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Linear Momentum and Collisions

ANSWERS TO QUESTIONS

Q9.1 No. Impulse, F t∆ , depends on the force and the time for which
it is applied.

Q9.2 The momentum doubles since it is proportional to the speed.
The kinetic energy quadruples, since it is proportional to the
speed-squared.

Q9.3 The momenta of two particles will only be the same if the
masses of the particles of the same.

Q9.4 (a) It does not carry force, for if it did, it could accelerate
itself.

(b) It cannot deliver more kinetic energy than it possesses.
This would violate the law of energy conservation.

(c) It can deliver more momentum in a collision than it possesses in its flight, by bouncing from
the object it strikes.

Q9.5 Provided there is some form of potential energy in the system, the parts of an isolated system can
move if the system is initially at rest. Consider two air-track gliders on a horizontal track. If you
compress a spring between them and then tie them together with a string, it is possible for the
system to start out at rest. If you then burn the string, the potential energy stored in the spring will
be converted into kinetic energy of the gliders.

Q9.6 No. Only in a precise head-on collision with momenta with equal magnitudes and opposite
directions can both objects wind up at rest. Yes. Assume that ball 2, originally at rest, is struck
squarely by an equal-mass ball 1. Then ball 2 will take off with the velocity of ball 1, leaving ball 1 at
rest.

Q9.7 Interestingly, mutual gravitation brings the ball and the Earth together. As the ball moves
downward, the Earth moves upward, although with an acceleration 1025  times smaller than that of
the ball. The two objects meet, rebound, and separate. Momentum of the ball-Earth system is
conserved.

Q9.8 (a) Linear momentum is conserved since there are no external forces acting on the system.

(b) Kinetic energy is not conserved because the chemical potential energy initially in the
explosive is converted into kinetic energy of the pieces of the bomb.
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252     Linear Momentum and Collisions

Q9.9 Momentum conservation is not violated if we make our system include the Earth along with the
clay. When the clay receives an impulse backwards, the Earth receives the same size impulse
forwards. The resulting acceleration of the Earth due to this impulse is significantly smaller than the
acceleration of the clay, but the planet absorbs all of the momentum that the clay loses.

Q9.10 Momentum conservation is not violated if we choose as our system the planet along with you.
When you receive an impulse forward, the Earth receives the same size impulse backwards. The
resulting acceleration of the Earth due to this impulse is significantly smaller than your acceleration
forward, but the planet’s backward momentum is equal in magnitude to your forward momentum.

Q9.11 As a ball rolls down an incline, the Earth receives an impulse of the same size and in the opposite
direction as that of the ball. If you consider the Earth-ball system, momentum conservation is not
violated.

Q9.12 Suppose car and truck move along the same line. If one vehicle overtakes the other, the faster-
moving one loses more energy than the slower one gains. In a head-on collision, if the speed of the

truck is less than 
m m

m m
T c

T c

+
+
3

3
 times the speed of the car, the car will lose more energy.

Q9.13 The rifle has a much lower speed than the bullet and much less kinetic energy. The butt distributes
the recoil force over an area much larger than that of the bullet.

Q9.14 His impact speed is determined by the acceleration of gravity and the distance of fall, in
v v g yf i i

2 2 2 0= − −b g. The force exerted by the pad depends also on the unknown stiffness of the pad.

Q9.15 The product of the mass flow rate and velocity of the water determines the force the firefighters
must exert.

Q9.16 The sheet stretches and pulls the two students toward each other. These effects are larger for a
faster-moving egg. The time over which the egg stops is extended so that the force stopping it is
never too large.

Q9.17 (c) In this case, the impulse on the Frisbee is largest. According to Newton’s third law, the impulse
on the skater and thus the final speed of the skater will also be largest.

Q9.18 Usually but not necessarily. In a one-dimensional collision between two identical particles with the
same initial speed, the kinetic energy of the particles will not change.

Q9.19 g downward.

Q9.20 As one finger slides towards the center, the normal force exerted by the sliding finger on the ruler
increases. At some point, this normal force will increase enough so that static friction between the
sliding finger and the ruler will stop their relative motion. At this moment the other finger starts
sliding along the ruler towards the center. This process repeats until the fingers meet at the center of
the ruler.

Q9.21 The planet is in motion around the sun, and thus has momentum and kinetic energy of its own. The
spacecraft is directed to cross the planet’s orbit behind it, so that the planet’s gravity has a
component pulling forward on the spacecraft. Since this is an elastic collision, and the velocity of the
planet remains nearly unchanged, the probe must both increase speed and change direction for both
momentum and kinetic energy to be conserved.
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Q9.22 No—an external force of gravity acts on the moon. Yes, because its speed is constant.

Q9.23 The impulse given to the egg is the same regardless of how it stops. If you increase the impact time
by dropping the egg onto foam, you will decrease the impact force.

Q9.24 Yes. A boomerang, a kitchen stool.

Q9.25 The center of mass of the balls is in free fall, moving up and then down with the acceleration due to
gravity, during the 40% of the time when the juggler’s hands are empty. During the 60% of the time
when the juggler is engaged in catching and tossing, the center of mass must accelerate up with a
somewhat smaller average acceleration. The center of mass moves around in a little circle, making
three revolutions for every one revolution that one ball makes. Letting T represent the time for one
cycle and Fg  the weight of one ball, we have F T F TJ g0 60 3. =  and F FJ g= 5 . The average force exerted

by the juggler is five times the weight of one ball.

Q9.26 In empty space, the center of mass of a rocket-plus-fuel system does not accelerate during a burn,
because no outside force acts on this system. According to the text’s ‘basic expression for rocket
propulsion,’ the change in speed of the rocket body will be larger than the speed of the exhaust
relative to the rocket, if the final mass is less than 37% of the original mass.

Q9.27 The gun recoiled.

Q9.28 Inflate a balloon and release it. The air escaping from the balloon gives the balloon an impulse.

Q9.29 There was a time when the English favored position (a), the Germans position (b), and the French
position (c). A Frenchman, Jean D’Alembert, is most responsible for showing that each theory is
consistent with the others. All are equally correct. Each is useful for giving a mathematically simple
solution for some problems.

SOLUTIONS TO PROBLEMS

Section 9.1 Linear Momentum and Its Conservation

P9.1 m = 3 00.  kg , v i j= −3 00 4 00. .e j m s

(a) p v i j= = − ⋅m 9 00 12 0. .e j kg m s

Thus, px = ⋅9 00.  kg m s

and py = − ⋅12 0.  kg m s

(b) p p px y= + = + = ⋅2 2 2 29 00 12 0 15 0. . .a f a f  kg m s

θ =
F
HG
I
KJ = − = °− −tan tan .1 1 1 33 307

p

p
y

x
a f
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P9.2 (a) At maximum height v = 0 , so p = 0 .

(b) Its original kinetic energy is its constant total energy,

K mvi i= = =
1
2

1
2

0 100 15 0 11 22 2
. . .a f b gkg  m s  J .

At the top all of this energy is gravitational. Halfway up, one-half of it is gravitational and
the other half is kinetic:

K v

v

= =

=
×

=

5 62
1
2

0 100

2 5 62
10 6

2. .

.
.

 J  kg

 J
0.100 kg

 m s

b g

Then p v j= =m 0 100 10 6. . kg  m sb gb g

p j= ⋅1 06.  kg m s .

P9.3 I have mass 85.0 kg and can jump to raise my center of gravity 25.0 cm. I leave the ground with
speed given by

v v a x xf i f i
2 2 2− = −d i : 0 2 9 80 0 2502− = −vi . . m s  m2e ja f

vi = 2 20.  m s

Total momentum of the system of the Earth and me is conserved as I push the earth down and
myself up:

0 5 98 10 85 0 2 20

10

24

23

= × +

−

. . .

~

 kg  kg  m s

 m s

e j b gb gv

v

e

e

P9.4 (a) For the system of two blocks ∆p = 0 ,

or p pi f=

Therefore, 0 3 2 00= +Mv Mm a fb g.  m s

Solving gives vm = −6 00.  m s  (motion toward the

left).

(b)
1
2

1
2

1
2

3 8 402 2
3
2kx Mv M vM M= + =a f .  J

FIG. P9.4
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P9.5 (a) The momentum is p mv= , so v
p
m

=  and the kinetic energy is K mv m
p
m

p
m

= = F
HG
I
KJ =

1
2

1
2 2

2
2 2

.

(b) K mv=
1
2

2  implies v
K

m
=

2
, so p mv m

K
m

mK= = =
2

2 .

Section 9.2 Impulse and Momentum

*P9.6 From the impulse-momentum theorem, F t p mv mvf i∆ ∆a f = = − , the average force required to hold

onto the child is

F
m v v

t
f i

=
−

=
−

−

F
HG

I
KJ = − ×

d i
a f

b gb g
∆

12 0 60

0 050 0
1

2 237
6 44 103 kg  mi h

 s
 m s

 mi h
 N

. .
. .

Therefore, the magnitude of the needed retarding force is 6 44 103. ×  N , or 1 400 lb. A person

cannot exert a force of this magnitude and a safety device should be used.

P9.7 (a) I Fdt= =z  area under curve

I = × = ⋅−1
2

1 50 10 18 000 13 53. . s  N  N se jb g

(b) F =
⋅

×
=−

13 5
9 003

.
.

 N s
1.50 10  s

 kN

(c) From the graph, we see that Fmax .= 18 0 kN
FIG. P9.7

*P9.8 The impact speed is given by 
1
2 1

2
1mv mgy= . The rebound speed is given by mgy mv2 2

21
2

= . The

impulse of the floor is the change in momentum,

mv mv m v v

m gh gh

2 1 2 1

2 12 2

0 15 2 9 8 0 960 1 25

1 39

 up  down  up

 up

 kg  m s  m  m  up

 kg m s  upward

2

− = +

= +

= +

= ⋅

b g
e j

e je j. . . .

.
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P9.9 ∆ ∆

∆

∆

∆
∆

p F=

= − = ° − °=

= − °− ° = − °

= −

= − ⋅

= =
− ⋅

= −

t

p m v v m v mv

p m v v mv

F
p
t

y fy iy

x

x

e j a f
a f
b gb ga f

cos . cos .

sin . sin . sin .

. . .

.
.

.

60 0 60 0 0

60 0 60 0 2 60 0

2 3 00 10 0 0 866

52 0
52 0

0 200
260

 kg  m s

 kg m s
 kg m s

 s
 Nave FIG. P9.9

P9.10 Assume the initial direction of the ball in the –x direction.

(a) Impulse, I p p p i i i= = − = − − = ⋅∆ f i 0 060 0 40 0 0 060 0 50 0 5 40. . . . .b ga f b ga fe j  N s

(b) Work = − = − = −K Kf i
1
2

0 060 0 40 0 50 0 27 02 2. . . .b g a f a f  J

P9.11 Take x-axis toward the pitcher

(a) p I pix x fx+ = : 0 200 15 0 45 0 0 200 40 0 30 0. . cos . . . cos . kg  m s  kg  m sb gb ga f b gb g− ° + = °Ix

Ix = ⋅9 05.  N s

p I piy y fy+ = : 0 200 15 0 45 0 0 200 40 0 30 0. . sin . . . sin . kg  m s  kg  m sb gb ga f b gb g− ° + = °Iy

I i j= + ⋅9 05 6 12. .e j N s

(b) I F F F= + + +
1
2

0 4 00 20 0
1
2

4 00m m mb ga f a f a f. . . ms  ms  ms

F i j

F i j

m

m

× × = + ⋅

= +

−24 0 10 9 05 6 12

377 255

3. . . s  N s

 N

e j
e j

P9.12 If the diver starts from rest and drops vertically into the water, the velocity just before impact is
found from

K U K U

mv mgh v gh

f gf i gi+ = +

+ = + ⇒ =
1
2

0 0 2impact
2

impact

With the diver at rest after an impact time of ∆t , the average force during impact is given by

F
m v

t

m gh

t
=

−
=
−0 2impacte j

∆ ∆
 or F

m gh

t
=

2

∆
 (directed upward).

Assuming a mass of 55 kg and an impact time of ≈ 1 0.  s , the magnitude of this average force is

F = =
55 2 9 8 10

1 0
770

 kg  m s  m

 s
 N

2b g e ja f.

.
, or ~103  N .
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P9.13 The force exerted on the water by the hose is

F
p

t

mv mv

t
f i= =
−

=
−

=
∆
∆ ∆
water  kg  m s

 s
 N

0 600 25 0 0

1 00
15 0

. .

.
.

b gb g
.

According to Newton's third law, the water exerts a force of equal magnitude back on the hose.
Thus, the gardener must apply a 15.0 N force (in the direction of the velocity of the exiting water
stream) to hold the hose stationary.

*P9.14 (a) Energy is conserved for the spring-mass system:

K U K Ui si f sf+ = + : 0
1
2

1
2

02 2+ = +kx mv

v x
k
m

=

(b) From the equation, a smaller  value of m makes v x
k
m

=  larger.

(c) I mv mx
k
m

x kmf i f= − = = = =p p 0

(d) From the equation, a larger  value of m makes I x km=  larger.

(e) For the glider, W K K mv kxf i= − = − =
1
2

0
1
2

2 2

The mass makes no difference  to the work.

Section 9.3 Collisions in One Dimension

P9.15 200 55 0 46 0 200 40 0 g  m s  g  g  m sb gb g b g b gb g. . .= +v

v = 65 2.  m s

*P9.16 m v m v m v m v
i f1 1 2 2 1 1 2 2+ = +b g b g

22 5 35 300 2 5 22 5 0

37 5
22 5

1 67

1

1

. . .

.
.

.

 g  m s  g  m s  g

 g m s
 g

 m s

b g b g+ − = +

=
⋅

=

v

v

f

f

FIG. P9.16
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P9.17 Momentum is conserved
10 0 10 5 01 0 600

301

3. . .× =

=

−  kg  kg  m s

 m s

e j b gb gv

v

P9.18 (a) mv mv mvi i f1 23 4+ =  where m = ×2 50 104.  kg

v f =
+

=
4 00 3 2 00

4
2 50

. .
.

a f
 m s

(b) K K m v mv m vf i f i i− = − +L
NM

O
QP = × − − = − ×

1
2

4
1
2

1
2

3 2 50 10 12 5 8 00 6 00 3 75 102
1
2

2
2 4 4a f a f e ja f. . . . .  J

P9.19 (a) The internal forces exerted by the actor do
not change the total momentum of the
system of the four cars and the movie actor

4 3 2 00 4 00

6 00 4 00
4

2 50

m v m m

v

i

i

a f a fb g b g= +

=
+

=

. .

. .
.

 m s  m s

 m s  m s
 m s

FIG. P9.19

(b) W K K m mf iactor  m s  m s  m  m s= − = + −
1
2

3 2 00 4 00
1
2

4 2 50
2 2 2a fb g b g a fb g. . .

Wactor

 kg
m s  kJ=

×
+ − =

2 50 10

2
12 0 16 0 25 0 37 5

4
2.

. . . .
e j a fb g

(c) The event considered here is the time reversal of the perfectly inelastic collision in the
previous problem.  The same momentum conservation equation describes both processes.

P9.20 v1 , speed of m1at B before collision.
1
2

2 9 80 5 00 9 90

1 1
2

1

1

m v m gh

v

=

= =. . .a fa f  m s
v f1 , speed of m1  at B just after collision.

v
m m
m m

vf1
1 2

1 2
1

1
3

9 90 3 30=
−
+

= − = −. .a f m s  m s

At the highest point (after collision)
FIG. P9.20

m gh m1 1
21

2
3 30max .= −a f hmax

.

.
.=

−
=

3 30

2 9 80
0 556

2 m s

 m s
 m

2

b g
e j
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P9.21 (a), (b) Let vg  and vp  be the velocity of the girl and the plank

relative to the ice surface. Then we may say that v vg p−  is

the velocity of the girl relative to the plank, so that

v vg p− = 1 50.                                       (1)  

But also we must have m v m vg g p p+ = 0 , since total

momentum of the girl-plank system is zero relative to the
ice surface. Therefore

45 0 150 0. v vg p+ = , or v vg p= −3 33.

Putting this into the equation (1) above gives

− − =3 33 1 50. .v vp p  or vp = −0 346.  m s

Then vg = − − =3 33 0 346 1 15. . .a f  m s

FIG. P9.21

*P9.22 For the car-truck-driver-driver system, momentum is conserved:

p p p p1 2 1 2i i f f+ = + : 4 000 8 800 8 4 800 kg  m s  kg  m s  kgb gb g b gb ge j b gi i i+ − = v f

v f =
⋅

=
25 600

4 800
5 33

 kg m s
 kg

 m s.

For the driver of the truck, the impulse-momentum theorem is

F p p∆t f i= − : F i i0 120 80 5 33 80 8. . s  kg  m s  kg  m sa f b gb g b gb g= −

F i= × −1 78 103.  N  on the truck drivere j

For the driver of the car, F i i0 120 80 5 33 80 8. . s  kg  m s  kg  m sa f b gb g b gb ge j= − −

F i= ×8 89 103.  N  on the car driver , 5 times larger.

P9.23 (a) According to the Example in the chapter text, the fraction of total kinetic energy transferred
to the moderator is

f
m m

m m
2

1 2

1 2
2

4
=

+b g
where m2  is the moderator nucleus and in this case, m m2 112=

f
m m

m
2

1 1

1
2

4 12

13

48
169

0 284= = =
b g
b g

.  or 28.4%

of the neutron energy is transferred to the carbon nucleus.

(b) KC = × = ×− −0 284 1 6 10 4 54 1013 14. . .a fe j J  J

Kn = × = ×− −0 716 1 6 10 1 15 1013 13. . .a fe j J  J
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P9.24 Energy is conserved for the bob-Earth system between bottom and
top of swing. At the top the stiff rod is in compression and the bob
nearly at rest.

K U K Ui i f f+ = + :
1
2

0 0 22Mv Mgb + = +

v gb
2 4=  so v gb = 2

Momentum of the bob-bullet system is conserved in the collision:

mv m
v

M g= +
2

2e j v
M
m

g=
4

FIG. P9.24

P9.25 At impact, momentum of the clay-block system is conserved, so:

mv m m v1 1 2 2= +b g

After impact, the change in kinetic energy of the clay-block-surface
system is equal to the increase in internal energy:

1
2
1
2

0 112 0 650 0 112 9 80 7 50

1 2 2
2

1 2

2
2

m m v f d m m gd

v

f+ = = +

=

b g b g

b g b ge ja f

µ

. . . . . kg  kg  m s  m2

v2
2 95 6= .  m s2 2 v2 9 77= .  m s

12 0 10 0 112 9 773
1. . .× =−  kg  kg  m se j b gb gv v1 91 2= .  m s

FIG. P9.25

P9.26 We assume equal firing speeds v and equal forces F required for the two bullets to push wood fibers
apart. These equal forces act backward on the two bullets.

For the first, K E Ki f+ =∆ mech
1
2

7 00 10 8 00 10 03 2 2. .× − × =− − kg  me j e jv F

For the second, p pi f= 7 00 10 1 0143. .× =−  kg  kge j b gv v f

v
v

f =
× −7 00 10

1 014

3.

.
e j

Again, K E Ki f+ =∆ mech :
1
2

7 00 10
1
2

1 0143 2 2. .× − =−  kg  kge j b gv Fd v f

Substituting for v f ,
1
2

7 00 10
1
2

1 014
7 00 10

1 014
3 2

3 2

. .
.

.
× − =

×F
HG

I
KJ

−
−

 kg  kge j b gv Fd
v

Fd v v= × −
×

−
−

1
2

7 00 10
1
2

7 00 10

1 014
3 2

3 2

2.
.

.e j e j

Substituting for v, Fd F= × −
×F

HG
I
KJ

−
−

8 00 10 1
7 00 10

1 014
2

3

.
.

.
 me j d = 7 94.  cm
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*P9.27 (a) Using conservation of momentum, p p∑ ∑=c h c hafter before
, gives

4 0 10 3 0 4 0 5 0 10 3 0 3 0 4 0. . . . . . .+ + = + + −a f b gb g b gb g b gb g kg  kg  m s  kg  m s  kg  m sv .

Therefore, v = +2 24.  m s , or 2 24.  m s  toward the right .

(b) No . For example, if the 10-kg and 3.0-kg mass were to stick together first, they would

move with a speed given by solving

13 10 3 0 3 0 4 01 kg  kg  m s  kg  m sb g b gb g b gb gv = + −. . . , or v1 1 38= + .  m s .

Then when this 13 kg combined mass collides with the 4.0 kg mass, we have

17 13 1 38 4 0 5 0 kg  kg  m s  kg  m sb g b gb g b gb gv = +. . . , and v = +2 24.  m s

just as in part (a). Coupling order makes no difference.

Section 9.4 Two-Dimensional Collisions

P9.28 (a) First, we conserve momentum for the system of two football players in the x direction (the
direction of travel of the fullback).

90 0 5 00 0 185. . cos kg  m s  kgb gb g b g+ = V θ

where θ is the angle between the direction of the final velocity V and the x axis. We find

V cos .θ = 2 43 m s (1)

Now consider conservation of momentum of the system in the y direction (the direction of
travel of the opponent).

95 0 3 00 0 185. . sin kg  m s  kgb gb g b ga f+ = V θ

which gives, V sin .θ = 1 54 m s (2)

Divide equation (2) by (1) tan
.
.

.θ = =
1 54
2 43

0 633

From which θ = °32 3.

Then, either (1) or (2) gives V = 2 88.  m s

(b) Ki = + = ×
1
2

90 0 5 00
1
2

95 0 3 00 1 55 10
2 2 3. . . . . kg  m s  kg  m s  Jb gb g b gb g

K f = = ×
1
2

185 2 88 7 67 10
2 2 kg  m s  Jb gb g. .

Thus, the kinetic energy lost is 783 J into internal energy.
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P9.29 p pxf xi=

mv mv mO Y  m scos . cos . .37 0 53 0 5 00°+ °= b g
0 799 0 602 5 00. . .v vO Y  m s+ = (1)

p p

mv mv
yf yi=

°− °=O Ysin . sin .37 0 53 0 0

0 602 0 799. .v vO Y= (2)

Solving (1) and (2) simultaneously,

vO  m s= 3 99.  and vY  m s= 3 01. .
FIG. P9.29

P9.30 p pxf xi= : mv mv mviO Ycos cos .θ θ+ °− =90 0a f

v v viO Ycos sinθ θ+ = (1)

p pyf yi= : mv mvO Ysin sin .θ θ− °− =90 0 0a f

v vO Ysin cosθ θ= (2)

From equation (2),

v vO Y= FHG
I
KJ

cos
sin

θ
θ

(3)

Substituting into equation (1),

v v viY Y
cos
sin

sin
2 θ
θ

θ
F
HG

I
KJ + =

so v viY cos sin sin2 2θ θ θ+ =e j , and v viY = sinθ .

FIG. P9.30

Then, from equation (3), v vO i= cosθ .

We did not need to write down an equation expressing conservation of mechanical energy. In the
problem situation, the requirement of perpendicular final velocities is equivalent to the condition of
elasticity.
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P9.31 The initial momentum of the system is 0. Thus,

1 20 10 0. .m v mBia f b g=  m s

and vBi = 8 33.  m s

K m m m

K m v m v m

i

f G B

= + =

= + = FHG
I
KJ

1
2

10 0
1
2

1 20 8 33
1
2

183

1
2

1
2

1 20
1
2

1
2

183

2 2

2 2

. . .

.

 m s  m s  m s

 m s

2 2

2 2

b g a fb g e j

b g a fb g e j

or v vG B
2 21 20 91 7+ =. .  m s2 2 (1)

From conservation of momentum,

mv m vG B= 1 20.a f
or v vG B= 1 20. (2)

Solving (1) and (2) simultaneously, we find

vG = 7 07.  m s  (speed of green puck after collision)

and vB = 5 89.  m s  (speed of blue puck after collision)

P9.32 We use conservation of momentum for the system of two vehicles
for both northward and eastward components.

For the eastward direction:

M MVf13 0 2 55 0. cos . m sb g = °

For the northward direction:

Mv MVi f2 2 55 0= °sin .

Divide the northward equation by the eastward equation to find:

v i2 13 0 55 0 18 6 41 5= °= =. tan . . . m s  m s  mi hb g

Thus, the driver of the north bound car was untruthful.

FIG. P9.32
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P9.33 By conservation of momentum for the system of the two billiard
balls (with all masses equal),

5 00 0 4 33 30 0

1 25

0 4 33 30 0

2 16

2 50 60 0

2

2

2

2

2

. . cos .

.

. sin .

.

. .

 m s  m s

 m s

 m s

 m s

 m s  at 

+ = °+

=

= °+

= −

= − °

b g

b g

v

v

v

v

fx

fx

fy

fy

fv FIG. P9.33

Note that we did not need to use the fact that the collision is perfectly elastic.

P9.34 (a) p pi f= so p pxi xf=

and p pyi yf=

mv mv mvi = +cos cosθ φ (1)

0 = +mv mvsin sinθ φ (2)

From (2), sin sinθ φ= −

so θ φ= −

Furthermore, energy conservation for the system
of two protons requires

1
2

1
2

1
2

2 2 2mv mv mvi = +

so v
vi=
2

FIG. P9.34

(b) Hence, (1) gives v
v

i
i=

2
2

cosθ
θ = °45 0. φ = − °45 0.

P9.35 m m m mi i f1 1 2 2 1 2v v v+ = +b g : 3 00 5 00 6 00 5 00. . . .a fi j v− =

v i j= −3 00 1 20. .e j m s

P9.36 x-component of momentum for the system of the two objects:
p p p pix ix fx fx1 2 1 2+ = + : − + = +mv mv mvi i x3 0 3 2

y-component of momentum of the system: 0 0 31 2+ = − +mv mvy y

by conservation of energy of the system: + + = + +
1
2

1
2

3
1
2

1
2

32 2
1
2

2
2

2
2mv mv mv m v vi i y x ye j

we have v
v

x
i

2
2
3

=

also v vy y1 23=

So the energy equation becomes 4 9
4

3
32

2
2

2

2
2v v

v
vi y

i
y= + +

8
3

12
2

2
2v

vi
y=

or v
v

y
i

2
2
3

=

continued on next page
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(a) The object of mass m has final speed v v vy y i1 23 2= =

and the object of mass 3 m moves at v v
v v

x y
i i

2
2

2
2

2 24
9

2
9

+ = +

v v vx y i2
2

2
2 2

3
+ =

(b) θ =
F
HG
I
KJ

−tan 1 2

2

v

v
y

x
θ =

F
HG

I
KJ = °−tan .1 2

3
3

2
35 3

v
v

i

i

P9.37 m0
2717 0 10= × −.  kg vi = 0  (the parent nucleus)

m1
275 00 10= × −.  kg v j1

66 00 10= ×.  m s

m2
278 40 10= × −.  kg v i2

64 00 10= ×.  m s

(a) m m m1 1 2 2 3 3 0v v v+ + =
where m m m m3 0 1 2

273 60 10= − − = × −.  kg FIG. P9.37

5 00 10 6 00 10 8 40 10 4 00 10 3 60 10 0

9 33 10 8 33 10

27 6 27 6 27
3

3
6 6

. . . . .

. .

× × + × × + × =

= − × − ×

− − −e je j e je j e j
e j

j i v

v i j  m s

(b) E m v m v m v= + +
1
2

1
2

1
21 1

2
2 2

2
3 3

2

E

E

= × × + × × + × ×L
NM

O
QP

= ×

− − −

−

1
2

5 00 10 6 00 10 8 40 10 4 00 10 3 60 10 12 5 10

4 39 10

27 6 2 27 6 2 27 6 2

13

. . . . . .

.

e je j e je j e je j
 J

Section 9.5 The Center of Mass

P9.38 The x-coordinate of the center of mass is

x
m x
m

x

i i

i
CM

CM

 kg  kg  kg  kg
= =

+ + +
+ + +

=

∑
∑

0 0 0 0
2 00 3 00 2 50 4 00

0

. . . .b g

and the y-coordinate of the center of mass is

y
m y
m

y

i i

i
CM

CM

 kg  m  kg  m  kg  kg  m

 kg  kg  kg  kg

 m

= =
+ + + −

+ + +

=

∑
∑

2 00 3 00 3 00 2 50 2 50 0 4 00 0 500

2 00 3 00 2 50 4 00

1 00

. . . . . . .

. . . .

.

b ga f b ga f b ga f b ga f
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P9.39 Take x-axis starting from the oxygen nucleus and pointing toward the
middle of the V.

Then yCM = 0

and x
m x
m

i i

i
CM = =∑

∑

x

x

CM

CM

 u 0.100 nm  u 0.100 nm
 u  u  u

 nm from the oxygen nucleus

=
+ °+ °

+ +

=

0 1 008 53 0 1 008 53 0
15 999 1 008 1 008

0 006 73

. cos . . cos .
. . .

.

a f a f
FIG. P9.39

*P9.40 Let the x axis start at the Earth’s center and point toward the Moon.

x
m x m x

m mCM

 kg 0  kg  m

 kg

 m from the Earth’s center

=
+
+

=
× + × ×

×

= ×

1 1 2 2

1 2

24 22 8

24

6

5 98 10 7 36 10 3 84 10

6 05 10

4 67 10

. . .

.

.

e j

The center of mass is within the Earth, which has radius 6 37 106. ×  m.

P9.41 Let A1  represent the area of the bottom row of squares, A2

the middle square, and A3  the top pair.

A A A A
M M M M
M
A

M
A

= + +
= + +

=

1 2 3

1 2 3

1

1

A1 300=  cm2 , A2 100=  cm2 , A3 200=  cm2 , A = 600 cm2

M M
A
A

M
M

M M
A
A

M
M

M M
A
A

M
M

1
1

2
2

3
3

300
600 2

100
600 6

200
600 3

= FHG
I
KJ = =

= FHG
I
KJ = =

= FHG
I
KJ = =

 cm
 cm

 cm
 cm

 cm
 cm

2

2

2

2

2

2

FIG. P9.41

x
x M x M x M

M

M M M

M
x

y
M M M

M
y

CM

CM

CM

CM

 cm  cm  cm

 cm

 cm  cm  cm
 cm

 cm

=
+ +

=
+ +

=

=
+ +

=

=

1 1 2 2 3 3
1
2

1
6

1
3

1
2

1
6

1
3

15 0 5 00 10 0

11 7

5 00 15 0 25 0
13 3

13 3

. . .

.

. . .
.

.
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*P9.42 (a) Represent the height of a particle of mass dm within the object as y. Its contribution to the
gravitational energy of the object-Earth system is dm gya f . The total gravitational energy is

U gy dm g y dmg = =z z
all mass

. For the center of mass we have y
M

y dmCM = z1
, so U gMyg = CM .

(b) The volume of the ramp is 
1
2

3 6 15 7 64 8 1 83 103. . . . m  m  m  m3a fa fa f = × . Its mass is

ρV = × = ×3 800 1 83 10 6 96 103 6 kg m  m  kg3 3e je j. . . Its center of mass is above its base by one-

third of its height, yCM  m  m= =
1
3

15 7 5 23. . . Then

U Mgyg = = × = ×CM
2 kg  m s  m  J6 96 10 9 8 5 23 3 57 106 8. . . .e j .

P9.43 (a) M dx x dx= = +z zλ
0

0 300

0

0 300

50 0 20 0
. .

. .
 m

2
 m

 g m  g m

M x x= + =50 0 10 0 15 92
0

0 300
. . .

.
 g m  g m  g2  m

(b) x

xdm

M M
xdx

M
x x dxCM

all mass
 m

2
 m

 g m  g m= = = +
z

z z1 1
50 0 20 0

0

0 300
2

0

0 300

λ
. .

. .

x x
x

CM

2  m

 g
 g m

 g m
 m= +

L
NMM

O
QPP

=
1

15 9
25 0

20
3

0 1532
3

0

0 300

.
. .

.

*P9.44 Take the origin at the center of curvature. We have L r=
1
4

2π ,

r
L

=
2
π

. An incremental bit of the rod at angle θ from the x axis has

mass given by 
dm
rd

M
Lθ

= , dm
Mr
L

d= θ  where we have used the

definition of radian measure. Now

y
M

y dm
M

r
Mr
L

d
r
L

d

L
L

L L

CM
all mass

= = =

= FHG
I
KJ − = +

F
HG

I
KJ =

z z z
= °

°

°

°

°

°

1 1

2 1 4 1
2

1
2

4 2

45

135 2

45

135

2

45

135

2 2

sin sin

cos

θ θ θ θ

π
θ

π π

θ

a f

x

y

θ

FIG. P9.44

The top of the bar is above the origin by r
L

=
2
π

, so the center of mass is below the middle of the bar

by 
2 4 2 2

1
2 2

0 063 52
L L

L L
π π π π

− = −
F
HG

I
KJ = . .
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Section 9.6 Motion of a System of Particles

P9.45 (a) v
v v v

i j i j

CM

 kg  m s  m s  kg  m s  m s

 kg

= =
+

=
− + +

∑m
M

m m
M

i i 1 1 2 2

2 00 2 00 3 00 3 00 1 00 6 00

5 00

. . . . . .

.

b ge j b ge j

v i jCM  m s= +1 40 2 40. .e j

(b) p v i j i j= = + = + ⋅M CM  kg  m s  kg m s5 00 1 40 2 40 7 00 12 0. . . . .b ge j e j

P9.46 (a) See figure to the right.

(b) Using the definition of the position vector at the center of mass,

r
r r

r

r i j

CM

CM

CM

 kg  m  2.00 m  kg  m,   m

 kg  kg

 m

=
+
+

=
+ − −

+

= − −

m m
m m
1 1 2 2

1 2

2 00 1 00 3 00 4 00 3 00

2 00 3 00

2 00 1 00

. . , . . .

. .

. .

b ga f b ga f

e j
FIG. P9.46

(c) The velocity of the center of mass is

v
P v v

v i j

CM

CM

 kg  m s  m s  kg  m s  m s

 kg  kg

 m s

= =
+
+

=
+ −

+

= −

M
m m

m m
1 1 2 2

1 2

2 00 3 00 0 50 3 00 3 00 2 00

2 00 3 00

3 00 1 00

. . , . . . , .

. .

. .

b gb g b gb g
b g

e j

(d) The total linear momentum of the system can be calculated as P v= M CM

or as P v v= +m m1 1 2 2

Either gives P i j= − ⋅15 0 5 00. .e j kg m s

P9.47 Let x =  distance from shore to center of boat
=  length of boat
′ =x  distance boat moves as Juliet moves toward Romeo

The center of mass stays fixed.

Before: x
M x M x M x

M M M

b J R

B J R
CM =

+ − + +

+ +
2 2c h c h

d i

After: x
M x x M x x M x x

M M M

B J R

B J R
CM =

− ′ + + − ′ + + − ′

+ +

a f c h c h
d i

2 2

FIG. P9.47

− +F
HG

I
KJ = ′ − − − + +

′ = = =

55 0
2

77 0
2

80 0 55 0 77 0
2

55 0 77 0

55 0
212

55 0 2 70
212

0 700

. .
. . . . .

. . .
.

x

x

a f a f
a f

 m
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P9.48 (a) Conservation of momentum for the two-ball system gives us:

0 200 1 50 0 300 0 400 0 200 0 3001 2. . . . . . kg  m s  kg  m s  kg  kg b g b g+ − = +v vf f

Relative velocity equation:

v vf f2 1 1 90− = .  m s

Then 0 300 0 120 0 200 0 300 1 901 1. . . . .− = + +v vf fd i
v f1 0 780= − .  m s v f2 1 12= .  m s

v i1 0 780f = − .  m s v i2 1 12f = .  m s

(b) Before, v
i i

CM
 kg  m s  kg  m s

 kg
=

+ −0 200 1 50 0 300 0 400

0 500

. . . .

.
b gb g b gb g

v iCM  m s= 0 360.b g
Afterwards, the center of mass must move at the same velocity, as momentum of the system
is conserved.

Section 9.7 Rocket Propulsion

P9.49 (a) Thrust = v
dM
dte Thrust = × × = ×2 60 10 1 50 10 3 90 103 4 7. . . m s  kg s  Ne je j

(b) F Mg May∑ = − =Thrust : 3 90 10 3 00 10 9 80 3 00 107 6 6. . . .× − × = ×e ja f e ja
a = 3 20.  m s2

*P9.50 (a) The fuel burns at a rate
dM
dt

= = × −12 7
6 68 10 3.

.
 g

1.90 s
 kg s

Thrust = v
dM
dte : 5 26 6 68 10 3. . N  kg s= × −ve e j

ve = 787 m s

(b) v v v
M
Mf i e

i

f
− =

F
HG
I
KJln : v f − =

+
+ −

F
HG

I
KJ0 797

53 5 25 5
25 5 12 7

 m s
 g  g

53.5 g  g  g
b g ln . .

. .

v f = 138 m s

P9.51 v v
M
Me

i

f
= ln

(a) M e Mi
v v

f
e= M ei = × = ×5 3 53 00 10 4 45 10. . kg  kge j

The mass of fuel and oxidizer is ∆M M Mi f= − = − × =445 3 00 10 4423.a f  kg  metric tons

(b) ∆M e= − =2 3 00 3 00 19 2. . . metric tons  metric tons  metric tonsa f
Because of the exponential, a relatively small increase in fuel and/or engine efficiency causes
a large change in the amount of fuel and oxidizer required.
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P9.52 (a) From Equation 9.41, v v
M
M

v
M

Me
i

f
e

f

i
− =

F
HG
I
KJ = −

F
HG
I
KJ0 ln ln

Now, M M ktf i= − , so v v
M kt

M
v

k
M

te
i

i
e

i
= −

−F
HG

I
KJ = − −

F
HG

I
KJln ln 1

With the definition, T
M
kp

i≡ , this becomes

v t v
t

Te
p

a f = − −
F
HG
I
KJln 1

(b) With ve = 1 500 m s, and Tp = 144 s , v
t

= − −FHG
I
KJ1 500 1

144
 m s

 s
b g ln

t s va f b gm s
0 0
20 224
40 488
60 808
80 1220

100 1780
120 2690
132 3730
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2500
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0
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3500
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FIG. P9.52(b)

(c) a t
dv
dt

d v

dt
v

T
v
T

e
t

T

e t
T p

e

p
t

T

p

p p

a f = =
− −FH IKL
NM

O
QP = −

−

F
H
GG
I
K
JJ −
F
HG
I
KJ =
F
HG
I
KJ −

F
H
GG
I
K
JJ

ln 1 1
1

1 1
1

, or

a t
v

T t
e

p
a f =

−

(d) With ve = 1 500 m s, and Tp = 144 s , a
t

=
−

1 500
144

 m s
 s

t s aa f e jm s
0 10.4
20 12.1
40 14.4
60 17.9
80 23.4

100 34.1
120 62.5
132 125

2 a (m/s2)

100
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0
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FIG. P9.52(d)

continued on next page
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(e) x t vdt v
t

T
dt v T

t
T

dt
T

t

e
p

t

e p
p p

t

a f = + = − −
F
HG
I
KJ

L
N
MM

O
Q
PP = −

L
N
MM
O
Q
PP −
F
HG
I
KJz z z0 1 1

0 0 0

ln ln

x t v T
t

T
t

T
t

T

x t v T t
t

T
v t

e p
p p p

t

e p
p

e

a f

a f e j

= −
F
HG
I
KJ −
F
HG
I
KJ − −
F
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I
KJ

L
N
MM

O
Q
PP

= − −
F
HG
I
KJ +

1 1 1

1

0

ln

ln

(f) With ve = =1 500 1 50 m s  km s. , and Tp = 144 s ,

x t
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t= − −FHG
I
KJ +1 50 144 1

144
1 50. ln .a f

t xs km
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FIG. P9.52(f)

*P9.53 The thrust acting on the spacecraft is

F ma∑ = : F∑ = × = ×− −3 500 2 50 10 9 80 8 58 106 2 kg  m s  N2b ge je j. . .

thrust = FHG
I
KJ

dM
dt

ve : 8 58 10
3 600

702. × =
F
HG

I
KJ

−  N
 s

 m s
∆M b g

∆M = 4 41.  kg
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Additional Problems

P9.54 (a) When the spring is fully compressed, each cart moves with same velocity v. Apply
conservation of momentum for the system of two gliders

p pi f= : m m m m1 1 2 2 1 2v v v+ = +b g v
v v

=
+
+

m m
m m

1 1 2 2

1 2

(b) Only conservative forces act, therefore ∆E = 0 .
1
2

1
2

1
2

1
21 1

2
2 2

2
1 2

2 2m v m v m m v kxm+ = + +b g

Substitute for v from (a) and solve for xm .

x
m m m v m m m v m v m v m m v v

k m m

x
m m v v v v

k m m
v v

m m
k m m

m

m

2 1 2 1 1
2

1 2 2 2
2

1 1
2

2 2
2

1 2 1 2

1 2

1 2 1
2

2
2

1 2

1 2
1 2

1 2

1 2

2

2

=
+ + + − − −

+

=
+ −

+
= −

+

b g b g b g b g
b g

e j
b g b g b g

(c) m m m mf f1 1 2 2 1 1 2 2v v v v+ = +

Conservation of momentum: m mf f1 1 1 2 2 2v v v v− = −d i d i (1)

Conservation of energy:
1
2

1
2

1
2

1
21 1

2
2 2

2
1 1

2
2 2

2m v m v m v m vf f+ = +

which simplifies to: m v v m v vf f1 1
2

1
2

2 2
2

2
2− = −e j e j

Factoring gives m mf f f f1 1 1 1 1 2 2 2 2 2v v v v v v v v− ⋅ + = − ⋅ +d i d i d i d i
and with the use of the momentum equation (equation (1)),

this reduces to v v v v1 1 2 2+ = +f fd i d i
or v v v v1 2 2 1f f= + − (2)

Substituting equation (2) into equation (1) and simplifying yields:

v v v2
1

1 2
1

2 1

1 2
2

2
f

m
m m

m m
m m

=
+

F
HG

I
KJ +

−
+

F
HG

I
KJ

Upon substitution of this expression for v2 f  into equation 2, one finds

v v v1
1 2

1 2
1

2

1 2
2

2
f

m m
m m

m
m m

=
−
+

F
HG

I
KJ +

+
F
HG

I
KJ

Observe that these results are the same as Equations 9.20 and 9.21, which should have been
expected since this is a perfectly elastic collision in one dimension.
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P9.55 (a) 60 0 4 00 120 60 0. . . kg  m s  kgb g a f= + v f

v if = 1 33.  m s

(b) Fy∑ = 0 : n − =60 0 9 80 0. . kg  m s2b g
f nk k= = =µ 0 400 588 235.  N  Na f
f ik = −235 N FIG. P9.55

(c) For the person, p I pi f+ =
mv Ft mvi f+ =

60 0 4 00 235 60 0 1 33

0 680

. . . .

.

 kg  m s  N  kg  m s

 s

b g a f b g− =

=

t

t

(d) person: m mf iv v i− = − = − ⋅60 0 1 33 4 00 160. . . kg  m s  N sa f
cart: 120 1 33 0 160 kg  m s  N s.b g− = + ⋅ i

(e) x x v v tf i i f− = + = + =
1
2

1
2

4 00 1 33 0 680 1 81d i a f. . . . m s  s  m

(f) x x v v tf i i f− = + = + =
1
2

1
2

0 1 33 0 680 0 454d i b g. . . m s  s  m

(g)
1
2

1
2

1
2

60 0 1 33
1
2

60 0 4 00 4272 2 2 2
mv mvf i− = − = −. . . . kg  m s  kg  m s  Jb g b g

(h)
1
2

1
2

1
2

120 0 1 33 0 1072 2 2
mv mvf i− = − =. . kg  m s  Jb g

(i) The force exerted by the person on the cart must equal in magnitude and opposite in
direction to the force exerted by the cart on the person.  The changes in momentum of
the two objects must be equal in magnitude and must add to zero.  Their changes in
kinetic energy are different in magnitude and do not add to zero.  The following
represent two ways of thinking about ’why. ’  The distance the cart moves is different
from the distance moved by the point of application of the friction force to the cart.
The total change in mechanical energy for both objects together,   J,  becomes
+320 J of additional internal energy in this perfectly inelastic collision.

− 320

P9.56 The equation for the horizontal range of a projectile is R
v

g
i=
2 2sin θ

. Thus, with θ = °45 0. , the initial

velocity is

v Rg

I F t p mv

i

i

= = =

= = = −

200 9 80 44 3

0

 m  m s  m s2a fe j
a f

. .

∆ ∆

Therefore, the magnitude of the average force acting on the ball during the impact is:

F
mv

t
i= =

×

×
=

−

−∆

46 0 10 44 3

7 00 10
291

3

3

. .

.

 kg  m s

 s
 N

e jb g
.
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P9.57 We hope the momentum of the wrench provides enough recoil so that the astronaut can reach the
ship before he loses life support! We might expect the elapsed time to be on the order of several
minutes based on the description of the situation.
No external force acts on the system (astronaut plus wrench), so the total momentum is constant.
Since the final momentum (wrench plus astronaut) must be zero, we have final momentum = initial
momentum = 0.

m v m vwrench wrench astronaut astronaut+ = 0

Thus v
m v

mastronaut
wrench wrench

astronaut

 kg  m s

 kg
 m s= − = − = −

0 500 20 0

80 0
0 125

. .

.
.

b gb g

At this speed, the time to travel to the ship is

t = = =
30 0

240 4 00
.

.
 m

0.125 m s
 s  minutes

The astronaut is fortunate that the wrench gave him sufficient momentum to return to the ship in a
reasonable amount of time! In this problem, we were told that the astronaut was not drifting away
from the ship when he threw the wrench. However, this is not quite possible since he did not
encounter an external force that would reduce his velocity away from the ship (there is no air
friction beyond earth’s atmosphere). If this were a real-life situation, the astronaut would have to
throw the wrench hard enough to overcome his momentum caused by his original push away from
the ship.

P9.58 Using conservation of momentum from just before to just
after the impact of the bullet with the block:

mv M m vi f= +a f

or v
M m

m
vi f=

+F
HG

I
KJ (1)

The speed of the block and embedded bullet just after
impact may be found using kinematic equations:

d v tf=  and h gt=
1
2

2

Thus, t
h

g
=

2
 and v

d
t

d
g
h

gd
hf = = =

2 2

2

 

M 

v i 

m 

h 

d 

FIG. P9.58

Substituting into (1) from above gives v
M m

m
gd

hi =
+F

HG
I
KJ

2

2
.
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*P9.59 (a) Conservation of momentum:

0 5 2 3 1 1 5 1 2 3

0 5 1 3 8 1 5

0 5 1 5 4 0 5 1 5 4

1 5
0

2

2

. .

. .

. . . .

.

 kg  m s  kg  m s

 kg  m s  kg 

 kg m s  kg m s

 kg

i j k i j k

i j k v

v
i j k i j k

− + + − + −

= − + − +

=
− + − ⋅ + − + ⋅

=

e j e j
e j
e j e j

f

f

The original kinetic energy is

1
2

0 5 2 3 1
1
2

1 5 1 2 3 14 02 2 2 2 2 2. . . kg  m s  kg  m s  J2 2 2 2+ + + + + =e j e j

The final kinetic energy is 
1
2

0 5 1 3 8 0 18 52 2 2. . kg  m s  J2 2+ + + =e j  different from the original

energy so the collision is inelastic .

(b) We follow the same steps as in part (a):

− + − ⋅ = − + − +

=
− + − ⋅ + − + ⋅

= − + −

0 5 1 5 4 0 5 0 25 0 75 2 1 5

0 5 1 5 4 0 125 0 375 1

1 5

0 250 0 750 2 00

2

2

. . . . . .

. . . .

.

. . .

i j k i j k v

v
i j k i j k

i j k

e j e j
e j e j

e j

 kg m s  kg  m s  kg 

 kg m s  kg m s

 kg

 m s

f

f

We see v v2 1f f= , so the collision is perfectly inelastic .

(c) Conservation of momentum:

− + − ⋅ = − + + +

=
− + − ⋅ + − − ⋅

= − −

0 5 1 5 4 0 5 1 3 1 5

0 5 1 5 4 0 5 1 5 0 5

1 5

2 67 0 333

2

2

. . . .

. . . . .

.

. .

i j k i j k v

v
i j k i j k

k

e j e j
e j e j

a f

 kg m s  kg  m s  kg 

 kg m s  kg m s

 kg

 m s

a

a

a

f

f

Conservation of energy:

14 0
1
2

0 5 1 3
1
2

1 5 2 67 0 333

2 5 0 25 5 33 1 33 0 083 3

2 2 2 2

2 2

. . . . .

. . . . .

 J  kg  m s  kg  m s

 J  J

2 2 2 2= + + + +

= + + + +

a a

a a a

e j a f

0 0 333 1 33 6 167

1 33 1 33 4 0 333 6 167

0 667
2 74 6 74

2

2

= + −

=
− ± − −

= −

. . .

. . . .

.
. .

a a

a

a

a fa f

 or .  Either value is possible.

∴ =a 2 74. , v k k2 2 67 0 333 2 74 3 58f = − − = −. . . .a fc h  m s  m s

∴ = −a 6 74. , v k k2 2 67 0 333 6 74 0 419f = − − − = −. . . .a fc h  m s  m s
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P9.60 (a) The initial momentum of the system is zero, which
remains constant throughout the motion.
Therefore, when m1  leaves the wedge, we must
have

m v m v2 1 0wedge block+ =

or 3 00 0 500 4 00 0. . . kg  kg  m swedgeb g b gb gv + + =

so vwedge  m s= −0 667.

(b) Using conservation of energy for the block-wedge-
Earth system as the block slides down the smooth
(frictionless) wedge, we have

��������
��������

��������
��������

v = 4.00 m/sblock

vwedge

+x

FIG. P9.60

K U K K U K
i i f fblock system wedge block system wedge+ + = + +

or 0 0
1
2

4 00 0
1
2

0 6671 1
2

2
2+ + = +L

NM
O
QP + −m gh m m. .a f a f  which gives h = 0 952.  m .

*P9.61 (a) Conservation of the x component of momentum for the cart-bucket-water system:

mv m V vi + = +0 ρb g v
m V

m
vi =

+ ρ

(b) Raindrops with zero x-component of momentum stop in the bucket and slow its horizontal
motion. When they drip out, they carry with them horizontal momentum. Thus the cart
slows with constant acceleration.
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P9.62 Consider the motion of the firefighter during the three
intervals:

(1) before, (2) during, and (3) after collision with the
platform.

(a) While falling a height of 4.00 m, his speed changes
from vi = 0 to v1  as found from

∆E K U K Uf f i i= + − −d i b g , or

K E U K Uf f i i= − + +∆

When the initial position of the platform is taken as
the zero level of gravitational potential, we have

1
2

180 0 01
2mv fh mgh= ° − + +cosa f

Solving for v1  gives

 

v1

v2

FIG. P9.62

v
fh mgh

m1
2 2 300 4 00 75 0 9 80 4 00

75 0
6 81=

− +
=

− +
=

b g a f a fc h. . . .

.
.  m s

(b) During the inelastic collision, momentum is conserved; and if v2  is the speed of the
firefighter and platform just after collision, we have mv m M v1 2= +a f  or

v
m v

m M2
1 1 75 0 6 81

75 0 20 0
5 38=

+
=

+
=

. .
. .

.
a f

 m s

Following the collision and again solving for the work done by non-conservative forces,
using the distances as labeled in the figure, we have (with the zero level of gravitational
potential at the initial position of the platform):

∆E K U U K U Uf fg fs i ig is= + + − − − , or

− = + + − + − + − −fs m M g s ks m M v0
1
2

1
2

0 02 2a f a f a f

This results in a quadratic equation in s:

2 000 931 300 1 375 02s s s− + − =a f  or s = 1 00.  m
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*P9.63 (a) Each object swings down according to

mgR mv=
1
2 1

2 MgR Mv=
1
2 1

2 v gR1 2=

The collision: − + = + +mv Mv m M v1 1 2a f
v

M m
M m

v2 1=
−
+

Swinging up:
1
2

1 352
2M m v M m gR+ = + − °a f a f a fcos

v gR2 2 1 35= − °cosa f
2 1 35 2

0 425 0 425
1 425 0 575

0 403

gR M m M m gR

M m M m
m M

m
M

− ° + = −

+ = −
=

=

cos

. .

. .

.

a fa f a f

(b) No change is required if the force is different. The nature of the forces within the system of
colliding objects does not affect the total momentum of the system. With strong magnetic
attraction, the heavier object will be moving somewhat faster and the lighter object faster
still. Their extra kinetic energy will all be immediately converted into extra internal energy
when the objects latch together. Momentum conservation guarantees that none of the extra
kinetic energy remains after the objects join to make them swing higher.

P9.64 (a) Use conservation of the horizontal component of
momentum for the system of the shell, the cannon,
and the carriage, from just before to just after the
cannon firing.

p pxf xi= : m v m vshell shell cannon recoilcos .45 0 0°+ =

200 125 45 0 5 000 0a fa f b gcos . °+ =vrecoil

or vrecoil  m s= −3 54. FIG. P9.64

(b) Use conservation of energy for the system of the cannon, the carriage, and the spring from
right after the cannon is fired to the instant when the cannon comes to rest.

K U U K U Uf gf sf i gi si+ + = + + : 0 0
1
2

1
2

0 02+ + = + +kx mvmax recoil
2

x
mv

kmax
.

.
.= =

−

×
=recoil

2

 m  m
5 000 3 54

2 00 10
1 77

2

4

b ga f

(c) F kxs, max max = Fs, max  N m  m  N= × = ×2 00 10 1 77 3 54 104 4. . .e ja f

(d) No. The rail exerts a vertical external force (the normal force) on the cannon and prevents it
from recoiling vertically. Momentum is not conserved in the vertical direction. The spring
does not have time to stretch during the cannon firing. Thus, no external horizontal force is
exerted on the system (cannon, carriage, and shell) from just before to just after firing.
Momentum of this system is conserved in the horizontal direction during this interval.
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P9.65 (a) Utilizing conservation of
momentum,

m v m m v

v
m m

m
gh

v

A B

A

A

1 1 1 2

1
1 2

1

1

2

6 29

= +

=
+

≅

b g

.  m s

(b) Utilizing the two equations,

1
2

2gt y=  and x v tA= 1

we combine them to find

v
x

A y
g

1 2
=

 

x 

y 

v 1 i 

FIG. P9.65

From the data, v A1 6 16= .  m s

Most of the 2% difference between the values for speed is accounted for by the uncertainty

in the data, estimated as 
0 01
8 68

0 1
68 8

1
263

1
257

0 1
85 3

1 1%
.
.

.
.

.
.

.+ + + + = .

*P9.66 The ice cubes leave the track with speed determined by mgy mvi =
1
2

2;

v = =2 9 8 1 5 5 42. . . m s  m  m s2e j .

Its speed at the apex of its trajectory is 5 42 40 4 15. cos . m s  m s°= . For its collision with the wall we
have

mv F t mv

F t

F t

i f+ =

+ = −FHG
I
KJ

= − × ⋅−

∆

∆

∆

0 005 4 15 0 005
1
2

4 15

3 12 10 2

. . . .

.

 kg  m s  kg  m s

 kg m s

The impulse exerted by the cube on the wall is to the right, + × ⋅−3 12 10 2.  kg m s. Here F could refer
to a large force over a short contact time. It can also refer to the average force if we interpret ∆t  as
1

10
 s, the time between one cube’s tap and the next’s.

Fav
 kg m s
 s

 N to the right=
× ⋅

=
−3 12 10

0 1
0 312

2.
.

.
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P9.67 (a) Find the speed when the bullet emerges from the
block by using momentum conservation:

mv MV mvi i= +

The block moves a distance of 5.00 cm. Assume for
an approximation that the block quickly reaches its
maximum velocity, Vi , and the bullet kept going
with a constant velocity, v. The block then
compresses the spring and stops.

400 m/s

5.00 cm v

  

  

FIG. P9.67
1
2

1
2

900 5 00 10

1 00
1 50

5 00 10 400 1 00 1 50

5 00 10

100

2 2

2 2

3

3

MV kx

V

v
mv MV

m

v

i

i

i i

=

=
×

=

=
−

=
× −

×

=

−

−

−

 N m  m

 kg
 m s

 kg  m s  kg  m s

 kg

 m s

b ge j

e jb g b gb g

.

.
.

. . .

.

(b) ∆ ∆ ∆E K U= + = × − ×

+ ×

− −

−

1
2

5 00 10 100
1
2

5 00 10 400

1
2

900 5 00 10

3 2 3 2

2 2

. .

.

 kg  m s  kg  m s

 N m  m

e jb g e jb g

b ge j
∆E = −374 J, or there is an energy loss of 374 J .

*P9.68 The orbital speed of the Earth is

v
r

TE 7
 m

3.156 10  s
 m s= =

×
×

= ×
2 2 1 496 10

2 98 10
11

4π π .
.

In six months the Earth reverses its direction, to undergo
momentum change

S
CM

E

FIG. P9.68

m m vE E E E  kg  m s  kg m s∆v = = × × = × ⋅2 2 5 98 10 2 98 10 3 56 1024 4 25. . .e je j .

Relative to the center of mass, the sun always has momentum of the same magnitude in the
opposite direction. Its 6-month momentum change is the same size, mS S  kg m s∆v = × ⋅3 56 1025. .

Then ∆vS
 kg m s

 kg
 m s=

× ⋅

×
=

3 56 10
1 991 10

0 179
25

30

.
.

. .
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P9.69 (a) p F pi ft+ = : 3 00 7 00 12 0 5 00 3 00. . . . . kg  m s  N  s  kgb gb g e ja f b gj i v+ = f

v i jf = +20 0 7 00. .e j m s

(b) a
v v

=
−f i

t
: a

i j j
i=

+ −
=

20 0 7 00 7 00

5 00
4 00

. . .

.
.

e j m s

 s
 m s2

(c) a
F

= ∑
m

: a
i

i= =
12 0

4 00
.

.
 N

3.00 kg
 m s2

(d) ∆r v a= +it t
1
2

2 : ∆r j i= +7 00 5 00
1
2

4 00 5 00 2. . . . m s  s  m s  s2e ja f e ja f
∆r i j= +50 0 35 0. .e j m

(e) W = ⋅F r∆ : W = ⋅ + =12 0 50 0 35 0 600. . . N  m  m  Ji i je j e j

(f)
1
2

1
2

3 00 20 0 7 00 20 0 7 002mv f = + ⋅ +. . . . . kg  m s2 2b ge j e ji j i j

1
2

1 50 449 6742mv f = =.  kg  m s  J2 2b ge j

(g)
1
2

1
2

3 00 7 00 600 6742 2
mv Wi + = + =. . kg  m s  J  Jb gb g

P9.70 We find the mass from M t= −360 2 50 kg  kg s.b g .

We find the acceleration from a
M

v dM dt

M M M
e= = = =

Thrust  m s  kg s  N1 500 2 50 3 750b gb g.

We find the velocity and position according to Euler,
from v v a tnew old= + ∆a f
and x x v tnew old= + ∆a f
If we take ∆t = 0 132.  s , a portion of the output looks like this:

Time Total mass Acceleration Speed, v Position
t(s) (kg) a m s2e j (m/s) x(m)

0.000 360.00 10.4167 0.0000 0.0000
0.132 359.67 10.4262 1.3750 0.1815
0.264 359.34 10.4358 2.7513 0.54467

...
65.868 195.330 19.1983 916.54 27191
66.000 195.000 19.2308 919.08 27312
66.132 194.670 19.2634 921.61 27433

...
131.736 30.660 122.3092 3687.3 152382
131.868 30.330 123.6400 3703.5 152871
132.000 30.000 125.0000 3719.8 153362

(a) The final speed is v f = 3 7.  km s

(b) The rocket travels 153 km
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P9.71 The force exerted by the table is equal to the change in momentum
of each of the links in the chain.

By the calculus chain rule of derivatives,

F
dp
dt

d mv
dt

v
dm
dt

m
dv
dt1 = = = +

a f
.

We choose to account for the change in momentum of each link by
having it pass from our area of interest just before it hits the table,
so that

FIG. P9.71

v
dm
dt

≠ 0  and m
dv
dt

= 0 .

Since the mass per unit length is uniform, we can express each link of length dx as having a mass dm:

dm
M
L

dx= .

The magnitude of the force on the falling chain is the force that will be necessary to stop each of the
elements dm.

F v
dm
dt

v
M
L

dx
dt

M
L

v1
2= = FHG

I
KJ = FHG

I
KJ

After falling a distance x, the square of the velocity of each link v gx2 2=  (from kinematics), hence

F
Mgx
L1

2
= .

The links already on the table have a total length x, and their weight is supported by a force F2:

F
Mgx

L2 = .

Hence, the total force on the chain is

F F F
Mgx
Ltotal = + =1 2

3
.

That is, the total force is three times the weight of the chain on the table at that instant.
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P9.72 A picture one second later differs by showing five extra kilograms of sand moving on the belt.

(a)
∆
∆
p
t
x = =

5 00 0 750

1 00
3 75

. .

.
.

 kg  m s

 s
 N

b gb g

(b) The only horizontal force on the sand is belt friction,

so from p f t pxi xf+ =∆ this is f
p
t
x= =

∆
∆

3 75.  N

(c) The belt is in equilibrium:

F max x∑ = : + − =F fext 0 and Fext  N= 3 75.

(d) W F r= = °=∆ cos . cos .θ 3 75 0 2 81 N 0.750 m  Ja f

(e)
1
2

1
2

5 00 0 750 1 412 2
∆m va f b g= =. . . kg  m s  J

(f) Friction between sand and belt converts half of the input work into extra internal energy.

*P9.73 x
m x
m

m R m

m m

m R

m m
i i

i
CM = =

+ +

+
=

+

+
∑
∑

1 2 2

1 2

1 2

1 2

0c h a f c h y

x

R 2

FIG. P9.73

ANSWERS TO EVEN PROBLEMS

P9.2 (a) 0; (b) 1 06.  kg m s⋅ ; upward P9.20 0 556.  m

P9.22 1.78 kN on the truck driver; 8.89 kN in the
opposite direction on the car driver

P9.4 (a) 6 00.  m s  to the left; (b) 8.40 J

P9.6 The force is 6.44 kN
P9.24 v

M
m

g=
4

P9.8 1 39.  kg m s  upward⋅

P9.26 7.94 cmP9.10 (a) 5 40.  N s⋅  toward the net; (b) −27 0.  J

P9.28 (a) 2 88.  m s  at 32.3°; (b) 783 J becomes
internal energy

P9.12 ~103  N upward

P9.14 (a) and (c) see the solution; (b) small;
P9.30 v viY = sinθ ; v vO i= cosθ(d) large; (e) no difference

P9.32 No; his speed was 41 5.  mi hP9.16 1 67.  m s

P9.34 (a) v
vi=
2

; (b) 45.0° and –45.0°P9.18 (a) 2 50.  m s ; (b) 3 75 104. ×  J
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P9.36 (a) 2vi ; 
2
3

vi ; (b) 35.3° (c) v v v1
1 2

1 2
1

2

1 2
2

2
f

m m
m m

m
m m

=
−
+

F
HG

I
KJ +

+
F
HG

I
KJ ;

v v v2
1

1 2
1

2 1

1 2
2

2
f

m
m m

m m
m m

=
+

F
HG

I
KJ +

−
+

F
HG

I
KJP9.38 0 1 00, .  ma f

P9.40 4 67 106. ×  m from the Earth’s center P9.56 291 N

P9.42 (a) see the solution; (b) 3 57 108. ×  J
P9.58

M m
m

gd
h

+F
HG

I
KJ

2

2P9.44 0 063 5. L

P9.60 (a) −0 667.  m s; (b) 0.952 m
P9.46 (a) see the solution;

(b) − −2 00 1 00. , . m   ma f; P9.62 (a) 6 81.  m s; (b) 1.00 m
(c) 3 00 1 00. .i j−e j m s ;

P9.64 (a) −3 54.  m s; (b) 1.77 m; (c) 35.4 kN;
(d) 15 0 5 00. .i j− ⋅e j kg m s (d) No. The rails exert a vertical force to

change the momentum
P9.48 (a) −0 780. i m s ; 1 12. i m s; (b) 0 360. i m s

P9.66 0.312 N to the right

P9.50 (a) 787 m s; (b) 138 m s
P9.68 0 179.  m s

P9.52 see the solution P9.70 (a) 3 7.  km s ; (b) 153 km

P9.54 (a) 
m m

m m
1 1 2 2

1 2

v v+
+

; P9.72 (a) 3.75 N to the right; (b) 3.75 N to the
right; (c) 3.75 N; (d) 2.81 J; (e) 1.41 J;

(b) v v
m m

k m m1 2
1 2

1 2
−

+
b g b g ;

(f) Friction between sand and belt converts
half of the input work into extra internal
energy.


