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Preface

This course addresses students in both computer science (mathematical modeling)
and statistics at the advanced undergraduate level. The background comprises a
knowledge of linear deterministic dynamical systems (as given in MA-IN 126), linear
algebra (MA 104), and the basic concepts of probability and statistics (ST 101). In
MA-IN 126, linear dynamical systems were studied in continuous time using differential
equations but here we shall work exclusively with discrete linear systems represented
by difference equations. This has several advantages:

• When random variables are introduced to turn deterministic models into their
stochastic counterparts, the resulting theory is much simpler in the discrete case
than in the continuous one.

• The use of digital computers naturally leads to discrete mathematical formula-
tions and the collection of observations in discrete time.

• Some dynamical systems, for example in economics, are defined only at discrete
points in time. In any case, discrete time models may approximate continuous
ones.

In the first part of these notes, we show how continuous linear, deterministic systems
may be “discretized”, i.e. how difference equations may be derived from the continu-
ous formulations. The emphasis is on state space models and the important system
theoretic concepts of observability and reachability are defined.

After describing what may be termed the deterministic “skeletons” in our context,
stochastic models are introduced in the second and major part of these notes by adding
“noise” (i.e. random variables) to the deterministic part. The Gaussian distribution in
multidimensional space plays an important role when analyzing such models. A brief
introduction to the theory of Gaussian random variables and processes is therefore
included.

After the discussion of the Gaussian distribution, an account of linear stochastic
state space models and the Kalman filter is given. This topic is also treated in
numerous other books and articles in the literature. Most of these accounts have
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been written in engineering contexts, although there has been a steadily growing
interest in statistics, and many books on so-called time series analysis now include an
exposition of Kalman filtering. In deciding to write out these notes in spite of the large
body of written texts, we have been motivated by our need for addressing students
in both mathematical modeling and statistics at the advanced undergraduate level.
This suggests a text combining the main aspects of conventional Kalman filtering
with an exposition of the unifying role these techniques can play within statistics.
Apart from the elegant formulation of linear, dynamical statistical models obtained
thereby, the applied statistician gains enormous modeling flexibility by mastering
this tool. He or she may, for example, easily include serially correlated errors in a
regression, fit all sorts of unbalanced models for analysis of variance, allow parameters
to fluctuate dynamically in time, or work with Bayesian versions of standard linear
models. Through the Kalman filter he or she has a unified way of fitting such models
and to make predictions or forecasts. Other benefits are automatic handling of missing
data or, more generally, irregular patterns of observations. Students specializing in
mathematical modeling will, on their part, in a work situation often find themselves
confronted with problems belonging to statistics. It is undoubtedly worthwhile to
teach them how to use the Kalman filter apparatus to fit statistical models such as
regression or dynamic regression. Adding stochastic simulation to assess uncertainty
(and even to test statistical hypotheses should the need arise), mathematical modelers,
mastering, say Matlab , should, with some training, be able to do work often thought
to belong to the realm of specialist statisticians. With the present course, we attempt
to a take a step in this direction.

To illustrate concepts and techniques beyond the simplest conventional textbook ex-
amples, one needs computer simulations. Modern software, such as Matlab , enables
the students to get a deeper understanding of the main ideas and it becomes feasible
to work with realistic examples. Matlab will be an integral part of the course and
many exercises involve experimentation in this powerful software. In many cases the
same examples are used in subsequent exercises. We therefore recommend the student
to write their Matlab code as functions m-files, making it easy to utilize and modify
in subsequent exercises. A separate appendix listing the most important commands
and functions is included in order to make the Matlab implementations easier to work
out.

We strongly discourage using the software simply as a black box. As when using
a calculator, one must be able to check that the results are reasonable. (Students
having IN 227 may have an advantage here, as this course provides a good general
background in numerical linear algebra.)

The present notes, prepared for the autumn of 1998 is an extended version of the one
from autumn 1997. A chapter discussing non-linear models is included. Further, many
errors and misprints have been corrected. We are grateful to collegues and students
for all the comments we have recived. We will in particular thank Bent Natvig for



v

careful proof-reading on most of the chapters and many valuable comments. Further,
we will thank Anders Løland for finding a huge number of misprints!
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Chapter 1

Introduction

Linear models of dynamical systems exist in various forms and may be categorized
in different ways. In this course, we will separate between continuous and discrete
representations and either of these may again be deterministic or stochastic. Dynamic
linear models of these types are applied in many different fields. From a course
in differential equations, we know that a diverse set of dynamical phenomena are
well described by linear deterministic differential equations. Such phenomena include
voltages and currents in electrical circuits, motions governed by Newton’s laws, and
biological systems that can be divided into linear compartments. By introducing
random variables into such models, we are able to describe dynamic patterns that
fluctuate in an unpredictive way due to noise or errors, or due to a complexity that
eludes our ability to describe the systems in deterministic terms.

In general, linear models are widely used to describe dynamical behavior throughout
the natural sciences and also in other fields such as economics. However, this does not
imply that modeling of a dynamical system is necessarily a simple matter. In some
cases, for example in physics, formulation of a model may be rather straightforward
because the governing equations are known. But in other cases involving “softer” dis-
ciplines, model development may be a tedious process where various approximations
must be assessed before one arrives at an adequate model representation.

In this course, we will assume that a model of the system has been derived, and that
observations (generally noise-corrupted) of some of the variables or combinations of
variables in the system are available. From the model and the observations, the task
is to estimate variables and parameters that are not directly observable. A huge body
of theory has been developed to treat various aspects of such problems, including
realization theory, system identification, filtering theory, time series analysis, and
different types of statistical estimation theory. Here we can only focus on some of
these aspects, and so-called state estimation will play a prominent role. To make the
presentation more concrete, we start with an example that will be used repeatedly.
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2 CHAPTER 1. INTRODUCTION

u(t)

x(t)

m

Figure 1.1: A body of mass m moving in one dimension under the influence of an external
force u(t)

Example 1 (A moving body)
Consider the system in Figure 1.1, where a body of mass m moves in one dimension
under the influence of an external force u(t).

From Newton’s 2nd law of motion, one obtains a linear second order differential equa-
tion for the displacement (position) x(t). (See for example [2].)

mẍ(t) = u(t). (1.1)

Given the initial conditions x(0) and ẋ(0), the motion of the body is completely deter-
mined once the input function u(t) for t ≥ 0 is known. The position and the velocity
taken together as a vector will be called the state vector because these variables con-
tain all information from the past that is necessary to predict the future behavior of
the body. (Technically, u(t) must be at least piecewise continuous to secure a unique
solution of the differential equation.) The solution x(t), which is the sum of the ho-
mogeneous part (involving the initial conditions) and a particular part (determined
by u(t)), can only be expressed in closed form for certain input functions. However,
it is a simple matter to solve equation (1.1) numerically for an arbitrary u(t). !

Eq. (1.1) is a model of the physical system in Figure 1.1. The model is derived from so-
called first principles (Newton’s laws in this case), and gives an accurate description of
the motion provided factors such as air resistance and relativistic effects are negligible.
A representative problem of the ones we will consider in this course is the following:
Suppose that the force u(t) is the sum of a known deterministic part and an unknown
part that can only be described in statistical terms (e.g. wind gusts). Furthermore,
the position of the body is measured at discrete times with fairly large errors. Our goal
is to estimate the speed of the body as well as improving the raw position data. To
do this, we use the model, properly implemented on a computer, in combination with
the observations. (If we consider a satellite or a missile instead of our innocent body,
such a task is of more obvious interest.) The scheme used is the Kalman filter named
after Rudolf E. Kalman who published it in 1960. This is called state estimation. If
one also wants to estimate the mass of the body from the same observations, that will
be classified as parameter estimation.

Before deriving the Kalman filter, we need to be able to discretize eq. (1.1). This is
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carried out in Chapter 2, which also contains a brief exposition of the linear system
theoretic concepts of observability and reachability. These properties, defined here
for deterministic systems, play a role when analyzing the performance of the Kalman
filter. Because most of the subsequent theory will rely on stochastic theory, Chapter 3
discuss random variables and process in general and Gaussian processes in particular.
In Chapter 4, the stochastic state space model is introduced, and some of its proper-
ties are discussed. The derivation of the Kalman filter rely heavily on general theory
for estimation of random variables based on a set of estimation. This will be treated
in Chapter 5. In Chapter 6 the important features of the Kalman filter are laid out
and several examples and additional properties are provided in Chapter 8. Prediction
and so-called smoothing (where both past and future observations are used in esti-
mating the state vector) are treated in Chapter 9. When putting up a model, many
parameters have to be specified. In practice, several of these will be unknown, but can
be estimated from data. This issue will be discussed in Chapter 10. In Chapter 7 it is
explained how many seemingly different problems in statistics fall within the Kalman
filter framework. Finally, Appendix A contains a list of useful Matlab commands as
well as the Matlab code used to program many of the examples.

Bibliographic notes

As noted, the Kalman filter was published in 1960 [9]. Since then an enormous body of
literature has been produced on various aspects of the Kalman filter. (A few years ago,
a literature count gave 200,000 references.) The filter was originally designed to give
a recursive solution to the classical linear least squares estimation problem in signal
processing and control theory. Recent references based on this engineering tradition
include [3]; [12]; [6]. The last book contains a historical overview. These books also
contain additional material on the linear system theoretic properties of observability
and reachability (our Chapter 2), Kalman filter stability, various covariance recursions,
modeling errors (our Chapter 8) and smoothing (our Chapter 9).

Over time, the Kalman filter has taken root in many other areas. But it took over
20 years before the filter became part of mainstream statistics, although the filter is
readily interpreted as a recursive Bayesian estimator. This illustrates an unfortunate
’cultural gap’ which sometimes exists between disciplines. Today, the Kalman filter
is treated in full from a statistical viewpoint in books such as [8] and [14]. The
latter emphasizes in particular on the Bayesian approach to dynamical systems, see
also [7]. Many of the mainstream textbooks in statistical time series also cover Kalman
filtering.
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Chapter 2

Linear deterministic dynamical
models.

We will now study what may be called the deterministic “skeletons” of our dynamic
linear models. This simplifies the exposition of discretization as it allows us to draw
directly on material from courses in ordinary differential equations. Furthermore, the
concepts of observability and reachability are most easily introduced in a deterministic
setting.

2.1 Discretization of continuous systems

Instead of considering 2nd order, or more generally nth order, differential equations,
it is frequently advantageous to transform the model into a set of coupled first order
differential equations, i.e. to the so-called state space form . As noted in the previous
chapter, the state vector contains the internal variables needed at a certain point in
time to solve the model equations. Consider again our motion of body example:

Example 1 (A moving body, cont.)
For our 2nd order example, the two state variables are x1(t) = x(t) and x2(t) = ẋ(t).
Eq. (1.1) can then be written as:

ẋ1(t) = x2(t), (2.1a)

ẋ2(t) = u(t)/m. (2.1b)

In this form, the equations are readily solved in some numerical software, see Ap-
pendix A.

Assume that the position z(t) = x1(t) is measured (free of errors) at discrete times
tk, k = 1, 2, . . . . The complete model, comprising the dynamical part in eq. (2.1) and

5



6 CHAPTER 2. LINEAR DETERMINISTIC DYNAMICAL MODELS.

the measurement, may be written in vector-matrix form as
(

ẋ1(t)
ẋ2(t)

)
=

(
0 1
0 0

)(
x1(t)
x2(t)

)
+

(
0

1/m

)
u(t), (2.2a)

z(tk) =
(
1 0

) (
x1(tk)
x2(tk)

)
, (2.2b)

where x =
(

x1 x2

)T
is the state vector. !

In general, we will consider a linear continuous nth order system given by:

ẋ(t) = A(t)x(t) + B(t)u(t), (system) (2.3a)

z(tk) = H(tk)x(tk), (observations) (2.3b)

where x(t), z(t) and u(t) (the input function) are vectors having dimensions n,m and
p, respectively. The time interval between measurements is denoted the sampling
time and is not necessarily uniform. Note that the system may be time-varying since
the defining matrices depend on t.

Physically, this corresponds to the fact that the body will not come to rest at the
origin unless it is released there with zero velocity.

Eq. (2.3) forms a natural starting point for the discretization procedure. Recall the
general solution to eq. (2.3a) [2]:

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, s)B(s)u(s)ds (2.4)

where Φ(t, t0) is the so-called transition matrix. We will denote this solution the su-
perposition integral since the complete solution is a superposition of the homogeneous
part, including the initial conditions, and the particular solution including the input
function u(t). In the time-invariant case we have Φ(t, t0) = eA·(t−t0) (cf. [2]).

Take t0 = tk−1 and t = tk. Then

x(tk) = Φ(tk, tk−1)x(tk−1) +

∫ tk

tk−1

Φ(tk, s)B(s)u(s)ds. (2.5)

If u(t) is a constant u(tk−1) over the interval [tk−1, tk), we may write the integral term
as Ψ(tk, tk−1)u(tk−1) where

Ψ(tk, tk−1) =

∫ tk

tk−1

Φ(tk, s)B(s)ds. (2.6)

If u(t) is not a constant over the sampling interval, it is still customary to use the same
notation although now only the composite term Ψ(tk, tk−1)u(tk−1) can be obtained
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from the continuous formulation. Simplifying the notation writing k instead of tk and
using only one time argument in the Φ and Ψ matrices (i.e Φ(tk, tk−1) = Φ(k − 1)),
we arrive at the discrete state space model that will be employed throughout the
course:

x(k) = Φ(k − 1)x(k − 1) + Ψ(k − 1)u(k − 1), (2.7a)

z(k) = H(k)x(k). (2.7b)

Here k = 1, 2, . . . . Note that the system equation (2.7a) is a difference equation. Nu-
merical software such as Matlab have general functions for performing such a transform
(see Appendix A).

Example 1 (A moving body, cont.)
For our 2nd order example, the discrete system matrices will be time-invariant, i.e.
Φ(k − 1) = Φ and Ψ(k − 1) = Ψ for all k, and are easily computed symbolically as:

Φ =

(
1 T
0 1

)
, Ψ =

(
T 2/2m
T/m

)
,

where T is the sampling time. (Can you explain why the elements in these matrices
make sense physically?) !

Stability in the discrete case is defined in a similar way as for continuous systems.
Obviously, a discretized system is stable if the continuous version is so. In the time-
invariant case where Φ = eA·T , the eigenvalues λd

i (i = 1, . . . , n) of Φ are given by
λd

i = eλiT , where λi are the eigenvalues of A. If all λi lie in the left half of the complex
plane, the eigenvalues of Φ will be within the unit circle. This is the stability criterion
for discrete systems. (These results are treated in more detail in the Exercise 2.1.)

2.2 Stability, reachability and observability

An important question regarding dynamical systems is their equilibrium points and
whether these are stable or not [2]. An equilibrium point xe satisfies ẋe(t) = 0.
For the homogeneous part of the differential equation in eq. (2.3a) (discarding the
second term on the right hand side), the origin is clearly such a point. The origin
is called globally asymptotically stable if ||x(t)|| → 0 as t → ∞ for any x(0). A
linear time-invariant system is stable in this sense if and only if all eigenvalues of A
lies strictly in the left part of the complex plane. The solution then comprises sums
of damped exponential functions. Considering the effects of input functions u(t), a
system with a globally asymptotically stable homogeneous part will have a bounded
solution (||x(t)|| remains finite) provided u(t) is itself bounded [2].
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For Example 1, eq. (2.2a), both eigenvalues are equal to 0 and are not strictly in the
left half plane. The system is therefore not globally asymptotically stable.

Reachability and observability are linear system theoretic concepts that are unrelated
to stability. They lead to conditions that in a sense guarantee the model to be well
posed for state estimation and identification. We will only consider time-invariant
discrete systems (the sampling time T and the matrices Φ,Ψ and H are fixed), but
the ideas may be extended to more general situations

Definition 2.1
A system is reachable if there exists a finite sequence of input vectors u(k), k =
0, 1, . . . , k′ transferring the system from any initial state x(0) to any final state x(k′ +
1).

Intuitively, this implies that the state vector may be controlled from any point to any
other point by selecting a proper sequence of inputs. The necessary and sufficient
condition for reachability is derived from eq. (2.7a) by writing out the recursion as
follows:

x(n) = Φnx(0) + Φn−1Ψu(0) + · · · + Ψu(n − 1)

= Φnx(0) + WcU. (2.8)

Here n is the dimension of the state vector and

Wc =
(
Ψ ΦΨ · · · Φn−1Ψ

)
,

U =






u(n − 1)
u(n − 2)

...
u(0)






.

We see that any vector x(n) can be reached if and only if the n × pn matrix Wc has
n independent columns, i.e. the rank is n. Note that for p > 1 there is no unique
sequence of input vectors. There is no reason to consider k′ > n − 1, since it can be
shown (by the Caley - Hamilton theorem) that the rank of Wc will be maximal for
k′ = n − 1.

Definition 2.2
The system is observable if any initial state x(0) can be determined from z(k), k =
1, . . . , k′′ for some finite k′′.

This condition implies that the state vector can be reconstructed from a finite sequence
of observations, since by knowing x(0) (and u(k)), the state vector can be computed
for all times. Assume for the time being that all inputs are 0. The necessary and
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sufficient condition for observability is derived by considering the set of equations:

z(1) = Hx(1) = HΦx(0)

z(2) = Hx(2) = HΦ2x(0)
...

z(n) = HΦnx(0),

or in a more compact form:





H
HΦ
...
HΦn−1






Φx(0) =






z(0)
z(1)
...
z(n − 1)






.

Given that Φ = eA·T is always nonsingular (since the eigenvalues are always non-zero),
this set of linear equations in x(0) has a unique solution if and only if the nm × n
matrix

Wo =






H
HΦ
...
HΦn−1






has n independent rows, i.e. the rank is n. We might, of course, have used the matrix
WoΦ but this would not have complied with the literature standard. The condition
will be the same when known inputs affect the system (check that yourself) and, as
with reachability, there is no need to consider the case k′′ > n.

If the system is not observable, the state vector cannot be determined even from noise
- free measurements. It seems reasonable that this may have undesirable effects on
a method that attempts to estimate the state vector from noisy observations. As
we will see in Chapter 8, observability is one of the necessary conditions that must
be satisfied in order to secure that the estimation problem is well posed in a certain
sense. The other condition turns out to be reachability extended to include stochastic
inputs.

2.3 Problems

Exercise 2.1 (Eigenvalues and matrix exponentials)
Matrix exponentials are important for discretization of continuous dynamic systems
(that is the transition from differential equations to difference equations). We will in
this exercise consider the eigenvalues of matrix exponentials.
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Consider the following matrices

A1 =

(
a 0
0 −a

)
, A2 =

(
a 1
0 a

)

and the Hilbert matrix Hn of order n. (The Hilbert matrix is the n × n matrix with
(i, j)’th element hij = 1/(i+ j−1).) This matrix is known as being difficult to handle
numerically.

The Hilbert matrix may be computed directly in Matlab with the command hilb(n).

(a) What are the eigenvalues of A1 and A2?
(You may see this directly from the matrices because of their particular form.)

(b) The matrix exponential for an n × n matrix A is given by

eA = I + A + A2/2! + · · ·

Calculate by hand eA1 and eA2 .

(c) More difficult: Can you prove what we now might think? It looks like the
general connection is

λ(eA)i = eλ(A)i .

(Hint: Similarity-transformations are useful if you remember this from your
linear algebra course.)

(d) Check the answer you got in (a) in Matlab for a = 2. (Use eig.)

(e) Check the answer you got in (b) in Matlab (use expm) for a = 2.

(f) Use Matlab to check if the results in (c) is correct for Hn with n = 2, 3, . . . .

Is it correct if you try with the 4 × 4-matrices

A3 =

(
A1 0
0 A2

)
andA4 =

(
A1 1
1 A2

)

where 0 is the 2 × 2 matrix with only zeros, while 1 only contain ones?

(Hint: Look at the commands ones and zeros.)

Exercise 2.2 (A moving body)
(a) Show that the system in Example 1 (the discretized version) is reachable and

explain why this is reasonable physically.

(b) Verify that our example is observable if the position is measured, but not if only
velocity is measured. Why is this?
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Exercise 2.3 (A deterministic physical system)
A pendulum with small angular movements, θ(t), can be described by the equation

Lθ̈(t) + gθ(t) = u(t)

where L is the rod length, g is the gravitational acceleration and u(t) is the acceleration
we can incur.

(a) Put the system in state space form (x1(t) = θ(t) and x2(t) = θ̇(t)) and show
that we get:

(
ẋ1(t)
ẋ2(t)

)
=

(
0 1

−g/L 0

)(
x1(t)
x2(t)

)
+

(
0

1/L

)
u(t).

(b) Intuitively, do you think this system is stable? Show that the eigenvalues are
pure imaginary.

(c) Discretize the system with T = 0.5 s, that is, calculate Φ = eA·T .

(d) Set L = 1 m, g = 10 m/s2, θ(0) = 0.1, θ̇(0) = 0 and u(t) = 0, t > 0. Solve the
differential equations in Matlab by use of the routine ode45 and make plots of
θ(t) and θ̇(t).

(You should try to write a so-called m-file which is a good training-exercise.)

(e) Solve the same system again, but now with the routine lsim. Again make plots
of θ(t) and θ̇(t).

(f) Discretize the system numerically by use of the routine c2d in Matlab .

(g) Simulate the discretized system with the routine dlsim. Compare with the
numerical solutions of the differential equation.

Exercise 2.4 (Eigenvalues and stability in the cont. and discrete case)
Origo is a stable equilibrium point for the time-invariant system ẋ(t) = Ax(t) if and
only if the eigenvalues of A lies in the left half of the complex plane exclusive the
imaginary axis (from here on called the left half-plane).

(a) Consider the pendulum of Exercise 2.3. We now introduce air resistance which
is assumed to influence the pendulum with a power proportional to its angle-
velocity. Show that we then get the following differential equation for the move-
ment of the pendulum:

Lθ̈(t) + cθ̇(t) + gθ(t) = u(t),

where c > 0 is the friction coefficient specified by the size and surface of the
pendulum ball.
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(b) Put the system in state space form and show that the eigenvalues to the system
matrix now is in the left half-plane.

(c) What happens with the eigenvalues when the value of c increase from 0?

(d) The general linear system ẋ(t) = Ax(t) has the solution x(t) = eAtx(0). Can
you from this and from what you know about the eigenvalues of eAt explain why
all terms in the solution to a stable model will contain exponentially damped
functions and therefore converge to zero?

(e) Suppose L = 1 m, g = 10 m/s2. Use Matlab for simulating the system for
c = 0.5 m/s and some smaller and larger values. Does it fit with your physical
intuition?

(f) Under the discretization with sampling time T we have from Exercise 2.1 the
connection λi(eAT ) = eλi(A)T , i = 1, . . . , n (when A is n × n).

Explore how the eigenvalues of A which are on the real or the imaginary axes
are transformed under this transformation. (Put T = 1 for simplicity. Matlab
calculates with complex numbers and makes plots in the complex plane.)

Exercise 2.5 (Reachability and observability)
(a) Consider the pendulum model in Exercise 2.4. Put again L = 1 m, g = 10 m/s2

and c = 0.5 m/s. Use Matlab and discretize the model with T = 0.5 s and show
that the discrete system is reachable.

(b) It is possible to bring the system from any initial state to an arbitrary end state
in two time step.

Find u(0) and u(1) such that the system is brought from x(0) =
(

0.1 0
)T

to

x(2) =
(
−0.1 −0.05

)T
.

(c) Assume x(0) =
(

0 0
)T

. Which states can be reached in one time step?

(d) Show that the discrete system is observable both if only the angle is measured
and if only the angle velocity is measured. Why is this reasonable?

(Remark: Remember that for Example 1 (one-dimensional movement without
friction), the system was not observable if only the velocity was measured.)

(e) Suppose the angle z(k) = x1(k) = θ(k) is measured and that we have observed
the angles z(0) = 0.15, z(1) = 0.0098, z(2) = −0.1169 and z(3) = −0.0065.
Calculate from this the initial velocity.

Exercise 2.6 (Spring system)
Consider the motion of a mass m suspended at the end of a spring and subject to an
external force acting in the vertical direction. Hooke’s Law will be helpful[2]. Hooke’s
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Law: The force exerted by a spring has magnitude proportional to the displacement
of the spring from its equilibrium position.

A spring motion can be described as

mẍ(t) + ax(t) = u(t)

where a > 0 is spring constant and u(t) is external force.

(a) Put the system in state space form.

(b) Do you think the system is stable? Find the eigenvalues.

(c) Find the corresponding discrete system with T = 1, i.e. compute Φ.

Since no physical spring can sustain simple harmonic motion, a frictional force must
be introduced. A frictional force with frictional constant c is proportional to the
velocity.

(d) Find the differential equation in this case and write the system in state space
form.

(e) Analyze stability of the system for different values of c.

(f) Assume m = 10. What requirements for a and c are needed for the system to
be reachable?
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Chapter 3

Random (Gaussian) variables and
processes

The purpose of this chapter is to present an elementary, informal and brief introduc-
tion to the theory of Gaussian random variables and processes with the specific need
of Kalman filtering in mind. This means that the students are only assumed to have
a background from an elementary course in probability theory corresponding to the
work of half a semester. There is usually little emphasis on joint Gaussian distribu-
tions in such courses. The chapter will go from scratch, starting with the concept of
univariate random variables. No proofs will be given. The reader is here referred to
introductory textbooks in statistics and probability. Some possible references are [13]
(stochastic processes) and [11] (random vectors, Gaussian distribution).

3.1 Random variables

A random variable x is a quantity assigned values through a probabilistic mechanism
defined by a probability density (or the equivalent terminology distribution function)
p(x). Any non-negative function integrating to one over the real line may be a density
in this sense1. To a density is associated its mean or expectation

µ = E[x] =

∫ ∞

−∞

xp(x) dx, (3.1)

and its variance

var[x] = E[(x − µ)2)] =

∫ ∞

−∞

(x − µ)2p(x) dx. (3.2)

1This is not strictly true. The functions must also be what mathematicians call measurable. We
need not bother with this technicality.

15
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Figure 3.1: The univariate Gaussian distribution for different values of µ and σ. The solid
line is for µ = 0 and σ = 1, the dashed line is for µ = 0 and σ = 2 while the dotted line is
for µ = 1 and σ = 1.

Their meaning as average and spread of the distribution is obvious from their defini-
tions. They need not necessarily exist, i.e they could be infinite. This will in practice
be no problem for the situations we will consider. The unit of the variance is the
square of the unit in which x is expressed. As a result its numerical value does not
admit direct interpretation. In spite of this, the variance is an immensely useful con-
cept. The variance may be transformed to a measure on the original unit by taking
the square root:

stan[x] =
√

var[x]. (3.3)

This measure is denoted the standard deviation of the random variable x.

The most famous example, and the only one we shall consider in this chapter, is the
Gaussian (or normal) density

p(x) =
1√
2πσ

exp

{
− 1

2σ2
(x − µ)2

}
. (3.4)

Here µ and σ > 0 are the parameters of the distribution. Their interpretation is imme-
diate in that µ = E[x] and2 σ = stan(x). To specify that x has a Gaussian distribution
with expectation µ and variance σ2, we will use the notation x ∼ N (µ,σ2).

Figure 3.1 shows p(x) for different values of µ and σ. Note the symmetry around µ,
while the width of the curve is determined by σ.

Expectation, variance and standard deviation are simple concepts that facilitate the
interpretation of random variables. They are what the mathematicians call function-
als, i.e. they associate a real number to a given density function. There are a number

2Note that µ has been used both as notation for expectation in (3.1) and as a parameter of the
normal density in (3.4). The symmetry of the Gaussian density implies that the two usages are
identical.
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Condition
E[φ(x)] =

∫ ∞

−∞ φ(x)p(x) dx None
E[ax + b] = aE[x] + b None
E[x1 + ... + xn] = E[x1] + ... + E[xn] None
var[ax + b] = a2var[x] None
var[x] = 0 ⇒ x = constant None

Table 3.1: Rules for operating means and variances. x1, ..., xn are random variables, a and
b real numbers (i.e. constants) and φ a real function.

of simple rules to operate them, which are convenient in probabilistic calculations.
Those most needed in the following are listed in Table 3.1.

3.2 Random vectors: Pairs

The extension to pairs of random variables is straightforward (at least at first glance).
A random vector (x1, x2) is defined through its joint density function p(x1, x2). The
only difference from the univariate case is that the density is now defined on the plane
instead of on the real line. As before, any non-negative function integrating to one over
both x1 and x2 may be used as a mathematical model for a random pair3. Univariate
density functions for both variables may be deduced from their simultaneous one
p(x1, x2). If p(x1) and p(x2) are the densities of x1 and x2 marginally, i.e. without
regard to the other4, then

p(x2) =

∫ ∞

−∞

p(x1, x2) dx1, (3.5)

and similar for p(x1). The point in introducing joint densities is, however, a differ-
ent one. When dealing with dynamic systems, there is a need for a concept that
can capture stochastic dependence between different variables. Dependence is in the
present context the same as covariation . To detail what this means, consider two
observations that are close in time. If one is accidentally low (or high), then so is
often the other. They covariate positively. Negative covariation is the opposite, one
variable tend to be high when the other is low. The covariation is not in any fixed,
deterministic sense. The dependence is modified by randomness. A powerful way
of expressing the idea, is through the concept of conditional density. The formal
definition is

p(x1|x2) =
p(x1, x2)

p(x2)
, (3.6)

3Subject to measurability, see preceding footnote.
4Densities are throughout generically denoted p, the indexing of the argument defining for which

variables. For example, p(x1) is the density of x1 and p(x1, x2) the joint density of (x1, x2).
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where we have introduced the vertical bar to indicate which variables we condition
on (those on the right side of the vertical bar). Note that the conditional densities
become different functions as x2 is varied. It is easily verified that the integral with
respect to x1 (over the real line) is one (do it!). It is therefore a valid density, and
it enables us to express how the random variation in x1 changes with the value of
x2. It is perfectly legitimate to compute the mean and variance of this conditional
distribution, for example

E[x1|x2] =

∫ ∞

−∞

x1p(x1|x2) dx1, (3.7)

which is known as the regressor of x1 on x2. It will play a central role in the derivation
of the Kalman filter, because it turns out that it defines how an unobserved x1 ideally
should be estimated from knowledge of x2.

Dependence, as defined above, is a rich and complicated concept, and many applica-
tions need a more modest version. The covariance achieves just that. Let µ1 = E[x1],
µ2 = E[x2], P11 = var[x1] and P22 = var[x2] be the mean and variances of the two ran-
dom variables. Then covariance and correlation , which reduces dependence down
to single numbers, are defined through

P12 = cov[x1, x2] = E[(x1 − µ1)(x2 − µ2)] (3.8)

and

corr[x1, x2] =
P12

(P11P22)1/2
=

cov[x1, x2]√
var[x1]var[x2]

. (3.9)

Covariance is not really a dependence measure, since it is influenced by the measure-
ment scales used (multiply everything with, say 10 and the covariance goes up by the
same number). However, the denominator in (3.9) makes correlation scale-free and
thus a (necessarily imperfect) way of expressing dependence as a single number.

Another important concept is that of independence between two random variables.
That occurs when

p(x1|x2) = p(x1), for all x1 and x2. (3.10)

This says that the density (or variation) of x1 is the same whatever value of x2. No
covariation between the two is then present. Eq. (3.10) implies that

p(x1, x2) = p(x1)p(x2),

and

p(x2|x1) = p(x2),
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Condition
E[E[x1|x2]] = E[x1] None
|E[x1x2]| ≤

√
E[x2

1]E[x2
2] None

E[φ(x)|x = a] = φ(a) None
E[x1|x2] = E[x1] Independence
E[x1x2] = E[x1]E[x2] Independence
var[x1] = E[var[x1|x2]] + var[E[x1|x2]] None
var[

∑
j xj] =

∑
j var[xj] +

∑
j $=k cov[xj, xk] None

var[x1 + ... + xn] = var[x1] + ... + var[xn] x1, ..., xn uncorrelated
cov[x1, x1] = var[x1] None
cov[x1, x2] = cov[x2, x1] None
cov[ax1 + b, cx2 + d] = ac · cov[x1, x2] None
cov[x1 + x2, x3] = cov[x1, x2] + cov[x1, x3] None
cov[x1, x2] ≤

√
var[x1]var[x2] None

|corr[x1, x2]| ≤ 1 None
corr[ax1 + b, cx2 + d] = corr[x1, x2] None
corr[x1, x2] = 0 Independence

Table 3.2: Rules for dependent random variables . The independence conditions (when
present) are sufficient, not necessary.

see (3.6). The concept of independence is thus symmetric in x1 and x2, as it should.
Reversing the roles, i.e. starting out from x2 given x1 instead of x1 given x2 would
lead to the same definition.

Mathematical properties and rules of the concepts introduced in this section, are
summarized in Table 3.2. Most of these properties are easily calculated, given the
definition of expectation, variance and covariance. The second property is usually
called Schwarz’s inequality. Note in particular the last property, which says

Proposition 3.1
Two random variables which are independent are also uncorrelated.

3.3 Covariance matrix and Gaussian random pairs

We shall in the next section deal with many random variables simultaneously and
consider covariances between all pairs. It is convenient to organize these quantities in
matrix form. Let us first see how this looks when there are just two variables x1 and
x2. Define

x =

(
x1

x2

)
(3.11)
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with mean vector

µ =

(
µ1

µ2

)
(3.12)

and covariances

P =

(
P11 P12

P21 P22

)
. (3.13)

P, known as a covariance matrix of x, is a convenient algebraic tool. It is always
symmetric, since P12 = P21. Gaussian distributions for pairs are neatly defined from
it. The density for x is then defined as

p(x) = (2π)−1|P|−1/2exp{−1

2
(x − µ)TP−1(x − µ)}. (3.14)

Here x = (x1, x2)T is a column vector, and

|P| =

∣∣∣∣
P11 P12

P21 P22

∣∣∣∣ = P11P22 − P12P21

is the determinant of P. The exponent in (3.14) is a quadratic form in x − µ, i.e.
an expression containing squares and products of x1 − µ1 and x2 − µ2. The reader
can write it out, and convince him(her)self that the expression is rather complicated.
Clearly this must be even more so when additional variables are added. By contrast,
the matrix form is dense and, with experience, even nice and transparent.

The Gaussian model contains five parameters. There are two in the mean vector µ,
two variances P11 and P22 and the additional covariance P12 = P21. It may not be
obvious that the parameters in (3.14) actually have this interpretation (and that (3.14)
is a density, for that matter). However, this turns out to be so. Figure 3.2 shows p(x)
for

µ =

(
0
0

)
, P =

(
1 ρ
ρ 1

)
,

with ρ = 0, 0.5, 0.9. The function is symmetric around zero for ρ = 0, while for
increasing ρ, the density is concentrated more and more around the line x1 = x2.
This means that the density gives high probability for x1 being almost equal to x2.

Suppose x = x1 x2 )T is Gaussian in a joint sense, i.e. with density of the
form (3.14). It can then be proved that each of x1 and x2 are Gaussian marginally .
Also note the structure of the density when the covariance P12 = 0. It is then seen
from (3.14) that the joint density becomes the product of two univariate densities. x1

and x2 are therefore independent in this case. But from Table 3.2 (last line) indepen-
dence always implies that the correlation (and hence the covariance) is 0. Thus two
Gaussian variables which are uncorrelated are also independent.
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Figure 3.2: The bivariate Gaussian distribution for different correlation values ρ. The upper
panel corresponds to ρ = 0, the middle panel to ρ = 0.5 and the lower panel to ρ = 0.9. In
all cases both x1 and x2 have mean 0 and variance 1.
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Another useful property of Gaussian models is that the conditional distribution of
one variable given the other remains Gaussian. The parameters of this conditional
distribution is important. Take, for example, x1 given x2. Then

E[x1|x2] = µ1 +
P12

P22
(x2 − µ2), (3.15a)

and

var[x1|x2] = P11 −
P 2

12

P22
. (3.15b)

These results will be proven in a more general setting in Theorem 3.2. Both formulae
have intriguing interpretations. The first says that the expected value of x1, taking
the value of x2 into account, is modified from what it would have been without this
knowledge, by a factor proportional to x2 − µ2. There is no adjustment if x2 turned
out to be what we expected (= µ2). Neither does the second factor contribute if the
covariance P12 = 0. The two variables are then independent, and the second one
does not contain relevant information about the first. The adjustment also becomes
0 if P22 → ∞. Now the information in x2 is so unreliable that it is of no value. As
to (3.15b), observe that the right hand is always less than P11, which is the variance of
x1 without knowledge of x2. Variation (or uncertainty) always goes down when extra
information is added. That is in the ideal world. It can be different in practice when
imperfect knowledge of underlying mechanisms prevent us from using information
properly (cf. Chapter 8). The formulae will be proven in a more general setting in
Theorem 3.2.

Example 2
A small illustrating example with significance for dynamic systems is the following.
Suppose x1 is Gaussian with mean 10 and standard deviation 1. Let ε be another
Gaussian variable, independent of the first and with mean 0 and standard deviation√

1 − a2 (|a| < 1). Define

x2 = 10 + a(x1 − 10) + ε. (3.16)

and assume that x2 follows x1 in time. From one of the results in the next section, it
can be shown that x2 is also Gaussian. From the rules in Table 3.1, we get E[x2] = 10
and var[x2] = a2var[x1] + var[ε] = a2 + (1 − a2) = 1, showing that x2 has exactly the
same distribution as x1 had. Clearly we can continue this way and define a sequence
of random variables with the same property. The sequence is then stationary in
distribution (see Section 3.6 for more on this concept). The variables x1 and x2 are
dependent. By simple calculations

corr[x1, x2] = a,

i.e. the degree of dependence varies with a. Eq. (3.16) is one of many stochastic
models for describing covariation in time sequences. !
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3.4 Random vectors: Higher dimension.

It is easy formally to extend the concept of joint densities (or multivariate distri-
butions) to the case of n variables x = (x1, ..., xn)T . The density is a non-negative
function p(x) in x with integral equal to one when all n variables are integrated over
the real line. Much interest in the following has to do with subvectors of x. Let

x =

(
x1

x2

)
}r
}n − r

, (3.17)

where the first subvector x1 = ( x1 ... xr )T consists of the first r variables in x.
The second subvector is x2 = ( xr+1 ... xn)T . Extensions of (3.5) and (3.6) are
now

p(x2) =

∫

x1∈Rr

p(x1,x2)dx1, (3.18)

which defines the marginal density of x2 by integrating over the first r variables
(those in x1) and

p(x1|x2) =
p(x1,x2)

p(x2)
, (3.19)

which is the conditional density of x1 given the value of x2. We can define inde-
pendence between vectors as well. As in Section 3.2 this should mean that the
conditional density does not depend on the set of conditioning variables, or equiva-
lently p(x1,x2) = p(x1)p(x2).

The n variables have means µj = E[xj], variances Pjj = var[xj] and covariances
Pjk = cov[xj, xk]. It is convenient to organize them in vector and matrix form, giving
the mean vector and the covariance matrix, i.e. as

µ = E[x] =






µ1
...

µn




 , P = E[(x− µ)(x− µ)T ]






P11 · · · P1n
...

. . .
...

Pn1 · · · Pnn




 , (3.20)

and also to consider blocks. Introduce, consistent with the subdivision in (3.17),

µ =

(
µ1

µ2

)
}r
}n − r,

P =

(
P11 P12

P21 P22

)
}r
}n − r

(3.21)

Here µ1 and µ2 are the mean vectors of x1 and x2 and P11 and P22 their covariance
matrices. The two remaining sub-matrices in (3.21) are P12 and P21. They represent
covariances between the elements in x1 and x2. As mentioned in Section 3.3, all
covariance matrices are symmetric and this makes P12 and P21 the transpose of each
other, i.e. P12 = PT

21. Independence between x1 and x2 implies that P12 = PT
21 = 0.
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Condition
E[Ax + b] = AE[x] + b None
E[x1 + ... + xn] = E[x1] + ... + E[xn] None
E[φ(x)] =

∫ ∞

−∞ φ(x)f(x) dx None
E[φ(x)|x = a] = φ(a) None
E[E[x1|x2]] = E[x1] None
E[x1|x2] = E[x1] Independence
E[x1x2] = E[x1]E[x2] Independence
VAR[Bx + a] = B{VAR[x]}BT None
VAR[x1 + ... + xn] = VAR[x1] + ... + VAR[xn] x1, ...,xn uncorrelated
VAR[x1] = E[VAR[x1|x2]] + VAR[E[x1|x2]] None
VAR[

∑
j xj] =

∑
j VAR[xj] +

∑
j $=k COV[xj,xk] None

COV[x1,x1] = VAR[x1] None
COV[x1,x2] = COV[x2,x1] None
COV[Ax1 + b,Cx2 + d] = A{COV[x1,x2]}CT None
COV[x1 + x2,x3] = COV[x1,x2] + COV[x1,x3] None

Table 3.3: Rules for operating mean vectors and covariance matrices. x1, ...,xn are random
vectors, a a fixed vector, B a fixed matrix and φ a real function of n variables.

The opposite implication is not true, although it does hold for Gaussian distributions,
as we shall see in the next section. Random vectors for which the cross covariance
matrix P12 is 0, are called uncorrelated.

It will be convenient to write E[x] = µ and VAR[x] = P, the capital letters in ’VAR’
marking the covariance matrix of a vector. Further, we will denote COV[x1,x2] the
matrix containing as its (i, j)’th element the covariances between the i’th component
of x1 and the j’th element of x2. With this convention, analogies to the operational
rules in Tables 3.1 and 3.2 are set down in Table 3.3.

Note the formula requiring uncorrelatedness. A sufficient condition for this is full
independence, as noted earlier.

The result about double expectation is of tremendous importance when the Kalman
filter is to be derived. We will therefore prove this result explicitly.

Theorem 3.1
For any two random vectors x1,x2, we have (under some “general conditions”) that

E[E[x1|x2]] = E[x1].
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Proof of Theorem 3.1

E[x1] =

∫

x1

x1p(x1)dx1

(3.18)
=

∫

x1

x1

∫

x2

p(x1,x2)dx2dx1

(3.19)
=

∫

x1

∫

x2

x1p(x1|x2)p(x2)dx2dx1

(∗)
=

∫

x2

∫

x1

x1p(x1|x2)dx1p(x2)dx2

=

∫

x2

E[x1|x2]p(x2)dx2

=E[E[x1|x2]],

where the “general conditions” ensure the transition marked with a (∗). !

3.5 Gaussian vectors

The only n-variate density we shall consider is the Gaussian one. The mathematical
form of the density is almost as defined in (3.14). The only difference is that the
constant is (2π)−n/2 instead of (2π)−1, and that now µ is an n-dimensional vector and
P an n×n matrix. Similar to the univariate case, we will use the notation x ∼ N (µ,P)
to denote that x follows a Gaussian distribution with mean µ and covariance matrix
P.

Two main properties of the Gaussian model are listed in the theorem below:

Theorem 3.2
Suppose x is Gaussian. Then

(a) Y = Ax + b is also Gaussian. This applies to any matrix A and any vector b
for which the operations are defined.

(b) Divide x into subvectors x1 and x2. Then the conditional distribution of x1

given x2 (and x2 given x1) is also Gaussian with mean and covariance matrix
given by

E[x1|x2] = µ1|2 = µ1 + P12P
−1
22 (x2 − µ2), (3.22a)

and

VAR[x1|x2] = P1|2 = P11 − P12P
−1
22 P21. (3.22b)
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Note that the formulae (3.22) are generalizations of the formulae (3.15). The reder
should verify that (3.15) are special cases.

Both results need filling out. Take the first one. The parameters of the new Gaussian
vector Y are E[Y] = Aµ + b and VAR[Y] = A{VAR[x]}AT , both directly obtained
from Table 3.3. There are many interesting special cases to that result. Here are two:
If A = (1, 1, 1, ..., 1) is a row vector of 1’s and b = 0, then Y = x1 + ... + xn, i.e. the
sum of Gaussian variables are always Gaussian. Secondly, take as A

A =
(

Ir 0
)}r
}n − r,

where Ir is the identity matrix of size r × r (i.e. the matrix with 1 on the main
diagonal and 0 elsewhere) and the 0’s are matrices consisting only of 0’s. If b = 0 as
before, then Y = x1 where x1 is the subvector of x defined earlier. But we have now
proved that subvectors of Gaussian vectors must themselves be Gaussian.

In order to prove Theorem 3.2, we will need the following lemma:

Lemma 3.1
Assume (x1,x2) are jointly Gaussian distribution. If x1 and x2 are uncorrelated, they
are also independent.

Proof of Lemma 3.1 The two variables x1,x2 are independent if p(x1,x2) =
p(x1)p(x2). Now, since P12 = 0, we have |P| = |P11||P22|. Further

P−1 =

(
P−1

11 0
0 P−1

22

)

which leads to

(x − µ)P−1(x − µ)T

= (x1 − µ1)P
−1
11 (x1 − µ1)

T + (x2 − µ2)P
−1
22 (x2 − µ2)

T ,

resulting in that p(x1,x2) = p(x1)p(x2). !

Proof of Theorem 3.2 For the first part of the theorem, we refer to [11]. Con-
cerning the second result, we will give a proof thereof, based on the first result. The
subsequent argument is taken from [11].

Recall that each of the subvectors x1 and x2 are Gaussian, as proven above. Introduce

x1|2 = x1 − P12P
−1
22 x2

=
(

Ir, −P12P
−1
22

) (
x1

x2

)
.

(3.23)



3.5. GAUSSIAN VECTORS 27

Since x1|2 is a linear transformation of x = (x1,x2)T , it must be Gaussian. The mean
vector and covariance matrix are, according to Table 3.3

E[x1|2] = µ1 − P12P
−1
22 µ2 (3.24)

and

VAR[x1|2] =(Ir,−P12P
−1
22 )P(Ir,−P12P

−1
22 )T

=(Ir,−P12P
−1
22 )

(
P11 P12

P21 P22

)(
Ir

−P−1
22 P21

)
,

since (P−1
22 )T = P−1

22 and PT
12 = P21. Thus

VAR[x1|2] = P11 − P12P
−1
22 P21, (3.25)

after blockwise matrix multiplication. The cross covariance matrix COV[x1|2,x2] is
interesting. Indeed,

COV[x1|2,x2] = E[(x1|2 − E[x1|2])(x2 − µ2)
T ],

and after x1|2 and E[x1|2] are replaced by (3.23) and (3.24)

COV[x1|2,x2] =E[((x1 − µ1) − P12P
−1
22 (x2 − µ2))(x2 − µ2)

T ]

=E[(x1 − µ1)(x2 − µ2)
T ]−

P12P
−1
22 E[(x2 − µ2)(x2 − µ2)

T ]

=P12 − P12P
−1
22 P22

=0.

Hence:

Lemma 3.2
x1|2, defined in (3.23) is uncorrelated with x2, thus in the Gaussian case also indepen-
dent.

The lemma yields a simple derivation for the conditional distribution of x1 given x2.
Turn (3.23) (first line) around so that it reads

x1 = P12P
−1
22 x2 + x1|2. (3.26)

Suppose x2 is fixed. The first term on the right in (3.26) is then simply a constant,
while the other term x1|2, which is independent of x2 has the Gaussian distribution
stated above, i.e. with mean and covariance matrix as given in (3.24) and (3.25). Thus
x1 must, for fixed x2, also be Gaussian distributed. The mean vector is P12P

−1
22 x2 +

E[x1|2] and the covariance matrix is equal to the covariance matrix of x1|2. Hence,
after a trivial rearrangement, inserting (3.24) for µ1|2, we have proven the second part
of Theorem 3.2. !

An important corollary of Theorem 3.2 is the following
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Corollary 3.1
Assume x = (xT

1 ,xT
2 ,xT

3 )T where corr[x2,x3] = 0. Then

E[x1|x2,x3] =E[x1|x2] + P13P
−1
33 (x3 − µ3)

VAR[x1|x2,x3] =VAR[x1|x2] − P13P
−1
33 P31

where µi = E[xi] and Pij = COV[xi,xj].

Proof Note first that

E[x1|x2,x3] =µ1 + (P12,P13)

(
P22 0
0 P33

)−1 (
x2 − µ2

x3 − µ3

)

=µ1 + P12P
−1
22 (x2 − µ2) + P13P

−1
33 (x3 − µ3)

However, from Theorem 3.2, the first two terms on the right hand side is equal to
E[x1|x2], proving the first part of the Corollary.

The second part is shown similarly:

VAR[x1|x2,x3] =P11 + (P12,P13)

(
P22 0
0 P33

)−1 (
P21

P31

)

=P11 + P12P
−1
22 P21 + P13P

−1
33 P31

=VAR[x1|x2] + P13P
−1
33 P31

again by Theorem 3.2. !

3.6 Random processes

A random process is a collection of random variables {x(t)}, indexed in time. If
plotted against t, the process will describe a stochastic curve with random disturbances
superimposed on local and global trends. The practical meaning entails that the
individual variables x(t) and x(s) are stochastically dependent. In particular, if t and
s are close in time, we would expect their values to be highly correlated. The purpose
of this section is to introduce the most important concepts for random processes.

Suppose x(t) is defined on an interval from 0 to T . It is possible to regard this as
an extension of the situation in the preceding section where n random variables were
considered jointly. Now, however, the situation has become even more complicated
since there are an infinite number of random variables to take care of 5. We can not
specify the distribution for more than a finite number of variables. Fortunately this
is enough for a consistent definition. The distribution of a random process is defined

5The number is not even countable since [0, T ] is an interval.
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by taking points t1 < t2 < ... < tn and specifying a distribution for the corresponding
variables x(t1), x(t2), ..., x(tn). This has to be done for all n = 1, 2, .. and all collections
of t1, ..., tn inside [0, T ]. It is not obvious that this can be done at all. At least there
must be certain consistency requirements. For example, the density of x(t1) follows
from the joint one for x(t1), x(t2) (see Section 3.2), and the two densities can not be
specified independent of each other. The problem is solved in probability theory, and
necessary and sufficient conditions for consistency have been worked out. We shall
take this for granted. Usually the process is defined through some random mechanism.
An example is given in (3.29) below.

An important concept is that of stationarity. A process {x(t)} is called stationary if
the joint distribution of x(t1 + s), x(t2 + s), ...., x(tn + s) does not depend on s. This is
to hold for all n and all t1, ...., tn. The definition says that the probability distribution
does not change in time. If the time differences are the same in a future collection of
random variables, the joint distribution remains the same. In particular, all x(t) must
for a stationary random process have the same distribution. The mean µ = E[x(t)]
is therefore for such processes a constant and the same goes for the variance. Also
note the implication for covariances. If c(t1, t2) = cov[x(t1), x(t2)] is the covariance of
x(t1), x(t2), then c(t1, t2) = c(t1 + s, t2 + s) under stationarity. Take, in particular,
s = −t1, Then c(t1, t2) = c(0, t2 − t1) and the covariance for a stationary process
depends on the time difference only.

In practice, a process can only be observed at discrete time points, for example at
tk = kδ, k = 0, 1, 2, ... The stochastic process is then {x(kδ)} which we shall denote
{x(k)} from now on. The longer the increment δ, the more information is lost by
going from the continuous to the sampled case, but we shall not go into this.

Consider the process {x(k)}. Let µ(k) = E[x(k)] be its mean and define the covariance
to be c(k, l) = cov[x(k), x(l)]. If the process is stationary, µ(k) = µ is a constant and
c(k, l) = c(l− k) depends only on l− k. Stationarity is in practical applications often
used in this less stringent sense6.

The function

c(τ) = cov[x(k), x(k + τ)], valid under stationarity, (3.27)

is called the autocovariance function of the process {x(k)}. The function c(τ)
describes the covariance for variables that are τ time units apart. Note that c(0) =
var[x(k)]. Hence

ρ(τ) =
c(τ)

c(0)
(3.28)

is the corresponding correlation (or autocorrelation). {ρ(τ)} is known as the auto-
correlation function.

6The former definition is often referred to as strict or strong stationarity. If it is only demanded
that µ(k) = µ and that c(k, l) = c(k − l), the process is weakly stationary.
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Although dependence (or correlation) usually is an important ingredient in random
processes, uncorrelated processes are important as building blocks for other models.
A process containing uncorrelated identically distributed variables is called a white
noise process , in contrary to a process with dependent variables which is called a
colored process.

A random process where x(t1), x(t2), ..., x(tn) is a Gaussian vector for all n and t1, ..., tn
is called a Gaussian random process . Such processes will be the only ones we will
consider.

Example 2 (cont.)
A natural extension of the example in Section 3.3 is,

x(k) = ax(k − 1) + w(k − 1), k = 1, 2... (3.29)

Here a is a fixed coefficient and {w(k)} is a white noise process. The term means
that E[w(k)] = 0 for all k, the variance is constant and that all autocovariances are 0.
Gaussian white noise is a process of independent random variables. Its autocorrelation
function is ρ(0) = 1 and ρ(τ) = 0 for τ += 0. Take in (3.29) var[w(k)] = σ2(1 − a2)
and suppose {w(k)} is Gaussian. Also assume, at the start, that x(0) is normal with
mean 0 and variance σ2. It then can be shown that {x(k)} is a stationary Gaussian
process with mean 0 and autocovariance function

c(τ) = σ2aτ , τ = 0, 1, 2, ... (3.30)

The corresponding autocorrelation function becomes

ρ(τ) = aτ , τ = 0, 1, 2, ... (3.31)

This example is known as the autoregressive process of order one and also as the
Gauss-Markov process. We shall derive the formulae (3.30) and (3.31) in one of the
exercises. !

3.7 Problems

Exercise 3.1 (Proving some rules on expectation and variance)
(a) Based on E[φ(x)] =

∫ ∞

−∞ φ(x)p(x) dx, show that E[ax + b] = aE[x] + b and
var[ax + b] = a2var[x].

(b) Prove Proposition 3.1

Exercise 3.2 (Proving rules on covariance)
(a) Show that cov[ax1 + b, cx2 + d] = ac · cov[x1, x2].
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(b) Show that corr[ax1 + b, cx2 + d] = corr[x1, x2].

Exercise 3.3 (Conditional Gaussian distribution)
By using the definition of the conditional distribution, show the equations for condi-
tional mean and variance in the Gaussian distribution given by (3.15).

(Hint: Show that the conditional distribution is on the form (3.4).)

Exercise 3.4 (Autocorrelation)
Prove the formulae for autocovariance (3.30) and autocorrelation (3.31) assuming the
model (3.29).

Exercise 3.5 (Random numbers?)
Simulation of random variables is important for exploring the properties of a model.
An important part of the simulation approach is the ability to perform simulations
from a given distribution. Dependent variables can in many cases be constructed
by transformation from independent variables, making the generation of independent
variables an important building block.

Generation of exact independent random variables is an impossible task. One there-
fore has to stick to pseudo-random variables, which are only approximately following
the desired distribution and only approximately independent. In particular, when
generating many variables, the variables are constructed in sequence following a de-
terministic rule. We will in this exercise explore the behavior of our random generator
for Gaussian distributions.

(a) Simulate 100 variables x1, ..., x100 from the standard Gaussian distribution (the
Gaussian distribution with expectation zero and variance equal to 1).

Make a histogram of the variables. Does it look reasonable? (You may also try
higher number of variables.)

(b) Make a plot of xk against xk+1. Do you see any dependence between xk and
xk+1? Why is this a good check on the behavior of the random generator?

(c) The number generators in Matlab which generate random numbers use a so-
called seed. This seed can be specified by the command randn(’seed’,〈num〉)
in Matlab .

Generate a vector of length 100 with numbers from randn so that each num-
ber is generated with its own index as seed. That is x(k) is generated with
randn(’seed’,k). Plot this vector. Comment on the result.

Exercise 3.6 (Estimation of expectation and variance)
Assume x ∼ N (µ,σ2). In most cases we are in a situation where µ (the expecta-
tion) and σ2 (the variance) are unknown parameters. Assume however that we have
observed x(1), ..., x(N) which all follow the same Gaussian distribution as x above.
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There is in this case possible to estimate the unknown parameters based on the ob-
servations. In particular, estimates for µ and σ2 are given by the formulae

µ̂ =
1

N

N∑

k=1

x(k), σ̂2 =
1

N

N∑

k=1

(x(k) − µ̂)2.

How these estimators are actually obtained will be discussed further in the following
chapters.

(a) Write a routine in Matlab which has as input µ,σ and N , and first simulates
N independent variables from N (µ,σ2), and thereafter calculates estimates of
µ and σ2 based on the formulae above.

(b) Run the routine you wrote in (a) 20 times and store the estimates for µ and σ2

in two vectors of length 20. Use these vector’s to evaluate the properties of the
estimators (i.e are they unbiased, what are their uncertainty).

(c) Using the definitions and rules for expectations and variances, calculate the
expectation and variance of µ̂.

(d) Try also to calculate the expectation of σ̂2.

(Hint: Rewrite x(k) − µ̂ to x(k) − µ + µ − µ̂ in the formula for σ̂2.)

Exercise 3.7 (Estimation of the autocorrelation function)
A time series is a sequence of stochastic (random) variables x(k) for k = 1, . . . , N .
The variables may very well be dependent. The autocorrelation function ρ(τ) for x(k)
is a measure of the linear dependence between x(k) and x(k + τ) for τ = 1, . . . , N −k.
Autocorrelation is the same as correlation, the name is different only to explicitly mark
that the correlation is between two variables in the same time series. The definition is
given in (3.28). Assuming stationarity, the autocorrelation does not depend on which
positions, k and k + τ , of the time series it is measured, but only on the distance (τ)
between the two variables. The autocorrelation is estimated by

ρ̂(τ) =
1
N

∑N−τ
k=1 (x(k) − x̄N)(x(k + τ) − x̄N)

1
N

∑N
k=1(x(k) − x̄N)2

, τ = 0, . . . , N − 1

where x̄N = 1
N

∑N
k=1 x(k).

(a) Implement a routine in Matlab for calculating the autocorrelation function for
a given time series. Try to utilize the possibilities of vectorization.7

7Rather than using a for-loop for calculating a sum of products, you can f. ex. use
sum(x(a:b-1).*x(a+1:b)). Write help arith in Matlab if you haven’t done this before. The
Matlab -code will then both be easier to read and faster to execute.
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(b) Generate a white noise process {x1(k)} where x1(k) ∼ N (0, 1) for k = 0, ..., 100.

Then construct two other processes {x2(k)} and {x3(k)} by the transformations

x2(1) = x1(0), x2(k) =
√

0.5x2(k − 1) +
√

0.5x1(k − 1), k = 2, ..., 100

x3(1) = x1(0), x3(k) =
√

0.5x1(k − 1) +
√

0.5x1(k). k = 2, ..., 100

{x2(k)} is an example of a so-called autoregressive (AR) process, while {x3(k)}
is an example of a moving average (MA) process. Both types of process will be
considered further in Chapter 7.

(c) Estimate the autocorrelation functions for each of the time series and plot these
as well as the series themselves. Comment on the results.

(d) Plot x(k + 1) against x(k) for k = 1, . . . , N − 1 (that is x(k + 1) as a function
of x(k)). Comment on the results.

(e) For all the three processes, calculate analytically the autocorrelation functions
and compare with your results from (c).
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Chapter 4

The general stochastic state space
model

4.1 Introduction

In Chapter 2, a discrete time deterministic state space model was introduced in (2.7).
In this chapter, we will discuss the stochastic version of the state model.

Consider a collection of random variables x(k), k = 0, 1, 2, .. associated with time
points tk, which may be equidistant (so that tk = kδ for some common δ) or they may
not. Such a set of random variables is a random process as defined in Section 3.6,
the idea being that there exist underlying dynamic forces linking x(k) and x(j) at
different time points tk and tj, although not in a completely foreseeable way. There will
in engineering frequently be possible to construct dynamic relationships on physical
grounds, but there remains almost always some part of the problem that can not be
modeled. That part automatically enters the error terms which are often formulated
stochastically as we shall do here.

Example 3 (random walk)
We start by introducing the simplest linear stochastic state space model conceivable.
Assume the very special model

x(k) = x(k − 1) + w(k − 1), (4.1)

where w(k − 1), k =, 1, 2, ... are uncorrelated random variables with zero mean and
variances

var[w(k)] = Q(k). (4.2)

The process x(k) defined in (4.1) is called a random walk model and is much used
in statistics. The name stands from the fact that the process at tk is the same as it

35
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Figure 4.1: Simulation of the random walk process. Q(k − 1) = 1 for k = 1, ..., 50 and
= 0.1 for k = 51, ..., 100. Observations are simulated with R(k) = 0.5 for all k. The process
is displayed by the solid line (linear interpolation). The observations are superimposed as
dots.

was at tk−1, except for the random term w(k − 1) which is as likely to add to as to
subtract from the former value x(k − 1). There is no drift in the process, and it can
be proved by the results in Chapter 3 that, if all w(k) are stochastically independent,
then the mean of x(k) if we know x(k − 1) is x(k − 1).

The process has been simulated in figure 4.1 (solid line) for two values of the variance
Q(k) (Matlab commands are given in Appendix A). Note that the trace may fluctuate
wildly or be quite smooth. Large values of Q(k) gives birth to unstable processes,
differing a lot from one time point to the next one, whereas small values lead to
smoothness. A special case worth mentioning is when Q(k) = 0. Eq. (4.1) then
reduces to x(k) = x(k − 1), and the “process” {x(k)} is a constant. Although this
case may at this point seem trivial, we shall see later that many important statistical
models are actually conceived in this way.

The preceding x-process (and its extension in the next section) is one of two ingredients
in a linear state space model. The other element is a relationship connecting x(k) to
its actual observation z(k), allowing for error or noise in the measurement. Suppose,
for example, that

z(k) = x(k) + v(k), (4.3)

where v(k) is the error term. It is assumed that v(k) is a process of the same type as
the w-process in (4.1), i.e uncorrelated with zero mean and variance

var[v(k)] = R(k). (4.4)

It is assumed in addition that the two processes {w(k)} and {v(k)} are mutually
uncorrelated (i.e. corr[w(k), v(j)] = 0 for all k and j) or, sometimes a little stronger,
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stochastically independent. The implication is that the random disturbances affecting
the measurements have nothing to do with the randomness in the process {x(k)} itself.
This is surely plausible under many circumstances, since it means that the dynamics
and the measurements are influenced by different, independent factors. An additional
commonly assumed assumption is that w(k) and v(k) should be uncorrelated with
x(0).

Measurements (simulated) are marked with dots in Figure 4.1. Note how the variation
around the solid curves are linked to the size of the variance R(k). We shall see later,
when trying to recover the x-process from the measurements, that what really matters
is the ratio of the two variances (4.2) and (4.4). This restoration problem is a central
one. !

We shall refer to w(k − 1) as the error or noise at time tk, since it adds to the
dynamics (here the trivial x(k) = x(k − 1)) an element that can only be understood
in probabilistic terms. The total collection {w(k)} of noise variables is called a noise
process. Such noise processes are essential tools in describing the randomness in
the phenomena under study. The symbols w(k) and v(k) will be used to designate
noise processes that

• have mean 0, i.e. for example E[w(k)] = 0,

• are uncorrelated, i.e. corr[w(k), w(j)] = 0 for k += j

• and have magnitude described by their variances, i.e. var[w(k)] = Q(k).

A noise process with uncorrelated variables is usually called a white noise process.

In the example above, we assumed there was no structure in the error sequences
{w(k)} and {v(k)}. This is a standard assumption made for such models. In some
cases there may however be some structure present meaning that errors at neighboring
points in time have a tendency to be similar (or, less common, dissimilar). We shall
see in Chapter 7 how such effects, often called autocorrelations, can be formulated
mathematically and put into the class of linear state space models which utilize as
building blocks uncorrelated processes in the sense defined above. Uncorrelatedness
can be regarded as an independence concept, although weaker than full stochastic
independence that demands all w(k) to be independent. The two notions become
equivalent in case of Gaussian processes (see Chapter 3), an assumption we shall
make from time to time throughout.
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4.2 The general stochastic state space model

The general stochastic state model is obtained from the deterministic model in
eq. (2.7) by addition of process and measurement noise.

x(k) = Φ(k − 1)x(k − 1) + Ψ(k − 1)u(k − 1) + w(k − 1), (system), (4.5a)

z(k) = H(k)x(k) + v(k), (observations). (4.5b)

In much of the mathematical derivations to follow, the presence of the input functions
will complicate the matter without giving extra insight into the problem. We will
therefore mainly be working with the more simple model neglecting deterministic
inputs:

x(k) = Φ(k − 1)x(k − 1) + w(k − 1), (system), (4.6a)

z(k) = H(k)x(k) + v(k), (observations) (4.6b)

where k = 1, 2, . . . and Φ(k) and H(k) are deterministic coefficient matrices. The
state vector x(k) and the observation vector z(k) are vectors of size n and m,
respectively, implying that Φ(k) and H(k) are matrices of dimensions n×n and m×m.
The main problem we will consider is how to estimate the state vector based on the
observations.

The noise processes {w(k)} and {v(k)} are assumed to have the following properties:

COV[w(k),w(k′)] =

{
Q(k), k = k′

0 k += k′ (4.7a)

COV[v(k),v(k′)] =

{
R(k), k = k′

0, k += k′ (4.7b)

which means that both {w(k)} and {v(k)} are white noise process, and

COV[w(k),v(k′)] = 0 (4.7c)

COV[x(0),v(k)] = 0 (4.7d)

COV[x(0),w(k)] = 0 (4.7e)

which state that the two noise processes are uncorrelated with each other and uncor-
related with the initial state.

The general model (4.6) reduces to a time-invariant if the parameters {Φ(k)},
{H(k)}, {Q(k)} and {R(k)} do not depend on k. An interesting result, relating
stationarity to stability is the following

Theorem 4.1
Suppose Φ(k − 1) = Φ, Q(k − 1) = Q and that Φ is asymptotically stable. Then
the distribution of {x(k)} as defined in (4.6a) will, as k increases, converge towards a
stationary distribution, that is a distribution not depending on k.
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The proof, which is beyond the scope of these notes, is given in [1]. In order to find this
stationary distribution, note that when stationarity has occurred, x(k − 1) and x(k)
follow the same distribution. In particular, their expectations and covariance matrices
must be equal. Denote µ and P the expectation and covariance matrix, respectively, in
the stationary distribution. Using (4.6a) and the rules for expectations and variances,
we then must have

µ =Φµ, (4.8a)

P =ΦPΦT + Q. (4.8b)

The first equation (involving n unknowns) may be solved directly by recognizing that
a non-zero value of µ̄ is only obtainable if Φ has 1 as eigenvalue, in which case µ is
the corresponding eigenvector(s).

The second equation is more difficult. Taking into account that P̄ is symmetric, there
are a total of n(n + 1)/2 unknown. For small n’s we may write this out as a set of
linear equations which can be solved by standard techniques. In the more general
case, a possible algorithm is to start with an arbitrary symmetric matrix P̄ which is
put into the right hand side of the equation, giving a new matrix P̄. This new matrix
may again be put into the right hand side to give yet another matrix. Continuing in
this manner will in the end give the approeriate matrix.

4.3 Remarks

The general model contains {Φ(k)},{H(k)},{Q(k)} and {R(k)} as input quantities,
in sum a huge number of coefficients. Many of them will in practice be determined
by the physical situation and often some of them are the same for all k (the variances
for example), but that is not to say that the dependency on k is not important. On
the contrary, the fact that the theory goes through for arbitrary parameter sequences
is of the highest importance for practical modeling and data processing, as we shall
see. Usually, especially in statistics, there are a few unknown parameters that must
be found empirically by statistical estimation. We discuss this aspect in Chapter 10.
In Chapter 7 we will present a number of specific examples that can be put into the
linear state space framework, but a few remarks on modeling is best made in this
general set-up.

One issue is initialization. This means that x(0) must be assigned a value, although
not necessarily a fixed one. The standard approach is to assume a probability distri-
bution for x(0), usually in terms of a

E[x(0)] = µ(0) (4.9)

and a covariance matrix

VAR[x(0)] = P(0|0). (4.10)



40 CHAPTER 4. THE GENERAL STOCHASTIC STATE SPACE MODEL

To discuss the meaning of these assumptions, consider Example 1 in Chapter 2 where
x1(k) was the position and x2(k) the speed at time tk. We might actually know the
position and speed at the start. The right hand side of (4.9) is then set equal to these
given values whereas the variance matrix on the right of (4.10) would be

P(0|0) =

(
0 0
0 0

)

Since there is no uncertainty regarding the initial conditions, the variances of the
initial state is simply zero. The opposite case would be one where nothing is known
(a so-called diffuse or noninformative prior ). Ideally this means that

P(0|0) =

(
∞ ·
· ∞

)
,

(the off–diagonal is immaterial), but since infinity can not be represented in a com-
puter, a sufficiently large number will do. There are innumerable intermediate posi-
tions between these two extremes. For example, if the position was known perfectly,
but the speed was completely in the dark, take

P(0|0) =

(
0 ·
· ∞

)
,

(again the off-diagonal elements do not matter). There is clearly a great deal of
flexibility. We shall see in the exercises how the reconstruction of the x-process is
influenced by this initial information.

In some situations, we would like to specify P(0|0) somewhere in between these two
extremes. This happens when some information is available about x(0), but not
in an exact manner. One possibility is for instance that a similar system have been
analyzed before, giving some indication on what x(0) should be. Alternatively, experts
in the field may have knowledge about the system which can be used to make some
(necessarily imprecise) statement about the initial state. This would correspond to
the Bayesian world in statistics, in contrast to the frequentist view in which we put
the diagonals to infinity.

Another point is missing observations . Gaps in an observation sequence is a quite com-
mon phenomenon. Sometimes the measurement equipment is deliberately switched off
to be used for other purposes, or the technology involved are occasionally subject to
bugs and errors. The most natural way of entering missing information into a model
is through infinite variances in the measurement equation. To be specific, consider
the observation of position in the second order model, that is z(k) = x1(k) + v(k).
One way to express mathematically that observation z(k) is missing, is to specify an
infinite (or very large) variance for the error v(k). This says that the uncertainty is
so great that it overshadows the information in z(k), and the effect of z(k) vanishes



4.4. PROBLEMS 41

from the computation. An alternative, and perhaps a more subtle way, is to rewrite
the measurement equation as

z(k) = H(k)x1(k) + v(k)

where

H(k) =

{
1, if z(k) is observed;

0, if it is not.

Note that z(k) = v(k), if H(k) = 0, but now there is no relation to the x-process, and
z(k) becomes valueless. This second option (which is exact whereas the first one is
only approximate) is at least as good as the other. Note that by using these techniques
any observational pattern, however complicated, can conveniently be expressed and
fed to the computer. The Kalman filter described in Chapter 6 is available to estimate
a general x-process.

4.4 Problems

Exercise 4.1 (Random walk, extended)
Consider a slight generalization of eq. (4.1) giving the system equation:

x(k) = ax(k − 1) + w(k − 1),

where we will assume w(k− 1) is Gaussian distributed with expectation equal to zero
and variance σ2.

(a) Write a routine in Matlab with input a, σ and N which simulates the system
for k = 1, ..., N with x(0) = 0.

(Hint: The routine randn(N) generates N Gaussian distribution variables with
zero expectation and variance equal to 1. By multiplying the variables you get
with σ, you obtain new variables with variance equal to σ2.)

(b) Run the routine in (a) for N = 1000,σ = 1 and a = ±0.3,±0.9,±1.0 and ±1.01,
and plot the series. Comment on the results.

(c) Try to relate the results in (b) to the stabilization concept in Chapter 2.

(d) Adjust your routine from (a) so that x(0) is drawn from a Gaussian distribution
with mean zero and variance P (0|0), where P (0|0) is large (for example equal to
10000). Simulate again the process for different values of a. Comment on how
x(1000) depends on the initial state.
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Exercise 4.2 (Simulation of two-dimensional systems)
Consider a stochastic system model of the form

(
x1(k)
x2(k)

)
= Φ

(
x1(k − 1)
x2(k − 1)

)
+

(
0

w(k − 1)

)

where {w(k)} is a white noise process with w(k − 1) ∼ N (0,σ2).

(a) Write a Matlab routine with input Φ, σ2, T and N which simulates the system
process for k = 1, ..., N . Specify the initial conditions yourself.

(b) Consider now a stochastic version of the (discretized) moving body example
(Example 1) from Chapter 2 given by

(
x1(k)
x2(k)

)
=

(
1 T
0 1

)(
x1(k − 1)
x2(k − 1)

)
+

(
0

w(k − 1)

)
.

Use the routine written in (a) to simulate the process for T = 0.5 and k =
1, ..., 100. Use different values of σ2, and plot the results.

(c) Repeat (b) but now with the stochastic version of the (discrete) pendulum move-
ment system in Exercise 2.3, that is Φ = exp{A · T}, where

A =

(
0 1

−g/L 0

)
.

Use g = 10.0, L = 1.0 and T = 0.5.

(d) Repeat (b) once more but now including air resistance into the pendulum model
(Exercise 2.4), that is Φ = exp{A · T}, where now

A =

(
0 1

−g/L −c/L

)
.

Use again g = 10.0, L = 1.0, c = 0.5 and T = 0.5.

(e) Comment on the results above. In particular, try to relate the results to the
stabilization concept in Chapter 2.

(f) From Theorem 4.1, we then know that the systems which are stable will converge
to a stationary distribution. Use (4.8) to find the stationary distribution for this
(or these) system(s).

(Hint: It is not possible to find P̄ through matrix manipulations. You will
have to write down the linear equations for the components in P̄ and solve this
system.



Chapter 5

Estimation of random variables

Recovering the x-process from measurements is the essential problem for models as
described in Section 4.2. This estimation problem differ in an important aspect from
the more standard parameter estimation problems considered in introductory courses
in statistics. In this case the quantity of interest, x(k) is a random variable, and not
a fixed constant as is the case for parameters.

In principle, there are many ways of solving the particular estimation problem involved
for the dynamic linear model. One possibility is to base an estimation process on
the observation model (4.6b) alone. For instance, if we have the univariate model
n = m = 1 with H(k) = 1, we could estimate x(k) by x̂(k) = z(k). Such an estimate
is unbiased, since

E[x̂(k) − x(k)] = E[z(k) − x(k)] = E[v(k)] = 0,

but the variance is as large as that of the original observation. Usually x(k) will be
a smooth process, and there is an enormous benefit in utilizing the dynamics in the
x-process to aid the reconstruction through feedback, which the former, naive attempt
did not do. We discuss how this idea is carried out in Chapter 6 by introducing the
Kalman filter that in a certain sense is the best procedure that can be constructed.
The Kalman filter applies to linear stochastic state space models and organizes the
computations in an elegant recursive manner. We introduce this class of models in
the next section. In this chapter we will discuss estimation of random variables in
a more general setting, which will give us the basis for deriving the Kalman filter.
Section 5.1 consider how to construct optimal estimators in general, while Section 5.2
specialize the results from Section 5.1 to Gaussian distributions.
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5.1 Optimal estimation in general.

When deriving the Kalman filter, we will be concerned with estimation of an un-
observed random vector x ∈ Rn based on some observed random vector z ∈ Rm.
Let

p(x, z) = p(x|z)p(z) (5.1)

be the joint density of (x, z), which is factorized into the product of the conditional
density of x given z and the marginal density of z. Consider the conditional mean (or
regressor)

x̂ = E[x|z] =

∫
xp(x|z)dx, (5.2)

which (obviously) is a function of z. We shall sometimes write (when we want to em-
phasize this dependency) x̂ = x̂(z). The conditional mean has the following important
properties:

Theorem 5.1
Assume x̂ = x̂(z) is given by (5.2). Then the following holds:

(a) E[x̂(z) − x] = 0.

(b) E[(x̂(z) − x)Tg(z)] = 0 for any function g(z) : Rm → Rn and
E[(x̂(z) − x)g̃(z)T ] = 0 for any function g̃(z) : Rm → Rp

(c) E[(x̂(z) − x)T (x̂(z) − x)] ≤ E[(h(z) − x)T (h(z) − x)] for any function h(z) :
Rm → Rn.

The interpretation from an estimation point of view is immediate. Suppose x̂(z)
is used as an estimate for x. Then (a) implies that the estimate is unbiased, i.e.
the estimation error is zero in the mean. The error is also uncorrelated with the
observation vector z (from (b)), and the average error is smaller than for any other
alternative method according to (c).

Proof of Theorem 5.1 We will use the double expectation rule. Start by observing
that

E[(x̂(z) − x)Tg(z)] =E[E[(x̂(z) − x)Tg(z)|z]]
=E[(x̂(z) − E[x|z])Tg(z)]

=E[(x̂(z) − x̂(z))Tg(z)]

=0,
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and the first part of property (b) of the theorem follows. The second part is shown
similarly, only replacing g with g̃. (a) is simply a specialization by taking g̃(z) ≡ 1.
To establish (c) note that

(h(z) − x)T (h(z) − x)

=(h(z) − x̂(z))T (h(z) − x̂(z)) + (x̂(z) − x)T (x̂(z) − x)+

2(x̂(z) − x)T (h(z) − x̂(z)).

Take expectations on both sides. Then the last term on the right vanishes (use
g(z) = h(z) − x̂(z) in (b)). Hence

E[(h(z) − x)T (h(z) − x)]

= E[(h(z) − x̂(z))T (h(z) − x̂(z))] + E[(x̂(z) − x)T (x̂(z) − x)]

≥ E[(x̂(z) − x)T (x̂(z) − x)],

since the first term on the right of the first line can not be negative. !

5.2 Optimal estimation in the Gaussian case

Theorem 5.1 provides a strong argument for estimating a random quantity through
its conditional expectation given the observations. This may be extremely difficult
computationally with the dynamic model in Section 4.2, even with complete knowledge
of the statistical properties of the error processes. However, there is one type of
situation where the problem simplifies nicely, i.e. when both error processes in the
state space model (4.6) are Gaussian. The final results along this line will be proved
in the next chapter, but we shall go a long way in the present one by reviewing
some basic results about conditional distributions for Gaussian random variables. In
Section 3.5 we showed that if (x, z)T is Gaussian with mean vector

µ =

(
µx

µz

)

and covariance matrix

P =

(
Pxx Pxz

Pzx Pzz

)
,

then the distribution of x given z is also Gaussian with mean vector

µx|z = µx + PxzP
−1
zz (z − µz) (5.3)

and covariance matrix

Px|z = Pxx − PxzP
−1
zz Pzx. (5.4)
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Both the identities (5.3) and (5.4) are important from an estimation point of view.
Suppose x is some unknown vector to be estimated from observations z. Then Theo-
rem 5.1, in combination with (5.3) shows that the optimal estimator x̂ = E[x|z] = µx|z

is in the Gaussian case a linear function of z. Applied to the filtering problem of Sec-
tion 4.2 this implies that the optimal estimator for x(k) must be a linear function of
z(1), ..., z(k) when the noise processes in (4.6) both are Gaussian. The other identity
reveals the remarkable property that the conditional covariance is independent of the
given observations z. Consider this in the estimation context. We know that

VAR[x − µx|z|z] = E[(x − µx|z)(x − µx|z)
T |z] = Px|z

by definition. Note that −(x − µx|z) coincides with the estimation error

e = x̂ − x.

Hence

E[eeT |z] = Px|z.

Then, from the double expectation rule (Theorem 3.1)

E[eeT ] = E[E[eeT |z]] = E[Px|z] = Px|z. (5.5)

Since, by property (a) of Theorem 5.1 e1 has expectation 0, this is equal to the
covariance matrix for e1,

VAR[e1] = P1|2,

and we have in the realm of Gaussian models a particularly simple expression for the
(unconditional) estimation errors, which can be computed ahead of the actual data,
as can the conditional one.

Note that although for our linear models, the unconditional variances of the estimation
errors coincides with the conditional ones, this is not a general result. Furthermore,
their interpretations are different. The conditional variance reflects the uncertainty
involved for those particular data that we have observed, while the unconditional vari-
ance defines the uncertainty involved if we were able to repeat our experiments several
times.

5.3 Problems

Exercise 5.1 (Gaussian estimation)
Let θ be an unknown quantity. Assume there exists one single measurement y where

y = hθ + v.

Here h is a parameter known from the measurement technology while v is a noise term
which we assume is Gaussian distributed with expectation 0 and variance R. Also
assume that θ is a Gaussian random variable with expectation µθ and variance Pθ.
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(a) We will assume in the whole exercise that there is no dependence between θ and
v. Discuss the validity of this assumption.

(b) Show that y is Gaussian distributed with expectation µy = hµθ and variance
Py = h2Pθ + R.

(c) Calculate cov[θ, y]. Specify also corr[θ, y].

(d) Show that the conditional distribution for θ given y is Gaussian with expectation

E[θ|y] = µθ +
hPθ

h2Pθ + R
(y − hµθ)

and variance

var[θ|y] = Pθ
R

h2Pθ + R
.

(e) Write down the “best” way of estimating θ based on y.

We will in the following interpret the expressions for E[θ|y] and var[θ|y] based on the
estimation problem defined in the beginning of the exercise.

(f) Analyze how the expressions depend on Pθ. Try to explain the structure of this
dependence.

(g) What happens when Pθ → ∞? Try to explain which result this is a special case
of.

(h) How do the expressions for E[θ|y] and var[θ|y] depend on R? Explain.

(i) What happens with the two expressions when R = 0? Explain again.

(j) And how is the dependence on h? Explain once more.

Exercise 5.2 (Prior information from earlier experiments)
In Exercise 5.1 it was assumed that some knowledge about θ was available before the
measurement y was collected (we knew the expectation and variance of θ). Assume
now that we do not know anything about θ. Then we get to know the following: A
measurement z = θ+u, where u is Gaussian noise with expectation 0 and variance Pθ,
has resulted in the value z = µθ. Explain why we after measuring z (but before mea-
suring y) have exactly the same type of a priori knowledge about θ as in Exercise 5.1.
(A priori because we have no realizations of y yet.)

Exercise 5.3 (A simple state space model (AR(1)) – part I)
Consider the model x(k + 1) = ax(k) + w(k) for k = 1, . . . , N . Here x(1) ∼ N (0,σ2).
The random variables w(1), w(2), . . . , w(N) are independent and identical distributed
N (0, Q). They are also independent of x(1). The constant a is assumed to be in the
interval (−1, 1).
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(a) Explain why x(k) for all k = 1, . . . , N are Gaussian distributed and show that
µ(k) = E[x(k)] = 0.

(b) Derive a set of difference equations for

px(k) = var[x(k)] = E[(x(k) − µ(k))2] = E[x(k)2]

by taking the variance on each side of the equality sign in the model. Show that
we get px(k + 1) = a2px(k) + Q. Why is this deterministic difference equation
stable?

(c) When k → ∞, then px(k) will converge towards a limit p̄x. Show that p̄x =
Q/(1 − a2).

(d) Assume σ = 1 and Q = 4. Use Matlab for plotting px(k) for all k = 1, . . . , 20
for a = −0.7 and a = 0.4. Try to make some conclusions on your results.

(e) Let a = −0.7 and make a large number of realizations of the process. Plot the
empirical distributions at time points k = 1, k = 3 and k = 15 in Matlab .
In the same plots, place the theoretical Gaussian distributions for x(1), x(3)
and x(15). The similarity should be good. Be sure you understand why this
comparison makes any sense.

(Hint: The Matlab routine hist draws a histogram (empirical distribution) of a
dataset. The hold routine may be useful in making several figures in the same
plot.)

Exercise 5.4 (A simple state space model (AR(1)) – part II)
We will consider the same model as in Exercise 5.3, but now use Q = σ2(1 − a2).

(a) Explain why all x(k) now have the same distribution. Make a plot of the dis-
tribution for σ = 1.

Which values would you use for estimating an unknown x(k)?

(b) Find the conditional distribution for x(k) given x(k − 1). Make a plot also for
this distribution and compare with the one you found in (a).

Let a = −0.7 and assume x(k − 1) = 0.5. How would you now estimate x(k)?

(c) Show that the conditional distribution for (x(k), x(k + 1)) given x(k − 1) is a
Gaussian distribution with expectation vector

(
a
a2

)
x(k − 1)

and covariance matrix
(

1 a
a 1 + a2

)
(1 − a2)σ2.
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Make a plot of the joint conditional distribution for (x(k), x(k+1)) given x(k−1).

How would you estimate (x(k), x(k + 1)) if x(k − 1) was known?

(Hint: The routines meshgrid and mesh may be useful.)

(d) Find the joint unconditional distribution for (x(k), x(k + 1)). Make a plot of
the distribution and compare with the one you made in (c).

How would you estimate (x(k), x(k + 1)) if x(k − 1) was unknown?

(e) Use the result from (c) to find the joint distribution for (x(k−1), x(k), x(k+1)).

(f) What is the conditional distribution for x(k) given (x(k − 1), x(k + 1))? Try to
explain why this conditional distribution is equal to the conditional distribution
for x(k) given x(1), . . . , x(k − 1), x(k + 1), . . . , x(N).
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Chapter 6

The discrete time Kalman filter

Our objective in this chapter is to construct estimators x̂(k) for x(k) at time k with
error estimates. This is usually called state estimation. Since we are assuming that
each observation z(k) is becoming known at exactly time instant k (or rather some tk),
the data available for the estimation of x(k) is z(1), ..., z(k). The Kalman filter pro-
vides the best estimate of x(k) that can be obtained through linear estimators (6.1),
i.e. it is of the form

x̂(k) = ak(k)z(k) + ak(k − 1)z(k − 1) + .... + ak(1)z(1), (6.1)

where {ak(l)} are coefficients to be adapted from knowledge of the model and some
initial information about x(0), the start vector of the system process {x(k)}. The
coefficients will obviously vary from one point in time to another, explaining the
index k on the a’s.

The estimation error when x(k) is estimated by x̂(k) is

e(k) = x̂(k) − x(k). (6.2)

The uncertainty of the estimation error is of vital interest when applying the Kalman
filter. We will see that uncertainty measures based on variances are to be computed
as part of the scheme.

There are many derivations of the Kalman filter in the literature. Often ad hoc
assumptions (such as linearity of the filter) are introduced a priori to simplify the
computations. The derivation given here has the advantage of being rigorous and
self–contained in addition to give a useful background in general estimation theory.

Throughout the discussion, we will for simplicity assume that the input sequence
u(k) = 0 for all k. Non–zero input functions can easily be incorporated, but would
only make the derivations to follow more complex without gaining any extra insight
into the main ideas. The extension of the Kalman filter to non-zero input-vectors will
therefore only be presented without proof at the end of the chapter.
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Throughout this chapter the sequences {Φ(k)}, {H(k)}, {Q(k)} and {R(k)} are
regarded as fully known. The Kalman filter is a linear estimation method.

Some notation and concepts will be introduced in Section 6.1. The Kalman filter will
then be derived under Gaussian conditions in Section 6.2. In Section 6.4 we illustrate
the use of the Kalman filter through a few examples. Section 6.5 demonstrates by
a very simple argument that the Kalman filter actually also obtains the best linear
estimate in the general non-Gaussian case. Finally in Section 6.6 we will generalize
the filter for non-zero deterministic inputs.

6.1 Preliminaries

Go back to the problem of Section 4.2, i.e. that of estimating x(k) as accurately as
possible on the basis of

*z(l) =






z(1)
z(2)

...
z(l)






. (6.3)

Define

x̂(k|l) = E[x(k)|*z(l)] (6.4)

for general k and l. The solution to the estimation problem above is given by The-
orem 5.1 as the conditional mean x̂(k|k) = E[x(k)|*z(k)]. This quantity can in the
Gaussian case, at least in principle, be computed through the results of the preceding
chapter. The point is that when both error processes {w(k)} and {v(k)} in (4.6) are
Gaussian, then, according to Theorem 3.2, so is x(k) and *z(k) (and jointly too), and
the formula for conditional expectations (5.3) yields x̂(k|k) after the identification of
the appropriate cross covariance matrices. In practice this is not the way we do it,
a major drawback being that the whole computation has to be done all over again
for each single k. Even worse, the approach requires the inversion of the covariance
matrix of *z(k) (corresponding to P22 in (5.3)), which turns into a huge matrix as
the time is running and k becomes larger and larger. Surely we should seek some
recursion that refers as much as possible of the computations at k back to what has
already been done at k − 1 and earlier. This is exactly what is accomplished by the
Kalman filter, although the ensuing derivation will show that it is really more than
merely a convenient computational tool.

Introduce first some more mathematical notation. We shall need the auxiliary condi-
tional mean

x̂(k|k − 1) = E[x(k)|*z(k − 1)] (6.5)
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which is the predictor using information up to k−1 only. (Estimation of future random
variables is usually denoted prediction.) The estimation error when estimating x(k)
by x̂(k|l) is

e(k|l) = x̂(k|l) − x(k). (6.6)

The variability of this term is important in order to evaluate the quality of the es-
timate. A popular variability measure is the covariance matrix. Recall from Theo-
rem 5.1(a) that x̂(k|l) − x(k) has zero mean. Hence the error has covariance matrix

P(k|l) = VAR[e(k|l)] = E[(x̂(k|l) − x(k))(x̂(k|l) − x(k))T ]. (6.7)

This covariance matrix measures the variability we will expect using x̂(k|l) without
taking the actual values of *z(l) into account, that is a measure of performance of a
procedure. When the estimation is to be performed at time l, the observations *z(l)
are available, and in this case it is more natural to consider the conditional covariance
matrix VAR[e(k|l)|*z(l)]. In general, VAR[e(k|l)|*z(l)] += VAR[e(k|l). However, as
shown in Section 5.2, these covariance matrices coincide under Gaussian assumptions.

For the derivation of the Kalman filter, we will in particular be interested in the
situation where l = k, while the case l = k − 1 will be important as part of the
algorithm. For future prediction the case l < k in general will be of interest and is
discussed in Section 9.1. In Chapter 9, considering so-called smoothing, also the case
l > k will be treated.

Another important concept, is the so-called innovation process, defined through

z̃(k|k − 1) = z(k) − H(k)x̂(k|k − 1). (6.8)

To motivate the name recall from (4.6b) that E[z(k)|x(k)] = H(k)x(k) so that the
term H(k)x̂(k|k − 1) would be our natural guess for z(k) before it was actually ob-
served, i.e. at time k−1. The difference z(k)−H(k)x̂(k|k−1) may thus be interpreted
as the unexpected part of the observation z(k), that is an innovation we were not able
to foresee one time unit earlier.

The innovation process {z̃(k|k − 1)} plays a central role, not only for the Kalman
filtering theory to be derived here, but for linear filtering in general. Lemma 6.1
summarizes its main properties.

Lemma 6.1
The innovation sequence defined by (6.8) has the following properties:

E[z̃(k|k − 1)] = 0, (6.9a)

COV[z̃(k|k − 1), z(k′)] = 0 for all k′ < k, (6.9b)

S(k) = VAR[z̃(k|k − 1)] = H(k)P(k|k − 1)H(k)T + R(k). (6.9c)

where R(k) is the covariance matrix of v(k), cf. (4.7b).
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The innovation at time k has thus mean zero and is uncorrelated with all observations
prior to k (property (6.9b)). The latter observation is extremely important. It will
in the present sequel enable us to simplify the argument leading to the Kalman filter.
Later (in Chapter 10) we shall see how it yields a neat decomposition of the joint
density functions of the observations.

Proof of Lemma 6.1 Start by inserting (4.6b) for z(k) into (6.8). Then

z̃(k|k − 1) = H(k)(x(k) − x̂(k|k − 1)) + v(k), (6.10)

and after replacing x̂(k|k − 1) by (6.5)

z̃(k|k − 1) = H(k){x(k) − E[x(k)|*z(k − 1)]} + v(k). (6.11)

We know from Theorem 5.1(a) that x(k)−E[x(k)|*z(k−1)] has mean zero. This yields
property (6.9a) of the lemma, since E[v(k)] = 0. To establish (6.9b), observe that
the first term on the right of (6.11) is uncorrelated with *z(k− 1) (by Theorem 5.1(b))
as is also the second term v(k). Hence the sum must be uncorrelated too, which is
the statement to be proved. The formula for VAR[z̃(k|k − 1)] is almost immediate.
Indeed, the two terms in (6.10) are by model assumptions uncorrelated. Hence

VAR[z̃(k|k − 1)] =VAR[H(k)(x(k) − x̂(k|k − 1))] + VAR[v(k)]

=H(k)VAR[x(k) − x̂(k|k − 1)]H(k)T + VAR[v(k)]

=H(k)P(k|k − 1)H(k)T + R(k).

Here the second line is a consequence of the rules for operating covariance matrices,
as given by Table 3.3, and the third line follows after recalling (6.7) and (4.7b). !

6.2 The Kalman filter under Gaussian conditions

The main structure of the Kalman filter is the double recursion

x̂(k|k − 1) = Φ(k − 1)x̂(k − 1|k − 1) (prediction) (6.12a)

x̂(k|k) = x̂(k|k − 1) + K(k)(z(k) − H(k)x̂(k|k − 1)) (updating), (6.12b)

where K(k) is a deterministic weight matrix known as the Kalman gain. Note that
the second term in (6.12b) equals K(k)z̃(k|k − 1), where z̃(k|k − 1) is the innovation
defined in (6.8). Thus the updating of x(k) when z(k) becomes available, amounts to
modifying the former estimate x(k|k−1) by a quantity proportional to the innovative
part of the new observation.

The computation of the Kalman gain K(k) is done jointly with the error covariance
matrices P(k|k) and P(k|k − 1) in one single recursion, also involving S(k), the co-
variance matrix for the innovation, as defined in (6.9c) which is of interest in its own
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right (see Chapter 10). The most common version of the algorithm, the covariance
filter, is as follows:

P(k|k − 1) = Φ(k − 1)P(k − 1|k − 1)Φ(k − 1)T + Q(k − 1) (6.13a)

S(k) = H(k)P(k|k − 1)H(k)T + R(k) (6.13b)

K(k) = P(k|k − 1)H(k)TS(k)−1 (6.13c)

P(k|k) = (In − K(k)H(k))P(k|k − 1). (6.13d)

Clearly this is a recursion, since P(k − 1|k − 1) at the right of the first equation is
transferred to an expression for P(k|k) in (6.13d). In the literature the scheme is
often written with fewer equations. This has no advantages and, moreover, all the
quantities computed in (6.13) have a separate role to play.

In (6.13c) the inversion of S(k) is required. A sufficient condition for this inverse to
exist is that R(k) is positive definite, which we will normally assume. In cases where
this condition not is satisfied, some more care has to be taken, although the inverse
might exist even in many of these cases.

Several other algebraically equivalent versions of the recursion (6.13) exist (cf. Chap-
ter 8). These are of interest because they may provide additional insight or have
improved numerical properties.

Also note that the observations do not go into this second part of the Kalman al-
gorithm at all. In fact, we practically foresaw that earlier after having derived the
formula (5.4) for the covariance matrix of conditional Gaussian distributions. The
deeper reason for the data independence can be sought in that result. The property
has great practical interest for on-line applications, since it means that the Kalman
gains, the hardest part of the algorithm, can be computed and stored prior to the
actual data processing.

6.3 Derivation of the filter

We will prove the equations (6.12) and (6.13) through four steps.

Step 1 Consider first the prediction step (6.12a) and the prediction error covariance
matrix (6.13a). Clearly

x̂(k|k − 1)
(6.5)
= E[x(k)|*z(k − 1)]

(4.6a)
= E[Φ(k − 1)x(k − 1)|*z(k − 1)] + E[w(k − 1)|*z(k − 1)]

=Φ(k − 1)E[x(k − 1)|*z(k − 1)] + E[w(k − 1)]

=Φ(k − 1)x̂(k − 1|k − 1) + 0,
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which is (6.12a). A central ingredient of the argument is that w(k − 1) is uncorre-
lated with everything going on before k, in particular *z(k − 1). Similar reasoning
yields (6.13a). Start out with

x̂(k|k − 1) − x(k) = Φ(k − 1)(x̂(k − 1|k − 1) − x(k − 1)) − w(k − 1).

Take covariance matrices on both sides, recalling that P(k|k−1) = VAR[x̂(k|k−1)−
x(k)]. Then

P(k|k − 1)

=VAR[Φ(k − 1)(x̂(k − 1|k − 1) − x(k − 1)) − w(k − 1)]

=Φ(k − 1)VAR[x̂(k − 1|k − 1) − x(k − 1)]Φ(k − 1)T + VAR[w(k − 1)]

=Φ(k − 1)P(k − 1|k − 1)Φ(k − 1)T + Q(k − 1),

which is (6.13a).

Step 2 Note that (6.13b) coincides with property (6.9c) of Lemma 6.1, and it
remains to prove (6.12b), (6.13c) and (6.13d)). The argument relies on the for-
mula (3.22a) for Gaussian conditional expectations. Observe first that *z(k) and
(*z(k − 1), z̃(k|k − 1)) mutually determine each other; see (6.8). Thus x̂(k|k) =
E[x(k)|*z(k)] can also be written

x̂(k|k) = E[x(k)|*z(k − 1), z̃(k|k − 1)]. (6.14)

Consider the random vector



x(k)

*z(k − 1)
z̃(k|k − 1)





with mean vector



µx(k)

µ$z(k − 1)
0





and covariance matrix



Pxx(k) Px$z(k) Pxz̃(k)
P$zx(k) P$z$z(k) 0
Pz̃x(k) 0 Pz̃z̃(k)



 .

Here µx(k) and µ$z(k − 1) are the means of x(k) and *z(k − 1) respectively while
Pxx(k) is the covariance matrix of x(k), Px$z(k) the cross covariance matrix between
x(k) and *z(k−1) and so on. Note the zero mean for the innovation process z̃(k|k−1)
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and the zero cross covariance between z̃(k|k − 1) and *z(k − 1) are consequences of
Lemma 6.1. Apply Corollary 3.1 to the random vector with x1 = x(k),x2 = *z(k − 1)
and x3 = z̃(k|k − 1) to see that

x̂(k|k) =E[x(k)|*z(k − 1)] + Pxz̃(k)P−1
z̃z̃ (k)z̃(k|k − 1)

=E[x(k)|*z(k − 1)] + K(k)z̃(k|k − 1), (6.15)

But we have now arrived at (6.12b) with

K(k) = Pxz̃(k)P−1
z̃z̃ (k). (6.16)

Step 3 The next step is to find a suitable expression for P(k|k), defined in (6.7).
From (5.5) it is clear that P(k|k) = VAR[x(k)|*z(k)] = VAR[x(k)|*z(k−1), z̃(k|k−1)].
Again we can apply Corollary 3.1 to see that

P(k|k) = P(k|k − 1) − Pxz̃(k)Pz̃z̃(k)−1Pz̃x(k). (6.17)

Step 4 For the termination of the argument we have to derive Pxz̃(k), Pz̃x(k) and
Pz̃z̃(k) in (6.16) and (6.17). The latter has also been called S(k) and is taken care of
already. For Pxz̃(k):

Pxz̃(k) =COV[x(k), z̃(k|k − 1)]

=E[x(k)z̃(k|k − 1)T ]
(6.10)
= E[x(k)(H(k)(x(k) − x̂(k|k − 1)) + v(k))T ]

=(E[x(k)(x(k) − x̂(k|k − 1))T ])H(k)T + E[x(k)v(k)T ]

={E[(x(k) − x̂(k|k − 1))(x(k) − x̂(k|k − 1))T ]

+ E[x̂(k|k − 1)(x(k) − x̂(k|k − 1))T ]}H(k)T + E[x(k)v(k)]
(6.7)
= [P(k|k − 1) + 0]H(k)T + 0, (6.18)

where the first zero is a consequence of the prediction error x̂(k|k − 1) − x(k) being
uncorrelated with any function of *z(k− 1) (Theorem 5.1(b)), x̂(k|k− 1) in particular,
and the second zero is by model assumption directly. When the identities Pxz̃(k) =
P(k|k−1)H(k)T , Pz̃z̃(k) = S(k) and Pz̃x(k) = PT

xz̃ are inserted into (6.16) and (6.17),
(6.13c) and (6.13d) follow.

6.4 Examples

In a few situations, explicit analytical expressions can be obtained from the Kalman
filter
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Example 4 (iid variables)
Consider the simple (but important) example

x(k) = x(k − 1) (6.19a)

z(k) = x(k) + v(k) (6.19b)

where v(k) ∼ N (0,σ2). This actually corresponds to a situation where, for given x(k),
all z(k) are independent and identically distributed (iid) N (µ,σ2) where µ = x(k).
Note that there is no noise in the system equation in this case. Consider now first the
updating equations for the covariance matrix P (k|k). By (6.13a),

P (k|k − 1) = P (k − 1|k − 1)

which should be obvious because of (6.19a). Further,

S(k) = P (k − 1|k − 1) + σ2,

K(k) =
P (k − 1|k − 1)

P (k − 1|k − 1) + σ2
,

and

P (k|k) =
P (k − 1|k − 1)σ2

P (k − 1|k − 1) + σ2
,

where the last equation gives a recursive equation for calculating P (k|k). We may
rewrite the equation as

σ2

P (k|k)
= 1 +

σ2

P (k − 1|k − 1)

which shows that P (k|k) < P (k − 1|k − 1). Thus, the error variance decreases mono-
tonically as each new observation is processed.

Now assume P (0|0) = ∞, corresponding to no prior information about µ. Then it is
easy to see that

σ2

P (k|k)
= k and P (k|k) =

σ2

k
. (6.20)

Further, the Kalman gain is in this case

K(k) =
σ2

k−1
σ2

k−1 + σ2
=

1

k
.

giving that

x̂(k|k) =x̂(k − 1|k − 1) +
1

k
(z(k) − x̂(k − 1|k − 1))

=
k − 1

k
x̂(k − 1|k − 1) +

1

k
z(k) (6.21)
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For k = 1, we obviously get x̂(1|1) = z(1), and by induction it follows that in general

x̂(k|k) =
1

k

k∑

i=1

z(i) = z̄(k). (6.22)

Now, of course, in this simple situation we would normally not go through the whole
Kalman filter framework, but rather work on the problem more directly (as is done
in elementary statistics courses). An interesting consequence of applying the Kalman
filter to this problem is however equation (6.21) which gives a recursive algorithm
for calculating the mean. Such a recursive calculation is more numerical robust than
the more direct method of first summing the variables and then dividing by k. In
Chapter 10 we will consider methods for estimating the variance σ2 and also in this
case we will see that a recursive equation appears. !

Here the Kalman filter is seen to provide the classical solution to a well known problem.
The Bayesian version is also easily accommodated. We will consider this issue in one
of the exercises

The above example can actually be considered as a special case of linear regression
which also can be formulated as a stochastic state space model, and for which also
analytical expressions for the estimates exist. We will consider this further in Chap-
ter 7.

The situations for which simple analytical expressions are available are in general
rather the exception than the rule. Even for one-dimensional examples the calculations
quickly become intractable to carry out by hand.

Example 3 (random walk, cont.)
Consider the (small) generalization of Example 4 where we now add noise to the
system equation giving the new model

x(k) = x(k − 1) + w(k − 1), (6.23a)

z(k) = x(k) + v(k). (6.23b)

This is the random walk model considered in Section 4.1. In this case analytical
expressions for x̂(k|k) and P (k|k) become rather messy. Still however, their values
are easily calculated by programming the Kalman filter equations into the computer.
Assume, as before, that Q(k − 1) = 1.0 for k = 1, ..., 50 and = 0.1 for k = 51, ..., 100
while R(k) = 0.5 for all k. Using the simulated data displayed in Figure 4.1, estimates
of x(k) can be obtained. These are shown as dashed lines in the top panel of Figure 6.1.
Because we have used simulated data, we can in this case compare the estimates with
the true x-process, which is shown as a solid line. The lower panel of the same figure
shows the estimation error standard deviations for different k’s. For the first k’s, the
variance is relative large. This is because the estimate of x(k) in this case is based on
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Figure 6.1: In the upper panel, estimates of the random walk process obtained from the
Kalman filter based on simulated observations (shown as stars) are displayed. The Kalman
filter estimates are shown as a dashed line, while the true system process is shown as a
solid line. The lower panel shows the estimation error standard deviations

√
P (k|k). The

simulated data in Figure 4.1 was used.

only a few observations. After 3-4 time steps, the variance seems to stabilize. This
is a typical behavior, and will be discussed further in Chapter 8. The large decrease
around k = 50 is due to that Q(k) decreases from 1 to 0.1 at this point. !

Example 1 (A moving body, cont.)
Assuming only random disturbances acting on the body in Figure 1.1, we get the
following discrete representation

(
x1(k)
x2(k)

)
=

(
1 T
0 1

)(
x1(k − 1)
x2(k − 1)

)
+

(
w1(k − 1)
w2(k − 1)

)
(6.24a)

where T is the sampling time. The system noise may represent forces due to wind gusts
and turbulence and is assumed to be white and satisfy the other criteria in the state
space model (4.6).1 In the special case Q11(k) = 0, Q22(k) = 0, w1(k) = 0, w2(k) = 0
and so x1(k) = a + kTb, where a = x1(0) and b = x2(0) are the initial position and
speed at the start. The presence of non-zero random errors means fluctuations and
deviations from this deterministic pattern. Such a model, but with movements in

1For the body we are actually talking about continuous noise processes that are discretized.
The details in this case are much more involved than discretization of deterministic inputs and are
beyond the scope of these notes. Practical approaches to noise discretization are presented IN 358.
A thorough theoretical understanding requires stochastic calculus.
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two dimensions simultaneously (so that there are, say x3 and x4-processes as well) is
actually used in sea navigation. The random terms would then be due to, for example,
fluctuations in wind or current. If position is measured, we have

z(k) =
(

1 0
) (

x1(k)
x2(k)

)
+ v(k). (6.24b)

where v(k) (with variance R(k)) is the error in measuring x1(k). If only x2(k) is
measured, the measurement matrix becomes instead H = (0 1) and the measurement
error is now, of course, the error in measuring x2(k).

Figure 6.2 shows simulations of the model with Kalman filter estimates. The simu-
lated observations are indicated by asterisks, while the states and their estimates for
convenience are displayed by solid and dotted lines, respectively. (Of course, both the
states and their estimates are only defined at each integer k.)

Both initial estimates are zero since in this case x̂(0|0) = Ex(0) = 0. The x1 estimate
follows the real state quite well, while the estimate for x2 seems to lag behind the
true process to some extent. Such lags between estimates and actual state vector
components occur frequently. There are two reasons for this. Firstly, there are typi-
cally fewer observations than state vector components at each time point. The filter
then obtains its reconstructions by combining observations over several time points.
Secondly, the innovations in the updating step have to be treated conservatively and
be weighted properly by the matrix K(k) because of the measurement noise.

The results in Figure 6.2 represent one realization of the x and z processes, which
again lead to one realization of the filter estimates. The necessary Matlab code for
this example is available in the Appendix A and we recommend strongly that you
play with this example and get a feeling for how variable the realizations may be from
case to case. Also alter Q and R and try to get an intuitive understanding for how
the patterns change.

Figure 6.3 shows the error standard deviations for the model in (6.24a) and (6.24b).
Note the initial transient phases in the standard deviations before stationary levels
are reached. For completeness, the lower panel of Figure 6.3 shows the Kalman filter
gains. As one would expect, since the gains are functions of the standard deviations,
these elements also display a transient phase before reaching a steady state.

It was noted that the error covariance matrices, and therefore the standard deviations,
do not depend on the z process. Therefore the covariance recursion (6.13) can be
carried out and the filter assessed before any actual or simulated measurements are
processed. This simplifies the design of a Kalman filter in, for example, an engineering
context. There, one typically has to select a certain measurement strategy from many
possible ones to meet specified performance and cost criteria. This can be achieved
through the covariance recursion trying out various combinations of measurements
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Figure 6.2: One realization of the solution of the model in (6.24a) and (6.24b) with Kalman
filter estimates. The true x1 (upper panel) and x2 (lower panel) are the solid lines, while
the filter estimates are dashed. The measurements are indicated by asterisks. Here Q11 =
1, Q22 = 2, Q12 = Q21 = 0, and R = 10.

(i.e. different H) each with potentially different precision (i.e. different R(k)). As
an exercise you may want to run the Matlab code in Appendix A to try to achieve
stationary standard deviations for the errors in both x1 and x2 below 1.

Before leaving this example, you may wonder what the Kalman filter has achieved.
How much have we gained compared to a procedure based solely on estimation with-
out any measurement updating? It turns out that this corresponds to running the
covariance recursion with K(k) = 0 (see Section 9.1). The standard deviations for the
errors in this case are plotted in Figure 6.4. (Note that now P(k|k) = P(k|k − 1)).
Convince yourself that what we are now looking at are the errors for an estimator
x̂(k) = Φ(k)x̂(k − 1) = 0 since in this particular case E[x(0)] = 0.) Compared to
Figure 6.3, the errors are much larger and they do not reach stationary values but
continue to grow. Clearly, the Kalman filter achieves quite a lot. !

Note that this model is sometimes also used in other fields such as economics where
it is denoted the linear growth model. Suppose, for example, that x1(k) is the current
value of some economic indicator or variable, say the revenue of a firm or a certain
branch of firms. Eq. (6.24a) then says that the sales volume at time tk is likely to
grow by an amount x2(k)T until the next time point tk+1, a random disturbance w1(k)
coming in addition. The growth term itself is in turn subject to random fluctuations.
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Figure 6.3: Standard deviations for the errors in x̂(k|k) (solid line) and x̂(k|k− 1) (dashed
line), for x1(k) in the upper panel and for x2(k) in the middle panel. In the lower panel,
the Kalman filter gains K11 and K12 are displayed. Here P11(0|0) = 5, P22(0|0) = 2,
Q11 = 1, Q22 = 2, Q12 = Q21 = 0, and R = 10.

The formulation makes sense economically since it allows us to express mathematically
that growth (or decline) in sales are expected, though not in a quite foreseeable way,
as in the real world.

When it comes to the observations, it would in navigation be possible to measure
position x1(k) and/or speed x2(k). In the economic sphere, probably only the sales
volume x1(k) could be observed. In the latter case, the measurement equation becomes
as in (6.24b).

It is worthwhile to note in passing that the model in eqns. (6.24a) and (6.24b) reduces
to an ordinary regression line if Q11(k) = Q22(k) = 0. As remarked above, we may
then write x1(k) = a + kTb, where a = x1(0) is initial position and b = x2(0) is
the (constant) speed. Hence, z(k) = a + kTb + v(k), and the observations are thus
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Figure 6.4: Standard deviations for the estimation errors in x1 and x2 obtained by setting
K(k) = 0.

measurements around a regression line.

6.5 The Kalman filter under non-Gaussian noise

Although the algorithm of Subsection 6.2 was derived under Gaussian assumptions,
it remains valid for other types of noise in a weaker sense, with the global optimality
lost. Underlying this statement is the fact that the first and second order moments
of sums of uncorrelated random vectors are determined by the first and second order
moments of the individual terms with distributional assumptions beyond this being
immaterial. To make the idea precise, let

lz(*z(k)) =
k∑

r=1

a(r)z(r), (6.25)

and

lx(*x(k)) =
k∑

r=1

b(r)x(r) (6.26)

be linear forms in the observations and the system process respectively (*x(k) in (6.26)
is the vector obtained by collecting x(1), ...,x(k) in a way similar to *z(k) in (6.3)).
Suppose the coefficients a(r) and b(r) are matrices with the same number of rows so
that the difference lz(*z(k)) − lx(*x(k)) is well defined. Then:

Lemma 6.2
The mean and covariance matrix of lz(*z(k))− lx(*x(k)) are determined by the param-
eters {Φ(k)}, {H(k)}, {Q(k)} and {R(k)} of (4.6) and the mean/covariance matrix
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of the start vector x(0) of the x-process, all other distributional assumptions being
irrelevant.

This almost immediate result (which is proved at the end of the section) implies that
the Kalman filter algorithm of section 6.2 still works with the same error estimates, and
with the innovation process having the same properties, except for “uncorrelatedness”
replacing “independence”. This must be so since the statistics considered there is
precisely of the linear form in Lemma 6.2. The only difference when we go to the
non-Gaussian case is that the filter is no longer globally the best one, although it is
still the best procedure available of the linear type. To see this, consider, for simplicity
a scalar x-process. Let E represent expectation with respect to some general noise
processes whereas Eg is with respect to Gaussian noise with the same {Q(k)} and
{R(k)} sequences as in E. Then, with l(*z(k)) a linear function of z(1), .., z(k)

E[(x̂(k|k) − x(k))2] =Eg[(x̂(k|k) − x(k))2]

≤Eg[(l(*z(k)) − x(k))2]

=E[(l(*z(k)) − x(k))2],

utilizing that x̂(k|k) is optimal under Gaussian models (second line) and that E
and Eg, according to lemma 6.2, have the same effect on linear statistics (first and
third line). Hence, x̂(k|k) cannot be worse than any other linear method lz(*z(k)) as
estimator for x(k). This argument can clearly be applied to any element of a vector
process x(k).

Proof of Lemma 6.2 Substitute H(r)x(r) + v(r) for z(r) in the expression for
lz(*z(k)). Then

lz(*z(k)) − lx(*x(k)) =
k∑

r=1

a(r)v(r) +
k∑

r=1

b(1)(r)x(r),

where b(1)(r) are new coefficients, determined by the old b(r), a(r) and H(r). Now,
eliminate successively x(k) (by inserting Φ(k − 1)x(k − 1) + w(k − 1)), then x(k − 1)
(using Φ(k−2)x(k−2)+w(k−2) as replacement) and so forth until all of x(k),x(k−
1), ...,x(1) have disappeared, and we are left with

lz(*z(k)) − lx(*x(k)) =
k∑

r=1

a(r)v(r) +
k∑

r=1

b(2)(r)w(r − 1) + b(2)(0)x(0),

where {b(2)(r)} is another set of coefficients, related to the former b(1)(r)’s and the
Φ(r)’s. The conclusion of the lemma follows from this. Take, for example, the covari-
ance (which is more complicated than the mean). Since all the random variables on
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the right are uncorrelated by assumption, the covariance matrix of the sum follows
by summing the covariance matrices of the individual terms. Hence,

VAR[lz(*z(k)) − lx(*x(k))] =
k∑

r=1

a(r)R(r)a(r)T +
k∑

r=1

(b(2)(r))Q(r − 1)(b(2)(r))T

+ (b(2)(0)VAR[x(0)](b(2)(0))T

showing that only the covariance matrices {Q(r)} and {R(r)} matter for the covari-
ance of lz(*z(k)) − lx(*x(k)), as stated. !

6.6 The Kalman filter for non-zero input variables

As mentioned in the beginning of this chapter, the derivation of the Kalman filter
becomes more simple notationally when there are no deterministic input terms avail-
able. The mathematics is, however, just as easy as for non-zero input vectors. In this
section we will present the recursive algorithms for this case.

The stochastic state model is now defined by (4.5) Note first that since the input
terms u(k) are deterministic and known, they do not influence on the uncertainty
involved. The updating equations (6.13) for calculating the covariance matrix P(k|k)
for the estimation error therefore remains unchanged.

Concerning the estimate itself, the modification needed in this case is to add an
additional term Ψ(k − 1)u(k − 1) to the prediction estimate x̂(k|k − 1). However,
because the input term does not go into the observation model (4.5b), the filtering
(or updating) part remains unchanged, giving the following recursive equations:

x̂(k|k − 1) = Φ(k − 1)x̂(k − 1|k − 1) + Ψ(k − 1)u(k − 1) (prediction) (6.27a)

x̂(k|k) = x̂(k|k − 1) + K(k)(z(k) − H(k)x̂(k|k − 1)) (updating) (6.27b)

6.7 Problems

Exercise 6.1 (Properties of AR(1) models)
We will in this exercise study a simple state space model with a state variable x(k)
and an observation z(k) for k = 1, . . .. Consider the non-observable x-process first.
Assume that x(k) = ax(k − 1) + w(k − 1) for k = 1, . . . where a is a parameter and
w(k) is white noise. It is assumed that var[w(k)] = Q. Also assume that E[x(0)] = 0
and Var[x(0)] = Px(1).

From Exercise 5.3 we know that E[x(k)] = 0 and Px(k) = Var[x(k)] is given by
Px(k) = a2Px(k − 1) + Q. Further, Px(k) = Q

∑k
j=1 a2(j−1) + a2kPx(1).
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(a) What happens with Px(k) when k → ∞? Handle the cases |a| < 1, |a| = 1
and |a| > 1 separately.

(b) Show that cov[x(k), x(k − j)] = ajPx(k − j). Decide from this, for a fixed j and
|a| < 1, the limit limk→∞ Cov[x(k), x(k − j)],

(c) Specify the correlation corr[x(k), x(k − j)]. Also for the correlation, calculate
the limit limk→∞ Corr[x(k), x(k − j)], for |a| < 1.

(d) Assume the process {x(k)} has been running for a long time. How would you
from the calculations above characterize the statistical properties of the process
when |a| < 1? How does a influence on the behavior of the process?

(e) Simulate the process in Matlab for different values of a, f.ex. a = −2,−0.8, 0, 0.5,
0.8, 1, 2. Use Q = 1.

Exercise 6.2 (Analytical calculations of Kalman filter)
We will consider the same process as in Exercise 6.1. In practice, x(k) is only observed
indirectly through the process {z(k)}. Assume z(k) = hx(k) + v(k) for k = 1, 2, . . .
where v(k) is white noise with Var[v(k)] = R. The two noise processes {w(k)} and
{v(k)} are assumed to be independent of each other. This implies that {v(k)} and
{x(k)} are independent if {v(k)} is independent of x(1). We will make this assump-
tion.

(a) Calculate E[z(k)] and Var[z(k)]? What happens with Var[z(k)] when k → ∞?
Discuss this for different values of a.

A quantity of interest when analyzing series of data is the so-called signal to noise
ratio. In our context it is defined as

SR =
var[hx(k)]

var[v(k)]
,

that is the ratio of the variances between the two terms which is contained in z(k).
The nominator is the variance of the term “explained” by the underlying system model
(the signal) while the second term is the variance of the “unexplained” or noise term.

(b) What is the signal to noise ratio in the particular model under study? You may
consider the case k → ∞ if you find this relevant.

Let x̂(k|k−1) be the optimal estimate of x(k) based on the observations z(1), . . . , z(k−
1) and let x̂(k − 1|k − 1) be the optimal estimate of x(k − 1) based on the same
observations. Assume all processes are Gaussian.
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(c) Consider the following question: Which variables in the model is it natural to
assume are Gaussian?

(d) Show that x̂(k|k − 1) = ax̂(k − 1|k − 1).

(e) Find the innovation process. What are the most important statistics properties
of this process? Discuss and give mathematical expressions where you find it
relevant.

(f) Apply the Kalman filter to calculate x̂(k|k) based on x̂(k|k − 1) and the inno-
vation. Find a recursive formula for the Kalman gain.

We will assume there is no system noise in the following, that is w(k) = 0.

(g) Try to solve the recursion for the Kalman gain by finding an expression for it.

(h) Also find an expression for the variance to the estimation error x̂(k|k) − x(k),
that is P (k|k) = E[(x̂(k|k) − x(k))2]

(i) Discuss how the expressions in (g) and (h) depend on a.

(j) Try now to vary Q and R and inspect how the stationary value for the Kalman
gain changes. Do the results fit with your intuition?

Exercise 6.3 (Applications of the Kalman filter)
We will consider further the system discussed in Exercises 6.1 and 6.2. In Exercise 6.2
(g) we ended up with the recursive formulae for the Kalman filter.

(a) Try to make a block-diagram for the process and the filter (Hint: The simulink
system in Matlab can be used for drawing block-diagrams.)

(b) Explain which part that is the “real world” and which part that takes place in
the computer. Why is it that the Kalman filter can be perceived as a process
model which runs in parallel with the system? How is it “corrected” or updated
in the filter?

(c) Simulate the system without the Kalman filter in Matlab . Let N (the number
of observations) be 100. Use a = 0.9, h = 1, Q = 1 and Px(1) = 1. Try both
R = 0.1 and R = 1. Plot the x-process as a solid line and the z-process as point
around the state.

(d) Apply the Kalman filter to reconstruct the x process from the observations. Try
for both values of R. Plot the true and estimated x-process in the same figure.
You may also add the observations.
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(e) Plot the Kalman gain and the variance of the estimation error P (k|k). Justify
that P (k|k) is correct by generating many realizations of the estimation error
and estimate its variance and mean at each time point for some k’s.

(f) Now put Px(1) = 0 and Px(1) = 100. Again calculate the Kalman gain and
corresponding P (k|k)’s. Compare and interpret what you see.

(g) It looks like the Kalman gain and the variance of the estimation error approaches
some stationary values for increasing n. Argue that this is reasonable. Find the
stationary values analytically and compare with the numerical values.
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Chapter 7

Examples from statistics

The purpose of this chapter is to demonstrate how linear state space modeling unify
linear statistical techniques such as linear regression, analysis of variance and time
series (ARMA) models. It is good training to work out how these models can be put
in state space form. It is also practically useful in that the superior data processing
capability of the Kalman filter becomes available. Missing observations is a case
in point. Many papers in statistics have in the past been devoted to this issue for
particular models, but the simplest and most general way is to let the Kalman filter
take care of it. This requires the model to be written in state space form. We
shall consider three main types of situations. Linear regression with one explanatory
variable is treated in Section 7.1, while multiple regression is the topic of Section 7.2.
The chapter is closed in Section 7.3 with a discussion of time series models.

7.1 Regression with one explanatory variable

Basic formulation The traditional linear regression model relates response z(k)
and explanatory variable x(k) through

z(k) = α + βx(k) + v(k), (7.1)

where α and β are coefficients and v(k) independent errors with mean 0. (7.1) can
be written in state space form. Formally, take α(k) = α and β(k) = β and note the
trivial relationship

(
α(k)
β(k)

)
=

(
1 0
0 1

)(
α(k − 1)
β(k − 1)

)
+

(
0
0

)
(7.2a)

which can be used as the system equation. The measurement equation is (7.1), or
when rewritten in state space form

z(k) =
(
1 x(k)

) (
α(k)
β(k)

)
+ v(k). (7.2b)

71
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Note that {x(k)} in this case are known coefficients without errors. Regression data
can then be fit by running the Kalman filter. The estimates α̂(N |N) and β̂(N |N) at
the end of the series coincides with the ordinary least squares estimates. This must
be so since Kalman filtering is optimal in least squares sense and since α = α(N)
and β = β(N). Although the exercise may seem pointless since there is already a
satisfactory numerical procedure available, the state space based approach is much
easier to generalize.

Bayesian regression Recall that (7.2a) amounts to a constant sequence of α(k),
β(k), the values being defined by the initial values. The Kalman filter is fed informa-
tion of the form

E[α(0)] = α0, var[α(0)] = σ2
α

E[β(0)] = β0, var[β(0)] = σ2
β

defining what is known about the regression coefficients in advance1. The means α0,
β0 and the variances σ2

α, σ2
β are under the control of the user. The traditional least

squares solution is obtained by letting σα → ∞ and σβ → ∞. For finite σα and σβ

we have Bayesian analysis where what is known about the regression coefficients in
advance is combined with information from the data.

Autocorrelated errors Another possibility is to work with models where the error
terms v(k) in (7.1) are serially correlated (colored noise), which is often of importance
in economics and for industrial data. Autocorrelated errors will be discussed more
generally in section 7.3, but let us here consider a simple example. Assume v(k) =
av(k − 1) + ε(k − 1), which is the autoregressive model of order 1. The regression
model (7.1) with such a specification of the errors can be represented in state space
form by adding a line to (7.2a), i.e.




α(k)
β(k)
v(k)



 =




1 0 0
0 1 0
0 0 a








α(k − 1)
β(k − 1)
v(k − 1)



 +




0
0

ε(k − 1)





and replacing (7.2b) by

z(k) =
(
1 x(k) 1

)



α(k)
β(k)
v(k)



 .

The state space approach also has a potential for allowing the regression coefficients
to fluctuate in time. This is very simply accommodated by replacing zeros on the

1A possible initial correlation corr[α(0),β(0)] is neglected in this case.
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right in the preceding system equation by random terms. The effect when estimating
α(k) and β(k) from a record of observations is that less credence is assigned to old
data than more recent ones. The state space approach thus yields a prescription for
downgrading information. This aspect is much discussed in forecasting, and several
methods proposed there are in reality special cases of Kalman filtering.

7.2 Multiple linear regression

The construction in the preceding subsection extends immediately to p explanatory
variables x1(k), ...., xp(k). Replace (7.1) by

z(k) = α + β1x1(k) + . . . + βpxp(k) + v(k), (7.3)

which can be put into state space form in the manner described in the preceding
subsection. To see this replace (7.2a) by






α(k)
β1(k)

...
βp(k)






=






1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1











α(k − 1)
β1(k − 1)

...
βp(k − 1)






+






0
0
...
0






. (7.4)

All the remarks in the preceding subsection applies to this multiple regression model
as well. We shall here briefly discuss another aspect. It is well known that multiple
linear regression contains a number of special cases, of high interest, for example
analysis of variance and analysis of covariance, which comes out when some (or all) of
the explanatory variables {xj(k)} are binary. Consider an example where each unit
on which the response z(k) has been observed, belongs to one of g groups. There is
an additional explanatory variable, called xg+1(k) for reasons given shortly. A model
often used in such a situation2 is

z(k) = βi + xg+1(k)βg+1 + v(k), if k belongs to group i. (7.5)

There are separate parameters βi characterizing the groups and an effect βg+1xg+1(k)
from the additional variable. By defining for each i

xi(k) =

{
1 if unit k belongs to group i,

0 otherwise,

the model can be written

z(k) = β1x1(k) + . . . + βgxg(k) + βg+1xg+1(k) + v(k),

2leading to an analysis often called analysis of covariance.
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clearly a special case of (7.3). This type of construction can be extended to several
grouping variables so that any analysis of variance model can be handled by (7.3).
Note that this, in turn, yields all the benefits detailed in the preceding subsection.
In particular, so–called model II cases (where the β-coefficients are stochastic), can
be handled, and this is advantageous since they may, in the traditional setting, be
somewhat cumbersome computationally.

7.3 Time series models

Much statistical modeling is concerned with data containing a time element. The
examples to follow are special cases of a huge body of techniques known in statistics
as time series models. A common view, especially in economics, is to regard the
observed data, say z(k), as a superposition of three different effects. Thus assume

z(k) = T (k) + S(k) + v(k), (7.6)

where T (k) is a so–called trend, accounting for, in some sense, persistent growth (or
decline), S(k) represents seasonality, i.e variations due to annual, monthly, weekly
or even daily cycles, whereas v(k) stands for short-term fluctuations caused by other
factors. Although there is in a mathematical sense no clear-cut distinction between
the three effects, they represent nevertheless a useful conceptualization for modeling.
We shall now present several different formulations, and demonstrate how they can
be put into a state space form.

Growth Suppose first that there are no seasonal effects so that (7.6) reads

z(k) = T (k) + v(k), (7.7)

One way to represent the trend T (k) is to assume that

T (k) =T (k − 1) + β(k − 1) + w1(k − 1) (7.8a)

β(k) =β(k − 1) + w2(k − 1), (7.8b)

which coincides (in different notation) with the system process of the linear growth
model in Section 6.4 (see the discussion after Example 1). If the short-term fluctua-
tions are modeled as an independent (white noise) process, we have the same linear
growth model as in Section 4.1, and the discussion there is valid in the present sequel
too. Suppose, however, that the v-process in (7.6) fails to satisfy the independence
assumption. It may in practice easily happen that such serial correlations represent
important effects. For example, short–term fluctuations in economics are rarely inde-
pendent from one point in time to the next one. One possible formulation is through
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an autoregressive process of order 1, usually denoted AR(1)). Then v(k) is given by
the recursion

v(k) = av(k − 1) + ε(k − 1). (7.9)

Here the coefficient a satisfies |a| < 1 and ε(k) is a white noise process as before. (7.9)
is in engineering often called a Markov process. It can be proved that the process,
after starting far back, reaches a stationary condition where the distribution is the
same for all k (see Exercise 5.3). This is usually a reasonable modeling assumption to
make. The mean is then 0, and it can under these circumstance also be established
that

corr[v(k), v(k + τ)] = aτ , τ > 0

independent of k. The model can capture serial correlations by adjusting the coeffi-
cient3 a.

Suppose we want to work with a model which is a combination of (7.7), (7.8) and (7.9).
Such a model can be put into a state space form as follows. Take as the system
equation




T (k)
β(k)
v(k)



 =




1 1 0
0 1 0
0 0 a








T (k − 1)
β(k − 1)
v(k − 1)



 +




w1(k − 1)
w2(k − 1)
ε(k − 1)



 ,

and let

z(k) =
(
1 0 1

)



T (k)
β(k)
v(k)





be the measurement equation. Note that v(k) is made part of the system process by
this construction. Also note that there is no error term in the measurement equation.
This is perfectly legal and corresponds to R(k) = 0 in the general model of Section 4.2.
Note that even though R(k) is not positive definite in this case, the inverse of S(k)
will exist. The variance matrix of the three error terms w1(k), w2(k) and ε(k) could
be




Q11 Q12 0
Q21 Q22 0
0 0 Q33



 ,

ignoring a possible dependence on k. Note the zeros which express a likely indepen-
dence between v(k) and the error terms w1(k) and w2(k).

3If the condition that |a| < 1 is violated, the process either, if |a| = 1, wander over the whole real
line, coming occasionally infinitely far from the mean value 0, or, if |a| > 1 become explosive and
turns to infinity.



76 CHAPTER 7. EXAMPLES FROM STATISTICS

Seasonality Consider seasonal effects next. As an extremely simple example, sup-
pose there are only two seasons, say summer and winter or day and night. It seems
reasonable to describe the effect of seasonality as opposite numbers for each season,
i.e.

S(k) =

{
δ, if summer,

−δ, if winter.

This can also be written S(k) = −S(k − 1), or, if slight perturbations in this deter-
ministic pattern is allowed

S(k) = −S(k − 1) + w3(k − 1), (7.10)

where w3(k) is another error process. The model obtained when this seasonal effect
is added to the former model (7.7–7.9), has a state space representation






T (k)
β(k)
S(k)
v(k)




 =






1 1 0 0
0 1 0 0
0 0 −1 0
0 0 0 a











T (k − 1)
β(k − 1)
S(k − 1)
v(k − 1)




 +






w1(k − 1)
w2(k − 1)
w3(k − 1)
ε(k − 1)




 ,

z(k) =
(
1 0 1 1

)






T (k)
β(k)
S(k)
v(k)




 .

In practice, there are often more than two seasons (for example four in quarterly data
or twelve in monthly ones). These situations can also be expressed in state space
form, although with more involved representations.

Autoregression Take T (k) = µ (µ constant), remove the seasonality and concen-
trate on the modeling of short–term fluctuations. (7.6) now reads

z(k) = µ + v(k) (7.11a)

There is an enormous statistical literature on models for v(k). We have already met
the AR(1)–model in (7.9). An important extension is

v(k) = a1v(k − 1) + a2v(k − 2) + . . . + apv(k − p) + ε(k − 1) (7.11b)

which exhibits stationary behavior in the sense described earlier when the coefficients
a1, . . . , ap satisfy a mathematical condition that has been worked out and is available
in standard textbooks on the subject (an alternative is to invoke Theorem 4.1). (7.11b)
is known as an AR(p) model. A state space representation of (7.11a), (7.11b) can
easily be constructed, for example for p = 4:
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T (k)
v(k)
v(k − 1)
v(k − 2)
v(k − 3)






=






1 0 0 0 0
0 a1 a2 a3 a4

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0











T (k − 1)
v(k − 1)
v(k − 2)
v(k − 3)
v(k − 4)






+






0
ε(k − 1)
0
0
0






z(k) =
(

1 1 0 0 0
)






T (k)
v(k)
v(k − 1)
v(k − 2)
v(k − 3)






.

The system process has five components, three of them being earlier numbers of the
v–process. That is perfectly legal and so is the many zeros in the five–dimensional
error process (a zero means that the corresponding variance is 0). This exercise is
useful in practice, since the Kalman filter is by far the most convenient way of filling
out gaps in the series. Technically this is accomplished along the line discussed in
Section 4.3.

Moving average State space representations are probably even more useful for
the other, main linear model for stationary time series, the so–called moving average
(MA) model. Replace (7.11b) with

v(k) = ε(k) + b1ε(k − 1) + . . . + bqε(k − q), (7.12)

where ε(k), as usual, is a white noise process. (7.12) is, for short, designated MA(q).
The following state space representation is available for (7.12), say when q = 3:






T (k)
ε(k)
ε(k − 1)
ε(k − 2)
ε(k − 3)






=






1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0











T (k)
ε(k − 1)
ε(k − 2)
ε(k − 3)
ε(k − 4)






+






0
ε(k)
0
0
0






z(k) =
(
1 1 b1 b2 b3

)






T (k)
ε(k)
ε(k − 1)
ε(k − 2)
ε(k − 3)






.

The point of the exercise is again that the Kalman filter is offered to perform computa-
tions. MA–models are harder to handle technically by other methods than AR-models
were. Combination models containing both AR and MA terms (so–called autoregres-
sive moving average (ARMA) models) are often useful, and extensively discussed
in statistical literature. State space formulations are again useful, although omitted
here.
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7.4 Problems

Exercise 7.1 (Linear regression with autocorrelated noise)
Consider the linear regression model with autocorrelated errors in Section 7.1 with

x(k) =
√

k. Our aim is to estimate α and β.

(a) Write a general routine for the Kalman filter for this model.

(b) Why is there no use in performing smoothing on such a model?

(c) Simulate a set of realizations of length N = 20 from the model with α = 0.0, β =
1.0, Q = var[ε(k)] = 1 and a = −1.0,−0.75, 0.5, 0.0, 0.25, 0.5, 0.75, 1.0. For each
set of realizations, estimate α and β.

(d) Make a plot of |α̂− α| against a. Do you see any pattern?

(e) Now make a plot against a of the standard deviations for the errors involved in
estmating α. Comment on the result. In particular, compare the behavior for
a < 0 with a = 0. Try to understand this.

(f) Repeat (d) and (e) but now consider β̂.

Exercise 7.2 (AR modeling)
Fitting autoregressive models to data serier is a large field and Matlab is well equipped
here, such as the command ar (try help ar and help theta to get some information
on how to use this routine). We will consider the difference equation

z(k) + cz(k − 1) + dz(k − 2) = w(k − 1), k = 2, 3, . . .

where c = 0.8, d = 0.15 and w(k − 1) for a given k is a Gaussian distributed random
variable N (0, 0.2). Let z(0) and z(1) be Gaussian N (5, 1).

(a) Generate some realizations of z(k) for k = 0, . . . , 100 and plot the results.

(b) Write the model in state space form.

(c) You should have ended up with a model with no measurement noise. In such
cases we are not guaranteed that S(k) can be inverted (see Section 6.2). Make
sure that there will be no problems in this case.

(d) Show that the system is asymptotically stable. How do you think this property
influence on the behavior of the sequence {z(k)}.

(e) Show that the system is observable and stochastic reachable.



Chapter 8

Additional aspects of the Kalman
filter

In this chapter we will discuss various aspects concerning the Kalman filter. In Sec-
tion 8.1, we will give a brief discussion of the important topic of stability of the
Kalman filter algorithm. For a time – invariant system with constant noise covariance
matrices (Q,R), stability means that the error covariance matrix P(k|k) approaches
a unique matrix P ,independent of the initial condition, as k increases (note that this
is a different matrix than the one discussed in Section 4.2). This is important in its
own right and is also necessary for numerical errors not to accumulate during the
recursions.

Following on from this is a brief treatment of different but algebraically equivalent
covariance recursions (Section 8.2). Several versions exist and some of them give
additional insight into how the Kalman filter works. We also mention recursions
that effectively compute the square root of the covariance matrix, thus limiting the
numerical range of the matrix elements involved. Such recursions generally have better
numerical properties and may be important in real time applications.

So far, we have assumed that our model (comprising the state space equations and
statistical assumptions) are sufficiently accurate to neglect model errors. However,
in any real application the model forming the basis for the Kalman filter will differ
from the “reality” giving rise to the observations. This may lead to the problem of
filter divergence, where the diagonal terms of the filter error covariance matrix give
a completely wrong picture of the performance of the filter. Typically, the diagonal
terms would indicate that the filter works properly, while the estimates in reality
have much larger errors. An assessment of the real filter performance is central in any
application and some useful techniques will be discussed in the final Section 8.3.

79
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8.1 Stability of the Kalman filter algorithm

The stability results are cumbersome to prove and we will only show an example and
state some main facts. For more throughout discussion, we refer to [8].

Example 1 (A moving body, cont.)
Continuing with our two–dimensional moving body example, assume now that only
the component x2 is measured (in contrast to our discussion in Section 6.4 where x1

was measured). Figure 8.1 shows the estimation error standard deviations in this case.
Now only the standard deviation for the error in x2 reaches a stationary value, while
the error in x1 diverges. (Verify this by trying more iterations yourself.) Although
the filter still does a lot better than pure prediction from initial conditions alone (cf.
Figure 6.4), the error divergence is undesirable; in a sense the filtering problem is
ill–posed. !

The reason for the problem in this example turns out to be that the system is not
observable (cf. Section 2.2). It is interesting that the deterministic property of ob-
servability plays a role in stochastic filtering but, with hindsight, this may not be too
surprising. It can be shown that if a deterministic system is unobservable, a compo-
nent of the state vector within a certain subspace has no effect on the observations (in
our example above, the state x1 could have been removed from the system equation
without changing the distribution of the observations). Running the Kalman filter in
the stochastic case, it seems reasonable that the uncertainty associated with the un-
observable state component will depend on the initial uncertainty and possibly grow
with time. We will see shortly that the deterministic reachability concept also comes
into play.

Consider the general state space model in eqns. (4.6a) and (4.6b). We will only state
results for time–invariant systems; i.e. Φ,H,R, and Q are all constant matrices
independent of k. Assume that the system is observable in the sense of Definition 2.2;
i.e. the matrix

Wo =






H
HΦ
...
HΦn−1






has rank n. Further, if we formally apply the reachability criterion with w(k − 1) as
the input, we have Wc =

(
In Φ · · · Φn−1

)
which clearly has rank n. The system

is therefore what is denoted stochastically reachable. Intuitively, this means that
the noise affects the whole state space. (Note that there exist other formulations of
the stochastic state space model that are not necessarily stochastically reachable.)

We then have the following result:



8.1. STABILITY OF THE KALMAN FILTER ALGORITHM 81

0 2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16
Error standard deviations for x1

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3
Error standard deviations for x2

Time, k

Figure 8.1: Standard deviations for the errors in x̂(k|k) (solid) and x̂(k|k − 1) (dashed).
Here only x2 is measured. The parameters are as in Figures 6.2 and 6.3.

Theorem 8.1
Assume the system in eqns. (4.6) is time–invariant , observable, and stochastically
reachable. Furthermore, R and Q are assumed positive definite. Then:

(a) For any symmetric and positive definite matrix P(0|0), P(k|k) converges uni-
formly to a unique matrix P. This also implies that K(k) converges to a constant
matrix K.

(b) Define the steady state Kalman filter as the one using the gain matrix K.
We have x̂(k|k) = x̂(k|k − 1) + K(z(k) − Hx̂(k|k − 1)) = (Φ − KHΦ)x̂(k −
1|k − 1) + Kz(k). This filter is asymptotically stable, i.e. all eigenvalues of
(Φ− KHΦ) lie within the unit circle.

These results are important in practice since they provide necessary conditions for the
error covariance matrices to converge independently of the initial condition P(0|0).
They also guarantee numerical stability of the filter equations. For further details,
see [12].
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8.2 Equivalent forms of the variance recursion

In Chapter 6, the covariance equations (6.13) were derived. There are several alter-
native but algebraically equivalent sets of recursive equations. These may sometimes
be useful in terms of improved numerical properties or they may be used to enhance
the interpretation of the Kalman filter.

8.2.1 The information filter

This section includes some matrix results which are useful to be aware of. To show
these results requires a level of proficiency in matrix manipulations that a serious
student of Kalman filtering should master. Central is the so-called Matrix Inversion
Lemma which states the following:

Lemma 8.1 (Matrix Inversion Lemma)
Let A (n × n) be a nonsingular matrix and let B and C both be n × m matrices.
Suppose both (A + BCT ) and (Im + CTA−1B) are nonsingular. Then

(a) (A + BCT )−1B = A−1B(Im + CTA−1B)−1.

(b) (A + BCT )−1 = A−1 − A−1B(Im + CTA−1B)−1CTA−1.

The proof of the lemma is given in Exercise 8.1. Basically, it allows us to derive the
following relationships from the standard variance recursion (see Exercise 8.2 on how
to prove these):

P(k|k − 1)−1 = [In − B(k − 1)]A(k − 1) (8.1a)

P(k|k)−1 = P(k|k − 1)−1 + H(k)TR(k)−1H(k) (8.1b)

A(k) = Φ(k)−1P(k|k)−1Φ(k)−1 (8.1c)

B(k) = A(k)[A(k) + Q(k)−1]−1 (8.1d)

Eqns. (8.1) are relationships between inverse covariance matrices. It allows us to
run a recursive algorithm for calculating the inverse of P(k|k − 1). An inverse of a
covariance matrix is usually named the information matrix. Small noise variances
leads to more specific knowledge about the variables, that is more information. The
recursions (8.1) are therefore called the information filter. The equations above are
sufficient for calculating (the inverse of) P(k|k). In order to calculate the estimates,
the Kalman gain is needed. The relationship

K(k) = P(k|k)H(k)TR(k)−1 (8.2)

is then available.
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A few remarks relating these recursions to the ordinary ones given in (6.13) are in
place.

In Section 4.3 we discussed the use of diffuse priors where the diagonal elements of
P(0|0) were put to infinity. When using the ordinary filter, only an approximative
solution is possible by substituting infinity with a sufficiently large number. For the
information filter, an exact solution is directly available by putting P(0|0)−1 equal to
zero.

The information filter requires the inversion of A(k)+Q(k)−1 (an n×n matrix), while
the ordinary filter require the inversion of S(k) (an m ×m matrix). A comparison of
the computational burden involved for the two filters will therefore depend on n and
m.

Because of the need for inversion (and thereby existence) of Φ(k)−1 and Q(k)−1, the
information filter is usually less attractive than the ordinary filter. An important
interpretation of the estimation procedure can however be found from (8.1b). Clearly,
it shows that P(k|k − 1)−1 ≤ P(k|k)−1.1 It can be shown that this is equivalent
to P(k|k) ≤ P(k|k − 1) which tells us that trace(P(k|k)) ≤ trace(P(k|k − 1)). In
other words, the sum of the estimation error variances never increases as a result of
a measurement update. This reflects the fact that the uncertainty of an estimate
decreases as the amount of data increases.

Intuitively, one sees from (8.1b) that the more accurate the observations are (implying
small elements in R(k) and large elements in R(k)−1), the larger the trace of P(k|k)−1,
and the smaller the trace of P(k|k).

Eq. (8.2) is not very useful from a practical algorithmic point of view. But it tells
us that if P(k|k) has somehow been obtained, the gain matrix can be viewed as a
“ratio” between the estimation error variance and the measurement error variance.
If, for example, P(k|k) increases due to increased system noise, then K(k) will also
increase and the measurements are weighted more heavily in the filter measurement
update step (for fixed R(k)) so that the residuals become relatively more important.

8.2.2 More versions of the variance recursions

Today, practical Kalman filters are often implemented using covariance recursions
based on factorizations of the error covariance matrices. This offers advantages in
terms of increased numerical precision without increasing the computation time sig-
nificantly. Actually, this is a rather well developed field with many available sets of
equations. One possibility is to compute a so–called square root M(k) of the error
covariance matrix where P(k|k) = M(k)M(k)T . (Note that square roots of symmetric
matrices are not unique.) This effectively doubles the numerical precision because if

1Given two matrices A and B of the same dimension, A ≥ B means that A − B is positive
semidefinite. This in turn implies that trace(A) ≥ trace(B).
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System
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Kalman filter
x(k|k)

Reality or
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Computer algorithm

Figure 8.2: The relationship between the Kalman filter and the real system or simulated
versions of the real system.

the elements in P(k|k) range from 2N to 2−N , those of M(k) will range from 2N/2 to
2−N/2. For more on this see [12]; [6].

8.3 Assessing modeling errors

Our experience is that this topic seems to be conceptually somewhat difficult to grasp.
We will therefore take some effort to explain the main ideas. Figure 8.2 shows the
relationship between the Kalman filter and the real system whose states the filter
estimates. During a design phase, one typically does not process data from the real
system but tests the filter on simulated versions of the real system.

We imagine now that the system is described by the matrices Φ,H,R,Q, µ(0) and
P(0|0). Under optimal conditions, the filter is based on these same matrices. In
this section, the problem is to assess a filter based on Φ∗,H∗,R∗,Q∗, and P∗(0|0)
processing measurements from the system. You may, of course, ask why anyone
would want such a filter. In situations where the correct matrices are known, one
then deliberately chooses a suboptimal filter rather than the optimal one. This could
be the case, for example, if the optimal filter is computationally too demanding in
a real time application. However, the most common situation is that the correct
matrices are only more or less well known. To design a filter, one has to select a set
Φ∗,H∗,R∗,Q∗, and P∗(0|0). How then can the performance of this filter be assessed?
Well, somebody once said that no amount of simulation trickery can replace missing
information, so to really answer this question you simply have to try the filter in
reality. But as ardent computer fans, we will still claim that simulations may be
useful also in this case because you can pose so–called “what if” questions and get
the answers by simulations. For instance, you may think that the diagonal elements
of Q(k) and R(k) lie between certain boundaries. If this is the case and you base
your filter on some Q∗(k) and R∗(k), the computer will give you the boundaries for
the error variances. Doing this, you will hopefully end up entering the real world with
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a filter that is less likely to fail 2.

In the following, it is convenient to separate between to types of modeling errors.

• The elements in error covariance matrices P(0|0),Q(k), and R(k) may be mis-
specified but the matrices Φ(k) and H(k) describing the system are correct.

• All matrices may be misspecified and even the dimension of the filter may be
different from that of the real system.

8.3.1 Updating the covariance matrix for an arbitrary gain
matrix

In some cases one could prefer to use a Kalman gain K∗(k) different from the optimal
choice K(k). This may be because K∗(k) is easier to compute or in order to make
the procedure more robust. Filters using such gain functions are called suboptimal
Kalman filters.

Consider the filter equations in eqns.(6.12) and assume that we apply some gain matrix
K∗(k) of our own liking instead of the optimal K(k). Now using index ∗ to indicate
that the estimates are based on K∗(k), the filter then becomes

x̂∗(k|k − 1) = Φ(k − 1)x̂∗(k − 1|k − 1) (prediction) (8.3a)

x̂∗(k|k) = x̂∗(k|k − 1) + K∗(k)(z(k) − H(k)x̂∗(k|k − 1)) (updating). (8.3b)

As long as K∗(k) += K(k), this filter is suboptimal in the sense of Theorem 5.1.
But K∗(k) may still be preferable because we have made it very simple to compute
and are therefore willing to accept some destruction in performance compared to the
optimal filter. For example, we could set K∗(k) constant and equal to the stationary
gain matrix K. Denoting the real error covariance matrices involved using estimator
x̂∗(k|k−1) by P(k|k−1), we now show that the error covariance matrices of the filter
in (8.3) are governed by the recursion

P(k|k − 1) =Φ(k − 1)P(k − 1|k − 1)Φ(k − 1)T + Q(k − 1) (8.4a)

P(k|k) =(In − K∗(k)H(k))P(k|k − 1)(In − K∗(k)H(k))T

+ K∗(k)R(k)K∗(k)T . (8.4b)

Eq. (8.4a) follows immediately since the prediction step is the same as for the optimal
filter. To see eq. (8.4b), note that

x(k) − x̂∗(k|k) = (In − K∗(k)H(k))(x(k) − x̂∗(k|k − 1)) − K∗(k)v(k).

2Entering a more philosophical mode, one may take the position that no model is ever really
correct. For instance, truly linear systems may never exist. Our model is always an approximation.
This is true, so what we have been discussing is the situation where modeling errors are negligible
compared to the case where they are significant as judged by the modeler.
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Taking the covariance matrix on both sides, we obtain the desired relationship.

In the next section we will utilize the recursion eqns. (8.4a) and (8.4b) to assess
the performance of a suboptimal filter resulting from misspecification of the matrices
P(0|0),Q(k), and R(k).

Now consider the case where K∗(k) = K(k). Then we see, somewhat surprisingly,
that (6.13d) can also be written as

P(k|k) =(In − K(k)H(k))P(k|k − 1)(In − K(k)H(k))T

+ K(k)R(k)K(k)T . (8.5)

Numerically, an advantage of this equation is that it will ensure a symmetric P(k|k).
As an exercise you may want to start with eq. (8.4b) and derive eq. (6.13a). This will
involve some matrix juggling and is good practice.

8.3.2 Misspecified covariance matrices

The suboptimal filter estimates are computed according to

x̂∗(k|k − 1) = Φ(k − 1)x̂∗(k − 1|k − 1), (8.6a)

x̂∗(k|k) = x̂∗(k|k − 1) + K∗(k)(z(k) − H(k)x̂∗(k|k − 1)). (8.6b)

Using the Kalman filter as a black box, we will as output also obtain some covariance
matrices (denoted now P∗(k|k)) obtained through the ordinary recursions

P∗(k|k − 1) = Φ(k − 1)P∗(k − 1|k − 1)Φ(k − 1)T + Q∗(k − 1) (8.7a)

S∗(k) = H(k)P∗(k|k − 1)H(k)T + R∗(k) (8.7b)

K∗(k) = P∗(k|k − 1)H(k)TS∗(k)−1 (8.7c)

P∗(k|k) = (In − K∗(k)H(k))P∗(k|k − 1) (8.7d)

with initial condition P∗(0|0), but with K(k) replaced by K∗(k). This is the apparent
error covariance matrices computed by the suboptimal Kalman filter. Referring to
Section 8.3.1, it is clear that the real error covariance recursion for this filter is given
by the formulae in that section:

P(k|k − 1) =Φ(k − 1)P(k − 1|k − 1)Φ(k − 1)T + Q(k − 1) (8.8a)

P(k|k) =(In − K∗(k)H(k))P(k|k − 1)(I − K∗(k)H(k))T

+ K(k)∗R(k)K∗(k)T (8.8b)

Clearly, P∗(k|k),P(k|k), and P0(k|k) are all different, where P0(k|k) now denotes the
error covariance matrix for the optimal filter, i.e. the one based on P(0|0),Q(k), and
R(k). All we can say is that Pii(k|k) ≥ P 0

ii(k|k).
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Figure 8.3: Assessing suboptimal filter performance in estimating x1(k). The real error
standard deviation is shown together with the standard deviation computed by the subop-
timal filter itself. The standard deviation for the optimal filter is as in Figure 6.3 and is
given as a reference.

Example 1 (A moving body, cont.)
Returning to our two–dimensional example, Figure 8.3 shows three computed error
standard deviations.

Here the initial conditions are correct (P∗(0|0) = P(0|0)), while R∗ = 1 and Q∗ = 0.2I
compared to Q = I and R = 10. Thus the filter becomes suboptimal because it
is based on too small measurement and system noise variances. As a result, it is
overly optimistic regarding its own performance with a stationary standard deviation
somewhat below 1. In reality, the true standard deviation is around 2.5 and that is
almost as low at it can be comparing with the optimal filter. Again you may want to
play with this example using the Matlab code given in the Appendix. !

8.3.3 General modeling errors

There exists recursions to compute the real error covariance matrix when all matrices,
including Φ(k) and H(k) are misspecified. However, these are rather cumbersome and
do not provide much insight. Brute force Monte Carlo simulations are often the best
approach. To illustrate this, assume that the filter designer now includes air resistance
into the model of the body in Figure 1.1 on which the Kalman filter is based. However,
in reality this is negligible (as has been assumed up till now). The filter is based on
the model

(
ẋ1(t)
ẋ2(t)

)
=

(
0 1
0 −f

) (
x1(t)
x2(t)

)
+

(
0

1/m

)
u(t)
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Figure 8.4: Assessing suboptimal filter performance in estimating x1(k) for a filter based
on an erroneous Φ matrix. The real error standard deviation is shown together with the
standard deviation computed by the suboptimal filter itself. The standard deviation for the
optimal filter is as in Figure 6.3 and is given as a reference.

where the assumed air friction coefficient f = 5 provides “drag”. For simplicity, we
assume that u(t) = 0 for all t, but a noise term w(k − 1) with covariance matrix
Q is added to the deterministic version of the model. The filter is now assessed by
producing a large number of realizations of the real state vector (without friction) and
the associated measurements. The suboptimal filter processes these observation. For
each simulation run, the state and the estimate from the suboptimal filter are com-
pared and the error computed. Averaging over a large number of simulations allows
us to estimate the mean and standard deviation of the estimation errors. The result
is shown if Figure 8.4 which is based on averages over 5000 Monte Carlo simulations.
Note that R∗ = 1 and Q∗ = 0.2I as above.

Again the filter is overly optimistic compared to the optimal results but this time a
serious situation occurs since the real standard deviation diverges leading to estimates
that are effectively useless. You may wonder if the estimates are still unbiased (they
may not). Play with the Matlab code and investigate this.

8.4 Problems

Exercise 8.1 (Proof of Lemma 8.1)
(a) Define D = A + BCT . Show that

A−1 = D−1 + D−1BCTA−1
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(Hint: Write In = D−1D and insert for D. Then multiply by A−1.)

(b) Based on the result in (a), show that

D−1B = A−1B(In + CTA−1B)−1

and use this to show part (a) of Lemma 8.1.

(c) Show part (b) of Lemma 8.1.

(Hint: Multiply the expression in (b) by CTA−1 from the right and rearrange
terms.)

Exercise 8.2 (Proof of information filter)
We will in this exercise show equations (8.1b) and (8.2). The remaining equations in
the information filter may be proved similarly [1].

(a) Use (6.13) to show that

P(k|k) =P(k|k − 1) − P(k|k − 1)H(k)T×
{H(k)P(k|k − 1)H(k)T + R(k)}−1H(k)P(k|k − 1)

(b) Rearrange the expression in (a) further to show that

P(k|k) =P(k|k − 1) − P(k|k − 1)H(k)TR(k)−1×
{H(k)P(k|k − 1)H(k)TR(k)−1 + I}−1H(k)P(k|k − 1)

(c) Based on the result in (b), show (8.1b).

(Hint: Apply Lemma 8.1 (b) using A = P(k|k − 1)−1, B = H(k)TR(k)−1, and
C = H(k)T .)

(d) By using the same trick as in (a), (b), show that

K(k) =P(k|k − 1)H(k)TR(k)−1(H(k)P(k|k − 1)H(k)TR(k)−1 + I)−1

(e) Use now part (a) of Lemma 8.1 with A,B and C as in (c) to show that

K(k) =(P(k|k − 1)−1 + H(k)TR(k)−1H(k))−1H(k)TR(k)−1.

(f) Use (e) and (8.1b) to show (8.2).

Exercise 8.3 (Better estimates with more observations)
(a) From the equations in the information filter, we found that P(k|k− 1)−P(k|k)

is always positive semidefinite. Use this to show that

var[aT x̂(k|k)] ≤ var[aT x̂(k|k − 1)]

where a is a vector of length n. Interpret the result.
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(b) Use now Theorem 5.1 to show the result in (a) directly. Based on this, show
then that P(k|k − 1) − P(k|k) must be positive semidefinite.

Exercise 8.4 (Divergence phenomenon)
This exercise illustrates the divergence phenomenon, which occurs when either system
noise or measurement noise or both are small. In such cases the Kalman filter may
give completely wrong results. Consider the simple state space model

x(k) = x(k − 1) + b,

z(k) = x(k) + v(k),

where b is a very small bias, so small that, when we design our Kalman filter, we choose
to neglect it. The noise term v(k) is assumed to be Gaussian with expectation zero
and variance equal to R. Our Kalman filter is based on the following (approximative)
model (equal to the iid variables Example 4 in Section 6.4)

x∗(k) = x∗(k − 1),

z(k) = x∗(k) + v(k).

(a) Show that for the approximative model, the Kalman gain is given by

K(k) =
P (0|0)

kP (0|0) + R
.

What happens with K ∗ k) as k → ∞?

(b) What happens with the estimate x̂∗(k|k) as k increases?

(Hint: Consider the difference x̂∗(k|k) − x̂∗(k − 1|k − 1).)

(c) Compute P ∗(k|k), the covariance matrix for the error terms in the approximative
model. Which impression does the approximative model give on the errors
involved as k → ∞?

(d) The Kalman filter only computes the error variance in the approximate model.
The true error,

ẽ(k|k) = x̂∗(k|k) − x(k)

may however have an error of a quite different magnitude. Show that

ẽ(k|k) =
R

kP (0|0) + R
ẽ(0|0) − P (0|0)

kP (0|0) + R

k∑

i=1

v(i)

+
((k − 1)k/2)P (0|0) + kR

kP (0|0) + R
b.

What happens with ẽ(k|k) as k → ∞?
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(e) Simulate the estimation error for your own choice of parameters.

(f) Summarize the results from this exercise to some general conclusions.

Exercise 8.5 (Suboptimal filtering)
Consider the same model as in Exercise 8.4. Put R = 1, P (0|0) = 1 and b = 0.02.

(a) Assume we know the constant external force b and we want to make an optimal
filter based on this. Compute and plot the error variance for this filter.

(Hint: Use the filter given in Section 6.6.)

(b) Assume still you know b, but we believe that R = 4 and we therefore are
considering a suboptimal filter. Compute and plot the error variance in the
suboptimal filter both for the apparent error (the one we get if we believe in the
wrong error) and the real error.

(c) Assume now that we only know about the appearance of b, but we do not know
about its value. We still believe that R = 4. Construct a suboptimal filter
where the error does not diverge by introducing fictive system noise. Compute
and plot the apparent error variance for this filter.

(d) Generate a large number of realizations of the real estimation error and find its
empirical distribution for some k’s. Compare with the results from (a)-(c).

Exercise 8.6 (Misspecified covariance matrice)
Consider the example in Section 8.3.2. Compute P and P∗ for R∗ = r and Q∗ = 0.2rI
for different values of r. Discuss the results.



92 CHAPTER 8. ADDITIONAL ASPECTS OF THE KALMAN FILTER



Chapter 9

Prediction and smoothing

So far we have been concentrating on “on-line” estimation, that is estimating x(k)
given z(1), ..., z(k). Estimation of x(k) given the observations z(1), ..., z(l) where l += k
is however of interest in many cases. We have only seen one such case, where l = k−1,
resulting in one step a head prediction, for which solutions are given directly from the
Kalman filter. Prediction further into the future will be discussed in Section 9.1.

In many cases, interest is on estimating x(k) given data succeeding time point k (or
tk). Such types of estimation is usually called smoothing. For example, if there is
no need in doing the estimation “on-line”, the data analysis can be performed after,
say, z(1), ..., z(N) is observed. Estimation of x(k) based on all data will then give
more reliable results than only basing the estimation on the data up to time t. In
fact, Theorem 5.1 in Section 5.1 shows that the optimal estimate for x(k) given that
z(1), ..., z(N) is available is

x̂(k|N) = E[x(k)|z(1), ..., z(N)].

Of course, “on-line” calculation of these expectations is not possible, since it is neces-
sary to have observed the later observations. However, the actual calculations of the
estimators can be performed in a very similar manner to the Kalman filter. Note first
that x̂(N |N) is given directly from the Kalman filter at time N . But given x̂(N |N)
we can find an updating equation for x̂(N − 1|N). This can be repeated for finding
x̂(N − 2|N) and so on, making the calculation of x̂(k|N) possible by a backwards
recursion from N to 1. Finding x̂(k|N) for k = 1, ..., N is called the fixed-interval
smoother.

In other cases, we are perhaps more interested in x(k) at a specific time, and we want
to update our estimate for each time a new observation is collected. That is, we want
to calculate x̂(k|j) for j = k, k+1, k+2, .... Also these estimates are available through
recursive calculations, but in this case the calculations is possible to perform on-line.
Such an approach is called fixed-point smoothers. Note that in principle, we could
perform such estimation by using the fixed-interval smoother for N = j. The amount

93
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of calculation involved will however be huge, making this approach less attractive.

The last kind of smoothers we will be considering is the fixed-lag smoothers. In this
case, we are interested in estimating x(k) given the data up to k + L, where L is a
fixed number. Such estimates could be important if for instance the real interest is
in x̂(k|N), but where it is reasonable to assume that observations more than L time-
steps ahead have negligible influence on x(k) given the data up to time k + L. Such
estimates can then be calculated at time k + L instead of waiting for all observations
to be collected.

We will start in section 9.2 with a description on how to perform fixed-point smoothing
since this is the easiest part. Section 9.3 consider fixed-interval smoothing while
Section 9.4 deals with fixed-lag smoothing. Section 9.5 closes the chapter with some
examples.

9.1 Predicting future

In many cases we are interested in predicting the future x(k + j) based on the ob-
servations z(1), ..., z(k). From the Kalman filter algorithm, prediction of the system
vector one step ahead is directly obtainable. Predicting the state further time steps
apart is just as easy to obtain. There are many alternative ways of doing this, but
perhaps the easiest approach is the one based on utilizing the already derived Kalman
filter and the flexibility in our state space modeling. When prediction of x(k + j) is
to be based on z(1), ..., z(k), we may consider the observations z(k +1), ..., z(k + j) as
missing. In Section 4.3 we saw that missing data can be incorporated into the model
by defining H∗(l) = 0 for l = k + 1, ..., k + j. Running the Kalman filter up to time
point k + j by this modified model, the predictions

x̂(k + j|k) = E[x(k + j)|*z(k)]

and the covariance matrix for the corresponding prediction errors

e(k + j|k) = x̂(k + j|k) − x(k + j)

are directly obtained.

Example 1 (A moving body, cont.)
Consider again the moving body example, and assume we want to predict the position
for k + j = 22, 23, ... based on the first k = 21 (simulated) observations shown in
Figure 6.2. The results are shown in Figure 9.1. The upper panel shows the position,
while the lower panel shows the velocity. In both plots, the solid line shows the
estimate xi(l|l) for l = 1, ..., 21 and xi(l|21) for l = 22, ..., 51. The dashed lines shows
the standard deviations for the error added and subtracted from the estimates. Note
(for l > 21) that the errors increase as predictions are made further in time. !
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Figure 9.1: Prediction estimates (solid line) for xi(k + j|k) with k = 21 and j = 1, ..., 30.
The dashed lines show x̂i(k + j|k) ±

√
P (k + j|k). For l < k, the ordinary Kalman filter

estimates x̂(l|l)) ±
√

P (l|l) are shown. Upper panel shows the position while the lower
panel shows the velocity of the moving body example. The computations are based on the
(simulated) observations shown in Figure 6.2.

In time-series analysis, prediction of future observations is of particular interest. Now

ẑ(k + j|k) =E[z(k + j)|*z(k)]

=E[H(k + j)x(k + j) + v(k + j)|*z(k)]

=H(k + j)x̂(k + j|k) (9.1)

and similar arguments result in

var[ẑ(k + j|k) − z(k + j)] = H(k + j)P(k + j|k)H(k + j)T + R(k + j). (9.2)

These formulae can be easily implemented into our filter, making prediction of obser-
vations equally straightforward.

9.2 Fixed-point smoothing

Suppose we wish to estimate x(t) at some fixed point t based on data *z(k). For k < t,
we are in an ordinary prediction situation, and the techniques in Section 9.1 applies.
Our concern in this section will be situations where k > t. In particular, we would
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like to update our estimate of x(t) as new observations z(k), k = t+1, t+2, ... arrives.
In the literature, special recursive equations are derived for performing this updating.
An easier, although perhaps more heavy computational, approach is to utilize the
flexibility of the already derived Kalman filter by modifying our state space model.
In particular, we will, for k > t, add x(t) to the state vector. Denote

x∗(k) =

(
x(t)
x(k)

)
. (9.3)

The system equation in this case becomes

x∗(k) =

(
In 0
0 Φ(k − 1)

)
x∗(k − 1) +

(
0

w(k − 1)

)
, (9.4a)

while the observation equation becomes

z(k) =
(

0 H(k)
)
x∗(k) + v(k). (9.4b)

Denote the estimation error covariance matrices resulting by running the Kalman
filter on this modified state space model by P∗(k|k). Then x̂(t|k) will be directly
available as the first n components of x̂∗(t|k), while P(t|k) is the upper left n × n
submatrix of P∗(k|k).

9.3 Fixed-interval smoothing

The fixed-interval smoother is particularly important when estimation of parameters
is of concern, see Chapter 10. In this case we assume z(k) are observed for all k =
1, ..., N , and we want to calculate the estimates x̂(k|N) for all k. While in principle,
modifications of the state space model could be constructed similar to the fixed-point
smoother, the dimension of the state vector would have to be increased by n at each
time-step, making the calculations impractical. A more efficient alternative in this
case is to derive some special purpose recursive equations. Note that the estimate for
k = N , x̂(N |N) is directly available from the Kalman filter. We shall see that based
on this, it is possible to derive an expression for x̂(N − 1|N), which again can be
utilized for calculating x̂(N − 2|N) and so on. The calculation of the fixed-interval
smoothers is therefore based on the Kalman filter, which is a forward recursive scheme
and a new backward recursive scheme.

The following Theorem describes the backwards recursive equations, which we state
without proof:

Theorem 9.1
The fixed interval smoother is obtained by the following (backwards) recursive equa-
tions:

x̂(k|N) = x̂(k|k) + A(k)[x̂(k + 1|N) − x̂(k + 1|k)] (9.5a)

P(k|N) = P(k|k) + A(k)[P(k + 1|N) − P(k + 1|k)]AT (k) (9.5b)
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where A(k) is given by

A(k) = P(k|k)ΦT (k − 1)P−1(k + 1|k). (9.5c)

We see that all the quantities involved either are known from the Kalman filter or is
given by calculations at time-point k + 1, showing that we indeed have a backwards
recursion algorithm for calculating the smoothers. Note that it is necessary to store
x̂(k|k) and P(k|k), but that the observations are not needed! Further, although both
the prediction x̂(k + 1|k) and its error covariance matrix P(k + 1|k) are needed in
the equations above, they do not necessarly have to be stored, because they are easily
calculated by (6.12a) and (6.13a).

9.4 Fixed-lag smoothing

For the fixed-lag smoother, we would like to estimate x(k) based on *z(k +L) for each
k. The fixed-lag smoother is usually being used as an approximation to the fixed-
interval smoother, the reason being that while the latter need all data to be collected
before the estimates can be calculated, the former can be performed on-line (with a
time-lag corresponding to the size of L).

The way to calculate these fixed-lag smoothers is similar to the approach for fixed-
point smoothers. Also in this case, we will change our state space model by augment-
ing the state vector. Define in this case

x∗(k) =






x(k)
x1(k)
x2(k)

...
xL(k)






=






x(k)
x(k − 1)
x(k − 2)

...
x(k − L)






(9.6)

where xj(k) = x(k − j) for j = 1, ..., L. Then, using the state model (4.6), we get

x∗(k) =






Φ(k − 1) 0 · · · 0 0
In 0 · · · 0 0
0 In · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0






x∗(k − 1) +






In

0
0
...
0






w(k) (9.7a)

with the observation equation

z(k) =
(

H 0 0 . . . 0
)
x∗(k) + v(k). (9.7b)

Applying the Kalman filter on this augmented model (with size (L + 1)n on the state
vector), we obtain not only the estimates x̂(k|k) but also x̂i(k|k) = x̂(k − i|k), i =
1, 2, ..., L. For i = L, the quantity of interest is obtained.
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Note that we in this case need to specify the distribution for the initial state vector
x∗(0) = (x(0)T , ...,x(−L)T )T in the augmented model. Note further that x̂(k|k + L)
is the last element of x̂∗(k + L|k + L), and similarly for P(k|k + L).

Calculating fixed-lag smoothers by this procedure has the advantage of utilizing the
earlier derived Kalman filter. A disadvantage is however that the matrices involved
can be quite large when L increases. There does exist other algorithms that are more
efficient, although we will not this discuss this further here.

9.5 Example

In this section we will discuss the effect of smoothing on the random walk example.

Example 3 (Random walk, cont.)
Consider the random walk model

x(k) = x(k − 1) + w(k − 1)

z(k) = x(k) + v(k).

Assume first we want to estimate x(25) based on data *z(k) for different k’s. Now, for
k ≤ 25,

x̂(25|k) =x̂(k|k),

P (25|k) =P (k|k) +
25∑

l=k+1

Q(l − 1)

which is directly obtained by noticing that

x(25) = x(k) +
25∑

l=k+1

w(k).

Consider now the case k > 25. We then need to apply the method described in
Section 9.2. First we augment our state variable to

x∗(k) =

(
x(25)
x(k)

)
.

giving the state space model

x∗(k) =

(
1 0
0 1

)
x∗(k − 1) +

(
0

w(k − 1)

)
,

z(k) =
(

0 1
) (

x(25)
x(k)

)
+ v(k).
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Figure 9.2: x̂(25|k) (upper panel) and
√

P (25|k) (lower panel) as a function of k based on
the simulated data given in Figure 4.1. In both plots, the vertical dashed line indicate time
point 25.

By running the Kalman filter on this state space model, we obtain x̂(25|k) and P (25|k)
for k > 25.

In Figure 9.2, x̂(25|k) and P (25|k) are plotted for k = 15, ..., 100 using the simulated
data given in Figure 4.1. For k < 25, the variance is very high and the estimates
depend heavily on the observations. For k > 25, only small corrections are made for
the first proceeding observations, after which no changes are made. Similarly, the
variance is stabilizing, reflecting that z(k)-observations for k much larger than 25 do
not influence much on x̂(25|k).

Consider next fixed-interval smoothing. We then need to apply the backwards recur-
sions given in Theorem 9.1. Figure 9.3 shows x̂(k|N) and P (k|N) for N = 100 based
on the same data as above. The upper panel shows both the smoothed estimates
(solid line) and the filtered ones (dashed line). Note that the smoothed curve is in
fact much smoother than the filtered one. This is a typical behavior, due to the use
of succeeding points in the estimation. In the lower panel the error variances for the
smoothed estimates (solid line) is compared to the error variances for the filtered es-
timates. Although both curves has the same type of shape, the smoothed one is lower
than the filtered one, which again is due to that the smoothed estimates utilizes more
of the data.

Consider finally fixed-lag smoothing. We assume we want to estimate x̂(k|k+L) with
L = 2. In this case we need to augment the state vector to

x∗(k) =




x(k)

x(k − 1)
x(k − 2)
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Figure 9.3: x̂(k|N) (upper panel) and
√

P (k|N) (lower panel) as a function of k based on
the simulated data given in Figure 4.1. In both plots, the corresponding filtered estimates
are shown as dashed lines.

giving the state space model

x∗(k) =




1 0 0
1 0 0
0 1 0



x∗(k − 1) +




1
0
0



 w(k)

z(k) =
(

1 0 0
)
x∗(k) + v(k).

Figure 9.4 compares the results from using the fixed-lag smoothing (solid lines) with
the results using fixed-interval smoothing (dashed lines). The upper panel shows the
estimates, while the lower panel shows the error variances. Note that for k < 50, the
results are almost identical, showing that, given *z(k + 2), later observations give no
extra information about x(k). For k > 50, there are some small differences between
the two smoothers. The reason for this is that in this case there is a larger dependence
between the states at different time points (the signal to noise ratio is larger). This
implies that observations taken further apart from the time point of interest will
contain more information, making the need for choosing a larger L.

!
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Figure 9.4: For the simulated data given in Figure 4.1, x̂(k|k + 2) (solid line) and x̂(k|N)
(dashed line) is shown in the upper panel,

√
P (k|k + 2) (solid line) and

√
P (k|N) is shown

in the lower panel.

9.6 Problems

Exercise 9.1 (Predicting future in time-invariant models)
(a) Consider a time-invariant state space model. Show that

x(k + j) = Φjx(k) +
j−1∑

l=0

Φj−l−1w(k + l).

(b) Show that

x̂(k + j|k) = E[x(k + j)|*z(k)] = Φjx̂(k|k).

(Hint: Use the double expectation rule, conditioning on x(k).)

(c) Show that the error term e(k + j|k) = x̂(k + j|k) − x(k + j) is given by

e(k + j|k) = Φj[x̂(k|k) − x(k)] −
j−1∑

l=0

Φj−l−lw(k + l).

(d) Use again the double expectation rule to show that the prediction error covari-
ance matrix P(k + j|k) = VAR[e(k + j|k)] is given by

P(k + j|k) = ΦjP(k|k)(Φj)T +
j−1∑

l=0

Φj−l−1Q(Φj−l−1)T .
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(e) Consider the univariate model

x(k) = ax(k − 1) + w(k − 1)

z(k) = x(k) + v(k)

where {w(k)} and {v(k)} are white noise processes with zero expectations and
var[w(k)] = Q, var[v(k) = R. What happens with P (k + j|k) when j → ∞?
Discuss for different values of a.

(f) Implement the procedure for prediction in Section 9.1 for the model in (e) and
check the conclusions you made in (e) with the ones obtained with the prediction
filter.

Exercise 9.2 (A moving body, cont.)
Consider our two-dimensional moving body model (the discrete version given by
eqns. (6.24)).

(a) Simulate N = 50 observations from the model with your own choice of param-
eters.

(b) Run the Kalman filter to obtain x̂(k|k) and P(k|k) for k = 1, ..., 50.

(c) Run the fixed interval smoother for obtaining x̂(k|N) and P(k|N). Compare
with your results in (b).

(d) Run the fixed lag smoother with different values of j. Compare with the results
in (c).

(e) Assume you are particular interested in the time point k = 25. Run the fixed
point smoother in combination with the prediction filter to obtain estimates of
x(25) at all time points 1, ..., 50.

(f) Repeat (a)− (e) for different values on the variances for the noise. Try to make
some general conclusions.

Exercise 9.3 (A simple hydraulic model)
We will in this exercise consider a simple hydraulic model for the river “Overflow”.
The purpose of the model is to use it for prediction of possible overflow situations on
the lowest part of the watercourse. We then need a Kalman filter and observations
from the river. The rainfall area is modeled as a series of n reservoirs, each representing
partial rainfall areas. The water level in reservoir j at time point t is xj(t) and the
water flow out of reservoir is ajxj(t). (Such a reservoir is called linear.). Reservoir
number j (j > 1) receive water from the above reservoir j − 1 in addition to water
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fall uj(t) + wj(t) which falls down in the sub-area. We then have the following set of
linear differential equations:

ẋ1(t) = −a1x1(t) + u1(t) + w1(t),

ẋj(t) = −ajxj(t) + aj−1xj−1(t) + uj(t) + wj(t), 1 < j ≤ n.

In order to get a manageable problem, we will assume that n = 4. All volumes are
measured in millimeter (mm) water distributed over the sub-area and all water flows
(rates) in mm/day. (NB! One millimeter doesn’t sound much, but it becomes a lot
if the sub-area is a few square kilometers.) The constants a1, . . . , a4 then are on the
scale 1/day. Use a1 = 0.2, a2 = 0.7, a3 = 0.2 and a4 = 0.4.

(a) Put the system of differential equations in state space form. Discretize the
model with sampling time equal to 1 day. (That is, find the matrices Φ and Ψ
in Matlab .) We assume the rainfall is constant over a day.

(b) Assume now we measure the water flow out of reservoir 4. Show that the system
then is observable. Why is this not the case if one of the other water flows are
measured?

(c) Consider now uj for j = 1, . . . , 4 as external forces on the model. Show that the
system is reachable.

The initial amounts of water in each reservoir are random variables with mean vector
and covariance matrix

µ =






100
60
300
200




 , P =






102 0 0 0
0 152 0 0
0 0 202 0
0 0 0 152




 .

The covariance matrix is diagonal, which is not the case in reality. (Why?) The water
falls have known mean, so we model this mean as an external force uj(k), j = 1, . . . , 4.
We assume

uj(k) = 5 sin

(
2π(k + 10j)

365

)
+ 20 mm/day.

The random component in the water fall is modeled as system noise wj(k). We further
assume that {wj(k)} are independent variables (and independent of the initial state)
with mean zero and covariance matrix

Q =






82 0 0 0
0 72 0 0
0 0 52 0
0 0 0 22




 .
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(d) Calculate the mean and standard deviation for all water levels over 1 year (with-
out filtering). Why does the covariance matrix for the state vector approach a
constant matrix? Why is this constant matrix independent of the initial covari-
ance matrix?

(e) The Kalman filter is based on daily measures of the water flow out from the low-
est reservoir. The measurement errors are independent and Gaussian distributed
with expectation zero and standard deviation equal to 2 mm/day. Calculate the
standard deviations for the errors in the filtered estimates over 1 year.

(f) After all measurements are collected, it may be of interest to know as exactly
as possible the water level in the year that has passed. Calculate therefore the
smoothed solution, and plot the standard deviation for the error of the smoothed
estimate.

(g) We want to be able to predict the water level at time point k + L based on
observations up to time point k. How large can L be made so that the standard
deviation for the prediction error in the water level is smaller than 95 percent
of the standard error based on only using average values?



Chapter 10

Filter adaption

Theoretical arguments rarely determine all the coefficients and covariance matrices
{Φ(k)}, {H(k)}, {Q(k)} and {R(k)} influencing the filter. Those that remain un-
known are usually found statistically, that is by fitting observed data. Let θ be the
vector of unknown parameters, and D the data. The idea is to adjust θ so as to
be compatible with D. Many ways of doing this have been proposed for linear state
space models. We shall here only consider so-called maximum likelihood estimation,
which can be formulated very simply and in a way that applies to all state space mod-
els simultaneously. Note that we are in this case considering a different estimation
problem compared to the one discussed in Chapter 5. In this chapter the quantity θ
is assumed to be a fixed parameter, in contrast to the situation in Chapter 5 where
a random variable was to be estimated. The difference require separate estimation
methods.

Maximum likelihood estimation is the most widely used fitting technique in statistics
in general with a number of good theoretical properties. One such property is that
as the number of observations in D becomes infinite, then the estimate θ̂ of θ will
tend to θ itself. This is known as consistency. To give a mathematical definition,
let θi be the i’th unknown parameter of the state space model and θ̂i its estimate,
obtained from D in some way. The estimation error is then θ̂i − θi. Note that error
varies randomly with both the system and measurement noise that have influenced the
actual observations D. We might consider the expected size of the error, for example

E[|θ̂i − θi|] or E[(θ̂i − θi)
2].

Consistency means that either of these quantities converges to 0 as the length of the
D-vector tends to infinity. The quantity on the right can be decomposed according
to

E[(θ̂i − θi)
2] = {b(θ̂i)} + var[θ̂i],

where b(θ̂i) = E[θ̂i − θi]2. This is known as the brutto variance formula and shows
that the expected squared error on the left is a sum of a bias term and the variance

105
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of θ̂i. The former expresses whether there is a tendency for θ̂i to underestimate
or overestimate the true θi. Usually, with state space models, the variance term is
the dominating one. One might wish to carry out the estimation so that E[θ̂i] = θi

exactly, and hence b(θ̂i) = 0. The variance is then the only contributer to the expected
squared error E[(θ̂i − θi)2]. This situation is known as the unbiased one, and θ̂i is
an unbiased estimate of θi. With the state space models it is often hard to obtain
such unbiased estimates.

One way of constructing an estimate θ̂ of the vector θ of unknown parameters, is
to reason as follows: The actual data D have been generated from the unknown θ
according to mechanisms that are partially random. This applies both to the realiza-
tion *x(N) of the system process and the realization *z(N) of the measurement process.
Often we only have *z(N) and our data is then D = *z(N). If *x(N) has been observed
as well, then D = (*x(N),D = *z(N)). We may in either case consider the likelihood
function

LD(θ) = p(D|θ) (10.1)

where p(D|θ) is the joint probability density function of D. How the function LD(θ)
may be computed for given θ, is the main topic of this chapter. But for the moment
the point is that different θ’s produce different evaluations of how likely the observed
sequence D is. Suppose, for example, that θ∗ is far from the true θ. Then LD(θ∗)
might well be rather low, because the actual observations have been generated under
a very different mechanism and are therefore unlikely to occur under θ∗. Carrying this
idea further we may vary θ∗ systematically and compute LD(θ∗) everywhere. This
traces out a surface LD(θ)∗ over the whole θ-space. The surface is likely to be at
its largest when θ∗ is close to the true θ. A maximum likelihood estimate θ̂ML is a
maximum point, i.e.

LD(θ̂ML) = sup
θ∗

LD(θ∗). (10.2)

Note that the argument behind (10.2) is completely general and has nothing to do
with state space models as such. However, to find θ̂ML in practice, we have to be able
to compute (10.1) and then optimize according to (10.2). This raises several issues.
The first is that LD(θ) = p(D|θ) is not even defined unless the probability distribution
of the system and measurement noise is known. In principle we need the probability
distribution of all noise terms jointly, but in practice we have already made radical
simplifications in that noise processes were assumed to be white and uncorrelated. In
addition, we have to specify the shape of the probability distribution of each v(k) and
w(k), see (4.6). It is usual to proceed as if they were Gaussian. The validity of such
an assumption is often hard to verify. Neither should it be taken too literally. It does
not mean that the filter adaption method we are going to present can not be used
for non-Gaussian noise, but it indicates that the method might work best when noise
distributions are not too far form Gaussian ones.
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There is a big technical advantage in computing LD(θ) on the basis of Gaussianity. It
then turns out that LD(θ) has a simple relationship to the Kalman filter, even when
*x(N) is not observed, see Section 10.2. To find θ̂ML we may simply invoke the Kalman
filter to compute LD(θ) and then apply a general numerical optimization method from
a program library such as Matlab to maximize LD(θ). The only technical problem
with this approach is to make the optimizer converge to the maximum of the LD(θ)-
surface. This might at times be a serious practical obstacle, and we therefore present
(Section 10.3) a special procedure, known as the EM algorithm, that is bound to
produce at least a local maximum on the LD(θ)-surface1. Note that for this method
the system process *x(N) is estimated jointly with θ. Occasionally *x(N) has at a
training stage been observed jointly with *z(N). The problem of adapting the filter is
then simpler. We treat this situation first.

10.1 Observing the System process

Suppose {x(k)}, k = 0, ..., N and {z(k)}, k = 1, ..., N are observed. Their joint density
can be factorized as

p(*x(N),*z(N)|θ) = p(*x(N)|θ)p(*z(N)|*x(N); θ). (10.3)

Note that we have included x(0) in the definition of *x(N). This might not be true in
practice, but simplifies a technical detail. After mastering the contents of this chapter,
the reader will be able to produce the required modifications him/herself. Looking
first at p(*x(N)|θ), an elementary factorization gives

p(*x(N)|θ) = p(x(0)|θ)p(x(1)|x(0); θ)p(x(2)|*x(1); θ) · · · p(x(N)|*x(N − 1); θ)

where all the densities on the right hand side is known directly from the model spec-
ifications (4.6a). In particular,

p(x(0); θ) = N (µ(0),P(0|0)),

p(x(k)|*x(k − 1); θ) = N (Φ(k − 1)x(k − 1),Q(k − 1)).

Similarly for p(*z|*x). In this case we write

p(*z(N)|*x(N); θ)

=p(z(1)|*x(N); θ)p(z(2)|*x(N),*z(1); θ) · · · p(z(N)|*x(N),*z(N − 1); θ).

The second factor in (10.3) is equally simple. Now

p(z(k)|*x(N),*z(k − 1); θ) = N (H(k)x(k),R(k)).

1That θ∗ is a local maximum means that LD(θ∗) ≥ LD(θ) for all θ in a neighborhood of θ∗. For
a global maximum the inequality is valid everywhere.
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Combining all these factors we obtain from (10.3) the likelihood function

Lxz(θ) =
1

(2π)n/2|P(0|0)|1/2
e−

1
2
(x(0)−µ(0))T P(0|0)−1(x(0)−µ(0))×

N∏

k=1

1

(2π)n/2|Q(k − 1)|1/2
e−

1
2
(x(k)−Φ(k−1)x(k−1))T Q(k−1)−1(x(k)−Φ(k−1)x(k−1))×

N∏

k=1

1

(2π)m/2|R(k)|1/2
e−

1
2
(z(k)−H(k)x(k))T R(k)−1(z(k)−H(k)x(k)). (10.4)

which is to be maximized with respect to θ. It is always better to pass to logarithms
because on the original scale Lxz(θ) suffers from hopeless numerical underflow. A
computer usually rounds it off as zero! Since the logarithm is a monotone function, the
maximum point of the log-likelihood is equal to the maximum point of the likelihood
function itself. Accordingly, consider

lxz(θ) = log Lxz(θ)

= − n

2
log(2π) − 1

2
log |P(0|0)|− 1

2
(x(0) − µ(0))TP(0|0)−1(x(0) − µ(0))

− Nn

2
log(2π) − 1

2

N∑

k=1

log |Q(k − 1)|

− 1

2

N∑

k=1

(x(k) −Φ(k − 1)x(k − 1))TQ(k − 1)−1(x(k) −Φ(k − 1)x(k − 1))

− Nm

2
log(2π) − 1

2

N∑

k=1

log |R(k)|

− 1

2

N∑

k=1

(z(k) − H(k)x(k))TR(k)−1(z(k) − H(k)x(k)), (10.5)

which is to be maximized with respect to unknown parameters in {Φ(k)}, {H(k)},
{Q(k)} and {R(k)} in order to obtain the maximum likelihood estimate for θ. As
discussed in Section 4.3, there will be many cases in which nothing is known about
the process before the data is observed. In that case the first line (involving P(0|0))
will be reduced to a constant that can be neglected in the further analysis.

Example 3 (Random walk, cont.)
Consider the random walk model

x(k) = x(k − 1) + w(k − 1)

z(k) = x(k) + v(k).
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Assume that Q(k − 1) = Q and R(k) = R for all k. Then Q and R are the two
unknown parameters and θ = (Q,R). Suppose P (0|0) = ∞. Then the log-likelihood
function (10.5) simplifies to

lxz(Q,R) = − N

2
log(2π) − N

2
log(Q) − 1

2Q

N∑

k=1

(x(k) − x(k − 1))2

− N

2
log(2π) − N

2
log(R) − 1

2R

N∑

k=1

(z(k) − x(k))2.

which is a rare case where the maximum can be found analytically by equating. Firstly

∂

∂Q
lxz(Q,R) = − N

2Q
+

1

2Q2

N∑

k=1

(x(k) − x(k − 1))2

which yields

Q̂ML =
1

N

N∑

k=2

(x(k) − x(k − 1))2. (10.6)

as the maximum likelihood estimate of Q. In the same manner

∂

∂R
lxz(Q,R) = − N

2R
+

1

2R2

N∑

k=1

(z(k) − x(k))2

so that

R̂ML =
1

N

N∑

k=1

(z(k) − x(k))2. (10.7)

From the first 50 (simulated) samples in Figure 4.1, we obtained

Q̂ =1.34

R̂ =0.43

which should be compared with the true values Q = 1.0, R = 0.5. !

10.2 Main method

Suppose θ is to be determined from z(1), ..., z(N) without direct knowledge of the
underlying system process. The likelihood function (10.1) then becomes

Lz(θ) = p(z(1), .., z(N)|θ).
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Recall that the right hand side is the joint density function of the observations. It is
easy to compute this quantity by means of the Kalman filter. Indeed, we shall show
that the likelihood function is given by

lz(θ) = log(Lz(θ))

= − Nm

2
log(2π) − 1

2

N∑

k=1

log |S(k)|

− 1

2

N∑

k=1

(z(k) − H(k)x̂(k|k − 1))TS(k)−1(z(k) − H(k)x̂(k|k − 1)),

(10.8)

where |S(k)| is the determinant of the matrix S(k). Note that both x̂(k|k − 1) and
S(k) in (10.8) are available form the Kalman filter recursion. To compute lz(θ) for
given θ, we need to do no more than invoking the Kalman filter and adding the terms
in (10.8) together. Subsequently the sum can be maximized with respect to θ through
some numerical method in order to obtain the maximum likelihood estimate.

To prove (10.8) first recall the elementary factorization

p(z(1),z(2), .., z(N)|θ)
=p(z(1)|θ)p(z(2)|*z(1); θ)p(z(3)|*z(2); θ) · · · p(z(N)|*z(N − 1); θ). (10.9)

The general term p(z(k)|*z(k − 1); θ) is the density of z(k) given the history *z(k − 1)
of the observed series up to k − 1. By (6.8)

z(k) = H(k)x̂(k|k − 1) + z̃(k|k − 1),

where z̃(k|k − 1) is the innovation of z(k) and x̂(k|k − 1) = E[x(k)|*z(k − 1)] is a
constant when *z(k − 1) is fixed. Moreover, recall (Lemma 6.1 (6.9b)) that z̃(k|k − 1)
is stochastically independent of *z(k − 1). It follows that z(k), in the conditional
distribution given *z(k − 1), has the same covariance matrix as z̃(k|k − 1), which is
S(k). The mean vector is H(k)x̂(k|k − 1) and so

p(z(k)|*z(k − 1); θ) = N (H(k)x̂(k|k − 1),S(k)).

The logarithm of the conditional density is thus

log p(z(k)|*z(k − 1); θ)

= − m

2
log(2π) − 1

2
log |S(k)|

− 1

2
(z(k) − H(k)x̂(k|k − 1))TS(k)−1(z(k) − H(k)x̂(k|k − 1)),

and when these terms are added together, (10.8) follows.
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Example 4 (iid variables, cont.)
Consider again the model

x(k) = x(k − 1),

z(k) = x(k) + v(k).

The unknown quantity we want to estimate in this case is the variance in the obser-
vation noise R, so that θ = R. In this case, we were able to obtain simple analytical
expressions for x̂(k|k) and P (k|k), given in (6.22) and (6.20), respectively. Using this,
and assuming P (0|0) = ∞, we obtain

S(k) =
R

k − 1
+ R =

k

k − 1
R.

The log-likelihood for *z(N) then becomes2

lz(R) = − N

2
log(2π) − 1

2

N∑

k=1

log

(
k

k − 1
R

)

− 1

2R

N∑

k=1

k − 1

k
(z(k) − z̄(k − 1))2

=C − N

2
log R − 1

2R

N∑

k=1

k − 1

k
(z(k) − z̄(k − 1))2

where C is a constant not depending on R. In order to maximize the log-likelihood
with respect to R, we first calculate the derivative of the log-likelihood:

∂

∂R
lz(R) = −N

2

1

R
+

1

2R2

N∑

k=1

k − 1

k
(z(k) − z̄(k − 1))2

and putting the derivative to zero, we obtain the maximum likelihood estimate

R̂ =
1

N

N∑

k=1

k − 1

k
(z(k) − z̄(k − 1))2. (10.10)

Some (lengthy?) calculations can be performed to show that this expression actually
is equal to

1

N

N∑

k=1

(z(k) − z̄(N))2

which is the ordinary estimate for the variance. Equation (10.10) does however have
the nice feature that it is possible to calculate it recursively, while the standard for-
mulation needs z̄(N) to be calculated first. !

2Actually, there are some complications due to the fact that S(1) = ∞. There is however possible
to carry out the calculations rigorous by introducing a finite P (0|0) which in the end is being increased
to infinity. The same result will however apply.
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Figure 10.1: Likelihood values for different values of Q and R for the random walk model
(values smaller than -90 are truncated). The calculations are based on the first 50 observa-
tions of the ones shown in Figure 4.1.

In situations where no simple analytical expressions are available, the estimation
procedure becomes more complex. This we will see in the next example, which again
consider the random walk model:

Example 3 (random walk, cont.)
Assume now

x(k) = x(k − 1) + w(k − 1)

z(k) = x(k) + v(k).

We will again consider the case Q(k − 1) = Q and R(k) = R for all k. Although
in principle possible, finding the maximum likelihood estimates analytically will in
practice be almost impossible, since an analytical expression of the (log-)likelihood
becomes rather complex. For a given set of parameters (Q,R), the (log-)likelihood is
however easy to calculate using (10.8). For the simulated data-set shown in Figure 4.1,
the log-likelihood was calculated for values of Q in the range [0.4, 3.0] and in the range
[0, 1.25] for R. The values are plotted as a perspective plot in Figure 10.1. Note the
unimodality of the surface. The likelihood is maximized for Q̂ = 0.85 and R̂ = 0.35,
which is not far from the true values Q = 1.0 and R = 0.5. !
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10.3 A safe approach: The EM algorithm

A disadvantage of the technique in Section 10.2 is that the numerical maximization of
the likelihood function requires expertise in optimization. It may not be that easy to
make numerical software work properly, especially if θ is a high-dimensional vector.
A safe method which, however, requires more work to implement, is the so-called EM
algorithm. This technique is based on the fact that maximum likelihood estimation
would have been an easy task numerically if the full likelihood (10.3) was known.
Perhaps it works to proceed from an estimate of the log-likelihood and determine
θ as if the estimate was the true value. In particular, it is possible to replace the
unknown log-likelihood (10.5) by some estimate l̂xz(θ) where we have replaced all the
unknown terms (those involving the system process) with their estimates. We may
then maximize l̂xz(θ) with respect to θ. The problem is, however, as in the estimation
of the system process, that the estimation of lxz(θ) itself depends on θ. The situation
is thus

θ → l̂xz(θ) → estimate of θ.

We may implement this circular relationship recursively. First an initial guess of the
parameters θ(0) produces l̂xz(θ) which then revises the parameters to θ(1) based on
maximizing the likelihood above. We may do this again and again, new values of θ
leading to new estimates of l̂xz(θ) and so forth.

In order to apply the estimation procedure above, some type of estimate for the log-
likelihood needs to be constructed. One possibility is to estimate x(k) by x̂(k|N),
the fixed-interval smoother, and replace the estimates in place of x(k) into the ex-
pression (10.5) of lxz(θ), giving l̂xz(θ) = lx̂z(θ). A problem with such an approach
is that the variability in the estimates of the system process is not accounted for.
The implication of this is that the estimation procedure will lead to wrong results.
In particular, variances involved will be underestimated. The “error” that we made
when constructing our estimate for lxz(θ) is that we only estimated separate terms in
lxz(θ) which we plugged in instead of estimating the function itself. A much better
approach is to estimate lxz(θ) directly by its own expectation:

l̂xz(θ) = E[lxz(θ)|*z(N)].

For lxz(θ), the random components involved are those containing the system process.
In general, this expectation can be rather complex. In order to simplify, we will
therefore only consider the case n = m = 1. Consider first the last term of (10.5).
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We have

E[(z(k) − H(k)x(k))2|*z(N); θ = θ(s)]

=E[(z(k) − H(k)x̂(k|N) + H(k)x̂(k|N) − H(k)x(k))2|*z(N); θ = θ(s)]

=E[(z(k) − H(k)x̂(k|N))2|*z(N); θ = θ(s)]

+ E[(H(k)x̂(k|N) − H(k)x(k))2|*z(N); θ = θ(s)]

+ 2E[(z(k) − H(k)x̂(k|N))(H(k)x̂(k|N) − H(k)x(k))|*z(N); θ = θ(s)]

=(z(k) − H(k)x̂(k|N))2 + H(k)2P (k|N). (10.11)

An interesting observation is now that all the unknown quantities in this expression
can be calculated by the fixed-interval smoothing algorithm in Section 9.3. Similar
arguments lead to

E[(x(0) − µ(0))2|*z(N)] = (x̂(0|N) − µ(0))2 + P (0|N)

and

E[(x(k) − Φ(k − 1)x(k − 1))2|*z(N)]

=(x̂(k|N) − Φ(k − 1)x̂(k − 1|N))2+

P (k|N) − 2Φ(k − 1)cov[x(k), x(k − 1)|*z(N)] + Φ(k − 1)2P (k − 1|N).

In this case we need to do some further work to obtain the full expression in that the
last term is not directly available. A relative straightforward way of computing this
term is however to augment the state variable by the variable of lagged values, x(k),
that is,

x∗(k) =

(
x(k − 1)

x(k)

)
.

Using the original state space model, the augmented model becomes

x∗(k) =

(
0 1
0 Φ(k − 1)

)
x∗(k − 1) +

(
0

w(k − 1)

)
,

z(k) =
(

0 1
)
x∗(k) + v(k).

Denote the estimates and covariance matrices obtained by running the fixed-interval
smoother on this model by x̂∗(k|N) and P∗(k|N). By running the smoothing filter
on this augmented state model with θ = θ(s), the term E[(x(k)− x̂(k|N))(x(k − 1)−
x̂(k − 1|N))|*z(N); θ = θ(s)] is obtained as the off-diagonal element of the covariance
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matrix P∗(k|N). The estimated likelihood in the univariate case then becomes

l̂xz(θ) =C − 1

2
log |P (0|0)|− (x̂(0|N) − µ(0))2

2P (0|0)

− 1

2

N∑

k=1

log |Q(k − 1)|−
N∑

k=1

(x̂(k|N) − Φ(k − 1)x̂(k − 1|N))2

2Q(k − 1)

−
N∑

k=1

P (k|N) − 2Φ(k − 1)cov[x(k), x(k − 1)|*z(N)] + Φ(k − 1)2P (k − 1|N)

2Q(k − 1)

− 1

2

N∑

k=1

log |R(k)|−
N∑

k=1

(z(k) − H(k)x̂(k|N))2

2R(k)

−
N∑

k=1

H(k)2P (k|N)

2R(k)
. (10.12)

Maximizing this estimated log-likelihood, it can be proved, as part of a more general
argument, that the process stabilizes when it has been repeated long enough and that
θ(s) then has reached a local maximum on the true likelihood surface Lz(θ). We take
this local optimum as our estimate θ̂. The process may be repeated by starting from
different initial vectors for θ, and the one ending with the highest value for Lz(θ) is
selected if different θ̂’s are reached in the end. In the example below such multiple
solutions did not occur. Finding a global optimum of surfaces with many local optima
is a very difficult problem in optimization theory in general.

Example 3 (cont.)
We assume P (0|0) = ∞. In this case the formula (10.12) simplifies to

l̂xz(θ) =C − N

2
log(Q) −

N∑

k=1

1

2Q
(x̂(k|N) − x̂(k − 1|N))2

− 1

2Q

N∑

k=1

{P (k|N) + P (k − 1|N) − 2cov[x(k), x(k − 1)|*z(N)]}

− N

2
log |R|− 1

2R

N∑

k=1

(z(k) − x̂(k|N))2 − 1

2R

N∑

k=1

P (k|N)
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Figure 10.2: Estimates of Q and R using the EM algorithm for different initial values. The
four starting values are marked as stars, while the evolution of the parameter estimates as
functions of iterations are shown as curves with different types. The common convergence
point is marked as a circle.

which is maximized by

Q̂ =
1

N

N∑

k=1

(x̂(k|N) − x̂(k − 1|N))2

+
1

N

N∑

k=1

{P (k|N) + P (k − 1|N) − 2cov[x(k), x(k − 1)|*z(N)]},

R̂ =
1

N

N∑

k=1

{(z(k) − x̂(k|N))2 + P (k|N)}.

Comparing these estimates with eqns. (10.6) and (10.7), we see that some additional
variance and covariance terms have appeared. This is due to the uncertainty involved
in estimating the system process for a given set of parameters.

Using this procedure, we may try to obtain maximum likelihood estimates for Q and
R based on the simulated data-set shown in Figure 4.1. Figure 10.2 shows how the
estimates changes from iteration to iteration for four different initial values on (Q,R).
Note that the estimates in each case converge to the same value (0.832, 0.348). !

In the example above, the likelihood function could be separated into two parts, one
involving parameters related to the system process and the other involving parameters
related to the observation process. Such a separation is usually obtained also in more
complex models, making the maximization part of the algorithm simplify significantly.
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10.4 Problems

Exercise 10.1 (Linear regression)
Consider the regression model

z(k) = ax(k) + b + v(k),

where the random variables v(k) are Gaussian distributed with expectation 0 and
standard error σ. Let x(k) = k for k = 1, . . . , N .

Because the x’s are known in this case, the likelihood function for the observations
z(1), ..., z(N) becomes

L(a, b,σ2) =
N∏

k=1

1√
2πσ

e−
1

2σ2 (z(k)−a−bx(k))2.

(a) Why do we not include a distribution for the x’s in the likelihood function in
this case?

(b) Show that the maximum likelihood estimates for a, b and σ2 are

b̂ =

∑N
k=1(x(k) − x̄)(z(k) − z̄)

∑N
k=1(x(k) − x̄)2

â = z̄ − b̂x̄

σ̂2 =
1

N

N∑

k=1

(z(k) − â − b̂x(k))2

where x̄ = 1
N

∑N
k=1 x(k) and similarly for z̄.

Specify now N = 10, a = 2, b = 1 and σ = 1.5.

(c) Generate in Matlab a set of 10 pair of numbers (x(k), z(k)) by the routine randn
— which give independent realizations (we hope) — and estimate a, b and σ by
the estimates above.

(d) Repeat the trial in (c) a large number of times and verify that our estimators
for a and b are unbiased, that is E[â] = a and E[b̂] = b.

(e) Estimate the variances for â and b̂. Check these estimates with the theoretical
values given by

var[â] =σ2/
n∑

i=1

(xi − x̄)2,

var[b̂] =σ2
n∑

i=1

x2
i /(n

n∑

i=1

(xi − x̄)2).
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(f) Make also an analysis of the estimator for σ. Is σ̂ =
√
σ̂2 unbiased? What about

σ̂2 itself?

(g) If you wonder how critical the condition of independence is, you may experi-
ment with situations where this is not the case. The number of possibilities is
enormous.

Exercise 10.2 (Estimation in AR models)
Consider the model in Exercise 7.2. The maximum likelihood estimators for c and d
can in this case be shown to be the solution of a linear equation system of order 2.

(a) Derive the linear equation system.

(Hint: Remember the factorization (10.9) and note that all the conditional
distributions are given directly from the original model.)

(b) Generate some realizations of z(k) for c = 0.8, d = 0.15 and k = 0, . . . , 100.
Estimate c and d based on these realizations. Examine the results to try to
give an indication on if the estimators are biased. Also make some measure one
variability of the estimates.

Exercise 10.3 (Maximum likelihood estimation and the EM algorithm)
Consider an extension of the (time-invariant) random walk Example 3 by assuming
the system equation is given by

x(k) = ax(k − 1) + w(k − 1)

while the observation equation remains unchanged. We are interested in estimating
θ = (a,Q,R).

(a) Assume first that both the x’s and the z’s are observed. Calculate analytically
the maximum likelihood equations for a,Q and R.

(b) Simulate N = 50 observations from the model and try out the estimators you
obtained in (a).

(c) Use (10.8) to calculate (using Matlab ) the log-likelihood over a grid of points
(a,Q,R) and find the set of values which maximizes the log-likelihood

(d) Find an expression for l̂(θ) for our extended model.

(e) Implement and run the EM algorithm on your simulated data.

(f) Try different values of N . How do the estimators behave as N increases?



Chapter 11

Non-linear state estimation

Although the theme of this course is linear dynamical models, we will include an
introduction to non-linear estimation. The theoretical solution to such problems is
well known, but calculation of these optimal solutions are in general complicated to
perform. Therefore, until recently only rather approximate and ad hoc techniques have
been available in practice. These standard approaches are based on linearization of the
non-linearities involved around some trajectory (possibly a point) in the state space.
This leads to the linearized and extended Kalman filters (LKF and EKF, respectively)
whose central parts are filters based on linear models that estimate deviations from the
chosen trajectory. These filters will work well only if the linearization is reasonably
accurate. In engineering applications, this may well be the case since the filters then
often are parts of a larger feedback loop whose aim is precisely to keep the system at
a chosen nominal trajectory.

However, in many cases linearization may not be appropriate but is still used in the
absence of any alternative. This situation may now be changing. Over the last years,
so-called stochastic simulation techniques from computational statistics, originally
developed for quite different purposes, have been used to design practical filters for
general non-linear systems. An outline of this emerging field is given here after an
introduction to the linearization methods. Finally, some examples are presented where
the EKF is compared to solutions obtained from stochastic simulation.

We note in passing that combined state and parameter estimation may also be for-
mulated as a non-linear estimation problem by including the unknown parameters in
an augmented state vector. Using this approach, parameter and state estimates are
obtained on-line. The likelihood technique in Chapter 10 was restricted to off-line
processing. We will consider an example of this approach at the end of the chapter.
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11.1 Problem specification

Assume the following non-linear state space model:

x(k) = fk(x(k − 1)) + w(k − 1), (system). (11.1a)

z(k) = hk(x(k)) + v(k), (observations). (11.1b)

Note that both the system and measurement noise processes are assumed additive.
As in the linear case, they will be taken to be white and have zero mean.

The general estimation theory discussed in Chapter 5 is still valid in this case, making
the optimal estimate for x(k) based on *z(k), under the minimum mean square error
criterion, the conditional expectation:

x̂(k|k) = E[x(k)|*z(k)]. (11.2)

In addition, the covariance matrix for the estimation error is similarly still a valid
measure of the uncertainty involved.

In the case of linear models with Gaussian noise terms, the conditional distribution
p(x(k)|*z(k)) is also Gaussian and fully specified by its means and covariance matrix.
In the non-linear situation, several problems do however occur. First, calculation of
the conditional expectation is far from simple. Second, for symmetric distributions,
such as the Gaussian one, the minimum square error criterion, resulting in that the
conditional expectation is the optimal estimate, may be a reasonable one. For more
complex distributions, in particular distributions with several modes (peaks), this
criterion may give estimates which give quite wrong pictures about the true state.
Consider an example where p(x(k)|*z(k)) is a mixture of two Gaussian distributions,
one centered at -5.0 and the other centered at 5.0. The mixture is displayed in
Figure 11.1. The mixture distribution indicates that the true state either is around
-5.0 or around 5.0. The mean in the distribution is however 0.0, a very unlikely value!

Our focus on only calculating the mean and covariance matrix of p(x(k)|*z(k)) is
therefore no longer a viable approach if we want to go beyond the linear situation,
and other solutions have to be considered. One solution is to approximate our non-
linear model with a linear one and use our algorithms for linear models to compute
estimates. This approach has been extensively used for many years, and we will
present the main idea in Section 11.2.

Linearization may however give poor results in many cases. A better approach is to
focus on the problem of representing and propagating the conditional density itself.
The recursion for this density is well known and simple to derive: Start with x(0) ∼
p(x(0)). Then for k = 1, 2, ..., we have

p(x(k)|*z(k − 1)) =

∫ ∞

−∞

p(x(k)|x(k − 1))p(x(k − 1)|*z(k − 1)) dx(k − 1), (11.3)

p(x(k)|*z(k)) =Ckp(z(k)|x(k))p(x(k)|*z(k − 1)), (11.4)
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Figure 11.1: Example of a distribution which is a mixture of two Gaussian ones, each with
standard deviation equal to 1.0 but with expectations ±5.0.

where 1/Ck = p(z(k)|*z(k − 1)) is a normalization constant once *z(k) is known.

Eq. (11.3) readily follows from the fact that

p(x(k)|x(k − 1)) = p(x(k)|x(k − 1),*z(k − 1)).

To see eq. (11.4), note that p(x(k)|*z(k)) = p(x(k), z(k)|z̃(k − 1))Ck and apply Bayes
rule once more to the numerator.

Attacking these equations directly has turned out to be an intractable problem at
least when the dimension of the state space is not one or two. In higher dimensions,
numerical integration gets very time consuming even on present day computers. The
computational burden has a tendency to grow exponentially with the dimension, thus
rendering the direct approach impractical. In such cases, one often speaks of the curse
of dimensionality.

11.2 The linearized and extended Kalman filters

The idea behind the linearized Kalman filter is that the system stays reasonably
close to some desired, nominal trajectory xN(k) given by the deterministic equation
xN(k) = fk(xN(k − 1)). Note that this is not the same as the expected trajectory
{E[x(k)]} since in general E[fk(x(k))] += fk(E[x(k)]). Think of the nominal trajectory
as a given first order approximation to what the system is doing. For example, in the
moving body case this would correspond to the situation where we knew approximately
the position and velocity at any time. The point is then to try to estimate deviations
from the nominal trajectory using a Kalman filter.

Define the state vector deviation as δx(k) = x(k) − xN(k) and the measurement
deviation as δz(k) = z(k) − hk(xN(k)). Assuming that fk can be expanded in a
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Taylor series, we have

x(k) =fk(x(k − 1)) + w(k − 1)

=fk(x
N(k − 1)) +

∂fk(x)

∂x |x=xN (k−1)
δx(k − 1) + w(k − 1) + h.o.t.

where h.o.t. are higher order terms in the Taylor expansion. This leads to the approx-
imate linear equation in the “state” δx

δx(k) ≈ Φ(k − 1)δx(k − 1) + w(k − 1), (11.5)

where

Φ(k − 1) =
∂fk(x)

∂x |x=xN (k−1)
. (11.6)

To derive the corresponding measurement equation, we proceed in a similar way:

z(k) =hk(x(k)) + v(k)

=hk(x
N(k)) +

∂hk(x)

∂x |x=xN (k)
δx(k) + v(k) + h.o.t.

leading to

δz(k) ≈ H(k)δx(k) + v(k), (11.7)

where

H(k) =
∂hk(x)

∂x |x=xN (k)
. (11.8)

Equations (11.5) and (11.7) comprise the state space model for deviations from the
nominal trajectory and a standard Kalman filter can be used to compute δx̂(k|k).
The estimate of the actual state vector is obtained as

x̂(k|k) = δx̂(k|k) + xN(k). (11.9)

The variance of the errors in this estimate is provided by the error covariance matrix
for δx̂(k|k). Of course, these variances are only meaningful as long as the linearization
is valid. The higher order terms in the Taylor expansions may be regarded as a kind
of modeling errors that may or may not lead to divergence of the linearized filter
estimates (see Section 8.1 for an example of modeling errors causing divergence). As
time increases, one would expect the actual trajectory, driven by the system noise, to
deviate more from the nominal one and the linearization to become less valid.

In the extended Kalman filter (EKF), one tries to alleviate this potential problem
by linearizing about the currently best estimate of the state vector instead of a fixed
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nominal trajectory. Computing the state estimate, one also avoids linearizations in the
prediction and measurement update steps by using the actual non-linear expressions.
The state estimates are thus computed as follows:

x̂(k|k − 1) =fk(x̂(k − 1|k − 1)), (11.10)

x̂(k|k) =x̂(k|k − 1) + K(k)(z(k) − hk(x̂(k|k − 1))). (11.11)

The gain matrix is obtained through the standard covariance recursion (eqs. (6.13))
now based on the matrices

Φ(k − 1) =
∂fk(x)

∂x |x=x̂(k−1|k−1)
(11.12)

and

H(k) =
∂hk(x)

∂x |x=x̂(k|k−1)
. (11.13)

The EKF may be further refined by recomputing H(k) through linearization around
x̂(k|k), then derive a new gain matrix and repeat the calculation in eq. (11.11) sub-
stituting x(k|k) on the right hand side. Clearly, this can be repeated as many times
as desired. The result is the iterated extended Kalman filter. However, we will not
go into these potential improvements as they are all more or less ad hoc. Extensive
computer simulations are necessary in each application to “tune” the linearization
techniques.

11.3 Monte Carlo filtering

Linearization, as described in the previous section, may give poor results. This has
however been the only tool available from the inception of the Kalman filter in 1960
to the early 1990’s when Monte Carlo filtering appeared. As noted in Section 11.1,
numerical integration is not the solution because of the computational burden. The
ideas behind the Monte Carlo filter are different in that one does not try to compute
the conditional distributions themselves. Instead, the distributions are estimated by
simulated sample sets which are updated recursively for each time step. From the
samples, one may estimate any number of parameters for the distributions (including
their mean and covariance matrices). Note that this approach does not require the
system and measurement noise in eq. (11.1) to be additive. As it turns out, the system
noise can enter in quite general ways as can the measurement noise as long as the
likelihood p(z(k)|x(k)) can be computed during the measurement update step.

The question is how to sample. Suppose samples of x(0) have been generated (by
drawing from p(x(0))). By passing these through the system equation, combining
them with samples of the system noise w(0) as required, samples from p(x(1)) are
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generated. This corresponds to the prediction step in Kalman filtering. There is an
additional update step, where the measurement z(1) is used to transform the samples
from p(x(1)) into samples from p(x(1)|*z(1)).

In general, the Monte Carlo filtering problem is how to convert a collection of samples
from p(x(k − 1)|*z(k − 1)) into one from p(x(k)|*z(k)). The crucial issue is the update
step and we will only consider one method - so-called rejection sampling - for
carrying this out. Another method, sampling/importance resampling, has also
been applied but it seems at present less promising. The update step introduces a
requirement that motivates the way the prediction step is carried out. Update is
therefore discussed first.

11.3.1 The update step

Suppose it is possible to sample from the prediction density p(x(k)|*z(k−1)). Rejection
sampling is a general technique from sampling theory that allows one to integrate the
effect of the observation z(k) thus obtaining a sample from p(x(k)|*z(k)). Assume
knowledge of a constant M such that

p(z(k)|x(k)) ≤ M, for all x(k). (11.14)

The conditional likelihood p(z(k)|x(k)) is typically easy to compute, at least up to
a constant of proportionality (which is enough). The following algorithm returns a
random vector from p(x(k)|*z(k)).

Rejection sampling (RS):
Repeat

sample x∗(k) from p(x(k)|*z(k − 1)),
sample U∗ from the uniform (0, 1),

until U∗ ≤ p(z(k)|x∗(k))/M .
Return x∗(k).

The stopping rule ensures that x∗(k) on return has the right distribution p(x(k)|*z(k))
although it originally came from a different one. When the algorithm is run B times,
an independent sample set of size B is obtained. Note that the normalization constant
Ck in (11.4) is not needed.

If the number of tries before a sample is accepted becomes too large, the algorithm
will become inefficient. An upper limit on the number of tries cannot be stated in
principle, but the expected number of tries is proportional to M . For high efficiency,
M in (11.14) should therefore be as small as possible. The average number of tries
per sample will be sued as a measure of performance.
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Proof: To prove the algorithm, we need to show that the output x∗(k) has a prob-
ability distribution equal to p(x(k)|*z(k)). Note however that since

p(x(k)|*z(k)) ∝ p(x(k)|*z(k − 1))p(z(k)|x(k)) (11.15)

and a probability distribution always has to integrate to one, it is enough to show that
the distribution of x∗(k) is proportional to the right hand side of (11.15). Note that
we have to condition on that x∗(k) is accepted. From standard probability theory, we
have

p(x∗(k)|x∗(k) accepted) =
∂

∂x
Pr(x∗(k) ≤ x|x∗(k) accepted).

Now, from the way x∗(k) is generated, we get

Pr(x∗(k) ≤ x ∩ x∗(k) accepted)

=
1

M

∫

y≤x

p(x(k) = y|*z(k − 1))p(z(k)|x(k) = y) dy.

Therefore

Pr(x∗(k) accepted) =
1

M

∫

y∈Rn

p(x(k) = y|*z(k − 1))p(z(k)|x(k) = y) dy.

Using Bayes rule, we have

Pr(x∗(k) ≤ x|x∗(k) accepted)

=

∫
y≤x

p(x(k) = y|*z(k − 1))p(z(k)|x(k) = y) dy
∫
y∈Rn p(x(k) = y|*z(k − 1))p(z(k)|x(k) = y) dy

=C

∫

y≤x

p(x(k) = y|*z(k − 1))p(z(k)|x(k) = y) dy

The scaling factor M disappears and by differentiating the right hand side, the result
shows that x∗(k) has a density proportional to p(x(k)|*z(k−1))p(z(k)|x(k)) as desired.

The key to a successful implementation of the algorithm is that the samples x∗(k)
from p(x(k)|*z(k − 1)) do not generally produce insignificant values of the likelihood
p(z(k)|x∗(k)) (relative to M). Thus, for the method to work well, the likelihood should
preferably cover much of the prior density. (In rejection sampling terminology, our
likelihood would be called the “envelope”.) To what degree this happens in a filtering
problem depends on the z actually measured, the function h, and the measurement
noise v. The following examples will illustrate this point.

Examples of rejection sampling

To be specific, assume a one dimensional linear system with both x(0) and w(0) being
Gaussian, implying that x(1) is also Gaussian, say x(1) ∼ N (m, q). Let us eval-
uate p(x(1)|z(1)) for two different non-linear measurement functions h1(x(1)) while
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assuming that v(1) is Gaussian with zero mean and variance r. The likelihood is then
simply

p(z(1)|x(1)) =
1√
2πr

exp

{
− 1

2r
(z(1) − h1(x(1)))2

}
(11.16)

whose maximum value is M = 1/
√

2πr.

Note first that if r is large compared to the values taken by (z(1) − h1(x(1)))2, the
likelihood will always be close to M and most samples from the prediction density will
be accepted. In this case, the measurement carries little information and the updated
distribution essentially becomes equal to the predicted.

Throughout all the following experiments, we will assume m = 2, q = 1, and r = 0.2.

Assume that x(1) is observed indirectly through two observes, one having h1(x(1)) =
x(1)2 and the other h1(x(1)) = 1/x(1)2. For each measurement function, we first
consider the case where z(1) = 4.0 for the first observer while z(1) = 0.25 for the
second one. Note that if no observation error is present, both observations correspond
to the case where x(1) = 2.0 (the most likely value in the predictive distribution) or
x(1) = −2.0.

The second case we will consider is when z(1) = 0.25 for the first observer while
z(1) = 4.0 for the second one. This would correspond to x(1) = ±0.5 (both unlikely
values in the predictive distribution) if no observation errors were involved.

In both cases we will illustrate how the predictive distribution p(x(1)) is updated
when observation z(1) becomes available. In all the figures, the distribution for x(1)
is approximated by samples from it. The distributions are represented by N = 500
samples in all cases. Because we in this simple situation are able to calculate the true
distribution, this is added to the plots in order to illustrate the performance of the
simulation procedure.

The performance (measured as the number of samples that have to be generated
before one is accepted) of the rejection sampling algorithm will depend on the match
between the predictive distribution p(x(1)) and the distribution for the observation
p(z(1)|x(1)). The latter is therefore plotted together with the former.

With z(1) = 4.0 and h1(x(1)) = x(1)2, the likelihood in Figure 11.2 has two sharp
peaks at 2.0 and −2.0. With the comparatively small measurement noise in this
example (r = 0.2), the measurement z(1) will be dominated by the h1(x(1)) term but
from the likelihood it is impossible to determine whether x(1) is 2.0 or −2.0. However,
since practically all the mass of the predicted density lies to the right of −2.0, the
updated density is quite narrow, unimodal and centered around 2.0. Note that the
likelihood is always symmetric about the origin in this case. For positive z(k) it is
bimodal and for negative z(k) it is unimodal. The narrowness of the likelihood caused
an average of 9.4 repetitions in the rejection sampling algorithm in order to accept a
sample.
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Figure 11.2: Measurement function h1(x(1)) = x(1)2 with z(1) = 4.0. Left: Predicted
distribution with histogram based on B = 500 samples and likelihood. Right: Updated
distribution also with histogram obtained through rejection sampling.
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Figure 11.3: Measurement function h1(x(1)) = 1/x(1)2 with z(1) = 0.25. Left: Predicted
distribution with histogram based on B = 500 samples and likelihood. Right: Updated
distribution also with histogram obtained through rejection sampling.

Turning to h1(x(1)) = 1
x2(1) and z(1) = 0.25 in Figure 11.3, this term will not dominate

z(1) since the measurement noise has standard deviation
√

0.2 ≈ 0.44. With this z(1),
the likelihood will exclude areas around 0 and attach significant weight to values larger
than 1 in absolute value. The result is an updated density considerably wider than in
the previous case. Since there is a better match between the predictive distribution
and the likelihood in this case, the average number of repetitions in the rejection
sampling algorithm now reduced to 1.3.

In Figures 11.4 and 11.5, z(1) = 0.25 and = 4.0 for the first and second observer,
respectively. Compared to the previous case, this produces a smaller measurement
for h1(x(1)) = (x(1))2 and a larger one for h1(x(1)) = 1

x2(1) . This time the latter mea-
surement function produces the sharpest estimate although the updated distribution
has a small second peak at −0.5. For the first observed, an average of 8.0 repetitions
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Figure 11.4: Measurement function h1(x(1)) = x(1)2 with z(1) = 0.25. Left: Predicted
distribution with histogram based on B = 500 samples and likelihood. Right: Updated
distribution also with histogram obtained through rejection sampling.

−3 −2 −1 0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Predicted pdf          
Likelihood             
Histogram predicted pdf

−3 −2 −1 0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

Updated pdf           
Histogram or rej samp.

Figure 11.5: Measurement function h1(x(1)) = 1/x(1)2 with z(1) = 4.0. Left: Predicted
distribution with histogram based on B = 500 samples and likelihood. Right: Updated
distribution also with histogram obtained through rejection sampling.

were needed for generating a sample while the corresponding number for the second
observer was as high as 100.6! The narrowness of the likelihood is again the reason
for this. Note also that we have an increase in the number of repetitions for both
observers compared to the first case. This is because the observations in the last case
correspond to more unlikely x(1) values in the predictive distribution.

11.3.2 Monte Carlo prediction

The next question is how to sample from the prediction density p(x(k)|*z(k−1)) when
B realizations x∗b(k − 1), b = 1, . . . , B from the preceding update density p(x(k −
1)|*z(k− 1)) are at disposal. All of x∗1(k− 1), . . . ,x∗B(k− 1) may be inserted into the
system equation (11.1a). When system noise is drawn, B samples from p(x(k)|*z(k−1))
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are generated, but that is not enough. The rejection update algorithm above clearly
requires generating samples from p(x(k− 1)|*z(k− 1)) many (at least B, but typically
more) times to produce B samples from p(x(k)|*z(k)), since many of the samples are
rejected. Starting with a very large number B for k = 0 and then reducing B with
increasing k is not a solution. That would imply unnecessary much computational
work in the beginning and we would eventually run out of samples in an unpredictable
way.

A rational approach to this problem is to use the B samples to estimate p(x(k −
1)|*z(k − 1)) and then draw samples from the estimated distribution as many times
as we want. Density estimation is a highly developed area of statistics with a host of
possible methods available.

As a first approach, one might believe that sampling could be performed from the
histogram representing the updated distribution. This would mean to attach prob-
ability 1/B to each of the B samples and sample with replacement. However, when
there is little system noise, the Monte Carlo filter would propagate almost the same
sample values from one time step to the next, and the number of different samples
would tend to collapse to a few or even a single value.

Consider instead a smoothed version of the histogram. The procedure is simple to
carry out. First derive a set of corrected samples each assigned a probability 1/B:

x∗b
∗ (k − 1) = x̄∗B(k − 1) + {(1 − λ2)B/(B − 1)}1/2(x∗b(k − 1) − x̄∗B(k − 1))

for b = 1, 2, . . . , B. Here x̄∗B(k−1) is the mean vector of {x∗b(k−1)}, P∗B(k−1) the
corresponding sample covariance matrix, and λ ∈ [ 0, 1 ] is a user selected parameter.
It is easy to verify that the distribution has mean x̄∗B(k − 1) and covariance matrix
(1 − λ2)P∗B(k − 1).

To generate a sample from the distribution we want, draw a corrected sample x∗b
∗ (k−1)

and add an independent Gaussian variable ε∗λ with mean zero and covariance matrix
λ2P∗B(k − 1). Clearly, the resulting distribution has a mean and covariance matrix
equal to x̄∗b

∗ and P∗B(k − 1), respectively. The distribution is a continuous one and
thus represents a smoothed version of the histogram. Note that there is no restriction
for ε∗λ to be Gaussian. Any continuous distribution might do (and will typically not
influence much on the results), but we will for simplicity concentrate on the Gaussian
one. The choice of λ is more crucial, and has been given much consideration in
the literature about density estimation. In particular it must depend on both the
uncertainty involved in the samples and on the sample size. One possible choice is to
use

λ = CB− 1
n+4

√
|P∗B(k − 1)| (11.17)

where C is some constant that can be specified by inspection of the results.

In detail, the algorithm runs as follows:
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Sampling from the (estimated) prediction density.
Draw b with equal probabilities from {1, . . . , B}.
Sample ε∗λ from N (0,λ2P∗B(k − 1)).
Compute

x∗(k − 1) = x̄∗B(k − 1) +

{
(1 − λ2)B

B − 1

}1/2

(x∗b(k − 1) − x̄∗B(k − 1)) + ε∗λ

Sample w∗(k − 1) and return x∗(k) = f(x∗(k − 1)) + w∗(k − 1));

The complete Monte Carlo filter is obtained by combining the prediction samples
generated in this way with the rejection algorithm in the previous section.

11.4 Examples of non-linear filtering

As noted above, the EKF has been the standard approach for generating approximate
solutions to non-linear filtering problems. Except in simple cases, the degree of ap-
proximation has been hard or impossible to assess. The Monte Carlo techniques offer
the hope of radically better solutions in that the underlying distributions themselves
are approximated. Much work remains to be done regarding the properties of these
filters. However, as a rule of thumb we may say that sufficient accuracy has been
obtained once the results do not change appreciably by increasing B.

Example 5
Example from [5] originally proposed by [10]. Consider the system

x(k) = 0.5x(k − 1) +
25x(k − 1)

1 + x2(k − 1)
+ 8 cos(1.2(k − 1)) + w(k − 1),

z(k) =
x2(k)

20
+ v(k).

Disregarding the cosine term and the system noise, we have a stable non-linear differ-
ence equation. The cosine term causes the system to undergo periodic oscillations and
the system noise makes the oscillations random. As noted above, the squared term
in the measurement equation causes the likelihood to be bimodal for positive z and
unimodal for negative z. The example is designed so that z is positive most of the
time. This will be one reason why the EKF is not expected to work very well. The
EKF may be thought of as approximating the predicted and updated distributions
by Gaussians and we know that with the quadratic measurement equation this may
be inappropriate. In the example, q = 10, r = 1 and x(0) ∼ N(0, 5). The number of
updated samples is set at B = 1000 (which is too much really).

Figure 11.6 compares the results of the EKF and the Monte Carlo filter. Clearly,
the latter is superior. The EKF generally exhibits fairly large deviations from the
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Figure 11.6: Example from Gordon et al. (1993). Upper left panel: State estimate from
EKF and true state. Upper right panel: State estimate from MC filter with true state
and measurements. Lower left panel: Standard deviation of the EKF estimate error as
computed by the EKF and the corresponding standard deviation from the MC filter. Lower
right panel: Histogram of samples from p(x(25)|'z(25)).

true state with some extreme estimates at k = 17, 30 and 41. Note also that the
estimate of the EKF standard deviation does not reflect the real error; the EKF is
over-optimistic regarding its own performance. The Monte Carlo filter, on the other
hand, follows the true state quite well and is realistic regarding its performance. Note
that the estimates in most cases have the right signs.

In the Monte Carlo filter, we have used the mean of samples from p(x(k)|*z(k)) as an
estimate of x(k). As noted above, the mean correspond to the optimal estimator under
the minimum square error criterion. Such a criterion is however only sensible if the
distribution is unimodal and fairly symmetric. The lower right panel of Figure 11.6
shows the histogram of samples from p(x(25)|*z(25)). The distribution does look well-
behaved in this case, implying that the mean might be a reasonable estimate. !

Example 6 (Direction measurements)
The next example (from [4]) is two-dimensional with a linear system equation and
a non-linear measurement equation. The example models an observer, rotating on
the unit circle with constant angular velocity, measuring the direction to an object
moving randomly in the plane. The aim is to estimate the position (x1, x2)T of the
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object based only on the directional information. The model is given by

x1(k) = 0.5x1(k − 1) + w1(k − 1)

x2(k) = x2(k − 1) + w2(k − 1)

and

z(k) = atan

(
x2(k) − sin(k)

x1(k) − cos(k)

)
+ v(k)

Here the covariance matrices for the noise terms are given by

Q =

(
0.1 0.05

0.05 0.1

)
and R = 0.1.

Note that the system equation is linear in this case, making

Φ(k − 1) =

(
0.5 0

0 1

)
,

that is constant for all k in the EKF. Further,

H(k) =
∂

∂x
hk(x)|x=x̂(k|k−1)

=C(x̂(k|k − 1))
(
−x̂2(k|k − 1) + sin(k), x̂1(k|k − 1) − cos(k)

)

where

C(x̂(k|k − 1)) =
1

(x̂1(k|k − 1) − cos(k))2 + (x̂2(k|k − 1) − sin(k))2

The upper panel of Figure 11.7 shows the results obtained by EKF for data simulated
from the model. In particular for x2(k) (but also for x1(k)) the result is poor. The
estimate diverge although the true system process is stable! The Monte Carlo filter
was run with B = 1000, and for each k, the mean of the simulated samples from
p(x(k)|z(k)) was used as an estimate for x(k). These estimates are shown in the middle
panel of Figure 11.7. As for the previous example, the Monte Carlo filter obtains
much better results, although even the Monte Carlo filter has problems estimating
x1(k) reasonable correct. The lower panel shows the estimated variances involved.
Note that the variance of x2(k) obtained by the MC filter seems to diverge in this
case. If this actually can happen is still an open question.

Also in this case we want to inspect the actual distribution of x(k) in order to evaluate
if the mean is a realistic estimate. Figure 11.8 shows the histograms of samples
from p(x(25)|*z(25)). Since both histograms are unimodal and fairly symmetric, it is
reasonable to use the mean as an estimate of the state. !
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Figure 11.7: Direction measurements. Upper panel: State estimate from EKF and true
state. Middle panel: State estimate from MC filter with true state and measurements.
Lower panel: Standard deviation of the EKF estimate error as computed by the EKF and
the corresponding standard deviation from the MC filter.

Example 7 (Parameter estimation)
The third example is a parameter estimation problem. The original system is linear

x1(k) = ax1(k − 1) + w1(k − 1),

z(k) = x1(k) + v(k),

but the constant a is unknown. To estimate it, define a second state variable as
x2(k) = a and derive the augmented non-linear system

x1(k) = x2(k − 1)x1(k − 1) + w1(k − 1),

x2(k) = x2(k − 1),

and

z(k) = x2(k)x1(k) + v(k).

Figure 11.9 shows the results obtained by applying the EKF and the MC filter on
simulated data from this model. In this case, EKF is doing a reasonable job. Even
so, the MC filter (using B = 1000 and taking the means as estimates) again perform
better. Note in particular how the estimate of a converge towards its true value
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a = 1.0. The histograms in Figure 11.10 indicate that using the mean is sensible in
this case also. !

11.5 Problems

Exercise 11.1 (EKF and the linearized filter)
Explain in detail why the EKF may be expected to work better than the linearized
filter.

Exercise 11.2 (Random walk)
Consider again the random walk example, that is the model

x(k) =x(k − 1) + w(k − 1)

z(k) =x(k) + v(k)

where w(k − 1) ∼ N (0, Q), and v(k) ∼ N (0, R).

(a) Extend the state vector to x∗(k) = (x(k), η(k))T and show that the system
equations now can be written as

x∗(k) =Φx∗(k − 1) + ε(k − 1)

z(k) = H ∗ x(k) + v(k)

where now ε(k − 1) ∼ N (0,Qm), and Qm is a 2 × 2 matrix with only non-zero
element which is equal to one. Specify Φ,Qm and H.

(b) Run a Kalman filter on the extended model and show that the point estimates
and the variances obtained for x(k) are equal to those obtained by the original
model. Use Q = 1.0, R = 0.5 and m0 = 0.0, P0 = 1.0.

Now our aim of extending the state vector is not to obtain point estimates in another
way, but because the extended model is more suitable for estimation of parameters
using the ideas discussed in this chapter. We will only consider estimation of Q,
assuming R is known.

(c) Extend the model further by including
√

Q in the state vector. Write down the
system and observation equations in this case.

(d) Discuss why we have chosen to include Q in the model from (a) and not directly
from the original model.

(e) Implement the extended Kalman filter on the model from (c) and use this to
estimate Q.

(f) Now implement the Monte Carlo filter. Does this filter obtain better results
than the extended Kalman filter?
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Figure 11.8: Direction measurements. Histogram of samples from p(x(25)|'z(25)). Left
panel shows x1(25) while right panel shows x2(25).
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Figure 11.9: Parameter estimation. Left: State estimates and true states for x(k). Right:
State estimates and true states for a. The upper panels show the EKF estimates, the middle
panels show the estimates from the MC filter, while the lower panel shows the variance
estimates.
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Figure 11.10: Parameter estimation. Histogram of samples from p(x(25)|'z(25)). Left panel
shows x1(25) while right panel shows x2(25).
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Appendix A

Matlab commands

Properly used, Matlab is a superb experimental tool that allows us to explore the
theory as well as getting suggestions for possible underlying theoretical relationships.
In this chapter, we list some useful Matlab commands. For most of the examples, also
included are the Matlab codes and functions which have been used for obtaining the
different results. To get the details, type help followed by the function name in the
Matlab window.

In Matlab , indices of vectors and matrices run from 1 and upwards. This cause some
problems concerning the covariance matrices {Q(k)} of the state vector, since these
run from 0 and upwards. In all the routines we therefore have used Q(k) as the
covariance matrix for w(k − 1) instead.

A.1 Properties of deterministic systems

In this section, we list some useful commands for the concepts discussed in Chapter 2.

Solving differential equations like (2.1) in Matlab can be performed by using the
commands ode23 or ode45, employing Runge-Kutta numerical integration methods of
order 2/3 and 4/5, respectively. (One may also use the graphically based SIMULINK
package within Matlab to solve differential (and difference) equations.)

For time-varying systems, the routines lsim and dlsim can be applied.

Matlab provides the routines c2d and c2dm (continuous - to - discrete) for transforming
a continuous system to a discrete one. These routines compute the matrices Φ and
Ψ for time invariant systems with a fixed sampling time (cf. (2.7)).

In order to compute eigenvalues of a matrix, the command eig can be used. For
calculating a matrix exponential, the routine expm is appropriate.

In order to check reachability, Matlab provides the special purpose routines ctrb and

137



138 APPENDIX A. MATLAB COMMANDS

ctrbf. For observability, Matlab has special purpose routines obsv and obsvf.

A.2 Matlab commands for the Gaussian distribu-
tion

Some useful commands related to Gaussian distributions are

randn Normally distributed random numbers (see also normrnd).
mvnrnd Random matrices from the multivariate normal distribution.
normcdf Normal cumulative distribution function (cdf).
normpdf Normal probability density function (pdf).
normspec Plots normal density between specification limits.

A.3 Code concerning the random walk example

The following Matlab commands were used for obtaining the variables in Figure 4.1:

randn(’state’,0);
n = 100;
Q = [ones(n/2,1); ones(n/2,1)/10];
R = ones(n,1)/2;
w = normrnd(zeros(n,1),sqrt(Q));
x = cumsum(w);
z = x+normrnd(zeros(n,1),sqrt(R));
a = 1:n;
plot(a,x,a,z,’*’);

The following routine was used for using the Kalman filter on the data from Example 3:

function [xhat,P] = klm_rw(z,Q,R)
%Kalman filter for random walk model
%Assumes P(0) is infinity
[n,m] = size(z);
P = zeros(n,1);
xhat = zeros(n,1);
P(1) = R(1);
xhat(1) = z(1);
for k=2:n

P1 = P(k-1)+Q(k);
S = P1+R(k);
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K = P1/S;
P(k) = (1-K)*P1;
x1 = xhat(k-1);
xhat(k) = x1+K*(z(k)-x1);

end

The following routine was used for calculating the fixed-point smoothers for the ran-
dom walk process:

function [xhatt,Pt] = smo_point_rw(z,Q,R,t)
%Routine for estimating x(t) based on z(1),...,z(k)
[n,m] = size(z);
Pt = zeros(n,1);xhatt = zeros(n,1);
P = R(1); %k=1, using P(0) equal to infinity
xhat = z(1);
Pt(1) = P + sum(Q(2:t));xhatt(1) = xhat;
for k=2:t %Kalman filter up to t

P1 = P+Q(k);S = P1+R(k);K = P1/S;P = (1-K)*P1;
x1 = xhat;xhat = x1+K*(z(k)-x1);
xhatt(k) = xhat; %Prediction of x(t)
if(k<t) %Prediction error of x(t)

Pt(k) = P + sum(Q((k+1):t));
else

Pt(k) = P;
end

end
P = [P,P;P,P];H = [0,1]; %Augmented model for k>t
xhat = [xhat;xhat];
for k=(t+1):n %Kalman on augmented model

P1 = P+[0,0;0,Q(k)];S = H*P1*H’+R(k);K = P1*H’./S;
P = (diag([1,1])-K*H)*P1;
x1 = xhat;xhat = x1+K*(z(k)-H*x1);
xhatt(k) = xhat(1);
Pt(k) = P(1,1);

end

For the fixed-interval smoother, only a small routine (utilizing the Kalman filter rou-
tine defined above) is needed:

function [xhatn,Pn] = smo_int_rw(z,Q,R)
%Function for fixed-inverval smoothing for the random walk model
[n,m] = size(z);
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[xhat,P] = klm_rw(z,Q,R); %Kalman filter
Pn= zeros(n,1);xhatn = zeros(n,1);
Pn(n) = P(n);xhatn(n) = xhat(n); %k=n directly from Kalman
for k = (n-1):-1:1 %Downwards recursion

P1 = P(k)+Q(k+1);A = P(k)/P1;
Pn(k) = P(k)+A*(Pn(k+1)-P1)*A;
xhatn(k) = xhat(k)+A*(xhatn(k+1)-xhat(k));

end

Fixed-lag smoothing:

function [xhatL,PL] = smo_lag_rw(z,Q,R,L)
%Routine for estimating x(k) based on z(1),...,z(k+L)
[n,m] = size(z);
H = [1,zeros(1,L)]; %Parameters in augmented model
Phi=[1,zeros(1,L);diag(ones(1,L)),zeros(L,1)];
Qm = zeros(L+1,L+1); %Qm(1,1) is set in each iteration
P = diag(10000*ones(L+1,1)); %Initial values
xhat = diag(zeros(L+1,1));
Qm(1,1) = Q(1);
PL = zeros(n,1);
xhatL = zeros(n,1);
for k=1:n %Kalman filter

Qm(1,1) = Q(k);
P1 = Phi*P*Phi’+Qm;S = H*P1*H’+R(k);K = P1*H’./S;
P = (diag([ones(1,L+1)])-K*H)*P1;
x1 = Phi*xhat;xhat = x1+K*(z(k)-H*x1);
PL(k) = P(L+1,L+1);xhatL(k) = xhat(L+1);

end
xhatL = xhatL(L+1:n);PL = PL(L+1:n); %Shift

Calculation of (log-)likelihood.

function [loglik,Qhat,Rhat] = loglik_rw(z,q,r)
%Function for calculating log-likelihood for all values of Q and R
%given in the vectors q and r
%Also find the ML-estimates
[n,m] = size(z);
[Qm,Rm] = meshgrid(q,r);
konst = -0.5*n*log(2*pi);
loglik = zeros(size(Qm))+konst;
%Kalman filter for all Q and R values simultaneously
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P = Rm;
xhat = ones(size(Qm)).*z(1);
for k=2:n

P1 = P+Qm;
S = P1+Rm;
K = P1./S;
P = (1-K).*P1;
x1 = xhat;
xhat = x1+K.*(z(k)-x1);
loglik = loglik - 0.5.*log(S)-0.5.*(z(k)-x1).^2./S;

end
Qhat = Qm(loglik==max(max(loglik)));
Rhat = Rm(loglik==max(max(loglik)));

Note the use of matrix calculations, making it possible to calculate the (log-)likelihood
for all sets of values for (Q,R) simultaneously.

Estimation by the EM-algorithm:

function [Qhat,Rhat] = em_rw(z,Q0,R0)
[n,m] = size(z);
s = 1;
Qhat = Q0;
Rhat = R0;
conv = 1;
while (conv>0.0001 & s < 1000)

s = s+1;
[xhatn2,Pn2] = smo_rw2(z,Qhat(s-1),Rhat(s-1));
Qhat = [Qhat,mean(Pn2(2,2,2:n))+

mean((xhatn2(2,2:n)-xhatn2(2,1:n-1)).^2)+
mean(Pn2(2,2,1:n-1)-2*Pn2(1,2,1:n-1))];

Rhat = [Rhat,mean((z’-xhatn2(2,:)).^2)+mean(Pn2(2,2,:))];
conv = abs(Qhat(s)-Qhat(s-1))+abs(Rhat(s)-Rhat(s-1));

end

A.4 Code concerning the moving body example

A routine for simulating from the (discrete) moving body model (6.24):

function [x,z]= body(Phi,H,R,Q,P0,m0,N)
% Simulates the moving body example
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%
% Phi : System matrix
% H: Measurement matrix
% R: Measurement error variance
% Q: System noise covariance matrix (assumed to be diagonal)
% P0: Initial error covariance matrix (assumed to be diagonal)
% m0: Imitial expected state estimate
% N: Number of time steps to compute the solution
% x: Realization of the state vector - a (2,iter) matrix
% z: Realizations of the measurements - a (1,iter) matrix
%
x=zeros(2,N);
z=zeros(1,N);
x(:,1)= m0+[sqrt(P0(1,1))*randn(1,1);sqrt(P0(2,2))*randn(1,1)];
for k=2:N
x(:,k)=Phi*x(:,k-1)+[sqrt(Q(1,1))*randn(1,1);sqrt(Q(2,2))*randn(1,1)];
z(k)=H*x(:,k) + sqrt(R)*randn(1,1);
end

Kalman filtering of model (6.24):

function [xhat, xhat1,P,P1,K]= kfbody(z,Phi,H,R,Q,P0,m0,N)
%
% Generates Kalman filter estimates of the state vector of the
% moving body.
% The covariance matrix and Kalman gain also calculated.
%
% xhat: xhat(k|k)
% xhat1: xhat(k|k-1)
% P: P(k|k)
% P1: P(k|k-1)
% K: Kalman gain
%
% Initializing
xhat=zeros(2,N);
xhat1=zeros(2,N);
P=zeros(2,2,N);
P1=zeros(2,2,N);
K=zeros(2,N);
%
% k=1
P1(:,:,1)= Phi*P0*Phi’ + Q;
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S= H*P1(:,:,1)*H’ + R;
K(:,1)= P1(:,:,1)*H’/S;
P(:,:,1)= (eye(2) - K(:,1)*H)*P1(:,:,1);
xhat1(:,1)= Phi*m0;
xhat(:,1)= xhat1(:,1) + K(:,1)*(z(1) - H*xhat1(:,1));
% Remaining k’s
for k=2:N
P1(:,:,k)= Phi*P(:,:,k-1)*Phi’ + Q;
S= H*P1(:,:,k)*H’ + R;
K(:,k)= P1(:,:,k)*H’/S;
P(:,:,k)= (eye(2) - K(:,k)*H)*P1(:,:,k);
xhat1(:,k)= Phi*xhat(:,k-1);
xhat(:,k)= xhat1(:,k) + K(:,k)*(z(k) - H*xhat1(:,k));

end

Prediction:

function [xpred, Ppred]= kfbody_pred(z,Phi,H,R,Q,P0,m0,k,j)
%
% Make predictions of position at k+1,...,k+j
% for the moving body model
%
% xpred: xhat(k+l|k)
% Ppred: P(k+l|k)
%
% First run Kalman filter
[xhat, xhat1,P,P1,K]= kfbody(z,Phi,H,R,Q,P0,m0,k);
% Then run Kalman filter on modified model
Hm = [0,0];
xpred=zeros(2,k+j);
Ppred=zeros(2,2,k+j);
xpred(:,1:k)=xhat;
Ppred(:,:,1:k)=P;
%
% j=1
P1= Phi*P(:,:,k)*Phi’ + Q;
S= Hm*P1*Hm’ + R;
K= P1*Hm’/S;
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Ppred(:,:,k+1)= (eye(2) - K*Hm)*P1;
xhat1= Phi*xhat(:,k);
xpred(:,k+1)= xhat1 + K*(0 - Hm*xhat1);
% Remaining l’s
for l=2:j
P1= Phi*Ppred(:,:,k+l-1)*Phi’ + Q;
S= Hm*P1*Hm’ + R;
K= P1*Hm’/S;
Ppred(:,:,k+l)= (eye(2) - K*Hm)*P1;
xhat1= Phi*xpred(:,k+l-1);
xpred(:,k+l)= xhat1 + K*(0 - Hm*xhat1);

end

Kalman filtering with K(k) = 0:

function [xhat, xhat1,P,P1,K]= kfbody_k0(z,Phi,H,R,Q,P0,m0,N)
%
% Generates Kalman filter estimates using K=0
% Initializing
xhat=zeros(2,N);
xhat1=zeros(2,N);
P=zeros(2,2,N);
P1=zeros(2,2,N);
K=zeros(2,N);
%
% k=1
P1(:,:,1)= Phi*P0*Phi’ + Q;
S= H*P1(:,:,1)*H’ + R;
K(:,1)= 0;
P(:,:,1)= (eye(2) - K(:,1)*H)*P1(:,:,1);
xhat1(:,1)= Phi*m0;
xhat(:,1)= xhat1(:,1) + K(:,1)*(z(1) - H*xhat1(:,1));
% Remaining k’s
for k=2:N
P1(:,:,k)= Phi*P(:,:,k-1)*Phi’ + Q;
S= H*P1(:,:,k)*H’ + R;
K(:,k)= 0;
P(:,:,k)= (eye(2) - K(:,k)*H)*P1(:,:,k);
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xhat1(:,k)= Phi*xhat(:,k-1);
xhat(:,k)= xhat1(:,k) + K(:,k)*(z(k) - H*xhat1(:,k));

end

A.5 Nonlinear filtering

A.5.1 Rejection sampling

A direct implementation of rejection sampling for the example in Section 11.3.1:

function [x,rej] = rej_samp(z,m,q,r,B)
x = zeros(B,1);
rej = zeros(B,1);
M = 1/(sqrt(2*pi*r));
for i=1:B
x(i) = normrnd(m,sqrt(q));
u = rand(1);
p = normpdf(z,x(i)^2,sqrt(r))/M;
rej(i) = 0;
while(u>p)
rej(i) = rej(i)+1;
x(i) = normrnd(m,sqrt(q));
u = rand(1);
p = normpdf(z,x(i)^2,sqrt(r))/M;

end
end

For loops through all the samples may be inefficient in Matlab . An alternative is
to generate all samples simultaneously by utilizing the vector ability of Matlab . In
particular, at the first step B samples are generated. At the next only those samples
that not were accepted are sampled again, and this continue untill all samples are
generated. The code is as follows:

function x = rej_samp_fast(z,m,q,r,B)
M = 1/(sqrt(2*pi*r));
%Sample for all B
x = normrnd(m,sqrt(q),B,1);
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u = rand(B,1);
p = normpdf(z,x.*x,sqrt(r))/M;
acc = u <= p;
samp = B;
ind = 1:B;
while(sum(acc)<B)
ind2 = ind(acc==0);
n_a = length(ind2);
samp = samp+n_a;
x(ind2) = normrnd(m,sqrt(q),n_a,1);
u(ind2) = rand(n_a,1);
p = normpdf(z,x.*x,sqrt(r))/M;
acc = u <= p;

end

Simulating data for Example 5:

function [x,z] = sim_gss(Q,R,m0,P0,N);
%Generating sample from Gordon, Salmond & Smith example
x0 = normrnd(m0,sqrt(P0));
x = zeros(N,1);
z = zeros(N,1);
x(1) = 0.5*x0+25*x0/(1+x0^2)+8*cos(1.2*0)+normrnd(0,sqrt(Q));
z(1) = x(1)^2/20+normrnd(0,sqrt(R));
for k=2:N
x(k) = 0.5*x(k-1)+25*x(k-1)/(1+x(k-1)^2)+

8*cos(1.2*(k-1))+normrnd(0,sqrt(Q));
z(k) = x(k)^2/20+normrnd(0,sqrt(R));

end

Extended Kalman filtering on Example 5:

function [xhat,P] = ekf_gss(z,Q,R,m0,P0)
%Extended Kalman filter for Gordon, Salmond & Smith example
[n,m] = size(z);
P = zeros(n,1);
xhat = zeros(n,1);
%
Phi = 0.5+(25-25*m0^2)/(1+m0^2)^2;
x1 = 0.5*m0+25*m0/(1+m0^2)+8*cos(1.2*0);
H = x1/10;
P1 = Phi*P0*Phi+Q;
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S = H*P1*H+R;
K = P1*H/S;
P(1) = (1-K*H)*P1;
xhat(1) = x1+K*(z(1)-x1^2/20);
for k=2:n

Phi = 0.5+(25-25*xhat(k-1)^2)/(1+xhat(k-1)^2)^2;
x1 = 0.5*xhat(k-1)+25*xhat(k-1)/(1+xhat(k-1)^2)+8*cos(1.2*(k-1));
H = x1/10;
P1 = Phi*P(k-1)*Phi+Q;
S = H*P1*H+R;
K = P1*H/S;
P(k) = (1-K*H)*P1;
xhat(k) = x1+K*(z(k)-x1^2/20);

end

Monte Carlo filter on Example 5:

function [xhat,P,samp] = mcfilt_gss(z,Q,R,m0,P0,B)
%MC filter filter for Gordon, Salmond & Smith example
%Initialization
[N,m] = size(z);
P = zeros(N,1);
xhat = zeros(N,1);
samp = zeros(N,1);
%k=0
xstar = normrnd(m0,sqrt(P0),B,1);
ind = 1:B;
for k=1:N
%Making prediction distribution
x0 = xstar;
xmean = mean(x0);
xvar = var(x0);
lambda=0.2;
kon = sqrt((1-lambda^2)*B/(B-1));
x0= xmean+kon*(xstar-xmean);
%Sampling x(k) from pred. distr
b = unidrnd(B,B,1);
x0star = x0(b)+normrnd(0,lambda*sqrt(xvar),B,1);
xstar = 0.5.*x0star+25.*x0star./(1+x0star.*x0star)+

8.*cos(1.2.*(k-1))+normrnd(0,sqrt(Q),B,1);
p = normpdf(z(k),xstar.*xstar/20,sqrt(R));
u = rand(B,1);
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acc = u <= p;
samp(k) = B;
%Rejection sampling (fast implementation)
while(sum(acc)<B)
ind2 = ind(acc==0);
n_a = length(ind2);
samp(k) = samp(k)+n_a;
b = unidrnd(B,n_a,1);
x0star = xmean+kon*(x0(b)-xmean)+normrnd(0,lambda,n_a,1);
xstar(ind2) = 0.5.*x0star+25.*x0star./(1+x0star.*x0star)+

8.*cos(1.2.*(k-1))+normrnd(0,sqrt(Q),n_a,1);
u(ind2) = rand(n_a,1);
p = normpdf(z(k),xstar.*xstar/20,sqrt(R));
acc = u <= p;
if samp(k)>30000

k
sum(acc)

end
end
k
samp(k)
xhat(k)=mean(xstar);
P(k)=var(xstar);

end
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density, see density, random process
Gaussian, 30
stationary, 22, 29, 30
weakly stationary, 29

random variable, 15



INDEX 153

random walk model, 35, 35, 59, 98, 108,
112, 138

reachability, 8, 10, 12, 103, 137
stochastic, 78, 80

regression
Bayesian, 72
linear, 59, 71, 117
multiple linear, 73
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