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Abstract

Most real systems are subjected to constraints, both on the available control effort
and the controlled variables. Classical linear feedback is in some cases not enough
for such systems. This has motivated the development of a more complicated,
nonlinear controller, called model predictive control, MPC. The idea in MPC is to
repeatedly solve optimization problems on-line in order to calculate control inputs
that minimize some performance measure evaluated over a future horizon.

MPC has been very successful in practice, but there are still considerable gaps
in the theory. Not even for linear systems does there exist a unifying stability
theory, and robust synthesis is even less understood.

The thesis is basically concerned with two different aspects of MPC applied to
linear systems. The first part is on the design of terminal state constraints and
weights for nominal systems with all states avaliable. Adding suitable terminal
state weights and constraints to the original performance measure is a way to
guarantee stability. However, this is at the cost of possible loss of feasibility in
the optimization. The main contribution in this part is an approach to design the
constraints so that feasibility is improved, compared to the prevailing method in
the literature. In addition, a method to analyze the actual impact of ellipsoidal
terminal state constraints is developed.

The second part of the thesis is devoted to synthesis of MPC controllers for
the more realistic case when there are disturbances acting on the system and there
are state estimation errors. This setup gives an optimization problem that is much
more complicated than in the nominal case. Typically, when disturbances are in-
corporated into the performance measure with minimax (worst-case) formulations,
NP-hard problems can arise. The thesis contributes to the theory of robust syn-
thesis by proposing a convex relaxation of a minimax based MPC controller. The
framework that is developed turns out to be rather flexible, hence allowing various
extensions.
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Notation

Symbols

E(x, P ) Ellipsoid centered at x with shape matrix P
EP Ellipsoid centered at the origin with shape matrix P
I Identity matrix

Operators and Functions

A � (�) 0 A positive (semi-)definite matrix
A ≺ (�) 0 A negative (semi-)definite matrix
AT Transpose of a matrix
A−1 Inverse of a matrix
tr(A) Trace of a matrix
det(A) Determinant of a matrix
λmax(A) Largest eigenvalue of a matrix
λmin(A) Smallest eigenvalue of a matrix
||x|| Euclidian norm of a vector
|x| Elementwise absolute value of a vector
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x Notation

X ⊂ Y X is a subset of Y
X \ Y The set {x : x ∈ X and x /∈ Y}
Co(X1, . . . , Xn) Convex hull of {Xi}
V(X) Vertices of polytope
F(X) Facets of polyhedron
∂(X) Boundary of set

Abbreviations

BMI Bilinear Matrix Inequality
LMI Linear Matrix Inequality
LQ Linear Quadratic
MAXDET Determinant Maximization
MPC Model Predictive Control
QP Quadratic Program(ming)
SDP Semidefinite Program(ming)
SOCP Second Order Cone Program(ming)
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Introduction

In this thesis, we deal with aspects of linear model predictive control, or MPC for
short. Leaving the technical details aside until Chapter 3, this chapter will explain
the basic idea of MPC and summarize the content of the thesis.

A provoking analogy between MPC and classical control can be found in [15]:
If we want to control the position of a car, MPC is equivalent to look at the road
through the windscreen, whereas classical control only is allowed to look in the rear
window. Of course, this comparison is unfair, but it describes in a simple way how
MPC works; it tries to control a system (the car) by creating predictions about
the future (position on the road ahead) using a model (impact of steering and
acceleration) while taking care of constraints (traffic rules and car performance).

By using the predictions, the MPC controller calculates the optimal input. In
the car, this would be the steering and adjustment of the speed. The calculation
of the optimal input can for some applications take a long time. To overcome this,
the problem has to be solved over a short prediction horizon, just as when we drive
a car and only look some hundred meters ahead. Furthermore, the MPC controller
continuously recalculates the input. The same is done when we drive a car, i.e.,
we do not plan for the following one hundred meters, close our eyes and drive this
distance, and then decide on a new input for the next one hundred meters.

The problems that might occur when applying MPC can also be explained with
the car analogy. In the car, looking too short ahead might lead to disastrous effects,
we might crash with slower cars or drive off the road. In MPC, the effect of a too
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2 Introduction

short horizon is the possibility of poor performance, or even instability. What is
needed to solve this problem is an MPC controller that knows that strange things
might occur beyond the horizon, and explicitly takes precautions to handle this.

Another problem is that of model uncertainty and disturbances. The model
we use to calculate our predictions might be wrong, hence leading us to give bad
inputs to be applied to the system.

Problems related to these issues is what we will deal with in this thesis.

1.1 Outline and Contributions

Most results in this thesis are based on application of semidefinite programming,
linear matrix inequalities and convex sets. For that reason, repeatedly used con-
cepts and definitions from these fields are compiled in Chapter 2.

The history and background of MPC is shortly reviewed in Chapter 3. Admis-
sible systems and the standard formulation of MPC is introduced. Finally, there
is a discussion on stability theory for MPC.

Following the introduced stability theory, these ideas are extended in Chapter 4
and 5. The idea is to use a more advanced terminal state weight based on a piece-
wise quadratic function. With this extension, it is possible to improve feasibility,
in MPC controllers with guaranteed stability, compared to traditional approaches.
Although a more advanced terminal state weight is employed, the same optimiza-
tion routines as in the standard approaches can be used.

Still, feasibility is an issue. Therefore, feasibility analysis of ellipsoidal terminal
state constraints, which is used Chapter 4 and 5 and most MPC controllers with
guaranteed stability, is performed in Chapter 6. An algorithm to calculate the
largest possible set in which the optimization problem is feasible is developed. An
exact characterization of this set is also given.

Finally, a novel approach to robust MPC for systems with unknown but bounded
disturbances and state estimation errors is proposed in Chapter 7. The chapter
starts with a description of state estimation for system with bounded disturbances.
Using the same framework as for the state estimation part, a minimax MPC con-
troller is formulated. The obtained optimization problem is relaxed by using the
S-procedure and gives a convex optimization problem that can be solved efficiently.

To summarize, the main contributions of this thesis are:

• Extension of the archetypal approach to MPC with guaranteed stability in
Chapter 4 and 5. As an intermediate step, some minor improvements in the
design of switching controllers is proposed.

• Feasibility analysis of ellipsoidal terminal state constraints, with exact char-
acterization and calculation of the admissible initial set in Chapter 6.

• The LMI solution in Chapter 7 for robust disturbance rejection and treatment
of state estimation errors in MPC. As a part of this work, a result on synthesis
of linear feedback control for constrained discrete-time system subjected to
bounded disturbances is presented.
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Publications not included in thesis

Related work on nonlinear system has been done but is not included in this thesis.
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2

Mathematical Preliminaries

In this short chapter, some repeatedly used definitions and mathematical concept
are gathered for easy reference.

2.1 Convex Optimization and LMIs

In the field of optimization, the crucial property is not linearity but convexity.
Recently, there has been much development for problems where the constraints
can be written as the requirement of a matrix to be positive semidefinite. This is a
convex constraint and motivates the definition of a linear matrix inequality, LMI.

Definition 2.1 (LMI)
An LMI (linear matrix inequality) is an inequality, in the free scalar variables xi,
that for some fixed symmetric matrices Fi can be written as

F (x) = F0 + x1F1 + x2F2 + . . . + xnFn � 0 (2.1)

In the definition above, we introduced the notion of a semidefinite matrix F � 0
which means F = FT and zT Fz ≥ 0 ∀z.

As an example of an LMI, the nonlinear constraint x1x2 ≥ 1, x1 ≥ 0, x2 ≥ 0
can be written [

x1 1
1 x2

]
� 0 (2.2)

5



6 Mathematical Preliminaries

The matrix can be decomposed and we obtain[
0 1
1 0

]
+ x1

[
1 0
0 0

]
+ x2

[
0 0
0 1

]
� 0 (2.3)

An excellent introduction to LMIs, with special attention to problems in control
theory, can be found in [11].

By using LMIs, many convex optimization problems, such as linear program-
ming and quadratic programming, can be unified by the introduction of semidefinite
programming [66].

Definition 2.2 (SDP)
An SDP (semidefinite program), is an optimization problem that can be written
as

min
x

cT x

subject to F (x) � 0
(2.4)

SDPs can today be solved with high efficiency, i.e., with polynomial complexity,
due to the recent development of solvers using interior-point methods [51]. SDPs
arising in this thesis will be solved with [65]. A special class of SDP is MAXDET
problems.

Definition 2.3 (MAXDET)
A MAXDET problem (determinant maximization) is an optimization problem that
can be written as

min
x

cT x − log det(G(x))

subject to F (x) � 0

G(x) � 0

(2.5)

This is an optimization problem that frequently occurs in problems where the
analysis is based on ellipsoids. A MAXDET problem can be converted to a standard
SDP [51], and thus solved with general SDP solvers. However, there exist special
purpose solvers for MAXDET problems which we will use [69]. Another special
SDP is SOCP [45].

Definition 2.4 (SOCP)
A SOCP (second order cone program) is an optimization problem with the structure

min
x

cT x

subject to ||Aix + bi|| ≤ cT
i x + di

(2.6)

This problem can easily be rewritten into an SDP. Due to the special structure
however, a more efficient method to solve the problem is to use special purpose
solvers such as [44].

The LMIs in this thesis have been defined using [49] which is a MATLABTM pack-
age that acts as an interface to the solvers [65], [69] and [44].
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As we will see in this thesis, the following two theorems are extremely useful
when dealing with LMIs and SDPs. The first theorem can be used to (conserva-
tively) rewrite constraints, in optimization theory often called relaxation.

Theorem 2.1 (S-procedure)
Let T0(x), . . . , Tp(x) be quadratic functions,

Ti(x) = xT Pix, Pi = PT
i , i = 0, . . . , p (2.7)

A sufficient condition for

T0(x) ≥ 0 for all x such that Ti(x) ≥ 0, i = 1, . . . , p (2.8)

to hold is that there exist scalars τi ≥ 0, i = 1, . . . , p such that

T0(x) −
p∑

i=1

τiTi(x) ≥ 0 (2.9)

In the special case p = 1, the condition is also necessary.

Proof See [11]. 2

Typically, the S-procedure is used by observing that since Ti(x) = xT Pix, the
variable x can be eliminated and we obtain the constraint

P0 −
p∑

i=1

τiPi � 0 (2.10)

This is an LMI in the variables τi and P0. The interested reader is referred to [64]
for a nice treatment on various facts about the S-procedure.

The second theorem helps us to convert certain nonlinear matrix inequalities
into linear matrix inequalities.

Theorem 2.2 (Schur complement)
The matrix inequalities

X − Y T Z−1Y � 0, Z � 0 (2.11)

and [
X Y T

Y Z

]
� 0 (2.12)

are equivalent.

Proof See [11]. 2
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2.2 Convex Sets

Many of the results in this thesis are based on calculations with convex sets. The
sets we will use are the following

Definition 2.5 (Ellipsoid)
An ellipsoid centered at xc is the set described by the quadratic inequality

E(xc, P ) = {x : (x − xc)T P (x − xc) ≤ 1}, P = PT � 0 (2.13)

For simple notation, the following notation is used when xc = 0

EP = E(0, P ) = {x : xT Px ≤ 1} (2.14)

The volume of the ellipsoid is proportional to det(P−1/2). Since det(P−1) =(
det(P−1/2)

)2
, the volume is monotonously increasing with det(P−1).

Definition 2.6 (Polyhedron)
A polyhedron is a non-empty set described by a collection of linear inequalities

P = {x : cT
i x ≤ di} (2.15)

Definition 2.7 (Polytope)
A polytope is a closed polyhedron.

Definition 2.8 (Convex hull)
The convex hull of a collection of matrices {Xi} is the set defined as

Co (X1, . . . , Xr) = {X : X =
r∑

j=1

λjXj},
r∑

j=1

λj = 1, λj ≥ 0 (2.16)

In words, all matrices that can be written as an interpolation of matrices in {Xi}.

We will often work with sets in the context of dynamic systems, and for that
purpose, the following definition is fundamental.

Definition 2.9 (Positively invariant set, [9])
A subset Ω of the state-space is said to be positively invariant for the dynamic
system x(k + 1) = f(x(k)) if f(x(k)) ∈ Ω ∀x(k) ∈ Ω.



3

MPC

Model predictive control, or MPC, is a control paradigm with a motley background.
The underlying ideas for MPC originated already in the sixties as a natural applica-
tion of optimal control theory. Already in [54], a controller with close connections
to MPC was developed, and a more general optimal control based feedback con-
troller was discussed in [40]:

“One technique for obtaining a feedback controller synthesis from knowledge
of open-loop controllers is to measure the current control process state and then
compute very rapidly for the open-loop control function. The first portion of this
function is then used during a short time interval, after which a new measurement
of the process state is made and a new open-loop control function is computed for
this new measurement. The procedure is then repeated”.

As we will see in this and the following chapters, this is the definition of the
control method that we today call MPC.

3.1 Historical Background

In mid-seventies to mid-eighties, the true birth of MPC took place, but this time it
was in the industry. Advocated by the work on Model Predictive Heuristic Control

9



10 MPC

(MHRC) [58] and Dynamic Matrix Control (DMC) [19], the MPC strategy became
popular in the petro-chemical industry. During this period, there was a flood of new
variants of MPC. Without going into details, MAC, DMC, EHAC, EPSAC, GMV,
MUSMAR, MURHAC, PFC, UPC and GPC were some of the algorithms [15].
Despite the vast number of abbreviations introduced, not much differed between the
algorithms. Typically, they differed in the process model (impulse, step, state-space
etc.), disturbance (constant, decaying, filtered white noise etc.) and adaptation.

During the nineties, the theory of MPC has matured substantially. The main
reason is probably the use of state-space models instead of input-output models.
This has simplified, unified and generalized much of the theory. In the case of non-
accessible states, the Kalman filter (most easily used in a state-space formulation)
simplifies the estimation part, the connections to linear quadratic control give a lot
of insight [8], stability theory is almost only possible in a state-space formulation
and a lot of recent MPC theory is based on linear matrix inequalities which are
most suitable for state-space methods.

In this chapter, we will describe the basics of an MPC algorithm. The admissible
systems will be defined and some simple notation will be explained. After the
introduction of a standard MPC controller, stability issues will be discussed, since
this is a central part in this thesis.

3.2 System Setup

In this thesis, we will exclusively use state-space methods. The reason is that a
lot of analysis will be done within a Lyapunov framework, which is most naturally
performed in the state-space. The system we analyze will in principle be the same
throughout this thesis

x(k + 1) = Ax(k) + Bu(k) (3.1a)
y(k) = Cx(k) (3.1b)

where x(k) ∈ Rn, u(k) ∈ Rm, y(k) ∈ Rp denote the state, control input and
measured output respectively. It is a standing assumption that the system is both
controllable and observable. Besides the dynamics, the system is saturated, and
we conceptually write this control constraint as

u ∈ U (3.2)

We assume that U is a non-empty set described with linear inequalities, i.e., a
polyhedron. We call U the control constraint polytope. As an example, this is the
case when there are amplitude constraints, umin ≤ u(k) ≤ umax.

3.3 A Basic MPC Controller

MPC is an optimization based control law, and the performance measure is almost
always a quadratic cost. By defining positive definite matrices Q = QT � 0 and
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R = RT � 0 (the performance weights), our underlying goal is to find the optimal
control input that minimizes the infinite horizon performance measure, or cost,

J(k) =
∞∑

j=k

xT (j|k)Qx(j|k) + uT (j|k)Ru(j|k) (3.3)

In the unconstrained case, the solution to this problem is given by the linear
quadratic (LQ) controller. In the constrained case however, there does not exist
any analytic solution. Instead, the idea in MPC is to define a prediction horizon
N and approximate the problem with a finite horizon cost

J(k) =
k+N−1∑

j=k

xT (j|k)Qx(j|k) + uT (j|k)Ru(j|k) (3.4)

The term finite horizon is crucial. It is due to the finite horizon that we are able to
solve the problem, but at the same time, the finite horizon will introduce problems.
This will be discussed more in Section 3.4.

By using the model (3.1), we can predict the state x(k + j|k), given a future
control sequence u(·|k) and the current state x(k|k). Until Chapter 7, we will
assume C = I, hence no state estimation is required and x(k|k) = x(k). This gives
the prediction

x(k + j|k) = Ajx(k|k) +
j−1∑
i=0

Aj−i−1Bu(k + i|k) (3.5)

Using these predictions, we define the following optimization problem

min
u

∑k+N−1
j=k xT (j|k)Qx(j|k) + uT (j|k)Ru(j|k)

subject to u(k + j|k) ∈ U
x(k + j|k) = Ax(k + j − 1|k) + Bu(k + j − 1|k)

(3.6)

At this point, we are able to define a basic MPC controller

Algorithm 3.1 (Basic MPC controller)

1. Measure x(k|k)

2. Obtain u(·|k) by solving (3.6)

3. Apply u(k) = u(k|k)

4. Time update, k := k + 1

5. Repeat from step 1
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Already in [54], it was realized that the optimization problem above is a quadratic
program (QP), i.e., minimization of a quadratic objective subject to linear con-
straints. The earliest reference that takes advantage of this fact is probably [22],
although it had been in use in the industry for quit some time before. QP is a
classical optimization problem for which there exist a large number of efficient so-
lution methods, and this is probably one of the reasons why MPC has become so
popular in practice.

3.3.1 QP Formulation of MPC

To put the optimization problem in a form suitable for QP, we introduce stacked
vectors with future states and control inputs

X =




x(k|k)
x(k + 1|k)

...
x(k + N − 1|k)


 , U =




u(k|k)
u(k + 1|k)

...
u(k + N − 1|k)


 (3.7)

The predicted states can be written as

X = Hx(k|k) + SU (3.8)

where H ∈ RNn×n and S ∈ RNn×Nm are defined using (3.5) (see, e.g., [15] or [26]).
We create enlarged versions of the Q and R matrix, Q̄ = diag(Q, Q, . . . , Q) ∈
RNn×Nn and R̄ = diag(R, R, . . . , R) ∈ RNm×Nm. Since the constraint on the
input is defined by linear inequalities, they can be written as EU ≤ f for some
suitably defined matrix E and vector f . The optimization problem (3.6) can now
be written as

min
U

(Hx(k|k) + SU)T Q̄(Hx(k|k) + SU) + UT R̄U

subject to EU ≤ f
(3.9)

For overviews on solution methods of QPs, with special attention to MPC, see,
e.g, [15] where the classical active set method is reviewed, or [68] where more
recent advances in convex optimization are utilized.

Remark 3.1
The basic MPC algorithm can be extended in numerous ways within the QP frame-
work. Typical variations are different horizons on states and inputs, state and
input constraints such as rate, rise-time, and overshoot constraints. Tracking is
dealt with by substituting Hx(k|k) + SU with Hx(k|k) + SU − Xref and UT R̄U

with (U − Uss)
T

R̄ (U − Uss) where Xref is the desired future state-trajectory and
Uss is the corresponding steady state control input. See, e.g, [15, 56, 68] for more
detailed discussions on what can be done.
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3.4 Stability of MPC

From a theoretical point of view, the main problem with MPC has been the lack
of a general and unifying stability theory. Already without input constraints, the
MPC controller as defined in Algorithm 3.1 can generate an unstable closed loop.
Asymptotic stability can in the unconstrained case always be obtained by choosing
R large enough or having a sufficiently long horizon [23], but as argued in [8],
without constraints we could just as well solve the infinite horizon problem and
obtain an LQ controller. Based on this, the unconstrained case is in some sense a
non-issue and will not be dealt with in this thesis.

In the constrained case, the situation is different. For an unstable input con-
strained system, there does not even exist a globally stabilizing controller [59].
Since global stability is impossible in the general case, the term stability will in
this thesis therefore mean local stability, but we will not explicitly write this. Typ-
ically, stability will depend upon feasibility of the optimization problem.

Although the system we analyze is linear, the input constraint introduces a
nonlinearity which severely complicates the stability analysis. Another complica-
tion is that the control law is generated by the solution of an optimization, i.e.,
the control law cannot be expressed in a closed form. These two obstacles pre-
vented the development of stability results in the early days of MPC. The situation
was even more complicated by the fact that the analysis often was performed in
an input-output setting. As state-space formulations became standard in MPC,
stability results begun appearing in late eighties and early nineties.

The central concept that started to appear was not to study the impact of
different choices of the tuning parameters (Q, R and N), since these parameters
in general affect stability in a non-convex manner [55]. Instead, the idea is to
reformulate the underlying optimization problem in order to guarantee stability.
An excellent survey on stability theory for MPC can be found in [50].

3.4.1 A Stabilizing MPC Controller

In this section, a rather general approach to stabilizing MPC will be introduced.
The method is based on three ingredients: a nominal controller, a terminal state do-
main that defines a terminal state constraint, and a terminal state weight. Having
these, it is possible to summarize many proposed schemes in the following theorem.

Theorem 3.1 (Stabilizing MPC)
Suppose the following assumptions hold for a nominal controller L(x), a terminal
state domain X and a terminal state weight Ψ(x)

1. 0 ∈ X

2. Ax + BL(x) ∈ X , ∀x ∈ X

3. Ψ(0) = 0, Ψ � 0

4. Ψ(Ax + BL(x)) − Ψ(x) ≤ −xT Qx − LT (x)RL(x), ∀x ∈ X
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5. L(x) ∈ U , ∀x ∈ X

Then, assuming feasibility at the initial state, an MPC controller using the following
optimization problem will guarantee asymptotic stability

min
u

∑k+N−1
j=k xT (j|k)Qx(j|k) + uT (j|k)Ru(j|k) + Ψ(x(k + N |k))

subject to x(k + j|k) = Ax(k + j − 1|k) + Bu(k + j − 1|k)
u(k + j|k) ∈ U
x(k + N |k) ∈ X

(3.10)

Proof The proof is based on using the optimal cost as a Lyapunov function. Let us
denote the cost J(k), and the optimal J∗(k). The optimal cost at time k is obtained with
the control sequence [u∗(k|k) . . . u∗(k + N − 1|k)] The use of a ∗ is a generic notation
for variables related to optimal solutions.

A feasible solution at time k + 1 is [u∗(k + 1|k) . . . u∗(k + N − 1|k) L(x∗(k + N |k))].
To see this, we first recall that x∗(k + N |k) ∈ X according to the optimization. Using
Assumption 5, we see that L(x∗(k+N |k)) satisfies the control constraint, and Assumption
2 assures satisfaction of the terminal state constraint on x(k + N + 1|k). The cost using
this (sub-optimal) control sequence will be

J(k + 1) =

k+N−1∑
j=k+1

[x∗T
(j|k)Qx∗(j|k) + u∗T

(j|k)Ru∗(j|k)] + xT (k + N |k)Qx(k + N |k)

+LT (x(k + N |k))RL(x(k + N |k)) + Ψ(x(k + N + 1|k))

=
k+N−1∑

j=k

[x∗T
(j|k)Qx∗(j|k) + u∗T

(j|k)Ru∗(j|k)] + Ψ(x∗(k + N |k))

+Ψ(x(k + N + 1|k)) − Ψ(x∗(k + N |k))

+xT (k + N |k)Qx(k + N |k) + LT (x(k + N |k))RL(x(k + N |k))

−xT (k|k)Qx(k|k) − u∗T
(k|k)Ru∗(k|k)

In the equation above, we added and subtracted parts from the optimal cost at time k.
This is a standard trick in stability theory of MPC, and the reason is that the first line
in the last equality now corresponds to the optimal cost at time k, i.e., J∗(k).

According to Assumption 4, the sum of the second and third row in the last equality is
negative. Using this, we obtain

J(k + 1) ≤ J∗(k) − xT (k|k)Qx(k|k) − u∗T
(k|k)Ru∗(k|k)

Since our new control sequence was chosen without optimization (we only picked a feasible
sequence) we know that J(k + 1) ≥ J∗(k + 1). In other words, we have

J∗(k + 1) ≤ J∗(k) − xT (k|k)Qx(k|k) − u∗T
(k|k)Ru∗(k|k)

which proves that J∗(k) is a decaying sequence, hence x(k) converges to the origin. 2
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Details and more rigorous proofs can be found in, e.g., [41] and [50].
The assumptions in the theorem are easily understood with a more heuristic

view. If we use the controller u(k) = L(x(k)), and start in X , we know that

Ψ(x(k + 1)) − Ψ(x(k)) ≤ −xT (k)Qx(k) − uT (k)Ru(k) (3.11)

By summing the left- and right-hand from time k to infinity, we obtain

Ψ(x(∞)) − Ψ(x(k)) ≤
∞∑

j=k

−xT (j)Qx(j) − uT (j)Ru(j) (3.12)

Now, according to the assumptions, it is easy to see that Ψ(x(k)) is a Lyapunov
function when we are using the controller L(x), so we know that x(k) → 0. Using
this, we obtain

∞∑
j=k

xT (j)Qx(j) + uT (j)Ru(j) ≤ Ψ(x(k)) (3.13)

In other words, Ψ(x) is an upper bound of the infinite horizon cost, when we use
the (sub-optimal) controller L(x). Obviously, the optimal cost is even lower, so
Ψ(x) is an upper bound of the optimal cost also. This is the most intuitive way to
interpret the assumptions. The terminal state weight Ψ(x) is an upper bound of
the optimal cost in the terminal state domain X .

3.4.2 Methods to Choose {X , L(x), Ψ(x)}
So, having a fairly general theorem for stabilizing MPC controllers, what is the
catch? The problem is of course to find the collection {X , L(x), Ψ(x)}. A number
of methods have been proposed over the years.

Terminal state equality

A very simple method, generalizing the basic idea in, e.g., [36], was proposed
and analyzed in the seminal paper [35]. The method holds for a large class of
systems, performance measures and constraints, and in order to guarantee stability,
a terminal state equality is added to the optimization

x(k + N |k) = 0 (3.14)

In terms of Theorem 3.1, this corresponds to X = {0}, L(x) = 0 and Ψ(x) = 0. The
set-up is successful since L(x) = 0 trivially satisfies all assumptions of Theorem 3.1
in the origin. Notice that the constraint only is artificial, the state will not reach
the origin at time k + N , since this is a constraint that continuously is shifted
forward in time.

Although this is an extremely simple approach, it has its flaws. Firstly, feasi-
bility is a major problem. The constraint might lead to the need of a long horizon
in order to obtain feasibility, see Example 4.4. A related issue is that the terminal
state constraint can lead to a control law with a dead-beat behavior if the horizon
is short.
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Terminal state weight

For stable systems, the following approach can be taken. Since the system is stable,
a stabilizing controller is L(x) = 0. This controller satisfies the control constraints
in the whole state-space, hence X = Rn. Finally, we select the terminal state
weight Ψ(x) to be a quadratic function, Ψ(x) = xT Px. For Assumption 4 in
Theorem 3.1 to hold, we must have

AT PA − P � −Q (3.15)

Hence, all we have to do is to solve a Lyapunov equation to find P . This was
essentially the idea used in [57].

Terminal state weight and constraint

By combining results from the two approaches above, a more general scheme is
obtained. In [57], they were combined in the sense that only the unstable modes
of the system were forced to the origin in the prediction, whereas a terminal state
weight as above was applied to the stable modes.

Later, generalizing the ideas in, e.g., [57], the following idea emerged. First,
select the nominal controller as a linear feedback −Lx. As above, we then select a
quadratic terminal state weight Ψ(x) = xT Px. If we for the moment neglect any
control constraints, Assumption 4 can be written as

(A − BL)T P (A − BL) − P � −Q − LT RL (3.16)

Notice that this constraint tells us that the function xT Px is a Lyapunov function
for the unconstrained system, hence the levels sets of this Lyapunov function can
be used to define the set X since Assumption 2 then will be satisfied. Now, if we
take the constraints into account, we see that the control constraint is mapped into
a state constraint −Lx ∈ U . According to the restrictions on U , this will be a
polyhedron. We now search for the largest possible ellipsoid xT Px ≤ γ contained
in this polyhedron and use this as the terminal state domain. With these choices,
all the assumptions in Theorem 3.1 are satisfied. Details concerning the actual
calculations will be clarified in the next chapter. Notice that the terminal state
constraint is a convex constraint, but it is quadratic, not linear. The MPC problem
can therefore no longer be solved with QP. Instead, one has to rely on second order
cone programming (see Definition 2.4).

The described approach is the cornerstone in many algorithms for stabilizing
MPC [18, 21, 41, 43, 63, 70], and the results in Chapter 4 and 5 are extensions of
this approach.

There is one very important feature with this approach which motivates this
choice of terminal state weight. We see that if we pick L to be the LQ controller,
the matrix P is the Riccati solution to the LQ problem and gives us the optimal
cost for the unconstrained infinite horizon problem

xT (k + N |k)Px(k + N |k) = min
u∈Rm

∞∑
j=k

xT (j|k)Qx(j|k) + uT (j|k)Ru(j|k) (3.17)
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Now, if the control constraints are inactive for i ≥ k + N in the solution of the
constrained infinite horizon problem, and the terminal state constraint is satisfied
in this solution, we must have

min
u∈U

∑∞
j=k xT (j|k)Qx(j|k) + uT (j|k)Ru(j|k)

⇔
min
u∈U

∑k+N−1
j=k xT (j|k)Qx(j|k) + uT (j|k)Ru(j|k) +

min
u∈Rm

∑∞
j=k+N xT (j|k)Qx(j|k) + uT (j|k)Ru(j|k)

⇔
min
u∈U

x(k+N|k)∈X

∑k+N−1
j=k xT (j|k)Qx(j|k) + uT (j|k)Ru(j|k) + xT (k + N |k)Px(k + N |k)

The finite horizon MPC solution will thus coincide with the infinite horizon problem
whenever the control constraints are inactive beyond the prediction horizon and
the terminal state constraint is inactive.

Further extensions

A number of extensions to the approach in this section are of course possible.
An obvious improvement is not to use the matrix P in both the terminal state
constraint and weight, but to search for the largest possible ellipsoid X satisfying
the assumptions of Theorem 3.1. Finding such an ellipsoid can be done without
too much effort as we will see later in this thesis, and this extension has been used
in, e.g., [5]. Another improvement is to use ideas from [37] and let the nominal
feedback matrix L and the matrix P be left as free variables to be chosen in the
optimization. This approach was used, as an intermediate step, in [10]. The new
optimization problem will remain convex, but SDP has to be used to solve the
on-line optimization problem.

Of course, the terminal state domain does not have to be an ellipsoid. In [43],
a polyhedral set is used instead.

3.4.3 Other Approaches

The main alternative to an algorithm based on Theorem 3.1 is to explicitly force
a Lyapunov function to decrease by using so called contraction constraints. One
example is [5]. Basically, a quadratic function xT Px is chosen and is forced to decay
along the trajectory, xT (k + j + 1|k)Px(k + j + 1|k)− xT (k + j|k)Px(k + j|k) < 0.
A problem with this approach is how to chose P . Another problem is that the
constraint is non-convex, hence leading to problems in the on-line optimization.
However, stability can be guaranteed as long as an initial solution can be found.

A recent, very promising approach, is introduced in [53] where LMIs are used
to study stability and robustness of optimization based controllers. Although the
emphasis is on analysis of closed loop properties, the method can hopefully be
extended so that it can be used for synthesis.
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4

Stabilizing MPC using

Performance Bounds from

Saturated Controllers

In Section 3.4, we saw that many stabilizing MPC algorithms are based on an
upper bound of the achievable performance, or cost, with a nominal unsaturated
controller. The upper bound is used as a terminal state weight, and the domain
where the upper bound holds is used for a terminal state constraint.

A natural choice is to pick the nominal controller to be the corresponding LQ
feedback. We showed in Section 3.4.2, that with this choice, the MPC controller
actually solves the underlying infinite horizon problem as soon as the constraints
go inactive. The problem is that the size of the terminal state domain typically is
quite small for this choice of nominal controller. Hence, for initial states far from
the origin, the problem will become infeasible.

One solution to this problem is to use a nominal controller for which the terminal
state domain can be made larger. The drawback with this approach is that this
typically gives a terminal state weight that is a poor measure of the optimal infinite
horizon cost, hence leading to decreased performance. Another way to overcome
the feasibility problem is to use the extension mentioned in Section 3.4.2 with the
terminal weight and constraint being optimization variables. However, this leads
to a substantial increase of on-line optimization complexity.

In this chapter we extend the concept of a nominal controller in order to reduce
the conflict between the size of the terminal state domain, appropriate terminal
state weight and computational complexity. We will study the case with the control
constraint |u(k)| ≤ 1, i.e., saturation. The idea is to let the nominal controller be

19
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a saturated linear feedback controller and calculate an upper bound of the infinite
horizon cost with this controller

J(k) =
∞∑

j=k

xT (j)Qx(j) + uT (j)Ru(j), u(j) = sat(−Lx(j)) (4.1)

together with an ellipsoidal domain where this bound holds.

Remark 4.1
The idea to use a saturated controller as the nominal controller has recently also
been proposed in [21]. The work in [21] is based on a characterization of the domain
where a saturated LQ controller actually is optimal. The difference compared to
our approach is that the method in [21] only holds for single-input stable systems
whereas the approach we will present is completely general. Furthermore, we are
not interested in the domain where the saturated LQ controller is optimal. Instead,
we look for a domain where the saturated controller merely stabilizes the system.

In order to introduce the main tools and the underlying ideas, we begin with a
description of the standard approach introduced in Section 3.4.2. Some additional
material needed for our extension will be described in Section 4.2 where a method
to model saturation is introduced. Using this model, we derive an upper bound of
the achievable performance for a saturated controller in Section 4.4. This bound is
improved upon in Section 4.5. In the last part of the chapter, we look at how the
improved bound can be incorporated in a stabilizing MPC controller.

4.1 Description of the Standard Approach

The first step in the classical method in Section 3.4.2 is to select a nominal controller
u = −Lx. A typical choice is the corresponding LQ controller. We then introduce
a quadratic terminal state weight Ψ(x) = xT Px, P = PT � 0. For Assumption 4
in Theorem 3.1 to hold, we must have

(A − BL)T P (A − BL) − P � −Q − LT RL (4.2)

The condition above is a linear matrix inequality (LMI, see Definition 2.1) in the
variable P .

4.1.1 Positively Invariant Ellipsoid

The second step is to define the terminal state domain X . Most common is to
select an ellipsoidal domain EW . Assumption 2 in Theorem 3.1 is nothing but a
positively invariance condition, see Definition 2.9, of EW for the system controlled
with the nominal controller. Clearly, the ellipsoid EW is positively invariant if
xT (k + 1)Wx(k + 1) ≤ xT (k)Wx(k). This can be written as the LMI

(A − BL)T W (A − BL) − W � 0 (4.3)
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4.1.2 Constraint Satisfaction in Ellipsoid

In the two LMIs above, we assumed that the control constraint was satisfied in EW

since we used u = −Lx. Hence, we must have

u = −Lx ∈ U for all {x : xT Wx ≤ 1} (4.4)

In terms of Theorem 3.1, this takes care of Assumption 5.
As an example, Figure 4.1 below illustrates a situation where the set defined by

the control constraint generates two linear inequalities, resulting in a polyhedron
containing the origin. Inside this polyhedron, there is an ellipsoid in which the
constraints are satisfied.

−1 ≤ −Lx ≤ 1

xTWx ≤ 1

Figure 4.1: Largest possible ellipsoid (satisfying some positively invariance condi-
tion) contained in domain where control constraint are satisfied

Taking care of the constraint above in the optimization of W can be done by
using the following Lemma.

Lemma 4.1
The maximum of cT x in the ellipsoidal set xT Wx ≤ 1 is

√
cT W−1c

Proof Let y = W 1/2x. The objective is now maximization of cT W−1/2y subject to

yT y ≤ 1. Clearly, the optimal choice is the parallel vector y =
(

cT W−1/2

||cT W−1/2||

)T

which

yields the objective cT W−1c

||cT W−1/2|| =
√

cT W−1c. 2

When we have amplitude constraints on the control input, |u(k)| ≤ 1, Lemma 4.1
gives us the constraint LiW

−1LT
i ≤ 1, where Li denotes the ith row of L.

4.1.3 Maximization of Positively Invariant Ellipsoid

At this point, we have two constraints on W . Since EW will be our terminal state
domain, our goal is to maximize the size of EW . According to Definition 2.5, the
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volume of EW is proportional to det(W−1), so this is our objective. We now have to
show that this problem is a convex optimization problem. To do this, we introduce
Y = W−1. The LMI (4.3) is multiplied with W−1 from left and right and a Schur
complement is applied. This gives us

max
Y

det(Y )

subject to
[

Y Y (A − BL)T

(A − BL)Y Y

]
� 0

LiY LT
i ≤ 1

(4.5)

Hence, we have obtained a MAXDET problem, see Definition 2.3. We will now
show how this approach can be extended.

4.2 Saturation Modeling

The algorithm in this chapter is based on a polytopic representation of the satu-
rated system. Polytopic representations are simple means to conservatively model
nonlinearities as uncertainties in a linear system [11]. Using a polytopic uncer-
tainty model to analyze stability of a saturated system is a standard procedure,
and has been done before, see, e.g, [7]. Before we proceed with the description of
the polytopic model, we introduce the concept saturation level.

Definition 4.1 (Saturation level)
For a system with control constraints, |u(k)| ≤ 1, we define the saturation levels as

γi(k) =

{
1 |ui(k)| ≤ 1

1
|ui(k)| |ui(k)| > 1

By introducing

Γ(k) = diag(γ1(k), . . . , γm(k))

the saturated control input can be written as Γ(k)u(k)

If we know that the control ui(k) never saturates to a level less than γmin,i, i.e.,

γmin,i ≤ γi(k) ≤ 1

we can (conservatively) describe Γ(k) as an interpolation of 2m diagonal matrices
Γj having the (i, i) element either 1 or γmin,i

Γ(k) =
2m∑
j=1

λjΓj

2m∑
j=1

λj = 1, λj ≥ 0

Using Definition 2.8, we say Γ(k) ∈ Co ({Γj}). This is called a polytopic model of
Γ(k). Let us look at a simple example to illustrate the definition Γj .
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Example 4.1 (Polytopic model of saturation) If γ1 ≥ 0.1 and γ2 ≥ 0.5,
the matrices to create the polytopic model of Γ(k) are

Γ1 =
[
1 0
0 1

]
, Γ2 =

[
0.1 0
0 1

]
, Γ3 =

[
1 0
0 0.5

]
, Γ4 =

[
0.1 0
0 0.5

]
(4.6)

and Γ(k) can (conservatively) be described as

Γ(k) = λ1Γ1 + λ2Γ2 + λ3Γ3 + λ4Γ4 (4.7)

4.3 Invariant Domain for Saturated System

As we have seen before, a central part in the classical method is to find a positively
invariant domain where the nominal controller is unsaturated. We are now going to
extend these results and look for a positively invariant domain where the controller
indeed saturates.

The problem of finding a positively invariant domain for a saturated system has
been addressed by several authors, see, e.g., [7, 14, 20, 32, 33, 52].

The perhaps most simple method is to search for a Lyapunov function xT Wx,
or equivalently an invariant ellipsoid EW . For an unstable system, EW cannot be
made arbitrarily large, since it is impossible to globally stabilize an unstable system
subject to control constraints [59]. More advanced schemes using, e.g., the Popov
criteria [32, 52] can also be used, but this would only make the derivation in this
chapter less clear, and shift focus from the conceptual idea.

If we fix allowed saturation levels γmin,i, the problem is to find the largest
positively invariant set EW that lies in the set where γi(k) ≥ γmin,i. In other
words, an ellipsoidal set where the level of saturation is bounded from below. In
Figure 4.2, an example is given with γmin = 0.3.

0.3<γ<1

0.3<γ<1

γ=1

EW

Figure 4.2: Example of largest possible positively invariant domain EW inscribed
in the domain where γ ≥ 0.3. Dashed lines correspond to | − Lx| = 1 and solid
lines to | − Lx| = 1/0.3
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A solution to this problem is easily derived using the same arguments as in
Section 4.1.1 and 4.1.2. We get the constraints

(A − BΓ(k)L)T W (A − BΓ(k)L) − W � 0 (4.8a)

LiW
−1LT

i ≤
(

1
γmin,i

)2

(4.8b)

The difference compared to earlier is two-fold. To begin with, the controller does
not deliver −Lx(k) but −Γ(k)Lx(k). Secondly, since we have assumed the satu-
ration levels to be bounded from below, this means that the elements in −Lx(k)
are bounded from above with 1/γmin,i. By pre- and post-multiplying (4.8a) with
Y = W−1, we can perform a Schur complement. From the second inequality, we
know that γi(k) ≥ γmin,i, so the polytopic description of Γ(k) described in Sec-
tion 4.2 is applicable, hence we replace Γ(k) by its polytopic approximation. The
constraint (4.8a) is therefore equivalent to[

Y Y (A − B(
∑2m

j=1 λjΓj)L)T

(A − B(
∑2m

j=1 λjΓj)L)Y Y

]
� 0 (4.9)

which can be written as

2m∑
j=1

λj

[
Y Y (A − BΓjL)T

(A − BΓjL)Y Y

]
� 0 (4.10)

For the LMI above to hold for any admissible λj , all matrices in the sum have to
be positive semidefinite. As before, we wish to maximize size(EW ), so we maximize
det(W−1). Put together, we obtain the following optimization problem

max
Y,γmin

det(Y )

subject to
[

Y Y (A − BΓjL)T

(A − BΓjL)Y Y

]
� 0

LiY LT
i ≤

(
1

γmin,i

)2

(4.11)

Now, γmin,i are typically free variables as indicated in the optimization formulation.
This will make the constraints above BMIs [28], bilinear matrix inequalities, since
there are products of free variables in the constraints. Unfortunately, the BMIs
make the optimization NP hard, so the globally optimal solution is difficult to find,
although there exist methods, typically based on branch and bound schemes [27].

For fixed γmin,i however, we have a MAXDET problem. With such a structure,
the optimization can be solved (local minimum) with various techniques, typically
using some alternating method or linearization scheme. For m ≤ 2, our problem
is most easily solved by gridding in the variables γmin,i. For the sake of clarity, a
simple scheme based on linearizations is outlined in Appendix 4.A.
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4.4 A Quadratic Bound on Achievable Performance

Solving the optimization problem (4.11) gives us the domain X in Theorem 3.1.
To create Ψ(x) in the same theorem, we chose a quadratic function Ψ(x) = xT Px.
Application of Assumption 4 in Theorem 3.1 yields

xT (k + 1)Px(k + 1) − xT (k)Px(k) ≤ −xT (k)Qx(k) − uT (k)Ru(k) (4.12)

By inserting the dynamics x(k + 1) = Ax(k) + Bu(k) and the saturated controller
u(k) = −Γ(k)Lx(k), we obtain the matrix inequality

(A − BΓ(k)L)T P (A − BΓ(k)L) − P � −Q − LT ΓT (k)RΓ(k)L (4.13)

We pre- and post-multiply (4.13) with Y = P−1, apply a Schur complement and
use the polytopic description of Γ(k) as in Equation (4.9) and obtain the LMI


Y Y (A − BΓjL)T Y Y LT ΓT

j

(A − BΓj)Y Y 0 0
Y 0 Q−1 0

ΓjLY 0 0 R−1


 � 0 (4.14)

Remark 4.2
In many applications, the matrix Q is not invertible. This occurs, e.g., when
we only have a performance weight on some outputs. However, if we can write
Q = CT C, the Schur complement would instead yield the LMI


Y Y (A − BΓjL)T Y CT Y LT ΓT

j

(A − BΓj)Y Y 0 0
CY 0 I 0

ΓjLY 0 0 R−1


 � 0 (4.15)

This is a remark that should be kept in mind for the remainder of this thesis.

Our goal is to create a tight bound, i.e., make xT Px as small as possible. One
way to do this is to minimize the largest eigenvalue of P , or equivalently, maximize
the smallest eigenvalue of Y . This gives us the following SDP

max
Y,t

t

subject to




Y Y (A − BΓjL)T Y Y LT ΓT
j

(A − BΓj)Y Y 0 0
Y 0 Q−1 0

ΓjLY 0 0 R−1


 � 0

Y � tI

(4.16)

At this point, we have an upper bound xT (k)Px(k) of the achievable performance
with a saturated linear feedback, together with an ellipsoidal domain EW where this
bound holds. This is all we need for our extension of a stabilizing MPC controller.
However, we take the idea one step further.
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4.5 A Piecewise Quadratic Bound

The upper bound we have derived can easily become very conservative (i.e. large).
The reason is that if we have chosen saturation levels such that the system is
close to unstable in some parts, the upper bound has to take these domains with
extremely slow convergence into account.

To understand the idea behind the improved upper bound in this section, we
begin with an intuitive example.

Example 4.2 (A one-dimensional system) Consider the scalar unstable
system

x(k + 1) = 2x(k) + u(k) (4.17)

with the control constraint |u(k)| ≤ 1. A nominal LQ controller is calculated with
Q = 1 and R = 1, and gives the feedback matrix L = 1.62. The optimal cost in
unsaturated mode is xT PLQx where PLQ = 4.24. This bound holds for |Lx| ≤ 1.
We select a saturation level γmin = 0.65, i.e., Γ1 = 0.65 and Γ2 = 1. Calculating
the upper bound with (4.16) yields P = 20.9 and gives us the bound xT Px which
holds when |Lx| ≤ 1/γ, i.e., |x| ≤ 0.95.
At |Lx| = 1 (x = 0.62), the unsaturated bound is applicable and yields 0.622·4.24 =
1.62. The upper bound, which must be used for |Lx| > 1, estimates the achievable
performance to 0.622·20.9 = 7.99. Of course, the true cost can not be discontinuous.
This is basically the property we will exploit in this section; translate the upper
bound so that it coincides with the unsaturated bound at the break point x = 0.62.
In Figure 4.3, the bound xT PLQx (valid in dark grey domain) and the translated
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Figure 4.3: The upper bound is translated down to patch the two bounds together
at |x| = 0.62. The resulting function can be described with a max selector.

upper bound xT Px − (7.99 − 1.62) (valid in light grey domain) are drawn with
dash-dotted lines. A bound (solid line) valid for |x| ≤ 0.95 can be written as
max(xT PLQx, xT Px − (7.99 − 1.62)).
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As we saw in the example above, the main idea is to create multiple bounds
by defining smaller sets contained in EW . Using these bounds, we define a less
conservative bound using a piecewise quadratic function

max
i

(
xT Pix − ρi

)
(4.18)

The reason we are using this kind of function is that it turns out to be easy and
efficient to use in an MPC algorithm.

Remark 4.3
It should be pointed out that piecewise quadratic functions of more general struc-
ture are available in the literature, see, e.g., [34]. Using those methods to estimate
the cost would most likely give better bounds, but they do not seem to lend them-
selves to be incorporated in a convex MPC algorithm.

The derivation of the upper bound is a bit messy, so we first state the result.

Theorem 4.1 (Piecewise quadratic upper bound)
An upper bound of the achievable performance (4.1) when x(k) ∈ EW is

J(k) ≤ max
i

(
xT (k)Pix(k) − ρi

)
where the matrices Pi and scalars ρi are calculated with

min
t,P,ρ

t

subject to (A − BΓjiL)T Pi(A − BΓjiL) − Pi � −Q − LT ΓT
jiRΓjiL

(ρi+1 − ρi)I � β−1
i W−1/2 (Pi+1 − Pi)W−1/2

W−1/2PnsW
−1/2 � (t + ρns)I

ρ1 = 0

(4.19)

Variables and indexation are defined in the derivation below.

The idea is to create a number of nested ellipsoids EβW . β ≥ 1 is a parameter
that scales the ellipsoid, recall Definition 2.5. β = 1 corresponds to the original
ellipsoid, and β = maxi(LiW

−1LT
i ) corresponds to the case when the ellipsoid is

scaled so that, for all i, γi = 1 in EβW , i.e., no saturation occurs. We define ns ≥ 2
ellipsoids

EβiW , i = 1 . . . ns (4.20)

with their scaling

β1 = max
i

(LiW
−1LT

i ), i = 1 . . .m (4.21a)

βi+1 < βi, i = 1 . . . ns − 1 (4.21b)
βns = 1 (4.21c)
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For each ellipsoid the LMI (4.13) can be used to find an upper bound xT Pix. The
difference in the ellipsoids is the saturation levels. We therefore have to define the
matrices Γji, where index i represents the different ellipsoids and j represents the
vertices in the polytopic model. This gives us the first constraint in Theorem 4.1.

We now notice that the bound xT Pix is derived using only a growth condition
(Assumption 4 in Theorem 3.1). We can therefore subtract a scalar ρi. If we want
our bound to be as small as possible, our goal is to make ρi as large as possible. In
the innermost ellipsoid, Eβ1W , the bound xT P1x− ρ1 should be be used. Since the
cost in the origin equals zero, we must have ρ1 = 0. What about ρ2? As soon as
x ∈ Eβ2W \ Eβ1W (outside the innermost ellipsoid but still in the second ellipsoid),
the upper bound should use xT P2x − ρ2. This will be the case if

xT P2x − ρ2 ≥ xT P1x − ρ1 when xT β1Wx = 1

or, equivalently

xT (P2 − P1)x ≥ ρ2 − ρ1 when xT β1Wx = 1 (4.22)

To proceed, we need the following lemma

Lemma 4.2
The maximum and minimum of xT Px on the set xT Wx = 1 (P � 0, W � 0) is
given by

max xT Px = λmax(W−1/2PW−1/2)
min xT Px = λmin(W−1/2PW−1/2)

Proof With z = W 1/2x, the problem is to maximize (minimize) zT W−1/2PW−1/2z
when zT z = 1. The optimal choice of z is the normalized eigenvector corresponding to
the largest (smallest) eigenvalue, and the lemma follows immediately. 2

By looking at the minimum of the left hand side of (4.22), Lemma 4.2 gives us

β−1
1 λmin

(
W−1/2 (P2 − P1) W−1/2

)
≥ ρ2 − ρ1 (4.23)

The same argument holds in the general case and results in the constraint

β−1
i−1λmin

(
W−1/2 (Pi − Pi−1)W−1/2

)
≥ ρi − ρi−1 (4.24)

This is a linear convex constraint in P and ρ, equivalent to the second inequality
in Theorem 4.1.

So far we have only introduced inequalities, but nothing to optimize. There are
probably many choices, but one suitable term to minimize could be the worst case
upper bound on the border of EW

min
P,ρ

max
xT Wx=1

xT Pnsx − ρns (4.25)
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Once again we use Lemma 4.2 and obtain the objective

min
P,ρ

λmax(W−1/2PnsW
−1/2) − ρns (4.26)

This gives us the last inequality in the theorem.
To see the benefits of this improved bound, we look at an example

Example 4.3 (Improved upper bound) Consider a discretized double inte-
grator (sample-time = 0.4s) with state-space realization (example from [21])

A =
[

1 0
0.4 1

]
, B =

[
0.4
0.08

]
, C =

[
0 1

]
(4.27)

The nominal feedback L = [1.90 1.15] is an LQ controller with Q = I and R = 0.25.
Solving (4.11) shows that stability can be guaranteed for γmin ≥ 0.18 and gives us
an invariant ellipsoid EW

W =
[
0.157 0.047
0.047 0.057

]
(4.28)

An upper bound xT Px of the achievable performance is found with the SDP (4.16)

P =
[
133 37
37 52

]
(4.29)

An estimate, using this function, of the worst case cost when x(k) ∈ EW is 991.
We now chose to have three ellipsoids, ns = 3, in order to create a piecewise
quadratic upper bound. β1 and β3 are defined according to Equation (4.21), and
β2 was = 0.9−2. This means that the middle ellipsoid Eβ2W has a radius 0.9 times
the radius of the largest ellipsoid Eβ3W = EW . Solving the optimization problem
yields

P1 =
[
2.46 1.35
1.35 4.14

]
, P2 =

[
45.1 13.9
13.9 19.4

]
, P3 =

[
152.4 46.6
46.6 57.7

]
ρ1 = 0, ρ2 = 8.67, ρ3 = 553

(4.30)

The estimate of the worst case cost is now 476. However, much more important to
notice is the optimal cost for the unsaturated system with the LQ controller

JLQ(k) = xT (k)
[
2.46 1.35
1.35 4.14

]
x(k) (4.31)

Close to the origin, our bound will be xT (k)P1x(k), i.e., the bound is tight close
to the origin. This implies, according to the discussion in Section 3.4.2, that an
MPC controller using the piecewise quadratic upper bound will converge to an
LQ controller as the origin is approached. This should be compared to the simple
quadratic bound which will overestimate the unsaturated cost severely.
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4.6 MPC Design

Our motivation for performance estimation of a saturated system has been to
incorporate the estimate in an MPC algorithm. For simple notation, we define
the terminal state weight

Ψ(x) = max
i

(
xT Pix − ρi

)
, i = 1 . . . ns (4.32)

and the cost to minimize in the MPC algorithm

J(k) =
k+N−1∑

j=k

xT (j|k)Qx(j|k) + uT (j|k)Ru(j|k) + Ψ(x(k + N |k))

The main result in this section is the following theorem

Theorem 4.2 (Stability of MPC algorithm)
The MPC controller is defined by calculating u(k|k) with the following optimization

min
u

J(k)

subject to |u(k + j|k)| ≤ 1
x(k + N |k) ∈ EW

Asymptotic stability is guaranteed if the problem is feasible in the initial state.

Proof Follows from Theorem 3.1 and the construction of Ψ and X . 2

4.6.1 SOCP Formulation of MPC Algorithm

The max selector in the terminal state weight can be efficiently implemented in the
optimization problem. To do this, we notice that a max function can be rewritten
using an epigraph [12] formulation.

min
x

max (f1(x), f2(x))

⇔
min

x
t

subject to f1(x) ≤ t, f2(x) ≤ t

(4.33)

By defining suitable matrices X , U , H , S, Q̄ and R̄ as in Section 3.3.1, the opti-
mization problem in Theorem 4.2 can be written as

min
U,s,t

s + t

subject to |U | ≤ 1
(Hx(k|k) + SU)T Q̄(Hx(k|k) + SU) + UT R̄U ≤ s
xT (k + N |k)Pix(k + N |k) − ρi ≤ t
xT (k + N |k)Wx(k + N |k) ≤ 1

(4.34)
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The difference compared to a standard MPC algorithm is the quadratic inequalities,
which force us to use second order cone programming, SOCP (see Definition 2.4),
instead of QP. Whereas the quadratic terminal state constraint easily is written as
a second order cone constraint,

||W 1/2x(k + N |k)|| ≤ 1 (4.35)

the other inequalities require more thought. However, straightforward calculations
show that the following second order cone constraints are obtained∣∣∣∣∣∣

∣∣∣∣∣∣
2R̄1/2U

2Q̄1/2 (Hx(k|k) + SU)
1 − s

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 1 + s,

∣∣∣∣
∣∣∣∣2P

1/2
i x(k + N |k)
1 − t − ρi

∣∣∣∣
∣∣∣∣ ≤ 1 + t + ρi, (4.36)

Notice that introduction of SOCP always is needed when ellipsoidal terminal state
constraints are used, and is not due to our extensions.

4.7 Examples

Now, let us look at some examples where we use the proposed approach to derive
terminal state constraints and weights. We begin with a comparison of different
terminal state constraints.

Example 4.4 (Comparison of terminal state constraints) The main mo-
tivation for the work in this chapter has been to develop a method with less de-
manding terminal state constraints. We continue on the double integrator from
Example 4.3 and calculate terminal state domains using four different methods.

1. Terminal state equality x(k + N |k) = 0 .

2. Terminal state inequality based on unsaturated LQ controller (Section 4.1).

3. Terminal state inequality based on optimal saturated LQ controller [21].

4. Terminal state inequality based on saturated controller (proposed).

Each of these methods gives an ellipsoidal terminal state domain EWi .

W1 = ∞ ·
[
1 0
0 1

]
, W2 =

[
3.89 2.57
2.57 1.85

]
(4.37)

W3 =
[
0.66 0.36
0.36 1.12

]
, W4 =

[
0.157 0.047
0.047 0.057

]
(4.38)

W1 is a conceptual way to describe the terminal state equality as a terminal state
inequality, W2 was obtained by solving (4.5), W3 is taken from [21] and W4 was
derived using (4.11).
The four ellipsoidal domains are illustrated in Figure 4.4 (of course, EW1 degenerates
to a point). We see that the proposed method gives a substantially larger terminal
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Figure 4.4: Terminal state domains.

state domain (the area of EW4 is approximately 10 times larger than the area of EW2

and EW3). However, a more important property is how initial feasibility is affected.
By using the algorithms developed in Chapter 6, we calculate the admissible initial
set, i.e., all states for which terminal state constraint will be feasible. We select a
prediction horizon N = 5. The results are shown in Figure 4.5. Although we have
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Figure 4.5: Initial set where terminal state constraint xT (k+N |k)Wix(k+N |k) ≤ 1
will be feasible. The set in the bottom corresponds to W4. The admissible initial
set when using W3 is to a large degree covered by the admissible set when W2 is
used. On the top, the admissible initial set when a terminal state equality is used.

managed to increase the size of the admissible initial set, the improvement is not
as large as one would have hoped for, having the substantial enlargement of the
terminal state domain in mind.

Of course, applicability of the approach depends on the system. We now look
at a system where we obtain a substantial enlargement of the admissible initial set.
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Example 4.5 By discretizing the system

G(s) =
1

s2 + 1
(4.39)

with a sample-time 1s, we obtain a state-space realization with

A =
[
0.54 −0.84
0.84 0.54

]
, B =

[
0.84
0.46

]
(4.40)

An LQ controller is calculated (Q = I and R = 1) and gives us a nominal feedback
matrix L = [0.72 − 0.24]. By solving the SDP (4.11), we find γmin = 0.011 and
W4. We also solve the optimization problem (4.5) and find an invariant domain for
the unsaturated nominal controller.

W4 = 1e−4

[
0.696 0.0065
0.0065 0.6961

]
, W2 =

[
0.68 0.065
0.065 0.4

]
(4.41)

Clearly, the terminal state domain defined using a saturated controller is magni-
tudes larger than one using the standard approach with an unsaturated nominal
feedback. As we saw in the previous example, this does not have to mean that
the initial admissible set is substantially larger, so we calculate these sets also and
depict these in Figure 4.6. We see that the size of the admissible initial set is
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Figure 4.6: Initial set where terminal state constraint xT (k+N |k)Wix(k+N |k) ≤ 1
will be feasible. The large, almost ellipsoidal, set corresponds to W4. The admis-
sible initial set when using W2 is the small, hardly visible, set in the middle.

substantially improved.

We conclude this chapter with an example where we apply the proposed MPC
algorithm.
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Example 4.6 (Piecewise quadratic upper bound in MPC) We apply the
proposed MPC algorithm in Theorem 4.2 to the sampled double integrator from
Example 4.3 and 4.4. The tuning variables are the same as in previous examples,
i.e., Q = I, R = 0.25, L = [1.90 1.15] and N = 5. The terminal state domain and
admissible initial set with this setup was calculated in Example 4.4. To create the
piecewise quadratic terminal state weight, we divide the terminal state ellipsoid
into 10 nested ellipsoid. The partition is made linearly, i.e., βi is linearly spaced
between β1 and β10. The reason for choosing such a fine partitioning was to test
how the optimization performs. In this example, partitioning the ellipsoid with,
say, two inner ellipsoids gives the same performance.
Besides the proposed algorithm we also implemented a standard MPC controller for
comparison. The stabilizing controller from Section 3.4.2 would not be feasible from
the initial conditions tested, so the terminal state constraint was simply neglected
for this controller.
The system was simulated with initial conditions close to the boundary of the
admissible initial set (shaded domain). Some typical trajectories are shown in
Figure 4.7. For some initial states, the difference in behavior is substantial, whereas
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Figure 4.7: Typical closed loop trajectories. The initial states are chosen to lie
close to the boundary of the admissible initial set (shaded domain). Trajectories
resulting from the proposed MPC algorithm are shown in solid, whereas dashed
lines correspond to a standard MPC algorithm.

the controllers perform almost identical from other initial states. By calculating
the infinite horizon cost (3.3) for both controllers, it was noticed that the proposed
controller always had a better performance. However, the difference in this example
was small, typically below 10 percent.
Although the difference in performance was small, a plot of the output y from
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the double integrator reveals that the difference in qualitative behavior can be
significant. Figure 4.8 shows the output for the same trajectories as in 4.7. We
see that the overshoot is considerably reduced (or even removed) for some initial
states with the proposed controller.
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Figure 4.8: Output with different initial states and controllers. Clearly, the pro-
posed MPC algorithm has reduced the overshoot for some initial states.

4.8 Conclusion

By using a polytopic model of a saturated controller, we derived an upper bound of
the achievable performance with a saturated controller, and an invariant ellipsoidal
domain where this bound holds. The bound was expressed in a special piecewise
quadratic form that allowed it to be efficiently incorporated in an MPC algorithm.

We saw that for some examples, the improvement of the initial admissible set
was substantial, compared to what was obtained using classical methods to define
the terminal state constraint, while the improvement was less convincing for other
examples. Although the results are highly problem dependent, we hope that the
approach in some sense shows that there are other ways than using an unsaturated
linear controller to define terminal state weights and constraints, a central part in
many MPC algorithms with guaranteed stability. In fact, the results in this chapter
have motivated the development of a similar approach which we will present in the
next chapter.



Appendix

4.A Solution of BMI in Equation (4.11)

In order to find a locally optimal solution to the BMI in equation (4.11), a simple
scheme based on linearization of the BMI can be used.

To begin with, we fix γmin,i = 1 and solve the optimization problem (4.11). This
gives us an ellipsoidal domain (i.e. the matrix Y ) in which all control constraints
are satisfied.

We now perturb the solution and define the perturbation on γmin,i to be δi and
∆ on Y , i.e. Ŷ = Y + ∆ and γ̂min,i = γmin,i + δi. Using Definition 4.1, this will
implicitly define the perturbed matrices Γ̂j .

The first LMI in Equation (4.11) is linearized by inserting Ŷ and Γ̂j , and ne-
glecting any terms having products of the two perturbation. The right-hand side of
the second LMI is also linearized and higher order terms of δi are neglected. Fur-
ther on, we limit the size of the perturbations by introducing, say, δ2

i ≤ 0.1γ2
min,i

and ∆T ∆ � 0.1Y T Y . These constraint can be rewritten using Schur complements.
Finally, Ŷ must remain positive definite. Put together, we obtain

max det(Y + ∆)

subject to
[
Y + ∆ Y (A − BΓ̂jL)T + ∆(A − BΓjL)T

∗ Y + ∆

]
� 0

Li(Y + ∆)LT
i ≤ ( 1

γmin,i
)2 − 2 δi

(γmin,i)3[
0.1γ2

min δi

δi 1

]
� 0

[
0.1Y T Y ∆

∆ I

]
� 0

Y + ∆ � 0

(4.A.42)

The star is used to save space, and means that the matrix is symmetric. With this

36
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linearization of the BMI, we can use the following algorithm

Algorithm 4.A.1 (BMI solver)

1.Find initial solution with γmin,i = 1 ⇒ Y

2.Define the perturbations ∆ and δi

3.Solve the SDP (4.A.42)

4.Update solution, Y := Y + ∆ and γmin,i = γmin,i + δi

5.Repeat from step 2 until stopping criterion fulfilled.

Of course, this solver is local by nature, so a global optimal solution can not
be guaranteed. However, from a practical point of view, the solution is reasonably
good.
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5

Stabilizing MPC using

Performance Bounds from

Switching Controllers

In this chapter, we use the main ideas from the previous chapter to derive a similar
approach. The idea is to use a switching controller as the nominal controller in
Theorem 3.1. By using pretty much the same ideas as in the previous chapter, we
calculate a terminal state weight and terminal state domain to be used in MPC.

5.1 Switching Linear Feedback

A well studied approach to handle constraints is to use a switching controller, i.e., a
controller that uses different feedback laws in different domains of the state-space.
By tuning the feedback laws so that the constraints are guaranteed to hold in each
domain, constraints are handled in a simple and heuristically attracting way.

The problem is to determine how to partition the state-space and select the
feedback law in order to guarantee stability and obtain good performance. A
simple choice is to use linear feedback laws in each of the domains. With this
setup, we obtain a piecewise linear system. Although there exists a fair amount of
theory for this class of systems, see [34] and references therein, we will only look
at a special case.

39
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5.2 Ellipsoidal Partitioning of the State-Space

A simple way to partition the state-space is to use nested ellipsoids, just as we
did in Section 4.5. In the context of switching controllers, this was introduced
in [67] and similar ideas have been used in, e.g, [21]. The idea is to attach nested
positively invariant ellipsoids EWj ⊂ EWj+1 to feedback gains Lj. In each ellipsoid
EWj , the control law −Ljx should satisfy the control constraints and stabilize the
system. Whenever the state enters EWj , the control law is switched to −Ljx.
A formal stability proof is omitted, but stability is easy to realize intuitively. If
the controller related to EWj is asymptotically stable, the state will in finite time
reach EWj−1 . The same holds for this ellipsoid, and finally, after a finite number
of switches, the state will reach the inner ellipsoid EW1 . Here, the controller is
switched to the last feedback −L1x which drives the state to the origin.

5.3 Piecewise LQ

Our underlying goal is to have a controller that minimizes a standard infinite
horizon quadratic cost with weight matrices Q and R. As the set of feedback
gains, we therefore create detuned versions of the desired controller. To do this,
we introduce a sequence of ns control weights,

Rns � Rns−1 . . . � R1 = R � 0 (5.1)

and calculate the different feedback gains Lj by solving the Riccati equation

(A − BLj)T PLQ,j(A − BLj) − PLQ,j = −Q − LT
j RjLj (5.2)

For each of the different feedback gains, PLQ,j can be used to define a positively
invariant ellipsoids. Notice that we use a slightly different notation in this chapter.
The indexation Lj does not mean the jth row of L. Instead, it means the jth
feedback matrix.

Example 5.1 (Nested ellipsoids) Once again we look at the double integrator
from Example 4.3. We have Q = I and the desired control weight R1 = 0.25. We
also define detuned controllers with R2 = 2.5 and R3 = 25. This yields L1 =
[1.9 1.15], L2 = [1.10 0.49] and L3 = [0.62 0.18]. Each of the feedback gains will
satisfy the control constraint inside a polyhedron in the state-space. The borders
of these are drawn with solid lines in Figure 5.1. For each of the feedback gains,
the level sets of xT PLQ,jx define a positively invariant ellipsoid EWj .

5.4 Creating Nested Ellipsoids

In [67] and [21], the matrices PLQ,j are used to define the nested ellipsoids. An
obvious improvement is to maximize the size of the invariant ellipsoids for each of
the feedback gains, i.e., we find the largest positively invariant ellipsoid for each Lj,
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Figure 5.1: 3 nested positively invariant ellipsoids.
.

instead of using PLQ,j. We define ellipsoids EWj , and as in the previous chapter, we
can find the largest possible positively invariant ellipsoids by introducing Yj = W−1

j

and solve a set of coupled MAXDET problems.

max
Yj

det(Yj)

subject to
[

Yj Yj(A − BLj)T

(A − BLj)Yj Yj

]
� 0

Lj[i]YjL
T
j[i] ≤ 1

Yj ≺ Yj+1

(5.3)

As before, the first inequality guarantees the ellipsoids to be positively invariant
and the second takes care of the control constraints. Due to the slightly different
notation in this chapter, we denote the ith row of the jth feedback matrix Lj[i].
The last inequality is introduced to assure that the ellipsoids are nested.

Example 5.2 (Nested ellipsoids, continued) Once again we study the
double integrator. We calculate the largest possible positively invariant ellipsoids
and compare these to the ones based on PLQ,j , calculated in the previous example.
It is evident from Figure 5.2 that using PLQ,j to define the positively invariant
ellipsoids can lead to conservative results.

5.5 Estimating the Achievable Performance

What we need for MPC is an upper bound of the achievable performance when the
switching controller is used. As usual, with a fixed feedback gain, the quadratic
bound xT Pjx holds for initial states in EWj if

(A − BLj)T Pj(A − BLj) − Pj � −Q − LT
j RLj (5.4)
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Figure 5.2: To the left, the ellipsoids are defined using PLQ,j . To the right, they
have been optimized in order to make the domains as large as possible. Clearly,
the size of the new ellipsoids are substantially larger, hence the switching controller
can be applied for a larger set of initial states.

.

We now exploit the same fact as in Chapter 4, i.e., the condition above is only a
growth condition. Using the same motivation and derivation as in Theorem 4.1,
we obtain the following SDP

min
t,P,ρ

t

subject to (A − BLj)T Pj(A − BLj) − Pj � −Q − LT
j RLj

(ρj+1 − ρj)I � W
−1/2
j (Pj+1 − Pj)W

−1/2
j

W
−1/2
ns PnsW

−1/2
ns � (t + ρns)I

ρ1 = 0

(5.5)

After solving this SDP, the terminal state weight maxj

(
xT Pjx − ρj

)
and the ter-

minal state constraint xT (k + N |k)Wnsx(k + N |k) ≤ 1 can be used in an MPC
algorithm as in Theorem 4.2.

An MPC controller with connections to this approach was reported in [16, 17].
In these contributions, the terminal state weight and terminal state domain were
chosen on-line. The idea was to find a sufficiently detuned LQ controller at each
sample-instant. The LQ feedback is picked so that a terminal state constraint,
defined using PLQ as in Section 3.4.2, would be feasible with the old control se-
quence. By using xT PLQx as a terminal state weight together with the terminal
state constraint, stability can be proven by standard arguments. Our approach can
be seen as a generalization, with the difference that the explicit search for a suit-
ably detuned controller is done automatically in the optimization. Furthermore,
since we use different matrices to define the terminal state weight and constraint,
we obtain improved feasibility.
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Example 5.3 We continue on the double integrator example and apply the pro-
posed MPC algorithm. We pick a sequence of five feedback gains, calculated with
the control weights R = R1 = 0.25, R2 = 2.5, R3 = 25, R4 = 250 and R5 = 2500.
As in the MPC example in the previous chapter, we also implemented a standard
MPC algorithm with the terminal state weight chosen as the optimal cost for the
unconstrained problem, xT PLQ,1x.
The admissible initial set was calculated and used to select suitable initial states in
some simulations, see Figure 5.3. The result is the same as in the previous chapter,
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Figure 5.3: Closed loop trajectories. The initial states are chosen to lie close to the
boundary of the admissible initial set (shaded domain). Trajectories resulting from
the proposed MPC algorithm are shown in solid, whereas dashed lines correspond
to a standard MPC algorithm.

i.e., for some initial states, there is a major improvement of the qualitative behavior.

5.6 Conclusions

By a straightforward extensions of the piecewise quadratic bound in Chapter 4,
we were able to estimate the achievable performance of a switching controller, and
use this in an MPC controller. The derived MPC controller turned out to have
close connections to an approach previously reported in the literature. In this
related approach, the main idea was to, at each sample-instant, explicitely search
for a suitable terminal state constraint and terminal state weight. This search is
incorporated into the optimization problem in our proposed MPC controller. We
also showed that we are able to improve initial feasibility, compared to the related
approach.

As an intermediate result, we also showed how the classical approach to define
invariant nested ellipsoids for switching controllers easily could be improved upon.
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6

Feasibility with Ellipsoidal

Terminal State Constraints

As we have seen in the preceding chapters, a common concept in MPC strategies
with guaranteed stability is to add ellipsoidal terminal state constraints to the
optimization. For the stability results to hold, the first line in the stability theorems
often read “Assume that the problem is feasible for the initial state at time 0...”.
In this chapter we will study the problem of finding the initial states for which
the optimization will be feasible when an ellipsoidal terminal state constraint is
used. We denote this the admissible initial set . The problem is interesting since
it can help us to determine the practical impact of a terminal state constraint.
Furthermore, when performing simulations as in the previous chapter, it is possible
to select initial conditions from which the problem is close to infeasible, i.e., we
will have a possibility to test demanding initial conditions.

There does not seem to be much done in the MPC literature on this issue,
but previous results are available for the similar topic reachability analysis for
constrained systems, see [9] and references therein. We will present two methods
to do the feasibility analysis, i.e., estimate the admissible initial set. The first
approach is a variant of the work in [29], while the second is derived with more
knowledge of the underlying structure in order to get better estimates. By using
this new method to calculate the admissible initial set, we will actually be able to
get an exact geometrical characterization of the set. In both algorithms we present,
the final goal will however be to find an ellipsoidal approximation of the admissible
initial set.

45
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6.1 Problem Formulation

The underlying optimization problem we study can in a general form be stated as

min
u

G(x(k), u)

subject to u(k + j|k) ∈ U
x(k + j + 1|k) = Ax(k + j|k) + Bu(k + j|k)
xT (k + N |k)Wx(k + N |k) ≤ 1, W � 0 (6.1)

Notice that the objective is entirely irrelevant, thus the loose description G(x(k), u).
The control constraint is assumed to be a polytope, i.e., all control inputs are
constrained. For simple notation, we assume W = I. The general case can be
dealt with by first performing a coordinate transformation.

The problem we want to solve in this chapter is to find the largest possible
set I with the property that if x(k) ∈ I, then the optimization problem above is
feasible. We call the set I the admissible initial set. When the derived set is an
approximation of the true admissible initial set, we will emphasize this by denoting
the found set Î. We will present two methods to find Î. In both methods, the
algorithms first find a polytopic estimate of I, and then approximate this with the
largest possible ellipsoid inscribed in the polytope.

6.2 Some Mathematical Preliminaries

Some mathematical concepts are needed before we present the main results. To
begin with, we introduce the vertices of a polytope, V(·). It can be shown, see,
e.g., [71], that a polytope can be defined as the convex hull (see Definition 2.8) of
a number of vertices, i.e. U = Co (V(U)). Another notation is F(·) which denotes
the facets of a polytope [71]. Finally, the notation ∂(·) means the boundary of a
set. In the case of a polytope, this corresponds to the collection of all facets.

Example 6.1 (Polytopes: vertices and facets) As an example, we study a
case where we have two control inputs and the constraint |u| ≤ 1.
The control constraint polytope can be written as

U = {u :
[
1 0

]
u ≤ 1,

[
0 1

]
u ≤ 1,

[
−1 0

]
u ≤ 1,

[
0 −1

]
u ≤ 1}

The vertices of this polytope are

V(U) = {
[
1
1

]
,

[
−1
1

]
,

[
1
−1

]
,

[
−1
−1

]
}

and the facets are the sets

F(U) = {{u : u1 = 1, |u2| ≤ 1}, {u : u1 = −1, |u2| ≤ 1},
{u : u2 = 1, |u1| ≤ 1}, {u : u2 = −1, |u1| ≤ 1}}
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6.2.1 Convex Hull Calculations

The algorithms we will present use convex hull calculations. The classical problem
of finding the convex hull is to, given a set of points {xi ∈ Rn}, find the set of points
which defines the smallest possible polytope containing all the original points. In
our formalism, finding V(Co ({xi})). There are many algorithms available to solve
the convex hull problem. In our implementations, we have used the freely available
program qhull [1, 24].

Example 6.2 (Convex hull calculations) As an example, we generate 40
random points in two dimensions. By using qhull [24], we find that 8 points,
connected by lines in the figure below, are needed to define the convex hull.

Figure 6.1: Convex hull of random points in R2.

6.3 Approximate Method

The first method we propose is a direct application of the results in [29]. We state
and use the conceptual ideas of this work, but for a more detailed analysis the
reader is referred to [29]. The central idea is to use an inverse model of the system

x(k − 1) = A−1x(k) − A−1Bu(k − 1) (6.2)

Notice that this requires A to be invertible. The problem analyzed in [29] can
be viewed as the problem to find the set of initial conditions x(k), for which it
is possible to reach x(k + N) = 0, and the idea is to calculate backwards: Given
x(k + N) = 0, what values can x(k + N − 1) take? By using the fact that any
admissible choice of u(k − 1) lies in the control constraint polytope, all admissible
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x(k + N − 1) must satisfy

x(k + N − 1) = A−1x(k + N) − A−1Bu(k + N − 1)
= −A−1Bu(k + N − 1)
∈ −A−1BCo (V(U))
= Co

(
−A−1BV(U)

)
(6.3)

Hence, the admissible states x(k + N − 1) lie in the polytope Co
(
−A−1BV(U)

)
,

i.e., in the polytope with vertices V(Co
(
−A−1BV(U)

)
). The idea is now iterated,

given the set x(k+N −1), we calculate the admissible x(k+N −2). The algorithm
can be summarized as

Algorithm 6.1 (Initial States which can reach the origin)

1. Let X = {xi} = {0}
2. Find the reachable points, rij = {A−1xi − A−1Buj ∀xi ∈ X , uj ∈ V(U)}
3. Define the new initial points X=V(Co ({rij}))
4. Repeat from the second step N − 1 times

In order to use this algorithm in our application, we do not have to change much.
The only difference is the first step. We do not have the constraint x(k + N) = 0,
instead we have an ellipsoidal constraint. To solve this, a simple approximation is
to create an inner polytopic approximation of the constraint ellipsoid. To do this,
we generate a set of initial points X = {xi} with the property xT

i xi = 1. These
points describe a polytope inscribed inside the terminal ellipsoid.

Algorithm 6.2 (Approximation of admissible initial set)

1. Let X = {xi}, xT
i xi = 1, i = 1 . . . k

2. Find the reachable points, rij = {A−1xi − A−1Buj ∀xi ∈ X , uj ∈ V(U)}
3. Define the new initial points X = V(Co ({rij}))
4. Repeat from the second step N − 1 times

Clearly, if we can reach the inner polytopic approximation of the terminal ellipsoid,
we can reach the ellipsoid.

The problem arising here is the choice of which, and how many, points to select
in the initial step. In the implementation for this work, we have used randomly
distributed points. The effects of the random approximation will be discussed later
in the examples. The result from these calculations will be a set of points X . These
points describe a polytope Î defined by a set of linear inequalities

cT
i x ≤ di (6.4)

All points satisfying these inequalities are admissible initial states. The counterpart
does not hold. Due to the approximation of the terminal ellipsoid, the set is not
guaranteed to be maximal, hence the notation Î
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6.4 Exact Calculation of Admissible Initial Set

The second approach we present is a slightly more complex method. It does however
have some advantages to Algorithm 6.2. First, this method does not assume A
to be invertible. Secondly, it will allow us to get an exact representation of the
admissible initial set. Another important feature is that when we create ellipsoidal
approximations of the admissible initial set, the approximation can often be made
better compared to the result with the approximative method introduced in the
previous section.

The method can be divided into two steps. The first step is to find the reachable
set from x(k) = 0. This can be done almost exactly as in Algorithm 6.1, but we
can now do the calculations in the “correct” direction, instead of backwards.

Algorithm 6.3 (Reachable set from origin)

1.Let X = {xi} = {0}
2.Find the reachable points, rij = {Axi + Buj ∀xi ∈ X , uj ∈ V(U)}
3.Define the new initial points X = V(Co ({rij}))
4.Repeat from second step N − 1 times

After the last iteration, R = Co (X ) describes the reachable set in N steps from
x(k) = 0 with the constrained control.

Example 6.3 (Reachable set from origin) Let us study a simple example
where

A =
[
1.14 −1.11
1 0

]
, B =

[
1
0

]

The algorithm above is applied in order to find the states which we can reach in
one, two and three steps with the constrained control |u(k)| ≤ 1.
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Figure 6.2: Reachable set from the origin in one (left), two (middle) and three
(right) steps.
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To be able to describe the second part of the algorithm more clearly, it is
beneficial to use the following description of the terminal state

x(k + N) = ANx(k) +
N−1∑
i=0

AN−1−iBu(k + i) (6.5)

We notice that in Algorithm 6.3, we have calculated the reachable set for the
summation part. We introduce the auxiliary variable

w = ANx(k) (6.6)

Furthermore, we call the terminal ellipsoid (which actually is a sphere due to the
initial scaling) T .

6.4.1 Geometrical Characterization of Admissible Initial Set

We now go back to the original problem: For which states x(k) is the ellipsoid
xT (k + N)x(k + N) ≤ 1 reachable with the constrained control? To begin with,
we notice that according to (6.5) and (6.6), all reachable points can be written as
w + v, v ∈ R. Hence, the admissible states are, by definition, those w for which
there exist a v ∈ R such that w + v ∈ T . The interesting points are those which
just barely can reach T , so we look at the case w + v ∈ ∂(T ), where ∂(T ) denotes
the boundary of T . The way to find these w is most easily described with a two-
dimensional example, see Figure 6.3 and 6.4. For each point z on the boundary of

CCT

R

=⇒ PPP

S1

S2

=

Figure 6.3: Generating the set C by revolving the reachable box R around the
terminal ellipsoid T . The set C can constructed as the convex hull of a number
of translated ellipsoids Si (in the corners, to a large degree covered by the inner
polytopic approximation P).

the terminal ellipsoid T we place the origin of R at a position w such that ∂(R)
is in contact with ∂(T ) in z. This is done for all points (infinitely many) on ∂(T ).
As we see in Figure 6.3, this corresponds to revolving R around ∂(T ). We let C
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denote the convex hull of all points w. By construction, C will contain all w for
which there exist a v ∈ R such that w + v ∈ T

The important idea now is that we do not have to calculate these points for all
(infinitely many) points on ∂(T ). There are two different cases to take into account.
The first is if a vertex of R is in contact with the ellipsoid. If we move around the
vertex locally, and the vertex is kept in contact with the ellipsoid, the origin of R
will describe a segment of the boundary of the terminal ellipsoid, translated away
from the origin. The second case is if a higher dimensional manifold (compared
to a vertex) of ∂(R) (such as a facet or intersection of facets) is in contact with
∂(T ), i.e., tangent to the ellipsoid. If R is moved locally in the space spanned by
the manifold around this point (for example, along a line for the intersection of
three-dimensional facets), but kept in contact with the ellipsoid, the origin of R will
describe a planar motion. Since we are moving between the vertices when we move
along these manifolds, the surfaces generated by these planar motions will patch
the ellipsoidal segments together linearly. The complete set can therefore be seen
as the convex hull of the ellipsoidal segments. In Figure 6.3, we see that there are 6
ellipsoidal segments, patched together with 6 lines. Notice that the surfaces defined
by the planar motions (i.e., the straight lines patching the ellipsoids together) define
an inner polytopic approximation of the set.

6.4.2 The Polytopic Part

We start by finding the polytopic part of C, i.e., the light shaded part in Figure 6.3.
Let us denote this polytope P . Each facet of R, Fj(R), will generate a facet of P ,
Fj(P). To be more precise, Fj(P) will be defined by the vertices of the facet Fj(R).
The calculation of this is most easily described in a two-dimensional example.

 

 
 

 w

v

z

ji

ji
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jn

Figure 6.4: Generating the facets of P by finding the points generated by the facets
of R.
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We want to find the facet generated by Fj(R) with the normal nj . We assume
that n is normalized, nT

j nj = 1, and is pointing outwards. Let the vertices of Fj(R)
be vji and let wji denote the generated vertices of Fj(P) which we want to find.
The important points are when a point vji is on the boundary of the ellipsoid, and
the facet Fj(R) is tangent to the ellipsoid, see Figure 6.4. These points will define
Fj(P).

Fj(R) will be tangent to the ellipsoid when the normal of the ellipsoid is parallel
to the normal of the facet. Hence, the tangent point zji on T will be −nj (the
ellipsoid is a normalized unit ball). We then directly obtain that the origin wji of
R will be placed at −nj − vji. The points

{−nj − vji} (6.7)

will thus define the facet Fj(P) generated by Fj(R).

6.4.3 The Ellipsoidal Part

To be able to create the ellipsoidal segments, the following theorem is needed

Theorem 6.1 (Sphere center given points on boundary)
Given n points {xi ∈ Rn}, the center xc of the sphere (x− xc)T (x−xc), for which

it holds that (xi − xc)T (xi − xc) = 1, can be calculated as

xc = b ± αc

α =
√

1 − ||x1 − b||2

where b is the Euclidean center of the points {xi} and c is the normalized normal
to the plane spanned by {xi}.

Proof Let P denote the plane spanned by {xi} and c the normalized normal for this
plane. The plane and the normal will span Rn, so we can write xc = b + αc where α is
an unknown scalar and b ∈ P . If xc is the center of the sphere, the definition of a sphere
and xc gives us

(xi − xc)
T (xi − xc) = 1 ⇔

(xi − (b + αc))T (xi − (b + αc)) = 1 ⇔
(xi − b)T (xi − b) − 2αcT (xi − b) + α2cT c = 1 (6.8)

Since cT c = 1 and (xi − b) ⊥ c we have

(xi − b)T (xi − b) + α2 = 1

For a solution to exist, b must be the euclidian center of the points {xi}, i.e.

(xi − b)T (xi − b) = (xj − b)T (xj − b)

This constraint on b, together with the orthogonality constraint (xi − b) ⊥ c will give a
linear equation to find b. 2
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The ellipsoidal segments will be generated when vertices of R are moved onto
the boundary of the terminal ellipsoid. A vertex vi is a vertex in a number of
facets Fji(R) with normals nji. What we need to define the ellipsoidal segments
is a collection of points on the generated segment. By using the theorem above,
we can use these to find the position of the translated ellipsoid. Natural points to
pick are the points when vi lies on the terminal ellipsoid, and Fji(R) is tangent to
the ellipsoid. These points can be derived as in the derivation of P and will be

{−nji − vi} (6.9)

Given these points, the center of the translated sphere can be calculated. We
denote these points xc,i. This will give us a collection of spheres Si.

6.4.4 Complete Characterization

We can now construct our complete characterization of the admissible initial set

I = {x(k) : w ∈ Co ({Si})} (6.10)

No approximations have been done in the derivation of this set, so it is an exact
definition of the set. It is a characterization in w, but according to earlier, w is
just a linear transformation of x(k).

In the next section, we will make an ellipsoidal approximation of this set, and
the set derived with Algorithm 6.2. To do this, we must have a polytopic description
of our admissible initial set. This means we have to approximate the segments of
the spheres Si. A simple way to this is to create points xij on the boundary of Si,
with the restriction that they lie outside the inner polytopic approximation P . We
then create the polytope Î = Co ({xij , V (P)})

We summarize the procedure with the following algorithm

Algorithm 6.4 (Approximation of admissible initial set)

1. Calculate the set R with Algorithm 6.3.

2. Calculate the polytope P by picking the vertices (6.7)

3. Generate the translated spheres Sj by picking the points (6.9) and using
Theorem 6.1.

4. Approximate the spheres by introducing r random points xij ∈ ∂(Si) \ P for
each sphere Si

5. Let Î = Co ({xij ,V(P)})
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6.5 Ellipsoidal Approximation of Admissible Ini-

tial Set

In both methods above, the resulting approximation Î of the admissible initial
set I is a polytope defined by some linear inequalities cT

i x ≤ di In order to get
a more compact description of this set (the number of inequalities rapidly grow
large), we want to have an ellipsoidal description instead, i.e. find an ellipsoidal
approximation of the admissible initial set.

Î = {x(k) : xT (k)Px(k) ≤ 1} (6.11)

To find such an ellipsoid, we look for the largest possible ellipsoid contained in the
polytope Î defined by the linear inequalities. By introducing Y = P−1 and using
Lemma 4.1, we see that this is a MAXDET problem

max
Y

det(Y )

subject to cT
i Y ci ≤ d2

i

(6.12)

6.6 Examples

We study the two algorithms by applying them to two examples.

Example 6.4 (Third order unstable system) The system we analyze is
given by the zero-order hold sampled version of

G(s) =
1

s3 − 0.1s2 + s
(6.13)

The system is sampled with a sample-time 1 second, the constraint on the control
input is |u(k)| ≤ 1, the prediction horizon N = 5, and the terminal constraint is

xT (k + 5)x(k + 5) ≤ 1 (6.14)

Both of the proposed algorithms have a step where a randomized approximation
is performed. In Algorithm 6.2, the terminal state ellipsoid is approximated as
a polytope with vertices generated randomly, and in Algorithm 6.4, the exact
admissible initial set is approximated as a polytope by introducing random points
to remove the ellipsoidal segments. To see the impact of these approximations, we
study some different settings. In Algorithm 6.2, the randomization in the first step
is performed with the following number of random points[

25 50 75 100 200 400
]

(6.15)

and in Algorithm 6.4 we pick[
1 2 5 10 20 30

]
(6.16)
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points to approximate each ellipsoidal segment. Notice that the numbers not are
comparable.
In order to compare the two algorithms, we plot the volume of the resulting el-
lipsoidal approximation as a function of the CPU-time spent1(which depends on
the number of random points introduced). For each setting, the calculations were
repeated 10 times to see the effect of the realizations. It is quite evident that

20 40 60 80 100 120 140 160 180 200 220
34

35
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37

38

39

40

Volume

t [s]

Algorithm 6.2
Algorithm 6.4

Figure 6.5: Average CPU-time used for the different algorithms and the average
volume of the estimated admissible initial set.

for this example, Algorithm 6.4 outperforms Algorithm 6.2 in terms of CPU-time
needed for a reasonably good estimate. If more CPU-time is allowed, the difference
between the two algorithms is reduced.
Since the algorithms are based on a randomized approximation, it is interesting
to see how sensitive they are to different realizations. As we can see in the table
below, Algorithm 6.4 is much less sensitive.

Variance of estimated volume (test case)
#1 #2 #3 #4 #5 #6

Algorithm 6.2 8.54 0.55 0.31 0.20 0.07 0.01
Algorithm 6.4 0 8e-5 15e-5 1e-6 0 0

It should be mentioned that the code for Algorithm 6.2 is very simple, and is
therefore optimized, whereas the code for algorithm for Algorithm 6.4 currently
is implemented without taking speed into account. Furthermore, a large part of

1In MATLABTMusing MAXDET [69] and qhull [24] on Sun ULTRA SPARC

10
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the time for both algorithms is spent in the communication with qhull, since
data-exchange in the current implementation is done via text-files.

Example 6.5 (Second order system) To be able to visualize the admissible
initial set, we apply the algorithms to the sampled version of the second order
system (sample-time, horizon and constraints same as in the previous example)

G(s) =
1

s2 + 1
(6.17)

In this example, the two algorithms performed similarly. The admissible initial set
I together with its ellipsoidal approximation Î is given in the figure below. The
terminal state domain is the unit circle.
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Figure 6.6: Admissible initial set I and its ellipsoidal approximation Î.

For this system, we see that the ellipsoidal approximation of the admissible initial
set is quite close to the exact set.

6.7 Conclusions

We have looked at the problem of finding the set of initial states for which it is
possible to reach an ellipsoid centered around the origin, with a constrained control,
in a specified number of steps. It was shown that the set can be described as the
convex hull of a finite number of ellipsoids. Two algorithms were developed to
calculate polytopic and ellipsoidal approximations of the set.

The algorithms were applied to two test examples. Although Algorithm 6.4
performed better than Algorithm 6.2 for these examples, practice has shown that
they typically perform equivalently.

As interesting extension that needs further research is whether it is possible to
transfer some of the results to uncertain and disturbed systems.



7

Robust MPC with Disturbances

and State Estimation

So far, we have only dealt with MPC for systems without disturbances and the state
exactly known. In this chapter, we propose an approach to design MPC controllers
in the case of estimated states and/or unknown but bounded disturbances acting
on the system and the output measurements. It will be shown that the joint
uncertainty caused by the estimation error and the disturbances can be dealt with
(conservatively) in a quite general LMI framework.

This chapter is organized as follows. In Section 7.1 we define the admissible
systems, disturbances and the optimization formulation we want to use in MPC.
This is followed by a description of a state estimation procedure in Section 7.2.
The state estimate is used in an MPC algorithm developed in Section 7.3. This
MPC algorithm is extended and generalized in various ways, and as an intermediate
result, an approach to synthesize linear feedback controllers for disturbed systems
is obtained. Finally, an example with a couple of experiments is presented.

7.1 Problem Formulation

The system we analyze is an extension of the nominal system in Section 3.2. To
begin with, we assume that there are disturbances acting on the system dynam-
ics. Furthermore, the state is not available. Instead, we have a disturbed output

57
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measurement

x(k + 1) = Ax(k) + Bu(k) + Bξξ(k) (7.1a)
y(k) = Cx(k) + Dηη(k) + Dζζ(k) (7.1b)

As in the previous chapters, we also assume that the system is constrained. For
simplicity, we will initially only consider the unit control constraint |u(k)| ≤ 1.

The disturbances are unknown but bounded by ellipsoids (the class of distur-
bances will be extended later)

η(k) ∈ {η : ηT Wηη ≤ 1} (7.2a)

ξ(k) ∈ {ξ : ξT Wξξ ≤ 1} (7.2b)

ζ(k) ∈ {ζ, x : ζT Wζζ ≤ xT Wxx} (7.2c)

From the description above, we see that we only model an unstructured disturbance
on the system dynamics, i.e., we do not know how x(k) influences ξ(k) (our MPC
algorithm would not be convex otherwise). On the measurement however, we are
able to incorporate a disturbance ζ(k) whose size is dependent on the system state.

The problem we want to solve is a minimax problem over the admissible future
disturbances ξ, and possible state estimation error x(k) − x̂(k).

min
u

max
x(k),ξ

∑N−1
j=0 xT (k + j + 1)Qx(k + j + 1) + uT (k + j)Ru(k + j) (7.3)

Notice that we thus explicitely want to take the possible estimation error into
account. A standard solution is otherwise to neglect this mismatch and instead use
x̂(k + j + 1|k) in the objective [38, 41, 56].

Previous work

The principle problem above, or special cases thereof, has been studied before
in the MPC framework. The case with full state information is dealt with in,
e.g., [2] and [62]. Although computationally efficient, the approach in [2] suffers
from a lack of a general performance measure. The work in [62] on the other
hand allows (almost) arbitrary performance measures. This is at the expense of
a simple disturbance model and exponential complexity in the computations (the
disturbance model is a polytope and all vertices of the future possible disturbance
polytopes are enumerated in the optimization).

The case with both estimation error and disturbances is studied in [3, 4]. The
main contribution of our work, compared to the approach in [3, 4] is two-fold. To
begin with, the estimation and control is done in a somewhat unified framework.
Another, perhaps more important difference is that our approach allows a more gen-
eral disturbance description and optimization objective. In [3, 4], the disturbance
model is limited to element-wise bounds on the disturbances, and the performance
objective is basically the deviation of the control input from the steady state input.
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7.2 Deterministic State Estimation

In order to solve the minimax optimization problem, we must have an estimate x̂(k).
Furthermore, since the optimization is performed over all admissible estimation
errors, we must have a bound on the estimation error. Finding such an estimate is
a classical problem, see, e.g, [39, 61] for approaches based on ellipsoidal calculus.
A method to solve the similar one-step-ahead prediction problem using SDP was
proposed in [25]. Adapting the basic ideas of those results to our disturbance
model, state estimation and a slightly different optimality condition (determinant
maximization instead of trace minimization in order to be consistent with the rest
of the thesis), yields the following state estimation procedure.

The idea is to work with an ellipsoidal set in which the true state is guaranteed
to lie. Given an old estimate x(k − 1) ∈ E (x̂(k − 1), P (k − 1)), we want to find
a new estimate, given a measurement y(k) and the disturbance model, such that
x(k) ∈ E (x̂(k), P (k)). More formally, the following implication should hold:

(x(k) − x̂(k))T P (k)(x(k) − x̂(k)) ≤ 1

when

(x(k − 1) − x̂(k − 1))T P (k − 1)(x(k − 1) − x̂(k − 1)) ≤ 1

(7.4)

For each new output measurement, we want to find a new estimate x̂(k) and the
corresponding matrix P (k). Since P (k) describes the confidence in the estimate,
our goal is to minimize the size of the ellipsoid E (x̂(k), P (k)). We will now show
how this can be solved with SDP.

To begin with, we introduce a stacked vector defining a basis for all variables

z =



x(k − 1)
ξ(k − 1)

η(k)
ζ(k)

1


 (7.5)

and transformation matrices from z to the involved variables

Tx(k) =
[
A Bξ 0 0 Bu(k − 1)

]
(7.6a)

Te(k) =
[
A Bξ 0 0 Bu(k − 1) − x̂(k)

]
(7.6b)

Te(k−1) =
[
I 0 0 0 −x̂(k − 1)

]
(7.6c)

Ty =
[
−CA −CBξ −Dη −Dζ y(k) − CBu(k − 1)

]
(7.6d)

Tξ =
[
0 I 0 0 0

]
(7.6e)

Tη =
[
0 0 I 0 0

]
(7.6f)

Tζ =
[
0 0 0 I 0

]
(7.6g)

T1 =
[
0 0 0 0 1

]
(7.6h)
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With these matrices, the original variables are reconstructed as

x(k) = Tx(k)z (7.7a)
x(k) − x̂(k) = Te(k)z (7.7b)

x(k − 1) − x̂(k − 1) = Te(k−1)z (7.7c)
y(k) − (Cx(k) + Dηη(k) + Dζζ(k)) = Tyz (7.7d)

ξ(k − 1) = Tξz (7.7e)
η(k) = Tηz (7.7f)
ζ(k) = Tζz (7.7g)

1 = T1z (7.7h)

We insert the expressions above into the condition (7.4), the output equation
in (7.1) and the disturbance model (7.2). This gives us

zT T T
e(k)P (k)Te(k)z ≤ zT T T

1 T1z

when

zT T T
e(k−1)P (k − 1)Te(k−1)z ≤ zT T T

1 T1z

zT T T
y Tyz = 0

zT T T
ξ WξTξz ≤ zT T T

1 T1z

zT T T
η WηTηz ≤ zT T T

1 T1z

zT T T
ζ WζTζz ≤ zT T T

x(k)WxTx(k)z

(7.8)

For easy notation, we introduce the matrices

Λ = T T
1 T1 (7.9a)

Se = Λ − T T
e(k−1)P (k − 1)Te(k−1) (7.9b)

Sy = T T
y Ty (7.9c)

Sξ = Λ − T T
ξ WξTξ (7.9d)

Sη = Λ − T T
η WηTη (7.9e)

Sζ = T T
x(k)WxTx(k) − T T

ζ WζTζ (7.9f)

The idea is now to apply the S-procedure to handle the implication, see Theorem
2.1. To do this, we define non-negative scalars τξ, τη and τζ . We also introduce the
indefinite scalar τy (relaxation of the equality constraint in (7.8)). Straightforward
application of the S-procedure yields the sufficient condition

Λ − T T
e(k)P (k)Te(k) � τeSe + τySy + τξSξ + τηSη + τζSζ (7.10)

The unknown variables on the left-hand side are x̂(k) (in Te(k)) and P (k). By
introducing Y = P 1/2(k) and b = −P−1/2(k)x̂(k) we see that

P 1/2(k)Te(k) =
[
Y A Y Bξ 0 0 Y Bu(k − 1) + b

]
= ϑ(Y, b) (7.11)
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With this structure, we can apply a Schur complement to obtain[
Λ − τeSe − τySy − τξSξ − τηSη − τζSζ ϑT (Y, b)

ϑ(Y, b) I

]
� 0 (7.12)

Since the volume of the ellipsoid is proportional to det(P−1/2), a suitable way to
find P (k) is to minimize det(P−1/2), or equivalently, maximize det(P 1/2) = det(Y ).
The optimization problem to find the update of the state estimate can therefore
be written as a MAXDET problem

max
Y,b,τ

det(Y )

subject to (7.12)
τξ ≥ 0

τη ≥ 0

τζ ≥ 0

(7.13)

As is mentioned in [25], the SDP above can be simplified. To begin with, the
indefinite variable τy can be eliminated since it is multiplied with a definite matrix
(τy will be −∞ at the optimum [11]). Furthermore, the optimization of x̂(k) and
P (k) can be done independently. The interested reader is referred to [25] for details.

7.3 Minimax MPC Design

It turns out that the derivation of our MPC algorithm is most easily done if we
formulate the problem as in Section 3.3.1. To do this, we introduce stacked vectors
with future states, control inputs and disturbances (beware the slight difference in
the definition of X compared to Equation (3.7))

X =




x(k + 1)
x(k + 2)

...
x(k + N)


 , U =




u(k)
u(k + 1)

...
u(k + N − 1)


 , Ξ =




ξ(k)
ξ(k + 1)

...
ξ(k + N − 1)


 (7.14)

Standard use of the system model (7.1) allows us to write

X = Hx(k) + SU + GΞ (7.15)

The minimax problem (7.3) can be written in these variables as

min
U

max
x(k),Ξ

(Hx(k) + SU + GΞ)T Q̄(Hx(k) + SU + GΞ) + UT R̄U

We reformulate this using epigraph rewriting (recall Section 4.6.1)

min
U,t

t

subject to max
x(k),Ξ

(Hx(k) + SU + GΞ)T Q̄(Hx(k) + SU + GΞ) + UT R̄U ≤ t
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We will now show that this problem can be (conservatively) rewritten and
solved, using the same principles as in the state estimation procedure. As a first
step, we introduce a basis

z =


x(k)

Ξ
1


 (7.16)

and some transformation matrices

Tx =
[
H G SU

]
(7.17a)

Te =
[
I 0 −x̂(k)

]
(7.17b)

Tu =
[
0 0 U

]
(7.17c)

T1 =
[
0 0 1

]
(7.17d)

We also introduce the transformation Tξ(j), i.e., ξ(k + j) = Tξ(j)z. The constraint
in the rewritten minimax formulation, using the bounds on disturbances and esti-
mation error, can now be written as

zT T T
x Q̄Txz + zT T T

u R̄T T
u z ≤ tzT T T

1 T1z

when

zT T T
e P (k)Tez ≤ zT T T

1 T1z

zT T T
ξ(j)WξTξ(j)z ≤ zT T T

1 T1z

(7.18)

Again, we introduce Λ = T T
1 T1 and approximate with an S-procedure

tΛ − T T
x Q̄Tx − T T

u R̄T T
u � τe(Λ − T T

e P (k)Te) +
N−1∑
j=0

τξ,j(Λ − T T
ξ(j)WξTξ(j))

To make this constraint linear in U (Tx and Tu), we apply a Schur complement

tΛ − τe(Λ − T T

e P (k)Te) −
N−1∑
j=0

τξ,j(Λ − T T
ξ(j)WξTξ(j)) T T

x T T
u

Tx Q̄−1 0
Tu 0 R̄−1


 � 0 (7.19)

Our approximation of the minimax problem (7.3) boils down to the SDP

min
U,t,τ

t

subject to (7.19)

|U | ≤ 1

τe ≥ 0

τξ,j ≥ 0

(7.20)
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The special case with no disturbances is recovered by removing the correspond-
ing columns in the transformation matrices (7.17), and the matrices in (7.19) re-
lated to the disturbances. The case with all states exactly known is obtained
equivalently except that SU is changed to SU + Hx(k) in (7.17).

7.3.1 Extensions of the MPC Algorithm

The MPC controller defined by the SDP (7.20) can be extended in various ways.

Robust satisfaction of state constraints

It is easy to extend the MPC controller in order to cope with robust satisfaction
of linear constraints. Assume we have an output

z(k) = Mx(k) + Du(k) (7.21)

for which we have a constraint

z(k) ≤ 1 (7.22)

We introduce a stacked vector with all constrained outputs

Z =




z(k)
z(k + 1)

...
z(k + N)


 (7.23)

Standard definition of Hz, Sz and Gz using the system model and the definition of
z(k + j) gives us the stacked prediction

Z = Hzx(k) + SzU + GzΞ (7.24)

If we let zj, hj , sj and gj denote the rows of Z, Hz, Sz and Gz respectively, the
jth element of Z can be written as

zj = hjx(k) + sjU +
N−1∑
i=0

gjiξ(k + i) (7.25)

where gji denotes a partitioning of gj compatible with the dimension of the distur-
bance ξ(k + i). With x(k) ∈ E(x̂(k), P (k)), Lemma 4.1 gives us

max
x(k),Ξ

zj = hj x̂(k) +
√

hjP−1(k)hT
j + sjU +

N−1∑
i=0

√
gjiW

−1
ξ gT

ji (7.26)

and the robustified state constraint can be written as

hj x̂(k) +
√

hjP−1(k)hT
j + sjU +

N−1∑
i=0

√
gjiW

−1
ξ gT

ji ≤ 1 (7.27)

Clearly, this is a linear constraint in the unknown variable U .
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Remark 7.1
In the robustified state constraint, the uncertainty in the state estimate reveals

itself in the term
√

hjP−1(k)hT
j . This indicates that a perhaps more suitable

performance measure in the optimization of P (k) is some function φ(hjP
−1(k)hT

j ).

Feedback predictions: full state information

In the case of full state information, we can easily adopt the idea of feedback
predictions [2, 42, 60, 62]. The idea in feedback predictions (sometimes called closed
loop predictions) is to parameterize the control sequence using a fixed feedback
matrix L

u(k + j) = −Lx(k + j) + v(k + j) (7.28)

When there are no uncertainties or disturbances, this parameterization will not
influence the solution. With disturbances however, feedback predictions is a simple
way to improve performance. If we insert the parameterization into the system
model, we obtain

x(k + 1) = (A − BL)x(k) + Bv(k) + Bξξ(k) (7.29)

Straightforward use of (7.29) gives us matrices H , S and G to define the stacked
predictions

X = Hx(k) + SV + GΞ (7.30)

The parameterization (7.28) also allows us to define U

U = Hux(k) + SuV + GuΞ (7.31)

The basis z, used in the derivation of (7.20), no longer contains x(k)

z =
[
Ξ
1

]
(7.32)

which forces us to define new transformation matrices (Te is no longer needed)

Tx =
[
G Hx(k) + SV

]
(7.33a)

Tu =
[
Gu Hux(k) + SuV

]
(7.33b)

T1 =
[
0 1

]
(7.33c)

From this point, the same derivation as for (7.20) can be used. Notice that the
constraints |u(k + j)| ≤ 1 are mapped into state constraints which are handled
using the results in the previous section.
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Feedback predictions: measured output

In the case of estimated states, we can parameterize the input as

u(k + j) = −Lx̂(k + j|k + j) + v(k + j) (7.34)

The difficulty with this extension is that we have to have an expression of what
our estimate will look like in the future, i.e. x̂(k + j|k + j). We denote these the
predicted estimates. In this section, we propose an approach to this in the case
when Wx = Wζ = 0 (the problem is non-convex otherwise). The idea is to assume
that a linear estimator will be used in the future

x̂(k + j|k + j) = Ax̂(k + j − 1|k + j − 1) + Bu(k + j − 1)
+ K(y(k + j) − C(Ax̂(k + j − 1|k + j − 1) + Bu(k + j − 1))) (7.35)

If we insert the parameterized feedback, u(k + j) = −Lx̂(k + j|k + j) + v(k + j),
straightforward calculations yields the following linear system for the estimate and
true state[

x̂(k + j|k + j)
x(k + j)

]
=

[
A − BL − KCA KCA

−BL A

] [
x̂(k + j − 1|k + j − 1)

x(k + j − 1)

]

+
[
B
B

]
v(k + j − 1) +

[
KCBξ

Bξ

]
ξ(k + j − 1) +

[
KDη

0

]
η(k + j)

We define the extended state vector

x̃(k + j) =
[
x̂(k + j|k + j)

x(k + j)

]
(7.36)

together with matrices Ã, B̃, B̃ξ and D̃η to be able to write

x̃(k + j) = Ãx̃(k + j − 1) + B̃v(k + j − 1) + B̃ξξ(k + j − 1) + D̃ηη(k + j) (7.37)

We introduce stacked versions of the augmented state and future measurement
disturbances

X̃ =




x̃(k + 1)
x̃(k + 2)

...
x̃(k + N)


 , Θ =




η(k + 1)
η(k + 2)

...
η(k + N)


 (7.38)

Standard definition of the matrices H̃ , S̃ and G̃, M̃ , V and Ξ yields

X̃ = H̃x̃(k) + S̃V + G̃Ξ + M̃Θ (7.39)

We now partition the matrix H̃ as H̃ =
[
H̃x H̃x̂

]
. This gives

X̃ = H̃xx(k) + H̃x̂x̂(k|k) + S̃V + G̃Ξ + M̃Θ (7.40)
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Introduce transformation matrices that pulls out stacked vectors containing the
true states and the predicted estimates

X̂ = TX̂X̃, X = TXX̃ (7.41)

At this point, we are almost ready to return to the underlying MPC problem, but
first we have to express U in terms of x̂(k|k), V and X̂

U =




−Lx̂(k|k) + v(k)
...

−Lx̂(k + N − 1|k + N − 1) + v(k + N − 1)




=




0 0 . . . 0
−L 0 . . . 0
0 −L . . . 0
...

...
. . .

...
0 0 0 −L


 X̂ +




−Lx̂(k|k)
0
0
...
0


 + V (7.42)

By inserting (7.41) and (7.39) into (7.42), we obtain Hu, Fu, Su, Gu and Mu

U = Hux(k) + Fux̂(k|k) + SuV + GuΞ + MuΘ (7.43)

In the same way, we use (7.41) and (7.39) to obtain H , F , S, G and M

X = Hx(k) + F x̂(k|k) + SV + GΞ + MΘ (7.44)

The only conceptual difference in the expressions above, compared to the result
with full state information, is the explicit influence of the current state estimate
x̂(k|k) and future measurement errors Θ.

In order to develop the SDP (7.19) for the MPC algorithm, we introduce a basis

z =




x(k)
Ξ
Θ
1


 (7.45)

and the needed transformation matrices

Tx =
[
H G M SV + F x̂(k|k)

]
(7.46a)

Te =
[
I 0 0 −x̂(k)

]
(7.46b)

Tu =
[
Hu Gu Mu SuV + Fux̂(k|k)

]
(7.46c)

T1 =
[
0 0 0 1

]
(7.46d)

With these expressions, exactly the same derivation with an S-procedure as in the
derivation of the LMI (7.19) can be used to formulate a convex optimization prob-
lem. The only differences is that additional variables τη ≥ 0 have to be introduced
to take care of the uncertain variable Θ, and the control constraints are mapped
into state constraints, just as in the algorithm with feedback predictions for full
state information. The details are omitted for brevity.
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Remark 7.2 (Connections to dynamic programming)
The use of feedback predictions and the introduced concept predicted estimates
can be viewed from a dynamic programming [6] point of view. The central idea in
dynamic programming is to exploit the fact that we will have a new measurement at
k+1, and with this new measurement we can calculate the optimal input sequence
over the reduced N − 1 horizon. In the linear Gaussian case, this gives the LQG
controller. Feedback predictions can be seen as a cheap trick to mimic the idea
that the optimal input will be applied in the future. Instead of optimal, we assume
that there will be some feedback at least. The optimal input uses the optimal state
estimate, calculated using all the measurements obtained in the future. In our case,
we replace this optimal estimate with any estimate.

Let us perform some explicit calculations on feedback predictions

Example 7.1 (Feedback predictions and predicted estimates) Consider
a scalar disturbed unstable system

x(k + 1) = 2x(k) + u(k) + ξ(k), y(k) = x(k) + η(k) (7.47)

We select L = 1.5 and K = 1.5 which gives us

Ã =
[
−2.5 3
−1.5 2

]
, B̃ =

[
1
1

]
, B̃ξ =

[
1.5
1

]
, D̃η =

[
1.5
0

]
(7.48)

By using the definition of x̃(k) (7.39) and the system matrices above, we can
calculate the state and estimated state two steps ahead[

x̂(k + 2)
x(k + 2)

]
=

[
1.75 −1.5
0.75 −0.5

] [
x̂(k)
x(k)

]
+

[
0.5
0.5

]
v(k) +

[
1
1

]
v(k + 1) +[

−0.75
−0.25

]
ξ(k) +

[
1.5
1

]
ξ(k + 1) +

[
−3.75
−2.25

]
η(k) +

[
1.5
0

]
η(k + 1) (7.49)

An alternative is to predict x(k + 2) without any feedback predictions.

x(k + 2) = 4x(k) + 2u(k) + u(k + 1) + 2ξ(k) + ξ(k + 1) (7.50)

If we now insert our current state estimate, x(k) = x̂(k) + e(k), we can gather all
the uncertainties in the predictions of x(k+2). With feedback predictions, we have
the collected uncertainty

−0.5e(k)− 0.25ξ(k) + ξ(k + 1) − 2.25η(k + 1) (7.51)

and without

4e(k) + 2ξ(k) + ξ(k + 1) (7.52)

The impact of the current estimation error is reduced, and so is the impact of
future disturbances acting on the system. This is at the cost of an uncertainty due
to future measurement errors. Notice that the improved certainty of x(k + 2) also
is at the expense of uncertainty in u(k + 2) = −Lx̂(k + 2) + v(k + 2). Clearly, the
choice of L and K is intricate and general conclusions can not be drawn, not even
for this simple example.
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Terminal state constraints

Much work on MPC has been devoted to the development of suitable terminal
state constraints and terminal state weights. In the nominal, undisturbed case,
the terminal state weight basically accounts for guaranteed asymptotic stability,
whereas the terminal state constraints on its own is enough for stability.

Since we have persistent time-varying disturbances in this chapter, asymptotic
stability cannot be achieved. However, guaranteed stability would of course be
desirable feature. This leads us to the problem of finding suitable terminal state
constraints.

The underlying idea in the design of terminal state constraints for nominal
systems is to find a domain were a standard linear feedback can be applied, with
the restriction that the domain should be positively invariant and all constraints
satisfied therein. If we extend these ideas to the disturbed case, the only difference
is that the terminal state domain should be robustly positively invariant.

Finding (robustly) invariant sets is a well studied research area, see [9] for a
recent survey. Whereas the problem of finding robustly invariant ellipsoidal sets
for continuous-time systems with our disturbance model is a classical problem with
a known solution, see, e.g., [13] or the aforementioned survey, the same does not
seem to hold for discrete time systems. At least, we have not managed to find the
result we are about to present in the literature.

Recall the disturbed system (7.1), now assumed to be controlled with the nom-
inal controller u(k) = −Lx(k) (hence, we only consider the case with all states
available)

x(k + 1) = (A − BL)x(k) + Bξξ(k) (7.53)

An ellipsoid EW is said to be robustly positively invariant for the system if

xT (k + 1)Wx(k + 1) ≤ 1

when

xT (k)Wx(k) ≤ 1

ξT (k)Wξξ(k) ≤ 1

(7.54)

By inserting the model of x(k + 1), we can write this as
x(k)

ξ(k)
1




T 
(A − BL)T W (A − BL) (A − BL)T WBξ 0

BT
ξ W (A − BL) BT

ξ WBξ 0
0 0 −1





x(k)

ξ(k)
1


 ≤ 0

when


x(k)

ξ(k)
1




T 
0 0 0

0 Wξ 0
0 0 −1





x(k)

ξ(k)
1


 ≤ 0


x(k)

ξ(k)
1




T 
W 0 0

0 0 0
0 0 −1





x(k)

ξ(k)
1


 ≤ 0
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Straightforward application of the S-procedure yields the sufficient condition


(A − BL)T W (A − BL) (A − BL)T WBξ 0

BT
ξ W (A − BL) BT

ξ WBξ 0
0 0 −1


 �

τ1


0 0 0

0 Wξ 0
0 0 −1


 + τ2


W 0 0

0 0 0
0 0 −1


 (7.55)

This is a BMI due to the multiplication of τ2 and W , but by fixating τ2, an LMI
is obtained. Optimization of W , or more precisely some measure of W related to
the size of the invariant ellipsoid EW , can therefore easily be done by a line-search
in τ2. However, the BMI above can be written in a better format. We first notice
that we can split the BMI into two constraints

τ1 + τ2 ≤ 1 (7.56)[
τ2W 0

0 τ1Wξ

]
−

[
(A − BL)T

BT
ξ

]
W

[
(A − BL) Bξ

]
� 0 (7.57)

If we multiply the second constraint from left and right with the positive definite
matrix

[
W−1 0

0 I

]
(7.58)

we get the matrix inequality

[
τ2W

−1 0
0 τ1Wξ

]
−

[
W−1(A − BL)T

BT
ξ

]
W

[
(A − BL)W−1 Bξ

]
� 0 (7.59)

Define Y = W−1 and a Schur complement gives us


 τ2Y 0 Y AT − Y LT BT

0 τ1Wξ BT
ξ

AY − BLY Bξ Y


 � 0 (7.60)

Obviously, we still have a BMI due to the product τ2Y , but in the Y coordinate,
two things are gained. To begin with, we can solve a MAXDET problem (for fixed
τ2) to maximize the volume of the robustly invariant ellipsoid. Control and state
constraints are easily incorporated using Lemma (4.1), but for brevity we assume
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only a standard control constraint, | − Lx(k)| ≤ 1 ∀x(k) ∈ EW .

max
Y,τ1,τ2

det(Y )

subject to


 τ2Y 0 Y AT − Y LT BT

0 τ1Wξ BT
ξ

AY − BLY Bξ Y


 � 0

τ1 + τ2 ≤ 1

τ1 ≥ 0

τ2 ≥ 0

LiY LT
i ≤ 1

(7.61)

The second reason for working in the variable Y is that we actually have derived
a synthesis method to find L. By defining Z = LY , which can be done since Y
is invertible, we can find a feedback controller that stabilizes the disturbed system
under control constraints as long as the initial condition is in EW

max
Y,Z,τ1,τ2

det(Y )

subject to


 τ2Y 0 Y AT − ZT BT

0 τ1Wξ BT
ξ

AY − BZ Bξ Y


 � 0

τ1 + τ2 ≤ 1

τ1 ≥ 0

τ2 ≥ 0[
1 eT

i Z
ZT ei Y

]
� 0

(7.62)

To obtain the last constraint above, we introduced the unit vector ei and inserted
the definition of L to obtain LiY LT

i =eT
i ZY −1Y Y −1ZT ei. A Schur complement

maps the original constraint into an LMI.
So, given a feedback matrix L, either chosen beforehand or optimized and de-

fined as L = ZY −1, and the corresponding matrix W = Y −1, how are these
incorporated into the various versions of the MPC algorithm developed earlier in
this chapter? In all versions, a basis z has been defined, and with this basis, a
transformation matrix Tx. Adding an ellipsoidal terminal state constraint is easily
done within this framework. Recall that the vector X is defined as Txz, hence the
state x(k+N) can be written as

[
0 . . . 0 I

]
Txz. For simple notation, we write

this as x(k+N) = Tx(k+N)z. The terminal state constraint x(k+N)Wx(k+N) ≤ 1
can be written as

zT T T
x(k+N)WTx(k+N)z ≤ zT Λz (7.63)

If we use the same approach with an S-procedure in order to guarantee that this
constraint holds for all possible disturbances, we obtain an additional constraint
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to be added to the MPC algorithms (remember that we assume the state to be
available)


Λ −

N−1∑
j=0

τξ,j(Λ − T T
ξ(j)WξTξ(j)) T T

x(k+N)

Tx(k+N) W−1


 � 0 (7.64)

Of course, the τ variables in the constraint above does not have to be the same as
those used in the relaxation (7.19) of the performance measure.

Notice that the LMI above is linear in the matrix Y = W−1. This means
that selection of L and Y , defined by the LMI (7.62) with fix τ2, actually can be
incorporated into the MPC algorithm.

Extension of admissible disturbances

The disturbances we have used so far have been bounded by one single ellipsoid
centered at the origin. This can easily be extended in order to describe disturbances
bounded by several off-centered ellipsoids, hence allowing, e.g., half-spaces and
polytopes to be described. It turns out that everything in this chapter can be
extended to disturbance bounded by the intersection of a set of ellipsoids

η(k) ∈ ∩i=1...nη {η :
[
η
1

]T

Wη,i

[
η
1

]
≤ 1} (7.65a)

ξ(k) ∈ ∩i=1...nξ
{ξ :

[
ξ
1

]T

Wξ,i

[
ξ
1

]
≤ 1} (7.65b)

ζ(k) ∈ ∩i=1...nζ
{ζ, x :

[
ζ
1

]T

Wζ,i

[
ζ
1

]T

≤
[
x
1

]T

Wx,i

[
x
1

]
} (7.65c)

Basically, all that is needed to extend the various results in this chapter is to define
more τ variables in order to perform a relaxation of the extra ellipsoidal constraints,
using the S-procedure. A motivation for this, initially rather awkward-looking
model, is that linear constraints now can be used. As an example , cT ξ(k) ≤ 1 can
be described as

[
ξ(k)
1

]T [
0 1

2c
1
2cT 0

] [
ξ(k)
1

]
≤ 1 (7.66)
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7.4 Examples

We conclude this chapter with an example to illustrate some aspects of the proposed
MPC controller.

Example 7.2 (Robust output constraint satisfaction) This example is
taken from [2, 3, 4]. It is a second order system with only one state measured.

x(k + 1) =
[
1.6463 −0.7866

1 0

]
x(k) +

[
1
0

]
u(k) +

[
1 0
0 1

]
ξ(k)

y(k) =
[
0.1404 0

]
x(k) + η(k)

z(k) =
[
−2.6238 2.9045

]
x(k)

The disturbances are bounded with

Wξ =
[
5000 0

0 5000

]
, Wη = 400 (7.67)

and the initial state is only known to lie in the ellipsoid

x̂(0) =
[
0
0

]
, P (0) =

[
8 0
0 8

]
(7.68)

The numerical data above are (conservative) ellipsoidal approximations of the sets
used in [4] (||ξ(k)||∞ ≤ 0.01, ||η(k)||∞ ≤ 0.05 and ||x(0) − x̂(0)||∞ ≤ 0.25). Of
course, we could have applied the extensions mentioned in Section 7.3.1 to obtain
the same disturbance model.
The goal is to have the variable y(k) track a constant reference r(k) = 1, so
the performance weights are chosen as Q = CT C and R = 0.01. The tracking
formulation requires a slight modification of the algorithm, see Remark 3.1 and
Remark 4.2. The signal z(k) is constrained and has to satisfy −1 ≤ z(k) ≤ 3, and
the control input has to satisfy |u(k)| ≤ 2.
The MPC algorithm is applied to the system from the initial state x(0) = 0 with a
prediction horizon N = 10. Uniformly (over the ellipsoids) distributed disturbances
were applied on both the system dynamics and the measurements.
There is a substantial non-minimum phase behavior to the output z(k), so the state
constraint turns out to be the limiting factor for performance.
We can see in Figure 7.1 that the state constraint is rather conservatively satisfied
when we apply the MPC algorithm. The overall performance seem to be pretty
much similar to that reported in [4], except a slightly improved overshoot.
By performing a number of different experiments, it turns out that the initial
uncertainty in the state estimate is the most limiting factor (which perhaps not is
so surprising since the disturbances are rather small). The approach with feedback
predictions for measured outputs was tested, but gave no improvement.
As a second experiment, we assumed the initial state to be exactly known, and

instead increased the size of the disturbances Wξ =
[
312 0
0 312

]
. Once again, this

disturbance is chosen to allow comparison with the results in [4].
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Figure 7.1: Resulting closed loop for first experiment. The state constraint is
fulfilled and reasonably good tracking is achieved.

The closed loop behavior was almost the same as in the first experiment (same
disturbance realizations). This should be compared to the results reported in [4]
where this setup led to a significant increase of the rise-time.

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1

1.5

2

2.5

k

y(k)
z(k)

Figure 7.2: Experiment 2; initial state known, but larger disturbances. The per-
formance is basically the same as for the first experiment.
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As a final experiment, we study how feedback predictions can improve the approx-
imation of the minimax problem. We assumed full state information, and solved
the optimization problem (7.20) in the initial state, with and without feedback
predictions. The optimal value of t, which serves as an upper bound of the origi-
nal cost (7.3), was recorded. This was done for a number of disturbance models,
parameterized as Wξ = γI. The feedback matrix L was chosen as an LQ controller
calculated using the same performance weights as the MPC controller.

0 100 200 300 400 500 600 700 800 900 1000
2

4

6

8

10

12

14

16

18

20

γ

t(0)

Upper bound of minimax cost at k=0, without feedback predictions
Upper bound of minimax cost at k=0, with feedback predictions   

Figure 7.3: Optimal value of the upper bound t in the initial state, evaluated with
different disturbance models Wξ = γI.

It was noticed that feasibility was lost at γ = 49 for the algorithm without feedback
predictions, whereas the feasibility was lost at γ = 9 with feedback predictions. Of
course, the choice of L is important and it is easy to select another L so that the
upper bound either increases or decreases.
To see whether the upper bound at the initial state actually tells us anything about
the actual performance, we select a disturbance model with γ = 100 and simulate
the system with and without feedback predictions.
As we see in Figure 7.4, feedback predictions have indeed improved the perfor-
mance. Actually, the closed loop behavior is almost unaffected compared to the
first experiment we performed.



7.5 Conclusions 75

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

y(k)

k

Figure 7.4: Application of feedback predictions. Closed loop performance is almost
unaffected with feedback predictions despite the larger disturbances (fast response),
while there is a substantial deterioration of the rise-time without feedback predic-
tions (slow response).

7.5 Conclusions

By applying classical methods to perform state estimation for systems with bounded
disturbances, and using a convex optimization framework, we managed to develop
a minimax MPC algorithm which explicitly incorporates knowledge of possible esti-
mation errors and disturbances, and tries to counteract these. The MPC algorithm
turns out to be very flexible and could easily be extended in various ways.

It was recognized in the examples that the closed loop response easily became
overly conservative. Although this is a natural behavior since a minimax problem
is solved, the level of conservativeness can be a problem. Feedback predictions can
solve this to some extent, so this should be used when applicable. Practice has
shown that the choice of a suitable feedback gain for the feedback predictions is a
complex problem. The choice of the feedback gain and the observer gain when both
feedback predictions and predicted estimates are used is an even more complicated
problem. Investigation of this, together with extensions of the concept feedback
predictions, is currently being performed.

The main drawback of the approach is the computational complexity. Cur-
rently, we solve the SDPs with general purpose solvers. It would be interesting
to investigate if it is possible to exploit any structure in the problem, in the same
way as in, e.g., QP [68], robust QP [31], integral quadratic constraints [30] and
SOCPs [45].
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convex hull
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disturbance model, 58, 71
dynamic programming, 67

ellipsoid, 8
epigraph, 30

facet, 46
feedback predictions

full state information, 64
measured output, 65

finite horizon, 11

infinite horizon, 11
interior-point methods, 6

LMI, 5
LQ, 11

MAXDET, 6
minimax, 58

nested ellipsoids, 27, 40
nominal controller, 13, 19, 39, 68
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polyhedral, 17
robustly, 68, 70

predicted estimates, 65
prediction horizon, 11

QP, 12

relaxation, 7

S-procedure, 7
saturation level, 22
Schur complement, 7
SDP, 6
SOCP, 6
stacked vector, 12
state constraint

nominal, 12
robustified, 63

state estimation, 59

terminal state constraint, 13, 68
terminal state domain, 13, 68
terminal state weight, 13
tracking, 12

vertex, 46


