
Linear Programming 3

Mathematical programming is concerned with the extremization of a function f
defined over an n-dimensional design space Rn and bounded by a set S in the de-
sign space. The set S may be defined by equality or inequality constraints, and
these constraints may assume linear or nonlinear forms. The function f together
with the set S in the domain of f is called a mathematical program or a mathemat-
ical programming problem. This terminology is in common usage in the context of
problems which arise in planning and scheduling which are generally studied under
operations research, the branch of mathematics concerned with decision making pro-
cesses. Mathematical programming problems may be classified into several different
categories depending on the nature and form of the design variables, constraint func-
tions, and the objective function. However, only two of these categories are of interest
to us, namely linear and nonlinear programming problems (commonly designated as
LP and NLP, respectively).

The term linear programming (LP) describes a particular class of extremization
problems in which the objective function and the constraint relations are linear func-
tions of the design variables. Because the necessary condition for an interior minimum
is the vanishing of the first derivative of the function with respect to the design vari-
ables, linear programming problems have a special feature. That is, the derivatives
of the objective function with respect to the variables are constants which are not
necessarily zeroes. This implies that the extremum of a linear programming problem
cannot be located in the interior of the feasible design space and, therefore, must lie on
the boundary of the design space described by the constraint relations. Since the con-
straint relations are also linear functions of the design variables the optimum design
must lie at the intersection of two or more constraint functions, unless the bounding
constraint is parallel to the contours of the objective function. This special feature of
the linear programming problems makes it possible to devise effective algorithms that
are suitable for reaching optimum solutions. Linear programming problems involving
large number of design variables and constraints are usually solved by an extremely
efficient and reliable method known as the simplex method.

Unfortunately, however, very few physically meaningful problems in structural
design, if any, can be formulated directly as LP problems without involving a degree
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of simplification. Most structural design problems involve highly nonlinear objective
function and constraint relations. Nevertheless, the category of LP is of interest to
us because of several reasons. First of all, many nonlinear constrained problems can
be approximated by linear ones which can be solved efficiently by using standard
LP algorithms. Using such approximations opens up a possibility for solving NLP
problems. That is, almost all NLP problems can be solved as a sequence of repetitive
approximate LP problems which converge to the exact solution of the original NLP
problem provided that the procedure is repeated enough number of times. This
powerful procedure is called sequential linear programming (SLP) and is discussed in
Chapter 6. Also, methods intended for nonlinear constrained problems often utilize
linear programming as an intermediate step. For example, Zoutendijk’s method of
feasible directions (see Chapter 5) employs a LP to generate a search direction.

Whether a given nonlinearly constrained problem in structural optimization can
be replaced by an approximately equivalent linearly constrained problem depends to
a great extent on the intuition of the designer and his knowledge and experience with
the given problem. Such approximations must usually be made so as not to alter the
overall character of the problem radically. The trade-off between a higher value of the
objective function attained because of the approximation and a lower computational
cost must be weighted carefully. Fortunately, there are a few classes of problems in
structural analysis and design in which such approximations have found to be indeed
reasonable. In the following sections some of those problems will be presented as
LP problems, and graphical solution of a simple LP problem will be demonstrated.
Next, the standard formulation of the mathematical LP problems will be presented,
and solution techniques for LP problems will be discussed. Finally, we would discuss
a special case of LP problems that require the design variables to assume values from
a set of discrete or integer values.

3.1 Limit Analysis and Design of Structures Formulated as LP Problems

In many structural design problems the initiation of yielding somewhere in the
structure is considered to be a criterion for failure, but this is not always reasonable.
In many cases we are not interested in the initiation of failure but in the maximum
load, called the limit load or the collapse load, that a structure may carry without
losing its functionality. The collapse load can be defined as the load required to
generate enough local plastic yield points (referred as plastic hinges for bending type
members) to cause the structure to become a mechanism and develop excessive de-
flections. While the exact calculation of the collapse load of a structure requires the
solution of a costly nonlinear problem, for ductile materials it is possible to obtain
a conservative estimate of that load by making the assumption that the material
behaves as an elastic-perfectly plastic material. That is, the material is assumed
to follow the stress-strain diagram shown in Fig. 3.1.1, yielding at stress level σ0

but functioning as a constant stress carrying medium beyond the elastic limit. It is
this important assumption that allows the limit analysis and design problems to be
formulated as LP problems.
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Figure 3.1.1 The stress-strain curve for an elastic-perfectly plastic material.

A simple example of a three bar truss is used in the following example to illustrate
the difference between the calculation of the load which initiates yielding and the
estimate of the collapse load.

Example 3.1.1

Figure 3.1.2 Collapse of a three bar truss subject to a single load.

We perform the collapse analysis of a three bar pin jointed truss under a vertical
load as shown in Fig. 3.1.2. All three bars have the same cross-sectional area A, and
are made of material having Young’s modulus E and yield stress σ0. We start by
calculating the load p at which the first bar yields. Denoting the vertical displacement
at the common joint D by v, we obtain the strains in the three members

εB =
v

l
, εA = εC =

v

4l
. (3.1.1)

The corresponding member forces are

nB =
EA

l
v, nA = nC =

EA

4l
v = 0.25nB . (3.1.2)

Using the two equations of equilibrium at joint D, we get

nA = nB, p = nB +
1

2
(nA + nC) = 1.25nB , (3.1.3)
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and the internal forces in the three members are determined as

nA = nC = 0.2p, nB = 0.8p . (3.1.4)

Clearly, as the load is increased from zero member B yields first, when

nB = σ0A, or p = 1.25Aσ0 . (3.1.5)

The structure does not collapse, however, at p = 1.25Aσ0 since members A and
C can still carry the applied load without experiencing excessive deformations. We
may increase the load until member A or C yields. Since we have assumed elastic-
perfectly plastic material behavior, the stress in member B will remain at σ0 as we
increase the load beyond the initial yield load. Due to the symmetry in this problem,
the next yielding takes place simultaneously in members nA and nC . Therefore, at
collapse all three members will be at the yield point so that

nA = nB = nC = Aσ0 , (3.1.6)

and from the equations of equilibrium Eq. (3.1.4) we have

p
collapse

= 2Aσ0 . (3.1.7)

This is a 60% increase over the load when first yielding starts. • • •

In example 3.1.1 it was easy to identify the sequence of yielding of the members
and determine the state of stress in the members at collapse. This fact permitted us to
determine the collapse load without difficulty. In general, it is not easy to determine
the combination of members that will yield at collapse, and the stress distribution at
the collapse is not known. Fortunately, it is possible to cast the problem as an LP
problem in order to determine the collapse load [1] based on a general theorem of
the theory of plasticity. This theorem is the lower bound theorem, and it is quoted
below from Calladine Ref. 2.

The Lower Bound Theorem: If any stress distribution throughout the structure
can be found which is everywhere in equilibrium internally and balances the external
loads, and at the same time does not violate the yield conditions, these loads will be
carried safely by the structure.

The application of this theorem will now be demonstrated for a problem where
the choice of stress at collapse is not as trivial as it was in example 3.1.1. We use the
same structure used in the previous example, but with an added horizontal load at
point D.
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Example 3.1.2

Figure 3.1.3 Limit analysis of a three bar truss subjected to two loads.

Consider the limit analysis of the three bar truss of Figure 3.1.3 under the com-
bined vertical and horizontal loads of equal magnitude, p. The equations of equilib-
rium in this case are

nB +
1

2
(nA + nC)− p = 0 ,

√
3

2
(nA − nC)− p = 0 ,

(3.1.8)

and we have the constraints

−Aσ0 ≤ nA, nB, nC ≤ Aσ0 . (3.1.9)

It is no longer easy to know which two of the three bars yield at the collapse. However,
we may try different combinations of nA, nB, and nC that satisfy the equations of
equilibrium in order to obtain a lower bound to the collapse load. For example, if we
try nC = 0, we obtain from the equilibrium relations (3.1.8)

nA =
2√
3
p = 1.155p, and nB = 0.423p . (3.1.10)

Clearly in this case nA reaches its yield value of Aσ0 before nB so that

nA = Aσ0, nB = 0.366Aσ0, and p =

√
3

2
Aσ0 = 0.866Aσ0 . (3.1.11)

Having satisfied all the requirements for the lower bound theorem, we thus know
that the collapse load is bounded below by 0.866Aσ0. We can now try different
combinations of member force distribution until we obtain a higher value of p than
the one obtained in Eq. (3.1.11). To get the best estimate, we cast the problem as a
maximization problem

maximize p

such that Eqs. (3.1.8) and Eqs. (3.1.9) are satisfied. (3.1.12)

This is clearly a LP problem in the variables nA, nB, nC and p , and may be solved
using any LP algorithm. It is also simple enough to admit a graphical solution if
required (see Exercise 1). • • •
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The general formulation of the calculation of the limit load for truss structures
is similar to the procedure used in example 3.1.2 . It is assumed that no part of the
truss structure fails by buckling before the plastic collapse load is reached. If we have
a truss structure with r members loaded by a system of loads λp, where p is a given
load vector and λ is a scalar, the limit load can be determined by finding the largest
value of λ that the structure can support. The equations of equilibrium are written
as

r∑
j=1

eijnj = λpi, i = 1, . . . ,m , (3.1.13)

where nj (j = 1, . . . , r) are the forces in each of the truss members, eij are direction
cosines, and m is the number of equilibrium equations. The yield constraints are
written as

AjσCj ≤ nj ≤ AjσTj , (3.1.14)

where Aj, σCj, and σTj are the cross-sectional areas, and the yield stresses in com-
pression and tension, respectively. The limit or collapse load is then the solution to
the following linear programming problem:

maximize λ

such that Eq. (3.1.13) and Eq. (3.1.14) are satisfied, (3.1.15)

where λ and the member forces nj are treated as the design variables.

A related problem is the problem of limit design where the collapse load is spec-
ified and the optimal cross-sectional areas are sought. Often, the objective is to
minimize the total mass of the structure

minimize m =
r∑

j=1

ρjAjlj , (3.1.16)

where ρj and lj are the mass density and the length of member j, respectively. The
minimization problem of Eq. (3.1.16) has the same set of constraints, Eqs. (3.1.13)
and (3.1.14), that applies to the limit analysis problem, but both nj and Aj are
treated as design variables. This time, however, the load amplitude λ is specified.

Example 3.1.3

Formulate the limit analysis and design of the five bar truss shown in Figure (3.1.4)
as linear programs. Assume that all bars are made of the same material and that
σC = −σT = σ0.

The vertical and horizontal equations of equilibrium at the unrestrained nodes of
the structure are

n13 +

√
2

2
n23 = 0, n24 +

√
2

2
n14 = 0 , (3.1.17a)

n34 +

√
2

2
n23 = 0, n34 +

√
2

2
n14 = p . (3.1.17b)
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Figure 3.1.4 Limit analysis and design of a five bar truss.

The yield constraints are

−A13σ0 ≤ n13 ≤ A13σ0, − A23σ0 ≤ n23 ≤ A23σ0 ,

−A14σ0 ≤ n14 ≤ A14σ0, − A24σ0 ≤ n24 ≤ A24σ0 , (3.1.18)

−A34σ0 ≤ n34 ≤ A34σ0 .

The limit load problem is specified as defined previously: maximize p, by varying
the member forces, such that the equations of equilibrium and the yield constraints
are satisfied. The limit design problem is

minimize
m

ρl
= A13 + A24 + A34 +

√
2(A14 + A23)

such that Eq. (3.1.17) and Eq. (3.1.18) are satisfied. (3.1.19)

For the limit design problem both the cross-sectional areas and the member forces
are treated as design variables. • • •

The analysis and design of structures that include members under bending may
be formulated as LP problems as in Refs. 3-5. Cohn, Ghosh, and Parimi [3] provide
an excellent unified approach to both the analysis and design of beams, frames, and
arches of given configurations under fixed, alternating, and variable repeated or shake-
down loadings. We focus our attention here only on simple examples in this class of
problems.

The basic hypothesis regarding the material is that the beam or frame is elastic-
perfectly plastic. The fully plastic moment, mp, of a beam cross-section is defined as
the bending moment, m, required to make the entire cross-section yield so as to form
a hinge with constant bending resistance.
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Example 3.1.4

Figure 3.1.5 Limit analysis of a two-span beam.

Limit analysis of bending members is illustrated by using a two-span continuous
beam under the loading shown in Figure 3.1.5. Following the general formulation
presented earlier, the limit load is the largest value of λ that the structure can support
without forming a mechanism. As in the case of Example 3.1.2 the sequence of
hinge formation to form a beam mechanism and the distribution of the bending
moments along the span of the beam is not obvious. In fact, there are infinitely
many statically admissible bending moment distributions that satisfy the equilibrium
equations. However, there are only two possible collapse mechanisms. The two
elementary mechanisms and the moment distribution for the beam are presented in
Figure 3.1.5.

The LP problem for the plastic analysis is

maximize λ

subject to −mp ≤ mi ≤ mp, i = 1, 2, 3 , (3.1.20)

where m1, m2, and , m3 are the magnitudes of the bending moment at those points
along the beam which have the potential to form plastic hinges; at these points
the bending moments have local maxima. These three moments are also unknowns
for the problem and need to be determined. At the onset of either of the collapse
mechanisms shown in Figure 3.1.5, we can write down two equations of equilibrium
by using the principle of virtual displacements. The basic assumption in writing the
virtual displacements is that the hinges in the figure are not plastic hinges, but are
introduced to permit the small displacements that are assumed to take place while
the members between them remain straight. The resulting equilibrium relations are

2m3θ
∗
1 + m2θ

∗
1 = 2λp(l/2)δ∗1 , (3.1.21)
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2m1θ
∗
2 + m2θ

∗
2 = λp(l/2)δ∗2 , (3.1.22)

where θ∗1, θ∗2 are the virtual rotations of the member at the expected plastic joints and
δ∗1, δ∗2 the virtual displacements of the beam under the load points. The virtual dis-
placements and the rotations are related to one another through kinematic relations,
and can be eliminated from the equations. Furthermore, using the two equilibrium
equations, we can eliminate the two variables, m1 and m3, to reduce the LP problem
of 3.1.20 to finding the λ and m2 such that

maximize λ

subject to −mp ≤ (
pl

4
λ− 1

2
m2) ≤ mp ,

−mp ≤ m2 ≤ mp , (3.1.23)

−mp ≤ (
pl

2
λ− 1

2
m2) ≤ mp .

This is a simple two variable (m2 and λ) LP problem that can be solved graphically.
• • •

Example 3.1.5

As an illustration of limit design for bending type problems, consider the well-known
problem of minimizing the weight of a plane frame to resist a given set of ultimate
loads. A single bay, single story portal frame is loaded by a horizontal and a vertical
load of magnitude p as shown in Figure 3.1.6. For this design problem the top hori-
zontal member is assumed to be different from the two vertical columns. Accordingly,
we assume the beam and the column cross-sections to have associated fully plastic
moments mpB and mpC , respectively. These two plastic moments depend on the
cross-sectional properties of their respective members and, therefore, are the design
variables for the problem.

Figure 3.1.6 Portal frame design against plastic collapse.

In order to pose the problem as a weight minimization design problem, we need
to relate the design variables and the structural weight. Massonet and Save [6] have
shown that for beam sections in bending there is an approximate linear relation
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between the weight per running foot, wl, and the plastic section modulus, mp/σ0.
Over the relevant range of sections that may be expected to be used for a given
frame the error involved in this linearization is of the order of 1%. It is this single
assumption which renders the plastic design problem linear.

We will, therefore, assume that the problem of minimizing the weight of a frame
for a set of ultimate loads reduces to minimizing a function

w = 2mpC
lC + mpB

lB = 2mpC
(2l) + mpB

(2l) . (3.1.24)

In the interest of non-dimensionalization we divide both sides of Eq. (3.1.24) by 2pl2

to obtain the weight proportional objective function

f(x1, x2) = (
w

2pl2
) = 2

mpC

pl
+

mpB

pl
= 2x1 + x2 . (3.1.25)

Figure 3.1.7 Collapse mechanisms for the portal frame of Figure 3.1.6.

The equations of equilibrium can be obtained by using the same approach used
in the previous example. Figure 3.1.7 shows all possible collapse mechanisms for the
frame. The ultimate load carrying capacity of the structure for any given collapse
mechanism is obtained by the virtual work equivalence between the external work
of the applied loads and the internal work of the fully plastic moments experienced
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while undergoing virtual rotations of the plastic hinges. Thus a permissible design
is one for which the capacity for internal virtual work is greater than or equal to
the external work. It is left as an exercise (see Exercise 4) to verify that behavioral
constraints associated with the collapse mechanism of Figure 3.1.7 reduce to

4x2 ≥ 1, beam mechanism 1 , (3.1.26)

2x1 + 2x2 ≥ 1, beam mechanism 2 , (3.1.27)

x1 + x2 ≥ 1, sway mechanism 1 , (3.1.28)

2x1 ≥ 1, sway mechanism 2 , (3.1.29)

2x1 + 4x2 ≥ 3, combined mechanism 1 , (3.1.30)

4x1 + 2x2 ≥ 3, combined mechanism 2 . (3.1.31)

Furthermore since x1 and x2 represent cross-sectional variables it is required that

x1 ≥ 0, and x2 ≥ 0 . (3.1.32)

Thus the problem of weight minimization under a set of ultimate load has been
reduced to the determination of those non-negative values of x1and x2 for which f
as given by Eq. (3.1.25) is minimized subject to constraints Eqs. (3.1.26 - 3.1.32).
The problem is clearly an LP problem. We will defer the analytical solution of this
problem until later. • • •

3.2 Prestressed Concrete Design by Linear Programming

Since concrete is weak in tension, prestressing helps to eliminate undesirable ten-
sile stresses in concrete and thereby improve its resistance in bending. A prestressing
cable or a tendon exerts an eccentrically applied compressive load to the beam cross-
section giving rise to an axial load and possibly a bending moment due to an offset in
the cable. In evaluating the total stresses at any given cross-section we must super-
impose the stresses due to dead and live loads on the stresses due to the eccentrically
applied prestressing forces of the tendons. For a beam of fixed cross-sectional dimen-
sions, the total cost of the beam may be assumed to be approximately proportional
to the cost of building in a desired prestressing force. The optimization problem for
the design of a prestressed beam thus reduces to minimizing the magnitude of the
prestressing force f0.

Consider the following simple problem of the optimum design of the simply-
supported beam shown in Figure 3.2.1 . The initial value of the prestressing force
f0 and the eccentricity fe is to be determined such that f0 is a minimum subject to
constraints on normal stress, transverse displacement, and upper and lower bound
constraints on the design variables. Additionally, in designing a prestressed concrete
beam which is expected to remain in service for a number of years, we must allow for
the loss of prestressing force through time dependent shrinkage and creep effects in
concrete. To simplify design considerations it is frequently assumed that the realizable
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Figure 3.2.1 Simply supported post-tensioned beam.

prestressing force in service is a constant fraction α of the initial prestressing force f0.
In calculating the bending moment distribution or the deflected shape of a prestressed
beam, in addition to the usual dead and live loads, we must allow for the equivalent
distributed loading (see Exercise 6a) and the end loads resulting from the curved
profile of the eccentrically placed tendons. It can be shown [7,8] that for parabolic
profiles of the cables (see Figure 3.2.1) the induced moments and deflections are
linearly related to the quantity f0e with the constant of proportionality k being a
function of the known material and cross-sectional properties. With this assumption
maximum stresses and the deflections of a simply supported beam occur at the center
of the beam. If the maximum positive bending moment and maximum deflection at
the center of the simply-supported beam of Figure 3.2.1 due to external loads in
the ith loading condition are denoted by mei and δei, respectively, then the beam
optimization problem reduces to

minimize f(f0, e) = f0 (3.2.1)

subject to σli ≤ −αf0

a
± mei − αf0e

z
≤ σui , (3.2.2)

δli ≤ δei + αkf0e ≤ δui , (3.2.3)

el ≤ e ≤ eu , (3.2.4)

f0 ≥ 0, i = 1, . . . , nl . (3.2.5)

Here nl denotes the number of different loading conditions; σl, σu, δl, δu, el, and eu

denote lower and upper bounds on stress, deflections and the tendon eccentricity;
a and z denote the effective area and the section modulus of the cross-section.

The problem as formulated by Eqs. (3.2.1) through (3.2.5) is not an LP problem
because it includes the product f0e of the two variables. However, it can be easily
cast as one by letting

m = f0e , (3.2.6)

and expressing the problems in terms of the new design variables f0 and m. The
transformed problem thus reduces to the following LP problem

minimize f(f0, m) = f0 (3.2.7)
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subject to σli ≤ −αf0

a
± mei − αm

z
≤ σui , (3.2.8)

δli ≤ δei + αkm ≤ δui , (3.2.9)

ml ≤ m ≤ mu , (3.2.10)

f0 ≥ 0, i = 1, . . . , nl , (3.2.11)

with ml and mu being the upper and lower bounds on f0e.

Morris [9] has treated a similar problem, but with additional constrains on ulti-
mate moment capacity. He also modified the constraint (3.2.11) to allow the Ameri-
can Concrete Institute’s limit on the prestressing force intended to prevent premature
failure of the beam by pure crushing of the concrete. Morris linearizes part of the
problem by using the reciprocal of the prestressing force as one of the design variables;
this transformation however fails to linearize the constraint on the ultimate moment
capacity. In the interest of linearization, this nonlinear constraint is replaced by a
series of piecewise linear connected chords with true values at chord intersections.
Kirsch [10] has shown that appropriate transformations can also be used to reduce
the design of continuous prestressed concrete beams to equivalent linear program-
ming problems. These problems involve not only the optimization of the prestressing
force and the tendon configuration, but also the optimization of the cross-sectional
dimensions of the beam.

3.3 Minimum Weight Design of Statically Determinate Trusses

As another example of the design problems that can be turned into LP problems
we consider the minimum weight design of statically determinate trusses under stress
and deflection constraints. The difficulty in these problems arises due to the nonlinear
nature of the deflections as a function of the design variables which are the cross-
sectional areas of the truss members. This type of problem, however, belongs to
the class of what is known as separable programming [11] problems. In this class of
programming the objective function and the constraints can be expressed as a sum
of functions of a single design variable. Each such function can be approximated by
a piecewise linear function or a set of connected line segments or chords interpolating
the actual function at the chord intersections.

A nonlinear separable function of n design variables,

f = f(x1, . . . , xn) = f1(x1) + f2(x2) + . . . + fn(xn) , (3.3.1)

can be linearized as

f =
m∑

k=0

η1kf1k +
m∑

k=0

η2kf2k + . . . +
m∑

k=0

ηnkfnk , (3.3.2)

with

x1 =
m∑

k=0

η1kx1k, . . . , xn =
m∑

k=0

ηnkxnk , (3.3.3)

83



Chapter 3: Linear Programming

m∑
k=0

η1k =
m∑

k=0

η2k = . . . =
m∑

k=0

ηnk = 1 , (3.3.4)

ηjk ≥ 0, j = 0, 1, . . . , n , and k = 0, 1, . . . ,m . (3.3.5)

Here fjk and xjk are the values of the functions f1, f2, . . . , fn and the design vari-
ables x1, x2, . . . , xn at m + 1 preselected points along each of the design variables,
and ηnk’s are the interpolation functions for the design variables. Note that the
number, m, of points selected for each design variable can, in general, be different
(m1, m2, . . . ,mn, etc. ), but for the sake of simplicity they are taken to be equal here.

The purpose of using m intervals with m + 1 values of the design variables is to
cover the entire range of the possible design space accurately. The number of segments
m decides the degree of approximation to the original problem— the larger the m
the closer the solution of the linear problem will be to the true solution. However, at
any given design point, a linear approximation to a nonlinear function requires only
the value of the function at two values of a design variable. We, therefore, require
that for every design variable j(j = 1, . . . , n), at most two adjacent ηjk be positive.
This implies that if, for example, ηpq and ηp(q+1) are non-zero with all other ηpk zero,
then the value of xp is in the interval between xpq and xp(q+1) and is given by

xp = ηpqxpq + ηp(q+1)xp(q+1), with ηpq + ηp(q+1) = 1 . (3.3.6)

The variables, (x1, . . . , xn), of the function have thus been replaced by the interpola-
tion functions, ηjk, only two of which are constrained to be non-zero for each of the
design variables. Therefore, we have a linear approximation to the function at every
design variable.

Example 3.3.1

As an illustration we consider a problem similar to the one solved by Majid [12]. The
objective is the minimum weight design of the four bar statically determinate truss
shown in Figure 3.3.1 with stress constraints in the members and a displacement
constraint at the tip joint of the truss. In order to simplify the problem we assume
members 1 through 3 to have the same cross-sectional area A1, and the member 4 the
area A2. Under the specified loading, the member forces and the vertical displacement
at joint 2 can easily verified to be

F1 = 5p, F2 = −p, F3 = 4p, and F4 = −2
√

3p , (3.3.7)

δ2 =
6pl

E

(
3

A1

+

√
3

A2

)
, (3.3.8)
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Figure 3.3.1 Four bar statically determinate truss.

where negative values for the forces denote compression. Allowable stresses in tension
and compression are assumed to be 7.73 × 10−4E and 4.833 × 10−4E, respectively
and the vertical tip displacement is constrained to be no greater than 3× 10−3l. The
problem of the minimum weight design subject to stress and displacement constraints
can be formulated in terms of the non-dimensional variables

x1 =

(
p

A1E

)
103, and x2 =

(
p

A2E

)
103 , (3.3.9)

as

minimize f(x1, x2) =
3

x1

+

√
3

x2

(3.3.10)

subject to 18x1 + 6
√

3x2 ≤ 3 , (3.3.11)

0.05 ≤ x1 ≤ 0.1546 , (3.3.12)

0.05 ≤ x2 ≤ 0.1395 , (3.3.13)

where lower bound limits on x1 and x2 have been assumed to be 0.05. Except for the
objective function which is a separable nonlinear function, the rest of the problem is
linear. The objective function can be put in a piecewise linear form by using Eqs.
(3.3.2) and (3.3.3). For the purpose of demonstration, we divide the design variable
intervals of Eqs. (3.3.12) and (3.3.13) into two equal segments (m = 2) resulting in

x10 = 0.05, x11 = 0.1023, x12 = 0.1546 ,

and x20 = 0.05, x21 = 0.09475, x22 = 0.1395 .

Objective function values corresponding to these points are

f10 = 20, f11 = 9.76, f12 = 6.47 ,

and f20 = 34.64, f21 = 18.28, f22 = 12.42 .

Therefore, the linearized objective function is

f(x1, x2) = 20η10 + 9.76η11 + 6.47η12 + 34.64η20 + 18.28η21 + 12.42η22 .
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After substituting

x1 = 0.05η10 + 0.1023η11 + 0.1546η12 ,

and x2 = 0.05η20 + 0.09475η21 + 0.1546η22 ,

into the constraint equations of (3.3.11) through (3.3.13), a standard LP algorithm
can be applied with the additional stipulation that only two adjacent ηik for every
design variable xi be positive. • • •

3.4 Graphical Solutions of Simple LP Problems

For simple problems with no more than two design variables a graphical solution
technique may be used to find the solution of a LP problem. A graphical method
not only gives a solution, but also helps us to understand the nature of LP problems.
The following example is included in order to illustrate the nature of the design space
and the optimal solution.

Example 3.4.1

Consider the portal frame limit design problem of example 3.1.5. The problem was
reduced to minimizing the objective function

f(x1, x2) = 2x1 + x2 , (3.4.1)

subject to inequality constraints Eqs. (3.1.26) through (3.1.32).

Since the problem is an LP problem in two-dimensional space it is possible to obtain
a graphical solution. Constraints (3.1.32) imply that we can restrict ourselves to the
non-negative quadrant of the x1 − x2 plane in Figure 3.4.1. We plot all the straight
lines corresponding to Eqs. (3.1.26) through (3.1.31) as strict equalities (these lines
identify the constraint boundaries). To identify the feasible and the infeasible portions
on either side of a given constraint line we choose a point on either side and substitute
its coordinates in the inequality. If the inequality is satisfied then the portion on the
side of the constraint line which contains this point is the feasible portion, if not it is
infeasible. For example, if the coordinates x1 = 0 and x2 = 0 are substituted into the
inequality (3.1.27), the inequality is violated, implying that the origin does not belong
to the feasible domain. If we continue this process for all the inequality constraints we
will soon end up with a feasible region that is a convex polygon; the corners are called
extreme points. The feasible region corresponding to the constraints is illustrated in
Figure 3.4.1.

Next, we plot the contours of the objective function by setting the function 2x1 +
x2 equal to a constant and plotting the lines corresponding to various values of this
constant. The optimum point is obtained by finding the contour of the objective
function which just barely touches the feasible region. The direction of decreasing f
is shown in Figure 3.4.1 with the optimum solution identified as

x1 = x2 = 1/2 , (3.4.2)
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Figure 3.4.1 Graphical solution of the portal frame LP problem.

with fmin = 1.5. • • •

Barring degeneracy, the optimum solution in an LP problem will always lie at a
corner or an extreme point. The degenerate case may occur when the gradient of the
objective function is a constant multiple of the gradient of one of the constraints along
which the optimum solution lies. Then, every point along this constraint including
the extreme points constitutes an optimum solution. For example if the problem just
discussed had an objective function of the type

f = c(2x1 + 4x2) , (3.4.3)

with c being a constant, then every point along the line [a,b] in Figure 3.4.1 would
constitute an optimum solution.

The concept of a convex polygon with corners or vertices in two dimensions
generalizes to a convex polytope with extreme points in Rn. For example, a convex
polytope [11] is defined to be the set which is obtained by the intersection of a finite
number of closed half-spaces. Similarly, an extreme point of a set is defined to be a
point x in Rn which cannot be expressed as a convex combination αx1 + (1 − α)x2

(0 < α < 1) of two distinct points x1 and x2 belonging to the set. Finally, as in the
two-dimensional case of Figure 3.4.1, barring degeneracy, a linear objective function
in Rn achieves its minimum only at an extreme point of a bounded convex polytope.

87



Chapter 3: Linear Programming

Interested readers are advised to consult either Ref. 11 or 13 for a comprehensive
treatise on this subject.

It is obvious that the above graphical procedure cannot be used for linear pro-
gramming problems involving more than two variables. We have to look at alternative
means of solving such problems. The simplex method first proposed by Dantzig [13]
is an efficient method for solving problems with a large number of variables and con-
straints. We will study the simplex method next and to this end we outline a few
definitions and some very important concepts in linear programming.

3.5 A Linear Program in a Standard Form

A linear program is said to be in a standard form if it is posed as

minimize f = cTx (3.5.1)

subject to Ax = b , (3.5.2)

x ≥ 0 , (3.5.3)

where c is an n × 1 vector, A is a m × n matrix, and b is a m × 1 vector. Any
linear program including inequality constraints can be put into the standard form by
the use of what are known as slack and surplus variables. Consider, for example, the
linear program defined by Eqs. (3.1.26) through (3.1.32). We can transform those
inequalities into strict equalities as

4x2 − x3 = 1 , (3.5.4)

2x1 + 2x2 − x4 = 1 , (3.5.5)

x1 + x2 − x5 = 1 , (3.5.6)

2x1 − x6 = 1 , (3.5.7)

2x1 + 4x2 − x7 = 3 , (3.5.8)

4x1 + 2x2 − x8 = 3 , (3.5.9)

by the addition of the surplus variables x3 through x8, provided that these variables
are restricted to be non-negative, that is

xi ≥ 0, i = 1, . . . , 8 . (3.5.10)

If the inequalities in Eqs. (3.1.26) through (3.1.31) were of the opposite kind we
would add non-negative variables x3 through x8 to achieve equality constraints. In
this case the variables x3 through x8 would be referred to as the slack variables. If the
original values of the design variables are not required to be non-negative we can still
convert the problem to a standard form of Eqs. (3.5.1) through (3.5.3) by defining
either

x1 = u1 − v1, and x2 = u2 − v2 , (3.5.11)

where u1, u2, v1, v2 ≥ 0, or by adding a large enough positive constant M to the design
variable

x̄1 = M + x1 , (3.5.12)
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so that the new variable never becomes negative during the design. Such artificial
variables are often used in structural design problems where quantities such as stresses
are used as design variables. Stresses can be both positive or negative depending upon
the loading condition. It is clear from Eq. (3.5.11) that putting LP program in a
standard form may cause an increase in the dimension of the design space. Using
Eq. (3.5.12) does not increase the dimension of the problem but it may be difficult to
know a priori the value of the constant M that will make the design variable positive
(the choice of a very large number may result in numerical ill-conditioning).

Going back to Eq. (3.5.2) we notice that if m = n and all the equations are
linearly independent, we have a unique solution to the system of equations, whereas
with m > n we have, in general, an inconsistent system of equations. It is only when
m < n that we have many possible solutions. Of all these solutions we seek the one
which satisfies the non-negativity constraints and minimizes the objective function
f .

3.5.1 Basic Solution

We assume the rank of the matrix A to be m and select from the n columns of A a
set of m linearly independent columns. We denote this m ×m matrix by D. Then
D is non-singular and we can obtain the solution

xD

m× 1

= D−1

m×m

bD ,

m× 1
(3.5.13)

where xD is the vector of independent variables and bD is the corresponding right-
hand vector. Thus it can easily be verified that

x =

{
xD

. . .
0

}
, (3.5.14)

is a solution of the system of Eqs. (3.5.2). Such a solution is known as a basic
solution, and xD is called the vector of basic variables. A basic solution, however,
need not satisfy the non-negativity constraints (3.5.3). Those basic solutions which
do indeed satisfy these constraints are known as basic feasible solutions and can be
shown to be extreme points. In other words all basic feasible solutions to Eqs. (3.5.2)
will correspond to corners or extreme points of the convex polytope [13].

The total number of possible basic solutions to Eqs. (3.5.2) can be estimated
by identifying the number of possibilities for selecting m variables arbitrarily from a
group of n variables. From the theory of permutations and combinations we know
this number to be (

n

m

)
=

n!

m!(n−m)!
. (3.5.15)

Not all of these possibilities will however be feasible.
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3.6 The Simplex Method

The idea of the simplex method is to continuously decrease the value of the
objective function by going from one basic feasible solution to another until the
minimum value of the objective function is achieved. We will postpone the discussion
of how to generate a basic feasible solution and assume that we have a basic feasible
solution to start the algorithm. Indeed, if we had the following inequality constraints

ai1x1 + ai2x2 + . . . + ainxn ≤ bi, i = 1, . . . ,m , (3.6.1)

xj ≥ 0, j = 1, . . . , n , (3.6.2)

where bi ≥ 0 for every constraint, then the process of converting the constraint set
to the standard form yields the following

ai1x1 + ai2x2 + . . . + ainxn + yi = bi, i = 1, . . . ,m , (3.6.3)

xj ≥ 0, j = 1, . . . , n , (3.6.4)

yi ≥ 0, i = 1, . . . ,m , (3.6.5)

and we immediately recognize

yi = bi, i = 1, . . . ,m, and xj = 0 , j = 1, . . . , n , (3.6.6)

as a basic feasible solution. A formal scheme for generating a basic feasible solution
will be discussed later in this section. The question of immediate interest at this
point is how to go from one basic feasible solution to another basic feasible solution.
Without loss of generality let us assume that we have a system of equations in the
canonical form shown below (such forms can always be obtained through the well-
known Gauss elimination scheme for a matrix A with rank m).

x1 + 0 + . . . + 0 + . . . + 0 +a1,m+1 xm+1 + . . . +a1,n xn = b1

0 +x2 + . . . + 0 + . . . + 0 +a2,m+1 xm+1 + . . . +a2,n xn = b2
...

...
. . .

...
...

...
...

...
...

...
0 + 0 + . . . +xs + . . . + 0 +as,m+1 xm+1 + . . . +as,n xn = bs
...

...
...

...
. . .

...
...

...
...

...
0 + 0 + . . . + 0 + . . . +xm +am,m+1 xm+1 + . . . +am,n xn = bm

,

(3.6.7)
with a basic feasible solution

x1 = b1, x2 = b2, . . . xs = bs, . . . xm = bm ,

xm+1 = xm+2 = . . . = 0 . (3.6.8)

The variables x1 through xm are called basic and the xm+1 through xn are called
non-basic variables.
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3.6.1 Changing the Basis

The simplex procedure changes the set of basic variables while improving the ob-
jective function at the same time. However, for the purpose of clarity we will first
demonstrate the approach for going from one basic feasible solution to another. The
objective function improvement will be discussed in the following section.

We wish to make one of the current non-basic variables of Eq. (3.6.7), say xt (m <
t ≤ n), basic and in the process cause a basic variable, xs(1 ≤ s ≤ m), to become
non-basic. At this point we assume that we know the variable xt which we will bring
into the basic set. We only need to decide which variable to drop from the basic set.
Consider the selected terms shown below for the coefficients of the sth equation and
an additional arbitrary ith equation.

i s t

i 1 . . . 0 . . . ait . . . = bi
...

...
...

...
s 0 . . . 1 . . . ast . . . = bs

(3.6.9)

Since we want to make xt basic, we need to eliminate it from the rest of the equations
except the sth one by reducing the coefficients ait (i = 1, . . . , n; i 6= s) to zeroes, and
making the coefficient ast unity by dividing the sth equation throughout by ast. We
can do this only if ast is non-zero. Also, unless ast is positive, the process of dividing
the sth equation by ast will produce a negative term on the right-hand side since
bs is positive because the current solution is a basic feasible solution. To eliminate
the new basic variable xt from the ith equation (i = 1, . . . , n; i 6= s) we have to
multiply the sth equation by the factor (ait/ast) and subtract the resulting equation
from each of these equations. The resulting coefficients on the right-hand side of the
ith equation will be

b′i = bi − bs(
ait

ast

) . (3.6.10)

To guarantee that the resulting solution is a basic feasible solution we must require
that b′i ≥ 0, or rearranging Eq. (3.6.10) we have

(
bs

ast

) ≤ (
bi

ait

) . (3.6.11)

Equation (3.6.11) together with the condition

ast > 0 , (3.6.12)

are the two conditions which identify possible sth rows in changing from one basic
feasible solution to another. Thus for a given non-basic variable xt that is to be
made basic we check the coefficients of all the terms in the tth column. We eliminate
from consideration all elements in the tth column with non-positive coefficients as
violating condition (3.6.12). Among those with positive coefficients we compute the
ratios bi/ait (i = 1, . . . , n). We select the row, s, for which the ratio bi/ait has the
smallest value and call it bs/ast, Eq. (3.6.11). It is the basic variable corresponding
to that row which will become non-basic in the process of making xt basic.
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Example 3.6.1

We illustrate the foregoing discussion with an example. Consider the system of
equations

2x1 + 2x2 + x3 = 6 ,

3x1 + 4x2 + x4 = 10 , (3.6.13)

x1 + 2x2 + x5 = 4 .

The system is already in the canonical form with a basic feasible solution being

x1 = x2 = 0, x3 = 6, x4 = 10, x5 = 4 . (3.6.14)

The variables x1 and x2 are the non-basic variables, whereas x3, x4, and , x5 are the
basic variables. Now, let us assume that we want to make x1 basic. Rewriting Eqs.
(3.6.13) in a matrix form we have

[
2 2 1 0 0
3 4 0 1 0
1 2 0 0 1

]
x1

x2

x3

x4

x5

 =

{
6
10
4

}
. (3.6.15)

Since x1 is to made basic we consider the first column. To chose the variable to be
made non-basic we form the ratios (bi/ai1), i = 1, 2, 3.

b1

a11

= 3,
b2

a21

= 3
1

3
,

b3

a31

= 4 .

The smallest ratio is b1/a11 and so we pivot on a11. Thus the new system of equations
is [

1 1 0.5 0 0
0 1 −1.5 1 0
0 1 −0.5 0 1

]
x1

x2

x3

x4

x5

 =

{
3
1
1

}
, (3.6.16)

and the process of making x1 basic has resulted in the variable x3 being non-basic.
The new feasible solution is

x2 = x3 = 0, x1 = 3, x4 = 1, x5 = 1 .

It may be verified by the reader that by using a pivot other than a11 we would end
up with an infeasible basic solution. For example, if a13 is a pivot we obtain

x2 = x5 = 0, x1 = 4, x3 = −2, x4 = −2 ,

which is not feasible since x3 < 0 and x4 < 0. • • •
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3.6.2 Improving the Objective Function

In the preceding section we considered making a particular non-basic variable xt basic
without losing feasibility. We also need to decide the variable that we make basic.
We should seek to bring into the basis only that variable which will decrease the
objective function while yielding at the same time a basic feasible solution. Notice
that the objective function is a linear equation just like the other equations and hence
it can be included with the others. The objective function equation may be written
as

cTx = f . (3.6.17)

Assume the system of equations (3.5.2) is in the canonical form, and append Eq.
(3.6.17) at the end of all other equations. The form of the equations that includes
the objective function is often referred as the simplex tableau. We now eliminate all
the basic variables from this last equation by subtracting ci times each of the equations
in the canonical form. Then the right-hand of Eq. (3.6.17) becomes (f−c1b1−c2b2−
c3b3− . . .− cmbm). Thus if we ignore the presence of f , the right-hand side represents
the negative of the value of the objective function since xm+1 = xm+2 = . . . = xn = 0.
The left-hand side of this last equation will contain only non-basic variables. Next,
assume that the coefficient of one of the non-basic variables on the left-hand side of
the last equation is negative. If we make this variable basic then we will increase
the value of this variable from its present value of zero to some positive value. Since
the last equation is just one of the equations, when we pivot on one of the equations
(sth) and eliminate the corresponding variable (xs) from the basic set we perform
the operations described in the previous section on all the m + 1 equations. When
the particular variable with the negative coefficient in the last equation is eliminated,
the right-hand side of this equation will increase since the variable has increased in
value from zero to a positive value. Since the right-hand side represents the negative
of the value of the objective function, a function decrease is therefore guaranteed.
Thus the criterion for guaranteeing an improvement of the objective function is to
bring into the basis a variable that has a negative coefficient in the objective function
equation after it has been cleared of all the basic variables. This can be verified by
the following example.

Example 3.6.2

minimize f = x1 + x2 + x3 (3.6.18)

subject to 2x1 + 2x2 + x3 = 6 , (3.6.19)

3x1 + 4x2 + x4 = 10 , (3.6.20)

x1 + 2x2 + x5 = 4 . (3.6.21)

As mentioned above we rewrite the constraint equations (3.6.21) in the matrix form
together with the objective function appended as the last row of the matrix

2 2 1 0 0
3 4 0 1 0
1 2 0 0 1
−− −− −− −− −−
1 1 1 0 0




x1

x2

x3

x4

x5

 =


6
10
4
−−
0

 . (3.6.22)
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A basic solution is

x1 = x2 = 0, x3 = 6, x4 = 10, x5 = 4 . (3.6.23)

The variable x3 is a basic variable that appears in the last equation of Eqs. (3.6.22)
and must be eliminated from it so that its right-hand side yields the negative of the
current value of the objective function.

2 2 1 0 0
3 4 0 1 0
1 2 0 0 1
−− −− −− −− −−
−1 −1 0 0 0




x1

x2

x3

x4

x5

 =


6
10
4
−−

−6 = −f

 . (3.6.24)

We can pivot either on column (1) or column (2). That is to say the objective function
will decrease in value by bringing either x1 or x2 into the basis. If we pivot on column
(1) (bringing x1 into the basis) the pivot element is a11 because it yields the smallest
(bi/ai1) ratio. The new simplex tableau becomes

1 1 0.5 0 0
0 1 −1.5 1 0
0 1 −0.5 0 1
−− −− −− −− −−
0 0 0.5 0 0




x1

x2

x3

x4

x5

 =


3
1
1
−−

−3 = −f

 . (3.6.25)

The value of the objective function has been reduced from 6 to 3. Since the last
equation contains no non-basic variable with a negative coefficient, it is no longer
possible to decrease the value of the objective function further. Thus the minimum
value of the objective function is 3 and corresponds to the basic solution

x2 = x3 = 0, x1 = 3, x4 = 1, x5 = 1 . (3.6.26)

If we had decided to bring x2 into the basis first, we would have reduced the objective
function from 6 to 4, and there would have been a negative number in the last equation
in the first column indicating the need for another round of pivoting to bring x1 into
the basis. • • •

This would have completed the discussion of the simplex method except for the
fact that we need a basic feasible solution to start the simplex method and we may
not have one readily available. This is our next topic.

3.6.3 Generating a Basic Feasible Solution—Use of Artificial Variables

In the process of converting an LP problem given in the form of Eqs. (3.6.4) and
(3.6.5)

Ax ≤ b, where b > 0, and x ≥ 0 , (3.6.27)

into the standard form by adding slack variables we obtained a basic feasible solution
to start the simplex method. However, when we have a linear program which is
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already in the standard form of Eqs. (3.5.2) and (3.5.3) we cannot, in general,
identify a basic feasible solution. The following technique can be used in such cases.

Consider the following minimization problem

minimize
m∑

i=1

yi (3.6.28)

subject to Ax + y = b , (3.6.29)

x ≥ 0, and y ≥ 0 , (3.6.30)

where y is a vector of artificial variables. There is no loss of generality in assuming
that b > 0 so that the LP problem (3.6.29) has a known basic feasible solution

y = b, and x = 0 , (3.6.31)

so that the simplex method can be easily applied to solve the LP problem of Eqs.
(3.6.30). Note that if a basic feasible solution to the original LP problem (3.6.28)
exists then the optimum solution to the modified problem (3.6.30) must have yi’s
as non-basic variables (y= 0). However, if no basic feasible solution to the original
problem exists then the minimum value of Eq (3.6.29) will be greater than zero.

Example 3.6.3

We illustrate the use of artificial variables with the following example for which we
seek a basic feasible solution to the system

2x1 + x2 + 3x3 = 13 ,

x1 + 2x2 + x3 = 7 , (3.6.32)

xi ≥ 0, i = 1, 2, 3 .

Introduce the artificial variables y1and y2 and pose the following minimization prob-
lem.

minimize f = y1 + y2 (3.6.33)

subject to 2x1 + x2 + 3x3 + y1 = 13 ,

x1 + 2x2 + x3 + y2 = 7 , (3.6.34)

xi ≥ 0, i = 1, 2, 3 , and yi ≥ 0, j = 1, 2 .

With the basic feasible solution, y1 = 13, y2 = 7, and x1 = x2 = x3 = 0 known, we
append the objective function (3.6.33) and clear the basic design variables y1 and y2

from it to obtain the initial simplex tableau 2 1 3 1 0
1 2 1 0 1
−− −− −− −− −−
−3 −3 −4 0 0




x1

x2

x3

y1

y2

 =


13
7
−−
−20

 . (3.6.35)
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Since it has the largest negative number we choose column (3) for pivoting with a13

as the pivot element since 13/3 < 7/1, 2/3 1/3 1 1/3 0
1/3 5/3 0 −1/3 1
−− −− −− −− −−
−1/3 −5/3 0 4/3 0




x1

x2

x3

y1

y2

 =


13/3
8/3
−−
−8/3

 . (3.6.36)

Next we choose a22 as the pivot element to obtain 9/15 0 1 6/15 −1/5
1/5 1 0 −1/5 3/5
−− −− −− −− −−
0 0 0 1 1




x1

x2

x3

y1

y2

 =


19/5
8/5
−−
0

 . (3.6.37)

The process has converged to the basic feasible solution

x1 = 0, x2 = 8/5, and x3 = 19/5 . (3.6.38)

to the original problem. • • •

3.7 Duality in Linear Programming

It was shown by Dantzig [13] that the primal problem of minimization of a linear
function over a set of linear constraints is equivalent to the dual problem of the
maximization of another linear function over another set of constraints. Both the
dual objective function and constraints of the dual problem are obtained from the
objective function and constraints of the primal problem. Thus if the primal problem
is defined to be

minimize fp = c1x1 + . . . . . . + cnxn = cTx (n variables)

subject to
n∑

j=1

aijxj ≥ bi, i = 1, . . . ,m , (m constraints)

xj ≥ 0, j = 1, . . . , n , (3.7.1)

then the dual problem is defined to be

maximize fd = b1λ1 + . . . . . . + bmλm = bTλ (m variables)

subject to
m∑

i=1

aijλi ≤ cj, j = 1, . . . , n , (n constraints)

λi ≥ 0, j = 1, . . . ,m . (3.7.2)

The choice of the primal or dual formulation depends on the number of design vari-
ables and the number of constraints. The computational effort in solving an LP
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problem increases as the number of constraints increases. Therefore, if the number
of constraint relations is large compared to the number of design variables then it
may be desirable to solve the dual problem which will require less computational
effort. The classification of problems into the primal and dual categories is, however,
arbitrary since if the maximization problem is defined as the primal then the min-
imization problem is its dual. It can be shown [13] that the optimal values of the
basic variables of the primal can be obtained from the solution of the dual and that
(fp)min = (fd)max. Thus if xj is a basic variable in the primal problem, then it implies
that the jth constraint of the dual problem is active and vice versa.

If the primal problem is stated in its standard form; namely with equality con-
straints

minimize fp = c1x1 + . . . . . . + cnxn = cTx (n variables)

subject to
n∑

j=1

aijxj = bi, i = 1, . . . ,m , (m constraints)

xj ≥ 0, j = 1, . . . , n , (3.7.3)

then the corresponding dual problem is

maximize fd = b1λ1 + . . . . . . + bmλm = bTλ (m variables)

subject to
m∑

i=1

aijλi ≤ cj, j = 1, . . . , n , (n constraints)

(3.7.4)

with the variables λi being unrestricted in sign [11].

It should be noted that, in practice, it is rare for a LP problem to be solved either
as a primal or as a dual problem. Most state-of-the-art LP software employ what is
known as a primal-dual algorithm. This algorithm begins with a feasible solution to
the dual problem that is successively improved by optimizing an associated restricted
primal problem. The details of this algorithm are beyond the scope of this book and
interested readers should consult Ref. [11].

Example 3.7.1

As an example of the simplex method for solving an LP problem via the dual formu-
lation we use the portal frame problem formulated in Example 3.1.5 with a slightly
different loading condition. The new loading condition is assumed to correspond to
a 25% increase in the magnitude of the horizontal load while keeping the magnitude
of the vertical load the same. The corresponding constraint equations have different
right-hand sides than those given in Eqs. (3.5.4) through (3.5.9), namely

4x2 ≥ 1 ,

2x1 + 2x2 ≥ 1 ,

x1 + x2 ≥ 1.25 , (3.7.5)

2x1 ≥ 1.25 ,

2x1 + 4x2 ≥ 3.5 ,

4x1 + 2x2 ≥ 3.5 .
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However, when put into the standard form, not only does the problem involve a total
of 8 variables, but also a basic feasible solution to the problem is not immediately
obvious. Because the objective function (3.1.25) involves only two variables x1 and x2

the solution of the dual problem may be more efficient. The dual problem is

maximize fd = λ1 + λ2 + 1
1

4
λ3 + 1

1

4
λ4 + 3

1

2
λ5 + 3

1

2
λ6 (3.7.7)

subject to 2λ2 + λ3 + 2λ4 + 2λ5 + 4λ6 ≤ 2 ,

4λ1 + 2λ2 + λ3 + 4λ5 + 2λ6 ≤ 1 , (3.7.8)

λi ≥ 0, i = 1, . . . , 6 .

Maximizing fd is same as minimizing −fd and the process of converting the above
linear problem to the standard form yields

minimize − fd = −λ1 − λ2 − 1
1

4
λ3 − 1

1

4
λ4 − 3

1

2
λ5 − 3

1

2
λ6 (3.7.9)

subject to 2λ2 + λ3 + 2λ4 + 2λ5 + 4λ6 + λ7 = 2 ,

4λ1 + 2λ2 + λ3 + 4λ5 + 2λ6 + λ8 = 1 , (3.7.10)

λi ≥ 0, i = 1, . . . , 8 ,

with the basic feasible solution

λi = 0, i = 1, . . . , 6 , and λ7 = 2, λ8 = 1 .

We can begin with the initial simplex tableau with the basic variables cleared
from the last equation which represents the objective function.

 0 2 1 2 2 4 1 0
4 2 1 0 4 2 0 1
−− −− −− −− −− −− −− −−
−1 −1 −5/4 −5/4 −7/2 −7/2 0 0




λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8


=


2
1
−−
0

 .

(3.7.11)
Although we should perhaps be choosing fifth or sixth column for pivoting, since
it has the largest negative value, pivoting on third column produces the same final
answer with one less simplex tableau. Pivoting on element a23 we have

 −4 0 0 2 −2 2 1 −1
4 2 1 0 4 2 0 1
−− −− −− −− −− −− −− −−
4 3/2 0 −5/4 3/2 −1 0 5/4




λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8


=


1
1
−−
5/4

 . (3.7.12)
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Because of the presence of negative terms in the last equation, it is clear that the
objective function can still be decreased further. Pivoting on element a14 we obtain

 −2 0 0 1 −1 1 1/2 −1/2
4 2 1 0 4 2 0 1
−− −− −− −− −− −− −− −−
3/2 3/2 0 0 1/4 1/4 5/8 5/8




λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8


=


1/2
1
−−
15/8

 . (3.7.13)

Hence we conclude that (fd)min = −15/8 or (fd)max = (fp)min = 15/8 with the
solution

λ1 = λ2 = λ5 = λ6 = λ7 = λ8 = 0, and λ3 = 1, λ4 = 1/2 . (3.7.14)

The non-zero λ’s indicate that the active constraints in the primal problem are the
third and fourth, namely

2x1 = 1.25, and x1 + x2 = 1.25 , (3.7.15)

Solution of Eqs. (3.7.15) yields x1 = x2 = 5/8. • • •

In closing this section, it is interesting to point out that the dual variables can be
interpreted as the prices of the constraints. For a given variation on the right hand
side b of the constraint relations of Eq. (3.7.5), the change in the optimum value of
the objective function can be determined from

∆f ∗ = λT ∆b . (3.7.16)

For Eq. (3.7.16) to hold, however, the changes in the b vector must be such that it
does not result in a change in the active constraint set. The dual problem can also
be viewed as one of maximization of a profit subject to limitations on availability of
resources. It is clear then that the non-negative dual variables can be interpreted as
increased costs which would ensue from a violation of given constraints on resource
availabilities. Similarly a primal problem can be viewed as one of minimization of
total cost while satisfying demand. The full significance of dual variables, however,
can be brought out more clearly only in the context of the Kuhn-Tucker conditions
and the sensitivity of the optimum solutions to changes in design parameters which
will be discussed in Chapter 5. The following example demonstrates the use of dual
variables to find the sensitivity of the optimal solution to a change in a problem
parameter.

Example 3.7.2

Consider the portal frame design problem solved in Example 3.7.1 using dual vari-
ables. We will determine the change in the value of the optimum objective function
f ∗ = 1.875 corresponding to a 25% reduction in the value of the horizontal force,
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keeping the vertical force at p. These loads correspond to the problem formulated in
Example 3.1.5 and solved graphically in Example 3.4.1 .

From Eqs. (3.7.5) and (3.1.26) through (3.1.31) the change in the right-hand side
is ∆b3 = ∆b4 = −1

4
, and ∆b5 = ∆b6 = −1

2
. Using the values of the dual variables

from Example 3.7.1 in Eq. (3.7.15) we obtain

∆f ∗ = −
(

1

4

)
1 +−

(
1

4

)(
1

2

)
= −0.375 .

Therefore the optimum value of the objective function under this new loading config-
uration would be f ∗ = 1.5, of course, assuming that the active constraints (the ones
associated with non-zero dual variables) remain active. Fortunately, that assumption
is correct for the present example. However, beside the two constraints that are active
initially there are two more constraints which become active at the new design point
(see Fig. 3.4.1). Any reduction larger than 25% in the value of the horizontal load
would have caused a change in the active constraint set and resulted in an incorrect
answer.

We, therefore, emphasize the fact that in applying Eq. (3.7.15) one has to be
cautious not to perturb the design parameter to an extent that the active constraint
set changes. This is generally achieved by limiting the parameter perturbations to be
small. However, if we had used the design in Example 3.4.1 as our nominal design, no
matter how small the perturbation of the magnitude of the horizontal force, the active
constraint set would have changed. This is due to the redundancy of the constraints
at the optimal solution of Example 3.4.1. • • •

3.8 An Interior Method — Karmarkar’s Algorithm

In using the simplex algorithm discussed in section 3.6, we operate entirely along
the boundaries of the polytope in Rn moving from one extreme point (vertex) to
another following the shortest path between them, an edge of the polytope. Of all
the possible vertices adjacent to the one at which we start, the selection of the next
vertex is based on the maximum reduction in the objective function. With these
basic premises, the simplex algorithm is only a systematic approach for identifying
and examining candidate solutions to the LP problem. The number of operations
needed for convergence grows exponentially with the number of variables. In the
worst case, the number of operations for convergence for an n variable problem with
a set of s constraints can be s!/n!(s − n)!. However, it is possible to choose a move
direction different from an edge of the polytope, be consistent with the constraint
relations, and attain larger gains in the objective function. Although such a choice can
lead to a rapid descent toward the optimal vertex, it will do so through intermediate
points which are not vertices.

Interior methods of solving LP problems have drawn serious attention only since
the dramatic introduction of Karmarkar’s algorithm [14] by AT&T Bell Laborato-
ries. This new algorithm was originally claimed to be 50 times faster than the simplex
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method. Since then, much work has been invested in improvements and extensions
of Karmarkar’s algorithm. Developments include demonstration of how dual solu-
tions can be generated during the course of this algorithm [15], and extension of
Karmarkar’s algorithm to treat upper and lower bounds more efficiently [16] by elim-
inating the slack variables which are commonly used for such bounds in the Simplex
algorithm.

Because some of the recent developments of the algorithm are mathematically
involved and beyond the scope of this book, only a general outline of Karmarkar’s
algorithm are presented in the following sections. At this point we would like to
warn the reader that the tools used in the algorithm were originally introduced for
minimization of constrained and unconstrained nonlinear functions which are covered
in Chapters 4 and 5. Therefore, the reader is advised to read these chapters before
proceeding to the next section.

3.8.1 Direction of Move

The direction of maximum reduction in the objective function is the direction of
steepest descent, which is the direction of the negative of the gradient of the objective
function ∇f (see section 4.2.2). For an LP problem posed in its standard form, see
Eq. (3.5.1), the gradient direction is,

∇f = c . (3.8.1)

Although we are not limiting the move direction to be an edge of the polytope formed
by the constraint surfaces, for an LP problem the move direction cannot be selected
simply as the negative of the gradient direction. The direction must be chosen such
that the move leads to a point in the feasible region. This can be achieved by using
the projection matrix P

P = I−N(NTN)−1NT , (3.8.2)

derived in section 5.3, where the columns of the matrix N correspond to the gradient
of the constraint equations. Since the constraints are linear functions of the variables,
we have N = AT . Operating on the gradient vector −c, P projects the steepest
descent direction onto the nullspace of the matrix A. That is, if we start with an
initial design point x0 which satisfies the constraint equation Ax0 = b, and move in
a direction −Pc we will remain in the subspace defined by that constraint equation.
Note that in numerical application of this projection the matrix product AAT may
not actually be inverted, but rather the linear system AATy = Ac may be solved
and then the projected gradient may be calculated by using Pc = c − ATy. A
more efficient and better conditioned procedure based on QR factorization of the
matrix A for the solution of the projection matrix is described in section 5.5 . The
following simple example by Strang from reference [17] illustrates graphically the
move direction for a three dimensional design space.

Example 3.8.1

Consider the following minimization problem in three design variables,

minimize f = −x1 − 2x2 − 3x3 (3.8.3)
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subject to x1 + x2 + x3 = 1 , (3.8.4)

x ≥ 0 . (3.8.5)

Starting at an initial point x(0) = (1/3, 1/3, 1/3)T determine the direction of move.

Figure 3.8.1 Design space and move direction.

The design space and the constraint surface for the problem are shown in Figure
(3.8.1). The direction corresponding to the negative of the gradient vector is marked
as −c. The projection matrix for the problem can be obtained from Eq. (3.8.2) where
A = [1 1 1]. The system AATy = Ac produces a scalar for y,

{1 1 1}

{
1
1
1

}
y = {1 1 1}

{−1
−2
−3

}
, (3.8.6)

y = −2 .

The projected direction Pc is then given by

Pc = c− yAT , (3.8.7)

Pc =

{−1
−2
−3

}
−

{−2
−2
−2

}
=

{
1
0
−1

}
. (3.8.8)

Moving in a direction −Pc guarantees maximum reduction in the objective func-
tion while remaining in the plane PQR formed by the constraint equation. The mini-
mum value of the objective function for this problem is achieved at the vertex R which,
clearly, can not be reached in one iteration. Therefore, the move has to be terminated
before the non-negativity requirement is violated (which is at x(1) = (2/3, 1/3, 0)T ),
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and the procedure has to be repeated until a reasonable convergence to the minimum
point is achieved. • • •

In the preceding example no explanation is provided for the selection of the initial
design point, and for the distance travelled in the chosen direction. Karmarkar [14]
stops the move before hitting the polytope boundary, say at x(1) = (19/30, 1/3, 1/30)T

in the previous example, so that there will be room left to move in the next iteration.
That is, starting either at the polytope or close to it increases the chances of hitting
another boundary before making real gains in the objective function. The solution
to this difficulty is accomplished by transforming the design space discussed in the
next section.

3.8.2 Transformation of Coordinates

In order to focus on the ideas which are important for his algorithm, Karmarkar
[14] makes several assumptions with respect to the form of the LP problem. In his
canonical representation, the LP problem takes the following form,

minimize f = cT x̂ (3.8.9)

subject to Ax̂ = 0 , (3.8.10)

eT x̂ = 1 , (3.8.11)

x̂ ≥ 0 , (3.8.12)

where e is a 1× n vector, e = (1, . . . , 1)T . The variable x̂ represents the transformed
coordinate such that the initial point is the center, x̂(0) = e/n, of a unit simplex,
and is a feasible point, Ax(0) = 0. A simplex is a generalization to n dimensions of
a 2-dimensional triangle and 3-dimensional tetrahedron. A unit simplex has edges
of unit length along each of the coordinate directions. Karmarkar also assumes that
cT x̂ ≥ 0 for every point that belongs to the simplex, and the target minimum value of
the objective function is zero. Conversion of the standard form of an LP problem into
this new canonical form can be achieved through a series of operations that involve
combining the primal and dual forms of the standard formulation, introducing of
slack and artificial variables, and transforming coordinates. The combination of the
primal and dual formulations is needed to accommodate the assumption that the
target minimum value of the objective function be zero. Details of the formation of
this new canonical form is provided in Ref. [14]. In this section we will demonstrate
the coordinate transformation which is referred as projective rescaling transformation.
This is the same transformation that helps to create room for move as we proceed
from one iteration to another.

Consider an arbitrary initial point x(a) in the design space, and let

Dx = Diag (x
(a)
1 , . . . , x(a)

n ) . (3.8.13)

The transformation, Tx, used by Karmarkar maps each facet of the simplex given by
xi = 0 onto the corresponding facet x̂i = 0 in the transformed space, and is given by

x̂ =
1

eTD−1
x x

D−1
x x . (3.8.14)

103



Chapter 3: Linear Programming

While mapping the unit simplex onto itself, this transformation moves the point
x(a) to the center of the simplex, x̂(0) = (1/n)e. Karmarkar showed that repeated
application of this transformation, in the worst case, leads to convergence to the
optimal corner in less than O(n

7
2 ) arithmetic operations.

Karmarkar’s transformation is nonlinear and a simpler form of this transformation
has been suggested. A linear transformation,

x̂ = D−1
x x , (3.8.15)

has been shown to perform as well as Karmarkar’s algorithm in practice and to
converge in theory [18].

3.8.3 Move Distance

Following the transformation, Karmarkar optimizes the transformed objective func-
tion over an inscribed sphere of radius r = 1/(

√
n(n− 1) centered at x̂(0). This is the

largest radius sphere that is contained inside the simplex. For the three dimensional
design space of Example 3.8.1, for example, where there is one constraint surface, the
‘sphere’ is a circle in the plane of the constraint equation. In practice, the step length
along the projected direction used by Karmarkar is a fraction, α, of the radius. Thus,
the new point at the end of the move is given by

x(k+1) = x̂(k) − αr(k)Pc(k) , (3.8.16)

where 0 < α < 1. A typical value of α used by Karmarkar is 1/4.

During the course of the algorithm the optimality of the solution is checked
periodically by converting the interior solution to an extreme point solution at the
closest vertex. If the extreme point solution is better than the current interior, then,
it is tested for optimality.

3.9 Integer Linear Programming

Solution techniques for the LP problems considered so far have been developed
under the assumption that the design variables are positive and continuously-valued;
they can thus assume any value between their lower and upper bounds. In certain
design situations, some or all of the variables of a LP problem are restricted to take
discrete values. That is, the standard form of the LP problem of Eq. (3.5.1-3.5.3)
takes the form

minimize f(x) = cTx

such that Ax = b,

xi ∈ Xi = {di1, di2, . . . , dil}, i ∈ Id ,

(3.9.1)

where Id is the set of design variables that can take only discrete values, and Xi is
the set of allowable discrete values. Design variables such as cross-sectional areas of
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trusses and ply thicknesses of laminated composite plates often fall in this category.
Those problems with discrete-valued design variables are called discrete programming
problems.

In general, a discrete programming problem can be converted to a form where
design variables can assume only integer values. This conversion can be achieved by
having the design variable xi to represent the index j of the dij, j = 1, . . . , l, Eq.
(3.9.1). If the values in the discrete set are uniformly spaced, it is possible to scale
the set to form a set of integer values only. The problem is then called an integer
linear programming (ILP) problem,

minimize f(x) = cT
1 x + cT

2 y

such that A1x + A2y = b,

xi ≥ 0 integer ,

yj ≥ 0 .

(3.9.2)

This form, where certain design variables are allowed to be continuous, is referred to
as mixed integer linear programming (MILP) problem. Problems where all variables
are integer are called pure ILP problems or in short ILP problems. It is also common
to have problems where design variables are used to indicate a 0/1 type decision
making situation. Such problems are referred to as zero/one or binary ILP problems.
For example, a truss design problem where the presence of a particular member or
the lack of it is represented by a binary variable falls into this category. Any ILP
problem with an upper bound on the design variable xi of 2K − 1 can be posed as
binary ILP problem by replacing the variable with K binary variables xi1, . . . , xiK

such that

xi = xi1 + 2xi2 + . . . + 2K−1xiK . (3.9.3)

It is also possible to convert the linear discrete programming problem to a binary
ILP by using binary variables (xij ∈ {0, 1}, j = 1, . . . , l) such that

xi = di1xi1 + di2xi2 + · · ·+ dilxil , (3.9.4)

and xi1 + xi2 + · · ·+ xil = 1 . (3.9.5)

Most of the following discussion assumes problems to be pure ILP.

A practical approach to solving ILP problems is to round-off the optimum val-
ues of the variables, obtained by assuming them to be continuous, to the nearest
acceptable integer value. For problems with n design variables there are 2n possible
rounded-off designs, and the problem of choosing the best one is formidable for large
n. Furthermore, for some problems the optimum design may not even be one of these
rounded-off designs, and for others none of the rounded-off designs may be feasible.
A more systematic way of trying possible combinations of variables that will satisfy
the requirements of a given problem can be explained by using the enumeration tree
example of Garfinkel and Nemhauser [19].
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Example 3.9.1

Consider the binary ILP problem of choosing a combination of five variables such
that the following summation is satisfied

f =
5∑

i=1

ixi = 5 .

A decision tree representing the progression of solution of this problem is composed
of nodes and branches that represent the solutions and the combinations of variables
that lead the those solutions, respectively (Figure 3.9.1). The top node of the tree
corresponds to a solution which all the variables are turned off (xi = 0, i = 1, . . . , 5)
with a function value of f = 0. Branching off from this solution are two paths
corresponding to the two alternatives for the first variable. The branch which has
x1 = 1 has a function value of f = 1 and tolerates turning additional variables on
without running into the risk of exceeding the required function value of 5. Of course
the other branch is same as the initial solution, and can be branched further. Next,
these two nodes are branched by considering the on and off alternatives for the second
variable. The node arrived by taking x1 = x2 = 1 has f = 3 and is terminated as
indicated by a vertical line. Such a vertex is said to be fathomed, because further
branching would mean adding a number that would cause f to exceed its required
value of 5. The other three vertices are said to be live, and can be branched further by
considering the alternatives for the remaining variables in a sequential manner until
either the created nodes are fathomed or the branches arrive at feasible solutions to
the problem.

Figure 3.9.1 Enumeration tree for binary ILP problem of f =
∑5

i=1 ixi = 5.
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For the present problem, after considering 19 possible combinations of variables,
we identified 3 feasible solutions which are marked by an asterisk. This is a 40%
reduction in the total number of possible trials, namely 25 = 32, needed to identify
all feasible solutions. For a structural design problem in which trials with different
combinations of variables would possibly require expensive analysis an enumeration
tree can yield substantial savings. • • •

3.9.1 Branch-and-Bound Algorithm

The basic concept behind the enumeration technique forms the basis for this powerful
algorithm suitable for MILP problems as well as nonlinear mixed integer problems
[20,21]. The original algorithm developed by Land and Doig [22] relies on calculating
upper and lower bounds on the objective function so that nodes that result in designs
with objective functions outside the bounds can be fathomed and, therefore, the
number of analyses required can be cut back. Consider the mixed ILP problem of
Eq. (3.9.4). The first step of the algorithm is to solve the LP problem obtained from
the MILP problem by assuming the variables to be continuous valued. If all the x
variables for the resulting solution have integer values, there is no need to continue,
the problem is solved. Suppose several of the variables assume noninteger values and
the objective function value is f1. The f1 value will form a lower bound fL = f1 for the
MILP since imposing conditions that require any of the noninteger valued variables
to take integer values can only cause the objective function to increase. This initial
problem is labeled as LP-1 and is placed in the top node of the enumeration tree as
shown in Figure (3.9.2). For the purpose of illustration, it is assumed that only two
variables xk and xk+1 violate the integer requirement with xk = 4.3 and xk+1 = 2.8.

Figure 3.9.2 Branch-and-bound decision tree for ILP problems.

The second step of the algorithm is to branch from the node into two new LP
problems by adding a new constraint to the LP-1 that would involve only one of the
noninteger variables, say xk. One of the problems, LP-2, will require the value of the
branched variable, xk to be less than or equal to the largest integer smaller than xk,

107



Chapter 3: Linear Programming

and the other, LP-3, will have a constraint that xk is larger than the smallest integer
larger than xk. As will be demonstrated later in Example 3.9.2, these two problems
actually do branch the feasible design space of the LP-1 into two segments. There
are several possibilities for the solution of these two new problems. One of these
possibilities is to have no feasible solution for the new problem. In that case the new
node will be fathomed. Another possibility is to reach an all integer feasible solution
(see LP-3 of Figure 3.9.2) in which case the node will again be fathomed but the value
of the objective function will become an upper bound fU for the MILP problem. That
is, beyond this solution point, any node that has an LP solution with a larger value
of the objective function will be fathomed, and only those solutions that have the
potential of producing an objective function between fL and fU will be pursued. If
there are no solutions with an objective function smaller than fU , then the node is
an optimum solution. If there are other solutions with an objective function smaller
than fU , they may still include noninteger valued variables (LP-2 of Figure 3.9.2),
and are labeled as live nodes. Live nodes are then branched again by considering one
of the remaining noninteger values and resulting solutions are analyzed until all the
nodes are fathomed.

Example 3.9.2

Consider the portal frame problem problem of Example 3.1.5 (see Eqs. (3.1.25)
through (3.1.31)) with the requirement that xi ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, i = 1, 2.
We rescale the design variables by a factor of 5 to pose the problem as an integer
linear programming problem,

minimize f =
1

5
(2x1 + x2)

such that x2 ≥ 1.25 ,

x1 + x2 ≥ 2.5 ,

x1 + x2 ≥ 5 ,

x1 ≥ 2.5 ,

x1 + 2x2 ≥ 7.5 ,

2x1 + x2 ≥ 7.5 ,

xi ≥ 0 integer, i = 1, 2 .

Graphical solution of this scaled problem (presented in Example 3.4.1 without the
integer design variable requirement before scaling) is

x1 = x2 = 2.5, f = 7.5 ,

and forms a lower bound for the objective function, fL = 7.5. That is, the optimal
integer solution cannot have an objective function smaller than fL = 7.5. Next, we
choose x1 and investigate solutions for which x1 ≤ 2 and x1 ≥ 3 by forming two new
LP’s by adding each one of these constraints to the original set of constraints. Since
the original set has a constraint that requires x1 ≥ 2.5, the first LP problem with
x1 ≤ 2 has no solution. The solution of the second LP is shown graphically in Figure
(3.9.3). The active constraints at the optimum are, x1 ≥ 3 and x1 + 2x2 ≥ 7.5, and
the solution is,

x1 = 3, x2 = 2.25, f = 8.25 .
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Figure 3.9.3 Branch-and-bound solution for x1 ≤ 2 and x1 ≥ 3 of Example 3.9.2 .

Since x2 is still non integer, we create two more LP’s, this time by imposing
x2 ≤ 2 and x2 ≥ 3, respectively. Graphical solutions of the new LP’s are shown in
Figure (3.9.4). The solution for the case x2 ≥ 3 is at the vertex x1 = 3 and x2 = 3,
and is a feasible solution for the integer problem with an objective function value of
f = 9. This value of the objective function, therefore, establishes an upper bound,
fU = 9 for the problem. The solution for the case x2 ≤ 2, on the other hand is at the
intersection of x2 = 2 and x1 + 2x2 = 5 leading to

x1 = 3.5, x2 = 2, and f = 9 .

Figure 3.9.4 Branch-and-bound solution for x2 ≤ 2 and x2 ≥ 3 of Example 3.9.2 .
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This solution is not discrete and can be interrogated further by branching on x1 (that
is creating new LP’s by adding x1 ≤ 3 and x1 ≥ 4). However, since its objective
function is equal to the upper bound, we cannot improve the objective function any
further. To do so would necessitate introducing a further constraint which could
only increase the objective function. Therefore, the optimal solution is the one with
x1 = x2 = 3, and f = 9. • • •

As can be observed from the example, performance of the Branch-and-Bound
algorithm relies heavily on the choice of noninteger variable to be used for branching,
and the selection of node to be branched. If a selected node and branching variable
leads to an upper bound close to the objective function of the LP-1 early in the
enumeration scheme, then substantial computational savings can be obtained because
of the elimination of branches that would not be capable of generating solutions lower
than the upper bound. A rule of thumb for choosing the noninteger variable to be
branched is to take the variable with the largest fraction. For the selection of the
node to be branched, we choose, among all the live nodes, the LP problem which has
the smallest value of the objective function; that node is most likely to generate a
feasible design with a tighter upper bound.

Branch-and-Bound is only one of the algorithms for the solution of ILP or MILP
problems. However, because of its simplicity it is incorporated into many commer-
cially available computer programs [23, 24]. There are a number of other techniques
which are capable of handling general discrete-valued problems (see, for example,
Ref. [25]). Some of these algorithms are good not only for ILP problems but also
for NLP problems with integer variables. Particularly, methods based on proba-
bilistic search algorithms are emerging for many applications, including structural
design applications, that involve linear and nonlinear programming problems. Two
of such techniques, namely simulated annealing and genetic algorithms, are discussed
in Chapter 4. Another approach, which is based on an extension of the penalty
function approach for constrained NLP problems, is presented in Chapter 5. Finally,
the use of dual variables (which are presented to be useful as prices of constraints in
section 7.3) in ILP problems are discussed in Chapter 9.

One of the interesting design applications of the ILP was introduced by Haftka
and Walsh [26] for the stacking sequence design of laminated composite plates for
improved buckling response. Since the formulation of this problem involves mate-
rial introduced in Chapter 11, discussion and demonstration of this application is
presented in that chapter.

3.10 Exercises

1. Estimate the limit load for the three bar truss example 3.1.2 using a graphical
approach. Verify your solution using the simplex method.
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Figure 3.10.1 Platform support system

2. Consider the platform support system shown in Figure 3.10.1 in which cables 1
and 2 can support loads up to 400 lb each; cables 3 and 4 up to 150 lb each and
cables 5 and 6 up to 75 lb each. Neglect the weight of the platforms and cables,
and assume the weights w1, w2, and w3 at the positions indicated in the figure. Also
neglect the bending failure of the platforms. Using linear programming determine
the the maximum total load that the system can support.

3. Solve the limit design problem for the truss of Figure 3.1.4 using the sim-
plex algorithm. Assume A13 = A24 = A34, A14 = A23, and use appropriate non-
dimensionalization.

4. Using the method of virtual displacements verify that the collapse mechanisms for
the portal frame of Figure 3.1.6 lead to Eqs. (3.1.26) through (3.1.31) in terms of the
nondimensional variables x1 and x2.

5. The single bay, two story portal frame shown in Figure (3.10.2) is subjected
to a single loading condition consisting of 4 concentrated loads as shown. Following
Example 3.1.5 formulate the LP problem for the minimum weight design of the frame
against plastic collapse.

6. Consider the continuous prestressed concrete beam shown in Figure (3.10.3),

a) Verify that the equivalent uniformly distributed upward force exerted on the
concrete beam by a prestressing cable with a force f and a parabolic profile defined
by eccentricities y1, y2, and y3 at the three points x = 0, x = l/2, and x = l
respectively is given by

q =
4f

l2
(y3 − 2y2 + y1) .

b) The beam in the figure is subjected to two loading conditions: the first con-
sisting of a dead load of 1 kip/ft together with an equivalent load due to a parabolic
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Figure 3.10.2 Two story portal frame

Figure 3.10.3 A continuous prestressed concrete beam

prestressing cable with a force f , and the second due to an additional live load of 2.5
kips/ft in service. It is assumed, however, that in service a 15% loss of prestressing
force is to be expected. Formulate the LP problem for the minimum cost design
of beam assuming f, y1, and y2 as design variables. Assume the allowable stress
for the two loading conditions to be σu

1 = 200 psi, σl
1 = −3000 psi, σu

2 = 0 psi,
σl

2 = −2000 psi and the upper and lower bound limits on the eccentricities y1 and y2

to be 0.4ft ≤ yi ≤ 2.6ft, i = 1, 2.

c) Solve the LP problem by the simplex algorithm and obtain the solution for the
minimum prestressing force and the tendon profile.

7. Consider the statically determinate truss of Figure 3.3.1 and its minimum weight
design formulation as described by Eqs. (3.3.9) through (3.3.13). Use the linearization
scheme implied by Eqs. (3.3.2) through (3.3.5) to formulate the LP problem for m=3.
Solve the LP by the simplex algorithm and compare the approximate solution with
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the graphical or an exact solution to the problem.

8. Use Branch-and-Bound algorithm to solve the limit design problem of Exercise 3
by assuming the cross-sections of the members to take values from the following sets

a) {0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0}.

b) {0.0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1}.
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