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Linear Quadratic Regulator

TAs: Kay Ke, Gilwoo Lee, Matt Schmittle
*Slides based on or adapted from Sanjiban Choudhury, Drew Bagnell

Instructor: Chris Mavrogiannis



Logistics

New Office Hours

Chris: Tuesdays at 1:00pm (CSE1 436) 
Kay: Tuesdays at 4:00pm (CSE1 022) 

 Just for this week, Wednesday at 5:00pm 
Gilwoo: Thursdays at 4:00pm (CSE1 022) 
Schmittle: Fridays at 4:00pm (CSE1 022)



Different control laws
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1. PID control

2. Pure-pursuit control

3. Lyapunov control

4. LQR

5. MPC



Recap of controllers 
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PID / Pure pursuit: Worked well, no provable guarantees

Lyapunov: Provable stability, convergence rate depends on gains
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Control Law Uses model
Stability 

Guarantee
Minimize 

Cost

PID No No No

Pure Pursuit Circular arcs 
Yes - with 

assumptions
No

Lyapunov Non-linear Yes No

Table of controllers
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Is stability enough?

lim
t!1

e(t) = 0



Is stability enough of a guarantee?
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Control action changes abruptly - why is this bad?



Is stability enough of a guarantee?
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What if we just choose really small gains?

Stability guarantees that the error will go to zero … 
but can take arbitrary long time
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Question:  
How do we trade-off both 

driving error to zero  
AND 

keeping control action small?



10

Key Idea:  
Turn the problem into an 

optimization

min
u(t)

Z 1

0

�
w1e(t)

2 + w2u(t)
2dt

�



Optimal Control

xt = x̄t

x̄0

Given:

For t = 0, 1, 2, . . . , T

min
x,u

T∑

k=0

ck(xk, uk)Solve

xk+1 = f(xk, uk), ∀k ∈ {t, t+ 1, . . . , T − 1}s.t.

*Slide adapted from Ruslan Salakhutdinov 11
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Trivia! :) (from http://www.uta.edu/utari/acs/history.htm) 

In 1960 three major papers were published by R. Kalman and coworkers…  
1. One of these [Kalman and Bertram 1960], presented the vital work 
of Lyapunov in the time-domain control of nonlinear systems.  
2. The next [Kalman 1960a] discussed the optimal control of systems, providing 
the design equations for the linear quadratic regulator (LQR).  
3. The third paper [Kalman 1960b] discussed optimal filtering and estimation 
theory, providing the design equations for the discrete Kalman filter.

Special Case: Linear Quadratic Regulator (LQR)

Linear dynamics 
f(x, u) = Ax + Bu

c(x, u) = xTQx + uTRu
Quadratic cost

http://www.uta.edu/utari/acs/history.htm


LQR flying RC helicopters
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(Excellent work by Pieter Abeel et al. https://people.eecs.berkeley.edu/~pabbeel/
autonomous_helicopter.html)

https://people.eecs.berkeley.edu/~pabbeel/autonomous_helicopter.html
https://people.eecs.berkeley.edu/~pabbeel/autonomous_helicopter.html
https://people.eecs.berkeley.edu/~pabbeel/autonomous_helicopter.html


The Linear Quadratic Regulator (LQR)
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Given:

2. A reference state which we are regulating around
xref = 0

Goal: Compute control actions to minimize cumulative cost

J =
T�1X

t=0

xT
t Qxt + uT

t Rutc(xt, ut)
X ≻ 0 ↔ zTXz > 0, ∀z ≠ 0*

3. A quadratic cost function to minimize

c(xt, ut) = (xt � xref )
TQ(xt � xref ) + uT

t Rut

= xT
t Qxt + uT

t Rut *, Q,R ≻ 0

1. Linear dynamical system

xt+1 = Axt +But (assume controllable)



Example: Inverted Pendulum
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Example: Inverted Pendulum
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Equations of motion
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Linearization

(discrete time  
Euler approx)

BA StateState deriv
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Get to (0,0) while minimizing cost
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Observation: Cost-to-go is not uniform
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How do we solve for controls?

Dynamic programming to the rescue!
• efficient, recursive method to solve LQR least-squares problem  
• cost is O(Nn3)

Bellman (Value) function (minimum cost to go starting from     )

J∗(xt) = min
ut

c(xt, ut) + J∗(xt+1)

xt

c(xt, ut) = xTQx + uTRu

J =
T�1X

t=0

xT
t Qxt + uT

t Rutc(xt, ut)

where



Solve backwards from final state
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xref = 0

xT�1

uT�2

xT�2

T-1T-2T-3

xT�3

uT�3



Last time step T-1
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xref = 0

xT�1

T-1

To minimize cost, set control to 0

uT�1 = 0

We have only 1 term in the cost function

J(xT�1, uT�1) = min
uT

xT
T�1QxT�1 + uT

T�1RuT�1
* J∗(xT−1)

J(xT�1, uT�1) = xT
T�1QxT�1

= xT
T�1VT�1xT�1

The cost function is a quadratic

(Value matrix)

J∗(xT−1)



Previous time step T-2
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xref = 0

xT�1

T-1

xT�2

uT�2

xT�2

J(xT�2, T � 2) = min
uT�2

c(xT�2, uT�2) + J(xT�1, T � 1)

= min
uT�2

xT
T�2QxT�2 + uT

T�2RuT�2 + xT
T�1VT�1xT�1

J∗(xT−2) J∗(xT−1)

Solve for control at timestep T-2 
(set derivative wrt         to 0)uT−2

uT�2 = �(R+BTVT�1B)�1BTVT�1AxT�2

KT�2

Observation: Control law is linear!

Kalman Gain :)



Plug control into Value Function
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xref = 0

xT�1

T-1

xT�2xT�2

Value function is quadratic

J(xT�2, T � 2) = xT
T�2(Q+KT

T�2RKT�2 + (A+BKT�2)
TVT�1(A+BKT�2))xT�2

VT�2

J∗(xT−2)



We can derive this relation at ALL time steps
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Kt = �(R+BTVt+1B)�1BTVt+1A

Vt = Q+KT
t RKt + (A+BKt)

TVt+1(A+BKt)

Current 
cost

Action 
cost

Future 
value matrix

Closed 
loop 

dynamics

Closed 
loop 

dynamics



The LQR algorithm
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28 modern adaptive control and reinforcement learning

Observe that in this time step, the value is also quadratic in state.
Therefore, we can derive similar results of linear control and quadratic
value for every time step prior to t = T � 2:

Kt = �(R + BTVt+1B)�1BTVt+1 A

Vt = Q|{z}
current cost

+ KT
t RKt| {z }

cost of action at t

+ (A + BKt)
TVt+1(A + BKt)| {z }

cost to go

J(xt, t) = xt
TVtxt (12)

Algorithm 6 summarizes value iteration for LQRs:

Algorithm OptimalValue(A, B, Q, R, t, T)
if t = T � 1 then

return Q
end
else

Vt+1 = OptimalValue(A, B, Q, R, t + 1, T)
Kt = �(BTVt+1B + R)�1BTVt+1 A

return Vt = Q + KT
t RKt + (A + BKt)TVt+1(A + BKt)

end

Algorithm 6: LQR value Iteration

The complexity of the above algorithm is a function of the horizon T,
the dimensionality of the state space n, and the dimensionality of the
action space k: O(T(n3 + k3)).

Convergence of Value Iteration

Kt and Vt converge if the system is stabilizable, and the solution to
them is the Discrete Algebraic Ricatti Equation (DARE):

V = Q + KT RK + (A + BK)TV(A + BK)

K = �(R + BTVB)�1BTVA (13)

We can view V as a combination of current state, control and future
cost. If the system is not stabilizable, for example, a system of two
motors controlling two inverted pendulums with one of the motors
broken, Kt and Vt no longer converge. However, the value iteration
will still return the policy that can get the system work as well as
possible by stabilizing the good motor.

LQR Tracking

The method described in Algorithm 6 will not work for a pendulum
swing up problem, since the system dynamics at q = 0� (unstable)
and q = 180� (stable) are qualitatively different.

(Courtesy Drew Bagnell)



Contours of value function (T-1)
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Contours of value function (T-2)
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VT�2 = Q+KTRK

+ (A+BK)TVT�1(A+BK)



Contours of value function (many steps)
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How does the value function evolve?

29✓

✓̇

+

-

+-

Easier to be  
on this axis

Harder  
to be on this axis
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What if my time horizon is very very 
very large?



Convergence of value iteration
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Theorem: If the system is stabilizable, then the value V will converge

Discrete Algebraic Ricatti Equation (DARE)

V = Q+KTRK + (A+BK)TV (A+BK)

K = �(R+BTV B)�1BTV A

dare(A,B,Q,R) 

How do I solve? Can iterate over V / use eigen value decomposition [1] 

[1] Arnold, W.F., III and A.J. Laub, "Generalized Eigenproblem Algorithms and Software for Algebraic Riccati Equations," Proc. 
IEEE®, 72 (1984), pp. 1746-1754.

Type into MATLAB:
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So, can this controller 
stabilize inverted pendulum for all 

angles?

No! 
Linearization error is too large when angle is large



Instead, can we use LQR to track reference trajectory?
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Yes

But but we need to linearize about 
nominal trajectory

x(t)

xref (t) uref (t)



LQR for Time-Varying Dynamical Systems 
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xt+1 = Atxt +Btut

c(xt, ut) = xT
t Qtxt + uT

t Rtut

Straight forward to get LQR equations 

Kt = �(Rt +BT
t Vt+1Bt)

�1BT
t Vt+1At

Vt = Qt +KT
t RtKt + (At +BtKt)

TVt+1(At +BtKt)



Linearize about trajectory
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ẋ = f(x, u)

xt+1 = Atxt +Btut + xoff
t

Nominal trajectory 

xoff
t

xt

(x∗
t , u

∗
t ) At =

@f

@x

�����
xref (t)

Bt =
@f

@u

�����
uref (t)u∗
t

x∗
t



Trick to write in Linear System Form
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xt+1 = Atxt +Btut + xoff
t

x̃ =

✓
x
1

◆
Homogeneous coordinates

c(x̃t, ut) = x̃T
t Q̃tx̃t + uT

t Rtut

Similarly you can transform cost function

x̃t+1 =

✓
At xoff

t

0 1

◆
+

✓
Bt

0

◆
utxt+



xt+2

Ãt

B̃t

Q̃t

R̃t

K̃t, Ṽt

xt xt+1

Shape of the value function changes along trajectory
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xref (t) uref (t)



Questions
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1. Can we solve LQR for continuous time dynamics?

Yes! Refer to Continuous Algebraic Ricatti Equations (CARE)

2. Can LQR handle arbitrary costs (not just tracking)?

Yes! We will talk about iterative LQR next class

3. What if I want to penalize control derivatives?

No problem! Add control as part of state space

4. Can we handle noisy dynamics?

Yes! Gaussian noise does not change the answer



Trivia: Duality between control and estimation
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R. Kalman “A new approach to linear filtering and prediction 
problems.” (1960)

II. DUALITY FOR LINEAR SYSTEMS

A. Kalman’s duality
First we recall Kalman’s duality between optimal control

and estimation for continuous-time LQG systems. The sto-
chastic dynamics for the control problem are

dx = (Ax+Bu) dt+ Cdω (6)

The cost accumulates at rate

(x,u) =
1

2
xTQx+

1

2
uTRu (7)

until final time tf . For simplicity we will assume throughout
the paper that there is no final cost, although a final cost can
be added and the results still hold. The optimal cost-to-go
v (x, t) for this problem is known to be quadratic. Its Hessian
V (t) satisfies the continuous-time Riccati equation

−V̇ = Q+ATV + V A− V BR−1BTV (8)

The stochastic dynamics for the dual estimation problem
are the same as (6) but with u = 0, namely

dx = Axdt+ Cdω (9)

The state is now hidden and we have measurement

dy = Hxdt+Ddν (10)

In discrete time we can write y (t) = Hx (t)+ "noise"
because the noise is finite, but here we have the problem
that ν̇ is infinite. Therefore the y (t) defined in (10) is the
time-integral of the instantaneous measurements.
Suppose the prior f (x, 0) over the initial state is Gaussian.

Then the forward filtering density f (x, t) remains Gaussian
for all t. Its covariance matrix Σ (t) satisfies the continuous-
time Riccati equation

Σ̇ = CCT +AΣ+ΣAT −ΣHT
¡
DDT

¢−1
HΣ (11)

Comparing the Riccati equations for the linear-quadratic
regulator (8) and the Kalman-Bucy filter (11), we obtain
Kalman’s duality in continuous time:

linear-quadratic
regulator

Kalman-Bucy
filter

V Σ
A AT

B HT

R DDT

Q CCT

t tf − t

(12)

B. Why Kalman’s duality does not generalize
Kalman’s duality has been known for half a century

and has attracted a lot of attention. If a straightforward
generalization to non-LQG settings was possible it would
have been discovered long ago. Indeed we will now show
that Kalman’s duality, although mathematically sound, is an
artifact of the LQG setting and needs to be revised before
generalizations become possible.

The most obvious problem are the matrix transposes AT

and HT in (12). To see the problem consider replacing the
linear drift Ax in the controlled dynamics (6) with a general
non-linear function a (x). What is the corresponding change
in the estimation dynamics (9)? More precisely, what is the
"dual" function a∗ (x) such that a (x) and a∗ (x) are related
in the same way that Ax and ATx are related? This question
does not appear to have a sensible answer. Generalizing the
relationship between B and HT is equally problematic.
The less obvious but perhaps deeper problem is the

correspondence between V and Σ. This correspondence may
seem related to the exponential transformation (1) between
costs and densities, however it is the wrong relationship. If
(1) were to hold, the Hessian of − log f should coincide
with V . For Gaussian f the Hessian of − log f is Σ−1.
Thus the general exponential transformation (1) implies a
correspondence between V and Σ−1, while in (12) we see a
correspondence between V and Σ.
This analysis not only reveals why Kalman’s duality does

not generalize but also suggests how it should be revised.
We need an estimator which propagates Σ−1 rather than Σ,
i.e. we need an information filter.

C. New duality based on the information filter
The information filter is usually derived in discrete time

and its relationship to the linear-quadratic regulator is not
obvious. However it can also be derived in continuous time,
revealing a new form of estimation-control duality. We use
the fact that, if Σ (t) is a symmetric positive definite matrix,
the time-derivative of its inverse is

d

dt

³
Σ (t)−1

´
= −Σ (t)−1 Σ̇ (t)Σ (t)−1 (13)

Define the inverse covariance matrix S (t) = Σ (t)−1 and
apply (13) to obtain

Ṡ (t) = −S (t) Σ̇ (t)S (t) (14)

Next express Σ̇ in terms of S by replacing Σ with S−1 in
the Riccati equation (11). The result is

Σ̇ = CCT +AS−1 + S−1AT − S−1HT
¡
DDT

¢−1
HS−1

(15)
Substituting (15) into (14), carrying out the multiplications
by S and noting that a number of S and S−1 terms cancel,
we obtain a continuous-time Riccati equation for S:

Ṡ = HT
¡
DDT

¢−1
H −ATS − SA− SCCTS (16)

Comparison of (8) and (16) yields our new duality for
continuous-time LQG problems:

linear-quadratic
regulator

information
filter

V Σ−1

A −A
BR−1BT CCT

Q HT
¡
DDT

¢−1
H

t tf − t

(17)
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(Table from E.Todorov “General duality between optimal control and estimation”, CDC, 2008)

(motion noise)

(measurement)
(dynamics)

(dynamics noise)

(state variance)


