Chapter 5

Linear equations and
inequalities in two variables

Vocabulary
e xy-plane
e Plotting ordered pairs
e Graph
e Intercepts (z— and y—intercept of a line in an xy-plane)
e Slope of a line
e Parallel lines
e Perpendicular lines
e Horizontal lines
e Vertical lines
e Slope-intercept form of a linear equation in two variables
e Point-slope form of a linear equation in two variables

e System of linear equations

5.1 Solving linear equations in two variables

We now turn our attention to linear equations with two variables, which we will
assume to be called x and y. A linear equation in two variables can always be

written in a standard form
Az + By =C,
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where A and B are constant coefficients and C' is a constant. What is “standard”
about this form is that the terms involving variables are on one side of the
equation, while the constant term (not involving variables) is on the other side
of the equation. However, a linear equation may not be written in this standard
form. In fact, we will soon see several situations in which it is better to write a
linear equation in another form.

As with any algebraic statement, a linear equation in two variables may be
true or false, depending on the values for both variables x and y. As we saw
earlier in Section 4.1, a solution to a linear equation in two variables consists of
a value for each of the two variables, which we indicate by writing them together
as an ordered pair.

Let’s start by looking at a relatively easy example of a linear equation in
two variables:

T +y=2>5.

It’s easy to see a few examples of solutions to this equation: (1,4), (2,3), and
(3,2), for example. With a little more thought, more exotic solutions come to

1 1
mind: (—1,6) and <2, 42) , for example. On the other hand, not every ordered

pair is a solution to this equation: (2,2) is not a solution, for example.

5.1.1 A method for producing solutions

In the case that the equation is more complicated, there is still a straightfor-
ward method to produce solutions. We illustrate this method in the following
example.

Example 5.1.1. Find three solutions to the equation 2x — 5y = 10.

Answer. Our strategy will be to “eliminate” one of the variables and to solve the
remaining linear equation in one variable. We eliminate a vartable by choosing
a value for that variable, then substituting the value into the original equation.
The solution to the original equation will be an ordered pair consisting of the
chosen value for the “eliminated” variable and the value obtained by solving the
resulting (one-variable) equation.

For example, let’s choose the value 0 for x. Substituting into the given
equation for x gives 2(0) — by = 10; the variable x has been “eliminated.” We
then solve:

200 — By = 10
0 - b5y = 10
=5y = 10
-5y _ 10
y = -2

The solution corresponding to our choice of 0 for x is (0,—2).
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For another solution, let’s choose the value 0 for y. Substituting this value
fory gives 2z — 5(0) = 10. Solving:

2¢ — 5(0) = 10
2 — 0 = 10
2x = 10
2z — 10
2 2
T = 5

The solution corresponding to our choice of 0 for y is (5,0).

Since we were asked for three solutions, we make one more choice. Let’s
choose the value 1 for y. Substituting gives 2z — 5(1) = 10. Solving:

2¢ — 5(1) = 10
2z — 5 = 10

+ 5 1 45
2x = 15
20 - 1
2 2
T = 1

5 -

The solution corresponding to our choice of 1 for y is (15/2,1).
The three solutions we obtained are (0,—2), (5,0), and (15/2,1).

We will organize the data from finding solutions to a linear equation in two
variables into a table. For example, we will summarize the three solutions above
as:

x ‘ Y Solution

@ —2 (07 _2)
5 |]0] (5,0)
15/2 (15/2,1)

Notice that we have indicated the value that was chosen with a boxed number,
while the value obtained by solving the corresponding equation with an unboxed
number.

We can summarize this method for finding solutions.
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Finding solutions to an algebraic equation in two variables

To find solutions to an algebraic equation in two variables:
1. Choose a value for one of the variables;

2. Substitute the chosen value into the equation and solve the resulting
equation in one variable.

The ordered pair corresponding to the chosen value with the value obtained
by solving the resulting equation (in the appropriate order) will be a solu-
tion to the original equation in two variables.

One thing should be clear from the method described in the example above:
A linear equation in two variables will typically have infinitely many solutions,
one for each choice of value for x (or y). This will present some problems from
the point of view of solving such equations—finding all solutions.

5.1.2 Graphing linear equations in two variables

In Section 4.4 on linear inequalities in one variable, we saw a powerful method
for keeping track of solutions of algebraic statements with infinitely many solu-
tions: graphing. However, in the case of algebraic statements in two variables,
a number line is not sufficient. To keep track of the values of both variables,
we will use the zy—plane (sometimes called the Cartesian plane, after one of
the originators of the concept, the French philosopher and mathematician René
Descartes).

For the sake of reference, we list here some of the most important properties
of an zy-plane (see Figure 5.1):

e It is formed by two number lines placed at right angles and meeting where
both are labeled 0. The number lines are called the z-axis (the horizontal
number line) and the y-axis (the vertical number line). The point of
intersection of the axes is called the origin.

e The positive z-direction is to the right. The positive y-direction is up-
wards.

e An ordered pair is represented by a point on the xy-plane by means of its
coordinates. The first number (the z-coordinate) represents the number
of units (“in the z-direction”) from the y-axis to the point . The sec-
ond number (the y-coordinate) represents the number of units (“in the
y-direction”) from the x-axis to the point.
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Figure 5.1: An zy-plane

e Points on the z-axis correspond to ordered pairs having 0 as a y-coordinate.
Points on the y-axis correspond to ordered pairs having 0 as an z-coordinate.

Let’s return to our example = + y = 5. Just by inspection, we found several
solutions. We will now represent each ordered pair solution with a point in the
zy-plane. (This is called plotting the ordered pairs.)
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Five solutions of z +y =5

This graph, obtained by plotting five solutions of the same linear equation
in two variables, points to a crucial fact that will be central to our treatment of
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linear equations in two variables:

BIG FACT: The geometry of solutions to linear equations in
two variables

The points corresponding to plotting all solutions to a linear equation in
two variables all lie on a single line. Every point on this line corresponds
to a solution to the equation.

This fact, combined with some basic geometry, gives a powerful technique
to solve a linear equation in two variables in the form of a graph.

General method to graph linear equations in two variables
To graph all solutions of a linear equation in two variables:
1. Find at least two solutions.

2. Plot the solutions.

3. Draw the line passing through the chosen solutions.

Notice that geometry comes into the picture due to the fact, written down
as far back as Euclid, that two (different) points determine a unique line passing
through them. This fact is what allows us to “buy two solutions, get infinitely
many solutions free.”

Combined with our method for producing solutions to linear equations in
two variables above, we are hence able to graph any linear equation in two
variables.

Example 5.1.2. Graph the equation 2x — 5y = 10.

Answer. Recall in Example 5.1.1 above, we found three solutions to 2x — 5y =
10, given in the table
T ‘ Y Solution

@ —2 (0772)
5 |[0] 5,0
15/2 (15/2,1)

We plot these solutions in Figure 5.2.
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&)

Figure 5.2: Three solutions of 22 — 5y = 10

Notice that the three solutions appear to lie on the same line, as we expected
from our Big Fact. All that remains is to “connect the dots” in Figure 5.3.
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Figure 5.3: All solutions of 2x — 5y = 10.

It is important to emphasize that the last “connect the dots” step, simplest
from the procedural point of view, is also the most significant. We have gone
from three solutions to infinitely many solutions—one for each point on the line.

Let’s look at two more examples.

Example 5.1.3. Graph the solutions of 3x + 4y = 12.



92 CHAPTER 5. LINEAR STATEMENTS IN TWO VARIABLES

Answer. We first find three solutions.
Choosing 0 for x, we substitute and solve:

3000 + 4y = 12
0 + 4y = 12

494 = 12

4y - 12
4 4

Y = 3.

So (0,3) is a solution.
Choosing 0 for y, we substitute and solve:

3x 4+ 4(0) = 12
3r + 0 = 12
3z = 12
3z _ 12
3 3
x = 4.
So (4,0) is a solution.
Choosing —3 for y, we substitute and solve:
3z + 4(-3) = 12
3r — 12 = 12
+ 12 1 412
3z = 24
3z - 24
3 = 3
x = 8.

So (8,—3) is a solution.
Summarizing our results so far, we have the table:

Y Solution
3 (0,3)

0] (4,0)
(8,-3)

We now plot the three solutions and connect them with a line. See Figure

5.4,

z |
[0]
1

8

Notice that choosing 0 first for  and then for y is useful for more than just
the ease of working with the number 0. The point whose z-coordinate is 0 (the
point (0,3) in the previous example) is the y-intercept of the line: the point
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(0-3)
)

(40
7

-3 (8,-3)

Figure 5.4: All solutions of 3z + 4y = 12.

where the line intersects the y-axis. Likewise, the point whose y-coordinate is
0 (the point (4,0) in the previous example) is the xz-intercept of the line, or
the point where the line intersects the z-axis. We will often refer to these two
special points on a line in the xy-plane, as they stand out on the graph.

1
Example 5.1.4. Graph the solutions of y = Z:c - 2.

Answer. As usual, we will make three choices to find three solutions. This time,

however, we will take advantage of the form in which the equation is written,

with the y by itself on one side of the equation, and only choose values of x.
Choosing 0 for x, we substitute and solve:

y = ;10) - 2
y = 0 - 2
y = =2

So (0,—2) is a solution.
Choosing 4 for x, we substitute and solve:

y = 1(4) — 2
y = 1 - 2
y = -1

So (4,-1) is a solution.
Choosing 8 for x, we substitute and solve:

y = 108 - 2
Y
y = 0.

Il
o
|
o



94 CHAPTER 5. LINEAR STATEMENTS IN TWO VARIABLES

So (8,0) is a solution.
Hence we have the table:

T ‘ Y Solution
M -2 (0’_2)
-1 (4,-1)
0 (0

(Can you see why we chose the values of x that we did?)
Plotting the solutions and connecting them with a line gives Figure 5.5.

y
-

1
Figure 5.5: All solutions of y = Vi 2.

5.1.3 Exercises

For each of the linear equations in two variables below, graph the solutions.
l.z—y=14
2. 2z 43y =—6
3. bx —y =2

4. -4z +3y =12

5

6

. —x+3y=9
Ly=2z -1
1
7. y=—-x—2
Y 350

8. y:—%x—kl
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5.2 A detour: Slope and the geometry of lines

We saw in the last section how geometry can be helpful in solving a linear
equation in two variables. In particular, using the fact that two points determine
a line, we were able to find all solutions of a linear equation in two variables (as
a graph) just by knowing any two different solutions.

In this section, we continue the theme of how geometry can help us study
linear equations in two variables. After defining the slope of a line, we will
show how we can use this concept to develop another method for graphing the
solutions to such equations. We will also show how this concept allows us to
write an equation for a line in the zy-plane.

The slope will give a way to measure a line. It will be a single number that
is designed to measure the “steepness” of a line.

Consider for example the lines shown in Figure 5.6. Line A is steeper than
line B. (Imagine yourself riding a bicycle up two hills represented by the lines.
It will be harder to pedal up line A than line B!) So we will want to assign a
larger number as the slope of line A than for the slope of line B. Line C is not
steep at all; it is “flat.” We will want to assign a slope of 0 to this line. Line
D appears to be about as steep as line A, but in different “directions.” Line A
is slanted upwards (from left to right), while line D is slanted downwards. We
will assign a positive number as the slopes for lines A and B, but a negative
number for the slope of line D. Vertical lines are special in that they do not
have a slope. (Don’t try to ride your bike down a vertical cliff!)

/

Line A Line B Line C Line D

Figure 5.6: Four lines with different slopes.
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How do we make this measurement called slope? It turns out than an effec-
tive way to assign a number that matches exactly with our expectations from
the previous paragraph is to define the slope as the ratio of the vertical change
in distance between two points on the line to the horizontal change in distance
between the same two points, with the understanding that a change from upper
to lower (going from left to right) will be negative!. See Figure 5.7.

Figure 5.7: The definition of slope m.

Notice that we have defined the slope without reference to a coordinate
system, i.e. without an xy-plane. In the case that the line is drawn with
reference to a coordinate system, the vertical and horizontal distances in the
definition of the slope can be written in terms of the coordinates of two points
on the line with coordinates (z1,y1) and (z2,ys2):

The slope of a line in an xy-plane

The slope of a line in an xy-plane passing through the points with coordi-
nates (z1,y1) and (x2,ys2) is given by the ratio

Y2 — 1
m=———--.
T2 — IT1

(See Figure 5.8.)

It should be pointed out that in this context, the notation Ay and Ax are

IThis definition in itself is based on an important fact from geometry. Recall that two
triangles are similar if their corresponding angles have equal measurements. The ratio of
corresponding sides of similar triangles are equal. For that reason, the slope does not depend
on the two points chosen. Can you see why?
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sometimes used to represent the change in x and y respectively, so the slope can
be remembered as

Ay
m = —-.
Ax
/z-z,yz)
|
|
WV=y2—m
|
i m—K— Y2 =y
T H  ay—1
H=xy—1x

Figure 5.8: The slope defined relative to an zy-plane.

In order to use the formula defining the slope, the coordinates of (any!) two
points on the line are needed.

Example 5.2.1. Find the slope of the line passing through the points with
coordinates (6,—2) and (3,7).

Answer. Since we are given the coordinates of two points on the line, all that
remains to do is to label the coordinates, substitute into the formula defining the
slope, and evaluate.

Labelling,

X1 Y1 Z2 Y2

Substituting and evaluating:

The slope is —3.
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For the sake of the reader who is seeing the slope formula in action for the
first time, let’s re-do the previous example, but labeling the coordinates in the
opposite way:

T Y1 Z2 Y2
(3 , 7)) (6 , =2

Then substituting,

We obtain the same answer, the slope being —3. This is a special case of the
point that we made in the definition: the slope does not depend on which two
points on the line are chosen, and in particular, does not depend on the order
that the points are used.

Although a graph is not necessary for the purpose of computing the slope
of a line, the reader might want to plot the two given ordered pairs (6, —2) and
(3,7) to visualize the line passing through the corresponding points to verify
that the line slants downwards going from left to right, as we would expect from
a line with a negative slope.

We next illustrate an example where the required information to compute
the slope from the definition is not given directly. We will see shortly that there
is another, more effective way to approach this example.

Example 5.2.2. Use the definition to find the slope of the line given by the
equation 2x +y = 2.

Answer. Although we are not given the coordinates of two points on the line,
in some ways we have better: we have an equation for the line. We have already
seen a method for obtaining as many solutions to this equation as we want—two
will be enough.

Choosing 0 for y, we substitute and solve:

2t + (0) = 2
2z = 2
2z - 2
2 2
T = 1.
So (1,0) is a solution.
Choosing 0 for x, we substitute and solve:

200 + y = 2
0 + v = 2

y = 2.
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So (0,2) is a solution.
Summarizing our results so far, we have the table:

- (2) = (0)
0)—(1)
2
04 (-1)
_

The slope is —2.

This example also gives us a way to illustrate even more surely that the
slope does not depend on the points chosen. Suppose your classmate’s choices
are different from yours, and they obtain two different solutions (—1,4) and
(2,—2). (Check that these are really solutions to 2z +y = 2!) In that case, they
would label:

L1 Y1 T2 Y2
( =1, 4 ), ( 2 , =2
Substituting and evaluating would give:
-2)—(4
(-
@ - (1)
(=24 (-4
24+ (1)
_ =6
-3

The two points were chosen differently, but the slope of the line is the same!
We conclude this subsection with an example that will lead in to the next
main use of the slope concept.

2
Example 5.2.3. Find the slope of the line given by the equation y = gx —4.
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Answer. As in the last example, we first find any two solutions.
Choosing 0 for x, we substitute and solve:
= 2(0) — 4
= 0 -4
= —4.

ESESIINS

So (0, —4) is a solution.
Choosing 3 for x, we substitute and solve:
= 2(33) - 4
= 2 - 4
= -2

ASEIN SN

So (3,—2) is a solution.
Summarizing our results so far, we have the table:

T ‘ Y Solution
0| —4 (0,—4)
-2 (3,-2)
Labeling our two solutions,
1 Y1 T2 Y2
( 0 ) —4 )a ( 3 ) -2 )
Substituting and evaluating:
—-2)— (-4
(D))
(3) = (0)
_(29+ )
3)
_2
=3

The slope is 2/3. We will see very shortly that this answer is no surprise.

The previous example 5.2.3 is a special case of an important fact relating
the slope to linear equations in two variables:

Slope-intercept form of a linear equation in two variables
Suppose that a linear equation is written in the special form
y=mx+b,

with the variable y by itself on one side of the equation. Then m (the
coefficient of z) is the slope of the line, and the y-intercept has coordinates
(0,b).
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This special form of writing a linear equation in two variables, where the
variable y is written by itself on one side of the equation, is known as the slope-
intercept form of the equation of a line, since both the slope and the y-coordinate
of the y-intercept can be read directly from the equation.

2
Notice that in Example 5.2.3, the equation y = gﬂf — 4 was written in slope-

intercept form. The slope 2/3 was indeed the coefficient of x. Notice also,
although we didn’t mention it at the time, that the y-intercept has coordinates
(0, —4), a fact that we could also read from the form of the equation. (Keep in
mind that the b term in the special slope-intercept form is added, so we should

2
think of the equation as being written y = 3%+ (—4).)
If a linear equation in two variables is not written in slope-intercept form,
then there is no way to read off the information so easily. However, by changing

the form of the equation, we can take advantage of the special slope-intercept
form for any equation.

Example 5.2.4. Find the slope and y-intercept of the line given by the equation
3z — 4y = 12.

Answer. The equation is not written in slope-intercept form, since the variable
y 1s not by itself. However, we can solve for y in terms of x:

3 — 4y = 12
-3z : -3
-4y = -3z + 12
—4dy _  —3z+12
—4 —4
y = = 4+ £
Y = %.T — 3.

The slope is 3/4 and the y-intercept has coordinates (0, —3).

We will see several more examples of this procedure in a different context in
the following subsection.

5.2.1 Using the slope as an aid in graphing

In this subsection, we show how the slope gives an alternative method to the
problem of graphing the solutions to a linear equation with two variables, apart
from making a table of values to find solutions. It is based on the following
principal:

The slope, considered as a ratio of the change in the y-coordinates to the
change in the z-coordinates of points on the line, gives a way to obtain a
new point on the line from a given one.
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Specifically, we will think of the slope as a fraction which gives instructions
to move “up and to the right” or “down and to the right,” depending on whether
the slope is positive or negative.?

Example 5.2.5. Find three other points on the line passing through the point
with coordinates (—3,—2) and having slope 2.

2
Answer. The slope is 2 = 1 So, beginning from the given point’s coordinates

(=3, —2), we will move our pencil on the graph one unit to the right and two
units upwards to obtain our first new point. See Figure 5.9. This new point has
coordinates (—2,0), as should be clear from the graph.

Y
5*
4
3 L
*--27
i
|
I §
|
|
K + + ¥ s + 0 + + + + + X
-5 -4 -3 -2 -1 1 2 3 4 5 7
|
: -4
i up 2 units
|
(=3,-2)e---- —2 1
to the right 1 unit
41
4

—5x

Figure 5.9: Using the slope to find a second point on a line.

Repeating the procedure two more times gives two other new points with
coordinates (—1,2) and (0,4). (Even though we could write down a “formula”
to obtain the numerical coordinates of one point from the next, it is by far simpler
in the cases we will encounter to just read the coordinates from the xy-plane.)

Using the method of the previous example gives us an effective way to graph
the solutions of a linear equation in two variables—especially if the equation is
written in slope-intercept form.

2More properly, we should think of moving “in the same direction” or “in the opposite
direction,” so that, for example, we can also obtain a second point from a given one on a line
with positive slope by moving down and to the left.
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Example 5.2.6. Graph the solutions of y = —x + 3.

Answer. Notice that the equation is written in slope-intercept form; vy is by
itself on one side of the equation. The slope is —1 (the coefficient of x), while
the y-intercept has coordinates (0, 3).

Using the slope m = —1 = _T’ we start at the given point with coordinates

(0,3) and “move” one unit downward and one unit to the right in order to obtain
a second point having coordinates (1,2). This gives us two solutions; the graph
will consist of all points on the line passing through these two points.

The graph is given in Figure 5.10.

Figure 5.10: All solutions of y = —x + 3.

While the previous example was straightforward due to the fact that the
equation was written in slope-intercept form to begin with, we have already
seen that it doesn’t take much effort to rewrite an equation in slope-intercept
form if it isn’t written that way to begin with, by solving for y.

Example 5.2.7. Graph the solutions of 2x —y = 6.

Answer. The equation is not written in slope-intercept form, since y is not by
itself on one side of the equation. Solving for y in terms of x:

2c — y = 6
—2x D -2
-y = —2r + 6
-y _ —2x+6
1 —1
y = = + 5
y = 2z - 6.
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We now see that the slope is 2 and the y-intercept has coordinates (0, —6).

Using the slope m =2 = -, we start at the point representing (0, —6) and
“move” upwards two units and to the right one unit in order to obtain a second
solution (1, —4).

The graph is given in Figure 5.11.

Figure 5.11: All solutions of 22 — y = 6.

The only possible difficulty in this method of graphing is that when following
the method too literally, we will occasionally be forced to plot points with
fractional coordinates, as the next example illustrates.

Example 5.2.8. Graph the solutions of 3x + 2y = 5.

Answer. The equation is not written in slope-intercept form, since y is not by
itself on one side of the equation. Solving for y:

3r + 2y = 5
—3x —3x
2 = =3z + 5
2y —3z+5
2
y = —3r + 3.

We see that the slope is —3/2 and the y-intercept has coordinates (0,5/2).
Since 5/2 = 2 %, the point representing (0,5/2) is plotted halfway between

-3
those representing (0,2) and (0,3). Using the slope m = - we start at the
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point representing (0,5/2) and “move” downwards three units and to the right
two units to obtain a second solution (2,—1/2).
The graph is given in Figure 5.12.

Y

Figure 5.12: All solutions of 3z + 2y = 5.

(Notice that we encountered fractional coordinates in this example because
the y-intercept had a fractional y-coordinate. If we had used a solution with
integer coordinates like (1,1), we could have avoided this inconvenience—but
then we would have been on our way to constructing a table.)

5.2.2 Finding an equation of a given line

So far, we have concentrated on the relationship between the slope and the
graph of a linear equation in two variables. The sign of the slope indicates
which “direction” the line is slanted. The magnitude of the slope measures the
ratio of the vertical change to the horizontal change, and so given one point on
the line, the slope indicates how to determine other points on the same line.

However, the slope concept also opens the door to a answering a new kind
of question. Suppose we are given a line (in an zy-plane) described by some
geometric data. How can we find an equation whose solutions correspond to the
given line3?

What is meant by describing a line with geometric data? We will consider
the following situations:

e A line described by one point on the line and the slope;

e A line described by two points on the line;

3Notice that we do not ask for “the” equation of a line. The reader can check, for example,
that the equations z + y = 1 and 2x + 2y = 2 have the same solutions, and so describe the
same line in an xy-plane.
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e A line described by one point on the line, given that it is parallel to another
line;

e A line described by one point on the line, given that it is perpendicular
to another line.

The simplest example will show that we already have tools to answer this
question.

Example 5.2.9. Find an equation for the line passing through the point with
coordinates (0, —2) and having slope 3.

Answer. Notice that in this case, the point given happens to be the y-intercept!
(That can be seen even without plotting the point by noticing that the x-coordinate
is 0.) Hence we can treat the slope-intercept form of a line, which we have writ-
ten as y = mx + b, as a formula, and substitute the values of m and b.
In this case, m = 3 and b = —2, so an equation of the line, in slope-intercept
form, would be
y =3z —2.

“That was too good to be true!” Of course, we had been given exactly the
data needed to substitute into the slope-intercept “formula” for a line. In the
next example, we show that the previous method still applies in a more general
context. We also illustrate a second method which is better adapted to the more
general setting.

Example 5.2.10. Find an equation for the line passing through the point with
coordinates (1,—2) and having slope —4.

Answer. This time, the given point is not the y-intercept (the x-coordinate is
not 0!), so we cannot proceed as directly as in the previous example.

Method 1

Even though we do not have all the information needed to substitute into the
slope-intercept “formula,” we can proceed in two steps.

The first, easy step is to substitute the information we do have, which is the
slope (m = —4), into the formula:

y=—4x +0.

This time, b is still unknown.

In the second step, we will use the coordinates (1,—2) of the given point to
solve for b, by substituting the coordinates for x and y in the equation we have
obtained so far:

y = -4z 4+ b
(=2) = —4(1) + b
-2 = -4 + b
+4 . 44

2 = b.
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The solution for b is 2.

Now, since we have values for m AND b, we can substitute into the slope-
intercept “formula” as above. The answer is

y=—4x + 2.

Method 2

Instead of trying to use the slope-intercept “formula,” the second method will
use the definition of the slope directly. Namely, we will substitute the coordinates
for the given point (1, —2) along with the coordinates of a second unknown point
(z,y), along with the value of the slope, into the formula defining the slope

_Y2—0n
- X9 — I

. Namely, we label:

x1 U1 T2 Y2
( 1 ) -2 )7 ( x ) Y )

After substituting these values, we solve for y in terms of x:

_4 (¥)=(=2)
(I)*gl)
4 = m
—4-(x—-1) = gffx—l)
—4x +4 = Yy + 2
—2 : —2
—4x +2 = V.

The answer is y = —4x + 2.

Notice that in the key step to this method, multiplying both sides by (xz — 1)
to “cancel” the denominator in the definition of the slope, we assumed that
x—17#0. This is permitted since we were supposing (z,y) to be the coordinates
of a second point on the line different from (1,—2).

While Method 1 functions well, it is somewhat artificial in that we are using
a “formula” that doesn’t match the data we are given. That is why Method 1
is a two-step method.

Method 2, on the other hand, used exactly the information we were given:
the slope and the coordinates of any one point on the line. Because it applies
in the more general setting, we summarize from Method 2 a “formula” for an
equation of the line passing through a given point with a given slope.
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The point-slope form of a linear equation in two variables

An equation for the line with slope m and passing through the point with
coordinates (xg,yo) is given by

Y —yo = m(z — xo).

This is known as the point-slope form of a line. As indicated in Method 2
of the last example, it derives from the definition of the slope, where we have
incorporated the step of “canceling the denominator” into the formula.

Unlike the slope-intercept form of a line, which is useful because we can
“read off” geometric data from the equation, the point-slope form of a line is
almost exclusively used as a “formula”’ to find an equation for a line, where
values of m, xg and yg are substituted to obtain an equation involving x and .

In the remaining examples, we will use the point-slope form of the line to
find an equation for the given line.

Example 5.2.11. Find an equation for the line passing through the points with
coordinates (4,1) and (—2,5).

Answer. Unlike the previous examples in this section, this time we are not
given the slope. Fortunately, since we have the coordinates of two points on the
line, we can use the definition to find the slope.

Step 1: Find the slope Labelling

Step 2: Use the point-slope formula We now have m = —2/3. We
can choose the coordinates of either of the given points to use in the point-slope
formula; let’s use the first. Labeling,
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we can substitute into the point-slope formula and solve for y in terms of x:

y — (1) = (P - @)

y — 1 = (3@ - 9
y - 1 = (-9 - D
y — 1 = =3 - (-5
y — 1 = -2z + 5
+ 1 + 1
Yy = -%z + i

(Notice that solving for y in terms of x amounts to writing the answer in slope-
intercept form.)

Since this is the first example of its type, let’s verify that the result does
not depend on which of the two points we choose. If we had instead chosen the
second point, we would have obtained

Zo Yo
( -2 , 5 ).

We can now substitute into the point-slope formula and solve for y in terms of

. y - 6) = (D - (-2)

y — 5 = (3@ + 2)
y - 5 = (5@ + (-5
voo 5= ko4 ()
y — 5 = —iz - 4
+ 5 + 5
y = -%z + a4

While the equation looked different immediately after substituting into the point-

slope formula, the slope-intercept form of the equation is the same.

11
The answer, in slope-intercept form, is y = —ga: + 3

The last two examples of this subsection will rely on the the following trans-
lation of geometric facts into the language of slopes. Recall that two lines in a
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plane are parallel if they have no point of intersection; two lines in a plane are
perpendicular if they intersect at right angles. These geometric definitions
can be translated (with some work) into algebraic facts by means of the slope.

Parallel and perpendicular lines described by slope

e Two lines are parallel if they have the same slopes.

e Two lines are perpendicular if the product of their slopes is —1.

In algebraic terms, suppose two lines have slopes m, and ms. If the lines are
parallel, then m; = mgy. If the lines are perpendicular, then ms = —1/my
(where my # 0). (It might be helpful to think of ms = —1/m; in words:
“mg is the opposite of the reciprocal of m;.”)

Example 5.2.12. Find an equation for the line passing through the point with
coordinates (—3,2) and which is parallel to the line x + 6y = 1.

Answer. We are not given the slope of the line in question. However, we are
given the equation of a parallel line. Let’s find the slope of the parallel line, then
use the same slope for the line in question.

Step 1: Find the slope of the parallel line.

Since we are given an equation for the parallel line, let’s rewrite it in slope-
intercept form:

r + 6y = 1
—T -
6y = -z + 1
6y __ —x+1
6
y = F 0+
y = —%x + %.

The slope of the parallel line is —1/6.
Step 2: Use the point-slope formula.

We will substitute m = —1/6 (using the same slope as the parallel line)
and the coordinates of the given point

Zo Yo
( -3 ) 2 )
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into the point-slope formula, and solve for y in terms of x.
y — 2 = (5 - (-3)

y - 2 = (hHe o+ 3

vo 2= o+ (G
y — 2 = —%:E — %
+ 2 + 2
Yy = —iz + 3.
The answer, in slope-intercept form, is y = —éa: + g

Example 5.2.13. Find an equation for the line passing through the point with
coordinates (3,5) which is perpendicular to the line 3z — 2y = 12.

Answer. Again, we are not given the slope of the line in question.
Step 1: Find the slope of the perpendicular line.

We rewrite the equation of the perpendicular line in slope-intercept form:

3r — 2y = 12
—3x —3x
2y = =3z 4+ 12
—2y —3x+12
-2 —2
A
y = %a: - 6

The slope of the perpendicular line is 3/2.
Step 2: Use the point-slope formula.

For the slope of the line in question, we will use the opposite of the recip-
rocal of the slope of the perpendicular line: we will substitute m = —2/3 along
with and the coordinates of the given point
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into the point-slope formula:

y — (6 = (-3 - 6)

y - 5 = (e - Y
y = 5 = (3@ - (=56
e

y — 5 = -2z 4+ 2

+ 5 + 5

y = -3¢+ T

The answer, in slope-intercept form, is y = —%x + 7.

Notice that in none of the examples in this section were we asked to graph
the lines in question. Having done the work of writing their equations in slope-
intercept form, however, doing so would have not been much extra effort.

5.2.3 Special cases: Horizontal and vertical lines

In the beginning of our discussion of linear equations in two variables, we men-
tioned that such an equation (in variables z and y) could always be written in
the form Ax + By = C, where A, B, and C are constants. We did not specify
that these constants were not 0 (although if they are both 0, the equation is no
longer a linear equation!). In the case that either A or B is zero, the correspond-
ing term is “missing,” and it appears that the equation has only one variable.
However, the context determines whether we should consider the equation in a
one-variable setting or a two-variable setting.

Let’s start with the case of horizontal lines. When we first introduced the
slope concept, we specified that horizontal lines should have slope 0.

Example 5.2.14. Find an equation of the horizontal line with slope 0 and
passing through the point with coordinates (—3,—7).

Answer. We have been given exactly the information needed to use the point-
slope formula. So we will substitute and solve for y in terms of x.

Yy - Yo = m(x - x0)
y — (=7 = 0)(z - (=3))
Yy + 7 = (0)(z + 3)
y o+ 7 = 0

- 7 -7

Yy = -7
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The answer is y = —7. Notice that although the example was clearly stated
in the setting of two variables (an ordered pair was given!), only one variable
appears in the equation describing the line.

Let’s consider the equation y = —7 from the previous example more carefully.
A solution to this equation, which in this context will be an ordered pair (z,y),
must make the equation y = —7 after substituting its coordinates into the
equation. However, there is no place to substitute x-values. In other words, the
equation y = —7 imposes no restrictions at all on z! A table might look like:

x Y Solution

of [-7 -7

-7 (=4, -7)

-7 (29, =7)

~7  (=0.7117,-7)
—7 (3,=7)

Whatever x value we choose, the equation requires that the y-coordinate be —7.

Turning our attention to vertical lines, we immediately run into the problem
that a vertical line does not have a slope (roughly speaking, the slope of a
vertical line is “infinite”). Because of this, our strategy of relying on the point-
slope formula would lead nowhere.

However, our discussion of a table of values for solutions to an equation in
two variables with one variable missing still applies.

Example 5.2.15. Graph the equation x = —1 in an zy-plane.

Answer. We will make a table to find solutions. Since the equation © = —1
does not involve the variable y, we will be free to choose any value of for y.
However, the only x-value that will make the equation true will be —1. One
possible table might be:

Solution
(*17 0)
(_17 _2)
(_17 1)

Plotting these three solutions and drawing the line through them, we obtain
Figure 5.13.

Notice that the line given by the equation x = —1 is a vertical line.

There are some obvious patterns in the previous two examples, which we
can summarize as follows:
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(-1,-2)¢ —2

Figure 5.13: All solutions to z = —1.

Horizontal and vertical lines

e An equation for a horizontal line passing through the point with co-
ordinates (a,b) is y = b.

e An equation for a wertical line passing through the point with coor-
dinates (a,b) is = a.

For future reference, it is worth remembering two special cases of this pattern
in an xy-plane:

e An equation for the z-axis is y = 0.

e An equation for the y-axis is x = 0.

5.2.4 Exercises

1. Find the slope of the lines in an xy-plane described by the following in-
formation:

(a) Passing through the points (—2,4) and (1, —2).

(b) Passing through the points (0, —3) and (4, 5).

(c) Passing through the points (—1,4) and (-1, —2).

(d) Having equation x — 3y = 4.
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Having equation 2x + 3y = —6.

)
f) Having equation 5z —y = 2.
) Having equation y = 2z — 1.
1
) Having equation y = 3%~ 2.

3
(i) Having equation y = —3% + 1.

(j) Having equation y = 4.
(k) Having equation y = —z

3
. Find the slope and y-intercept of the line given by the equation y = —Zx + 1.

. Find the slope and y-intercept of the line given by the equation 5z —y = 2.

. Find an equation of the line having slope 3/4 and passing through the

point (3, —2).

. Find an equation of the line passing through the points (2, —1) and (5, 1).

. Find an equation of the line passing through the point (4, —2) and parallel

to the line given by 3z — 4y = 6.

Find an equation of the line passing through the point (1,0) and perpen-
dicular to the line given by x + 4y = 2.

The following exercises give an alternate method to approach problems of
the type in Examples 5.2.12 and 5.2.13.

8.

10.

11.

(*) Show that for any values of A, B, Cy, Ca, (A # 0) the line described by
the equations Az + By = (1 is parallel to the line described by Az + By =
Cs.

. Use the result of the previous exercise to find an equation of the line

parallel to 3z 4+ 5y = 8 and passing through the point with coordinates
(2,-3).

(*) Show that for any values of A, B, C1, Cy, (A, B # 0) the line described
by the equations Az + By = C is perpendicular to the line described by
—Bx 4+ Ay = Cs.

Use the result of the previous exercise to find an equation of the line per-
pendicular to —x+ 5y = 7 and passing through the point with coordinates
(717 5) .
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5.3 Solving linear inequalities in two variables

We will approach linear inequalities in two variables in the same way as we
approached linear inequalities in one variable. The reader should review Section
4.4.2 on one-variable inequalities briefly before proceeding; just like in that
section, we will outline two approaches to solving two-variable inequalities.

As we have seen, a solution to a linear inequality in two variables is a value
for each of the two variables which, when substituted into the inequality, make
the inequality true. As in the case of linear equations in two variables, we will
represent a solution with an ordered pair.

Let’s look at an example:  +y < 3. Given any ordered pair, we can test to
see whether or not it is a solution by substituting and evaluating. For example,
(3,4) is not a solution since (3) + (4) < 3 is false. On the other hand, (0,1) is a
solution, since (0) + (1) < 3 is true. You should check that (—1,1), (2, —3) and
(0,0) are also solutions to z + y < 3, while (3,3) and (1,2) are not solutions.
After checking these ordered pairs, it is not hard to believe that the inequality
has infinitely many solutions—as well as infinitely many ordered pairs which are
not solutions.

As usual in the case when we have infinitely many solutions, we will attempt
to draw a graph to represent all the solutions. However, plotting the solutions
(and non-solutions) to the inequality x + y < 3 shows that coming up with a
“pattern” will take a little more thought, see Figure 5.14.

Y

5
4 <]
3 o
2 o
e 1
-5 -4 -3 -2 -1 0 1 2 3 4 5 *F

-1

-2

-3 .

—4
5

Figure 5.14: Four solutions (e) and three non-solutions (o) to x +y < 3.

The key to seeing a pattern here is to take a step back and remember that
solutions to a linear equation all lie on a line. Points not on the line do not
represent solutions to the linear equation—or, equivalently, represent solutions
to a linear inequality. In other words, if an ordered pair (a,b) is not a solution
to the equation Az + By = C (and so the corresponding point is not on the line
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given by Az+ By = C), then the ordered pair (a, b) is a solution to Az+ By # C.

Now there are two ways that the inequality Az + By # C can be true: either
Ax + By < C is true, or Ax + By > C'is true. It is an important fact about
an xy-plane that all points representing solutions to Ax + By < C' lie on the
same side of the line Az + By = C in an xy-plane, and all points representing
solutions to Ax + By > C lie on the other side of the same line. Figure 5.15
is the same as Figure 5.14, except with the “border” line z + y = 3 indicated.
(Notice that the ordered pair (1,2), which is not a solution to z +y < 3, is
represented by a point on the border line described by x +y = 3.)

5

5
4 o
3 ]
2 \\z\
o 1
0
-5 -4 -3 -2 -1 1 2 3 4 5 7
-1
-2
-3 .
—4
-5

Figure 5.15: Solutions (e) and non-solutions (o) to & + y < 3, with border line
r+y=3.

We can summarize the above discussion as follows: The graph of all solutions
to a typical linear inequality in two variables will consist of all points on one
side of a line in an xy-plane. The border line will not (or will) be included
depending on whether the inequality is strict (or not).

Our strategy to solve a linear inequality in two variables will then be the
following:
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General strategy to solve linear inequalities in two variables

To solve a linear inequality in two variables:

1. Draw the border line. Use a dotted line for strict inequalities (so
that points on the border line do not represent solutions) or a solid
line for non-strict inequalities (so that the border points do represent
solutions).

2. Shade the side of the border line that consists of solutions.

As in Section 4.4.2, we will discuss two methods to decide which side of the
border line to shade.

Method 1: Test point method

The idea of this method is to choose any point in the zy-plane not on the
border line. Test whether the chosen point represents a solution to the inequality.
If it does represent a solution, shade all points on the same side of the border
line as the test point. If it does not, shade all points on the opposite side of the
border line.

We will give three examples using this method.

Example 5.3.1. Graph the solutions of x — 3y < 6.

Answer. The first step is to graph the border line represented by x — 3y = 6;
notice that we will draw the border as a dotted line since the inequality is strict
(and the points on the border do not represent solutions to the inequality). To
do that, we can use either of our methods for graphing linear equations. We list
here a possible table of values to find two solutions:

x ‘ Y Solution
o] -2 (0.-2)
6 [[o] (60

Now we choose a test point to determine which side of the border line to
shade. Let’s choose one with coordinates (1,1). To test it, we substitute these
coordinates into the original inequality x — 3y < 6:

(1) — 3(1) < 6
1 - 3 < 6
-2 < 6.

The inequality is true, and so (1,1) is a solution. We shade all points on
the same side of the border line as the one representing (1,1) to represent all
solutions of x — 3y < 6. See Figure 5.16.
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Test point (1,1)
1 .

-5 -4 -3 -2 -1 1 2 3 4 .56 7 8 9 10°

Figure 5.16: All solutions of z — 3y < 6.

Example 5.3.2. Graph the solutions of 2z + 5y > 10.

Answer. We first graph the border line represented by 2x 4+ 5y = 10; we will
draw the line as a solid line since the inequality is non-strict, and so points on
the border do represent solutions to the inequality. In order to graph the border
line, we might use the following table of values:

x ‘ Y Solution
o]l 2 (02
5 |[0] (5,0)

Now we choose a test point; this time let’s choose the origin, with coordinates
(0,0). Substituting these coordinates into the original inequality 2x + 5y > 10,

2(0) + 5(0) > 10
0 + 0 > 10
0 > 10.

The inequality is false; (0,0) is not a solution to 2x + 5y > 10. We shade
all points on the opposite side of the border line as the origin to represent all
solutions of 2x + 5y > 10. See Figure 5.17.

1
Example 5.3.3. Graph all solutions of y < —333 + 1.

1
Answer. First, as always, we graph the border line represented by y = ——x + 1.

We will draw it using a dashed line since the inequality is strict. This time, since
the equation is written in slope-intercept form, we see that the y-intercept has
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1
Test point (0,0)
0
0

Figure 5.17: All solutions of 2z + 5y > 10.

coordinates (0,1). A second solution can be obtained by “moving” down one
unit and to the right three units to give (3,0).

Now we choose a test point; since zero is a nice number to work with let’s
choose the origin with coordinates (0,0) again. To decide whether it is a solution,

1
we substitute into y < —gx + 1:

0) <—30) + 1
0 < 0 + 1
0 < 1.

1
The inequality is true; (0,0) is a solution of y < fgm + 1. We will shade all
points on the same side of the border line as the origin (0,0). See Figure 5.18.

Method 2: Standard form method

Many students look at a few examples of linear inequalities and try to find
patterns, or “shortcuts,” to the test point method. “Wouldn’t it be great,”
someone might say, “if every ‘less than’ inequality had a graph shaded below
the border line! Then I don’t have to waste my time with test points.” However,
look back at Examples 5.3.1 and 5.3.3; if there is a pattern, it is not so simple.
In fact, since the an inequality can be written in so many equivalent forms, there
is really no hope for an easy “shortcut.”

However, if we make the effort of writing the inequality in a standard form,
it is possible to make “rules” for which side of the border line to shade. Here is
an example of such rules:
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1
Figure 5.18: All solutions of y < 3 + 1.

1. The points representing solutions to a linear inequality of the form
y < mx+b (or y < mx+b) lie below the border line given by
y=mx+b.

2. The points representing solutions to a linear inequality of the form
y > mz+b (or y > ma + b) lie above the border line given by
y =mx +b.

Notice what is “standard” about this standard form: The y variable is by
itself on the left side of the inequality. As with linear equalities in one variable,
where the standard form consisted of having the = variable by itself on the left
side of the inequality, if the inequality is not in standard form, we can use our
basic addition and multiplication principals to rewrite the inequality in standard
form. Keep in mind that as always, multiplying or dividing both sides of an
inequality by a negative quantity requires changing the sense of the inequality.

Example 5.3.3 already gave an example of these standard form rules, since
in that example the y variable was already by itself on the left side. Notice
in Figure 5.18 that the shaded region is below the border line, as the rules for
standard form dictate for the inequality <.

Here are two more examples illustrating the standard form method for graph-
ing linear inequalities in two variables.
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Example 5.3.4. Graph the solutions of 3z + 4y > 12.

Answer. In this case, the inequality is not in our standard form. We solve for
y:

3 + 4y > 12
-3z —3x
4y > -3z + 12
4 —3z412
2y > G
y = %;;’x + 2
y = -3¢+ 3

Notice that at mo point did we divide by a negative number; the sense of the
inequality > does not change.
One advantage of the standard form we have chosen is that the equation

of the border line y = —ix + 3 is in slope-intercept form. The y-intercept has

3
coordinates (0,3) and the slope is ——, so the coordinates of a second point on

the line is obtained by “moving” down three units and to the right four units
from (0,3), giving (4,0). We draw the border line with a solid line since the
inequality > is not strict.

Since the inequality in standard form is >, we will shade above the border
line. See Figure 5.19.

Figure 5.19: All solutions of 3z + 4y > 12.

Example 5.3.5. Graph the solutions of 4x — 2y > 5.
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Answer. We will first write the inequality in standard form:

= - 2y > 5
—4x —4x
-2y > —4x + 5
—2y _  —detb
) -2

v o< =3+
y < 2z -

njon ‘cn
RN

This time, when we divided by —2 on the fourth line, the sense of the inequality
changes from > to <.

5 5
The border line, represented by y = 2x — 3 has y-intercept (O, —2> and

2 5
slope m =2 = 1 We can obtain a second point by starting from <0, 2) and

1
“moving” up 2 units and to the right 1 unit to give 1,—5 . (Notice that
—5/2 = —2.5) We will draw the border line with a dashed line since the original
inequality > is strict.
Even though the original inequality was >, in standard form the inequality

changed to < (when we divided by a negative number). For that reason, we will
shade below the border line. See Figure 5.20.

-5 —4 -3 -2 -1 2 3 4
. (1.-0.5)
2
(0,-2.5)

Figure 5.20: All solutions of 4x — 2y > 5.
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5.3.1 Exercises

Solve the following linear inequalities in two variables. In each case, graph all
solutions and list five individual solutions.

1. —z—y>6
2. 2z 45y <10
3. 3z —2y >12

4, —dz4y>4

1
5. y2—5x+4

6. y<1
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5.4 Solving systems of linear equations

A system of equations represents a situation where a solution must make all
of several equations true, as opposed to just one equation. In this section we
will consider only systems of two linear equations in two unknowns. A solution
to such a system will be an ordered pair which, when substituted, makes both
equations true.

For example, the following is a typical system of linear equations:

(5.1)

2 + 5y = 13 ©
r - 2y = 2 @ ®

There are a few things to notice about our notation in writing systems of
linear equations:

e The system is indicated by the symbol {. This indicates that a solution
must make both equations true. (Caution: Not every text uses this sym-
bol.)

e We write both equations is the general form Ax + By = C, where all
variable terms are on the left side of the equations and all constant terms
are on the right side. (If an equation is not written in this form, it can be
rewritten as an equivalent one in the general form by using the addition
principle.)

e We have written the equations so that like terms are in the same “column,”
with z-terms written above z-terms and y-terms written above y-terms.

e We use the symbols ® and ® to represent the two equations. For example,
in this case, “Equation ©,” or just @, will refer to the equation 2x 4 5y =
13.

Let’s look at some potential solutions for System (5.1). The reader should
check the validity of the statements below:

e (9,—1) is a solution to Equation ®, but (9, —1) is not a solution to Equa-
tion ®. So (9,—1) IS NOT a solution to System (5.1).

e (6,2) is a NOT solution to Equation ®, but (6, 2) is a solution to Equation
@®. So (6,2) IS NOT a solution to System (5.1).

e (4,1) is a solution to Equation ®, and (4, 1) is not a solution to Equation
®. So (4,1) IS a solution to System (5.1).

e (0,0) is a not solution to Equation ®, and (0,0) is not a solution to
Equation ®. So (0,0) IS NOT a solution to System (5.1).

The preceding paragraph should convince the reader that to find solutions
to a system of equations, it is not enough to solve the two equations separately.
At this point, we found one solution to System (5.1), but we can’t be sure that
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it is the only solution. To do that, we need a method to solve systems of linear
equations.

Before discussing a general method, we can again let geometry give us a guide
as to what to expect. We know, for example, that Equation ® has infinitely
many solutions, which form a line when plotted in an xy-plane. We also know
that Equation ® also has infinitely many solutions, which form a different line
when plotted in an xy-plane. So, if we graph both equations in the same zy-
plane, a point will represent a solution to both equations if it lies on both
lines—in other words, if it is a point of intersection of the two lines. But we
know from elementary geometry that two non-parallel lines have exactly one
point of intersection. So we have the following conclusion:

A typical system of two linear equations in two variables will have exactly
one solution. The solution, when plotted on an xy-plane, represents the
point of intersection of the lines represented by the two equations.

In fact, this discussion already gives one method to solve a system of linear
equations: Graph both equations on the same xy-plane, and the solution will
be the coordinates of the point of intersection. However, this method requires
a high degree of accuracy in plotting, and we will not generally rely on this
method to solve systems of linear equations.

There is another, more algebraic way to solve systems of linear equations.
Beginning with one of the equations, we could solve for one of the variables, say
y, in terms of the other variable x. Then we could substitute this expression
for y in terms of z into the second equation to obtain a new equation in just
one variable . This new linear equation (in one variable) will typically have
one solution. Substituting this solution into the first equation (for y in terms
of ) will give a corresponding value of y. The solution will be an ordered pair
consisting of the solutions for x and y.

The method in the preceding paragraph is sometimes known (for obvious
reasons) as the substitution method. Despite the fact this method applies to
a wide variety of systems beyond those that we are considering here, we will
not pursue this method any further. In many situations it requires detailed
calculations with fractions, which as it turns out can be avoided in most cases
we will encounter.

Solving systems of linear equations: Elimination method

We are going to outline a method for solving systems of two linear equations in
two variables x and y, both of which have integer coefficients for both variables
(this can always be arranged using the method of Section 4.2.4). We will arrive
at the method by considering several examples, from simpler to more general.

Example 5.4.1. Solve:

{a: + y i 4  © (5.2)
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Answer. Looking at System (5.2), we can notice that the y-terms have a special
form in Equations © and ®: they are “opposites,” in the sense that their coef-
ficients (1 and —1) have the same magnitude but opposite sign. Let’s apply the
addition principle, which as a reminder states that we can add the same quantity
to both sides of an equation without changing the solutions. For a solution to
FEquation ®, both sides are equal, so we will “add Equation ® to Equation ©,”
meaning add the left sides and right sides of the equations.

Eliminate y:

x 4+ y = 4 ©)
r — y =1 ®
2z = 5 ©@+®

Notice that the new equation, which we denote © + ®, is an equation in one
variable, with solution 5/2. We have learned so far that if (x,y) is a solution to
System (5.2), then x must have the value 5/2.

What is the corresponding y-value for the solution? One way to find this
would be to substitute the x-value 5/2 into either Equation ® or & to obtain a
new equation in one variable y and then solve. Howewver, let’s stay in the spirit
of “elimination.”

The preceding step of eliminating y worked so well because the original co-
efficients of y were so nice. If we wanted to eliminate x, adding the equations
directly does not work, as we just saw. While the coefficients of x, which are
both 1, do have the same magnitude, they have the same sign, and so are not
“opposites.”

But why not, instead of adding the two equations, subtract them—or, what
is the same, add the opposite of Equation ® to Equation © ¢

FEliminate x:

r 4+ y = 4 ©
-z + y = -1 ® x (-1)
2y = 3 @ — ®

Notice that we multiplied every term on both sides of Fquation ® by —1.
We represent this with the notation ® X (—1).

So after adding to obtain ® — @ (which is the same as ® + (—1) x ®), we
obtain the equation in one variable 2y = 3, which has solution 3/2. This tells
us that if (x,y) s a solution to System (5.2), then y must have the value 3/2.

From our preceding discussion, we expect that System (5.2) has one solution.
We conclude:

5 3
The solution to System (5.2) is (2, 2).

It is worth pointing out from this first example that we did encounter frac-
tions in our solution, even though the system involved equations without frac-
tional coefficients. This is completely normal. However, we did not encounter
fractions until the very last step of each elimination, and in fact, we never
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had to perform operations with these fractions. As we will see, this is typical
for systems with integer coefficients and a major advantage of the elimination
method.

From our first example, we can already see the outlines of the elimination
method: Combine the two equations in such a way that one of the variables
is “eliminated” in order to find a value for the other variable. Then repeat
the process, eliminating the other variable to find the value for the remaining
unknown. The solution is the ordered pair formed by the two values obtained
in this way.

What remains to investigate is exactly how to combine the equations in such
a way that one variable is always eliminated. The next example is a step in that
direction.

Example 5.4.2. Solve:

{395 + ¥y = 9 © (5.3)

r — 2y = -6 &

Answer. In this example, unfortunately, the coefficients of neither variable are
“opposites.” In fact, neither adding nor subtracting the equations will eliminate
either of the variables this time.

However, we don’t give up hope. Notice that even though the coefficients of
y are not opposites, at least they have opposite signs! If there was only a way
to change the equations in such a way that the magnitudes were equal...

Actually, the notation we used in the first example already had the clue to
a way around this problem. If we multiply both sides of Equation ® by 2, then
the new y term will be opposite that of the y-term in Equation ®; adding the
resulting equations will eliminate y!

Eliminate y:

6r + 2y = 18 © X 2
r — 2y = —6 ®
Tx = 12 2X0© + ®

After eliminating y, we obtain an equation in just one variable (x) whose
solution is 12/7. The conclusion is that if (z,y) is a solution to System (5.3),
then © must be 12/7.

Turning now to the y-coordinate of the solution, we want to eliminate x.
This time, the coefficients of x not only have different magnitudes (1 and 3),
but they have the same sign. They are far from being opposites. A little thought,
though, can convince us that again, we already have the idea of how to cope with
this: why not multiply Equation ® by the negative number —3. That way, the
resulting coefficients of x will have the same magnitudes but opposite signs:
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FEliminate x:

3r + y = 9 ©
-3z + 6y = 18 ® x (—3)
Ty = 27 ® T (3 x®

In the resulting equation ® + (—3) X ®, we have eliminated x to obtain an
equation in one variable y with solution 27/7.
The solution to System (5.3) is

12 27
7T )

One thing should be clear from these examples so far: Be careful of signs
when multiplying both sides by a negative number!

Example 5.4.3. Solve:

(5.4)

2 + 5y = 13 ©
r - 2y = 2 @ ®

Answer. This is the example that we used in the opening of the section (System
(5.1). We already saw the solution at that time, when we were checking if
various ordered pairs were solutions. Now we will apply the elimination method
to actually find the solution “from scratch.”

In looking at the system, we see that we can eliminate x exactly as in the
previous example. We will multiply Equation & by —2 (notice that the coeffi-
cients of x initially have the same sign, so we need to multiply by a negative
number in order to make the resulting coefficients “opposite.”

FEliminate x:

2 + by = 13 ©
-2z + 4y = —4 ® x (—2)
99 = 9 © + (-2)x®

The equation 9y =9 has 1 as a solution, so the y-coordinate of the solution
to System (5.4) is 1.

When we turn to eliminating y, we encounter a new problem. The good news
is that the coefficients of y (5 and —2) have opposite signs. But there is no way
to multiply just one of the equations by an integer to make the coefficients of y
“opposites,” as we need to eliminate y.

It turns out that the way around this difficulty is not hard: we will use the
multiplication principle on both equations. First, we find a common multiple
of the magnitudes 2 and 5. That is, we find an integer that both 2 and 5 divide
evenly. The least common multiple of 2 and 5 is 10. (The reader might notice
that finding a common multiple of 2 and 5 is exactly the same mental process as
finding a common denominator* for two fractions with denominators 2 and 5.)

4In fact, a common denominator is just a common multiple of the denominators.
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Once the common multiple 10 is found, we will multiply both equations by a
number so that the magnitude of the coefficient of y is 10. That is, in this case,
we will multiply Equation ® by 2 and Equation ® by 5.

Eliminate y:

4 + 10y = 26 © X 2
5z — 10y = 10 ® X 5
9z = 36 2x©® 4+ Hx®

The resulting equation 9x = 36 has 4 as a solution, so the x-coordinate of
the solution to System (5.4) is 4.

Putting this together with the result of the previous elimination step, we find
that the solution to System (5.4) is (4,1).

With the three preceding examples as guides, we can write down a general
method that describes the “elimination” that is at the heart of the elimination
method.

In order to eliminate a variable from a system of linear equations:

e Find a common multiple of the magnitudes of the coefficients of the
variable to be eliminated;

e If the coeflicients of the desired variable originally had different signs,
multiply each equation by a positive number so that the magnitude
of the coefficients of the desired variable in the resulting equations is
the common multiple;

e If the coefficients of the desired variable originally had the same sign,
multiply one equation by a positive number and one equation by
a negative number so that the magnitude of the coefficients of the
desired variable is the common multiple.

After these preparations, adding the resulting equations will result in a new
equation that does not involve the variable to be eliminated.

The next example illustrates the general method.

Example 5.4.4. Solve:

{650 + 4y 16 (5.5)

©
9 — by = 7T @ ®

Answer. To eliminate x, we see that the least common multiple of the coeffi-
cients of x (6 and 9) is 18. Since the signs of the coefficients are the same, we
will multiply one equation (say Equation ®) by a negative number. Specifically,
we will multiply Equation ® by 3 and Equation ® by —2:
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FEliminate x:

18z + 12y = 48 ®x3
—18z + 10y = —14 @ x (-2)
2y = 34 3x© + (—2)x®

The solution to the resulting equation 22y = 34 is 17/11 (after reducing), so
the y-coordinate of the solution to System (5.5) is 17/11

Now to eliminate y, we see that the least common multiple of the magnitudes
of the coefficients of y in System (5.5) (4 and —5) is 20. Since the signs of
the coefficients are already different, we will multiply both equations by positive
numbers to achieve the common multiple. Specifically, we will multiply Equation
® by 5 and Equation ® by 4:

Eliminate y:

30z + 20y = 80 © x5
36xr — 20y = 28 ® x 4
66x = 108 bX©® 4+ 4x®

The solution to the equation 66x = 108 is 18/11 (after reducing), so the
x-coordinate of the solution to System (5.5) is 18/11.
Together with the first elimination step, we see that the solution to System

(5.5) is
1 17
11711 )°

5.4.1 Systems that do not have exactly one solution

By thinking of a system of two linear equations in two unknowns graphically,
we came to the conclusion that a “typical” such system will have exactly one
solution, just like a “typical” linear equation in one variable will have exactly
one solution. However, keeping in mind Section 4.2.3, we might expect that not
every system is “typical.”

To see what might go wrong, consider following example.

Example 5.4.5. Solve:

|
©
©

{x o2y (5.6)

3z + 6y

10 ®

Answer. We will apply our elimination method, as usual.

To eliminate x, we see that the least common multiple of the coefficients of x
(1 and 3) is 3. The signs of the coefficients are the same, so we will multiply one
equation (say Equation ®) by a negative number. Specifically, we will multiply
Equation ® by —3 and Equation ® by 1:
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Eliminate x:

-3z — 6y = =27 ©® x (—3)
3 4+ 6y = 10 ® x 1
0o = -17 (=3)x@ + ®

Although we were aiming to eliminate x, both variables were eliminated in

the resulting equation!
As in Section 4.2.3, the question in such cases is whether the new equation

is true or false.
Since the equation 0 = —17 is false, System (5.6) has no solution.

What went “wrong” in the previous example? Why did our elimination pro-
cedure end up eliminating both variables, instead of the ”typical” one variable

at a time?
To investigate Example 5.2.12 more closely, let’s rewrite both equations in

slope-intercept form. Solving Equation ® for y gives:

r 4+ 2y = 9
—T : —T
2y = -z + 9
2y _ —x+9
2
y = 5+
y = —%x + %.

We see that the slope of the line given by Equation ® is —1/2 and the y-intercept
is (0,9/2).
Turning to Equation ®, we solve for y:

3z + 6y = 10
—3x —3x
6y = -3z + 10
6y _  =3z410
6 6
vy = 5+ %
Yy = —%x + %

The slope of the line given by Equation ® is —1/2 and the y-intercept is (0,5/3).
Comparing, we see that the two lines represented by Equations ® and ®
have the same slope, but different y-intercepts. In other words, the Equations
represent parallel lines!
In fact, this shouldn’t be a big surprise. Our geometric thinking that led us
to the conclusion that the typical system of two linear equations in two variables
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had a single solution was that two different lines in a plane typically intersect
in one point—except when the two lines are parallel, in which case they have
no point of intersection.

Keeping in mind that we saw two “unusual” situations in Section 4.2.3, let’s
look at one last example.

Example 5.4.6. Solve:

{2x -y =5 ® (5.7)

dr — 2y = 10 &

Answer. Let’s eliminate x first. The least common multiple of the coefficients
of ¢ (2 and 4) is 4. The signs of the coefficients are the same, so we will
multiply one equation (say Equation ®) by a negative number. Specifically, we
will multiply Equation @ by —2 and Fquation ® by 1:

FEliminate x:

-4z + 2y = -10 ©® x (—2)
. + 2y = 10 ®x1
0 = 0 (-2)x@ + ®

Again, we have eliminated both variables. This time, though, the resulting
equation s true.

In the one-variable situation in Section 4.2.3, this would have led us to con-
clude that all real numbers were solutions. Howewver, in this case, not every
ordered pair is a solution. For example, the reader can check that (0,0) is not
a solution to System (5.7).

To understand what the resulting true equation is telling us, let’s again
rewrite the equations in slope-intercept form to see what some geometry can
tell us.

Solving Equation ® fory gives:

2 — y = 5
—2x —2x
-y = —2x + 5
-y —2x+5
—1 —1
y = F + 5
y = 2z - 5.

The slope of the line given by FEquation ® is 2 and the y-intercept is (0, —5).
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Solving Equation ® for y gives:

dr - 2y = 10
—4z : —4z
-2y = —4x + 10
=2y _  —4x+10
-2 = —2
A
Yy = 2z - 5.

The slope of the line given by Equation ® is 2 and the y-intercept is (0, —5).
Notice that the two equations represent lines with the same slope and the
same y-intercept—they actually represent the same line.
In other words, System (5.7) has infinitely many solutions, all of which are
represented by the points on the line given by either Equation ® or Equation ®.
We could graph the solutions: See Figure 5.21.

Y
4

Figure 5.21: All solutions of

2 — y = 5
d — 2y = 10

The unusual cases in this section are detected using the elimination method
when both variables are eliminated. We can summarize our results as follows:
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Suppose that, in using the elimination method to solve a system of two
linear equations in two unknowns, an equation results which involves neither
of the two variables.

e If the resulting equation is false, the system has no solution. The
lines represented by the two equations are parallel lines.

e If the resulting equation is true, the system has infinitely many solu-
tions, represented by the points on the graph of either equation. The
lines represented by the two equations are the same.

5.4.2 Exercises

Solve the following systems of linear equations.

) r—y=2~8
2wty =1
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5.5 Chapter summary

A typical linear equation in two variables has infinitely many solutions.
When graphed on an zy-plane, the points corresponding to solutions of a
linear equation in two variables form a line.

The most basic strategy to graph all solutions of a linear equation in two
variables is to plot two solutions, then draw the line passing through these
two.

An alternate method to graph all solutions to a linear equation is to use
the slope of the line and the coordinates of one point on the line. This is
most useful when the equation is written in slope-intercept form.

Given the slope of a line and the coordinates of one point on the line, the
point-slope form of a line gives a “formula” to write an equation of the
line.

Linear inequalities in two variables typically have infinitely many solu-
tions. The points corresponding to these solutions in an zy-plane all lie
on the same half the zy-plane with border line given by the corresponding
linear equation.

A typical system of two linear equations in two variables has one solution.



