Linear Momentum and Impulse

Linear Momentum

- Linear momentum (p) is a vector
- p is parallel to v
- Unit: kg•m/s
- The net momentum of a collection of objects is the vector sum of the momentum of each object

$$
\begin{aligned}
\vec{p} & =\vec{p}_{1}+\vec{p}_{2}+\vec{p}_{3}+\ldots \\
& =m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+m_{3} \vec{v}_{3}+\ldots
\end{aligned}
$$

Momentum problem

A bullet of mass 0.005 kg moving at a speed of 100 m / s lodges within a 1-kg block of wood resting on a frictionless surface and attached to a horizontal spring of $k=50 \mathrm{~N} / \mathrm{m}$.
a) What is the velocity of the block the instant after the bullet strikes it?

$$
m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}^{\prime}+m_{2} v_{2}^{\prime}
$$

$$
m_{1} v_{1}+0=\left(m_{1}+m_{2}\right) v^{\prime}
$$

$$
v^{\prime}=\frac{m_{1} v_{1}}{m_{1}+m_{2}}
$$

$$
=\frac{(0.005 \mathrm{~kg})(100 \mathrm{~m} / \mathrm{s})}{0.005 \mathrm{~kg}+1.00 \mathrm{~kg}}
$$

$$
=0.50 \mathrm{~m} / \mathrm{s}
$$

Momentum problem

A bullet of mass 0.005 kg moving at a speed of $100 \mathrm{~m} / \mathrm{s}$ lodges within a 1-kg block of wood resting on a frictionless surface and attached to a horizontal spring of $\mathrm{k}=50 \mathrm{~N} / \mathrm{m}$.

$$
E_{T}=E_{T}
$$

b) What is the maximum

$$
\frac{1}{2} m v^{2}=\frac{1}{2} k x^{2}
$$ compression of the spring?

$$
x=\sqrt{\frac{m v^{2}}{k}}
$$

$$
=\sqrt{\frac{(1.005 \mathrm{~kg})(0.5 \mathrm{~m} / \mathrm{s})^{2}}{50 \mathrm{~N} / \mathrm{m}}}
$$

$$
=0.07 \mathrm{~m}
$$

Force and momentum

The time rate of change of the momentum of a particle is equal to the net force acting on the particle.

"Let the time rate of change of momentum be with you."

Force and momentum

- In general, force and momentum are related as:

$$
\vec{F}_{n e t}=\frac{d \vec{p}}{d t}=\frac{d}{d t}(m \vec{v})=m \frac{d \vec{v}}{d t}+\vec{v} \frac{d m}{d t}
$$

- When the mass is constant, this becomes the familiar equation:

$$
\vec{F}_{n e t}=m \frac{d \vec{v}}{d t}=m \vec{a}
$$

Non-constant mass

- Mass changes for rockets, bags of sand (with holes in them), and other special cases.

See below for a changing mass: http://eepybird.com/dcm1.html

Changing mass problem

A rocket whose initial mass is 850 kg consumes fuel at the rate of $2.3 \mathrm{~kg} / \mathrm{s}$. The speed of the exhaust gases relative to the rocket engine is $2800 \mathrm{~m} / \mathrm{s}$.

What thrust does the rocket engine provide?

$$
\begin{aligned}
\vec{F}_{n e t} & =\frac{d \vec{p}}{d t}=m \frac{d \vec{v}}{d t}+\vec{v} \frac{d m}{d t} \\
& =0+\vec{v} \frac{d m}{d t} \\
& =(2800 \mathrm{~m} / \mathrm{s})(2.3 \mathrm{~kg} / \mathrm{s}) \\
& =6440 \mathrm{~N}
\end{aligned}
$$

Impulse

Impulse (J) is a change in momentum.
Start with Newton's second Law:

Which can be written as:

$$
d \vec{p}=\vec{F}(t) d t
$$

Integrate with respect to time to find the change in momentum:

Impulse

A 2.0 kg toy car travels at $0.50 \mathrm{~m} / \mathrm{s}$ East before a turn and at $0.40 \mathrm{~m} / \mathrm{s}$ South after the turn.
What is the impulse (change in momentum) of the car due to the turn?

$$
\begin{aligned}
\vec{J} & =\Delta \vec{p}=\vec{p}_{f}-\vec{p}_{i} \\
& =m \vec{v}_{f}-m \vec{v}_{i} \\
& =m\left(\vec{v}_{f}-\vec{v}_{i}\right) \\
& =(2.0 \mathrm{~kg})[(-0.40 \mathrm{~m} / \mathrm{s}) \hat{j}-(0.50 \mathrm{~m} / \mathrm{s}) \hat{i}] \\
& =-(1.0 \hat{i}+0.8 \hat{j}) \mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Conservation of Linear Momentum

The linear momentum (p) of a system is conserved (does not change) unless the system experiences an external force.

Problem

An 80-kg lumberjack stands at one end of a floating $400-\mathrm{kg}$ log that is at rest relative to the shore of a lake.
If the lumberjack jogs to the other end of the log at $2 \mathrm{~m} / \mathrm{s}$ relative to the shore, what happens to the log while he is moving?

Elastic collision

In an elastic collision objects typically bounce, and NO energy is lost

- Momentum is conserved

$$
\vec{p}_{\text {before }}=\vec{p}_{\text {affer }}
$$

- Kinetic energy is conserved

$$
K_{\text {before }}=K_{\text {after }}
$$

Inelastic collision

In a totally inelastic collision, objects stick together.

- Momentum is conserved

$$
\vec{p}_{\text {before }}=\vec{p}_{\text {after }}
$$

- Energy is lost to sound, sparks, mechanical deformation, etc.

$$
K_{\text {before }} \neq K_{\text {affer }}
$$

Example of Inelastic collision:

Would you be safer in an old (heavy) 1959 Chevrolet Bel Air or in a newer (lighter) 2009 Chevy Malibu?
http://www.youtube.com/watch?v=fPF4fBGNK0U

Collision review

- Momentum is conserved in all collisions
- Elastic collisions: no deformation occurs
- Kinetic energy is also conserved
- Inelastic collisions: deformation occurs
- Kinetic energy is "lost"
- Perfectly inelastic collisions
- Objects stick together; kinetic energy is "lost"
- Explosions
- Reverse of perfectly inelastic collisions; kinetic energy is "gained"

Collision problem

Two skaters collide and embrace, in a completely inelastic collision. Dean, of mass 83 kg , is initially moving east with speed $6.2 \mathrm{~m} / \mathrm{s}$. Torvill, of mass 55 kg , is initially traveling north with speed $7.8 \mathrm{~m} / \mathrm{s}$.
What are the skaters' speed and direction after the collision?

$$
\begin{aligned}
& v=4.86 \mathrm{~m} / \mathrm{s} \approx 4.9 \mathrm{~m} / \mathrm{s} \\
& \theta=39.8^{\circ} \approx 40^{\circ}
\end{aligned}
$$

