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 C H A P T E R   3 
 
 
 
Linear Equations and 
Matrices 
 
 
 
 
 
In this chapter we introduce matrices via the theory of simultaneous linear 
equations. This method has the advantage of leading in a natural way to the 
concept of the reduced row-echelon form of a matrix. In addition, we will for-
mulate some of the basic results dealing with the existence and uniqueness of 
systems of linear equations. In Chapter 5 we will arrive at the same matrix 
algebra from the viewpoint of linear transformations. 
 
 
3.1  SYSTEMS OF LINEAR EQUATIONS 
 
Let aè, . . . , añ, y be elements of a field F, and let xè, . . . , xñ be unknowns 
(also called variables or indeterminates). Then an equation of the form 
 

aè xè +  ~ ~ ~  + añ xñ  =  y 
 
is called a linear equation in n unknowns (over F). The scalars aá are called 
the coefficients of the unknowns, and y is called the constant term of the 
equation. A vector (cè, . . . , cñ) ∞ Fn is called a solution vector of this equa-
tion if and only if 

a1 c1 +  ~ ~ ~  + an cn  =  y 
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in which case we say that (cè, . . . , cñ) satisfies the equation. The set of all 
such solutions is called the solution set (or the general solution). 
 Now consider the following system of m linear equations in n 
unknowns: 

 

 

a
11
x
1
+!+ a

1nxn = y1

a
21
x
1
+!+ a

2nxn = y2

!!!!"!!!!!!!!!!!!!!!!!"!!!!!!!"

am1x1 +!+ amnxn = ym

 

 
We abbreviate this system by 

 
 

aij x j = yi ,!!!!!!!!!!!!i =1,!…!,!m!!.

j=1

n

!  

If we let Si denote the solution set of the equation Íé aáéxé = yá for each i, then 
the solution set S of the system is given by the intersection S = ⁄Sá. In other 
words, if (cè, . . . , cñ) ∞ Fn is a solution of the system of equations, then it is a 
solution of each of the m equations in the system. 
 
Example 3.1   Consider this system of two equations in three unknowns over 
the real field ®: 

 
2x

1
! 3x

2
+!!!x

3
= 6

!!x
1
+ 5x

2
! 2x

3
=12

 

 
The vector (3, 1, 3) ∞ ®3 is not a solution of this system because 
 

2(3) - 3(1) + 3  =  6 
while 

   3 + 5(1) - 2(3)  =  2  ≠  12  . 
 
However, the vector (5, 1, -1) ∞ ®3 is a solution since 
 

2(5) - 3(1) + (-1)  =  6 
and 

             5 + 5(1) - 2(-1)  =  12  .  ∆ 
 
 Associated with a system of linear equations are two rectangular arrays of 
elements of F that turn out to be of great theoretical as well as practical 
significance. For the system Íé aáéxé = yá, we define the matrix of coefficients 
A as the array 
 
 



3.1   SYSTEMS OF LINEAR EQUATIONS  

 

117 

 

 

 

A =

a
11

a
12
! a

1n

a
21

a
22
! a

2n

" " "

a
m1

a
m2
! a

mn

!

"

#
#
#
#

$

%

&
&
&
&

 

 
and the augmented matrix as the array aug A given by 
 

 

 

aug!A =

a
11

a
12
! a

1n y
1

a
21

a
22
! a

2n y
2

" " " "

am1 am2 ! amn yn

!

"

#
#
#
#

$

%

&
&
&
&

!!.  

 
 In general, we will use the term matrix to denote any array such as the 
array A shown above. This matrix has m rows and n columns, and hence is 
referred to as an m x n matrix, or a matrix of size m x n. By convention, an 
element aáé ∞ F of A is labeled with the first index referring to the row and the 
second index referring to the column. The scalar aáé is usually called the i, jth 
entry (or element) of the matrix A. We will frequently denote the matrix A 
by the symbol (aáé). 
 Another rather general way to define a matrix is as a mapping from a sub-
set of all ordered pairs of positive integers into the field F. In other words, we 
define the mapping A by A(i, j) = aáé for every 1 ¯ i ¯ m and 1 ¯ j ¯ n. In this 
sense, a matrix is actually a mapping, and the m x n array written above is just 
a representation of this mapping. 
 Before proceeding with the general theory, let us give a specific example 
demonstrating how to solve a system of linear equations. 
 
Example 3.2   Let us attempt to solve the following system of linear equa-
tions: 

 
2x

1
+!!x

2
! 2x

3
= !3

!!x
1
! 3x

2
+!!x

3
=!!!8

4x
1
!!!x

2
! 2x

3
=!!3

 

 
That our approach is valid in general will be proved in our first theorem 
below. 
 Multiply the first equation by 1/2 to get the coefficient of xè equal to 1: 
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!!x1 +!!(1 / 2)x2 !!!!x3 = !3 / 2

!!x1 !!!!!!!!!!3x2 +!!!x3 =!!!!!!!8

4x1 !!!!!!!!!!!!x2 ! 2x3 =!!!!!!!3

 

 
Multiply the first equation by -1 and add it to the second to obtain a new sec-
ond equation, then multiply the first by -4 and add it to the third to obtain a 
new third equation: 

 
x1 +!!(1 / 2)x2 !!!x3 = !3 / 2

!!!!!!(7 / 2)x2 + 2x3 =!19 / 2

!!!!!!!!!!!!!!3x2 ! 2x3 =!!!!!!!9

 

 
Multiply the second by -2/7 to get the coefficient of xì equal to 1, then mul-
tiply this new second equation by 3 and add to the third: 
 

 
x1 +!!(1 / 2)x2 !!!!!!!!!!!x3 =!!!!3 / 2

!!!!!!!!!!!!!!!!!x2 ! (4 / 7)x3 =!!19 / 7

!!!!!!!!!!!!!!!!!!!!!!!!!(2 / 7)x3 =!!!!6 / 7

 

 
Multiply the third by 7/2, then add 4/7 times this new equation to the second: 
 

 
x1 +!!(1 / 2)x2 ! x3 =!!3 / 2

!!!!!!!!!!!!!!!!!x2 !!!!!!!!=!!!!!!1

!!!!!!!!!!!!!!!!!!!!!!!!!x3 =!!!!!!3

 

 
Add the third equation to the first, then add -1/2 times the second equation to 
the new first to obtain 

 
x
1
=!!2

x
2
= !1

x
3
=!!3

 

 
 This is now a solution of our system of equations. While this system could 
have been solved in a more direct manner, we wanted to illustrate the system-
atic approach that will be needed below.  ∆ 
 
 Two systems of linear equations are said to be equivalent if they have 
equal solution sets. That each successive system of equations in Example 3.2 
is indeed equivalent to the previous system is guaranteed by the following 
theorem. 
 
Theorem 3.1   The system of two equations in n unknowns over a field F 
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a
11
x
1
+ a

12
x
2
+!+ a

1n
x
n
= b

1

a
21
x
1
+ a

22
x
2
+!+ a

2n
x
n
= b

2

 (1) 

 
with aèè ≠ 0 is equivalent to the system 
 

 
 

a
11
x
1
+ a

12
x
2
+!+ a

1n
x
n
= b

1

!a
22
x
2
+!+ !a

2n
x
n
= !b

2

 (2) 

 
in which 

aæ2i  =  a21 a1i - a11 a2i 
 
for each i = 1, . . . , n and 
 

   bæ2  =  a21 b1 - a11 b2   . 
 

Proof   Let us define 

 Li = aij
j=1

n

! x j  

so that (1) may be written as the system 
 

 
L
1
= b

1

L
2
= b

2

 (1æ) 

while (2) is just 

 
L
1
= b

1

a
21
L
1
! a

11
L
2
= a

21
b
1
! a

11
b
2

 (2æ) 

 
 If (xè, . . . , xn) ∞ Fn is a solution of (1æ), then the two equations 
 

 
a
21
L
1
= a

21
b
1

a
11
L
2
= a

11
b
2

 

and hence also 
 aìè Lè - aèè Lì  =  aìè bè - aèè bì 

 
are all true equations. Therefore every solution of (1æ) also satisfies (2æ). 
 Conversely, suppose that we have a solution (xè, . . . , xñ) to the system 
(2æ). Then clearly 

aìè Lè  =  aìè bè 
 
is a true equation. Hence, subtracting the second of (2æ) from this gives us 
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aìè Lè - (aìè Lè - aèè Lì)  =  aìè bè - (aìè bè - aèè bì) 
or 

   aèè Lì  =  aèè bì  . 
 
Thus Lì = bì is also a true equation. This shows that any solution of (2æ) is a 
solution of (1æ) also.  ˙ 
 
 We point out that in the proof of Theorem 3.1 (as well as in Example 3.2), 
it was only the coefficients themselves that were of any direct use to us. The 
unknowns xá were never actually used in any of the manipulations. This is the 
reason that we defined the matrix of coefficients (aáé). What we now proceed 
to do is to generalize the above method of solving systems of equations in a 
manner that utilizes this matrix explicitly. 
 
 
Exercises  
 
1. For each of the following systems of equations, find a solution if it exists: 
 

(a)!!!x +!2y ! 3z = !1

3x !!!!y+ 2z =!!7

5x + 3y ! 4z =!!2

  
(b)!!2x +!!y ! 2z =10

3x + 2y+ 2z =!!1

5x + 4y+ 3z =!!4

 

 
(c)!!!!x +!2y ! 3z =!!!6

2x !!!!y+ 4z =!!!2

4x + 3y ! 2z =!14

 

 
2. Determine whether or not the each of the following two systems is equiva-

lent (over the complex  field): 
 

 
(a)!!!!!x ! y = 0!!!!!!and!! !!!!3x + y = 0

2x + y = 0!!!!!!!!!!!!!!!!!!!!x + y = 0
 

 

 
(b)!!!!!!!!!!x +!!y+!!!!!!!!4z = 0!!!!!!and!!!!!!x !!!!!!!!!z = 0

!!x + 3y+!!!!!!!!8z = 0!!!!!!!!!!!!!!!!!!!!!!!!y+ 3z = 0

(1 / 2)x +!!y+ (5 / 2)z = 0

 

 

 
(c)!!2x + (!1+ i)y+!!!!!!!!!!!t = 0

3y ! 2iz + 5t = 0
 

 
    and 
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(1+ i / 2)x +!!!!!!!8y ! iz !!!t = 0

(2 / 3)x ! (1 / 2)y+ z + 7t = 0
 

 
 
3.2  ELEMENTARY ROW OPERATIONS 
 
The important point to realize in Example 3.2 is that we solved a system of 
linear equations by performing some combination of the following operations: 
 
 (a) Change the order in which the equations are written. 
 (b) Multiply each term in an equation by a nonzero scalar. 
 (c) Multiply one equation by a nonzero scalar and then add this new 

equation to another equation in the system. 
 
Note that (a) was not used in Example 3.2, but it would have been necessary if 
the coefficient of xè in the first equation had been 0. The reason for this is that 
we want the equations put into echelon form as defined below. 
 We now see how to use the matrix aug A as a tool in solving a system of 
linear equations. In particular, we define the following so-called elementary 
row operations (or transformations) as applied to the augmented matrix: 
 
 (å)  Interchange two rows. 
 (∫)  Multiply one row by a nonzero scalar. 
 (©)  Add a scalar multiple of one row to another. 
 
It should be clear that operations (å) and (∫) have no effect on the solution set 
of the system and, in view of Theorem 3.1, that operation (©) also has no 
effect. 
 The next two examples show what happens both in the case where there is 
no solution to a system of linear equations, and in the case of an infinite 
number of solutions. In performing these operations on a matrix, we will let Rá 
denote the ith row. We leave it to the reader to repeat Example 3.2 using this 
notation. 
 
Example 3.3   Consider this system of linear equations over the field ®: 
 

 
x + 3y+ 2z = 7

2x +!!y !!!!z = 5

!x + 2y+ 3z = 4

 

 
The augmented matrix is 
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1 3 2 7

2 1 !1 5

!1 2 3 4

"

#

$
$
$

%

&

'
'
'

 

 
and the reduction proceeds as follows. We first perform the following elemen-
tary row operations: 

 R
2
! 2R

1
"

!!R
3
+ R

1
"

1 !!3 !2 !7

0 !5 !5 !9

0 !!5 !5 11

#

$

%
%
%

&

'

(
(
(

 

 
Now, using this matrix, we obtain 

 !!!!!!R
2
"

R
3
+ R

2
"

1 3 2 7

0 5 5 9

0 0 0 2

#

$

%
%
%

&

'

(
(
(

 

 
It is clear that the equation 0z = 2 has no solution, and hence this system has 
no solution.  ∆ 
 
Example 3.4   Let us solve the following system over the field ®: 
 

 

x
1
! 2x

2
+ 2x

3
!!!!x

4
= !14

3x
1
+ 2x

2
!!!!x

3
+ 2x

4
=!!!17

2x
1
+ 3x

2
!!!!x

3
!!!x

4
=!!!18

!2x
1
+ 5x

2
! 3x

3
! 3x

4
=!!!26

 

 
We have the matrix aug A given by 
 

 

!1 !2 !!2 !1 !14

!3 !2 !1 !!2 !!17

!2 !3 !1 !1 !!18

!2 !5 !3 !3 !!26

"

#

$
$
$
$

%

&

'
'
'
'

 

 
and hence we obtain the sequence 
 

 
R
2
! 3R

1
"

R
3
! 2R

1
"

R
4
+ 2R

1
"

1 !2 !!2 !1 !14

0 !!8 !7 !!5 !!59

0 !!7 !5 !!1 !!46

0 !!1 !!1 !5 !!!2

#

$

%
%
%
%

&

'

(
(
(
(
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!!!!!!!!!!R

4
!

R
2
" 8R

4
!

R
3
" 7R

4
!

1 "2 !!!2 "1 "14

0 !!1 !!!!1 "5 !!"2

0 !!0 "15 45 !!75

0 !!0 "12 36 !!60

#

$

%
%
%
%

&

'

(
(
(
(

 

 

 
(!1 /15)R3 "

(!1 /12)R4 "

1 !2 !2 !1 !14

0 !!1 !1 !5 !!!2

0 !!0 !1 !3 !!!5

0 !!0 !1 !3 !!!5

#

$

%
%
%
%

&

'

(
(
(
(

 

 
We see that the third and fourth equations are identical, and hence we have 
three equations in four unknowns: 
 

 
x
1
! 2x

2
+ 2x

3
!!!!x

4
= !14

x
2
+!!!x

3
! 5x

4
=!!!!2

x
3
! 3x

4
=!!!!5

 

 
 It is now apparent that there are an infinite number of solutions because, if 
we let c ∞ ® be any real number, then our solution set is given by x4 = c, x3 = 
3c - 5, xì = 2c + 3 and xè = -c + 2.  ∆ 
 
 Two m x n matrices are said to be row equivalent if one can be trans-
formed into the other by a finite number of elementary row operations. We 
leave it to the reader to show that this defines an equivalence relation on the 
set of all m x n matrices (see Exercise 3.2.1). 
 Our next theorem is nothing more than a formalization of an earlier 
remark. 
 
Theorem 3.2   Let A and B be the augmented matrices of two systems of m 
linear equations in n unknowns. If A is row equivalent to B, then both systems 
have the same solution set. 
 
Proof   If A is row equivalent to B, then we can go from the system repre-
sented by A to the system represented by B by a succession of the operations 
(a), (b) and (c) described above. It is clear that operations (a) and (b) have no 
effect on the solutions, and the method of Theorem 3.1 shows that operation 
(c) also has no effect.  ˙ 
 
 A matrix is said to be in row-echelon form if successive rows of the 
matrix start out (from the left) with more and more zeros. In particular, a 
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matrix is said to be in reduced row-echelon form if it has the following 
properties (which are more difficult to state precisely than they are to under-
stand): 
 
 (1) All zero rows (if any) occur below all nonzero rows. 
 (2) The first nonzero entry (reading from the left) in each row is equal to 

1. 
 (3) If the first nonzero entry in the ith row is in the játh column, then 

every other entry in the játh column is 0. 
 (4) If the first nonzero entry in the ith row is in the játh column, then jè < 

jì <  ~ ~ ~ . 
 
 We will call the first (or leading) nonzero entries in each row of a row-
echelon matrix the distinguished elements of the matrix. Thus, a matrix is in 
reduced row-echelon form if the distinguished elements are each equal to 1, 
and they are the only nonzero entries in their respective columns. 
 
Example 3.5   The matrix 

 

1 2 !3 0 1

0 0 5 2 !4

0 0 0 7 3

0 0 0 0 0

"

#

$
$
$
$

%

&

'
'
'
'

 

 
is in row-echelon form but not in reduced row-echelon form. However, the 
matrix 

 

1 0 5 0 2

0 1 2 0 4

0 0 0 1 7

0 0 0 0 0

!

"

#
#
#
#

$

%

&
&
&
&

 

 
is in reduced row-echelon form. Note that the distinguished elements of the 
first matrix are the numbers 1, 5 and 7, and the distinguished elements of the 
second matrix are the numbers 1, 1 and 1.  ∆ 
 
 The algorithm detailed in the proof of our next theorem introduces a tech-
nique generally known as Gaussian elimination. 
 
Theorem 3.3   Every m x n matrix A is row equivalent to a reduced row-
echelon matrix. 
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Proof   This is essentially obvious from Example 3.4. The detailed description 
which follows is an algorithm for determining the reduced row-echelon form 
of a matrix. 
 Suppose that we first put A into the form where the leading entry in each 
nonzero row is equal to 1, and where every other entry in the column contain-
ing this first nonzero entry is equal to 0. (This is called simply the row-
reduced form of A.)  If this can be done, then all that remains is to perform a 
finite number of row interchanges to achieve the final desired reduced row-
echelon form. 
 To obtain the row-reduced form we proceed as follows. First consider row 
1. If every entry in row 1 is equal to 0, then we do nothing with this row. If 
row 1 is nonzero, then let jè be the smallest positive integer for which aèjè ≠ 0 
and multiply row 1 by (aèjè)î. Next, for each i ≠ 1 we add -aájè times row 1 to 
row i. This leaves us with the leading entry aèjè of row 1 equal to 1, and every 
other entry in the jèth column equal to 0. 
 Now consider row 2 of the matrix we are left with. Again, if row 2 is equal 
to 0 there is nothing to do. If row 2 is nonzero, assume that the first nonzero 
entry occurs in column jì (where jì ≠ jè by the results of the previous para-
graph). Multiply row 2 by (aìjì)î so that the leading entry in row 2 is equal to 
1, and then add -aájì times row 2 to row i for each i ≠ 2. Note that these opera-
tions have no effect on either column jè, or on columns 1, . . . , jè of row 1. 
 It should now be clear that we can continue this process a finite number of 
times to achieve the final row-reduced form. We leave it to the reader to take 
an arbitrary matrix (aáé) and apply successive elementary row transformations 
to achieve the desired final form.  ˙ 
 
 While we have shown that every matrix is row equivalent to at least one 
reduced row-echelon matrix, it is not obvious that this equivalence is unique. 
However, we shall show in the next section that this reduced row-echelon 
matrix is in fact unique. Because of this, the reduced row-echelon form of a 
matrix is often called the row canonical form. 
 
 
Exercises  
 
1. Show that row equivalence defines an equivalence relation on the set of all 

matrices. 
 
2. For each of the following matrices, first reduce to row-echelon form, and 

then to row canonical  form: 
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 (a)!!

1 !2 !3 !1

2 !1 !2 !!2

3 !!1 !2 !!3

"

#

$
$
$

%

&

'
'
'
!!!!!!!!!!!!!!!!!!!(b)!!

1 !2 !1 !!2 !1

2 !4 !!1 !2 !3

3 !6 !!2 !6 !5

"

#

$
$
$

%

&

'
'
'

 

 

 (c)!!

1 !3 !1 !2

0 !1 !5 !3

2 !5 !!3 !1

4 !1 !!1 !5

"

#

$
$
$
$

%

&

'
'
'
'

 

 
3. For each of the following systems, find a solution or show that no solution 

exists: 
 

 
(a)!!!!!x +!!y+!!!z =1

2x ! 3y+ 7z = 0

!!3x ! 2y+ 8z = 4

  
(b)!!!!!x ! y+ 2z =1

x +!y+!!z = 2

2x !!y+!!z = 5

 

 

 
(c)!!!!!x ! y+ 2z = 4

3x + y+ 4z = 6

x + y+!!!z =1

  
(d)!!!!!x + 3y+!!!z = 2

2x + 7y+ 4z = 6

x +!!y ! 4z =1

 

 

 
(e)!!!!!x +!3y+!!!z = 0

2x + 7y+ 4z = 0

x +!!!y ! 4z = 0

  
( f )!!!!2x !!!y+ 5z =19

x + 5y ! 3z = 4

3x + 2y+ 4z = 5

 

 

 
(g)!!!!2x !!!y+ 5z =19

x + 5y ! 3z = 4

3x + 2y+ 4z = 25

 

 
4. Let fè, fì and f3 be elements of F[®] (i.e., the space of all real-valued func-

tions defined on ®). 
 (a)  Given a set {xè, xì, x3} of real numbers, define the 3 x 3 matrix F(x) = 

(fá(xé)) where the rows are labelled by i and the columns are labelled by j. 
Prove that the set {fá} is linearly independent if the rows of the matrix F(x) 
are linearly independent. 

 (b)  Now assume that each fá has first and second derivatives defined on 
some interval (a, b) ™ ®, and let fá(j) denote the jth derivative of fá (where 
fá(0) is just fá). Define the matrix W(x) = (fá(j-1 )(x)) where 1 ¯ i, j ¯ 3. 
Prove that {fá} is linearly independent if the rows of W(x) are independent 
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for some x ∞ (a, b). (The determinant of W(x) is called the Wronskian of 
the set of functions {fi}.) 

  
 Show that each of the following sets of functions is linearly independent: 
 (c)  fè(x) = -x2 + x + 1, fì(x) = x2 + 2x, f3(x) = x2 - 1. 
 (d)  fè(x) = exp(-x), fì(x) = x, f3(x) = exp(2x). 
 (e)  fè(x) = exp(x), fì(x) = sin x, f3(x) = cos x. 
 
5. Let 

 A =

3 !1 !2

2 !!1 !1

1 !3 !0

"

#

$
$
$

%

&

'
'
'
!!.  

 
 Determine the values of Y = (yè, yì, y3) for which the system Íáaáéxé = yá 

has a solution. 
 
6. Repeat the previous problem with the matrix 
 

 A =

!3 !6 2 !1

!2 !4 1 !3

!0 !0 1 !1

!1 !2 1 !0

"

#

$
$
$
$

%

&

'
'
'
'

!!.  

 
 
3.3  ROW AND COLUMN SPACES 
 
We will find it extremely useful to consider the rows and columns of an arbi-
trary m x n matrix as vectors in their own right. In particular, the rows of A 
are to be viewed as vector n-tuples Aè, . . . , Am where each Aá = (ai1, . . . , 
ain)  ∞ Fn. Similarly, the columns of A are to be viewed as vector m-tuples 
A1, . . . , An where each Aj = (a1j, . . . , amj) ∞ Fm. For notational clarity, we 
should write Aj as the column vector 

 

 

a
1 j

!

amj

!

"

#
#
#

$

%

&
&
&

 

but it is typographically easier to write this horizontally whenever possible. 
Note that we label the row vectors of A by subscripts, and the columns of A 
by superscripts. 
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 Since each row Aá is an element of Fn, the set of all rows of a matrix can 
be used to generate a new vector space V over F. In other words, V is the 
space spanned by the rows Aá, and hence any v ∞ V may be written as 

 v = c
i
A
i

i=1

m

!  

where each cá ∞ F. The space V (which is apparently a subspace of Fn) is 
called the row space of A. The dimension of V is called the row rank of A, 
and will be denoted by rr(A). Since V is a subspace of Fn and dim Fn = n, it 
follows that rr(A) = dim V ¯ n. On the other hand, V is spanned by the m 
vectors Aá, so that we must have dim V ¯ m. It then follows that rr(A) ¯ 
min{m, n}. 
 In an exactly analogous manner, we define the column space W of a 
matrix A as that subspace of Fm spanned by the n column vectors Aj. Thus 
any w ∞ W is given by 

 w = bjA
j

j=1

n

!  

The column rank of A, denoted by cr(A), is given by cr(A) = dim W and, as 
above, we must have cr(A) ¯ min{m, n}. 
 An obvious question is whether a sequence of elementary row operations 
changes either the row space or the column space of a matrix. A moments 
thought should convince you that the row space should not change, but it may 
not be clear exactly what happens to the column space. These questions are 
answered in our next theorem. While the following proof appears to be rather 
long, it is actually quite simple to understand. 
 
Theorem 3.4   Let A and Aÿ be row equivalent m x n matrices. Then the row 
space of A is equal to the row space of Aÿ, and hence rr(A) = rr(Aÿ). 
Furthermore, we also have cr(A) = cr(Aÿ). (However, note that the column 
space of A is not necessarily the same as the column space of Aÿ.) 
 
Proof   Let V be the row space of A and Vÿ the row space of Aÿ. Since A and Aÿ 
are row equivalent, A may be obtained from Aÿ by applying successive ele-
mentary row operations. But then each row of A is a linear combination of 
rows of Aÿ, and hence V ™ Vÿ. On the other hand, Aÿ may be obtained from A 
in a similar manner so that Vÿ ™ V. Therefore V = Vÿ and hence rr(A) = rr(Aÿ). 
 Now let W be the column space of A and Wÿ the column space of Aÿ. 
Under elementary row operations, it will not be true in general that W = Wÿ, 
but we will show it is still always true that dim W = dim Wÿ. Let us define the 
mapping f: W ‘ Wÿ by 



3.3   ROW AND COLUMN SPACES  

 

129 

 
 

f ciA
i

i=1

n

!
"

#
$$

%

&
'' = ci

!Ai

i=1

n

! !!.  

In other words, if we are given any linear combination of the columns of A, 
then we look at the same linear combination of columns of Aÿ. In order to 
show that this is well-defined, we must show that if ÍaáAi = ÍbáAi, then 
f(ÍaáAi) = f(ÍbáAi). This equivalent to showing that if ÍcáAi = 0 then 
f(ÍcáAi) = 0 because if Í(aá - bá)Ai = 0 and f(Í(aá - bá)Ai) = 0, then 
 

 
 

0 = f ! ai " bi( )Ai( ) = ! ai " bi( ) !Ai = !ai !Ai " !bi !Ai

=!! f !aiA
i( ) " f !biAi( )

 

and therefore 
   f(ÍaáAi)  =  f(ÍbáAi)  . 

 Now note that 
 

 
 

f ! biA
i + ciA

i( )( ) = f ! bi + ci( )Ai( ) = ! bi + ci( ) !Ai

= !bi !A
i +!ci !A

i = f !biA
i( ) + f !ciAi( )

 

and  
f(k(ÍcáAi))  =  f(Í(kcá)Ai)  =  Í(kcá) Aÿi  =  kf(ÍcáAi) 

 
so that f is a vector space homomorphism. If we can show that W and Wÿ are 
isomorphic, then we will have cr(A) = dim W = dim Wÿ = cr(Aÿ). Since f is 
clearly surjective, we need only show that Ker f = {0} for each of the three 
elementary row transformations. 
 In the calculations to follow, it must be remembered that 
 

Aá = (aáè, . . . , aáñ) 
and 

 

 

Ai =

a
1i

!

a
mi

!

"

#
#
#

$

%

&
&
&
!!. 

Since 
ÍcáAá  =  (Ícáaáè, . . . , Ícáaáñ) 

 
we see that ÍcáAá = 0 if and only if Ícáaáé = 0 for every j = 1, . . . , n. 
Similarly, 

ÍcáAi  =  (Ícáaèá, . . . , Ícáamá) 
 
so that ÍcáAi = 0 if and only if Ícáaéá = 0 for every j = 1, . . . , m (remember 
that we usually write a column vector in the form of a row vector). 
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 We first consider a transformation of type å. For  definiteness, we inter-
change rows 1 and 2, although it will be obvious that any pair of rows will 
work. In other words, we define Aÿè = Aì, Aÿì = Aè and Aÿé = Aé for j = 3, . . . , 
n. Therefore 
 

   f(ÍcáAi)  =  ÍcáAÿi  =  (Ícáaìá, Ícáaèá, Ícáa3á, . . . , Ícáamá)  . 
 
If 

ÍcáAi  =  0 
then 

Ícáaéá  =  0 
 
for every j = 1, . . . , m and hence we see that f(ÍcáAi) = 0. This shows that f is 
well-defined for type å transformations. Conversely, if 
 

f(ÍcáAi)  =  0 
then we see that again 

Ícáaéá  =  0 
 
for every j = 1, . . . , m since each component in the expression ÍcáAÿ i = 0 
must equal 0. Hence ÍcáAi = 0 if and only if f(ÍcáAi) = 0, and hence Ker f = 
{0} for type å transformations (which also shows that f is well-defined). 
 We leave it to the reader (see Exercise 3.3.1) to show that f is well-defined 
and Ker f = {0} for transformations of type ∫, and we go on to those of type ©. 
Again for definiteness, we consider the particular transformation Aÿè = Aè + 
kAì and Aÿé = Aé for j = 2, . . . , m. Then 
 

 
 

f !ciA
i( ) = !ci !Ai = !ci a1i + ka2i ,!a2i ,!…!,!ami( )

= !cia1i +!kcia2i ,!!cia2i ,!…!,!!ciami( )
 

If 
ÍcáAi  =  0 

then 
Ícáaéá  =  0 

 
for every j = 1, . . . , m so that ÍcáAÿi = 0 and f is well-defined for type © 
transformations. Conversely, if 
 

ÍcáAÿi  =  0 
then 

Ícáaéá  =  0 
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for j = 2, . . . , m, and this then shows that Ícia1i = 0 also. Thus ÍcáAÿi = 0 
implies that ÍcáAi = 0, and hence ÍcáAi = 0 if and only if f(ÍcáAi) = 0. This 
shows that Ker f = {0} for type © transformations also, and f is well-defined. 
 In summary, by constructing an explicit isomorphism in each case, we 
have shown that the column spaces W and Wÿ are isomorphic under all three 
types of elementary row operations, and hence it follows that the column 
spaces of row equivalent matrices must have the same dimension.  ˙ 
 
Corollary   If Aÿ is the row-echelon form of A, then ÍcáAi = 0 if and only if 
ÍcáAÿi = 0. 
 
Proof   This was shown explicitly in the proof of Theorem 3.4 for each type of 
elementary row operation.  ˙ 
 
 In Theorem 3.3 we showed that every matrix is row equivalent to a 
reduced row-echelon matrix, and hence (by Theorem 3.4) any matrix and its 
row canonical form have the same row space. Note though, that if the original 
matrix has more rows than the dimension of its row space, then the rows 
obviously can not all be linearly independent. However, we now show that the 
nonzero rows of the row canonical form are in fact linearly independent, and 
hence form a basis for the row space. 
 
Theorem 3.5   The nonzero row vectors of an m x n reduced row-echelon 
matrix R form a basis for the row space of R. 
 
Proof   From the four properties of a reduced row-echelon matrix, we see that 
if R has r nonzero rows, then there exist integers jè, . . . , j r with each já ¯ n 
and jè < ~ ~ ~ < jr such that R has a 1 in the ith row and játh column, and every 
other entry in the játh column is 0 (it may help to refer to Example 3.5 for 
visualization). If we denote these nonzero row vectors by Rè, . . . , Rr then any 
arbitrary vector 

 v = c
i
R
i

i=1

r

!  

has cá as its játh coordinate (note that v may have more than r coordinates if r < 
n). Therefore, if v = 0 we must have each coordinate of v equal to 0, and 
hence cá = 0 for each i = 1, . . . , r. But this means that the Rá are linearly 
independent, and since {Rá} spans the row space by definition, we see that 
they must in fact form a basis.  ˙ 
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Corollary   If A is any matrix and R is a reduced row-echelon matrix row 
equivalent to A, then the nonzero row vectors of R form a basis for the row 
space of A. 
 
Proof   In Theorem 3.4 we showed that A and R have the same row space. 
The corollary now follows from Theorem 3.5.  ˙ 
 
Example 3.6   Let us determine whether or not the following matrices have 
the same row space: 
 

 A =

1 !2 !1 !3

2 !4 !!1 !2

3 !6 !3 !7

"

#

$
$
$

%

&

'
'
'
!!!!!!!!!!!!!!!!!B =

1 2 !4 11

2 4 !5 14

"

#
$

%

&
'!!. 

 
We leave it to the reader to show (and you really should do it) that the reduced 
row-echelon form of these matrices is 
 

 A =

1 !2 !0 !!1 / 3

0 !0 !1 !8 / 3

0 !0 !0 !!0

"

#

$
$
$

%

&

'
'
'
!!!!!!!!!!!!!!!!!B =

1 !2 !0 !1 / 3

0 !0 !1 !8 / 3

"

#
$

%

&
'!!.  

 
Since the the nonzero rows of the reduced row-echelon form of A and B are 
identical, the row spaces must be the same.  ∆ 
 
 Now that we have a better understanding of the row space of a matrix, let 
us go back and show that the reduced row-echelon form of a given matrix is 
unique. We first prove a preliminary result dealing with the row-echelon form 
of two matrices having the same row space. 
 
Theorem 3.6   Let A = (aáé) be a row-echelon matrix with distinguished ele-
ments a1jè , a2jì , . . . , arj‹  and let B = (báé) be another row-echelon matrix with 
distinguished elements b1kè , b2kì , . . . , bsk› . Assume that A and B have the 
same row space (and therefore the same number of columns). Then the dis-
tinguished elements of A are in the same position as those of B, i.e., r = s and 
jè = kè, jì = kì, . . . , jr = kr  . 
 
Proof   Since A = 0 if and only if B = 0, we need only consider the nontrivial 
case where r ˘ 1 and s ˘ 1. First suppose that jè < kè. This means that the jèth 
column of B is equal to (0, . . . , 0). Since A and B have the same row space, 
the first row of A is just a linear combination of the rows of B. In particular, 
we then have a1jè = Íá cábijè  for some set of scalars cá (see the proof of 
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Theorem 3.4). But bijè = 0 for every i, and hence a1jè = 0 which contradicts the 
assumption that a1jè is a distinguished element of A (and must be nonzero by 
definition). We are thus forced to conclude that jè ˘ kè. However, we could 
clearly have started with the assumption that kè < jè, in which case we would 
have been led to conclude that kè ˘ jè. This shows that we must actually have 
jè = kè. 
 Now let Aæ and Bæ be the matrices which result from deleting the first row 
of A and B respectively. If we can show that Aæ and Bæ have the same row 
space, then they will also satisfy the hypotheses of the theorem, and our con-
clusion follows at once by induction. 
 Let R = (aè, aì, . . . , añ) be any row of Aæ (and hence a row of A), and let 
Bè, . . . , Bm be the rows of B. Since A and B have the same row space, we 
again have 

 R = d
i
B
i

i=1

m

!  

for some set of scalars dá. Since R is not the first row of A and Aæ is in row-
echelon form, it follows that aá = 0 for i = jè = kè. In addition, the fact that B is 
in row-echelon form means that every entry in the kèth column of B must be 0 
except for the first, i.e., b1kè ≠ 0, b2kè =  ~ ~ ~  = bmkè = 0. But then 
 

0  =  akè  =  dè b1kè + dì b2kè +  ~ ~ ~  + dm  bmkè  =  dè b1kè  
 
which implies that dè = 0 since b1kè ≠ 0. This shows that R is actually a linear 
combination of the rows of Bæ, and hence (since R was arbitrary) the row 
space of Aæ must be a subspace of the row space of Bæ. This argument can 
clearly be repeated to show that the row space of Bæ is a subspace of the row 
space of Aæ, and hence we have shown that Aæ and Bæ have the same row 
space.  ˙ 
 
Theorem 3.7   Let A = (aáé) and B = (báé) be reduced row-echelon matrices. 
Then A and B have the same row space if and only if they have the same 
nonzero rows. 
 
Proof   Since it is obvious that A and B have the same row space if they have 
the same nonzero rows, we need only prove the converse. So, suppose that A 
and B have the same row space. Then if Aá is an arbitrary nonzero row of A, 
we may write 
 A

i
= !

r
c
r
B
r
 (1) 

 
where the Br are the nonzero rows of B. The proof will be finished if we can 
show that cr = 0 for r ≠ i and cá = 1. 
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 To show that cá = 1, let aijá be the first nonzero entry in Aá, i.e., aijá is the 
distinguished element of the ith row of A. Looking at the játh component of 
(1) we see that 
 aiji = !rcrbrji  (2) 
 
(see the proof of Theorem 3.4). From Theorem 3.6 we know that bijá is the 
distinguished element of the ith row of B, and hence it is the only nonzero 
entry in the játh  column of B (by definition of a reduced row-echelon matrix). 
This means that (2) implies aijá = cá bijá . In fact, it must be true that aijá = bijá = 
1 since A and B are reduced row-echelon matrices, and therefore cá = 1. 
 Now let bkjÉ be the first nonzero entry of BÉ (where k ≠ i). From (1) again 
we have 
 aijk = !rcrbrjk !!.  (3) 
 
Since B is a reduced row-echelon matrix, bkjÉ = 1 is the only nonzero entry in 
the jÉth column of B, and hence (3) shows us that aijÉ = cÉbkjÉ . But from 
Theorem 3.6, akjÉ is a distinguished element of A, and hence the fact that A is 
row-reduced means that aijÉ = 0 for i ≠ k. This forces us to conclude that cÉ = 
0 for k ≠ i as claimed.  ˙ 
 
 Suppose that two people are given the same matrix A and asked to trans-
form it to reduced row-echelon form R. The chances are quite good that they 
will each perform a different sequence of elementary row operations to 
achieve the desired result. Let R and Ræ be the reduced row-echelon matrices 
that our two students obtain. We claim that R = Ræ. Indeed, since row equiva-
lence defines an equivalence relation, we see from Theorem 3.4 that the row 
spaces of R and Ræ will be the same. Therefore Theorem 3.7 shows us that the 
rows of R must equal the rows of Ræ. Hence we are justified in calling the 
reduced row-echelon form of a matrix the row canonical form as mentioned 
earlier. 
 
 
Exercises  
 
1. In the proof of Theorem 3.4, show that Ker f = {0} for a type ∫ operation. 
 
2. Determine whether or not the following matrices have the same row 

space: 

 A =
1 !2 !1

3 !4 5

"

#
$

%

&
'!!!!!!!!B =

1 !1 2

3 3 !1

"

#
$

%

&
'!!!!!!!!C =

1 !1 3

2 !1 10

3 !5 1

"

#

$
$
$

%

&

'
'
'
!!.  
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3. Show that the subspace of ®3 spanned by the vectors uè = (1, 1, -1), uì = 

(2, 3, -1) and u3 = (3, 1, -5) is the same as the subspace spanned by the 
vectors vè = (1, -1, -3), vì = (3, -2, -8) and v3 = (2, 1, -3). 

 
4. Determine whether or not each of the following sets of vectors is linearly 

independent: 
 (a)  uè = (1, -2, 1), uì = (2, 1, -1) and u3 = (7, -4, 1). 
 (b)  uè = (1, 2, -3), uì = (1, -3, 2) and u3 = (2, -1, 5). 
 
5. (a)  Suppose we are given an m x n matrix A = (aáé), and suppose that one 

of the columns of A, say Ai, is a linear combination of the others. Show 
that under any elementary row operation resulting in a new matrix Aÿ, the 
column Aÿi is the same linear combination of the columns of Aÿ that Ai is of 
the columns of A. In other words, show that all linear relations between 
columns are preserved by elementary row operations. 

 (b)  Use this result to give another proof of Theorem 3.4. 
 (c)  Use this result to give another proof of Theorem 3.7. 
 
 
3.4   THE RANK OF A MATRIX 
 
It is important for the reader to realize that there is nothing special about the 
rows of a matrix. Everything that we have done up to this point in discussing 
elementary row operations could just as easily have been done with columns 
instead. In particular, this means that Theorems 3.4 and 3.5 are equally valid 
for column spaces if we apply our elementary transformations to columns 
instead of rows. This observation leads us to our next fundamental result. 
 
Theorem  3.8   If A = (aáé) is any m x n matrix over a field F, then rr(A) = 
cr(A). 
 
Proof   Let Aÿ be the reduced row-echelon form of A. By Theorem 3.4 it is 
sufficient to show that rr(Aÿ) = cr(Aÿ). If jè < ~ ~ ~ < jr are the columns containing 
the distinguished elements of Aÿ, then {Ajè, . . . , Aj‹} is a basis for the column 
space of Aÿ, and hence cr(Aÿ) = r. (In fact, these columns are just the first r 
standard basis vectors in Fn.)  But from the corollary to Theorem 3.5, we see 
that rows Aÿè, . . . , Aÿr form a basis for the row space of Aÿ, and thus rr(Aÿ) = r 
also.  ˙ 
 
 In view of this result, we define the rank r(A) of a matrix A as 
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   r(A)  =  rr(A)  =  cr(A)  . 
 
Our next theorem forms the basis for a practical method of finding the rank of 
a matrix. 
 
Theorem 3.9   If A is any matrix, then r(A) is equal to the number of nonzero 
rows in the (reduced) row-echelon matrix row equivalent to A. (Alternatively, 
r(A) is the number of nonzero columns in the (reduced) column-echelon 
matrix column equivalent to A.) 
 
Proof   Noting that the number of nonzero rows in the row-echelon form is the 
same as the number of nonzero rows in the reduced row-echelon form, we see 
that this theorem follows directly from the corollary to Theorem 3.5.  ˙ 
 
 If A is an n x n matrix such that aáé = 0 for i ≠ j and aáá = 1, then we say that 
A is the identity matrix of size n and write this matrix as Iñ. Since the size is 
usually understood, we will generally simply write I. If I = (Iáé), then another 
useful way of writing this is in terms of the Kronecker delta as Iáé = ∂áé. 
Written out, I has the form 
 

 

 

I =

1 0 0 ! 0

0 1 0 ! 0

" " " "

0 0 0 ! 1

!

"

#
#
#
#

$

%

&
&
&
&

!!.  

 
Theorem 3.10   If A is an n x n matrix of rank n, then the reduced row-
echelon matrix row equivalent to A is the identity matrix Iñ. 
 
Proof   This follows from the definition of a reduced row-echelon matrix and 
Theorem 3.9.  ˙ 
 
Example 3.7   Let us find the rank of the matrix A given by 
 

 A =

!!1 !!2 !3

!!2 !!1 !!0

!2 !1 !!3

!1 !!4 !2

"

#

$
$
$
$

%

&

'
'
'
'

!!.  
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To do this, we will apply Theorem 3.9 to columns instead of rows (just for 
variety). Proceeding with the elementary transformations, we obtain the fol-
lowing sequence of matrices: 

 

!!1 !!0 !!0

!!2 !3 !!6

!2 !!3 !3

!1 !!6 !5

"

#

$
$
$
$

%

&

'
'
'
'

 

         º     º 
           A2-2A1     A3 + 3A1  
 

 

!!1 !!0 0

!!2 !1 0

!2 !!1 1

!1 !!2 7 / 3

"

#

$
$
$
$

%

&

'
'
'
'

 

        º     º 
          (1/3)A2   (1/3)(A3 + 2A2) 
 

 

1 !!0 0

0 !!1 0

0 !!0 1

3 !!1 / 3 7 / 3

!

"

#
#
#
#

$

%

&
&
&
&

 

       º       º 
      A1 + 2A2   -(A2 - A3) 
 
 Thus the reduced column-echelon form of A has three nonzero columns, 
so that r(A) = cr(A) = 3. We leave it to the reader (see Exercise 3.4.1) to show 
that the row canonical form of A is 
 

 

1 0 0

0 1 0

0 0 1

0 0 0

!

"

#
#
#
#

$

%

&
&
&
&

 

 
and hence r(A) = cr(A) = rr(A) as it should.  ∆ 
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Exercises  
 
1. Verify the row-canonical form of the matrix in Example 3.7. 
 
2. Let A and B be arbitrary m x n matrices. Show that r(A + B) ¯ r(A) + r(B). 
 
3. Using elementary row operations, find the rank of each of the following 

matrices: 
 

 (a)!!

1 !3 !!1 !2 !3

1 !4 !!3 !1 !4

2 !3 !4 !7 !3

3 !8 !!1 !7 !8

"

#

$
$
$
$

%

&

'
'
'
'

  (b)!!

!!1 !2 !3

!!2 !!1 !!0

!2 !1 !!3

!1 !4 !2

"

#

$
$
$
$

%

&

'
'
'
'

 

 

 (c)!!

!!1 !3

!!0 !2

!!5 !1

!2 !!3

"

#

$
$
$
$

%

&

'
'
'
'

 (d)!!

5 !1 !!1

2 !!1 !2

0 !7 12

"

#

$
$
$

%

&

'
'
'
  

  
4. Repeat the previous problem using elementary column operations. 
 
 
3.5   SOLUTIONS TO SYSTEMS OF LINEAR EQUATIONS 
 
We now apply the results of the previous section to the determination of some 
general characteristics of the solution set to systems of linear equations. We 
will have more to say on this subject after we have discussed determinants in 
the next chapter. 
 To begin with, a system of linear equations of the form 

 
 

aij x j
j=1

n

! = 0,!!!!!!!!!!i =1,!…!,!m  

is called a homogeneous system of m linear equations in n unknowns. It is 
obvious that choosing xè = xì =  ~ ~ ~  = xñ = 0 will satisfy this system, but this 
is not a very interesting solution. It is called the trivial (or zero) solution. 
Any other solution, if it exists, is referred to as a nontrivial solution. 
 A more general type of system of linear equations is of the form 

 
 

aij x j = yi ,!!!!!!!!!!i =1,!…!,!m

j=1

n

!  

where each yá is a given scalar. This is then called a nonhomogeneous system 
of linear equations. Let us define the column vector 
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   Y  =  (yè, . . . , ym)  ∞  Fm  . 
 
From our discussion in the proof of Theorem 3.4, we see that aáéxé is just xé 
times the ith component of the jth column Aj ∞ Fm. Thus our system of non-
homogeneous equations may be written in the form 
 

 

 

A jx j = x1

a
11

a
21

!

am1

!

"

#
#
#
#

$

%

&
&
&
&

+ x
2

a
12

a
22

!

am2

!

"

#
#
#
#

$

%

&
&
&
&

+!"!+xn

a
1n

a
2n

!

amn

!

"

#
#
#
#

$

%

&
&
&
&

=Y

j=1

n

'  

 
where this vector equation is to be interpreted in terms of its components. (In 
the next section, we shall see how to write this as a product of matrices.)  It 
should also be obvious that a homogeneous system may be written in this 
notation as 

 A jx j = 0!!.

j=1

n

!  

 Let us now look at some elementary properties of the solution set of a 
homogeneous system of equations. 
 
Theorem 3.11   The solution set S of a homogeneous system of m equations 
in n unknowns is a subspace of Fn. 
 
Proof   Let us write our system as Íjaáéxé = 0. We first note that S ≠ Å since 
(0, . . . , 0) ∞ Fn is the trivial solution of our system. If u = (uè, . . . , uñ) ∞ Fn 
and v = (vè, . . . , vñ) ∞ Fn are both solutions, then 
 

Íéaáé(ué + vé)  =  Íéaáéué + Íéaáévé  =  0 
 
so that u + v ∞ S. Finally, if c ∞ F then we also have 
 

Íéaáé(cué)  =  cÍéaáéué  =  0 
so that cu ∞ S.  ˙ 
 
 If we look back at Example 3.4, we see that a system of m equations in n > 
m unknowns will necessarily result in a nonunique, and hence nontrivial, solu-
tion. The formal statement of this fact is contained in our next theorem. 
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Theorem 3.12   Let a homogeneous system of m equations in n unknowns 
have the m x n matrix of coefficients A. Then the system has a nontrivial 
solution if and only if r(A) < n. 
 
Proof   By writing the system in the form ÍéxéAj = 0, it is clear that a non-
trivial solution exists if and only if the n column vectors Aj ∞ Fm are linearly 
dependent. Since the rank of A is equal to the dimension of its column space, 
we must therefore have r(A) < n.  ˙ 
 
 It should now be clear that if an n x n (i.e., square) matrix of coefficients 
A (of a homogeneous system) has rank equal to n, then the only solution will 
be the trivial solution since reducing the augmented matrix (which then has 
the last column equal to the zero vector) to reduced row-echelon form will 
result in each variable being set equal to zero (see Theorem 3.10). 
 
Theorem 3.13   Let a homogeneous system of linear equations in n unknowns 
have a matrix of coefficients A. Then the solution set S of this system is a sub-
space of Fn with dimension n - r(A). 
 
Proof   Assume that S is a nontrivial solution set, so that by Theorem 3.12 we 
have r(A) < n. Assume also that the unknowns xè, . . . , xñ have been ordered 
in such a way that the first k = r(A) columns of A span the column space (this 
is guaranteed by Theorem 3.4). Then the remaining columns Ak+1, . . . , An 
may be written as 

 
 

Ai = bijA
j

j=1

k

! ,!!!!!!!!!!i = k +1,!…!,!n  

and where each báé ∞ F. If we define báá = -1 and báé = 0 for j ≠ i and j > k, 
then we may write this as 

 
 

bijA
j = 0,!!!!!!!!!!i = k +1,!…!,!n

j=1

n

!  

(note the upper limit on this sum differs from the previous equation). Next we 
observe that the solution set S consists of all vectors x ∞ Fn such that 

 x jA
j = 0

j=1

n

!  

and hence in particular, the n - k vectors 
 

b(i)  =  (báè, . . . , báñ) 
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for each i = k + 1, . . . , n must belong to S. We show that they in fact form a 
basis for S, which is then of dimension n - k. 
 To see this, we first write out each of the b(i): 
 

 

 

b(k+1) = (b
k+1!1,!…!,!bk+1!k ,!!1,!0,!0,!…!,!0)

b(k+2) = (b
k+2 !1,!…!,!bk+2 !k ,!0,!!1,!0,!…!,!0)

!

b(n) = (b
n1,!…!,!bnk ,!0,!0,!…!,!0,!!1)!!.

 

 
Hence for any set {cá} of n - k scalars we have  

 
 

c
i
b(i)

i=k+1

n

! = c
i
b
i1,!…!,! c

i
b
in
,!"c

k+1,!…!,!"cn
i=k+1

n

!
i=k+1

n

!
#

$
%%

&

'
((  

and therefore 

 c
i
b(i) = 0

i=k+1

n

!  

if and only if ck+1 = ~ ~ ~ = cñ = 0. This shows that the b(i) are linearly inde-
pendent. (This should have been obvious from their form shown above.) 
 Now suppose that d = (dè, . . . , dñ) is any solution of 

 x jA
j = 0!!.

j=1

n

!  

Since S is a vector space (Theorem 3.11), any linear combination of solutions 
is a solution, and hence the vector 

 y = d + dib
(i)

i=k+1

n

!  

must also be a solution. In particular, writing out each component of this 
expression shows that 

 yj = d j + dibij
i=k+1

n

!  

and hence the definition of the báé shows that y = (yè, . . . , yÉ, 0, . . . , 0) for 
some set of scalars yá. Therefore, we have 

 0 = yjA
j = yjA

j

j=1

k

!
j=1

n

!  

and since {A1, . . . , Ak} is linearly independent, this implies that yé = 0 for 
each j = 1, . . . , k. Hence y = 0 so that 

 d = ! d
i
b(i)

i=k+1

n

"  
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and we see that any solution may be expressed as a linear combination of the 
b(i). 
 Since the b(i) are linearly independent and we just showed that they span 
S, they must form a basis for S.  ˙ 
 
 Suppose that we have a homogeneous system of m equations in n > m 
unknowns, and suppose that the coefficient matrix A is in row-echelon form 
and has rank m. Then each of the m successive equations contains fewer and 
fewer unknowns, and since there are more unknowns than equations, there 
will be n - m = n - r(A) unknowns that do not appear as the first entry in any 
of the rows of A. These n - r(A) unknowns are called free variables. We may 
arbitrarily assign any value we please to the free variables to obtain a solution 
of the system. 
 Let the free variables of our system be xiè , . . . , xiÉ where k = n - m = n - 
r(A), and let vs be the solution vector obtained by setting xi› equal to 1 and 
each of the remaining free variables equal to 0. (This is essentially what was 
done in the proof of Theorem 3.13.)  We claim that vè, . . . , vÉ are linearly 
independent and hence form a basis for the solution space of the (homoge-
neous) system (which is of dimension n - r(A) by Theorem 3.13). 
 To see this, we basically follow the proof of Theorem 3.13 and let B be 
the k x n matrix whose rows consist of the solution vectors vs . For each s, our 
construction is such that we have xi› = 1 and xi‹ = 0 for r ≠ s (and the remain-
ing m = n - k unknowns are in general nonzero). In other words, the solution 
vector vs has a 1 in the position of xi›, while for r ≠ s the vector vr has a 0 in 
this same position. This means that each of the k columns corresponding to 
the free variables in the matrix B contains a single 1 and the rest zeros. We 
now interchange column 1 and column iè, then column 2 and column iì, . . . , 
and finally column k and column iÉ. This yields the matrix 
 

 

 

C =

1 0 0 ! 0 0 b
1!k+1 ! b

1n

0 1 0 ! 0 0 b
2 !k+1 ! b

2n

" " " " " " "

0 0 0 0 1 b
k !k+1 ! b

kn

!

"

#
#
#
#

$

%

&
&
&
&

 

 
where the entries bi k+1 , . . . , bin are the values of the remaining m unknowns 
in the solution vector vá. Since the matrix C is in row-echelon form, its rows 
are independent and hence r(C) = k. However, C is column-equivalent to B, 
and therefore r(B) = k also (by Theorem 3.4 applied to columns). But the rows 
of B consist precisely of the k solution vectors vs, and thus these solution vec-
tors must be independent as claimed. 
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Example 3.8   Consider the homogeneous system of linear equations 
 

 
x + 2y ! 4z + 3w !!!!t = 0

x + 2y ! 2z + 2w +!!!t = 0

2x + 4y ! 2z + 3w + 4t = 0

 

 
If we reduce this system to row-echelon form, we obtain 
 

 
x + 2y ! 4z + 3w !!!t = 0

2z !!!w + 2t = 0
 (*) 

 
It is obvious that the rank of the matrix of coefficients is 2, and hence the 
dimension of the solution space is 5 - 2 = 3. The free variables are clearly y, 
w and t. The solution vectors vs are obtained by choosing (y = 1, w = 0, t = 0), 
(y = 0, w = 1, t = 0) and (y = 0, w = 0, t = 1). Using each of the these in the 
system (*), we obtain the solutions 
 

 
v1 = (!2,!1,!0,!0,!0)

v2 = (!1,!0,!1 / 2,!1,!0)

v3 = (!3,!0,!!1,!0,!1)

 

 
Thus the vectors vè, vì and v3 form a basis for the solution space of the homo-
geneous system.  ∆ 
 
 We emphasize that the corollary to Theorem 3.4 shows us that the solution 
set of a homogeneous system of equations is unchanged by elementary row 
operations. It is this fact that allows us to proceed as we did in Example 3.8. 
 We now turn our attention to the solutions of a nonhomogeneous system 
of equations Íéaáéxé = yá . 
 
Theorem 3.14   Let a nonhomogeneous system of linear equations have 
matrix of coefficients A. Then the system has a solution if and only if r(A) = 
r(aug A). 
 
Proof   Let c = (cè, . . . , cñ) be a solution of Íéaáéxé = yá. Then writing this as 
 

Íé céAj  =  Y 
 
shows us that Y is in the column space of A, and hence 
 

   r(aug A)  =  cr(aug A)  =  cr(A)  =  r(A)  . 
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Conversely, if cr(aug A) = r(aug A) = r(A) = cr(A), then Y is in the column 
space of A, and hence Y = ÍcéAj for some set of scalars cé . But then the 
vector c = (cè, . . . , cñ) is a solution since it obviously satisfies Íéaáéxé = yá.  ˙ 
 
 Using Theorem 3.13, it is easy to describe the general solution to a non-
homogeneous system of equations. 
 
Theorem 3.15   Let 

 aij x j = yj
j=1

n

!  

be a system of nonhomogeneous linear equations. If u = (uè, . . . , uñ) ∞ Fn is a 
solution of this system, and if S is the solution space of the associated homo-
geneous system, then the set 
 

u + S  =  {u + v: v ∞ S} 
 
is the solution set of the nonhomogeneous system. 
 
Proof   If w = (wè, . . . , wñ) ∞ Fn is any other solution of Íéaáéxé = yá, then  
 

Íéaáé(wé - ué)  =  Íéaáéwé - Íéaáéué  =  yá - yá  =  0 
 
so that w - u ∞ S, and hence w = u + v for some v ∞ S. Conversely, if v ∞ S 
then 

Íéaáé(ué + vé)  =  Íéaáéué + Íéaáévé  =  yé + 0  =  yé 
 
so that u + v is a solution of the nonhomogeneous system.  ˙ 
 
Theorem 3.16   Let A be an n x n matrix of rank n. Then the system 

 A jx j =Y

j=1

n

!  

has a unique solution for arbitrary vectors Y ∞ Fn. 
 
Proof   Since Y = ÍAjxé, we see that Y ∞ Fn is just a linear combination of 
the columns of A. Since r(A) = n, it follows that the columns of A are linearly 
independent and hence form a basis for Fn. But then any Y ∞ Fn has a unique 
expansion in terms of this basis (Theorem 2.4, Corollary 2) so that the vector 
X with components xé must be unique.  ˙ 
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Example 3.9   Let us find the complete solution set over the real numbers of 
the nonhomogeneous system 
 

 

3x
1
+!!x

2
+!!2x

3
+!!4x

4
=!!!!1

x
1
!!!x

2
+!!3x

3
!!!!!x

4
=!!!!3

x
1
+ 7x

2
!11x

3
+13x

4
= !13

11x
1
+!!x

2
+12x

3
+10x

4
=!!!!9

 

 
We assume that we somehow found a particular solution u = (2, 5, 1, -3) ∞ 
®4, and hence we seek the solution set S of the associated homogeneous sys-
tem. The matrix of coefficients A of the homogeneous system is given by 
 

 A =

!3 !!1 !!!2 !!4

!!1 !1 !!!3 !1

!!1 !!7 !11 13

11 !!1 !!12 10

"

#

$
$
$
$

%

&

'
'
'
'

!!.  

 
The first thing we must do is determine r(A). Since the proof of Theorem 3.13 
dealt with columns, we choose to construct a new matrix B by applying ele-
mentary column operations to A. Thus we define 
 

 B =

!!1 !!!0 !!!0 !!!0

!1 !!!4 !!!5 !!!3

!!7 !20 !25 !15

!!1 !!!!8 !!10 !!!6

"

#

$
$
$
$

%

&

'
'
'
'

 

 
where the columns of B are given in terms of those of A by B1 = A2, B2 = 
A1 - 3A2, B3 = A3  - 2A2 and B4 = A4 - 4A2 . It is obvious that B1 and B2 are 
independent, and we also note that B3 = (5/4)B2 and B4 = (3/4)B2. Then 
r(A) = r(B) = 2, and hence we have dim S = 4 - 2 = 2. 
 (An alternative method of finding r(A) is as follows. If we interchange the 
first two rows of A and then add a suitable multiple the new first row to elimi-
nate the first entry in each of the remaining three rows, we obtain 
 

 

1 !1 !!!3 !1

0 !4 !!7 !!7

0 !8 !14 14

0 12 !21 21

"

#

$
$
$
$

%

&

'
'
'
'

!!. 
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It is now clear that the first two rows of this matrix are independent, and that 
the third and fourth rows are each multiples of the second. Therefore r(A) = 2 
as above.) 
 We now follow the first part of the proof of Theorem 3.13. Observe that 
since r(A) = 2 and the first two columns of A are independent, we may write 
 

A3  =  (5/4)A1 - (7/4)A2 
and 

   A4  =  (3/4)A1 + (7/4)A2   . 
 
We therefore define the vectors 
 

b(3)  =  (5/4, -7/4, -1, 0) 
and 

b(4)  =  (3/4, 7/4, 0, -1) 
 
which are independent solutions of the homogeneous system and span the 
solution space S. Therefore the general solution set to the nonhomogeneous 
system is given by 
 

 
u + S = {u +!b(3) + "b(4)}

= {(2,!5,!1,!#3)+!(5 / 4,!#7 / 4,!#1,!0)+ "(3 / 4,!7 / 4,!0,!1)}
 

 
where å, ∫ ∞ ® are arbitrary.  ∆ 
 
 
Exercises  
 
1. Find the dimension and a basis for the solution space of each of the fol-

lowing systems of linear equations over ®: 
 

 
(a)!!!!x + 4y+ 2z = 0

2x +!!!y+ 5z = 0

!

  
(b)!!!!x + 3y+!2z = 0

x + 5y+!!!z = 0

3x + 5y+ 8z = 0

 

 
 

 
(c)!!!!x + 2y+ 2z !w + 3t = 0

x + 2y+ 3z +w +!!t = 0

3x + 6y+ 8z +w +!!t = 0

  
(d)!!!!x + 2y ! 2z ! 2w !!!t = 0

x + 2y !!!z + 3w ! 2t = 0

2x + 4y ! 7z +!!w +!!!t = 0
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2. Consider the subspaces U and V of ®4 given by 
 

 
 

U = {(a,!b,!c,!d)! !4 :!b + c+ d = 0}

V = {(a,!b,!c,!d)! !4 :!a + b = 0!and c = 2d}!!.
 

 
 (a)  Find the dimension and a basis for U. 
 (b)  Find the dimension and a basis for V. 
 (c)  Find the dimension and a basis for U ⁄ V. 
 
3. Find the complete solution set of each of the following systems of linear 

equations over ®: 
 

 
(a)!!3x ! y = 7

2x + y =!1

!

 
(b)!!2x !!!!y+ 3z =!!5

3x + 2y ! 2z =!!1

7x +!!!!!!!!4z =11

 

 

 

(c)!!5x + 2y !!!z = 0

3x + 5y+ 3z = 0

x + 8y+ 7z = 0

!

 

(d)!!!!x !!!y+!2z +!!w = 3

2x +!!y !!!!z !!!w =1

3x +!!y+!!!z ! 3w = 2

3x ! 2y+ 6z!!!!!!!!!= 7

 

 
 
3.6   MATRIX ALGEBRA 
 
We now introduce the elementary algebraic operations on matrices. These 
operations will be of the utmost importance throughout the remainder of this 
text. In Chapter 5 we will see how these definitions arise in a natural way 
from the algebra of linear transformations. 
 Given two m x n matrices A = (aáé) and B = (báé), we define their sum A + 
B to be the matrix with entries 
 

(A + B)áé  =  aáé + báé 
 
obtained by adding the corresponding entries of each matrix. Note that both A 
and B must be of the same size. We also say that A equals B if aáé = báé for all  
i and j. It is obvious that 

A + B  =  B + A 
and that 

A + (B + C)  =  (A + B) + C 
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for any other m x n matrix C. We also define the zero matrix 0 as that matrix 
for which A + 0 = A. In other words, (0)áé = 0 for every i and j. Given a matrix 
A = (aáé), we define its negative (or additive inverse) 
 

-A  =  (-aáé) 
 
such that A + (-A) = 0. Finally, for any scalar c we define the product of c and 
A to be the matrix 

   cA  =  (caáé)  . 
 
 Since in general the entries aáé in a matrix A = (aáé) are independent of each 
other, it should now be clear that the set of all m x n matrices forms a vector 
space of dimension mn over a field F of scalars. In other words, any m x n 
matrix A with entries aáé can be written in the form 

 A = aijEij
j=1

n

!
i=1

m

!  

where the m x n matrix Eáé is defined as having a 1 in the (i, j)th position and 
0’s elsewhere, and there are clearly mn such matrices. We denote the space of 
all m x n matrices over the field F by Mmxn(F). The particular case of m = n 
defines the space Mn(F) of all square matrices of size n. We will often refer 
to a matrix in Mn(F) as an n-square matrix. 
 Now let A ∞ Mmxn(F) be an m x n matrix, B ∞ Mrxm(F) be an r x m 
matrix, and consider the two systems of linear equations 

 
 

aij x j = yi ,!!!!!!!!!!i =1,!…!,!m

j=1

n

!  

and 

 
 

bij y j = zi ,!!!!!!!!!!i =1,!…!,!r

j=1

m

!  

where X = (xè, . . . , xñ) ∞ Fn, Y = (yè, . . . , ym) ∞ Fm and Z = (zè, . . . , zr) ∞ 
Fr. Substituting the first of these equations into the second yields 
 

zá  =  Íébáéyé  =  ÍébáéÍÉaéÉxÉ  =  ÍÉcáÉxÉ 
 
where we defined the product of the r x m matrix B and the m x n matrix A to 
be the r x n matrix C = BA whose entries are given by 

 cik = bija jk !!.

j=1

m

!  

Thus the (i, k)th entry of C = BA is given by the standard scalar product 
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(BA)áÉ  =  Bá Â Ak 
 
of the ith row of B with the kth column of A (where both are considered as 
vectors in Fm). Note that matrix multiplication is generally not commutative, 
i.e., AB ≠ BA. Indeed, the product AB may not even be defined. 
 
Example 3.10   Let A and B be given by 
 

 A =!

1 6 !2

3 4 !5

7 0 !8

"

#

$
$
$

%

&

'
'
'
!!!!!!!!!!!!!!!!!!!!B =!

2 !9

6 !!1

1 !3

"

#

$
$
$

%

&

'
'
'
!!.  

 
Then the product of A and B is given by 
 

 C = AB =!

1 6 !2

3 4 5

7 0 8

"

#

$
$
$

%

&

'
'
'
!

2 !9

6 1

1 !3

"

#

$
$
$

%

&

'
'
'
=!

1 ( 2 + 6 ( 6 ! 2 (1 !1 ( 9 + 6 (1+ 2 ( 3

3 ( 2 + 4 ( 6 + 5 (1 !3 ( 9 + 4 (1! 5 ( 3

7 ( 2 + 0 ( 6 + 8 (1 !7 ( 9 + 0 (1! 8 ( 3

"

#

$
$
$

%

&

'
'
'

 

 

 =!

36 !!!3

35 !38

22 !87

"

#

$
$
$

%

&

'
'
'
!!. 

 
Note that it makes no sense to evaluate the product BA. 
 It is also easy to see that if we have the matrices 
 

 A =
1 2

3 4

!

"
#

$

%
&      and     B =

0 1

1 0

!

"
#

$

%
&  

 
then 

 AB =
1 2

3 4

!

"
#

$

%
&
0 1

1 0

!

"
#

$

%
& =

2 1

4 3

!

"
#

$

%
&  

 
while 

 BA =
0 1

1 0

!

"
#

$

%
&
1 2

3 4

!

"
#

$

%
& =

3 4

1 2

!

"
#

$

%
& ' AB!!.   ∆ 

 
Example 3.11   Two other special cases of matrix multiplication are worth ex-
plicitly mentioning. Let X ∞ Fn be the column vector 
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X =

x
1

!

x
n

!

"

#
#
#

$

%

&
&
&
!!.  

 
If A is an m x n matrix, we may consider X to be an n x 1 matrix and form the 
product AX: 
 

 

 

AX =!

a
11
! a

1n

" "

a
m1
! a

mn

!

"

#
#
#

$

%

&
&
&

x
1

"

x
n

!

"

#
#
#

$

%

&
&
&
=

a
11
x
1
+!!!+a

1n
x
n

"

a
m1
x
1
+!!!+a

mn
x
n

!

"

#
#
#

$

%

&
&
&
=

A
1
• X

"

A
m
• X

!

"

#
#
#

$

%

&
&
&
!!.  

 
As expected, the product AX is an m x 1 matrix with entries given by the stan-
dard scalar product AáÂX in Fn of the ith row of A with the vector X. Note 
that this may also be written in the form 
 

 

 

AX =

a
11

!

a
m1

!

"

#
#
#

$

%

&
&
&
x
1
+!"!+

a
1n

!

a
mn

!

"

#
#
#

$

%

&
&
&
x
n

 

 
which clearly shows that AX is just a linear combination of the columns of A. 
 Now let Y ∞ Fm be the row vector Y = (yè, . . . , ym). If we view this as a 
1 x m matrix, then we may form the 1 x n matrix product YA given by 
 

 

 

YA = (y1,!…!,!ym )!

a11 ! a1n

" "

am1 ! amn

!

"

#
#
#

$

%

&
&
&

= (y1a11 +!!!+!ymam1,!…!,!y1a1n +!!!+ymamn )

= (Y • A1,!…!,!Y • An )!!.

 

 
This again yields the expected form of the product with entries YÂAi.  ∆ 
 
 This example suggests the following commonly used notation for systems 
of linear equations. Consider the system 

 aij x j = yi
j=1

n

!  

where A = (aáé) is an m x n matrix. Suppose that we define the column vectors  
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X =

x
1

!

x
n

!

"

#
#
#

$

%

&
&
&
'  Fn      and     

 

Y =

y
1

!

ym

!

"

#
#
#

$

%

&
&
&
'  Fm  . 

 
 If we consider X to be an n x 1 matrix and Y to be an m x 1 matrix, then we 
may write this system in matrix notation as 
 

  AX  =  Y  . 
 
Note that the ith row vector of A is Aá = (aáè, . . . , aáñ) so that the expression 
Íéaáéxé = yá may be written as the standard scalar product 
 

  Aá Â X  =  yá  . 
 
 We leave it to the reader to show that if A is an n x n matrix, then 
 

  A Iñ  =  IñA  =  A  . 
 
Even if A and B are both square matrices (i.e., matrices of the form m x m), 
the product AB will not generally be the same as BA unless A and B are 
diagonal matrices (see Exercise 3.6.4). However, we do have the following. 
 
Theorem 3.17   For matrices of proper size (so that these operations are 
defined), we have: 
 (a)  (AB)C = A(BC)  (associative law). 
 (b)  A(B + C) = AB + AC  (left distributive law). 
 (c)  (B + C)A = BA + CA  (right distributive law). 
 (d)  k(AB) = (kA)B = A(kB) for any scalar k. 
 
Proof   (a)!![(AB)C]ij = !k (AB)ik ckj = !r,!k (airbrk )ckj = !r,!kair (brkckj )  

  = !rair (BC)rj = [A(BC)]ij !!.  

  

 

(b)!![A(B+C)]ij = !kaik (B+C)kj = !kaik (bkj + ckj )

= !kaikbkj +!kaikckj = (AB)ij + (AC)ij

= [(AB)+ (AC)]ij !!.

 

 
 (c)  Left to the reader (Exercise 3.6.1). 
 (d)  Left to the reader (Exercise 3.6.1).  ˙ 
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 Given a matrix A = (aáé), we define the transpose of A, denoted by AT = 
(aTij) to be the matrix with entries given by aTáé = aéá. In other words, if A is an 
m x n matrix, then AT is an n x m matrix whose columns are just the rows of 
A. Note in particular that a column vector is just the transpose of a row vector. 
 
Example 3.12   If A is given by 

 !
1 2 3

4 5 6

!

"
#

$

%
&  

 
then AT is given by 

 !

1 4

2 5

3 6

!

"

#
#
#

$

%

&
&
&
!!.   ∆ 

 
Theorem 3.18   The transpose has the following properties: 
 (a)  (A + B)T = AT + BT. 
 (b)  (AT)T = A. 
 (c)  (cA)T = cAT   for any scalar c. 
 (d)  (AB)T = BT AT. 
 
Proof  (a)  [(A + B)T]áé = [(A + B)]éá = aéá + béá = aTáé + bTáé = (AT + BT)áé. 
 (b)  (AT)Táé = (AT)éá = aáé = (A)áé. 
 (c)  (cA)Táé = (cA)éá = caéá = c(AT)áé. 
 (d)  (AB)Táé = (AB)éá = Ík aéÉbÉá = Ík bTáÉaTÉé = (BT AT)áé.  ˙ 
 
 We now wish to relate this algebra to our previous results dealing with the 
rank of a matrix. Before doing so, let us first make some elementary observa-
tions dealing with the rows and columns of a matrix product. Assume that 
A ∞ Mmxn(F) and B ∞ Mnxr(F) so that the product AB is defined. Since the 
(i, j)th entry of AB is given by (AB)áé = ÍÉaáÉbÉé, we see that the ith row of AB 
is given by a linear combination of the rows of B: 
 

  (AB)á  =  (ÍÉaáÉbÉè, . . . , ÍÉaáÉbkr)  =  ÍÉaáÉ(bÉè, . . . , bkr) = ÍkaáÉBÉ  . 
 
Another way to write this is to observe that 
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(AB)
i
= (!

k
a
ik
b
k1,!…!,!!k

a
ik
b
kr
)

= (a
i1,!…!,!ain )!

b11 ! b1r

" "

b
n1 ! b

nr

"

#

$
$
$

%

&

'
'
'
= A

i
B!!.

 

 
Similarly, for the columns of a product we find that the jth column of AB is a 
linear combination of the columns of A: 
 

 

 

(AB) j =

!ka1kbkj

!

!kamkbkj

"

#

$
$
$

%

&

'
'
'
=

a1k

!

amk

"

#

$
$
$

%

&

'
'
'
bkj =

k=1

n

( Akbkj
k=1

n

(  

and 

 

 

(AB) j =

!ka1kbkj

!

!kamkbkj

"

#

$
$
$

%

&

'
'
'
=!

a11 " a1n

! !

am1 " amn

"

#

$
$
$

%

&

'
'
'

b1 j

!

bnj

"

#

$
$
$

%

&

'
'
'
= AB j !!.  

 
These formulas will be quite useful to us in several of the following theorems. 
 
Theorem 3.19   For any matrix A we have r(AT) = r(A). 
 
Proof   This is Exercise 3.6.2.  ˙ 
 
Theorem 3.20   If A and B are any matrices for which the product AB is 
defined, then the row space of AB is a subspace of the row space of B, and the 
column space of AB is a subspace of the column space of A. 
 
Proof   Using (AB)á = ÍÉaáÉBÉ, we see that the ith row of AB is in the space 
spanned by the rows of B, and hence the row space of AB is a subspace of the 
row space of B. 
 Now note that the column space of AB is just the row space of (AB)T = 
BTAT, which is a subspace of the row space of AT by the first part of the 
theorem. But the row space of AT is just the column space of A.  ˙ 
 
Corollary   r(AB) ¯ min{r(A), r(B)}. 
 
Proof   Let VA be the row space of A, and let WA be the column space of A. 
Then 

r(AB)  =  dim VAB  ¯  dim VB  =  r(B) 
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while 
         r(AB)  =  dim WAB  ¯  dim WA  =  r(A)  .  ˙ 

 
 
Exercises  
 
1. Complete the proof of Theorem 3.17. 
 
2. Prove Theorem 3.19. 
 
3. Let A be any m x n matrix and let X be any n x 1 matrix, both with 

entries in F. Define the mapping f : Fn ‘Fm by f(X) = AX. 
 (a)  Show that f is a linear transformation (i.e., a vector space homomor-

phism). 
 (b)  Define Im f = {AX: X ∞ Fn}. Show that Im f is a subspace of Fm. 
 (c)  Let U be the column space of A. Show that Im f = U. [Hint: Use 

Example 3.11 to show that Im f ™ U. Next use the equation (AI)j = AIj to 
show that U ™ Im f.] 

 (d)  Let N denote the solution space to the system AX = 0. In other 
words, N = {X ∞ Fn: AX = 0}. (N is usually called the null space of A.)  
Show that 

   dim N + dim U  =  n  . 
 
 [Hint: Suppose dim N = r, and extend a basis {xè, . . . , xr} for N to a 

basis {xá} for Fn. Show that U is spanned by the vectors Axr+1 , . . . , 
Axn , and then that these vectors are linearly independent. Note that this 
exercise is really just another proof of Theorem 3.13.] 

 
4. A matrix of the form 
 

 

 

a
11

0 0 ! 0

0 a
22

0 ! 0

" " " "

0 0 0 ! a
nn

!

"

#
#
#
#

$

%

&
&
&
&

 

 
 
 is called a diagonal matrix. In other words, A = (aáé) is diagonal if aáé = 0 

for i ≠ j. If A and B are both square matrices, we may define the commu-
tator [A, B] of A and B to be the matrix [A, B] = AB - BA. If [A, B] = 0, 
we say that A and B commute. 

 (a)  Show that any diagonal matrices A and B commute. 
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 (b)  Prove that the only n x n matrices which commute with every n x n 
diagonal matrix are diagonal matrices. 

 
5. Given the matrices 
6.  

 A =!

!!2 !1

!!1 !!0

!3 !!4

"

#

$
$
$

%

&

'
'
'
!!!!!!!!!!B =!

1 !2 !5

3 !!4 !!0

"

#
$

%

&
'  

 
 compute the following: 
 (a)  AB. 
 (b)  BA. 
 (c)  AAT. 
 (d)  ATA. 
 (e)  Verify that (AB)T = BTAT. 
 
6. Consider the matrix A ∞ Mn(F) given by 
 

 

 

A =!

0 1 0 0 ! 0 0

0 0 1 0 ! 0 0

0 0 0 1 ! 0 0

" " " " " "

0 0 0 0 ! 0 1

0 0 0 0 ! 0 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

!!.  

 
 Thus A has zero entries everywhere except on the superdiagonal where 

the entries are 1’s. Let A2 = AA, A3 = AAA, and so on. Show that An = 0 
but An-1 ≠ 0. 

 
7. Given a matrix A = (aáé) ∞ Mn(F), the sum of the diagonal elements of A 

is called the trace of A, and is denoted by Tr A. Thus 

 Tr A = a
ii
!!.

i=1

n

!  

 (a)  Prove that Tr(A + B) = Tr A + Tr B and that Tr(åA) = å(Tr A) for 
any scalar å. 

 (b)  Prove that Tr(AB) = Tr(BA). 
 
8. (a)  Prove that it is impossible to find matrices A, B ∞ Mn(®) such that 

their commutator [A, B] = AB - BA  is equal to 1. 
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 (b)  Let F be a field of characteristic 2 (i.e., a field in which 1 + 1 = 0; see 
Exercise 1.5.17). Prove that it is possible to find matrices A, B ∞ M2(F) 
such that [A, B] = 1. 

 
9. A matrix A = (aáé) is said to be upper-triangular if aáé = 0 for i > j. In 

other words, every entry of A below the main diagonal is zero. Similarly, 
A is said to be lower-triangular if aáé = 0 for i < j. Prove that the product 
of upper (lower) triangular matrices is an upper (lower) triangular matrix. 

 
10. Consider the so-called Pauli spin matrices 
 

 !
1
=
0 1

1 0

"

#
$

%

&
'!!!!!!!!!!! 2 =

0 (i

i 0

"

#
$

%

&
'!!!!!!!!!!! 3

=
1 0

0 (1

"

#
$

%

&
'  

 
 and define the permutation symbol ´ijk by 
 

 !ijk =

!!1  !!if (i,! j,!k) is an even permutation of (1,!2,!3)

"1 !!!if (i,! j,!k) is an odd permutation of (1,!2,!3) 

0    if any two indices are the same!!!!!!!!!!!!!!!!!!!

!!.

#

$
%

&
%

 

 
 The commutator of two matrices A, B ∞ Mn(F) is defined by [A, B] = 

AB - BA, and the anticommutator is given by [A, B]+ = AB + BA. 
 
 (a)  Show that [ßá, ßé] = 2i ÍÉ´ijk ßÉ. In other words, show that ßáßé = ißÉ 

where (i, j, k) is an even permutation of (1, 2, 3). 
 (b)  Show that [ßá, ßé]+ = 2I∂áé . 
 (c)  Using part (a), show that Tr ßá = 0. 
 (d)  For notational simplicity, define ßà = I. Show that {ß0, ß1, ß2, ß3} 

forms a basis for M2(ç). [Hint: Show that Tr(ßå ß∫) = 2∂å∫ where 0 ¯ å, 
∫ ¯ 3. Use this to show that {ßå} is linearly independent.] 

 (e)  According to part (d), any X ∞ M2(ç) may be written in the form X = 
Íåxåßå. How would you find the coefficients xå? 

 (f)  Show that Óßå, ß∫Ô = (1/2)Tr(ßåß∫) defines an inner product on 
M2(ç). 

 (g)  Show that any matrix X ∞ M2(ç) that commutes with all of the ßá 
(i.e., [X, ßá] = 0 for each i = 1, 2, 3) must be a multiple of the identity 
matrix. 
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11. A square matrix S is said to be symmetric if ST = S, and a square matrix 
A is said to be skewsymmetric (or antisymmetric) if AT = -A. (We 
continue to assume as usual that F is not of characteristic 2.) 

 (a)  Show that S ≠ 0 and A are linearly independent in Mn(F). 
 (b)  What is the dimension of the space of all n x n symmetric matrices? 
 (c)  What is the dimension of the space of all n x n antisymmetric 

matrices? 
 
12. Find a basis {Aá} for the space Mn(F) that consists only of matrices with 

the property that Aá2 = Aá (such matrices are called idempotent or 
projections). [Hint: The matrices 

 

 
1 0

0 0

!

"
#

$

%
&!!!!!!

1 1

0 0

!

"
#

$

%
&!!!!!!

0 0

1 0

!

"
#

$

%
&!!!!!!

0 0

1 1

!

"
#

$

%
&  

 
 will work in the particular case of M2(F).] 
 
13. Show that it is impossible to find a basis for Mn(F) such that every pair 

of matrices in the basis commute with each other. 
 
14. (a)  Show that the set of all nonsingular n x n matrices forms a spanning 

set for Mn(F). Exhibit a basis of such matrices. 
 (b)  Repeat part (a) with the set of all singular matrices. 
 
15. Show that the set of all matrices of the form AB - BA do not span 

Mn(F). [Hint: Use the trace.] 
 
16. Is it possible to span Mn(F) using powers of a single matrix A?  In other 

words, can {Iñ , A, A2, . . . , An, . . .} span Mn(F)?  [Hint: Consider 
Exercise 4 above.] 

 
 
3.7   INVERTIBLE MATRICES 
 
We say that a matrix A ∞ Mñ(F) is nonsingular if r(A) = n, and singular if 
r(A) < n. Given a matrix A ∞ Mñ(F), if there exists a matrix B ∞ Mñ(F) such 
that AB = BA = Iñ, then B is called an inverse of A, and A is said to be 
invertible. 
 Technically, a matrix B is called a left inverse of A if BA = I, and a 
matrix Bæ is a right inverse of A if ABæ = I. Then, if AB = BA = I, we say that 
B is a two-sided inverse of A, and A is then said to be invertible. 
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Furthermore, if A has a left inverse B and a right inverse Bæ, then it is easy to 
see that B = Bæ since B = BI = B(ABæ) = (BA)Bæ = IBæ = Bæ. We shall now 
show that if B is either a left or a right inverse of A, then A is invertible. 
 
Theorem 3.21   A matrix A ∞ Mñ(F) has a right (left) inverse if and only if A 
is nonsingular. This right (left) inverse is also a left (right) inverse, and hence 
is an inverse of A. 
 
Proof   Suppose A has a right inverse B. Then AB = Iñ so that r(AB) = r(Iñ). 
Since r(Iñ) is clearly equal to n (Theorem 3.9), we see that r(AB) = n. But then 
from the corollary to Theorem 3.20 and the fact that both A and B are n x n 
matrices (so that r(A) ¯ n and r(B) ¯ n), it follows that r(A) = r(B) = n, and 
hence A is nonsingular. 
 Now suppose that A is nonsingular so that r(A) = n. If we let Ej be the jth 
column of the identity matrix Iñ, then for each j = 1, . . . , n the system of 
equations 

 Aixi = AX = E
j

i=1

n

!  

has a unique solution which we denote by X = Bj (Theorem 3.16). Now let B 
be the matrix with columns Bj. Then the jth column of AB is given by 
 

(AB)j  =  ABj  =  Ej 
 
and hence AB = Iñ. It remains to be shown that BA = Iñ. To see this, note that 
r(AT) = r(A) = n (Theorem 3.19) so that AT is nonsingular also. Hence apply-
ing the same argument shows there exists a unique n x n matrix CT such that 
AT CT = Iñ. Since (CA)T = ATCT and IñT = Iñ, this is the same as CA = Iñ. 
We now recall that it was shown prior to the theorem that if A has both a left 
and a right inverse, then they are the same. Therefore B = C so that BA = AB 
= Iñ, and hence B is an inverse of A. Clearly, the proof remains valid if “right” 
is replaced by “left” throughout.  ˙ 
 
Corollary 1   A matrix A ∞ Mn(F) is nonsingular if and only if it has an 
inverse. Furthermore, this inverse is unique. 
 
Proof   As we saw above, if B and C are both inverses of A, then B = BI = 
B(AC) = (BA)C = IC = C.  ˙ 
 
 In view of this corollary, the unique inverse to a matrix A will be denoted 
by Aî from now on. 
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Corollary 2   If A is an n x n nonsingular matrix, then Aî is nonsingular and 
(Aî)î = A. 
 
Proof   If A is nonsingular, then (by Theorem 3.21) Aî exists so that AîA = 
AAî = I. But this means that (Aî)î exists and is equal to A, and hence Aî is 
also nonsingular.  ˙ 
 
Corollary 3   If A and B are nonsingular then so is AB, and (AB)î = Bî Aî. 
 
Proof   The fact that A and B are nonsingular means that Aî and Bî exist. 
We therefore see that 
 

(BîAî)(AB)  =  BîIB  =  BîB  =  I 
 
and similarly (AB)(BîAî) = I. It then follows that Bî Aî = (AB)î. Since we 
have now shown that AB has an inverse, Theorem 3.21 tells us that AB must 
be nonsingular.  ˙ 
 
Corollary 4   If A is nonsingular then so is AT, and (AT)î = (Aî)T. 
 
Proof   That AT is nonsingular is a direct consequence of Theorem 3.19. Next 
we observe that 

(Aî)TAT  =  (AAî)T  =  IT  =  I 
 
so that the uniqueness of the inverse tells us that (AT)î = (Aî)T. Note this 
also shows that AT is nonsingular.         ˙ 
 
Corollary 5   A system of n linear equations in n unknowns has a unique 
solution if and only if its matrix of coefficients is nonsingular. 
 
Proof   Consider the system AX = Y. If A is nonsingular, then a unique Aî 
exists, and therefore we have X = AîY as the unique solution. (Note that this 
is essentially the content of Theorem 3.16.) 
 Conversely, if this system has a unique solution, then the solution space of 
the associated homogeneous system must have dimension 0 (Theorem 3.15). 
Then Theorem 3.13 shows that we must have r(A) = n, and hence A is non-
singular.  ˙ 
 
 A major problem that we have not yet discussed is how to actually find the 
inverse of a matrix. One method involves the use of determinants as we will 
see in the next chapter. However, let us show another approach based on the 
fact that a nonsingular matrix is row-equivalent to the identity matrix 
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(Theorem 3.10). This method has the advantage that it is algorithmic, and 
hence is easily implemented on a computer. 
 Since the jth column of a product AB is ABj, we see that considering the 
particular case of AAî = I leads to 
 

(AAî)j  =  A(Aî)j  =  Ej 
 
where Ej is the jth column of I. What we now have is the nonhomogeneous 
system 

AX  =  Y 
 
(or Íéaáéxé = yá) where X = (Aî)j and Y = Ej. As we saw in Section 3.2, we 
may solve for the vector X by reducing the augmented matrix to reduced row-
echelon form. For the particular case of j = 1 we have 
 

 

 

aug A =

a11 ! a1n 1

a21 ! a2n 0

" " "

a
n1 ! a

nn
0

!

"

#
#
#
#

$

%

&
&
&
&

 

 
and hence the reduced form will be 
 

 

 

1 0 0 ! 0 c
11

0 1 0 ! 0 c
21

" " " " "

0 0 0 ! 1 c
n1

!

"

#
#
#
#

$

%

&
&
&
&

 

 
for some set of scalars cáé. This means that the solution to the system is xè = 
cèè, xì = cìè, . . . , xñ = cñè. But X = (Aî)1 = the first column of Aî, and 
therefore this last matrix may be written as 
 

 

 

1 ! 0 a!1
11

" " "

0 ! 1 a!1
n1

"

#

$
$
$

%

&

'
'
'
!!.  

 
 Now, for each j = 1, . . . , n the system AX = A(Aî)j = Ej always has the 
same matrix of coefficients, and only the last column of the augmented matrix 
depends on j. Since finding the reduced row-echelon form of the matrix of 
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coefficients is independent of this last column, it follows that we may solve all 
n systems simultaneously by reducing the single matrix 
 

 

 

a
11
! a

1n
1 ! 0

" " " "

a
n1
! a

nn
0 ! 1

!

"

#
#
#

$

%

&
&
&
!!.  

 
In other words, the reduced form will be 
 

 

 

1 ! 0 a!1
11
! a!1

1n

" " " "

0 ! 1 a!1
n1
! a!1

nn

"

#

$
$
$

%

&

'
'
'

 

 
where the matrix Aî = (aîáé) satisfies AAî = I since (AAî)j = A(Aî)j = Ej is 
satisfied for each j = 1, . . . , n. 
 
Example 3.13   Let us find the inverse of the matrix A given by 
 

 !

!1 !2 !1

!!0 !3 !2

!!2 !1 !!0

"

#

$
$
$

%

&

'
'
'
 

 
We leave it as an exercise for the reader to show that the reduced row-echelon 
form of 

 
!1 !2 !1 1 0 0

!!0 !3 !2 0 1 0

!!2 !1 !0 0 0 1

"

#

$
$
$

%

&

'
'
'

 

is 
 

 
1 0 0 1 / 6 1 /12 7 /12

0 1 0 1 / 3 1 / 6 1 / 6

0 0 1 1 / 2 !1 / 4 1 / 4

"

#

$
$
$

%

&

'
'
'

 

 
and hence Aî is given by 
 

 !

1 / 6 !1 /12 7 /12

1 / 3 !!1 / 6 1 / 6

1 / 2 !1 / 4 1 / 4

"

#

$
$
$

%

&

'
'
'
!!.   ∆ 
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Exercises  
 
1. Verify the reduced row-echelon form of the matrix given in Example 

3.13. 
 
2. Find the inverse of a general 2 x 2 matrix. What constraints are there on 

the entries of the matrix? 
 
3. Show that a matrix is not invertible if it has any zero row or column. 
 
4. Find the inverse of each of the following matrices: 
 

 (a)!!!

1 0 2

2 !1 3

4 1 8

"

#

$
$
$

%

&

'
'
'
!!!!!!!!!!!!(b)!!!

1 3 4

3 !1 6

!1 5 1

"

#

$
$
$

%

&

'
'
'
!!!!!!!!!!!!(c)!!!

1 2 1

2 5 2

1 3 3

"

#

$
$
$

%

&

'
'
'
 

 
5. Use the inverse of the matrix in Exercise 4(c) above to find the solutions 

of each of the following systems: 
 

 
(a)!!!!x + 2y+!!!z =10

2x + 5y+ 2z =14

x + 3y+ 3z = 30

  
(b)!!!!x + 2y+!!!z =!!2

2x + 5y+ 2z = !1

x + 3y+ 3z =!!6

 

 
6. What is the inverse of a diagonal matrix? 
 
7. (a)  Prove that an upper-triangular matrix is invertible if and only if every 

entry on the main diagonal is nonzero (see Exercise 3.6.9 for the defini-
tion of an upper-triangular matrix). 

 (b)  Prove that the inverse of a lower (upper) triangular matrix is lower 
(upper) triangular. 

 
8. Find the inverse of the following matrix: 
 

 

1 2 3 4

0 2 3 4

0 0 3 4

0 0 0 4

!

"

#
#
#
#

$

%

&
&
&
&

!!.  

 
9. (a)  Let A be any 2 x 1 matrix, and let B be any 1 x 2 matrix. Prove that 

AB is not invertible. 



3.7   INVERTIBLE MATRICES  

 

163 

 (b)  Repeat part (a) where A is any m x n matrix and B is any n x m 
matrix with n < m. 

 
10. Summarize several of our results by proving the equivalence of the fol-

lowing statements for any n x n matrix A: 
 (a)  A is invertible. 
 (b)  The homogeneous system AX = 0 has only the zero solution. 
 (c)  The system AX = Y has a solution X for every n x 1 matrix Y. 
 
11. Let A and B be square matrices of size n, and assume that A is 

nonsingular. Prove that r(AB) = r(B) = r(BA). 
 
12. A matrix A is called a left zero divisor if there exists a nonzero matrix B 

such that AB = 0, and A is called a right zero divisor if there exists a 
nonzero matrix C such that CA = 0. If A is an m x n matrix, prove that: 

 (a)  If m < n, then A is a left zero divisor. 
 (b)  If m > n, then A is a right zero divisor. 
 (c)  If m = n, then A is both a left and a right zero divisor if and only if A 

is singular. 
 
13. Let A and B be nonsingular symmetric matrices for which AB - BA = 0. 

Show that AB, AîB, ABî and AîBî are all symmetric. 
  
 
3.8   ELEMENTARY MATRICES 
 
Recall the elementary row operations å, ∫, © described in Section 3.2. We now 
let e denote any one of these three operations, and for any matrix A we define 
e(A) to be the result of applying the operation e to the matrix A. In particular, 
we define an elementary matrix to be any matrix of the form e(I). The great 
utility of elementary matrices arises from the following theorem. 
 
Theorem 3.22   If A is any m x n matrix and e is any elementary row opera-
tion, then 

  e(A)  =  e(Im)A  . 
 
Proof   We must verify this equation for each of the three types of elementary 
row operations. First consider an operation of type å. In particular, let å be 
the interchange of rows i and j. Then 
 

[e(A)]É =  AÉ    for k ≠ i, j 
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while 
  [e(A)]á =  Aé   and   [e(A)]é =  Aá  . 

 
On the other hand, using (AB)É = AÉ B we also have 
 

  [e(I)A]É =  [e(I)]ÉA  . 
 
If k ≠ i, j then [e(I)]É = IÉ so that 
 

  [e(I)]ÉA  =  IÉA  =  AÉ  . 
 
If k = i, then [e(I)]á = Ié and 
 

  [e(I)]áA  =  IéA  =  Aé  . 
 

Similarly, we see that 
  [e(I)]éA  =  IáA  =  Aá  . 

 
This verifies the theorem for transformations of type å. (It may be helpful for 
the reader to write out e(I) and e(I)A to see exactly what is going on.) 
 There is essentially nothing to prove for type ∫ transformations, so we go 
on to those of type ©. Hence, let e be the addition of c times row j to row i. 
Then 

 
[e(I)]É =  IÉ    for k ≠ i 

 
and 

  [e(I)]á =  Iá + cIé  . 
 

Therefore 
[e(I)]áA  =  (Iá + cIé)A  =  Aá + cAé  =  [e(A)]á  

 
and for k ≠ i we have 
 

      [e(I)]ÉA  =  IÉA  =  AÉ  =  [e(A)]É  .  ˙ 
 
 If e is of type å, then rows i and j are interchanged. But this is readily 
undone by interchanging the same rows again, and hence eî is defined and is 
another elementary row operation. For type ∫ operations, some row is multi-
plied by a scalar c, so in this case eî is simply multiplication by 1/c. Finally, a 
type © operation adds c times row j to row i, and hence eî adds -c times row j
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to row i. Thus all three types of elementary row operations have inverses 
which are also elementary row operations. 
 By way of nomenclature, a square matrix A = (aáé) is said to be diagonal if 
aáé = 0 for i ≠ j. The most common example of a diagonal matrix is the identity 
matrix. 
 
Theorem 3.23   Every elementary matrix is nonsingular, and 
 

  [e(I)]î =   eî(I)  . 
 
Furthermore, the transpose of an elementary matrix is an elementary matrix. 
 
Proof   By definition, e(I) is row equivalent to I and hence has the same rank 
as I (Theorem 3.4). Thus e(I) is nonsingular since r(Iñ) = n, and hence e(I)î 
exists. Since it was shown above that eî is an elementary row operation, we 
apply Theorem 3.22 to the matrix e(I) to obtain 
 

  eî(I)e(I)  =  eî(e(I))  =  I  . 
 
Similarly, applying Theorem 3.22 to eî(I) yields 
 

  e(I)eî(I)  =  e(eî(I))  =  I  . 
 
This shows that eî(I) = [e(I)]î. 
 Now let e be a type å transformation that interchanges rows i and j (with 
i < j). Then the ith row of e(I) has a 1 in the jth column, and the jth row has a 
1 in the ith column. In other words, 
 

[e(I)]áé =  1  =  [e(I)]éá  
 
while for r, s ≠ i, j we have 
 

[e(I)]rs =  0    if r ≠ s 
 

and 
  [e(I)]rr =  1  . 

 
Taking the transpose shows that 
 

[e(I)]Táé =  [e(I)]éá =  1  =  [e(I)]áé  
and 

  [e(I)]Trs =  [e(I)]sr =  0  =  [e(I)]rs   . 
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Thus [e(I)]T = e(I) for type å operations. 
 Since I is a diagonal matrix, it is clear that for a type ∫ operation which 
simply multiplies one row by a nonzero scalar, we have [e(I)]T = e(I). 
 Finally, let e be a type © operation that adds c times row j to row i. Then 
e(I) is just I with the additional entry [e(I)]áé = c, and hence [e(I)]T is just I 
with the additional entry [e(I)]éá = c. But this is the same as c times row i 
added to row j in the matrix I. In other words, [e(I)]T is just another elemen-
tary matrix.  ˙ 
 
 We now come to the main result dealing with elementary matrices. For 
ease of notation, we denote an elementary matrix by E rather than by e(I). In 
other words, the result of applying the elementary row operation eá to I will be 
denoted by the matrix Eá = eá(I). 
 
Theorem 3.24   Every nonsingular n x n matrix may be written as a product 
of elementary n x n matrices. 
 
Proof   It follows from Theorem 3.10 that any nonsingular n x n matrix A is 
row equivalent to Iñ. This means that Iñ may be obtained by applying r suc-
cessive elementary row operations to A. Hence applying Theorem 3.22 r times 
yields 

Er  ~ ~ ~  EèA  =  Iñ 
 

so that 
  A  =  Eèî  ~ ~ ~  ErîIñ  =  Eèî ~ ~ ~  Erî  . 

 
The theorem now follows if we note that each Eáî is an elementary matrix ac-
cording to Theorem 3.23 (since Eáî = [e(I)]î = eî(I) and eî is an elementary 
row operation).  ˙ 
 
Corollary   If A is an invertible n x n matrix, and if some sequence of ele-
mentary row operations reduces A to the identity matrix, then the same 
sequence of row operations reduces the identity matrix to Aî. 
 
Proof   By hypothesis we may write Er ~ ~ ~ EèA = I. But then multiplying from 
the right by Aî shows that Aî = Er ~ ~ ~ EèI.  ˙ 
 
 Note this corollary provides another proof that the method given in the 
previous section for finding Aî is valid. 
 There is one final important property of elementary matrices that we will 
need in a later chapter. Let E be an n x n elementary matrix representing any 
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of the three types of elementary row operations, and let A be an n x n matrix. 
As we have seen, multiplying A from the left by E results in a new matrix 
with the same rows that would result from applying the elementary row 
operation to A directly. We claim that multiplying A from the right by ET 
results in a new matrix whose columns have the same relationship as the rows 
of EA. We will prove this for a type © operation, leaving the easier type å and 
∫ operations to the reader (see Exercise 3.8.1). 
 Let © be the addition of c times row j to row i. Then the rows of E are 
given by EÉ = IÉ for k ≠ i, and Eá = Iá + cIé. Therefore the columns of ET are 
given by 

(ET)k  =  Ik    for k ≠ i 
and 

  (ET)i  =  Ii + cIj  . 
 
Now recall that the kth column of AB is given by (AB)k = ABk. We then have 
 

(AET)k  =  A(ET)k  =  AIk  =  Ak    for k ≠ i 
and 

  (AET)i  =  A(ET)i  =  A(Ii + cIj)  =  AIi + cAIj  =  Ai + cAj  . 
 
This is the same relationship as that found between the rows of EA where 
(EA)É = AÉ and (EA)á = Aá + cAé (see the proof of Theorem 3.22). 
 
 
Exercises  
 
1. Let A be an n x n matrix, and let E be an n x n elementary matrix repre-

senting a type å or ∫ operation. Show that the columns of AET have the 
same relationship as the rows of EA. 

 
2. Write down 4 x 4 elementary matrices that will induce the following ele-

mentary operations in a 4 x 4 matrix when used as left multipliers. Verify 
that your answers are correct. 

 (a)  Interchange the 2nd and 4th rows of A. 
 (b)  Interchange the 2nd and 3rd rows of A. 
 (c)  Multiply the 4th row of A by 5. 
 (d)  Add k times the 4th row of A to the 1st row of A. 
 (e)  Add k times the 1st row of A to the 4th row of A. 
 
3. Show that any eå(A) may be written as a product of e∫(A)’s and e©(A)’s. 
 (The notation should be obvious.) 
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4. Pick any 4 x 4 matrix A and multiply it from the right by each of the ele-

mentary matrices found in the previous problem. What is the effect on A? 
 
5. Prove that a matrix A is row equivalent to a matrix B if and only if there 

exists a nonsingular matrix P such that B = PA. 
 
6. Reduce the matrix 

 A =!

1 !0 !!2

0 !3 !1

2 !3 !!3

"

#

$
$
$

%

&

'
'
'
 

 
 to the reduced row-echelon form R, and write the elementary matrix cor-

responding to each of the elementary row operations required. Find a 
nonsingular matrix P such that PA = R by taking the product of these ele-
mentary matrices. 

 
7. Let A be an n x n matrix. Summarize several of our results by proving 

that the following are equivalent: 
 (a)  A is invertible. 
 (b)  A is row equivalent to Iñ . 
 (c)  A is a product of elementary matrices. 
 
8. Using the results of the previous problem, prove that if A = Aè Aì ~ ~ ~ AÉ 

where each Aá is a square matrix, then A is invertible if and only if each 
of the Aá is invertible. 

 
The remaining problems are all connected, and should be worked in the given 
order. 
 
9. Suppose that we define elementary column operations exactly as we did 

for rows. Prove that every elementary column operation on A can be 
achieved by multiplying A on the right by an elementary matrix. [Hint: 
You can either do this directly as we did for rows, or by taking transposes 
and using Theorem 3.23.] 

 
10. Show that an m x n reduced row-echelon matrix R of rank k can be 

reduced by elementary column operations to an m x n matrix C of the 
form 
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C =

1 0 ! 0 ! 0 0

0 1 ! 0 ! 0 0

" " " " "

0 0 ! 1 ! 0 0

0 0 ! 0 ! 0 0

" " " " "

0 0 ! 0 ! 0 0

!

"

#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&

 

 
 
 where the first k entries on the main diagonal are 1’s, and the rest are 0’s. 
 
11. From the previous problem and Theorem 3.3, show that every m x n 

matrix A of rank k can be reduced by elementary row and column opera-
tions to the form C. We call the matrix C the canonical form of A. 

 
12. We say that a matrix A is row-column-equivalent (abbreviated by r.c.e.) 

to a matrix B if A can be transformed into B by a finite number of ele-
mentary row and column operations. Prove: 

 (a)  If A is a matrix, e is an elementary row operation, and eæ is an 
elementary column operation, then (eA)eæ = e(Aeæ). 

 (b)  r.c.e. is an equivalence relation. 
 (c)  Two m x n matrices A and B are r.c.e. if and only if they have the 

same canonical form, and hence if and only if they have the same rank. 
 
13. If A is any m x n matrix of rank k, prove that there exists a nonsingular 

m x m matrix P and a nonsingular n x n matrix Q such that PAQ = C (the 
canonical form of A). 

 
14. Prove that two m x n matrices A and B are r.c.e. if and only if there exists 

a nonsingular m x m matrix P and a nonsingular n x n matrix Q such that 
PAQ = B. 


