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It seems as though
a lot of the work is
finding the first feasible 
corner point.

Now, I move to a better
adjacent corner point; 
then the next adjacent
…...

We made it!  We are at 
a unique, global optimum,
and we are sure of it.
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Forward 
 

This material has been prepared for the student who wishes to learn the basic concepts about 
linear programming.  The material will prepare the student to use linear programming in 
engineering practice.  It should also provide a basis for further study into the mathematics, 
algorithms and numerical implementation of linear programming. 
 
 
 
 
 
 

  
 
 
 

 

“The Purpose of Mathematical Programming is Insight, not Numbers.” 
 
 

Arthur Geoffrion (1976) 
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Linear Programming 
Key Terms, Concepts & Methods for the User 

 
 
1.0 Linear Programming 
 
We start our studies of optimization methods with linear programming. Basically, we select linear 
programming because it   
 
 is used widely in engineering practice 
 enables us to practice problem formulation and results analysis, including inequality 

constraints and variable bounds 
 gives insight to the power of optimization (versus brute force simulation of many 

alternatives) 
 builds a foundation for other major categories of optimization algorithms 
 
This first section explains why linear programming is a useful method and a good introduction to 
optimization. 
 
1.1 The Meaning of Optimization 
 
Fourth-year students already have considerable experience with mathematical modelling for 
simulation, so what is new?  In simulation, the results are defined by the user-selected values of 
the variables and parameters.  Thus, we often say that the system of equations used for simulation 
has zero degrees of freedom; for example, a simulation model with 20 (linearly independent) 
equations has 20 variables.  In optimization, the model has more variables than linearly 
independent equations; therefore, for a properly formulated optimization problem the user-
selected values of variables do not define the results.  In optimization, the objective function is 
used to guide the selection of values for the degrees of freedom, i.e., the "extra" variables. 
 
Example 1.1 Gasoline Blending: A simple process example of simulation and optimization is 
given in a blending problem.  Simulation of the blending problem is depicted in Figure 1.1a, 
where the flow rates of all streams are defined by the user and the total flow rate, physical 
properties of the product stream and profit are determined using the model and the user-selected 
values.  Optimization is depicted in Figure 1.1b, where the objective is profit achieved when the 
product satisfies quality specifications.  Profit can be maximized by adjusting the five input flow 
rates, which have different costs, within user-defined limits. 
 
 The optimization result could be estimated by a grid search approach that evaluated the 
behavior of the blend process for many combinations of component flow rates.  If we selected a 
rather imprecise grid of ten values of flow per component, the grid would have the 105 cases to 
evaluate; if each case required 0.1 second, the rough search would require over 150 minutes.  
Clearly, a better approach is required.  The linear programming method that we will learn in this 
chapter can optimize the blending problem to high precision with a computing time of less than 
one second. 
 
 For further details on problem definition, please see the lecture notes on “Formulating the 
Optimization Problem”. 
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Figure 1.1  Gasoline blending example. 
 
 
1.2 The Importance of Linear Programming 
 
Since linear programming (LP) technology can solve large problems reliably, it was the first 
method widely used for optimization using digital computation.  It remains one of the most 
important – likely the most important – optimization method.  Linear programming is used in a 
wide range of applications, such as design, manufacturing, personnel planning, investment 
management, statistics, public health, national public policy, and many more. 
 

A linear programming (LP) problem involves many variables and equations. Current 
software can solve 100s of thousands to millions of equations and variables in a reasonable time.  
How can we solve such large mathematical problems?  The key feature is in the name – linear 
programming.  After several years of engineering study, you have seen that most models involve 
non-linear expressions, and therefore, you might be dubious about the value of linear model.  
Please keep an open mind, because we will see many useful applications and learn model 
formulations that enable us to solve realistic problems with linear programming. 

 
Optimization in general, and linear programming in many instances, is a natural way to 

formulate and solve engineering problems.  In the past, problems requiring fast solution could not 
be solved using optimization, so that ad hoc solution methods were developed that gave rapid, but 
sub-optimal, solutions.  An example is automatic control, whose development predated digital 
computation and linear programming.  However, linear programming can solve some problems 
very fast and is replacing older methods in selected real-time applications. 
 
 
Example 1.2 Optimizing transportation costs: This example will demonstrate the importance 
of having a systematic mathematical method for optimization.  We will design a transportation 
system between the plants, warehouses and customers in Figure 1.2.  The manufacturing costs in 
the plants are the same, as are the storage costs in the warehouses; therefore, our goal in this 
problem is to satisfy the customer demands at minimum transportation costs.  If faced with this 
challenge (and not knowing optimization) you would likely apply a heuristic to find a solution.  
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The word "heuristic" in this context means a "a set of rules or procedures based on experience 
and qualitative analysis that is not rigorous".  Using reliable heuristics that provide nearly optimal 
solutions is not a bad approach, if possible.  However, we seldom have a bound on the gap 
between the best (optimum) and the result achieved using a heuristic; thus, we will learn 
optimization in this chapter. But first, let's apply two reasonable heuristics to this problem.   
 
Heuristic 1, Sequential decision making: We will first decide the best policy for the warehouse-
to-customer flows; then, we will decide the best plant-to-warehouse flows.  In the first step, we 
rank the costs of satisfying the customer demands from the warehouses, from which we select the 
flows that give the lowest cost alternates. 
 
 From W2 to C1    50,000 units 
 From W2 to C2  100,000 units 
 From W2 to C3    50,000 units 
 
In the second step, we determine the flows that give the minimum cost for the plant to warehouse, 
which are given below. 
 
 From P2 to W2    60,000 units (Note that the maximum production in P2 is 60,000) 

 From P1 to W2  140,000 units 
 

This result satisfies all strict customer requirements and does not exceed the capacity of 
plant 2; we will call this a feasible solution.  The total cost is $1,200,000.  Is this good; is this the 
best?  Without optimization, we do not know. 

Figure 1.2  Transportation problem from Example 1.2.  Costs ($/unit) are noted for each path.  (This 
example and figure are from Geffrion and Van Roy (1979); see this reference for further examples 
and interesting discussion.) 

P1

P2

W1

W2

C1

C2

C360,000 max

Demand

50,000

100,000

50,000

0

5

4

2

3

4

5
2

1

2



  8

 
 
Heuristic 2, Decision making with some look ahead: The first heuristic did not consider the 
plant-warehouse costs when making the first decisions.  In this heuristic, we will first find the 
plant-warehouse-customer paths that give the lowest costs and decide on the best warehouse-
customer flows.  The lowest cost paths are given in the flowing 
 
 For C1  P1-W1-C1 
 For C2  P2-W2-C2 
 For C3  P2-W2-C3 
 
Observing these paths gives the following flows from the warehouses. 
 
 From W1 to C1    50,000 units 
 From W2 to C2  100,000 units 
 From W2 to C3    50,000 units 
 
Second, we select the lowest cost for plant-warehouse flows to satisfy the above decisions, which 
are given in the following. 
 
 From P1 to W1    50,000 units 
 From P2 to W2    60,000 units (Note that the maximum production in P2 is 60,000) 

 From P1 to W2    90,000 units 
 

This result satisfies all strict customer requirements and does not exceed the capacity of 
plant 2; it is also a feasible solution.  The total cost is $920,000, less than the first solution.  Is 
this good; is this the best?  Without optimization, we do not know. 

 
Optimization: This problem can be solved to determine the optimum using methods introduced 
in this chapter.  The computing time will be less than one second, and the minimum cost is 
$740,000!  That is a big improvement achieved with fast computation, so let's keep reading to 
learn optimization. 
 
 The previous example has given some insight into the complexity of an optimization 
problem.  For the complex problems, even this small example, why do heuristics often fail? 
 
 Complete enumeration of alternatives is usually impossible.  For example, selecting 15 

variables from 30 candidates has over 155,000 possibilities. 
 Sequential decision making will not find correct solutions because of interactions among 

decisions. 
 Capacity limits (for example, the maximum production in plant 2) are very difficult to include 

in heuristics 
 Problem data, especially costs and limits, change frequently.  Therefore, the "same" problem 

with different parameters has to be solved often. 
 
In this chapter, we will learn linear programming to quickly and efficiently solve many 
optimization problems.   
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1.3 Learning Goals 
 
Optimization via linear programming is a vast topic, which for mastery requires sophisticated 
mathematical analysis, advanced numerical methods, computer coding, mathematical modelling 
and results analysis.  Well, that is too much for 70 pages and too much for an introduction!  
However, we want to be sure to learn what most engineers need to know for engineering practice.  
 
 One common method for explaining learning goals is to address three key categories; 
attitudes, skills and knowledge (Rugarcia, et al, 2000).  The key learning goals for linear 
programming are given in Figure 1.3.   
 

After you have completed this chapter, you will be able to 
 
 explain the basic concepts of linear programming along with advantages and limitations 
 sketch the feasible region in two dimensions and demonstrate the simplex algorithm 

procedure 
 formulate appropriate linear programming models of technical and economic applications 
 analyze the results, including sensitivity and diagnosis of unusual events 
 explain an optimization study from formulation to results analysis, including preparing a 

formal report. 
 
This chapter does not fully prepare you for developing a computer program to solve linear 
programming or to extend the technology through research.  However, it will provide a good 
basis for engineering practice and if your interest is piqued, further studies. 
 
 
 
 
 

Figure 1.3  Learning Goals for engineering optimization. 
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• An optimal solution is much better than an answer. 
• Numbers without understanding are useless
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into a mathematical 
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in “engineering terms”

Knowledge: 
Based of fundamental
concepts, we will learn

• formulation for LP
• results analysis, 

including diagnosing
“weird events”

• sensitivity analysis
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2.0 Key Modelling Assumptions and Limitations 
 
We begin with some key assumptions that limit the types of models used in linear programming.  
We must understand and abide by these limitations.  When first encountering these model 
limitations, the engineering student might conclude that few realistic problems could the 
represented.  However, many model formulations have been developed for use with LPs, as we 
will see in Section 8. 
 
2.1 Linearity 
This is the key feature that enables the impressive performance of LP methods.  It also places 
severe restrictions on the model; both the constraints and the objective function must be linear.  
Therefore, the engineer must understand linearity.  Linearity consists of the following two 
properties. 
 
Proportionality: The contribution of a variable to the objective function or constraint function is 
proportional to the value of the variable.   
 
Additivity: The value of an objective function or constraint function is the sum of the 
contributions of each variable.  Note that proportionality does not exclude cross-product terms, so 
that the additivity property is required. 
 
2.2 Divisibility 
We assume that any variable can be divided into any small value, in other words, variables are 
continuous.  Other variables we encounter often can assume only specific values, such as 0.0 or 
1.0; these we call discrete variables.  Some examples of continuous and discrete variables are 
given in the following. 
 

Continuous Discrete 
 Temperature 
 Pressure 
 Flow of liquid 
 Mole fraction 
 Weight of granular material in a 

bin 
 Enthalpy  

 Number of automobiles 
manufactured per shift 

 Number of trays in a distillation 
column 

 Pipe diameter, because only 
specific sizes are manufactured 

 One of several mutually exclusive 
investment decisions 

 
We might argue that some of these continuous variables are really discrete, because of a finite 
number of molecules in a system or of quantum effects, but the divisibility assumption is 
excellent for engineering problems.   
 
We have two choices when discrete variables are present.   
 
 We can assume that the all variables are continuous and round off the answer to the closest 

integer for the variables that are not continuous. 
 We can use a model with integer variables, which requires an entirely different solution 

method, integer programming (Williams, 1999). 
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When we consider LP methods, we must have all continuous variables or we must be able to 
model approximately using continuous variables and round off the answer to the nearest discrete 
value after solution.  This round-off method is not always appropriate, for example, when 
selecting one of mutually exclusive investments. 
 
2.3 Certainty 
Often, we assume certainty without stating it, which is not a good practice.  Here, we will 
expressly acknowledge that we are assuming that all information used in the LP is known exactly.  
We will see that we can evaluate the effects of changes in some of the data easily using sensitivity 
(or post-optimal) analysis.  Therefore, we typically report the optimization results for the base 
case, or best estimate, of uncertain parameters and also provide how much the solution changes 
for small changes in the uncertain parameters. 
 

Using only the best estimate of the parameter is not appropriate for all problems.  For 
example, we might want to make a decision that is profitable (or safe or meets product 
requirements) for all values of uncertain parameters within their range. If the uncertainly is large 
and has a strong influence on the results, we will have to use linear programming solution 
methods that explicitly consider uncertainty, such as stochastic linear programming (Sen and 
Hingle, 1999). 
 
2.4 Formulating a Linear Program 
 
We formulate a linear programming problem by tailoring the general optimization problem.  We 
begin with the general optimization problem. 
 

     xxx

0g(x)

0h(x)

..

)(min

maxmin 





ts

xfz
x

 

 
 
 

(2.1)

 
with x a vector of variables, h(x) equality constraints (equations) and g(x) inequality constraints.  
The variables can be bounded between upper and lower limits.  For a linear program, the 
optimization problem is the following.   

 

    xxx

..

min

maxmin 







gg

hh

T

x

bxA

bxA

ts

xcz

 

 
 
 

(2.2)

 

with 


n

i
ii xcxcxc

1
2211 ....xcT  

 A = matrices of constant left-hand side coefficients multiplied by the variables x 
 bj  = vectors of right-hand side constants  
 c    = vector of cost coefficients 
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In general, the equations and inequalities define a region in which the optimum can exist, which 
we call the feasible region.  The point (or points) where z is minimized within the region is the 
optimum. 
 
The reader should recognize that a user of LP software defines the problem by inputting the 
coefficients c, A, b, xmin and xmax.  The user does not perform the calculations explained in 
Sections 4 and 5.  However, informed users of linear programming must understand the solution 
method so that they can properly select the LP method, formulate an appropriate linearized 
model, and interpret the numerical results from a computer program. 
 
 
3.0 Linear Programming Properties and Advantages 
 
The properties introduced in the previous section enable us to greatly simplify our mathematical 
models and to use very efficient solution methods.  The solution method (algorithm) for LP uses 
these following properties that result from the assumptions in Section 2. 
 
3.1 Convexity 
Convex set: The feasible region for a linear program has an important property that greatly 
simplifies the problem solution, convexity.  A region is convex if all points on a straight line 
connecting any two points within the region are also in the region.  A sketch of a general convex 
region is given in Figure 3.1.  Importantly, we will see that a problem stated as an LP, abiding by 
the standard formulation in equation (2.2), involves a convex set 
 
Convex objective: The objective function is linear, which is also convex.  A convex function 
satisfies the following expression. 
 

)()1()( ])1( [ 2121 xfxfxxf    (3.1)
 
with   = a constant having a value between 0 and 1.   
 
A convex objective minimized over a convex 
region is termed a convex programming problem.  
An important theoretical result in optimization is 
that a local optimum in a convex programming 
problem is a global optimum.  A point at which all 
other surrounding (local) points are inferior or 
worse is a local optimum.  For convex 
programming problems, this is automatically the 
optimum within the entire region of x defined in 
the problem! 
 
 
Therefore, in linear programming a local 
optimum is a global optimum! 
 

(a)

x

f(x)

(b)

Figure 3.1 (a) Convex sets and convex 
function 

 
We must be careful to recall that the optimum might not be unique.  The value for the objective at 
the local optimum cannot be improved in the feasible region.  However, many values for 
variables x in the feasible region might have the same value of the objective function.   
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3.2 Activity of Inequalities 
 
Here, we introduce a note on terminology regarding status of inequality constraints.  Each 
inequality is described by one of the following terms for any feasible point. 
 
Inactive: 
(Non-binding) 

When the values of the variables result in the left-hand side not being equal to 
the constant on the right hand side and conforming to the appropriate ( or ) 
inequality constraint. 

Active: 
(Binding) 

When the values of the variables result in the left-hand side being equal to the 
constant on the right hand side. 

 
Some references use alternative terminology for the same concept, binding for active and non-
binding for inactive.  Naturally, if the inequality constraint is violated, the point is infeasible.  A 
few examples are given in the following. 
 

Inequality Variables values Status of inequality constraint 
2.5x1 + 1.5 x2  10 x1 = 2  ,  x2 = 3    9.5 < 10 Inactive (feasible) 
2.5x1 + 1.5 x2  10 x1 = 2  ,  x2 = 3.333    10 = 10 Active (feasible) 
2.5x1 + 1.5 x2  10 x1 = 3  ,  x2 = 2    10.5 > 10 Infeasible (violated) 

 
 
3.3 Location of Optimum 
The efficiency and reliability of LP solution techniques depend upon a strong statement about the 
location of the optimum in an LP problem.  The statement involves corner point locations in the 
feasible region. 

 
From observing Figure 3.2, we can conclude the following (Hillier and Lieberman, 2001). 
 

 
In addition to the global optimum the solution method that we will learn determines the 
following: 
 
 Bounded or unbounded – We need to determine whether the optimum values of one or 

more variables are unbounded (giving an objective value of  ).  If this occurs, the problem 
formulation is in error, because no real system has variables with infinite range. 

Consider a linear programming problem with feasible solutions and a bounded region.  The 
optimal value of the objective function is located at a corner-point solution!  Thus, if the 
problem has one optimal solution, it must be a corner point (vertex); if it has multiple 
optimal solutions, at least two must be located at corner points (vertices). 

Corner Point: A point is a corner point (p) if every line segment in the set (feasible region) 
containing p has p as an endpoint.  When explaining linear programming, various references 
use the following terms, all having the same meaning: corner point, extreme point, and 
vertex. 
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 Feasible or infeasible - We need to determine whether a feasible region exists or does not 
exist (no solution).  This could be due to a formulation error or a very stringent performance 
requirement.  For example, we might require a reactor product yield of over 60%, while the 
maximum achievable is less than 60% because of side reactions. 

 
Figure 3.2.  A typical LP problem showing the unique optimum at a corner point. 
 
 Unique or alternative - The unique optimum value of the objective occurs at a corner point, 

as indicated above.  However, an “edge” intersecting the corner point could have the same 
value of the objective. 

 Sensitivity to coefficient changes - We need to determine sensitivity information regarding 
the effects of changes in some of the parameters. 

 
These are very complete results, not generally available in optimization.  Therefore, for 
computational efficiency and excellent results analysis, 
 

 
Now, we will learn how we can use these properties to define the principles for locating the 
optimum of a linear program.  Then, we will develop the algorithm in Section 5 that uses these 
principles to locate the optimum with computational efficiency. 
 
 
4.0 Principles for Solving a Linear Programming Problem 
 
We have learned that the optimum of a linear program occurs at a corner point of the feasible 
region.  Our task here is to develop equations that define corner points and to establish criteria for 
identifying the best corner point.  These principles will result is set of equations.  Therefore, we 
begin by reviewing the solution to a set on linear equations. 
 
4.1 Solving linear equations 
We begin by reviewing the solution of a square set of linear equations with “m” equations and 
variables.  If the equations are linearly independent, a solution exists. 

Variable x1

V
ar

ia
b

le
 x

2

Increasing profit

Shaded area
is the feasible 
region

Optimum

We will seek to formulate an optimization problem as an LP, when the method provides 
adequate accuracy for the problem being solved. 
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The set of linear equations can be represented in the following matrix equation. 
 

b x  A   (4.1)
 
 
With A =  coefficient matrix (mxm) 
 b = “right hand side” vector of constants (mx1) 
 x = vector of values of the variables xi (mx1) 
 
The solution of the set of equations can be represented as the following, which requires 
evaluating the inverse of the coefficient matrix, assuming that A is full rank (non-singular), so 
that the inverse exists. 
 

x = A-1 b (4.2)
 
The solution can be determined without solving explicitly for the inverse by applying the Gauss-
Jordan method, which applies elementary row operations to reduce the coefficient matrix to the 
identity matrix.   
 

Since similar approaches are used in linear programming, we will briefly review the 
Gauss-Jordan method for solving a set of linear algebraic equation.  This method employs 
elementary row operations to rearrange the coefficient matrix to the identity matrix.  When the 
same row operations are applied to the right-hand side coefficients, the solution can be obtained 
by observation, because elementary operations do not change the solution of the equations.  (For 
example, see Edgar et al 2001, Appendix A or Chapra and Canale, 1998). 
 
Example 4.1  Let's solve the following set of linear equations. 
 

4
2

3

3

2

2

1

2345

3312

321

321

321






xxx

xxx

xxx

 
 
 
(4.3) 
 

 
These equations can be restated in matrix form as the following. 
 

bAx  (4.4) 

with   

















2/33/22/1

345

312

A  x = 
















3

2

1

x

x

x

 b = 
















4

2

3

 

 
 
 

 
To prepare for the Gauss-Jordan method, we align the left-hand side "A" coefficient matrix with 
the rows of the right-hand side "b" values.   
 

43/23/21/2

2345

3312

 

 
 
(4.5) 
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Now, we proceed to perform elementary row operations on the "A" matrix to yield an identity 
matrix and also perform the same operations on the right-hand side values.  We select the (1,1) 
position for a pivot.  First we divide the first row by 2 to achieve a value of 1.0 in the (1,1) 
element.  Then, we multiply the modified first row by -5 and add the values to the second row to 
achieve a 0.0 in the (2,1) position.  After these first two steps, we have the following matrix. 
 

42/33/22/1

2/132/92/30

2/32/32/11


 

 
 
(4.6) 
 

 
At the completion of the procedure, equation (4.5) is transformed in the following result. 
 

18/43100

2/7010

6/23001 

 

 
 
(4.5) 
 

 
Clearly, the result has been obtained, with x1 = -23/6, x2 = 7/2 and x3 = 43/18. 
 
 

 
These calculations can be quite tedious and time consuming; however, they can be easily 

performed by a computer program.  In addition, excellent interactive tools are available to help 
students "learn by doing".  The educational tools require the student to make key decisions and 
provide a few numbers, while the computer program performs the extensive calculations and 
displays updated results.  See Appendix B for the location of these tools on the WWW. 
 
4.2 The LP formulation 
A general LP problem could be formulated as given in the following. 

 

     x

bxA

bxA

bxA

.t.s

xczmin

hh

T

x

0
22

11










 

 
 
 

(4.6)

 
with A = coefficient matrices  

c = original cost vector 
 b = vector of constants on the right hand side (rhs) of equation or inequality constraints 
 x = vector of problem variables  

z = scalar objective function 

The elementary row operations in the Gauss-Jordan do not affect the solution of the linear 
equations, but they result in coefficients that yield the solution by observation. 
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It is probably worth repeating that this is the formulation used when inputting a problem 

to a software package.  The user does not usually perform the procedures described in this and the 
next section, such as adding slack and artificial variables, arranging in canonical (standard) form, 
and performing the tableau calculations.  However, the engineer needs to know the concepts 
behind the method to formulate models and interpret results. 
 
The variables in equation (4.6) are limited to be greater than or equal to zero; we often term this 
“non-negative”.  We will generalize the approach later to include variables that can be negative as 
well as positive and have lower and upper bounds. 
 

The optimization problem is stated as a minimization to be consistent with most books on 
optimization.  We can solve a maximization problem by noting that maximizing (z) is equivalent 
to minimizing (-z).  Also, by convention the values of the right hand sides of the equations and 
inequalities are positive (bi  0).  We can always achieve a positive right hand side by multiplying 
the equation or inequality by (-1).  Recall that multiplying by (-1) changes the sense of an 
inequality, e.g., less than (<) to greater than (>). 
 

We want to convert to a formulation involving only equalities, since a corner point is 
defined by equalities (the original equations and a subset of active equalities).  Converting to 
equalities can be achieved by adding a variable to any inequality.  This variable has the value of 
the difference between the left-hand side value (depending on the variable values) and the right-
hand side value (a constant).  These variables are termed slack variables, which are limited to be 
non-negative (0).  By adding one slack variable to each inequality (but not to equalities), 
inequalities are converted to equalities.  When this addition has been completed, all relationships 
among variables are equalities.  Examples are given in the following. 
 

Original expression Slack added to form equality 
(Note that xs  0) 

373275 321  x.xx  373275 1321  sxx.xx  

373275 321  x.xx  373275 2321  sxxxx .  

373275 321  x.xx  No modification needed. 

 
Unfortunately, the terminology is not consistent among references.  We will use the term 

“slack” for a variable added to convert an inequality to an equality, regardless of the sign of its 
coefficient, plus or minus.  Some references use “slack” when the coefficient is +1 and either 
“surplus” or “excess” variable when the coefficient is –1. 
 
 
After we have added slack variables where needed, we have the following  
 

Standard Form of the Linear Programming Problem  
 

    

..

min

0





x

bxA

ts

xcz T

x

 

 
 
(4.7)
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The A matrix in the equation above includes coefficients from all equalities and inequalities in 
the original formulation, equation (4.6) and the coefficients of the slack variables added to the 
problem to convert inequalities to equalities. The variable x vector includes original problem and 
slack variables. 
 

 
If the problem had the same number of variables and (independent) equations, a single 

solution exists, and no degrees of freedom would exist for optimization.  If it had fewer variables 
than equations, no solution would exist.  When more variables exist, degrees of freedom exist for 
improving the objective function while satisfying the equations.  In most engineering 
optimization problems, this assumption is valid.  The most common reason for initially violating 
the assumption is an overly restrictive definition of system performance.  In this situation, we 
usually convert the problem to one with additional variables using the “goal programming” 
approach covered in Section 8.6. 
 

 
We can think of the problem as “m” variables that are determined by the equations and 

“n-m” variables that are the degrees of freedom for optimization.  Therefore, the solution 
approach involves finding the correct set of variables for solving the equations and finding the 
correct values for the remaining variables that minimize the objective function.  We will use the 
following terminology when referring to this selection. 
 

 
Recall that the variables include slack variables, so that changing the selection of basic variables 
has the effect of changing which inequalities are active (slacks = 0) or not active (slacks > 0). 
 

The resulting problem is shown schematically in Figure 4.1. Clearly, we can make many 
different selections of basic and non-basic variables. How do we determine the best, or optimum 
selection?  One way would be to evaluate all combinations of “m” variables selected from “n”.  
We could solve the equations for each combination, and if the solution were feasible (x  0), we 
could evaluate the objective function.  After all feasible objective values were evaluated, we 
could select the feasible corner point with the minimum objective as the optimum.  While this 
approach would yield the correct answer, it is extremely inefficient.  For example, if m=10 and 
n=20, the number of possible combinations to evaluate is about 185,000!  Thus, we seek a more 
efficient approach. 
 

We will use the letter “n” to denote the number of variables and “m” to denote the number of 
equations, with n  m. 

Basic variables: “m” variables determined by the equations 
Non-basic variables: “n-m” variables that are set to values that minimize the objective 

We will assume that the problem in standard form has more variables than equations. 
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Figure 4.1. Schematic of the LP solution approach: separating into basic and non-basic variables.  
When bounded variables are considered, the non-basic variables can have values at 
either their upper or lower bounds. 

 
 
 
4.3 The Best Corner Point 
The selection of basic and non-basic variables determines the set of inequalities that are active.  
Figure 4.2 shows the importance of the active set in finding the optimum and gives insight into 
the optimum corner point.  In the example shown, only one set of active constraints gives the 
minimum objective.  The optimum corner point is determined from the gradient of the objective 
and constraints. 
 

 
Thus, we arrive at the key definition of the corner point at which the optimum is located. 
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Cone: A cone is defined by a set of vectors v1, v2 and so forth.  A vector P is contained 
within the cone if P can be expressed as a linear sum of the defining vectors (v1, v2, …) with 
non-negative constants. 
 

P = 1 v1 + 2v2 + …. With 1, 1..  0     (4.8) 
 
Thus, P is a non-negative linear combination of the vectors defining the cone. 

The optimum corner point has the gradient of the objective function contained within 
the cone of the gradients of the active constraints.   
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Figure 4.2. Schematic of the optimality conditions for an optimum corner point in LP. 
 
 
This situation is shown in Figure 4.2.  Note that this criterion enables us to determine the 
optimum from local information; we do not have to evaluate all or any other corner points. 
 

When the specified condition is satisfied, no movement along a constraint can improve 
the objective function.  We know for an LP that (1) the optimum must be at a corner point and (2) 
a local optimum is also global; therefore, the corner point is the global optimum.  (Some special 
cases with alternative optima are discussed later.) 
 
The principles of optimization and the special features of linear programming result in the 
following concepts for identifying the optimum. 
 

 
These principles provide us with excellent insight into the LP method.  The student 

should be sure to understand the concepts shown in Figures 4.1 and 4.2, which give a geometric 
interpretation to the concepts. While these principles do not define an efficient method of 
numerical computation, they provide a foundation for the algorithm given in the next section. 
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The optimum

1. Formulate the problem as a general LP optimization problem, equation (4.6) 
2. Add slack variables to convert inequalities to equalities, equation (4.7) 
3. Separate variables into basic and non-basic, Figure 4.1 
4. Choose as the optimum the basic variable selection (from 3 above) that provides a 

feasible solution with the optimum value of the objective function, Figure 4.2 
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5.0 The Linear Programming Simplex Algorithm 
 
Fortunately, the principles presented in the preceding section can be employed through a very 
efficient algorithm.  This algorithm is termed the “simplex” algorithm, which was developed by 
George Dantzig. He developed the simplex algorithm in the 1940’s, and it remains the standard 
method for numerical solution of linear programs.  Currently, low-cost, efficient, robust software 
is available to solve large systems using this method.  Here, we will learn the basic algorithm, 
which will enable us to formulate problems and interpret results.  (Regrettably, other algorithms 
have been named “simplex”; thus, the student is cautioned that we are here referring to the linear 
programming simplex algorithm.)   
 

The Simplex algorithm has the following excellent features. 
 If an optimum exists, the algorithm defines an iterative procedure that concludes with the 

optimum. 
 If an optimum does not exist, the algorithm provides guidance on why not. 
 As shown by experience, the method is computationally efficient. 
 
We will need the following definitions for concepts already covered. 
 

 
 
5.1 Obtaining the initial Corner Point (Basic Feasible Solution) 
The algorithm relies on a procedure that iteratively selects basic feasible solutions, but it must 
start with a basic feasible solution.  Therefore, we need a method for finding a set of “m” basic 
vectors for which the resulting set of “m” linear equations has a solution, i.e., is non-singular.  
The desired approach should work for any LP problem formulation starting with equation (4.7). 
 

The method does this by again adding variables to the problem; these are artificial 
variables that ensure that the system of equations has a solution.  The variables are called 
artificial variables because they are not related to the problem variables; the coefficients 
associated with the artificial variables form an m-dimensional identity matrix.  As we will see, 
these variables do not affect the final optimum solution, because they are eliminated quickly from 
the procedure; however, they are essential for finding an initial feasible corner point (basic 
feasible solution).  This initialization procedure is shown in Figure 5.1.  The resulting initial 
problem basis is in canonical form. 
 

Basic solution: A solution to the square, non-singular set of linear equations resulting from the 
selection of basic variables, after setting the non-basic variables to constant values.  (Currently, 
non-basic xi = 0; later, each non-basic xi equals its maximum or minimum allowable value.)  
These are also termed Corner Points. 
Basic feasible solution: A basic solution for which all variables satisfy their bounds.  
(Currently, xi  0; later, ximax  xi  ximin.).  This is also called a Feasible Corner Point. 
Optimal solution: A basic feasible solution for which the objective is at its optimum value. 

Canonical form: In a canonical form, each equation has one basic variable with a coefficient 
of 1.0, and all other variables have coefficients of 0.0.  Also, each basic variable appears only 
once with a non-zero coefficient. 
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We have established an initial basic feasible solution (BFS) or corner point, and the LP 
algorithm to be described can find any BFS from an initial BFS.  However, we have changed the 
problem by adding the artificial variables.  Therefore, we must be sure that the artificial variables 
are not part of the final solution (if possible).  We achieve this by modifying the objective 
function by placing a very large penalty (M>>0) on each artificial variable, as shown in the 
following.  Recall that the penalty is positive because we are minimizing the objective function. 
 

 z = c1x1 + …. + cnxn    the original objective function (5.1) 
 za = c1x1 + …. + cnxn + Mxa1 + ….+Mxam the modified objective function (5.2) 

 
 

 
Figure 5.1.  A schematic representation of forming the initial basic feasible solution to “m” equations 

using artificial variables.  This gives a non-singular, canonical form problem statement. 
 

Thus, as we proceed with the optimization algorithm, the artificial variables will be 
eliminated because of their “cost”.  The value of M must be much larger than other cost 
coefficients to be sure that it is eliminated.  When the artificial variables have been eliminated, 
the solution will be unaffected by this initial strategy.  In fact, after all artificial variables become 
zero, their contribution to the problem equations and objective function can be eliminated, which 
reduces computation. 
 
 

Now that we have an initial feasible corner point (BFS), we follow a procedure that 
moves along adjacent corner points to improve the value of the objective function. 
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The artificial variables form a basis that ensures
a non-singular solution to the equations.

Adjacent corner points: Adjacent corner point solutions in an LP problem with “m” variables 
share “m-1” of the same active constraints.  They are connected by a line segment that is 
defined by the intersection of the “m-1” common constraint boundaries. 
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When we say that we “move” among corner points, we are actually performing elementary 
operations that do not change the solution to the set of equations. 
 

 
We have encountered this concept already in the Gauss-Jordan method for solving square sets of 
linear equations. At each elementary operation, we have to make two decisions.  First, we choose 
the variable to enter the basis, i.e., switch from non-basic to basic.  Second, we select the variable 
to leave the basis.  We make these choices to improve the objective function.  The method is 
complete and the optimum has been reached when the objective function cannot be improved by 
moving to any adjacent corner point. 
 
 
5.2 Adding the cost to the matrix 
These elementary operations must be performed on the coefficient matrix and the objective 
function.  We will display these procedures in the “simplex tableau”, which shows the 
calculations and intermediate results nicely and was used for hand calculations prior to the advent 
of digital computation.  The tableau includes all model (constraint) equations and the objective 
function.  Recall that we represent the objective function value by the variable z, giving 
 

.......xc......xc......xcxcz aass  11112211  (5.3)
 
which can be rearranged to give a constant rhs. 
 

011112211  .......]xc......xc......xcxc[z aass  (5.4)

 
with    ci = initial (original) cost coefficient for the problem variables, given in the problem 

statement 
 csi = 0 (initial cost of slacks is zero) 
 cai = M >> 0 (penalties for the artificial variables) 
 
This cost expression can be included as the first equation to give the starting equation set for the 
LP algorithm. 
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(5.5)

 
or showing the sub-matrices 
 

Elementary operations: The following operations do not change the solution to an equation 
set; these may be performed together. 
1. multiplying an equation by a (non-zero) constant. 
2. adding two equations 
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(5.6)

with  
A = original problem coefficient matrix 
b =  right hand side values for the 

original problem constraints 
c =   original problem cost coefficients 
z  =  scalar objective function 
x = original problem variables 

I* =  coefficient matrix for slack variables 
containing either +1 or –1, 
depending on type of inequality; not 
necessarily square 

xs =   slack variables 
xa =   artificial variables 

 
We introduce another useful distinction in terminology.  All of entries in equations (5.5) 

and (5.6) are the “original” values from the initial problem definition.  Naturally, after the 
elementary row operations, the values will be changed.  We will refer to the changed values  as 
the reduced values of the matrix entries.  When the procedure has been completed, we will refer 
to the values as the “optimal reduced values”.  Sometimes, when the reference is obviously to the 
optimal solution, e.g., when referring to the software output, we will use “reduced” to describe 
the final values. 
 

Recall that the values for the problem variables and slacks are initially zero, which gives 
m artificial variables and m equations for this initial equation set.  These matrix entries can be 
represented in a “tableau”. 
 
5.3 LP solution algorithm using the tableau  
As we move to an adjacent corner point, we must select which two variables are “exchanged”, 
i.e., which variable is removed from the basis and which enters the basis.  The following tableau 
rules determine the appropriate adjacent corner points until a solution is reached. 
 
1. Entering by the cost test for rapid rate of improvement of the objective: The non-

basic variable chosen to enter the basis has the smallest negative (“most negative”) 
tableau cost coefficient, because increasing the variable value will most rapidly decrease 
the objective function for a minimization goal.  Note that this rule does not consider the 
change allowed to the next corner point. 

 
 Select the variable (column j=r) to enter the basis from the non-basic variables 

having the minimum tableau reduced cost, cj, which must be less than zero. 
 
 Caution: Reference books use slightly different sign conventions, which change the sign 

used in this test.  The convention used here is consistent with Edgar et. al., 2001. 
 
2. Leaving by the ratio test that ensures a feasible corner point: Compute bi/aij for all 

rows i for all aij > 0), with j = the variable.  Select the row with the minimum value of 
bi/aij as designating the basic variable xi to leave; note that only one variable is related to 
each equation (row) in canonical form.  Recall that the leaving variable is decreased as 
the entering variable increases.  Because the variables are limited to be non-negative, we 
select the variable with the smallest ratio, which selects the variable that reaches zero 
with the smallest change in the entering variable.  Thus, the leaving variable will have a 
value of zero (and become a non-basic variable) after the entering variable has entered.  If 
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we chose a variable with a larger ratio, one of the non-basic variables would have a 
negative value after the pivot, which would represent an infeasible corner point. 

 

 The leaving variable has the row i given by 







 is

i

a a

b
  min

is 0
 with s the column entering. 

 
3. Pivot on the entering-leaving intersection to regain the canonical form: We now 

pivot to result in the entering variable having a coefficient of 1.0 in the pivot row and 0.0 
in all other rows.  Since we began with a canonical formulation, we will continue with a 
canonical formulation, with each basic variable having only one non-zero coefficient (and 
that being 1.0).  We will use ars to designate the pivot coefficient and Er the rth equation. 

 
 a.  Replace the rth row (equation) Er with Er/ars. 
 b.  For all other rows (equations), replace Ei with Ei – (Er)ais/ars. 
 
4. Test for optimality at the new corner point: If the cost coefficients of all the non-basic 

variables are positive, increasing any non-basic from zero will increase the objective 
function.  Therefore, no further improvement in the objective is possible.  The current 
result is optimal. 

 
 a.  If all non-basic cj  0, an optimal solution is found.  Stop. 
 b.  If at least one non-basic cj < 0, continue by returning to 1. above. 
 
 

How well does this simplex algorithm work?  Recall that a problem having 20 variables 
and 10 equations had about 185,000 corner points. 
 

000185,
!m)!mn(

!n

m

n












  (with n=20 and m=10) 

 

(5.7)

 
If we used exhaustive search, we would have to check every one.  The simplex algorithm solves 
problems of this size in about 30 iterations (Winston, 1994; page 132)!  There is no theoretical 
reason for the excellent performance of the simplex method, since it searches along the boundary 
of feasible corner points, but experience has shown that it performs well on nearly all real-world 
problems (Shamir, 1987).  (It is possible to formulate a “trick” problem for which the simplex 
will perform poorly.) 
 
5.4 Sample Tableau for a small LP problem 
We will conclude this section with an example showing all tableaus.  The reader will likely have 
to review the algorithm steps above while following the solution tableaus given below. 
 
Example 5.1: Solve the following linear programming problem and show all intermediate 
tableaus (Winston, 1994; page 164). 
 
1. The mathematical problem is stated in the following. 
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2. We convert any inequalities to equalities.  In this case, row 1 needs a slack variable with 

a (+1) coefficient and row 2 a slack with a (-1) coefficient (surplus variable).  Row 3 is 
already an equality. 

 

1,2ifor    x
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3. Now, we modify the formulation to achieve a canonical form, in which an initial feasible 

corner point (basic feasible solution) is easily achieved.  We see that row 1 already has a 
variable with a coefficient of +1, the slack.  Therefore, we need to add artificial variables 
to only rows 2 and 3. 

 

1,2ifor    x

a                    x        x    

      as       x       x    

                    sx.x.
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 We see that the initial basis is [s1 a2 a3]. 
 
4. We have added the artificial variables, and we want to ensure that they do not appear in 

the optimal solution, since they were introduced only to find an initial feasible corner 
point.  Therefore, we add large penalties; since the problem is a minimization, the 
penalties are positive. 
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5. We check to see that all rhs values are greater than or equal to zero, which is the case.  If 

any were not, we would multiply the row by (-1). 
 
6. We now place all variables and values into the tableau.  Recall that we rearrange row 

zero to have a constant rhs. 
 

032 3221  MaMaxxz  

 
z x1 x2 s1 s2 a2 a3 rhs Basic 

variable 
Ratio 

-1 2 3 0 0 M M 0 z  
0 .5 .25 1 0 0 0 4 s1 --- 
0 1 3 0 -1 1 0 20 a2 --- 
0 1 1 0 0 0 1 10 a3 --- 
 
7. We are close to beginning the pivoting operation.  However, we require all basic 

variables to have zero elements in the objective (row 0) for a canonical form.  Therefore, 
we must eliminate the “M’s” in row zero for the basic variables a2 and a3 without 
changing the solutions to the equations.  We see that we can achieve this by adding the 
following to row 0: (1) row 2 times (-M) and (2) row 3 times (-M).  These steps will 
cancel the penalties on variables a2 and a3 and give zero elements for the artificial 
variables in the initial tableau. (Note that s1 has a zero value in row 0.) 

 
Initial tableau 
   This (x2) is the variable entering the basis (smallest value < 0). 
 
z x1 x2 s1 s2 a2 a3 rhs Basic 

variable 
Ratio 

-1 -2M+2 -4M+3 0 M 0 0 -30M z  
0 .5 .25 1 0 0 0 4 s1 16 
0 1 3 0 -1 1 0 20 a2 20/3 
0 1 1 0 0 0 1 10 a3 10 
 
       This (a2) is the variable leaving the basis. 
  Pivot element, ars    (Smallest value of bi/aij for entering aij >0) 
 

Now, we apply the pivoting rules to determine the entering and leaving variables, as 
shown above. 

 
8. We perform the pivoting calculations to yield a value of 1.0 for the pivoting coefficient 

and zeros in all other coefficients in the column. 
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Second tableau 
 
  This (x1) is the variable entering the basis (smallest < 0). 
 
z x1 x2 s1 s2 a2 a3 rhs Basic 

variable 
Ratio 

-1 -2M/3+1 0 0 -M/3+1 +4M/3-1 0 -10M/3-20 z  
0 5/12 0 1 1/12 -1/12 0 7/3 s1 28/5 
0 1/3 1 0 -1/3 1/3 0 20/3 x2 20 
0 2/3 0 0 1/3 -1/3 1 10/3 a3 5 
 
       This (a3) is the variable leaving the basis. 
  Pivot element, ars    (Smallest value of bi/aij for entering aij >0) 
 
9. Again, we perform the pivoting calculations to yield a value of 1.0 for the pivoting 

coefficient and zeros in all other coefficients of the column. 
 
Third tableau 
 
 All reduced costs are greater than 0.0.  The objective cannot be decreased by changing 

the basis, i.e., moving to an adjacent corner point.  We have found the optimum! 
 
z x1 x2 s1 s2 a2 a3 rhs Basic 

variable 
Ratio 

-1 0 0 0 1/2 -1/2+M -3/2+M -25 z = 25  
0 0 0 1 -1/8 1/8 -5/8 1/4 s1 = 1/4 --- 
0 0 1 0 -1/2 1/2 -1/2 5 x2 = 5 --- 
0 1 0 0 1/2 -1/2 3/2 5 x1 = 5 --- 
 
 
10. In this problem, the optimum was reached after the artificial variables were eliminated.  

Typically, (many) additional corner points would have to be evaluated using the pivoting 
procedure. 

 
 
 
 
 
 
 The non-basic variables are equal to zero: s2 = 0, a2 = 0, a3 = 0. Since all artificial 

variables are zero, the solution is feasible.  Since the reduced costs of the non-basics are 
not zero, no alternative solutions exist.  Since s2 is zero, the second inequality constraint 
is active (or binding); since s1 > 0, the first inequality is inactive (not binding).   

 
Now that the simplex method has been presented, you might be tempted to program the 
algorithm.  Two recommendations are offered.  First, programming your own algorithm is an 
excellent approach for learning; however, simple numerical implementations will fall victim to 
numerical errors.  Therefore, the second recommendation is to use commercially available codes 
for engineering research and practice.  These codes have been carefully developed to handle 
many numerical difficulties caused by ill-conditioning and manipulating large matrices; therefore, 
the student is advised against developing software for practical use, without considerable further 
study in optimization mathematics and numerical methods.  In addition, Appendix B gives 

The solution is  x1 = 5, x2 = 5; slack variables values are s1 = ¼ and s2 = 0. 
The objective function value is z = 25. 
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sources for educational, interactive computer programs that allow you to make key decisions, 
e.g., the pivot element, and then allow the computer to perform the tedious calculations 
automatically.  They also provide some coaching, especially for clearly incorrect user choices. 
 
 
6.0 Extensions and Special cases (Cautions on LP Weird Events) 
 
We have learned the essential aspects of the simplex algorithm.  In this section, we first introduce 
several extensions to the simplex just described.  These extensions provide greater flexibility to 
the engineer in formulating models and solving problems.  These extensions are available in 
essentially all software solvers, so they are briefly explained without extensive theoretical 
development. 
 
Then, several important special cases are discussed.  They are not just mathematical anomalies! 
 

 
 
6.1 Simplex Extensions 
6.1.1 General variable bounds: We have assumed that the variables must be greater than zero 
and have no upper bound.  These are not serious limitations, as we could always reformulate a 
model to abide by these restrictions. For example, an upper bound could be achieved for any 
variable by adding a constraint to the problem, e.g., x10  45.  However, the reformulation would 
be larger, require longer computing times and be prone to errors by the analyst.  Therefore, 
software systems allow the user to define variables with any values for lower and upper bounds, 
so long as the upper is greater than or equal to the lower bound.  
 

Recall that the non-basic variables had values of zero in the “simple” simplex method just 
described.  When variables have lower and upper bounds, the non-basic variables are assigned the 
bound value that improves the objective function the most, either their lower or upper bounds.  
No user input is required to active these features. 
 
Lower bounds: Not all variables have lower bounds of zero; for example, the lower bound for a 
temperature could -20 C.  One approach to this situation would be to define two new variables x’ 
and x’’, then, define 

 
x = x’ – x’’ with x’0 and x’’0 (6.1)

 
Thus, the substitution of x’ and x’’ for x would leave an LP problem with all non-negative 
variables (Winston, 1994; page 175).  The software system automatically makes all substitutions; 
the user simply defines the appropriate values for the variable bounds. 

Since these special cases occur in practice, the engineer must be able to recognize their 
occurrence, modify the formulation (if possible) and determine good actions based on the 
optimization study.  The naive user can make serious mistakes! 
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Upper bounds: The simplex method includes variable upper bounds in the method for 
determining how much the entering variable can change.  Limits to the size of the change of the 
entering variable are now (Winston, 1994; page 587; Hillier and Lieberman, 2001; page 317): 
 
1. One of the current basic variables becomes zero (or its lower bound), as always 
2. The entering variable cannot exceed its upper bound. 
3. One of the current basic variables increases to its upper bound. 
 
6.1.2 Efficient Simplex: The simplex algorithm and tableau previously described requires that all 
tableau elements be calculated at every iteration.  With large problems, these calculations can be 
very time-consuming.  Improved approaches involve much reduced calculations at each iteration 
that does not change the basic concepts of the simplex.  These require a “revised simplex” and 
“product form of the inverse” techniques (Winston, 1994; page 554; Hillier and Lieberman, 2001; 
page 202).  In addition, advanced matrix methods can be employed for “sparse” problems, 
because only a small number of elements of the coefficient A matrix are non-zero in large 
problems. 
 
6.1.3 Restart Strategies: For large problems, starting from the initial canonical form with 
numerous slack and artificial variables is very inefficient.  Sometimes we want to solve a related 
problem based on the results of the initial problem formulation.  Therefore, software systems 
provide the ability to restart with the information about the last optimal solution.  It is possible to 
change right hand side coefficients, objective coefficients, constraint coefficients, or add/subtract 
some constraints (Rao, 1996; Chapter 4).  We will not cover the details of these approaches, but 
they can greatly speed the solution of similar large LPs solved sequentially. 
 
6.2 Special cases (Cautions on LP Weird Events) 
6.2.1 No Feasible Region: As shown in Figure 6.1, an LP problem could be formulated in a 
manner that results in no feasible region.  This could occur for two reasons.  First, the engineer 
has made a mistake in the formulation.  Second, very stringent requirements are placed on the 
performance of the problem system, so that no solution actually exists.  We need to be able to 
recognize when no feasible solution exists and to change the formulation, if appropriate. 
 
Diagnosis: We can recognize when the problem has no feasible solution when the final optimal 
tableau has one or more artificial variables in the basis.  Since these variables have very large 
penalties for being non-zero (in the basis), the only reason for them remaining in the basis would 
be feasibility.  Therefore, the problem has no feasible solution. 
 
Remedial action: In many cases, we would like to learn how we could achieve a feasible 
solution.  One good way to do this is to add additional variables to inequality constraints that have 
a substantial penalty (but much less than “M”).  The solution will be able to find a least costly 
“feasible” solution, even though it could include violations of the original inequality constraints.   
The approach is explained under “goal programming” in Section 9.6. 
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Figure 6.1.  A set of LP constraints that yield no feasible region. 
 
6.2.2 Unbounded Solution: As shown in Figure 6.2, the solution to an LP problem could be 
unbounded, so that one or more variables could increase to infinity and the objective function 
decrease to minus infinity.  This is always a result of a formulation error, because no variable in a 
real problem can increase without limit. 
 
Diagnosis: The symptom occurs when selecting the variable to leave the basis, which is 
determined using the following equation. 
 

sisii xabx   (6.2)

 
Note that if ais is less than zero, the variable xi can increase without limit, without causing xi to 
decrease to its lower bound of zero.  If the reduced cost, cj, is less than zero for this variable, its 
increase will be beneficial, because it will decrease the objective function.  Thus if for a column 
with cj<0, all ais<0, an unbounded solution will occur. 
 
Remedial action: We should seek a modification to the problem definition that limits the feasible 
region.  For example, in a production problem, we might have inadvertently forgotten the market 
(sales) limitation, or in a personnel allocation, we might have forgotten the limitation to the 
availability of workers. 

Figure 6.2. A set of LP constraints and objective function that yield an unbounded LP. 
 

feasible

feasible

feasible

X1  0

X2  0

Variable x1

V
ar

ia
bl

e 
x 2

Increasing profit



  32

6.2.3 Tie on entering or leaving criteria: It is possible that a numerical tie could occur in the 
criteria for variables entering or leaving the basis.  In both cases, the tie can be broken arbitrarily.  
Actually, the tie in variables leaving the basis could theoretically result in an unending cycle; 
however, this does not occur in real problems, so that most software does not include special 
logic (Winston, 1994; page 160). 
 
6.2.4 Multiple (Alternative) Optimal Solutions: The solution of an LP can have multiple 
optima.  The situation is shown graphically in two dimensions in Figure 6.3.  We see that the 
objective function is parallel to one of the active constraints.  Thus, either of two corner points – 
or any point on the line connecting them – has the same value of the objective function.  Thus, 
many (an infinite number) of values of x yield the same objective value. 
 
Diagnosis: There are two ways to identify multiple optimal corner points. 
 
1) This situation can be diagnosed by evaluating the reduced costs of all non-basic variables in 
the final optimum tableau.  If any non-basic variable has a reduced cost of 0.0, it can enter the 
basis (and another can leave as a consequence) with no effect on the objective function.  Thus, the 
diagnosis looks at the optimal solution and determines if any non-basic reduced cost is = 0.  If 
yes, then alternative solutions exist. 
2) An additional symptom can be recognized by observing Figure 6.3.  We see that the right hand 
side (RHS) of one or more of the active constraints at (either) optimal solution has a zero 
marginal value and the marginal value has a non-zero range in both directions.   
 
Remedial action: Alternative solutions might not be a concern, since we will find at least one 
policy that achieves the best value of the objective.  However, we should find all solutions and 
select the optimum that is truly best, because the objective function might not represent all goals, 
i.e., alternative solutions are not really equivalent.  Common situations concerning alternative 
solutions are summarized on the following. 
 

Figure 6.3 Schematic of LP with alternative optima corner points (anywhere on the connecting line is 
also optimal).  The user must employ additional criteria to select the best solution. 
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 Perhaps, one solution is close and one far from our current variable values. In some situations 
there are "hidden costs" for changing conditions that might not be represented in the model.  
Examples are changing plant operations, which could lead to poor quality products during 
transitions, and challenges in communicating changes to a schedule that has been adopted in 
an organization.  

 
Dynamic optimization occurs in many fields, such as scheduling personnel for airlines, 
deciding when to produce various products in a flexible manufacturing plant, and in 
automatic process control where we optimize a trajectory to the set point.  When solving 
dynamic optimization, we often resolve the problem periodically.  We solve for a "long" time 
in the future, but we implement only the solution variables related to the current time.  As we 
resolve the problem, alternative optima could cause large changes in the variable values from 
solution to solution.  This is termed "nervousness" and is to be avoided. 

 
To select an alternative optimum that is "close", we could add a term to the objective that 
(slightly) penalizes changes from the current policy being implemented; this would “break 
ties” and select the least disruptive solution. 

 
 Perhaps, we have had good experience with one solution while we have had either poor 

experience or no experience with other solutions.  Naturally, we will select the solution close 
to values where we believe that model is accurate and which has given good results in the 
past when implemented. 

 
6.2.5 Redundancy of Constraints: We have considered “normal” cases in which the active 
constraints specify the solution, i.e., the values of the basic variables.  Constraint redundancy 
involves a case in which one or more “extra” constraints are active at the solution, with these 
"extra" constraints not influencing the solution.  This situation is shown in Figure 6.4.  In this 
case, the optimum would be defined completely by either constraints 1 and 2 or 2 and 3.  The 
solution found is correct, but standard sensitivity analysis can be misleading.  To see why, 
consider the following two situations. 
 
a. An increase in the rhs of constraint 3: In this situation, the objective function value does 

not change.  Thus, the sensitivity is 0.0. 
b. A decrease in the rhs of constraint 3: In this situation, the feasible region is reduced, and 

the objective function is increased (assuming this is a minimization problem).  Since the 
optimum values of the variables change, the sensitivity is non-zero. 

 
We use linear programming to make decisions about how to improve the solution via 

post-optimal analysis, and clearly, redundant constraints are difficult to analyze.  This has 
received considerable attention and guidance is available for the user (Rubin and Wagoner, 1990) 
and the system developer (Koltai and Terlaky, 2000). 
 
Diagnosis: We can determine when this situation occurs by analyzing the sensitivity of the 
optimum (see Section 7).  Sensitivity analysis gives the range of the rhs of every constraint over 
which the value can be changed without changing the basis.  If this range has zero as either its 
maximum or minimum allowable change, the solution has redundant constraints, and the standard 
sensitivity output from software should not be used. 
 
Remedial Action: The values of the objective function and variables are reliable for the solution.  
However, the sensitivity depends upon the direction of the change; therefore, we must be aware 
of the following caution in analyzing the results. 
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Figure 6.4.  Schematic of an LP problem with a redundant constraint at the solution.  Care must be 
taken when using the sensitivity analysis results. 
 

 
We close with a comment about the likelihood of redundancy.  As we work with systems over 
time and invest to improve their performance, we increase capacities where (1) the objective is 
limited and (2) we receive a large improvement with a small investment.  This process leads to a 
situation in which many inequality constraints are nearly active, and large investments are 
required for further improvement.  In this situation, constraint redundancy often occurs.  This is 
not just a mathematical peculiarity; it is a challenge for practitioners. 
 
 
6.2.6  Degeneracy of Constraints:  Constraint degeneracy involves a case in which more 
inequality constraints are active at the solution than the dimension of the problem.  For example, 
a problem could have two degrees of freedom (number of variables - number of equality 
constraints = 2) and three inequality constraints active at the optimum.  Thus, constraint 
redundancy (subsection 6.5.5) involves degeneracy, but other situations also occur. As another 
example, the pyramid feasible region in Figure 6.5 has an optimum at the top peak.  In this 
situation, the dimension of the problem is three, but four constraints are active at the optimum.  
Note that none of the inequality constraints are redundant, removing any will change the optimal 
solution and the objective function. 
 
Diagnosis:  The simplex algorithm will select three of the four constraints in Figure 6.5.   
Degeneracy can be diagnosed by observing that changing the basis by making the fourth 
constraint active and one of the original three inactive does not change the solution. 
 

The engineer should not rely upon standard sensitivity analysis results when the optimum 
experiences constraint redundancy.  The engineer should evaluate sensitivity by executing 
“delta” cases, each being a reoptimization of the problem with the appropriate parameter(s) 
changed. 
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Remedial Action: The value of the objective function and variables is reliable for the solution.  
However, the sensitivity depends upon the direction of the change; therefore, we must again be 
aware of the following caution in analyzing the results. 
 

 
 

 
Figure 6.5.  Schematic of an LP problem with the optimum at the top corner point, which has 

degenerate constraints (without redundancy).  Care must be taken when using the 
sensitivity analysis results. 

 
 
 
7.0 Sensitivity and Range Analysis of LP Solutions 
 
We have seen that the simplex LP algorithm provides solutions to very complex linear problems 
with inequality constraints.  The good news does not stop there; the method also provides 
valuable sensitivity information about the optimal solution.  Sometimes, we term this “post-
optimal” analysis. 
 
7.1 Importance of sensitivity analysis 
We seek a full understanding of the solution that extends beyond the values of the objective and 
variables at the optimum point.  We want to understand how sensitive the result is to changes in 
input data and how the values change with these data changes.  A few typical uses of sensitivity 
analysis are given in the following, and we should note that these results are available with the 
solution at essentially no cost in computation! 
 

The engineer should not rely upon standard sensitivity analysis results when the optimum 
experiences constraint degeneracy.  The engineer should evaluate sensitivity by executing 
“delta” cases, each being a reoptimization of the problem with the appropriate parameter(s) 
changed. 
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 Sensitivity to the model: We want to determine how sensitive the results are to the system 
model.  When we find that a small change in a parameter could change the decision, we will 
have to carefully investigate the uncertainty in that parameter. 

 Sensitivity to the scenario: When given an opportunity to change decisions, we can use the 
sensitivity values to see if the new opportunity could be attractive.  For example, if we choose 
Feed A over feed B, we will also learn how much the price of feed B must decrease to make 
it an attractive choice.  This information would be important in negotiating with the supplier. 

 Range of validity: The sensitivity values are accurate over a limited range of values of the 
specific parameter.  We will determine the range over which our solution is valid. 

 
The sensitivity results discussed in this section could be determined by changing a parameter 

by a small amount and solving another optimization problem.  However, we will initially 
concentrate on information that is available with the base case solution, because (1) this 
information is useful in engineering practice, (2) it reinforces our understanding of linear 
programming, (3) it provides insight that helps us diagnose potential problems that were 
discussed in Section 6, and (4) the results are easily determined.   

 
Again, sensitivity results not provided by the methods in this section can be evaluated with 

numerical differentiation of multiple optimization cases. For example, the reoptimization 
procedure is required for sensitivity to changes  

 
 in the left-hand side coefficients (the "A" matrix), 
 parameter changes that require a basis change to find the optimal solution 
 in a solution that involves constraint degeneracies (including redundancies) 

 
We will concentrate on results that are reported with the LP solution in many available 

software packages.  We will begin with changes in only one parameter and extend the results to 
multiple parameters.  We conclude with approximations to sensitivity results when a basis change 
is required. 
 
7.2 Sensitivity analysis of the optimum without a basis change 
Sensitivity tells us the effect of a small change in one or more parameters that were assumed 
constant when finding the optimum.  Thus, the sensitivity is z/, with  = a parameter like a 
cost or rhs constant.  We could evaluate the sensitivity in several ways. 
 
1. Sensitivity = z/ with all x = constant 
2. Sensitivity = z/ with all basic variables, xB, allowed to change so the results represent 

an optimal solution at the same corner point for the modified problem. 
 
We select the second option (2), since we want to learn the effect of a change on the optimum.  
Also, we recognize that using the approach in (1) above would lead to infeasibility for many 
cases, since the optimal solution is located at a corner point. 
 

 

The sensitivity is reported using the optimal basis and evaluates the range and effects of 
parameter changes at the same corner point, i.e., with the basis - without requiring a basis 
change. 
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We should be careful when explaining sensitivities.  The sensitivities that we are 
evaluating are the derivatives of the objective (or variable) with respect to a parameter, for 
example dz/db4.  This is often explained as the effect on the optimal objective of a change in b4 of 
"1 unit".  In linear programming, the derivative is constant until a basis change; therefore, this 
imprecise explanation is acceptable if the basis does not change for a 1-unit change in the 
parameter.  Remember that a value of 1.0 is not small when the units are millions of dollars or 
thousands of tons of production! 
 

When the parameter changes are small enough (as defined later), the basis does not 
change and the sensitivity information is available with very limited calculation.  This becomes 
clear when we consider the equation below for the optimal solution of the LP. 
 

       **
B

*
B

*
NB

*
NB bx Ax A   (7.1)

 
with A*NB = The coefficient matrix for non-basic variables at the solution 
 A*B= The coefficient matrix for basic variables at the solution 
 x*NB = The vector of non-basic variables at the solution (at a bound) 
 x*B = The vector of basic variables at the solution (between their bounds) 
 b* = The values of the RHS at the solution 
 
Note that “at the solution” indicates the values after all elementary operations; these are the 
“reduced” values, not the original values in the initial problem definition.  All of these values are 
available in the final tableau. 
 

Also, we assume that the system is not degenerate.  If it is degenerate, the sensitivity 
results here are suspect, as discussed in Section 6.2.5 where a method for testing for degeneracy 
is provided and recommendations for sensitivity analysis are provided. 
 

We recall that the non-basic variables are constant at either their lower or upper bound; 
thus, only the values of the basic variables change for changes in parameters (small enough so 
that the basis does not change).  Also, the reduced costs of the basic variables are zero. 
 

Finally, we emphasize that the sensitivities have engineering units, so that we cannot 
compare magnitudes of numbers directly.  The engineer must determine the units and carefully 
interpret the meaning of the sensitivities. 
 
 
7.3 One-At-A-Time Parameter Changes 
 
In this subsection, we consider the effects of a change to the value of a single parameter.  This 
helps us analyze the solution and understand effects of changes. 
 
7.3.1 Active inequality constraint RHS change: We would like to understand the effects of 
changes in the rhs values of the active inequality constraints.  We can identify the active 
inequalities because they have non-zero marginal values and zero-valued slack variables.  First, 
we determine how large a change can occur (in either direction) without requiring a basis change.  
This situation is shown schematically in Figure 7.1.  The value of constraint 1 can be increased to 
1b or decreased to 1a without a basis change, i.e., the same corner point being optimal.  Certainly, 
the objective function and variable values change, and these can be easily determined from the 
simple calculations shown below. 



  38

 
Effect of the basic variables 

 

       **
B

*
B

*
NB

*
NB bX AX A   

                                                    0 

(7.2)
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(7.4)

 
Effect on the non-basic variables:    0X*  NB  (7.5)

 
Effect on the objective function:   Rii cbz   

with cRi the sensitivity of the inequality i 

(7.6)

 
Therefore, we can determine the change in variables (xB) and objective (z) for a change in 

the rhs value of any single inequality constraint.  The change in the variables is quite useful 
because it provides the changes in variables in a coordinated manner that maintains optimal 
results.  Consider the situation in which we are optimizing the operation of a plant and we are not 
sure of the value of a constraint, e.g., the maximum reflux in a distillation tower.  The result in 
equation (7.4) gives how all basic variables (not at bounds) should be changed to retain feasibility 
and optimality. 

Figure 7.1. A schematic showing the changes that can occur to constraint 1 that do not require a 
basis change. 
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7.3.2 Inactive inequality constraint RHS change: We would also like to learn the maximum 
changes in the rhs of inactive inequality constraints.  Within this range, they would not affect the 
solution, i.e., the values of the variables and the objective function.  This is easily determined as 
the value of the slack variable associated with the constraint, because when the slack is zero, the 
constraint is active. 
 
Effect on the basic variables:    0X*  B  (7.7)

 
Effect on the non-basic variables:
  

  0X*  NB  (7.8)

 
Effect on the objective function:    0 Rii cbz  

with cRi the sensitivity of the inequality i = 0 

(7.9)

 
Standard LP software reports the constraint sensitivity information in tabular form.  For every 
constraint, the following are reported.  Naturally, the format depends upon the product. 
 

Constraint ID Status 
 

(Active/inactive) 

slack Shadow price 
(sensitivity of 

rhs) 

Maximum 
allowable 

increase (AI) 

Maximum 
allowable 

decrease (AD) 
Max. Reflux flow Active 0 3.74 47 123 

Max. Pump 7 Inactive 321 0 1.0E30 321 
 
7.3.3 Equality constraint RHS change: Equality constraints are always satisfied, so that they are 
always “active”.  Thus, changing the rhs of an equation always affects the basic variables and 
potentially, the objective.  The sensitivity results are the same as given in equations (7.4) to (7.6). 
 
7.3.4 Cost change for non-basic variable: For a minimization problem, the reduced cost for a 
non-basic variable at the optimum is positive.  For this variable to enter the basis, the reduced 
cost must be negative.  Therefore, the reduced cost of the non-basic variable must change from its 
optimal value to 0.0 to effect a basis change, i.e., to have an effect on the solution.  For a cost 
change greater than –(margin variable value), no change occurs to the problem variables or to the 
objective function.  If the cost change is less than (– variable margin value), we must return to the 
tableau and calculate the pivots to the new optimum. 
 
7.3.5 Cost change for a basic variable: The costs of the basic variables affect the slope of the 
constant profit (objective) lines and the gradient of the profit. To retain the same basis, the 
gradient of the profit can change, as long as the gradient remains within the cone of the corner 
point constraints.  The concept is demonstrated in Figure 7.2.  This sets the maximum and 
minimum allowable changes in the basic cost.  Within these changes, the optimum corner point 
and variable values do not change, but the objective value changes. 
 
Effect on the basic variables:    0X*  B  (7.7)

 
Effect on the non-basic variables:
  

  0X*  NB  (7.8)

 
Effect on the objective 
function: 

  jj xcz   

with cj the change in the original cost of the variable j 

(7.9)
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Figure 7.2. Schematic of the effect of a cost change to a basic variable.  It the case shown, the cost 
parameter change was large enough to cause a basis change. 

 
7.4 Multiple Parameter Changes - 100% Rules  
In a few cases, we can reach strong conclusions about the effects of more than one parameter.  
Some of these methods are presented here (Bradley, et al, 1977; Winston, 1994; page 262).  This 
collection of approaches is generally referred to as the 100% Rules, because they determine the 
combined (100%) effect of multiple changes.  If the "worst case" combined effect does not 
change the basis, the sensitivity analysis can be performed using the base case optimization 
results.  If the "worst case" combined effect could involve a basis change, a re-optimization with 
all parameter changes is required. 
 
7.4.1 Objective function original costs: Case 1.  All non-basic variables (reduced costs  0) 
 
We can calculate the following metrics, which measure the fraction of the maximum allowable 
change that has occurred. 
 
If cj > 0      rj = cj/AIj   with AI the maximum allowable increase w/o a basis 

change 
 
If cj < 0      rj = -cj/ADj   with AD the maximum allowable decrease w/o a basis 

change 

 
 
(7.10)

 
If each of the rj  1.0, the effect of all the changes will not cause a basis change.  Therefore, the 
variables will be unchanged, and the modified objective function is easily calculated. 

The
original
optimum

The
modified
optimum

Original problem Problem with one
cost modification
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Effect on the basic variables:    0X*  B  (7.11)

 
Effect on the non-basic variables:
  

  0X*  NB  (7.12)

 
Effect on the objective function:    

j
jj xcz  

with cj the change in the original cost of the 
variable j 

(7.13)

 
7.4.2 Objective function original costs: Case 2.  One or more basic variables along with non-
basic variable costs  
 
It this case, we calculate the same metrics as above and apply the following 100% rule. 
 
If  rj  1.0, we are sure that the basis has not changed. 
 
Effect on the basic variables:    0X*  B  (7.14)

 
Effect on the non-basic variables:
  

  0X*  NB  (7.15)

 
Effect on the objective function:    

j
jj xcz  

with cj the change in the original cost of the 
variable j 

(7.16)

 
If  rj > 1.0, we are not sure whether the basis has or has not changed.  We would have to 
calculate the new optimization case. 
 
7.4.3 Inequality rhs value change: Case 1.  All inactive constraints 
 
We can calculate the following metrics, which measure the fraction of the maximum allowable 
change that has occurred. 
 
If bj > 0       rj = bj/AIj   with AI the maximum allowable increase w/o a basis 

change 
 
If bj < 0       rj = -bj/ADj   with AD the maximum allowable decrease w/o a basis 

change 

 
 
(7.17)

 
If each of the rj  1.0, the effect of all the changes will not cause a basis change.  Therefore, the 
variables and the objective will be unchanged. 
 
7.4.4 Inequality rhs value change: Case 2.  Inactive and active constraints 
 
It this case, we calculate the same metrics as above and apply the following 100% rule. 
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If  rj  1.0, we are sure that the basis has not changed.  The final values for x can be calculated 
using equation (7.4) with several bi, and the profit can be calculated using equation (7.5). 
 
Effect on the basic variables: 
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when bi occurs.} 

 
 

(7.18)

 
Effect on the non-basic variables:    0X*  NB  (7.19)

 
Effect on the objective function:    

i
Rii cbz  

with cRi the sensitivity of the inequality i 

(7.20)

 
If  rj > 1.0, we are not sure whether the basis has or has not changed.  We would have to 
calculate the new optimization case, which might involve pivot operations. 

 
 
 
7.5 Bounding objective for large changes in the RHS 
 
We would like to determine the sensitivity of the objective function for "large changes" in the 
inequality constraint bounds.  This can be done using the method described above, which requires 
calculating the results for each corner point as the solution moves from the base case.  However, 
can we determine some sensitivity information without these calculations?  The answer is a 
limited "yes", but since the basis might change, we will have to accept sensitivity information that 
is not be exact, but provides useful limits. 
 
 To understand the concept, we will consider the base case linear programming solution 
shown in Figure 7.3a.  This figure shows the standard sensitivity result for a change in the limit to 
inequality 1 that increases the range of the feasible region - without a basis change.  In contrast, 
Figure 7.3b shows the same situation, but with a basis change.  We can see that the sensitivity of 
a change in an active inequality that increases the feasible region must be unchanged or decrease 
from the base case sensitivity.  By similar argument, the sensitivity of a change in an active 
inequality that decreases the feasible region must be unchanged or increase from the base case 
sensitivity. 
 

For a linear program minimizing the objective, the objective function must always 
decrease (or remain unchanged) as the size of the feasible region is increased.  Also, the objective 
function must increase (or remain unchanged) as the feasible region is decreased.  We can use 
this principle to develop a useful generalization about the sensitivity analysis of an LP when the 
basis changes any number of times. 

 

Recall that we could always resort to making all changes and resubmitting the problem for 
optimization.  Therefore, we can evaluate complex sensitivities not covered by the above 
methods, although at the cost of increased computation. 
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Figure 7.3a.  The sensitivity of the objective to a 
RHS change that increases the feasible region 
without a basis change. 

Figure 7.3a.  The sensitivity of the objective to a 
RHS change that increases the feasible region 
with a basis change. 

 

 
We can use this property to determine whether or not an option being investigated is 

worth continued evaluation beyond a change in optimal corner point, as described in the 
following.   
 
 Increasing the feasible region - When the constraint rhs changes in a direction that increases 

the size of the feasible region, the objective function must improve or be unchanged.  Also, 
the absolute value of the constraint's marginal value has its largest magnitude at the base case. 

 
Objective is minimized 

 
Objective is maximized 

OBJ base case+rhs  OBJ base case + (marginal value)(rhs) OBJ base case+rhs  OBJ base case + (marginal value)(rhs) 
 

Let's consider an example in which we are maximizing the objective, profit.  We can 
calculate an estimate of the profit using Pestimate = Profit base case + (marginal value)(rhs).   

- If this profit estimate (Pestimate) is less than the acceptable rate of return, we know that the 
project is not acceptable.  We can reject it, because the marginal value would decrease if a 
basis change occurred within rhs.  This would lower the profit even further. 

-  If this profit estimate (Pestimate) is above the acceptable rate of return, we are not sure 
whether the profit with rhs is high enough, because the marginal value of the constraint 
would decrease (perhaps, to zero) if a basis change occurred.  Therefore, this problem has 
to be reoptimized with the right-hand side changed. 

 
 Decreasing the feasible region - When the constraint rhs changes in a direction that 

decreases the feasible region, the objective function must become worse or be unchanged.  
Also, the absolute value of the constraint's marginal value has its smallest magnitude at the 
base case. 

Y

11

2

Profit gradient

profit
Original optimal
corner point

Feasible region

Sensitivity for Y change in constraint 1 =  |Profit / Y| = base case

Perturbed optimal
corner point

Y

11

2

3

Constraint that
becomes active as
constraint 1 is
changed by Y

Profit gradient

profit

Sensitivity for Y change in constraint 1 =  |Profit / Y| =  basis change<  base case

Feasible region

Perturbed optimal
corner point

For a linear program minimizing the objective, the objective function is monotonically 
decreasing (increasing) as the right hand side of an inequality constraint is changed in 
the direction of increasing (decreasing) size of the feasible region. 
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Objective is minimized 
 

Objective is maximized 

OBJ base case+rhs   OBJ base case + (marginal value)(rhs) OBJ base case+rhs   OBJ base case + (marginal value)(rhs) 
 

Let's consider an example in which we are maximizing the objective, profit.  We can 
calculate an estimate of the profit using Pestimate = Profit base case+rhs  Profit base case + (marginal 
value)(rhs).   

- If this profit estimate (Pestimate) is less than the acceptable rate of return, we know that the 
project is not acceptable.  We can reject it, because the magnitude of the marginal value 
would increase if a basis change occurred within rhs.  This would lower the profit even 
further, because rhs is negative.  In the extreme, the problem could become infeasible, 
giving an infinite marginal value. 

- If this profit estimate (Pestimate) is above the acceptable rate of return, we are not sure 
whether the profit with rhs is high enough, because the magnitude of the marginal value 
of the constraint would increase (perhaps, to infinity) if a basis change occurred.  
Therefore, this problem has to be reoptimized with the right-hand side changed. 

 
 
8.0 Example Model Formulations for LP Problems 
 
When applying optimization, we are challenged to formulate models that have two properties; 
sufficient accuracy for meaningful results and sufficient simplicity to be solved within reasonable 
computing time.  This challenge is especially acute when using linear programming, which is 
limited to very simple models.  Not surprisingly, engineers and management scientists have 
worked for years to formulate models that satisfy both requirements. 
 

No simple recipe exists for linear programming modelling.  The engineer must have a 
toolkit of modelling approaches and use creativity in applying the approaches to each problem.  
In this section, we will learn a few of the most useful and general model formulations for linear 
programming.  Each approach will be presented with strengths and weaknesses and an example.  
This will enable the readers to add each formulation to their modelling toolkits. 
 

 
Figure 8.1. Using an LP model to optimize a complex process. 

Decisions:

1.  Purchase feed type A

2.  Process feed to max.

     utilization of machinery

Max Profit

s.t.  Max Rate  Fi

Reality Model Results interpretation

Implementation

How can I represent a complex
plant with linear equations?

The results must be good, because we
will be implementing them in the
plant.  (Or design a plant, or …..
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8.1 Straightforward LP Model 
 
The most common LP models represent key balances of conserved properties.  While the exact 
balances are usually nonlinear, the LP formulation simplifies the relationship, so that only the 
most important variable appears.  A few examples are given in the following for engineering 
systems. 
 
Material balance: This is an exact 
equation, mild assumptions are involved, 
e.g., no leaking. 

021  outoutin FFF  (8.1)

 
Component material balance: This 
assumes that the separation (separation 
unit) or the yield (conversion unit) does 
not change. 

02211  outoutoutoutinin FFF  (8.2)

 
“Energy” balance: This expresses the 
energy consumption as a function of the 
feed rate only.  It combines and 
simplifies several balances. 

0 steamin FF  (8.3)

 
The balances can be on a wide array of entities, for example, ball bearings, workers in a 

plant, hours available for a piece of equipment.  The resulting models are rather crude but can be 
used to make some important decisions.  For example, we will be purchasing feed materials with 
different properties and prices and with considerable uncertainty in the actual feed material and 
future market demands.  We want to make a good decision, certainly selecting a feed that we can 
process to make the needed products, but we do not require extreme accuracy because of the 
uncertainties.  Thus, we might select the straightforward model formulation. 
 
 
 
8.2 Base-Delta LP Model 
 
The previous model could be thought of as a linearization that is restricted to one (the most 
important) variable.  This approach can be extended to additional variables, which is termed base-
delta modelling (Boddington, 1995).  The name implies that the model using the most important 
variable is the "base" model, and the other linear terms provide smaller corrections for “deltas” in 
other variables.  We recognize this as a Taylor’s series retaining only the linear terms. 
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 (8.4)

 
We must recognize that the linearization is about a point (x0), and the accuracy of the 

solution depends on how well the approximation applies at the solution point, which is not likely 
the base point (x0  x*).  To improve the solution accuracy, the deviations in the independent 
variables (x-x0) could be limited by lower and upper bounds. 
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Example 8.1 We will build a straightforward linear programming model for the petroleum 
reforming reactor shown in Figure 8.2 using the data in Table 8.1 from Boddington (1995).  The 
model is based on the base case operation of reactor severity 850 and feed naphthenes of 15%. 

Figure 8.2 Naphtha reformer process 
 
 

Table 8.1 Data on the Reformer Model Yields Dependence on Severity and Naphthenes 
Inputs:  Base case    
Reactor severity 800 850 900 800 850 
Feed naphthenes (%) 15 15 15 20 20 
Product Outputs:      
Reformate (%) 90 86 80 92 88 
Gases (%) 9 13 19 7 11 
Hydrogen (%) 1 1 1 1 1 
Octane (product quality 
in “octane” units) 

80 85 90 81 86 

 
The following model gives the product flow rates (in kg/min) as a function of only the key 
variable, the mass feed flow rate (in kg/min). 
 

feedhydrogen

feedgas

feedreformate

FF

FF

FF

01.

13.

86.


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Example 8.2 We will build a base-delta linear programming model for the petroleum reforming 
reactor shown in Figure 8.2 using the data in Table 8.1.  The model is based on the base case 
operation of reactor severity 850 and feed naphthenes of 15% and includes linear effects of 
changes severity and naphthenes. 
 
Based on the data in Table 8.1, the coefficient for the severity-reformate yield is 
 

 reformate yield/severity  = (80-90)/(900-800) = -0.10 %/severity unit  
= -0.0010 wgt fraction/severity unit 

hydrogen

gas

reformate

feed
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Actual plant has 
one reactor

The disjunctive model has “n” 
pseudo-reactors at different 
conditions.

This delta is applied to the base case feed flow rate, so that the model for the reformate flow rate 
in kg/min would be the following. 
 

  severityFF asebafeedreformate  sec)(0010.0  

 
Other delta coefficients are calculated in a similar manner to give the following model for all 
component flow rates in the product in mass units (kg/min) and for octane in octane units. 
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8.3 Disjunctive Programming in LP Modelling 
 
Linear models can be accurate in a relatively narrow range of conditions.  Base-delta modelling 
extends the models slightly by including additional variables; however, the range remains limited.  
To achieve a large range, we can prepare separate linear models representing the same sub-
system over a range of conditions and apply the appropriate model depending on the conditions at 
the solution.  This approach is termed disjunctive programming (Williams, 1999). 
 
The concept of disjunctive programming extends the application of approximate models.  We can 
apply this concept to include substantial changes in the system, for example changes of phase or 
different piping structures.  Here, we will restrict the application to moderate changes in 
conditions that might not be well represented by base-delta models.  Let’s consider the pyrolysis 
reactor in Figure 8.3 that can operate over a wide range of flows and temperatures.  We could 
model this by pretending that several reactors exist, although only one reactor exists in the plant.  
The pseudo-reactors are also shown in Figure 8.3.  We can model each of the pseudo-reactors as 
though it operated a different flows and temperatures; the range of conditions to be investigated is 
spanned by the pseudo-reactors.  The total feed flow is distributed among the pseudo-reactors, 
and the total effluent is the sum of the individual reactor products.  The LP optimization allocates 
the total feed among the pseudo-reactors, which selects the best temperature(s) for the reactor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.3 Schematic of pyrolysis reactor and a disjunctive representation. 
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“Straightforward” model Disjunctive model 
 Reactor operating condition Model at this condition 

Fi = i F Reactor 1: T = T1 Fi1 = i1 F1 
 ……..  

i = 1, 2, ….., m Reactor j: T = Tj Fij = ij Fj 
 …….  
 Reactor n: T = Tn Fin = in Fn 
  

j
jFF       feed split 

  
j

ijpi FF     effluent mix 

 
with i = the “yield” of component “i” at one (nominal) temperature 
 ij = the “yield” of component “i” at condition “j”; in this case, Tj 

F =  the total feed flow rate 
Fi =  total flow rate of component “i” in the effluent 

 Fj =  flow rate of feed to condition “j” 
 Fij =  flow rate of component “i” in the reactor effluent operated at condition “j” 
 Fp =  product flow 
 Note:    

i
i

i
ij .      . 0101     and all flows in mass units, kg/min 

 
Clearly, a weakness of this approach is the possibility of allocating the total feed to more 

than one reactor, because only one actually exists in the plant.  The best (and only rigorously 
correct) approach is to force the solution to use only one of the disjunctive models; this can be 
achieved using integer programming (Williams, 1999).  Often, disjunctive models are solved 
using only continuous variables, which might result in multiple models being used 
simultaneously.  This approach is reasonable when (1) the implementation can interpolate 
between models with similar operations and (2) the uncertainties in the problem do not justify 
further model accuracy. 
 
Example 8.3 We will develop a disjunctive model for the reformer described in Example 8.1 for 
the levels of severity.  The three yield models at three severities (F800, F850, and F900) are 
determined directly from Table 8.1.   
 


























































feed

hydrogen

gas

reformate

F

F
F

F

F

F

F

900

850

800

111

01.01.01.

19.13.09.

80.86.90.

 

 
We recognize that this model has more flexibility than the real process, which has only one 
reactor and can operate at only one severity.  However, the solution often selects one severity by 
having only one non-zero severity-flow, which is easily interpreted.  Also, if only two contiguous 
severity-flows are non-zero, the engineer could interpret this result as requiring a severity 
between the two selected, with the value determined by interpolation. 
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8.4 Separable Programming 
 
All of the formulations in this section are designed to improve the accuracy by correcting for non-
linearities in the standard LP formulation.  Separable programming achieves the correction in a 
manner that is efficient and easily understood.  Let’s begin with a definition: a separable function 
can be represented by the sum of individual functions of only one variable each. 
 
 

.....)x(y)x(y)x(y  2211  (8.5)

 
with xT = [x1 x2 …] 
 
When the model can be separated as shown in equation (8.5), a linear approximation can be built 
by using piecewise linear approximations for each of the single-variable functions. 
 

An example of piecewise linearization is the efficiency curve for process equipment. For 
the boiler in Figure 8.4, we seek to model the fuel consumption as a function of the steam 
production.  The fuel consumption depends on other variables, such as the excess oxygen in the 
flue gas; however, we will consider only the effect of the dominant variable, steam flow rate. 
 

The efficiency is not constant, so that the relationship between the fuel and steam is non-
linear. 
 

 /FF steamfuel        with  = constant and  

                                         = efficiency 

(8.6)

 
This efficiency function and the resulting steam-fuel relationship are plotted in Figure 8.4.  We 
can develop an approximate model using piecewise linearization, which is also shown in the 
figure.  We can use this to develop multiple, separable models for the fuel flow.  The piecewise 
linear function can be modelled using the following equations. 
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(8.7)

 
 
 This model separates the steam flow into segments and associates an individual slope 
between the steam and fuel flows for each segment.  This provides the basic model, but another 
model is required, because if only equations (8.7) were used, the model could use the upper line 
segment (high steam flow) first!  Therefore, the model should enforce the order of line segments, 
as represented in the following. 
 

For any (Fsteam)i  0 and (Fsteam)i  (Fsteam)imax , the following must be true 
 
(Fsteam)j = (Fsteam)jmax   for j < i   and  (Fsteam)k = 0  for k > i 

 
(8.8)
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Figure 8.4 Separable programming and piecewise linearization of the boiler efficiency 
relationship. 
 

Fortunately, equation (8.8) is not needed for an important special case in which the 
objective function forces the correct selection of variables.  As apparent in Figure 8.4, the most 
efficient segment is the lowest; therefore, the objective of minimizing fuel (or cost) will force the 
correct selection in this case.  Again, integer variables would in general be required. 
 
 
8.5 Linear Transformations in LP Modeling 
 
When developing linearized models, we should always seek linearizing transformations.  An 
important example is blending, which is used in many industries, such as petroleum processing, 
cement manufacturing, and food processing.  Often, properties do not blend linearly. 
 

 iiBB xFxF  (8.9)

 
with the subscript “i” indicating the pure component and “B” indicating the blended material.  In 
some cases, we can develop correlations between pure properties and their contributions to the 
blended properties. 
 

)x(y with    yFxF iiiiBB   (8.10)

 
The transformed variable y is often referred to as the “blending index”.  It relates the unblended 
component property to its contribution in the blended material. 
 
 
8.6 Goal Programming in LP Modelling 
 
We stated in Section 4.2 that an LP always has more variables than equations.  This is true for 
well-posed problems, but it does not occur naturally by formulating fundamental balances.  For 
example, consider the following blending problem, in which two streams are mixed to minimize 
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cost while satisfying four specifications, one total flow FB, and three compositions; wB, xB, and 
yB. 
 

 
 
 

Conventional linear 
program with hard 
constraints 
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(8.11)

 
with F1 and F2 the only independent variables.  We immediately recognize that we cannot satisfy 
four equalities with only two variables, because we have a problem with fewer variables that 
equations.  The original formulation has no solution; what do we do? 
 

However, we can still use linear programming to find a “good” solution.  We define a 
good solution as one that is either satisfies all constraints, if possible, or is “close” to satisfying all 
constraints.  We can use several definitions of close; here, we will use a definition that conforms 
to the linear programming assumptions.  We add non-negative slack variables to every constraint 
that we allow to be violated.  The new formulation is given in the following, with all expressions 
allowed violation except the total flow and non-negative flows. 
 

 
 
Modified linear 
program formulation 
with selected soft 
constraints using goal 
programming 
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(8.12)

 
We see that we need to add one slack variable to an inequality and two slack variables 

with different signs to an equality constraint, because it could be infeasible in either “direction”.  
The slack variables must also appear in the objective function with penalties that are large enough 
so that all slacks will be zero at the solution if a feasible solution is possible.  We have included 
weighting factors, i, for every slack variable in the objective function appearing in equation 
(8.12).  This is done for two reasons.  First, each slack has different units, so that weighting is 
required to place similar values on the violations.  Second, we can place difference importance on 
violations of different constraints through a selection of the weightings.  This “tuning” is usually 
necessary because of different effects of violations on economics, product quality and safety.  
Finally, we note that the solutions to equations (8.11) and (8.12) should be the same when a 
feasible solution is possible; this can be achieved by selecting large enough values for all 
weightings. 
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 Goal programming is used widely in mathematical programming.  The standard LP 
formulation, without goal programming, involves hard constraints; formulations with goal 
programming involve soft constraints. 
 

 
We note the following considerations when applying goal programming. 
 A single model can include both hard and soft constraints. 
 The correct penalty function values depend on the user’s priorities.  Some case studies may 

be required to determine the correct penalties, i. 
 The user should always check the values of the slack variables during results interpretation.  

If one or more is non-zero at the optimum, the user should investigate why and see if the 
tradeoffs by the LP are appropriate for the current situation. 

 The objective function includes the penalties for the infeasibilities, so that it is not easily 
interpreted when a slack is non-zero.  When the objective function value is important, e.g., 
profit, the value without the penalties should be calculated separately and reported to the user. 

 We should never soften a fundamental balance, such as material or energy balances.  These 
must always be strictly observed. 

 Softening some constraints helps in debugging models.  An infeasible solution for a problem 
with hard constraints is often difficult to analyze, while a solution with some violations due to 
goal programming can be more easily interpreted. 

 Goal programming should be used when a feasible solution must always be obtained.  This is 
the situation when linear programming is used is used in a closed-loop, real-time application.  
The goal programming formulation will prevent a disturbance from stopping the LP from 
finding the “best” solution, even if disturbances occur in the system being controlled that 
cause infeasibilities in the dependent variables. 

 
8.7 Flow-property blending relations in LP Modelling 
 
Process plants often involve some type of mixing.  On first encountering these models, most 
engineers conclude that the mixing model must be non-linear.  However, we will introduce a 
linear model that can be formulated when certain restrictions are valid.  When mixing multiple 
streams to achieve multiple blended material compositions, we formulate the overall material 
balance and balances on the properties.  The resulting blended composition is usually written in 
the following form. 
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(8.13)

 
with i = the ith property 
 j = the jth flow 
 F = the flow rates which are variables 
 xij = the component properties, which are constants 
 xB = the blended property, which is a variable 

Hard Constraints: These are equalities and inequalities that must be strictly observed.  Any 
violation is considered infeasible. 
Soft constraints: These are equalities and inequalities that can be violated.  The extent of 
violation is penalized in the objective function, which tends to reduce the violation, to zero if 
possible. 
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Equation (8.13) is non-linear and could not be used in a linear program.  However, the 
relationship could be replaced by the following two linear inequalities. 
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We have replaced the variable xB with its maximum and minimum values in the 

inequalities, thus making the expressions linear.  Using the two inequalities provides the blending 
relationships that are required.  Naturally, if the maximum and minimum bounds are equal, the 
two expressions enforce the desired blended product property. 
 
 We must recognize an important limitation of this LP formulation.  The component 
properties must be known constants.  If the mixing model is part of a larger LP model that is used 
in optimizing the entire plant, the component properties are likely to be variables, because they 
depend on upstream operations and flows into and output of the component tanks.  This situation 
is called the pooling problem, because the both the flow rates and properties to a component 
inventory (“pool”) are variables.  The pooling problem is inherently non-linear, and we must 
employ a non-linear optimization method (Reklaitis, et. al., 1983). 
 
 
8.8 Absolute value 
 
Often, the optimization goal is to achieve performance close to a specification.  We can use the 
absolute value of variables from their desired values as a measure of approach to the best 
performance.  However, the absolute value is a non-linear function and cannot be used in a linear 
program.  We can model the system using penalty variables that are non-zero in proportion to the 
absolute value of the deviation.  These penalty variables are given a large positive cost to prevent 
them from having non-zero values unless needed. 
 
 In a chemical reactor operations example, we want to achieve a desired product flow rate, 
if possible.  We could use the absolute value from the desired value as the objective to be 
minimized. 
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8.9 Mini-Max Problem 
 
When we consider multiple outcomes of an optimization problem, we have flexibility in 
formulating the objective function.  Two common examples are given for a minimization problem 
in the following. 
 
 Min-Min – In this case we desire the best outcome to be as low as possible. 
 Min-Max – In this case, we want the worst outcome (maximum of the possible 

outcomes) to be minimized. 
 
We will consider the min-max problem in this subsection, and we recognize the max-min 
problem is equivalent, because we can covert between the two by multiplying the objective by (-
1).  This min-max strategy is often used when dealing with uncertainty.  For example, we might 
require that a plant be able to manufacture a minimum amount of product for a range of possible 
feed material properties. 
 
 The approach provides a model for every possible outcome being considered.  This 
provides a calculation for the performance for every outcome.  We require the decision 
(optimization) variables to have the same value for every outcome, because we do not know in 
advance which outcome will occur.  Then, we “select” the maximum as the objective function.  
Since a selection would be non-linear, a special formulation using inequality constraints, given in 
the following, is used to have the same effect. 
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with fi = a set of linear equations and inequalities with the parameters i yielding an 

objective function fi.  This is the "entire problem" for one set of parameters, i. 
        i =  The parameters associated with outcome i 
        x = The optimization variables, which are used in every model i.  Note that the same 

values are used for every outcome i, so that we find the values of x that satisfy all 
constraints for all parameters in the samples i. 

 
8.10 Minimum-Proportional variable 
 
Often, a variable is proportional to a decision variable, such as the production of one product is 
proportional to feed material.  Other variables are proportional over a range of the decision 
variable, but the variable must never decrease below a minimum limit.  An example is shown in 
Figure 8.5, which shows a compressor.  Normally, the flow through a compressor is proportional 
to the feed flow to the compressor.  However, the flow through the compressor must never be 
below a minimum or unstable flow will damage the machine.  This is called the surge limit.  To 
protect the machine, a recycle is provided and a flow controller achieves the minimum flow by 
recycling when required. 
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We can model this system by including an inequality ensuring that the flow through the 
compressor is greater than or equal to the minimum.  We relate the feed flow to the flow through 
the compressor using a slack variable to represent the recycle flow rate.  The cost of compression 
ensures that the recycle flow rate is zero unless required to maintain feasibility.  A summary of 
the model is given in the following equations. 

Figure 8.5.  Compressor with recycle. 
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8.11 General modelling guidelines 
 
A few additional guidelines are presented in this section because they apply to all model 
structures. 
 
 Bound variables - Linear programming models have acceptable accuracy over a limited 

range of variables.  The people who initially build the model usually have the greatest insight 
into the appropriate range.  Therefore, they should bound variables to constraint the results to 
a meaningful range. 
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 Constraint redundancy - For some problems, a subset of the constraints can be removed 
without affecting the feasible region of the objective.  These constraints are redundant and 
should be removed.  A few examples are presented here. 

 
- All component material balances and the total material balance for the same stream are 

included in the model.  One of these equations is redundant and should be removed. 
- Some limitation (sales, equipment capacity, etc.) will never affect the solution. 

 
However, constraints should not be removed if their activity depends on user-input 
parameters, and these parameters could change.  For example, an equipment capacity could 
change due to lower efficiency; therefore, the constraint must be retained in the model. 
 

 Variable elimination/retention - When solving a set of linear equations, we can analytically 
eliminate some variables without changing the solution.  However, the person formulating the 
model is cautioned that this approach is not generally appropriate for a linear programming 
model.  The key difference is the bounds on variables; if a variable is removed, it cannot be 
bounded.  A variable can only be eliminated analytically from the model if it is never 
bounded. 

 
 Use of equalities to replace inequalities - Often, modelers try to "guide" the linear 

programming by forcing some inequalities to be active, by changing these to equalities.  For 
example, we might think that the optimum occurs when the production rate is equal to 500 
m3/h, which is the maximum for this variable.  It is a poor practice to replace FProduction  500 
with FProduction = 500.  While this inequality constraint might be active for many scenarios, it 
could be inactive for other situations.  

 
9.0  Presenting Optimization Results 
 
Typically, the analyst who performs the detailed technical work in formulating, solving, and 
checking the optimization results is not the (sole) person who decides on actions.  Therefore, the 
technical specialist must report the results to others who are competent in their tasks but are not 
expert in optimization.  For these people, a "solution" consisting solely of numerical values for 
the optimization variables is not adequate; even the complete computer output is inappropriate for 
people who do not have in-depth knowledge of the model and linear programming methods.  
Guidance for reporting optimization results is provided in this section. 
 
9.1 Explaining the formulation 
 
Linear programming, even with the clever formulations described in Section 8, usually involves 
significant model simplification, i.e., the predictions of all dependent variables (flows, 
temperatures, compositions, and so forth) can deviate significantly from predictions using non-
linear models and from real system behavior.  However, the results of the linear programming 
study can be essentially correct when the modelling errors do not significantly influence the key 
optimization variables.   
 
 The report should convey the structure of the linear programming model and the 
simplifications made to achieve this linear programming model.  Depending on the reader's 
understanding of the technology, terms such as "base-delta" and "disjunctive models" could be 
used.   
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 Fundamental Balances - The fundamental aspects of the model should be described.  Recall 
that while material balance is fundamental, some approximation is made in the selection of 
components modelled.  Be sure to explain such assumptions and simplifications. 

 Constitutive Models - These are models whose structures are based on basic physics and 
chemistry, but they are not exact and have parameters with a limited range of applicability. 

 Correlation models - The simple model structures in linear programming result in many 
correlation models that are developed from empirical data or from a more detailed model.   

 
However, a description of the model structure is not adequate; an explanation is required 

of the quantitative difference between the linear programming model and the expected real 
behavior, which can be achieved using one of the following methods. 
 
 Error bounds - Define maximum errors of predictions in key variables, e.g., the modelled 

yield of product is within 3% of the actual reactor behavior. These bounds cannot be used 
directly to evaluate the optimization results, but the information can be used in the results 
analysis, as discussed in the next section. 

 Variable bounds - Define a range of optimization variables over which the optimization will 
(likely) be reliable. 

 Goal penalties - If goal programming is used to achieve a specific objective this should be 
stated along with an indication of how strong the goal penalties are.  For example, are the 
penalties high enough to prevent all occurrences (for example, of mathematical infeasibility) 
or can the some deviation from the goal occur and still remain feasible? 

 Limits of solution - Most problems have a range over which the results are "acceptable".  
Beyond this range of parameters, the solution becomes unacceptable, with the meaning of 
unacceptable depending on the specific problem.  Often, the acceptability depends upon key 
factors such as safety, product quality, or profit.  The boundaries of acceptable performance 
should be defined and the method for enforcing the limits indicated. 

 
Its is important to recognize that an assurance that the correct optimization result has been 

obtained in a complex task and cannot generally be evaluated unless the specific problem is 
presented and solved.  Therefore, the description of the effects of model error in the bullet items 
above will be approximate. 
 
 
9.2 Explaining sensitivity analysis 
 
The typical audience for sensitivity analysis is not interested in technical issues, such as when the 
basis (corner point) changes or the meaning of degeneracy.  However, the audience is aware of 
the uncertainty of the model and needs to understand the impact of the uncertainty - in no 
uncertain terms.  Therefore, the author of the study has the responsibility of reporting the results 
using commonly understood terms and in a manner that explains the effects on the key decisions. 
 

There is no simple recipe for deciding what is "important".  However, the engineers 
performing a study will certainly understand the problem; model, key decisions, and parameter 
uncertainties. Certainly, the typical output from a computer program is inadequate for 
presentation to a person who does not know the model formulation extremely well.  These results 
should be placed into context of the problem.  The following issues should be addressed in the 
report. 
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 Units - Be sure to include units for all sensitivities.  The units are (objective)/(parameter).  
Thus, a "small" sensitivity value in the computer report could really be very large if the units 
of the objective function are 106 kg of production. 

 
 Parameter Perturbations - The types of perturbations must be clearly stated.  For example, 

many of the analysis results are for "one at a time" changes to a parameter.  If these are 
presented without clear guidance, the reader will likely assume that the results from multiple 
parameter changes can be determined as a linear combination of the changes for each 
parameter.  This is not generally correct and could lead to serious errors. 

 
The results analysis might consider a change of several parameters because the parameters 
are correlated in the real problem.  For example, the yields of many reactor components could 
change is a related manner due to a feed composition impurity.  Again, this should be 
explained clearly. 
 

 Parameter range - The parameter ranges for every sensitivity should be reported.  This 
should be clearly documented, such as in a table with the sensitivity results. 

 
 Alternative solutions - If the system has alternative solutions (or solutions with very close 

objective values) this situation should be reported.  In addition, the reason for selecting the 
recommended solution should be clearly explained. 

 
 Degeneracies - Constraint degeneracies should be carefully explained to avoid an 

inappropriate decision.  For example, investing in capital equipment to expand the bound of a 
redundant active inequality constraint might not increase the feasible region or improve the 
objective function.  Therefore, an explanation could be provided for lowest cost method for 
achieving a specific increase in performance, e.g., profit or production rate.  Because of the 
degeneracy, several constraints might have to be changed concurrently. 

 
 Active set and implementation strategy - The active set of constraints should be reported 

and its relevance to the problem explained.  Often, we want to achieve this active set in 
practice, but implementing the values from the linear programming solution will not result in 
exactly the corner point calculated because of model errors.  The implementation can result in 
violations or in values in the interior of the feasible region.  The report should indicate the 
appropriate strategy for implementing the results, i.e., for adjusting the true system and 
achieve a "nearly optimal" result.  For small adjustments that do not involve a basis change, 
the basis inverse provides information on how to adjust the optimization (basic) variables in 
response to changes in the constraint values. 

 
 Problem specific - Every problem has its own typical sensitivity questions.  Often, these give 

guidance on how the performance can be improved.  One question might be, "How large a 
decrease in the price of feed material A is required to make its selection attractive?"  The 
reader can decide whether this value could be achieved through aggressive negotiations.  A 
second example is, "How much would it be worth to raise the reactor temperature by 2 C?"  
If the potential improvement is substantial, the reader could reevaluate the limit based on long 
term coke deposition on the catalyst.   

 
 Infeasibility and unboundness - The failure to find a basic feasible solution is always 

reported by linear programming software, but it is not always prominently displayed.  As a 
result, the user could apply the reported variable values without recognizing the solution 
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failure.  Thus, reports developed automatically from the computer (without personal 
intervention and evaluation) should display ""Optimal Solution Found" or an error message 
in a manner that will be seen by every user. 

 
 
9.3 Results analysis presentation 
 
The calculations for many of these standard questions should be part of the optimization analysis.  
Some of the questions might occur only in special circumstances, such as when prices are very 
volatile or when plant equipment behavior changes in an atypical manner.  Naturally, these 
special questions must be answered as they occur. 
 
 Tabular presentation of sensitivity results provides high accuracy (several significant 
figures) and can accommodate a large number of parameters.  Naturally, the ranges for each 
sensitivity must be included in the report.  These will enable the reader to perform sensitivity 
analysis not defined when the report is written.  On the other hand, these values do not "speak for 
themselves" and do not replace the thoughtful engineering analysis discussed in sub-section 9.2. 
 
 An especially clear presentation of sensitivity results plots the effect of a single parameter 
on the profit and key variables. An example of this plot is given for the blending process in 
Figure 9.1.  The sensitivity plot is given in Figure 9.2, with explanatory comments in Table 9.1.  
The plot can extend through many changes in corner point (basis), which requires several 
optimization runs when generating the data for the plot.   
 

For a linear program, the profit and variables are piece-wise linear, with the change in 
corner point clearly identified when the slope changes.  Each change in corner point should be 
explained in "engineering terms".  Some observations from this example include 
 
 Low ranges of the production rate are not feasible.  This is due to the minimum flow rate of 

butane, which has a high vapor pressure. 
 Variables can become non-basic (reach their maximum or minimum) and return to the basis 

as the production rate changes. 
 The profit decreases from its maximum when the production rate is increased beyond point 5. 
 
 
We conclude that this display is extremely easy to understand, and it facilitates the use of 
optimization results by non-specialists who cannot screen many pages of numerical optimization 
results in tabular form. 
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Figure 9.1 Gasoline Blending problem with base case results 

Figure 9.2 Sensitivity plot for a gasoline blending problem. 
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Table 9.1 Explanation of the corner points designated by circled numbers in Figure 9.2. 
Corner point 

(basis) 
Profit 

($/day) 
Comments 

1 7710 The Butane, LSR, FCC naphtha and Alkylate are at their minimum 
flow rates; only Reformate can be adjusted.  Any reduction beyond 
this point results in infeasibility due to high RVP. 

2 12325 Butane flow is reduced to its minimum of 250.  The minimum 
octane bound cannot be achieved, but the qualities remain feasible. 

Base Case: 3 13940 Optimum operation and profit for the base case problem defined in 
Figure 9.1. 

4 14924 The LSR flow rate reaches its maximum. 
5 15394 Reformate flow reaches its maximum, and FCC gasoline is 

increased.  LSR is reduced. 
6 15061 Butane flow reaches its maximum.  Alkylate is introduced as a 

blending component. 
7 13901 LSR again reaches its maximum.  RVP constraint no longer active. 
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11.0  Study Questions 
 
The following questions are provided to help you review and study linear programming concepts.  
 
 
Section 1.0 The Importance of Linear Programming 
 
1.1 Discuss when heuristic solution methods are appropriate. Hint: after thinking about this 

question, read the article by Geffrion and Van Roy (1979). 
 
1.2  Review recent volumes of technical journals such as Informs, Int. Journal of Production 

Engineering, Management Science, and Interfaces.  Find an article describing an application 
of linear programming and write a summary.  You should discuss the model and its 
accuracy, the advantages over heuristic approaches, and the benefits described in the article. 

 
 
Section 2.0 Key Modelling Assumptions and Limitations 
 
2.1 Answer the questions posed in Figure 

Q2.1. 
 
2.2 Give examples of situations in which 

additivity is not valid. 
 
2.3  Formulate models containing functions 

that do and do not satisfy linearity. 
 
2.4  Discuss engineering problems that 

involve discrete variables.  For each, 
decide whether we can justifiably assume 
that variables are continuous, and round 
off the final answer to the nearest integer. 
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 Figure Q2.1.  Which of the functions above satisfy 
the linearity criteria?

 
2.5 Discuss examples of models that have (a) no uncertainty, (b) negligible uncertainty, and (c) 

substantial uncertainty. 
 
2.6  Does the sensitivity to parameter errors depend on the problem?  Consider these two sets of 
linear equations. 
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Solve both equations for a (a) base case with  = 4.00 and (b) perturbed case with  = 4.01.  In 
which case do the values of the variables x change more?  Discuss your results. 
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Section 3.0 Linear Programming Properties and Advantages 
 
3.1 Discuss some examples of inequality constraints in engineering and business models.  Give 

the variables used to model each and explain why it is a greater than or less than inequality. 
 
3.2  In Figure 3.2, identify the following. 

a. Feasible points, 
b. infeasible points, 
c. feasible corner points, 
d. infeasible corner point, 
e. active inequality at the optimum, and 
f. inactive inequality at the optimum. 

 
3.3   Sketch feasible regions that are convex and others that are convex. 
 
3.4   Can a linear program have the same solution for minimizing and maximizing the same 

objective function?  Explain your answer. 
 
3.5   Can a convex region have a "hole" that is entirely enclosed within the region? 
 
 
4.0  Principles of Solving a Linear Programming Problem 
 
4.1   Does every set of linear equations have a solution?  Does every set have a non-trivial 

solution? 
 
4.2   Solve the following set of linear equations. To reduce hand calculations, the recommended 

approach is to use "The Equator" at http://www.ifors.ms.unimelb.edu.au/tutorial/ . 
 

100.00.10.1

200.10.30.1

40.025.050.0

321

321

321






xxx

xxx

xxx

 

 
This equation set occurs when a specific basis is selected for Example 5.1. 

 
4.3 Define the following terms; point, feasible (infeasible) point, line segment, convex set, and 

corner point. 
 
4.4 What is a basis?  Is any square sub-matrix A’ in Ax = b a basis? 
 
4.5 What are elementary row operations?  How do they affect the solution to a set of linear 

equations? 
 
4.6  Answer the following short questions 

a. Summarize the important elements of the LP problem formulation. 
b. What is the LP standard form?  Why is this the starting point for the solution method? 
c. What is canonical form?  Why is this an important step? 
d. Where is the solution to an LP problem located? 
e. What was the purpose of slack variables?   
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4.7  Answer these questions regarding linear sets of equations. 

a.   Discuss why a set of equations might not be linearly independent.   
b.   How can we test whether equations are independent?   
c.   What is the rank of a matrix? 
d.  Could we inadvertently formulate a set of equations for a real system that were not 

independent? 
 
4.8  Describe ill-conditioning of a set of linear equations.  Sketch a set of two equations that are 

(a) well conditioned and (b) ill-conditioned. 
 
4.9  What is the value of a slack variable when the left and right hand sides are equal?  What is 

the coefficient for a slack variables when added to a “greater than” inequality and to a “less 
than” inequality? 

 
4.10  Computers are very fast.  If each evaluation required one second, how long would it take to 

determine the optimum by the exhaustive search method described in the paragraph above 
for the problem with m=10 and n=20.  Recall that this is a very small LP problem, some 
commercial problems have 100,000 variables or more. 

 
 
5.0 The Linear Programming Simplex Algorithm 
 
5.1.  Locate all basic solutions, basic feasible solutions and optimum solutions for the graphical 

system in Figure 4.2. 
 
5.2   Which of the following are true for the pivoting operations? 

a. A non-basic variable enters the basis. 
b. A basic variable enters the basis. 
c. The basis changes from square to non-square. 
d. After pivoting, all basic variables have values greater than 0.0. 

 
5.3   The LP solution must never contain a non-zero slack variable (T/F). 
 
5.4   What was the purpose of artificial variables? 
 
5.5   Which of the following can be a basic variable in the solution; problem, slack, and artificial 

variable? 
 
5.6  By referring to a text or reference book, learn the “two-phase” simplex method.  Compare 

Phase I of this method with the “Big-M” method for finding an initial basic solution. 
 
5.7 The simplex algorithm uses local information about adjacent corner points, yet it finds a 

global optimum.  Discuss why this powerful result is achieved, i.e., what about the problem 
formulation enables this? 

 
5.8  The solution to an LP gives 
 a. A unique value for the local optimum objective value 
 b. A unique value for the global optimum objective value 
 c. Unique values for the problem variables at the global optimum. 
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5.9   Draw Example 5.1 graphically and confirm the tableau solution by graphical analysis. 
 
5.10 You want to explain linear programming to a high school class.  Design a physical system 

that behaves like a linear program and demonstrates the principles visually.  Could you 
build it with cardboard and tape? 

 
5,11  Formulate and solve the problem in Example 1.2 as a linear program. To reduce hand 

calculations, the recommended approach is to use the interactive tableau available "The 
Simplex Place" at http://www.ifors.ms.unimelb.edu.au/tutorial/, the IFORS site.  (Hand 
calculations for the Tableau method are tedious and do not enhance your understanding.) 

 
 
6.0  Extensions and Special Cases 
 
 
6.1  How can you detect each of the following; no feasible region, unbounded solution, and 

multiple optimal solutions, constraint redundancy at the solution, and constraint degeneracy 
at the solution? 

 
6.2 For the system in Figure 6.4, determine whether  

a. the optimum would change if constraint 1 were removed from the problem. 
b. the optimum would change if constraint 2 were removed from the problem. 
c. the optimum would change if constraint 3 were removed from the problem. 

 
6.3 Discuss the sensitivity for a change in the rhs of constraint 1 in Figure 6.4 for (a) a small 

increase and (b) a small decrease. 
 
6.4   Formulate and solve the problem in Example 1.2 as a linear program. To reduce hand 

calculations, the recommended approach is to EXCEL or GAMS.  Analyse the solution 
completely for all possible "weird events". 

 
6.5   Explain the procedure that you would use to restart a linear programming solution after you 

have changed the values of selected parameters.  You will describe how you would use the 
last tableau in the original solution as your starting point to reduce computations. 

 
6.6   Discuss whether you think that constraint redundancy is likely to occur in manufacturing 

systems. 
 
 
7.0  Sensitivity and Range Analysis of LP Solutions 
 
7.2   Perform a graphical sensitivity and range analysis for a different constraint in the system in 

Figure 7.1. 
 
7.3.  Add an inactive inequality constraint to Figure 7.1.  Show how much change in its rhs can 

occur without a change to the optimum. 
 
7.4.  The analysis above shows that the reduced cost must change to zero for the basis to change.  

Prove that this equivalent to the original cost changing by exactly the same amount. 
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8.0  Example Model Formulations for LP Problems 
 
8.1  An example application of this formulation is the plant-planning problem from Reklaitis et 

al. (1983).  We are presented with a problem of selecting the quantities of feeds to purchase 
to maximize profit in a petroleum refinery.  A sketch of the system is given in Figure Q8.1, 
and the data are presented in Table Q8.1. 

 
Figure Q8.1 Schematic of a petroleum processing refinery in Question 8.1. 
 
 

Table Q8.1 Data for Question 8.1 (Bl=barrel) 
Product & Crude 

Names 
Product yields (Bl product/Bl crude) Product 

Values 
($/Bl) 

Max. 
sales 
(kBl) 

Fuel Processes Lube 
1 2 3 4 4 

Gasoline 0.60 0.50 0.30 0.40 0.40 45.00 170 
Heating Oil 0.20 0.20 0.30 0.30 0.10 30.00 85 
Jet fuel 0.10 0.20 0.30 0.20 0.20 15.00 85 
Lube oil 0.0 0.0 0.0 0.0 0.20 60.00 20 
Operating losses 0.1 0.10 0.1 0.10 0.10 --- --- 
Crude cost ($/Bl) 15.00 15.00 15.00 25.00 25.00  
Operating cost 
($/Bl) 

5.00 8.50 7.50 3.00 2.50 

Maximum 
availability (kBl) 

100 100 100 200  

Operating losses are for the crude and by-products used as fuel in the plant. 
Operating cost includes variable costs for fuel, catalysts, etc. 
 
8.2   Formulate the model equations for an LP solution of Question 8.1; your answer should be of 

the form of equation (4.3).  Explain the basis for the model, specifically what is the basis for 
the balances used? 

 
8.3   Discuss the approximations in the model in Question 8.1. 
 
8.4  Solve the LP problem that you have formulated in Question 8.1.  Discuss the solution for 

validity.  
a. Does a feasible solution exist? 
b. Is the optimum unique?  Is it local or global? 

1

2

3

4

Fuel
processing

plant

Lubes
processing

plant

Crudes Products

Gasoline

Heating Oil

Lube Oil

Separation &
conversion units

Jet Fuel
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c. How many inequality constraints are active at the optimum including variable upper and 
lower bounds)? 

 
Answer the following additional questions. 
d. If the price of Crude 2 increases to $15.55, does the active set (corner point) at the 

optimum change? 
e. What is the affect on the active set and optimum of reducing the maximum sales demand 

of the jet fuel from 85 to 75 kBL? 
f. We have found that we have only 75 kBl of Crude 1 available.  What is the effect on the 

optimum? 
g. We find that we can sell 179 kBl of gasoline.  If we optimize with this new value for the 

rhs: (i) will the basis change, (ii) will the objective function change, and (iii) will the 
optima values of the component flows change? 

h. One of our competitor’s plants has shutdown.  As a result, we can sell up to 100 kBl of 
jet fuel. If we optimize with this new value for the rhs: (i) will the basis change, (ii) will 
the objective function change, and (iii) will the optima values of the component flows 
change? 

 
8.5  Answer the following questions about the system in Question 8.1.   

a. We are not sure if we are making a profit by producing lube oil.  Do you recommend that 
we continue operating this part of the plant? 

b. By minor changes in the operating conditions in the plant, we can change the yields for 
crude 3 to be [0.3, 0.3, 0.3, 0.0, 0.10], with -.050    +0.050.  (Naturally, the 
yields must sum to 1.0, so that the changes in heating and jet must be equal in magnitude 
and opposite in sign.)  What is the best value of , and what is the potential economic 
benefit for modifying the operating conditions?   

 
8.6  The problem in Question 8.1 did not consider the time-value of money.  Discuss this validity 

of this assumption. 

 
Figure Q8.7 Yields from the pyrolysis of n-heptane. The difference between the sum of the 

yields and 1.0 is equal to the unconverted n-heptane 
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8.7  The yields of products from the pyrolysis of n-heptane in a tubular reactor are given by the 

data in Figure Q8.7 (from data in Shu et al, 1979).  (Severity is related to conversion.).  
Develop a “straightforward” model that predicts the product flow rates of all components 
from the reactor.  The key variable is n-heptane feed flow rate.  The nominal severity is 
1.75. 

 
8.8  Enhance the model developed in Question 8.7 by adding a delta due to changes in severity.  

Recommend the allowable range of the  sizes of the delta in severity, which do not have to 
be symmetric. 

 
8.9   Repeat the tasks in Questions 8.7 and 8.8 about the nominal severity of 1.0, and discuss your 

results. 
 
8.10 The heptane pyrolysis reactor in Question 8.7 is to be optimized over a large range of 

operating conditions.  Develop a disjunctive model for the product component flow rates for 
severities from 0.40 to 2.40. 

 
8.11 Could a base-delta model give a reasonable representation of the component flows for the 

entire range considered in Question 8.10? 
 
8.12  Boiler efficiency can be modelled according to the following equation.   
 

275 1017106691270 L.L..     
 

with   = efficiency as a fraction 
L =  Steam “load” (production) in kton/h (range of 0 to 300) 

 
Develop a piecewise linear function that could be used to optimize the boiler operation to 
minimize fuel consumption. 

 
8.13 Sketch a boiler efficiency curve that would require discrete variables to ensure that the 

variable selection in equation (8.8) would be enforced. 
 
8.14 A model contains the equation {y = ax1 + bx2 + x1x2}.  Develop a separable representation 

for this equation. 
 
8.15  By referring to tables in Gary and Handwerk (1984), determine the octane and Reid vapor 

pressure (RVP) blending indices for the following components. 
 Light straight run naphtha 
 Reformed naphtha 
 n-butane 
 i-butane 

 
8.17 A gasoline blending problem is defined in Figure Q8.17.  All properties, prices, and 

constraints are given.  (Note that the initial flow values are very small, which are not near 
the solution.  Also, these flows give infeasible product properties.) 

a. Formulate the blending problem as a linear program. 
b. Program the problem in Excel or GAMS and solve the base case. 
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1.  Does a feasible solution exist? 
2.  How many constraints are active at the optimum? 
3.  Do multiple optima exist? 

c. Answer the following sensitivity questions. 
1.  What is the value of the slack variable on the maximum octane 

constraint?  What are its units? How far is octane from its maximum 
value? 

2. We can purchase alkylate from another company at 34 $/Bl.  Would we 
use alkylate at this price in the blend?  (Note that it is more costly that 
the gasoline that we are selling.) 

 
3. We have a customer who will purchase all of the n-butane that we are 

using in the blend at 20.6 $/Bl.  Should we sell or use it in the blend? 
4. We have fixed the production rate at 7000 Bl.  Is this optimum; if not, 

should we increase or decrease the blended product quantity to increase 
profit, assuming that we could sell any amount.  What is the effect on 
profit, and over what range is this effect valid. 

5. To reduce the vaporization of hazardous materials, the government wants 
us to lower the vapor pressure (RVP) of the product.  What would be the 
cost of lowering the maximum RVP to 9? 

6. Formulate and solve a meaningful sensitivity problem. 
 

 
Figure Q8.17 Gasoline blending problem in Question 8.17. 
 

Reformate

LSR Naphtha

N-Butane

FCC Gas

Alkylate

Final Blend
FT
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FC
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FC
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Flow setpoints

TABLE OF COMPONENT DATA

flow value Octane RVP Vol Flow max Flow min Cost
(Oct. no.) (psi) (%) (Bl/day) (Bl/day) ($/BL)

Reformate 5841.8036 91.8 4 17 12000 0 34
LSR-Naptha 853.95491 64.5 12 85 6500 0 26
n-Butane 304.2415 92.5 138 115 3000 0 10.3
FCC Gasoline 4.551E-12 78 6 22 4500 0 31.8
Alkylate -8.666E-25 96.5 7 30 7000 0 37

TABLE OF PRODUCT DATA

flow Oct. min Oct Max RVP min RVP max Vol min Vol max Flow max Flow min value
(Bl/day) (Oct. no.) (psi) (%) (Bl/day) ($/Bl)

Regular product 7000 88.5 100 4.5 10.8 0 48 7000 7000 33
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8.18 We will reconsider the process in Exercise 8.17.  The production-planning group has noticed 
that the inventories of n-butane and LSR-Naphtha are very high.  They tell the blending 
group that they must have 700 barrels of both of these components in the blend. 
a. Solve the blending problem for this case. 
b. Devise a goal programming approach to do the best in this difficult situation. 

 
8.19 Determine which modelling method that was presented in this section is similar to the 

absolute value model. 
 
8.20 Reconsider the base case blending problem in Questions 8.16 and 8.17.  Suppose that we 

were not sure of the component qualities.  For example, the reformate octane could be one of 
the following values; 92.5, 91.8, 91.  Determine the minimum profit for the blend when the 
blending flows have to be determined with this uncertainty. 

 
8.21 Describe two other process examples of minimum-proportional models.  Formulate the 

modelling equations for linear programming. 
 
8.22 A situation similar to the formulation in Section 8.10 is encountered when a variable is 

proportional up to a maximum, which it cannot exceed.  Describe a process example of this 
situation, and develop a mathematical model for linear programming. 

 
 
9.0 Presenting Optimization Results 
 
9.1  Write a report for the results that you obtained in Questions 8.1 and 2. 
 
9.2  Write a report for the results that you obtained in Question 8.17. 
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Appendix A.  Example Linear Programming Problem: 
Production Planning 

 
 
The small problem in this appendix demonstrates many of the important aspects of linear 
programming.  The student should solve this problem while reading the chapter 
 
 
1.  Problem statement: Your plant can purchase either of two feed materials in any quantity 
between their lower and upper bounds.  The plant produces three products from these feeds.  The 
yields of each feed to each product and the product bounds are given in the following table. 
 

Table 1. Data for the Classroom LP Example Problem 
      
  Feed flow Product 1 Product 2 Product 3 min 

Feed 
max 
Feed 

Cost Feed 

      
Feed 1  ??  0.7 0.2 0.1 0 1000 5
Feed 2  ??  0.2 0.2 0.6 0 1000 6

         
min product   0 0 0   
max product   100 70 90   
Value product   10 11 12   

      
 
Formulate the optimization problem in the general form that can be solved using mathematical 
programming methods. 
 
a. Define an objective function and the variables 
b. Develop equality constraints, 
c. Develop inequality constraints. 
d. Develop variable bounds 
e. Is there anything else that you need? 
 
 
2. Qualitative analysis: Determine whether this problem involves 
 
a. Operation at an obvious limit. 
b. No change to the objective given the limitations on the plant. 
c. A worthwhile optimization problem; what are the tradeoffs?. 
 
Can you determine the best operation without calculations? 
 
 
3.  Visualize the problem: Sketch the problem in two dimensions, giving the following. 
 
a. The feasible region 
b. Contours of constant objective function value 
c. The location of the optimum. 
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4. Problem solution: Formulate the problem you developed in 1 above in the Excel spreadsheet.  
Solve the problem and verify the solution you obtained graphically. 
 
a. Does a solution exist?  (Does a non-zero feasible region exist?) 
b. Is the solution bounded? 
c. Does the solution agree with your graphical result? 
d. Do alternative (multiple) optima exist? 
e. How many constraints are active? 
f. Which variables are “basic” or “in the basis”? 
 
Naturally, the answers in questions 3, 4 should be the consistent. 
 
5.  Base case sensitivity: Answer the following questions using the results from the base case 
obtained in question 4. 
 
a. For the constraints that are active, what is the shadow price (marginal value) for each rhs?  

What is the range for each? What determines the range?  Report in a table. 
b. For the variable bounds that are active, what is the marginal value for each bound?  What 

is the range for each? What determines the range?  Report in a table. 
c. If the maximum sales of product 3 decreased to 60, what would be the effect on the 

solution? 
d. If the maximum sales of product 1 increased to 110 and the maximum value of product 3 

decreased to 81, would the same constraints be active? 
e. What is the meaning of the objective coefficient for the feed flows?  Why are they 

different from Table 1? 
 
6. Larger parameter changes: Answer each of these questions.  Some or all will require you to 
make a change and re-run the solver.  Answer each question using the Base Case as the starting 
conditions. 
 
For each case, answer the following questions. 
 
i. Can you determine the result without resolving the LP with modified data? 
ii. What is the effect on the optimum values of the variables and on the objective function? 
iii. Is there anything of concern in the solution, e.g., weird events? 
 
 
a. The maximum allowed production of product 2 is reduced to 47.5. 
b. The value of product 3 decreases to 3.25 because of a new competitor that is cutting costs 

to get into the market. 
c. We have a contract that requires us to accept at least 150 of feed 1. 
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7. Qualitative sensitivity: Answer these questions for very large changes to selected parameters 
from the base case. Here, we investigate the trends when problem parameters change.  Answer 
the following two questions for each change. 
 
i. State whether the variable values will change and whether the profit will increase, 

decrease or remain the same.  In answering this part, give a qualitative result without 
referring to the sensitivity output values. 

ii. Give a bound on the value of the change in the objective function. In answering this part, 
you may refer to the sensitivity output values for the base case. 

 
a. The maximum production of Product 3 is increased to 100. 
b. The feed cost increases from 6 to 7. 
 
 
 
8. Reporting results:  
 
a. Design and build an EXCEL spreadsheet that clearly displays the problem input data and 

solution results. 
 
b. Write a report explaining your optimization study using all results. 
 
c. Graph the effect on the profit and the purchase of the two available feeds of changing the 

maximum production of product 2 from 0 to 500. 
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Appendix B. Learning Resources for Linear Programming on the WWW 
 

 
The WWW is a vast and ever-changing resource that contains, among some less savory contents, 
learning resources for mathematical programming and specifically, linear programming.  The 
resources described here are selected to match the level of mathematics in the chapter and to be of 
most interest to the person formulating models and using optimization (not necessarily to the 
mathematician or software developer).  Fortunately, many excellent resources are available in the 
public domain. 
 

 
Topic 

 
Resource URL Author and  Comments 

Glossary of terms in optimization http://glossary.computing.society.
informs.org 
 

Prepared by Dr. H. Greenberg at 
University of Colorado at Denver 

Linear Algebra Interactive Tool http://www.ifors.ms.unimelb.edu.au/t
utorial/ 
 

Interactive tools to practice 
matrix inversion and solving sets 
of linear equations.  Select "The 
Equator" or "The Inverter" from 
the left-hand menu.  Prepared by 
Dr. Sniedovich at the University 
of Melbourne, Australia. 

Linear Programming http://home.ubalt.edu/ntsbarsh/Bu
siness-stat/opre/partVIII.htm 

A text presentation on linear 
programming by Dr. H. Arsham 
at the University of Baltimore. 

Frequently asked questions about 
LP 

http://www-
unix.mcs.anl.gov/otc/Guide/faq/ 

From NEOS by Northwestern 
University and Argonne National 
Laboratory, USA. 

Linear programming visual solver http://www.cs.stedwards.edu/%7
Ewright/linprog/AnimaLP.html 
 

This site allows you to solve a 
two-dimensional LP and 
automatically plot the result. 

Linear Programming Interactive 
Tool 

http://www.ifors.ms.unimelb.edu.
au/tutorial/ 
 

Interactive tools to practice LP 
Simplex method by tableau.  
Select "The Simplex Place" from 
the left-hand menu; then, select 
"Standard form".  Prepared by Dr. 
Sniedovich at the University of 
Melbourne, Australia. 

Explanation of common 
misunderstandings and "tricky 
points" 

 
http://home.ubalt.edu/ntsbarsh/Bu
siness-stat/opre/partv.htm 
 

"The dark side of LP" by Dr. H. 
Arsham at the University of 
Baltimore. 

LP software http://www.lionhrtpub.com/orms/sur
veys/LP/LP-surveymain.html 

Survey of LP software from 2001 

 

 We thank the developers for their generosity in making their work freely available and 
congratulate them on the quality of their products. 


