The extended pack inequality (7) is facet-defining for conv(K(Rπ(P ))) if P is a maximal
pack and for each i ∈ Uπ(P ) there exist distinct ji, ki ∈ N \ P such that f(P ∪ {ji, ki} \ i) ≥ d.

Proof. Consider the points χP∪i,∀ i ∈ N \ P and χP∪{ji,ki}\i,∀ i ∈ Uπ(P ) and ji, ki ∈ N \ P , which are
on the face defined by (7). The proof will be completed by showing that these |N \ P | + |Uπ(P )| points
are linearly independent. Let M be the matrix containing these points as rows. Observe that M can be
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represented as

M =


1n×m Idn
1m×m − Idm Hm×n


where n = |N \ P | and m = |Uπ(P )|. Here 1n×m denotes an n ×m matrix all of whose entries are 1. Idn
refers to the n×n identity matrix and Hm×n is an m×n binary matrix (Hij ∈ {0, 1}, 1 ≤ i ≤ m, 1 ≤ j ≤ n)
such that all of its rows sum to two

n
j=1 Hij = 2, ∀ 1 ≤ i ≤ m


. Now, M is non-singular if and only if

M


α

β


= 0 ⇒ α,β = 0, (8)

where α,β are vectors of length of m and n, respectively. The solutions to (8) thus satisfy

1n×mα+ β = 0, (9)
(1m×m − Idm)α+ Hm×nβ = 0. (10)

Substituting for β, in (10) from (9) yields

(1m×m − Idm)α−Hm×n1n×mα = 0
(1m×m − Idm)α− 21m×mα = 0

(1m×m + Idm)α = 0.

Thus the problem of proving non-singularity of M boils down to proving non-singularity of 1m×m + Idm,
which is evident from elementary row operations. �

Example (Cont.). Consider the conic-quadratic covering knapsack set in the previous example:

K =


x ∈ {0, 1}4 : x1 + 2.5x2 + 3x3 + 3x4 −

x23 + x24 ≥ 5.5


.

For the maximal pack P = {3, 4}, we gave the corresponding pack inequality

x1 + x2 ≥ 1.

For permutation π = (3, 4), P1 = {4} and P2 = ∅. As ρ3(P1) = 4 −
√

2 ≈ 2.586 and ρ1({2, 3, 4}) =
1, ρ2({1, 3, 4}) = 2.5, the corresponding reduction R(3,4)(P ) = {4} gives the extended pack inequality

x1 + x2 + x3 ≥ 2. (11)

Alternatively, π = (4, 3) yields the reductionR(4,3)(P ) = {3} and the corresponding extended pack inequality

x1 + x2 + x4 ≥ 2. (12)

Observe that inequalities (11) and (12) are the non-trivial facets of conv(K(4)) and conv(K(3)), respectively.

2.3. Lifted pack inequalities

In this section we study the lifting problem of the pack inequalities in order to strengthen them. Lifting has
been very effective in strengthening inequalities for the linear 0–1 knapsack set [9–11,24,25,39]. The lifting
problem for the pack inequalities for K is itself an optimization problem over the supermodular covering
knapsack set.

Precisely, we lift the pack inequality (4) to a valid inequality of the form

x(N \ P )−

i∈P
αi(1− xi) ≥ 1. (13)
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The lifting coefficients αi, i ∈ P can be computed iteratively in some sequence: Suppose the pack inequality
(4) is lifted with variables xi, i ∈ J ⊆ P to obtain the intermediate valid inequality

x(N \ P )−

i∈J
αi(1− xi) ≥ 1 (14)

in some sequence of J , then xk, k ∈ P \ J , can be introduced to (14) by computing

αk = ϕ(I, k)− 1−α(J), (15)

where ϕ(I, k) is the optimal objective value of the following lifting problem, L(I, k):

ϕ(I, k) := min
T⊆I


|(N \ P ) ∩ T |+


i∈J∩T

αi : f(T ∪ P \ (J ∪ k)) ≥ d


(16)

and

I = (N \ P ) ∪ J.

The lifting coefficients are typically a function of the sequence used for lifting. The extension given in
Proposition 6 may be seen as a simple approximation of the lifted inequalities (13).

Proposition 8. If P ⊂ N is a pack for K, and αi, ∀ i ∈ P are defined as in (15), then the lifted pack
inequality (13) is valid for K. Moreover, inequality (13) defines a facet of conv(K) if P is a maximal pack.

Corollary 9. The lifted pack inequality

x(N \ P )−

i∈P

αi(1− xi) ≥ 1, (17)

where αk = ⌈ϕ(I, k)⌉ − 1− α(J), k ∈ P \ J and ϕ(I, k) is any lower bound on ϕ(I, k), is valid for K.

Computing the lifting coefficients αk, k ∈ P , exactly may be computationally prohibitive in general as
the feasible set of the lifting problem (16) is defined over a supermodular covering knapsack. For a deeper
understanding of the structure of the lifted inequalities, it is of interest to identify bounds on the lifting
coefficients that are independent of a chosen lifting sequence. As we shall see later, these bounds may help
to generate approximate lifting coefficients quickly. We start with the following lemma.

Lemma 10. Let P ⊂ N be a maximal pack with δ := d− f(P )(> 0) and for h = 0, 1, 2, 3, . . . , |N \ P |, define

µh := max {f(T ∪ P ) : |T | = h, T ⊆ N \ P} (18)
νh := min {f(T ∪ P ) : |T | = h, T ⊆ N \ P} . (19)

Then, for all h = 0, 1, 2, 3, . . . , |N \ P | − 1, the following inequalities hold:

(i) νh+1 ≥ νh + δ,
(ii) µh+1 ≥ µh + δ.

Proof. Since P is a maximal pack, ρk(P ) ≥ δ, ∀ k ∈ N \ P .

(i) Let T ∗h+1 be an optimal solution corresponding to (19) and let k ∈ T ∗h+1. Then by supermodularity of f
and maximality of P , we have

δ ≤ ρk(P ) ≤ ρk

(T ∗h+1 \ k) ∪ P


= f(T ∗h+1 ∪ P )− f


(T ∗h+1 \ k) ∪ P


.
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Adding νh to both sides yields,

δ + νh ≤ f(T ∗h+1 ∪ P ) = νh+1.

(ii) Let T ∗h be an optimal solution to (18) and let k ∈ N \ {P ∪ T ∗h}. It follows from supermodularity of f
and maximality of P that

δ ≤ ρk(P ) ≤ ρk(T ∗h ∪ P )
≤ f(T ∗h ∪ k ∪ P )− f(T ∗h ∪ P ).

Adding µh to both sides yields,

δ + µh ≤ f(T ∗h ∪ k ∪ P ) ≤ µh+1.

In summary, for a maximal pack P, νh ≤ f(T ∪P ),∀T ⊆ N \P with |T | ≥ h, and µh ≥ f(T ∪P ),∀T ⊆ N \P
with |T | ≤ h. �

Proposition 11 is inspired by a similar result by Balas [9] for the linear 0–1 knapsack problem.

Proposition 11. Let P ⊂ N be a pack with δ := d − f(P ) > 0 and µh and νh, h = 0, 1, 2, 3, . . . , |N \ P | be
defined as in (18) and (19). Suppose that the lifted pack inequality

x(N \ P )−

i∈P
αi(1− xi) ≥ 1 (20)

defines a facet of conv(K). For any i ∈ P , the following statements hold:

(i) if ρi(∅) ≥ f(N)− ν|N\P |−h, then αi ≥ h;
(ii) if ρi(N \ i) ≤ µ1+h − d, then αi ≤ h.

Proof. (i) The lifting coefficient of xi, i ∈ P , is the smallest if xi is the last variable introduced to (20)
in a lifting sequence. Let αi = ϕ(N \ i, i) − 1 − α(P \ i). Also, because the intermediate lifting inequality
before introducing xi is valid for K, we have ϕ(N \ i, ∅) ≥ 1 + α(P \ i). Thus, it is sufficient to show that
ϕ(N \ i, i)− ϕ(N \ i, ∅) ≥ h.

We claim that in any feasible solution S to the lifting problem L(N\i, i) (when xi is lifted last), at least
h + 1 variables in N \ P are positive. For contradiction, suppose that at most h variables in N \ P are
positive. Let J ⊆ N \ P and P̃ ⊆ P \ i be such that S = J ∪ P̃ . We have

f(J ∪ P̃ ) ≤ f(J ∪ P \ i)
= f(J ∪ P )− ρi(J ∪ P \ i)
≤ f(J ∪ P )− ρi(∅)
≤ f(J ∪ P )− f(N) + ν|N\P |−h
= f(P ) + ρJ(P )− f(N) + ν|N\P |−h
≤ f(P ) + ρJ(N \ J)− f(N) + ν|N\P |−h
= f(P )− f(N \ J) + ν|N\P |−h
≤ f(P ) < d,
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where the penultimate inequality follows from the fact that f(N \ J) ≥ ν|N\P |−h,∀ J ⊆ N \ P, |J | ≤ h.
Thus, χS is infeasible for L(N \ i, i).

Now let S∗ = J∗ ∪ P ∗ with J∗ ⊆ N \ P, P ∗ ⊆ P \ i, be an optimal solution to L(N \ i, i). Let J ⊂ J∗
be such that |J | = h. The existence of such a J is guaranteed by the argument in previous paragraph. We
claim that S∗ \ J is a feasible solution to L(N \ i, ∅). To see this, observe that

f((S∗ \ T ) ∪ i) ≥ f(S∗ \ T ) + f(i)
= f(S∗ \ T ) + ρi(∅)
≥ f(S∗)− f(N) + f(N \ T ) + ρi(∅)
≥ f(S∗)− f(N) + ν|N\P |−h + ρi(∅)
≥ f(S∗) ≥ d,

where the third inequality follows from the supermodularity of f and the penultimate inequality follows
from our assumption ρi(∅) ≥ f(N)− ν|N\P |−h. Thus, we see that ϕ(N \ i, i)− ϕ(N \ i, ∅) ≥ |T | = h.

(ii) For this part, it is sufficient to show that if the pack inequality (4) is lifted first with xi, then αi ≤ h.
Consider the lifting problem, Li(N \ P ). Let T ⊆ N \ P, |T | = h+ 1, such that f(T ∪ P ) = µh+1. We claim
that T is feasible for Li(N \ P ). Consider the following

f(T ∪ P \ i) = f(T ∪ P )− ρi(T ∪ P \ i)
≥ µh+1 − ρi(N \ i)
≥ d.

Hence an optimal solution to Li(N \ P ) has at most h+ 1 variables positive, i.e., ϕ(N \ P, i) ≤ h+ 1. Thus
we have αi = ϕ(N \ P, i)− 1 ≤ h. �

Computing the bounds µh and νh, h = 1, . . . , |N \P | is NP-hard as they require minimizing and maximizing
supermodular functions over a cardinality restriction. Nevertheless, Lemma 10 and Proposition 11 can be
utilized together in order to derive approximate lifted inequalities efficiently as µ1, ν1 and µ|N\P |−1, ν|N\P |−1
can be computed in linear time by enumeration.

Proposition 11 yields that for a maximal pack P if for any i ∈ P, ρi(N \i) ≤ µ1−d, then the corresponding
lifting coefficient αi for xi is zero and thus xi can be dropped from consideration for extensions and lifting
of the pack inequality. Similarly, if for any i ∈ P, ρi(∅) ≥ f(N) − ν|N\P |−1, then the lifting coefficient αi
of xi is at least one and thus xi can be included in every extension or lifting of the pack inequality. Also,
if ρi(∅) ≥ f(N) − ν1, i ∈ P , then the corresponding lifting coefficient is set to |N \ P | − 1. Furthermore,
Proposition 11 and a repeated application of Lemma 10 suggest the following corollary.

Corollary 12. For h = 1, . . . , |N \ P | − 1

(1) if ρi(∅) ≥ f(N)− ν1 − δ(|N \ P | − h− 1), then αi ≥ h.
(2) if ρi(N\i) ≤ µ1 + hδ − d, then αi ≤ h.

3. Separation

In this section, we give a separation algorithm for the pack inequalities for the supermodular covering
knapsack set K defined with respect to any supermodular set function f assuming the functional form
(2) with g concave and increasing on R+ and c ≥ 0. Observe that conic quadratic supermodular function
defining KCQ assumes this functional form.
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Given x̄ ∈ RN such that 0 ≤ x̄ ≤ 1, we are interested in finding a pack P with

i∈N\P x̄i < 1, if there

exists any. Then, the separation problem with respect to the pack inequalities can be formulated as

ζ = min


x̄′(1− z) : u′z− g(c′z) < d, z ∈ {0, 1}N

, (21)

where the constraint u′z − g(c′z) < d ensures that a feasible z corresponds to a pack. Thus, there is a
violated pack inequality if and only if ζ < 1.

In order to find violated pack inequalities quickly, we employ a heuristic that rounds off fractional solutions
to the continuous relaxation of (21):

max {x̄′z : u′z− y ≤ d, c′z ≥ h(y), 0 ≤ z ≤ 1, y ∈ R} , (22)

where h is the inverse of g (h exists as g is increasing). Because g is increasing concave, h is increasing
convex; hence (22) is a convex optimization problem. Also, observe that, for a fixed value of y ∈ R, there
can be at most two fractional zi, i ∈ N in any extreme point solution to (22).

For the convex relation (22) let λ ≥ 0, ν ≤ 0,α ≤ 0,β ≤ 0 be the dual variables for the constraints in
the order listed. From the first order optimality conditions

x̄i − λui − νci − αi + βi = 0, ∀ i ∈ N,
λ+ νh′(y) = 0,

and the complementary slackness conditions

αizi = 0, ∀ i ∈ N,
βi(zi − 1) = 0, ∀ i ∈ N,

we see that optimal solutions satisfy

x̄i


≤ λui + νci, zi = 0
= λui + νci, 0 < zi < 1
≥ λui + νci, zi = 1.

Since in an extreme point of (22) there are at most two variables with 0 < zi, zj < 1, we compute

|N |
2


candidate values for λ and ν, which are solutions of

x̄i = λui + νci, x̄j = λuj + νcj , i, j ∈ N, i < j.

For candidate values (λ, ν) satisfying λ ≥ 0, ν ≤ 0, we assign variables zi, i ∈ N equal to one, in the
non-increasing order of x̄i/(λui+νci), until z defines a pack and check for the violation of the corresponding
pack inequality.

4. Computational experiments

In this section we present our computational experiments on testing the effectiveness of the pack
inequalities and their extensions for solving 0–1 optimization problems with conic quadratic covering
knapsack constraints. For the computational experiments we use the MIP solver of CPLEX Version 12.5 that
solves conic quadratic relaxations at the nodes of the branch-and-bound tree. CPLEX heuristics are turned
off and a single thread is used. The search strategy is set to traditional branch-and-bound, rather than the
default dynamic search as it is not possible to add user cuts in CPLEX while retaining the dynamic search
strategy. In addition, the solver time limit and memory limit have been set to 3600 s and 1 GB, respectively.
All experiments are performed on a 2.93 GHz Pentium Linux workstation with 8 GB main memory.

In Tables 1 and 2 we report the results of the experiments for varying number of variables (n), constraints
(m), and values for Ω . For each combination, five random instances are generated with ui from uniform
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Table 1
Effect of cuts with barrier algorithm.

m n Ω igap cplex barrier packs extended packs
rgap egap nodes time # cuts rgap egap nodes time # cuts rgap egap nodes time #

10

50
1 22.8 22.8 0 4,087 27 5 31 7.0 0 367 4 5 40 3.9 0 188 2 5
3 22.4 22.4 0 4,673 29 5 28 8.6 0 338 4 5 31 5.5 0 120 2 5
5 25.1 25.1 0 15,854 92 5 31 8.7 0 503 5 5 33 6.0 0 249 3 5

100
1 11.4 11.4 0 153,652 2673 2 25 7.6 0 27,394 599 5 30 6.6 0 15,214 345 5
3 10.4 10.4 0 95,758 1688 5 24 7.1 0 16,167 324 5 28 5.9 0 11,737 254 5
5 11.1 11.1 0 160,024 2726 2 22 8.1 0 50,734 1021 5 27 7.4 0 26,763 581 5

20

50
1 18.5 18.5 0 74,833 1209 5 51 8.2 0 4,104 98 5 59 5.8 0 2,115 55 5
3 21.1 21.1 0.4 129,208 1943 3 49 8.0 0 9,028 208 5 63 5.6 0 4,764 126 5
5 21.5 21.5 0 68,563 1043 5 48 8.1 0 1,028 26 5 55 5.2 0 433 12 5

100
1 11.3 11.3 5.6 71,460 3589 0 27 9.1 4 58,659 3329 1 34 8.6 3.2 54,293 3146 1
3 11.3 11.3 5.2 78,661 3589 0 35 9.1 4 66,359 3589 0 42 8.4 3.4 61,112 3589 0
5 11.3 11.3 4.0 77,952 3589 0 31 9.0 3 61,461 3159 1 39 8.3 2.3 56,462 3085 1

Average 16.5 1.27 77,894 1850 8.2 0.92 24,679 1031 6.4 0.74 19,454 933
Stdev 5.82 0.72 1.46

Table 2
Effect of cuts with outer linear approximation.

m n Ω igap cplex outer approx. packs extended packs
rgap egap nodes time # cuts rgap egap nodes time # cuts rgap egap nodes time #

20

50
1 22 8.9 0 1,942 1 5 64 4.8 0 587 1 5 71 3.6 0 260 1 5
3 24.7 10.7 0 2,792 1 5 71 6.2 0 744 1 5 82 4.3 0 396 1 5
5 22.9 9.7 0 1,834 1 5 64 4.8 0 217 0 5 72 3.1 0 134 0 5

100
1 11.7 7.0 0 517,570 575 5 57 6.8 0 195,698 229 5 62 6.8 0 151,307 157 5
3 13.1 7.7 0 249,849 234 5 52 7.4 0 127,090 138 5 57 6.9 0 113,878 124 5
5 12.4 7.0 0 242,291 211 5 50 6.7 0 106,121 126 5 61 6.4 0 94,831 105 5

30

50
1 24.2 12.4 0 3,393 3 5 67 9.7 0 1,108 1 5 84 8.4 0 572 1 5
3 23.6 10.2 0 1,335 1 5 66 7.2 0 481 1 5 81 5.9 0 121 1 5
5 23.9 10.8 0 2,241 2 5 67 7.3 0 368 1 5 78 6.0 0 274 1 5

100
1 13.6 9.4 0.3 1,160,006 2159 4 61 8.9 0.3 755,204 1458 4 73 8.6 0.2 790,050 1585 4
3 12.9 8.6 0.3 1,094,672 2238 2 67 8.2 0 686,178 1451 4 78 8.0 0 596,803 1195 5
5 12.9 8.3 0 1,047,374 1903 5 64 8.2 0 636,519 1319 5 77 7.7 0 387,649 698 5

Average 9.2 0.05 360,442 611 7.2 0.03 209,193 394 6.3 0.02 178.023 322
Stdev 1.64 1.48 1.83

[0, 100] and σi from uniform [0, ui/5]. The covering knapsack right-hand-side constant d is set to 0.5κ, where
κ = maxi∈N f(N \ i). So that constraints are not completely dense, we set the density of the constraints to
20/
√
n.

In Table 1 we compare the initial relaxation gap (igap), the root relaxation gap (rgap), the end gap (egap),
the gap between best upper bound and lower bound at termination, the number of cuts generated (cuts),
the number of nodes explored (nodes), the CPU time in seconds (time), and the number of instances solved
to optimality (#) using the barrier algorithm and several cut generation options. The initial relaxation gap
(igap) is computed as (fu−fi)

fu
, where fi denotes the objective value of the initial relaxation and fu denotes

the objective of the best feasible solution found across all versions. The root gap (rgap) and the end gap
(egap) are computed as (fu−fr)

fu
and (fu−fl)

fu
, where fr is the objective value of the relaxation at the root

node and fl is the best lower bound for the optimal objective at termination. The columns under heading
cplex show the performance of CPLEX with no user cuts added. The other columns show the performance
of the algorithm using maximal pack cuts and extended maximal pack cuts with preprocessing as described
in Corollary 12. The pack inequalities and their extensions are added only at the root node of the search
tree using the separation algorithm discussed in Section 3.
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We observe in Table 1 that the addition of the pack cuts reduces the root gap and the number of nodes
and leads to faster solution times. As expected, the extended pack cuts are more effective than the simpler
pack cuts. On average, the root gap is reduced from 16.5% to 6.43% for all instances with the extended pack
cuts. Using extended packs leads to a reduction of 49.5% in the solution times and 75% in the number of
branch and bound nodes explored. For problems that could be solved by CPLEX alone, the average solution
time is reduced from 769 s to mere 97 s. For problems that could not be solved by either of the three versions,
the average end gap is reduced from 4.8% to 2.8% using the extended packs. Over all instances, the average
number of nodes are 77,894, 24,679 and 19,454 for CPLEX with barrier algorithm without user cuts, with
packs and extended packs, respectively. On the other hand, the average CPU times are 1850, 1031 and 933 s
for CPLEX without user cuts, with packs and extended packs, respectively.

In Table 2 we present similar comparisons, but this time using the CPLEX linear outer approximation
for solving conic quadratic problems at the nodes instead of the barrier algorithm. We observe, in this case,
that CPLEX adds its own cuts from the linear constraints. Therefore, compared to Table 1, in general the
root gaps are smaller and the solution times are faster. Adding extended pack cuts reduces the average root
gap from 9.23% to 6.31%. This leads to 50.6% reduction in the number of search nodes and 47.2% reduction
in the solution times. For larger instances that are not solved to optimality, the average end gap is reduced
from 0.9% to 0.3%.

In conclusion, we find the pack inequalities and their extensions to be quite effective in strengthening
the convex relaxations of the conic quadratic covering 0–1 knapsacks and reducing the solution times of
optimization problems with such constraints.
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