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Motivation

Linear regression is arguably the most popular modeling approach
across every field in the social sciences.

1 Very robust technique
2 Linear regression also provides a basis for more advanced empirical

methods.
3 Transparent and relatively easy to understand technique
4 Useful for both descriptive and structural analysis

We’re going to learn linear regression inside and out from an applied
perspective

focusing on the appropriateness of different assumptions, model
building, and interpretation

This lecture draws heavily from Wooldridge’s undergraduate and
graduate texts, as well as Greene’s graduate text.
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Terminology

The simple linear regression model (a.k.a. - bivariate linear
regression model, 2-variable linear regression model)

y = α + βx + u (1)

y = dependent variable, outcome variable, response variable,
explained variable, predicted variable, regressand

x = independent variable, explanatory variable, control
variable, predictor variable, regressor, covariate

u = error term, disturbance

α = intercept parameter

β = slope parameter
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Details

Recall model is

y = α + βx + u

(y , x , u) are random variables

(y , x) are observable (we can sample observations on them)

u is unobservable =⇒ no stat tests involving u

(α, β) are unobserved but estimable under certain cond’s

Model implies that u captures everything that determines y except
for x

In natural sciences, this often includes frictions, air resistance, etc.

In social sciences, this often includes a lot of stuff!!!
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Assumptions

1 E (u) = 0
As long as we have an intercept, this assumption is innocuous
Imagine E (u) = k 6= 0. We can rewrite u = k + w =⇒

yi = (α + k) + βE (xi ) + w

where E (ω) = 0. Any non-zero mean is absorbed by the intercept.

2 E (u|x) = E (u)
Assuming q ⊥ u (⊥= orthogonal) is not enough! Correlation only
measures linear dependence
Conditional mean independence
Implied by full independence q ⊥⊥ u (⊥⊥= independent)
Implies uncorrelated
Intuition: avg of u does not depend on the value of q
Can combine with zero mean assumption to get zero conditional
mean assumption E (u|q) = E (u) = 0

Michael R. Roberts Linear Regression 5/129



Univariate Regression
Multivariate Regression

Specification Issues
Inference

Basics
Ordinary Least Squares (OLS) Estimates
Units of Measurement and Functional Form
OLS Estimator Properties

Conditional Mean Independence (CMI)

This is the key assumption in most applications

Can we test it?

Run regression.
Take residuals û = y − ŷ & see if avg û at each value of x = 0?
Or, see if residuals are uncorrelated with x
Does these exercise make sense?

Can we think about it?

The assumption says that no matter whether x is low, medium, or
high, the unexplained portion of y is, on average, the same (0).
But, what if agents (firms, etc.) with different values of x are
different along other dimensions that matter for y?
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CMI Example 1: Capital Structure

Consider the regression

Leveragei = α + βProfitabilityi + ui

CMI =⇒ that average u for each level of Profitability is the same
But, unprofitable firms tend to have higher bankruptcy risk and
should have lower leverage than more profitable firms according to
tradeoff theory
Or, unprofitable firms have accumulated fewer profits and may be
forced to debt financing, implying higher leverage according to the
pecking order
These e.g.’s show that the average u is likely to vary with the level
of profitability

1st e.g., low profitable firms will be less levered implies lower avg u
for less profitable firms
2nd e.g., low profitable firms will be more levered implies higher avg
u for less profitable firms
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CMI Example 2: Investment

Consider the regression

Investmenti = α + βqi + ui

CMI =⇒ that average u for each level of q is the same

But, firms with low q may be in distress and invest less

Or, firms with high q may have difficultly raising sufficient capital to
finance their investment

These e.g.’s show that the average u is likely to vary with the level
of q

1st e.g., low q firms will invest less implies higher avg u for low q
firms
2nd e.g., high q firms will invest less implies higher avg u for low q
firms
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Population Regression Function (PRF)

PRF is E (y |x). It is fixed but unknown. For simple linear regression:

PRF = E (y |x) = α + βx (2)

Intuition: for any value of x , distribution of y is centered about
E (y |x)
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OLS Regression Line

We don’t observe PRF, but we can estimate via OLS

yi = α + βxi + ui (3)

for each sample point i
What is ui? It contains all of the factors affecting yi other than xi .
=⇒ ui contains a lot of stuff! Consider complexity of

y is individual food expenditures
y is corporate leverage ratios
y is interest rate spread on a bond

Estimated Regression Line (a.k.a. Sample Regression Function
(SRF))

ŷ = α̂ + β̂x (4)

Plug in an x and out comes an estimate of y , ŷ

Note: Different sample =⇒ different (α̂, β̂)
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OLS Estimates

Estimators:

Slope = β̂ =

∑N
i=1(xi − x̄)(yi − ȳ)∑N

i=1(xi − x̄)2

Intercept = α̂ = ȳ − β̂x̄

Population analogues

Slope =
Cov(x , y)

Var(x)
= Corr(x , y)

SD(y)

SD(x)

Intercept = E (y)− β̂E (x)
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The Picture
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Example: CEO Compensation

Model

salary = α + βROE + y

Sample 209 CEOs in 1990. Salaries in $000s and ROE in % points.

SRF

salary = 963.191 + 18.501ROE

What do the coefficients tell us?
Is the key CMI assumption likely to be satisfied?

Is ROE the only thing that determines salary?
Is the relationship linear? =⇒ estimated change is constant across
salary and ROE

dy/dx = β indep of salary & ROE

Is the relationship constant across CEOs?
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PRF vs. SRF
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Goodness-of-Fit (R2)

R-squared defined as

R2 = SSE/SST = 1− SSR/SST

where

SSE = Sum of Squares Explained =
N∑

i=1

(ŷi − ¯̂y)2

SST = Sum of Squares Total =
N∑

i=1

(yi − ȳ)2

SSR = Sum of Squares Residual =
N∑

i=1

(ûi − ¯̂u)2 =
N∑

i=1

ûi
2

R2 = [Corr(y , ŷ)]2
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Example: CEO Compensation

Model

salary = α + βROE + y

R2 = 0.0132

What does this mean?
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Scaling the Dependent Variable

Consider CEO SRF

salary = 963.191 + 18.501ROE

Change measurement of salary from $000s to $s. What happens?

salary = 963, 191 + 18, 501ROE

More generally, multiplying dependent variable by constant c =⇒
OLS intercept and slope are also multiplied by c

y = α + βx + u

⇐⇒ cy = (cα) + (cβ)x + cu

(Note: variance of error affected as well.)

Scaling =⇒ multiplying every observation by same #

No effect on R2 - invariant to changes in units
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Scaling the Independent Variable

Consider CEO SRF

salary = 963.191 + 18.501ROE

Change measurement of ROE from percentage to decimal (i.e.,
multiply every observation’s ROE by 1/100)

salary = 963.191 + 1, 850.1ROE

More generally, multiplying independent variable by constant
c =⇒ OLS intercept is unchanged but slope is divided by c

y = α + βx + u

⇐⇒ y = α + (β/c)cx + cu

Scaling =⇒ multiplying every observation by same #

No effect on R2 - invariant to changes in units
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Changing Units of Both y and x

Model:

y = α + βx + u

What happens to intercept and slope when we scale y by c and x by
k?

cy = cα + cβx + cu

cy = (cα) + (cβ/k)kx + cu

intercept scaled by c , slope scaled by c/k
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Shifting Both y and x

Model:

y = α + βx + u

What happens to intercept and slope when we add c and k to y and
x?

c + y = c + α + βx + u

c + y = c + α + β(x + k)− βk + u

c + y = (c + α− βk) + β(x + k) + u

Intercept shifted by α− βk, slope unaffected
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Incorporating Nonlinearities

Consider a traditional wage-education regression

wage = α + βeducation + u

This formulation assumes change in wages is constant for all
educational levels

E.g., increasing education from 5 to 6 years leads to the same $
increase in wages as increasing education from 11 to 12, or 15 to
16, etc.

Better assumption is that each year of education leads to a constant
proportionate (i.e., percentage) increase in wages

Approximation of this intuition captured by

log(wage) = α + βeducation + u
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Log Dependent Variables

Percentage change in wage given one unit increase in education is

%∆wage ≈ (100β)∆educ

Percent change in wage is constant for each additional year of
education

=⇒ Change in wage for an extra year of education increases as
education increases.

I.e., increasing return to education (assuming β > 0)

Log wage is linear in education. Wage is nonlinear

log(wage) = α + βeducation + u

=⇒ wage = exp (α + βeducation + u)
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Log Wage Example

Sample of 526 individuals in 1976. Wages measured in $/hour.
Education = years of education.

SRF:

log(wage) = 0.584 + 0.083education, R2 = 0.186

Interpretation:

Each additional year of education leads to an 8.3% increase in wages
(NOT log(wages)!!!).
For someone with no education, their wage is exp(0.584)...this is
meaningless because no one in sample has education=0.

Ignores other nonlinearities. E.g., diploma effects at 12 and 16.
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Constant Elasticity Model

Alter CEO salary model

log(salary) = α + βlog(sales) + u

β is the elasticity of salary w.r.t. sales

SRF

log(salary) = 4.822 + 0.257log(sales), R20.211

Interpretation: For each 1% increase in sales, salary increase by
0.257%

Intercept meaningless...no firm has 0 sales.
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Changing Units in Log-Level Model

What happens to intercept and slope if we ∆ units of dependent
variable when it’s in log form?

log(y) = α + βx + u

⇐⇒ log(c) + log(y) = log(c) + α + βx + u

⇐⇒ log(cy) = (log(c) + α) + βx + u

Intercept shifted by log(c), slope unaffected because slope measures
proportionate change in log-log model
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Changing Units in Level-Log Model

What happens to intercept and slope if we ∆ units of independent
variable when it’s in log form?

y = α + βlog(x) + u

⇐⇒ βlog(c) + y = α + βlog(x) + βlog(c) + u

⇐⇒ y = (α− βlog(c)) + βlog(cx) + u

Slope measures proportionate change
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Changing Units in Log-Log Model

What happens to intercept and slope if we ∆ units of dependent
variable?

log(y) = α + βlog(x) + u

⇐⇒ log(c) + log(y) = log(c) + α + βlog(x) + u

⇐⇒ log(cy) = (α + log(c)) + βlog(x) + u

What happens to intercept and slope if we ∆ units of independent
variable?

log(y) = α + βlog(x) + u

⇐⇒ βlog(c) + log(y) = α + βlog(x) + βlog(c) + u

⇐⇒ log(y) = (α− βlog(c)) + βlog(cx) + u

Michael R. Roberts Linear Regression 27/129



Univariate Regression
Multivariate Regression

Specification Issues
Inference

Basics
Ordinary Least Squares (OLS) Estimates
Units of Measurement and Functional Form
OLS Estimator Properties

Log Functional Forms

Dependent Independent Interpretation
Model Variable Variable of β

Level-level y x dy = βdx
Level-log y log(x) dy = (β/100)%dx
Log-level log(y) x %dy = (100β)dx
Log-log log(y) log(x) %dy = β%dx

E.g., In Log-level model, 100× β = % change in y for a 1 unit
increase in x (100β = semi-elasticity)

E.g., In Log-log model, β = % change in y for a 1% change in x (β
= elasticity)
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Unbiasedness

When is OLS unbiased (i.e., E (β̂) = β)?
1 Model is linear in parameters
2 We have a random sample (e.g., self selection)
3 Sample outcomes on x vary (i.e., no collinearity with intercept)
4 Zero conditional mean of errors (i.e., E (u|x) = 0)

Unbiasedness is a feature of sampling distributions of α̂ and β̂.

For a given sample, we hope α̂ and β̂ are close to true values.
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Variance of OLS Estimators

Homoskedasticity =⇒ Var(u|x) = σ2

Heterokedasticity =⇒ Var(u|x) = f (x) ∈ R+
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Standard Errors

Remember, larger error variance =⇒ larger Var(β) =⇒ bigger
SEs

Intuition: More variation in unobservables affecting y makes it hard
to precisely estimate β

Relatively more variation in x is our friend!!!

More variation in x means lower SEs for β

Likewise, larger samples tend to increase variation in x which also
means lower SEs for β

I.e., we like big samples for identifying β!

Michael R. Roberts Linear Regression 31/129



Univariate Regression
Multivariate Regression

Specification Issues
Inference

Mechanics and Interpretation
OLS Estimator Properties
Further Issues
Binary Independent Variables

Basics

Multiple Linear Regression Model

y = β0 + β1x1 + β2x2 + ...+ βkxk + u

Same notation and terminology as before.

Similar key identifying assumptions
1 No perfect collinearity among covariates
2 E (u|x1, ...xk) = 0 =⇒ at a minimum no correlation and we have

correctly accounted for the functional relationships between y and
(x1, ..., xk)

SRF

y = β̂0 + β̂1x1 + β̂2x2 + ...+ β̂kxk
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Interpretation

Estimated intercept ˆbeta0 is predicted value of y when all x = 0.
Sometimes this makes sense, sometimes it doesn’t.

Estimated slopes (β̂1, ...β̂k) have partial effect interpretations

∆ŷ = β̂1∆x1 + ...+ β̂k∆xk

I.e., given changes in x1 through xk , (∆x1, ...,∆xk), we obtain the
predicted change in y .

When all but one covariate, e.g., x1, is held fixed so
(∆x2, ...,∆xk) = (0, ..., 0) then

∆ŷ = β̂1∆x1

I.e., β̂1 is the coefficient holding all else fixed (ceteris paribus)
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Example: College GPA

SRF of college GPA and high school GPA (4-point scales) and ACT
score for N = 141 university students

ĉolGPA = 1.29 + 0.453hsGPA + 0.0094ACT

What do intercept and slopes tell us?

Consider two students, Fred and Bob, with identical ACT score but
hsGPA of Fred is 1 point higher than that of Bob. Best prediction of
Fred’s colGPA is 0.453 points higher than that of Bob.

SRF without hsGPA

ĉolGPA = 1.29 + 0.0271ACT

What’s different and why? Can we use it to compare 2 people with
same hsGPA?
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All Else Equal

Consider prev example. Holding ACT fixed, another point on high
school GPA is predicted to inc college GPA by 0.452 points.

If we could collect a sample of individuals with the same high school
ACT, we could run a simple regression of college GPA on high
school GPA. This holds all else, ACT, fixed.

Multiple regression mimics this scenario without restricting the
values of any independent variables.
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Changing Multiple Independent Variables Simultaneously

Each β corresponds to the partial effect of its covariate

What if we want to change more than one variable at the same
time?

E.g., What is the effect of increasing the high school GPA by 1
point and the ACT score by 1 points?

∆ĉolGPA = 0.453∆hsGPA + 0.0094∆ACT = 0.4624

E.g., What is the effect of increasing the high school GPA by 2
point and the ACT score by 10 points?

∆ĉolGPA = 0.453∆hsGPA + 0.0094∆ACT

= 0.453× 2 + 0.0094× 10 = 1
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Fitted Values and Residuals

Residual = ûi = yi − ŷi

Properties of residuals and fitted values:
1 sample avg of residuals = 0 =⇒ ˆ̂y = ȳ
2 sample cov between each indep variable and residuals = 0
3 Point of means (ȳ , x̄1, ..., x̄k) lies on regression line.
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Partial Regression

Consider 2 independent variable model

y = β0 + β1x1 + β2x2 + u

What’s the formula for just β̂1?

β̂1 = (r̂ ′1r̂1)−1r̂ ′1y

where r̂1 are the residuals from a regression of x1 on x2.

In other words,
1 regress x1 on x2 and save residuals
2 regress y on residuals
3 coefficient on residuals will be identical to β̂1 in multivariate

regression
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Frisch-Waugh-Lovell I

More generally, consider general linear setup

y = XB + u = X1B1 + X2B2 + u

One can show that

B̂2 = (X ′2M1X2)−1(X ′2M1y) (5)

where

M1 = (I − P1) = I − X1(X ′1X1)−1X ′1)

P1 is the projection matrix that takes a vector (y) and projects it
onto the space spanned by columns of X1

M1 is the orthogonal compliment, projecting a vector onto the space
orthogonal to that spanned by X1
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Frisch-Waugh-Lovell II

What does equation (5) mean?

Since M1 is idempotent

B̂2 = (X ′2M1M1X2)−1(X ′2M1M1y)

= (X̃ ′2X̃2)−1(X̃ ′2ỹ)

So B̂2 can be obtained by a simple multivariate regression of ỹ on X̃2

But ỹ and X̃2 are just the residuals obtained from regressing y and
each component of X2 on the X1 matrix
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Omitted Variables Bias

Assume correct model is:

y = XB + u = X1B1 + X2B2 + u

Assume we incorrectly regress y on just X1. Then

B̂1 = (X ′1X1)−1X ′1y

= (X ′1X1)−1X ′1(X1B1 + X2B2 + u)

= B1 + (X ′1X1)−1X ′1X2B2 + (X ′1X1)−1X ′1u

Take expectations and we get

B̂1 = B1 + (X ′1X1)−1X ′1X2B2

Note (X ′1X1)−1X ′1X2 is the column of slopes in the OLS regression
of each column of X2 on the columns of X1

OLS is biased because of omitted variables and direction is unclear
— depending on multiple partial effects
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Bivariate Model

With two variable setup, inference is easier

y = β0 + β1x1 + β2x2 + u

Assume we incorrectly regress y on just x1. Then

β̂1 = β1 + (x ′1x1)−1x ′1x2β2

= β1 + δβ2

Bias term consists of 2 terms:
1 δ = slope from regression of x2 on x1

2 β2 = slope on x2 from multiple regression of y on (x1, x2)

Direction of bias determined by signs of δ and β2.

Magnitude of bias determined by magnitudes of δ and β2.
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Omitted Variable Bias General Thoughts

Deriving sign of omitted variable bias with multiple regressors in
estimated model is hard. Recall general formula

B̂1 = B1 + (X ′1X1)−1X ′1X2B2

(X ′1X1)−1X ′1X2 is vector of coefficients.

Consider a simpler model

y = β0 + β1x1 + β2x2 + β3x3 + u

where we omit x3

Note that both β̂1 and β̂2 will be biased because of omission unless
both x1 and x2 are uncorrelated with x3.

The omission will infect every coefficient through correlations
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Example: Labor

Consider

log(wage) = β0 + β1education + β2ability + u

If we can’t measure ability, it’s in the error term and we estimate

log(wage) = β0 + β1education + w

What is the likely bias in β̂? recall

β̂1 = β1 + δβ2

where δ is the slope from regression of ability on education.

Ability and education are likely positively correlated =⇒ δ > 0

Ability and wages are likely positively correlated =⇒ β2 > 0

So, bias is likely positive =⇒ β̂1 is too big!
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Goodness of Fit

R2 still equal to squared correlation between y and ŷ

Low R2 doesn’t mean model is wrong

Can have a low R2 yet OLS estimate may be reliable estimates of
ceteris paribus effects of each independent variable

Adjust R2

R2
a = 1− (1− R2)

n − 1

n − k − 1

where k = # of regressors excluding intercept

Adjust R2 corrects for df and it can be < 0
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Unbiasedness

When is OLS unbiased (i.e., E (β̂) = β)?
1 Model is linear in parameters
2 We have a random sample (e.g., self selection)
3 No perfect collinearity
4 Zero conditional mean of errors (i.e., E (u|x) = 0)

Unbiasedness is a feature of sampling distributions of α̂ and β̂.

For a given sample, we hope α̂ and β̂ are close to true values.
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Irrelevant Regressors

What happens when we include a regressor that shouldn’t be in the
model? (overspecified)

No affect on unbiasedness

Can affect the variances of the OLS estimator
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Variance of OLS Estimators

Sampling variance of OLS slope

Var(β̂j) =
σ2∑N

i=1(xij − x̄j)2(1− R2
j )

for j = 1, ..., k , where R2
j is the R2 from regressing xj on all other

independent variables including the intercept and σ2 is the variance
of the regression error term.

Note

Bigger error variance (σ2) =⇒ bigger SEs (Add more variables to
model, change functional form, improve fit!)
More sampling variation in xj =⇒ smaller SEs (Get a larger sample)
Higher collinearity (R2

j ) =⇒ bigger SEs (Get a larger sample)
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Multicollinearity

Problem of small sample size.

No implication for bias or consistency, but can inflate SEs

Consider

y = β0 + β1x1 + β2x2 + β3x3 + u

where x2 and x3 are highly correlated.

Var(β̂2) and Var(β̂3) may be large.

But correlation between x2 and x3 has no direct effect on Var(β̂1)

If x1 is uncorrelated with x2 and x3, then R2
1 = 0 and Var(β̂1) is

unaffected by correlation between x2 and x3

Make sure included variables are not too highly correlated with the
variable of interest

Variance Inflation Factor (VIF) = 1/(1− R2
j ) above 10 is

sometimes cause for concern but this is arbitrary and of limited use
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Data Scaling

No one wants to see a coefficient reported as 0.000000456, or
1,234,534,903,875.

Scale the variables for cosmetic purposes:
1 Will effect coefficients & SEs
2 Won’t affect t-stats or inference

Sometimes useful to convert coefficients into comparable units, e.g.,
SDs.

1 Can standardize y and x ’s (i.e., subtract sample avg. & divide by
sample SD) before running regression.

2 Estimated coefficients =⇒ 1 SD ∆ in y given 1 SD ∆ in x .

Can estimate model on original data, then multiply each coef by
corresponding SD. This marginal effect =⇒ ∆ in y units for a 1
SD ∆ in x
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Log Functional Forms

Consider

log(price) = β0 + β1log(pollution) + β2rooms + u

Interpretation
1 β1 is the elasticity of price w.r.t. pollution. I.e., a 1% change in

pollution generates an 100β1% change in price.
2 β2 is the semi-elasticity of price w.r.t. rooms. I.e., a 1 unit change in

rooms generates an 100β2% change in price.

E.g.,

log(price) = 9.23− 0.718log(pollution) + 0.306rooms + u

=⇒ 1% inc. in pollution =⇒ −0.72% dec. in price

=⇒ 1 unit inc. in rooms =⇒ −30.6% inc. in price
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Log Approximation

Note: percentage change interpretation is only approximate!

Approximation error occurs because as ∆log(y) becomes larger,
approximation %∆y ≈ 100∆log(y) becomes more inaccurate. E.g.,

log(y) = β̂0 + β̂1log(x1) + β̂2x2

Fixing x1 (i.e., ∆x1 = 0) =⇒ ∆log(y) = ∆β̂2x2

Exact % change is

∆log(y) = log(y ′)− logy(y) = β̂2∆x2 = β̂2(x ′2 − x2)

log(y ′/y) = β̂2(x ′2 − x2)

y ′/y = exp(β̂2(x ′2 − x2))[
(y ′ − y)/y

]
% = 100 ·

[
exp(β̂2(x ′2 − x2))− 1

]
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Figure of Log Approximation

Approximate % change y : ∆log(y) = β̂2∆x2

Exact % change y : (∆y/y)% = 100 ·
[
exp(β̂2∆x2)

]
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Usefulness of Logs

Logs lead to coefficients with appealing interpretations

Logs allow us to be ignorant about the units of measurement of
variables appearing in logs since they’re proportionate changes

If y > 0, log can mitigate (eliminate) skew and heteroskedasticity

Logs of y or x can mitigate the influence of outliers by narrowing
range.

“Rules of thumb” of when to take logs:

positive currency amounts,
variable with large integral values (e.g., population, enrollment, etc.)

and when not to take logs

variables measured in years (months),
proportions

If y ∈ [0,∞), can take log(1+y)
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Percentage vs. Percentage Point Change

Proportionate (or Relative) Change

(x1 − x0)/x0 = ∆x/x0

Percentage Change

%∆x = 100(∆x/x0)

Percentage Point Change is raw change in percentages.

E.g., let x = unemployment rate in %
If unemployment goes from 10% to 9%, then

1% percentage point change,
(9-10)/10 = 0.1 proportionate change,
100(9-10)/10 = 10% percentage change,

If you use log of a % on LHS, take care to distinguish between
percentage change and percentage point change.
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Models with Quadratics

Consider

y = β0 + β1x + β2x2 + u

Partial effect of x

∆y = (β1 + 2β2x)∆x =⇒ dy/dx = β1 + 2β2x

=⇒ must pick value of x to evaluate (e.g., x̄)

β̂1 > 0, β̂2 < 0 =⇒ parabolic relation

Turning point = Maximum =
∣∣∣β̂1/(2β̂2)

∣∣∣
Know where the turning point is!. It may lie outside the range of x!
Odd values may imply misspecification or be irrelevant (above)

Extension to higher order straightforward
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Models with Interactions

Consider

y = β0 + β1x1 + β2x2 + β3x1x2 + u

Partial effect of x1

∆y = (β1 + β3x2)∆x1 =⇒ dy/dx1 = β1 + β3x2

Partial effect of x1 = β1 ⇐⇒ x2 = 0. Have to ask if this makes
sense.

If not, plug in sensible value for x2 (e.g., x̄2)

Or, reparameterize the model:

y = α0 + δ1x1 + δ2x2 + β3(x1 − µ1)(x2 − µ2) + u

where (µ1, µ2) is the population mean of (x1, x2)

δ2(δ1) is partial effect of x2(x1) on y at mean value of x1(x2).
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Models with Interactions

Reparameterized model

y = β0 + β1x1 + β2x2 + β3(x1x2 + µ1µ2 − x1µ2 − x2µ1) + u

= (β0 + β3µ1µ2)︸ ︷︷ ︸
α0

+ (β1 + β3µ2)︸ ︷︷ ︸
δ1

x1

+ (β2 + β3µ1)︸ ︷︷ ︸
δ2

x2 + β3x1x2 + u

For estimation purposes, can use sample mean in place of unknown
population mean

Estimating reparameterized model has two benefits:

Provides estimates at average value (δ̂1, δ̂2)
Provides corresponding standard errors
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Predicted Values and SEs I

Predicted value:

ŷ = β̂0 + β̂1x1 + ...+ β̂kxk

But this is just an estimate with a standard error. I.e.,

θ̂ = β̂0 + β̂1c1 + ...+ β̂kck

where (c1, ..., ck) is a point of evaluation

But θ̂ is just a linear combination of OLS parameters

We know how to get the SE of this. E.g., k = 1

Var(θ̂) = Var(β̂0 + β̂1c1)

= Var(β̂0) + c2
1 Var(β̂1) + 2c1Cov(β̂0, β̂1)

Take square root and voila’ ! (Software will do this for you)
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Predicted Values and SEs II

Alternatively, reparameterize the regression. Note

θ̂ = β̂0 + β̂1c1 + ...+ β̂kck =⇒ β̂0 = θ̂ − β̂1c1 − ...− β̂kck

Plug this into the regression

y = β0 + β1x1 + ...+ βkxk + u

to get

y = θ0 + β1(x1 − c1) + ...+ βk(xk − ck) + u

I.e., subtract the value cj from each observation on xj and then run
regression on transformed data.

Look at SE on intercept and that’s the SE of the predicated value of
y at the point (c1, ..., ck)

You can form confidence intervals with this too.

Michael R. Roberts Linear Regression 60/129



Univariate Regression
Multivariate Regression

Specification Issues
Inference

Mechanics and Interpretation
OLS Estimator Properties
Further Issues
Binary Independent Variables

Predicting y with log(y) I

SRF:

l̂og(y) = β̂0 + β̂1x1 + ...+ β̂kxk

Predicted value of y is not exp(l̂og(y))

Recall Jensen’s inequality for convex function, g :

g

(∫
fdµ

)
≤
∫

g ◦ fdµ ⇐⇒ g(E (f )) ≤ E (g(f ))

In our setting, f = log(y), g=exp(). Jensen =⇒

exp{E [log(y)]} ≤ E [exp{log(y)}]

We will underestimate y .
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Predicting y with log(y) II

How can we get a consistent (no unbiased) estimate of y?
If u ⊥⊥ X

E (y |X ) = α0exp(β0 + β1x1 + ...+ βkxk)

where α0 = E (exp(u))
With an estimate of α, we can predict y as

ŷ = α̂0exp(l̂og(y))

which requires exponentiating the predicted value from the log
model and multiplying by α̂0

Can estimate α0 with MOM estimator (consistent but biased
because of Jensen)

α̂0 = n−1
n∑

i=1

exp(ûi )
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Basics

Qualitative information. Examples,
1 Sex of individual (Male, Female)
2 Ownership of an item (Own, don’t own)
3 Employment status (Employed, Unemployed

Code this information using binary or dummy variables. E.g.,

Malei =

{
1 if person i is Male
0 otherwise

Owni =

{
1 if person i owns item
0 otherwise

Empi =

{
1 if person i is employed
0 otherwise

Choice of 0 or 1 is relevant only for interpretation.
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Single Dummy Variable

Consider

wage = β0 + δ0female + β1educ + u

δ0 measures difference in wage between male and female given same
level of education (and error term u)

E (wage|female = 0, educ) = β0 + β1educ

E (wage|female = 1, educ) = β0 + δ + β1educ

=⇒ δ = E (wage|female = 1, educ)− E (wage|female = 0, educ)

Intercept for males = β0, females = δ0 + β0
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Intercept Shift

Intercept shifts, slope is same.
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Wage Example

SRF with n = 526,R2 = 0.364

ŵage = −1.57− 1.81female + 0.571educ + 0.025exper + 0.141tenure

Negative intercept is intercept for men...meaningless because other
variables are never all = 0
Females earn $1.81/hour less than men with the same education,
experience, and tenure.

All else equal is important! Consider SRF with n = 526,R2 = 0.116

ŵage = 7.10− 2.51female

Female coefficient is picking up differences due to omitted variables.
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Log Dependent Variables

Nothing really new, coefficient has % interpretation.

E.g., house price model with N = 88,R2 = 0.649

p̂rice = −1.35 + 0.168log(lotsize) + 0.707log(sqrft)

+ 0.027bdrms + 0.054colonial

Negative intercept is intercept for non-colonial homes...meaningless
because other variables are never all = 0
A colonial style home costs approximately 5.4% more than “otherwise
similar” homes

Remember this is just an approximation. If the percentage change is
large, may want to compare with exact formulation
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Multiple Binary Independent Variables

Consider

̂log(wage) = 0.321 + 0.213marriedMale − 0.198marriedFemale

+ −0.110singleFemale + 0.079education

The omitted category is single male =⇒ intercept is intercept for
base group (all other vars = 0)

Each binary coefficient represent the estimated difference in
intercepts between that group and the base group

E.g., marriedMale =⇒ that married males earn approximately
21.3% more than single males, all else equal

E.g., marriedFemale =⇒ that married females earn approximately
19.8% less than single males, all else equal
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Ordinal Variables

Consider credit ratings: CR ∈ (AAA,AA, ...,C ,D)

If we want to explain bond interest rates with ratings, we could
convert CR to a numeric scale, e.g., AAA = 1,AA = 2, ... and run

IRi = β0 + β1CRi + ui

This assumes a constant linear relation between interest rates and
every rating category.

Moving from AAA to AA produces the same change in interest rates
as moving from BBB to BB.

Could take log interest rate, but is same proportionate change much
better?
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Converting Ordinal Variables to Binary

Or we could create an indicator for each rating category, e.g.,
CRAAA = 1 if CR = AAA, 0 otherwise; CRAA = 1 if CR = AA, 0
otherwise, etc.

Run this regression:

IRi = β0 + β1CRAAA + β2CRAA + ...+ βm−1CRC + ui

remembering to exclude one ratings category (e.g., “D”)

This allows the IR change from each rating category to have a
different magnitude

Each coefficient is the different in IRs between a bond with a certain
credit rating (e.g., “AAA”, “BBB”, etc.) and a bond with a rating
of “D” (the omitted category).
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Interactions Involving Binary Variables I

Recall the regression with four categories based on (1) marriage
status and (2) sex.

̂log(wage) = 0.321 + 0.213marriedMale − 0.198marriedFemale

+ −0.110singleFemale + 0.079education

We can capture the same logic using interactions

̂log(wage) = 0.321− 0.110female + 0.213married

+ −0.301femaile ×married + ...

Note excluded category can be found by setting all dummies = 0

=⇒ excluded category = single (married = 0), male (female = 0)
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Interactions Involving Binary Variables II

Note that the intercepts are all identical to the original regression.

Intercept for married male

̂log(wage) = 0.321− 0.110(0) + 0.213(1)

− 0.301(0)× (1) = 0.534

Intercept for single female

̂log(wage) = 0.321− 0.110(1) + 0.213(0)

− 0.301(1)× (0) = 0.211

And so on.

Note that the slopes will be identical as well.

Michael R. Roberts Linear Regression 72/129



Univariate Regression
Multivariate Regression

Specification Issues
Inference

Mechanics and Interpretation
OLS Estimator Properties
Further Issues
Binary Independent Variables

Example: Wages and Computers

Krueger (1993), N = 13, 379 from 1989 CPS

̂log(wage) = ˆbeta0 + 0.177compwork + 0.070comphome

+ 0.017compwork × comphome + ...

(Intercept not reported)

Base category = people with no computer at work or home

Using a computer at work is associated with a 17.7% higher wage.
(Exact value is 100(exp(0.177) - 1) = 19.4%)

Using a computer at home but not at work is associated with a
7.0% higher wage.

Using a computer at home and work is associated with a
100(0.177+0.070+0.017) = 26.4% (Exact value is
100(exp(0.177+0.070+0.017) - 1) = 30.2%)
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Different Slopes

Dummies only shift intercepts for different groups.

What about slopes? We can interact continuous variables with
dummies to get different slopes for different groups. E.g,

log(wage) = β0 + δ0female + β1educ + δ1educ × female + u

log(wage) = (β0 + δ0female) + (β1 + δ1female)educ + u

Males: Intercept = β0, slope = β1

Females: Intercept = β0 + δ0, slope = β1 + δ1

=⇒ δ0 measures difference in intercepts between males and females

=⇒ δ1 measures difference in slopes (return to education) between
males and females
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Figure: Different Slopes I

log(wage) = (β0 + δ0female) + (β1 + δ1female)educ + u
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Figure: Different Slopes I

log(wage) = (β0 + δ0female) + (β1 + δ1female)educ + u
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Interpretation of Figures

1st figure: intercept and slope for women are less than those for men

=⇒ women earn less than men at all educational levels

2nd figure: intercept for women is less than that for men, but slope
is larger

=⇒ women earn less than men at low educational levels but the gap
narrows as education increases.

=⇒ at some point, woman earn more than men. But, does this point
occur within the range of data?

Point of equality: Set Women eqn = Men eqn

Women: log(wage) = (β0 + δ0) + (β1 + δ1)educ + u

Men: log(wage) = (β0) + β1educ + u

=⇒ e∗ = −δ0/δ1
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Example 1

Consider N = 526,R2 = 0.441

̂log(wage) = 0.389− 0.227female + 0.082educ

− 0.006female × educ + 0.29exper − 0.0006exper2 + ...

Return to education for men = 8.2%, women = 7.6%.

Women earn 22.7% less than men. But statistically insignif...why?
Problem is multicollinearity with interaction term.

Intuition: coefficient on female measure wage differential between
men and women when educ = 0.
Few people have very low levels of educ so unsurprising that we can’t
estimate this coefficient precisely.
More interesting to estimate gender differential at ¯educ , for example.
Just replace female × educ with female × (educ − ¯educ) and rerun
regression. This will only change coefficient on female and its
standard error.
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Example 2

Consider baseball players salaries N = 330,R2 = 0.638

̂log(salary) = 10.34 + 0.0673years + 0.009gamesyr + ...

− −0.198black − 0.190hispan

+ 0.0125black × percBlack + 0.0201hispan × percHisp

Black players in cities with no blacks (percBlack = 0) earn 19.8%
less than otherwise identical whites.

As percBlack inc ( =⇒ percWhite dec since perchisp is fixed),
black salaries increase relative to that for whites. E.g., if
percBalck = 10% =⇒ blacks earn -0.198 + 0.0125(10) = -0.073,
7.3% less than whites in such a city.

When percBlack = 20% =⇒ blacks earn 5.2% more than whites.

Does this =⇒ discrimination against whites in cities with large
black pop? Maybe best black players choose to live in such cities.
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Single Parameter Tests

Any misspecification in the functional form relating dependent
variable to the independent variables will lead to bias.

E.g., assume true model is

y = β0 + β1x1 + β2x2 + β3x2
2 + u

but we omit squared term, x2
2 .

Amount of bias in (β0, β1, β2) depends on size of β3 and correlation
among (x1, x2, x

2
2 )

Incorrect functional form on the LHS will bias results as well (e.g.,
log(y) vs. y)

This is a minor problem in one sense: we have all the sufficient data,
so we can try/test as many different functional forms as we like.

This is different from a situation where we don’t have data for a
relevant variable.
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RESET

Regression Error Sepecification Test (RESET)

Estimate

y = β0 + β1x1 + ...+ βkxk + u

Compute predicted values ŷ

Estimate

y = β0 + β1x1 + ...+ βkxk + δ1ŷ2 + δ2ŷ3 + u

(choice of polynomial is arbitrary.)

H0 : δ1 = δ2 = 0

Use F-test with F ∼ F2,n−k−3
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Tests Against Nonnested Alternatives

What if we wanted to test 2 nonnested models? I.e., we can’t
simply restrict parameters in one model to obtain the other.

E.g.,

y = β0 + β1x1 + β2x2 + u

vs.

y = β0 + β1log(x1) + β2log(x2) + u

E.g.,

y = β0 + β1x1 + β2x2 + u

vs.

y = β0 + β1x1 + β2z + u
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Davidson-MacKinnon Test

Test

Model 1: y = β0 + β1x1 + β2x2 + u

Model 2: y = β0 + β1log(x1) + β2log(x2) + u

If 1st model is correct, then fitted values from 2nd model, (ˆ̂y),
should be insignificant in 1st model
Look at t-stat on θ1 in

y = β0 + β1x1 + β2x2 + θ1 ˆ̂y + u

Significant θ1 =⇒ rejection of 1st model.
Then do reverse, look at t-stat on θ1 in

y = β0 + β1log(x1) + β2log(x2) + θ1ŷ + u

where ŷ are predicted values from 1st model.
Significant θ1 =⇒ rejection of 2nd model.
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Davidson-MacKinnon Test: Comments

Clear winner need not emerge. Both models could be rejected or
neither could be rejected.

In latter case, could use R2 to choose.

Practically speaking, if the effects of key independent variables on y
are not very different, the it doesn’t really matter which model is
used.

Rejecting one model does not imply that the other model is correct.
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Omitted Variables

Consider

log(wage) = β0 + β1educ + β2exper + β3ability + u

We don’t observe or can’t measure ability.

=⇒ coefficients are unbiased.

What can we do?

Find a proxy variable, which is correlated with the unobserved
variable. E.g., IQ.
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Proxy Variables

Consider

y = β0 + β1x1 + β2x2 + β3x∗3 + u

x∗3 is unobserved but we have proxy, x3

x3 should be related to x∗3 :

x∗3 = δ0 + δ1x3 + v3

where v3 is error associated with the proxy’s imperfect
representation of x∗3
Intercept is just there to account for different scales (e.g., ability
may have a different average value than IQ)
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Plug-In Solution to Omitted Variables I

Can we just substitute x3 for x∗3 ? (and run

y = β0 + β1x1 + β2x2 + β3x3 + u

Depends on the assumptions on u and v3.
1 E (u|x1, x2, x

∗
3 ) = 0 (Common assumption). In addition,

E (u|x3) = 0 =⇒ x3 is irrelevant once we control for (x1, x2, x
∗
3 )

(Need this but not controversial given 1st assumption and status of
x3 as a proxy

2 E (v3|x1, x2, x3) = 0. This requires x3 to be a good proxy for x∗3

E (x∗3 |x1, x2, x3) = E (x∗3 |x3) = δ0 + δ1x3

Once we control for x3, x∗3 doesn’t depend on x1 or x2
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Plug-In Solution to Omitted Variables II

Recall true model

y = β0 + β1x1 + β2x2 + β3x∗3 + u

Substitute for x∗3 in terms of proxy

y = (β0 + β3δ0)︸ ︷︷ ︸
α0

+ β1x1 + β2x2 + β3δ3x3 + u + β3v3︸ ︷︷ ︸
e

Assumptions 1 & 2 on prev slide =⇒ E (e|x1, x2, x3) = 0 =⇒ we
can est.

y = α0 + β1x1 + β2x2 + α3x3 + e

Note: we get unbiased (or at least consistent) estimators of
(α0, β1, β2, α3).

(β0, β3) not identified.
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Example 1: Plug-In Solution

In wage example where IQ is a proxy for ability, the 2nd assumption
is

E (ability |educ , exper , IQ) = E (ability |IQ) = δ0 + δ3IQ

This means that the average level of ability only changes with IQ,
not with education or experience.

Is this true? Can’t test but must think about it.
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Example 1: Cont.

If proxy variable doesn’t satisfy the assumptions 1 & 2, we’ll get
biased estimates

Suppose
x∗3 = δ0 + δ1x1 + δ2x2 + δ3x3 + v3

where E (v3|x1, x2, x3) = 0.

Substitute into structural eqn

y = (β0 + β3δ0) + (β1 + β3δ1)x1 + (β2 + β3δ2)x2 + β3δ3x3 + u + β3v3

So when we estimate the regression:

y = α0 + β1x1 + β2x2 + α3x3 + e

we get consistent estimates of (β0 + β3δ0), (β1 + β3δ1),
(β2 + β3δ2), and β3δ3 assuming E (u + β3v3|x1, x2, x3) = 0.

Original parameters are not identified.
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Example 2: Plug-In Solution

Consider q-theory of investment

Inv = β0 + β1q + u

Can’t measure q so use proxy, market-to-book (MB),

q = δ0 + δ1MB + v

Think about identifying assumptions
1 E (u|q) = 0 theory say q is sufficient statistic for inv
2 E (q|MB) = δ0 + δ1MB =⇒ avg level of q changes only with MB

Even if assumption 2 true, we’re not estimating β1 in

Inv = α0 + α1MB + e

We’re estimating (α0, α1) where

Inv = (β0 + β1δ0)︸ ︷︷ ︸
α0

+ β1δ1︸︷︷︸
α1

MB + e
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Using Lagged Dependent Variables as Proxies

Let’s say we have no idea how to proxy for an omitted variable.

One way to address is to use the lagged dependent variable, which
captures inertial effects of all factors that affect y .

This is unlikely to solve the problem, especially if we only have one
cross-section.

But, we can conduct the experiment of comparing to observations
with the same value for the outcome variable last period.

This is imperfect, but it can help when we don’t have panel data.
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Model I

Consider an extension to the basic model

yi = αi + βixi

where αi is an unobserved intercept and the return to education
differs for each person.

This model is unidentified: more parameters (2n) than observations
(n)

But we can hope to identify avg intercept, E (αi ) = α, and avg
slope, E (βi ) = β (a.k.a., Average Partial Effect (APE).

αi = α + ci , βi = β + di

where ci and di are the individual specific deviation from average
effects.

=⇒ E (ci ) = E (di ) = 0
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Model II

Substitute coefficient specification into model

yi = α + βxi + ci + dixi ≡ α + βxi + ui

What we need for unbiasedness is E (ui |xi ) = 0

E (ui |xi ) = E (ci + dixi |xi )

This amounts to requiring
1 E (ci |xi ) = E (ci ) = 0 =⇒ E (αi |xi ) = E (αi )
2 E (di |xi ) = E (di ) = 0 =⇒ E (βi |xi ) = E (βi )

Understand these assumptions!!!! In order for OLS to consistently
estimate the mean slope and intercept, the slopes and intercepts
must be mean independent (at least uncorrelated) of the
explanatory variable.
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What is Measurement Error (ME)?

When we use an imprecise measure of an economic variable in a
regression, our model contains measurement error (ME)

The market-to-book ratio is a noisy measure of “q”
Altman’s Z-score is a noisy measure of the probability of default
Average tax rate is a noisy measure of marginal tax rate
Reported income is noisy measure of actual income

Similar statistical structure to omitted variable-proxy variable
solution but conceptually different

Proxy variable case we need variable that is associated with
unobserved variable (e.g., IQ proxy for ability)
Measurement error case the variable we don’t observe has a
well-defined, quantitative meaning but our recorded measure contains
error
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Measurement Error in Dependent Variable

Let y be observed measure of y∗

y∗ = β0 + β1x1 + ...+ βkxk + u

Measurement error defined as e0 = y − y∗

Estimable model is:

y = β0 + β1x1 + ...+ βkxk + u + e0

If mean of ME 6= 0, intercept is biased so assume mean = 0

If ME independent of X , then OLS is unbiased and consistent and
usual inference valid.

If e0 and u uncorrelated than Var(u + e0) > Var(u) =⇒
measurement error in dependent variable results in larger error
variance and larger coef SEs
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Measurement Error in Log Dependent Variable

When log(y∗) is dependent variable, we assume

log(y) = log(y∗) + e0

This follows from multiplicative ME

y = y∗a0

where

a0 > 0

e0 = log(a0)
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Measurement Error in Independent Variable

Model

y = β0 + β1x∗1 + u

ME defined as e1 = x1 − x∗1
Assume

Mean ME = 0
u ⊥ x∗1 , x1, or E (y |x∗1 , x1) = E (y |x∗1 ) (i.e., x1 doesn’t affect y after
controlling for x∗1 )

What are implications of ME for OLS properties?

Depends crucially on assumptions on e1

Econometrics has focused on 2 assumptions
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Assumption 1: e1 ⊥ x1

1st assumption is ME uncorrelated with observed measure

Since e1 = x1 − x∗1 , this implies e1 ⊥ x∗1
Substitute into regression

y = β0 + β1x1 + (u − β1e1)

We assumed u and e1 have mean 0 and are ⊥ with x1

=⇒ (u − β1e1) is uncorrelatd with x1.

=⇒ OLS with x1 produces consistent estimator of coef’s

=⇒ OLS error variance is σ2
u + β2

1σ
2
e1

ME increases error variance but doesn’t affect any OLS properties
(except coef SEs are bigger)
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Assumption 2: e1 ⊥ x∗1

This is the Classical Errors-in-Variables (CEV) assumption and
comes from representation:

x1 = x∗1 + e1

(Still maintain 0 correlation between u and e1)

Note e1 ⊥ x∗1 =⇒

Cov(x1, e1) = E (x1e1) = E (x∗1 e1) + E (e2
1) = σ2

e1

This covariance causes problems when we use x1 in place of x∗1 since

y = β0 + β1x1 + (u − β1e1) and

Cov(x1, u − β1e1) = −β1σ
2
e1

I.e., indep var is correlatd with error =⇒ bias and inconsistent OLS
estimates
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Assumption 2: e1 ⊥ x∗1 (Cont.)

Amount of inconsistency in OLS

plim(β̂1) = β1 +
Cov(x1, u − β1e1)

Var(x1)

= β1 +
β1σ

2
e1

σ2
x∗1

+ σ2
e1

= β1

(
1−

σ2
e1

σ2
x∗1

+ σ2
e1

)

= β1

(
σ2

x∗1

σ2
x∗1

+ σ2
e1

)
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CEV asymptotic bias

From previous slide:

plim(β̂1) = β1

(
σ2

x∗1

σ2
x∗1

+ σ2
e1

)
Scale factor is always < 1 =⇒ asymptotic bias attenuates
estimated effect (attenuation bias)

If variance of error (σ2
e1

) is small relative to variance of unobserved
factor, then bias is small.

More than 1 explanatory variable and bias is less clear

Correlation between e1 and x1 creates problem. If x1 correlated with
other variables, bias infects everything.

Generally, measurement error in a single variable casues
inconsistency in all estimators. Sizes and even directions of the
biases are not obvious or easily derived.
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Counterexample to CEV Assumption

Consider

colGPA = β0 + β1smoked∗ + β2hsGPA + u

smoked = smoked∗ + e1

where smoked∗ is actual # of times student smoked marijuana and
smoked is reported

For smoked∗ = 0 report is likely to be 0 =⇒ e1 = 0

For smoked∗ > 0 report is likely to be off =⇒ e1 6= 0

=⇒ e1 and smoked∗ are correlated estimated effect (attenuation bias)

I.e., CEV Assumption does not hold

Tough to figure out implications in this scenario

Michael R. Roberts Linear Regression 103/129



Univariate Regression
Multivariate Regression

Specification Issues
Inference

Regression Errors
Heteroskedasticity
Hypothesis Tests

Statistical Properties

At a basic level, regression is just math (linear algebra and
projection methods)

We don’t need statistics to run a regression (i.e., compute
coefficients, standard errors, sums-of-squares, R2, etc.)

What we need statistics for is the interpretation of these quantities
(i.e., for statistical inference).

From the regression equation, the statistical properties of y come
from those of X and u
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What is heteroskedasticity (HSK)?

Non-constant variance, that’s it.

HSK has no effect on bias or consistency properties of OLS
estimators

HSK means OLS estimates are no longer BLUE

HSK means OLS estimates of standard errors are incorrect

We need an HSK-robust estimator of the variance of the coefficients.
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HSK-Robust SEs

Eicker (1967), Huber (1967), and White (1980) suggest:

V̂ar(β̂j) =

∑N
i=1 r̂2

ij û
2
i

SSR2
j

where r̂2
ij is the ith residual from regressing xj on all other

independent variables, and SSRj is the sum of square residuals from
this regression.

Use this in computation of t-stas to get an HSK-robust t-statistic

Why use non-HSK-robust SEs at all?

With small sample sizes robust t-stats can have very different
distributions (non “t”)
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HSK-Robust LM-Statistics

The recipe:
1 Get residuals from restricted model ũ
2 Regress each independent variable excluded under null on all of the

included independent variables; q excluded variables =⇒ (r̃1, ..., r̃q)
3 Compute the products between each vector r̃j and ũ
4 Regression of 1 (a constant “1” for each observation) on all of the

products r̃j ũ without an intercept
5 HSK-robust LM statistic, LM, is N − SSR1, where SSR1 is the sum

of squared residuals from this last regression.
6 LM is asymptotically distributed χ2

q
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Testing for HSK

The model

y = β0 + β1x1 + ...+ βkxk + u

Test H0 : Var(y |x1, ..., xk) = σ2

E (u|x1, ..., xk) = 0 =⇒ this hypothesis is equivalent to
H0 : E (u2|x1, ..., xk) = σ2 (I.e., is u2 related to any explanatory
variables?)

û2 = δ0 + δ1x1 + ...+ δkxk + u

Test null H0 : δ1 = ... = δk = 0

F-test : F =
R2

û2

(1− R2
û2/(n − k − 1)

LM-test : LM = N × R2
û2 (BP-test sort of)
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Weighted Least Squares (WLS)

Pre HSK-robust statistics, we did WLS - more efficient than OLS if
correctly specified variance form

Var(u|X ) = σ2h(X ), h(X ) > 0∀X

E.g., h(X ) = x2
1 or h(x) = exp(x)

WLS just normalizes all of the variables by the square root of the
variance fxn (

√
h(X )) and runs OLS on transformed data.

yi/
√

h(Xi ) = β0/
√

h(Xi ) + β1/(xi1/
√

h(Xi )) + ...

+ βk/(xik/
√

h(Xi )) + ui/
√

h(Xi )

y∗i = β0x∗0 + β1x∗1 + ...+ βkx∗k + u∗

where x∗0 = 1/
√

h(Xi )
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Feasible Generalized Least Squares (FGLS)

WLS is an example of a Generalized Least Squares Estimator

Consider

Var(u|X ) = σ2expδ0 + δx1

We need to estimate variance parameters. Using estimates gives us
FGLS
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Feasible Generalized Least Squares (FGLS) Recipe

Consider variance form:

Var(u|X ) = σ2exp(δ0 + δ1x1 + ...+ δkxk)

FGLS to correct for HSK:
1 Regress y on X and get residuals û
2 Regress log(û2) on X and get fitted values ĝ
3 Estimate by WLS

y = β0 + β1x1 + ...+ βkxk + u

with weights 1/exp(ĝ), or transform each variable (including
intercept) by multiplying by 1/exp(ĝ) and estimate via OLS

FGLS estimate is biased but consistent and more efficient than OLS.
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OLS + Robust SEs vs. WLS

If coefficient estimates are very different across OLS and WLS, it’s
likely E (y |x) is misspecified.

If we get variance form wrong in WLS then
1 WLS estimates are still unbiased and consistent
2 WLS standard errors and test statistics are invalid even in large

samples
3 WLS may not be more efficient than OLS
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Single Parameter Tests

Model

y = β0 + β1x1 + β2x2 + ...+ βkxk + u

Under certain assumptions

t(β̂j) =
β̂j − βj

se(β̂j)
∼ tn−k−1

Under other assumptions, asymptotically t
a∼ N(0, 1)

Intuition: t(β̂j) tells us how far – in standard deviations – our

estimate β̂j is from the hypothesized value (βj)

E.g., H0 : βj = 0 =⇒ t = β̂j/se(β̂j)

E.g., H0 : βj = 4 =⇒ t = (β̂j − 4)/se(β̂j)
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Statistical vs. Economic Significance

These are not the same thing

We can have a statistically insignificant coefficient but it may be
economically large.

Maybe we just have a power problem due to a small sample size, or
little variation in the covariate

We can have a statistically significant coefficient but it may be
economically irrelevant.

Maybe we have a very large sample size, or we have a lot of variation
in the covariate (outliers)

You need to think about both statistical and economic significance
when discussing your results.
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Testing Linear Combinations of Parameters I

Model

y = β0 + β1x1 + β2x2 + ...+ βkxk + u

Are two parameters the same? I.e.,
H0 : β1 = β2 ⇐⇒ (β1 − β2) = 0

The usual statistic can be slightly modified

t =
β̂1 − β̂2

se(β̂1 − β̂2)
∼ tn−k−1

Careful: when computing the SE of difference not to forget
covariance term

se(β̂1 − β̂2) =
(

se(β̂1)2 + se(β̂2)2 − 2Cov(β̂1, β̂2)
)1/2
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Testing Linear Combinations of Parameters II

Instead of dealing with computing the SE of difference, can
reparameterize the regression and just check a t-stat

E.g., define θ = β1 − β2 =⇒ β1 = θ + β2 and

y = β0 + (θ + β2)x1 + β2x2 + ...+ βkxk + u

= β0 + θx1 + β2(x1 + x2) + ...+ βkxk + u

Just run a t-test of new null, H0 : θ = 0 same as previous slide

This strategy always works.
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Testing Multiple Linear Restrictions

Consider H0 : β1 = 0, β2 = 0, β3 = 0 (a.k.a., exclusion
restrictions), H1 : H0nottrue

To test this, we need a joint hypothesis test
One such test is as follows:

1 Estimate the Unrestricted Model

y = β0 + β1x1 + β2x2 + ...+ βkxk + u

2 Estimate the Restricted Model

y = β0 + β4x4 + β5x5 + ...+ βkxk + u

3 Compute F -statistic

F =
SSRR − SSRU)/q

SSRU/(n − k − 1)
∼ Fq,n−k−1

where q = degrees of freedom (df) in numerator = dfR − dfU ,
n − k − 1 = df in denominator = dfU ,
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Relationship Between F and t Statistics

t2
n−k−1 has an F1,n−k−1 distribution.

All coefficients being individually statistically significant (significant
t-stats) does not imply that they are jointly significant

All coefficients being individually statistically insignificant
(insignificant t-stats) does not imply that they are jointly
insignificant

R2 form of the F-stat:

F =
R2

U − R2
R)/q

(1− R2
U)/(n − k − 1)

(Equivalent to previous formula.)

“Regression F-Stat” tests H0 : β1 = β2 = ... = βk = 0
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Testing General Linear Restrictions I

Can write any set of linear restrictions as follows

H0 : Rβ − q = 0

H1 : Rβ − q 6= 0

dim(R) = # of restrictions × # of parameters. E.g.,

H0 : βj = 0 =⇒ R = [0, 0, ..., 1, 0, ..., 0], q = 0

H0 : βj = βk =⇒ R = [0, 0, 1, ...,−1, 0, ..., 0], q = 0

H0 : β1 + β2 + β3 = 1 =⇒ R = [1, 1, 1, 0, ..., 0], q = 1

H0 : β1 = 0, β2 = 0, β3 = 0 =⇒

R =

 1 0 0 0 ... 0
0 1 0 0 ... 0
0 0 1 0 ... 0

 , q =

 0
0
0


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Testing General Linear Restrictions II

Note that under the null hypothesis

E (Rβ̂ − q|X ) = Rβ0− q = 0

Var(Rβ̂ − q|X ) = RVar(β̂|X )R ′ = σ2R(X ′X )−1R ′

Wald criterion:

W = (Rβ̂ − q)′[σ2R(X ′X )−1R ′]−1(Rβ̂ − q) ∼ χ2
J

where J is the degrees of freedom under the null (i.e., the # of
restrictions, the # of rows in R)

Must estimate σ2, this changes distribution

F = (Rβ̂ − q)′[σ̂2R(X ′X )−1R ′]−1(Rβ̂ − q) ∼ FJ,n−k−1

where the n − k − 1 are df of the denominator (σ2)
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Differences in Regression Function Across Groups I

Consider

cumgpa = β0 + β1sat + β2hsperc + β3tothrs + u

where sat = SAT score, hsperc = high school rank percentile,
tothrs = total hours of college courses.

Does this model describe the college GPA for male and females?

Can allow intercept and slopes to vary by sex as follows:

cumgpa = β0 + δ0female + β1sat + δ1sat × female

+ β2hsperc + δ2hsperc × female

+ β3tothrs + δ3tothrs × female + u

H0 : δ0 = δ1 = δ2 = δ3 = 0, H1 : At least one δ is non-zero.
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Differences in Regression Function Across Groups II

We can estimate the interaction model and compute the
corresponding F-test using the statistic from above

F = (Rβ̂ − q)′[σ̂2R(X ′X )−1R ′]−1(Rβ̂ − q) ∼ FJ,n−k−1

We can estimate the restricted (assume female = 0) and
unrestricted versions of the model. Compute F-statistic as (will be
identical)

F =
SSRR − SSRU

SSRU

n − 2(J)

J

where SSRR = sum of squares of restricted model, SSRU = sum of
squares of unrestricted model, n = total # of obs, k = total # of
explanatory variables excluding intercept, J = k + 1 total # of
restrictions (we restrict all k slopes and intercept).

H0 : δ0 = δ1 = δ2 = δ3 = 0, H1 : At least one δ is non-zero.
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Chow Test

What if we have a lot of explanatory variables? Unrestricted model
will have a lot of terms.

Imagine we have two groups, g = 1, 2

Test whether intercept and slopes are same across two groups.
Model is:

y = βg ,0 + βg ,1x1 + ...+ βg ,kxk + u

H0 : β1,0 = β2,0, β1,1 = β2,1, ..., β1,k = β2,k

Null =⇒ k + 1 restrictions (slopes + intercept). E.g., in GPA
example, k = 3
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Chow Test Recipe

Chow test form of F-stat from above:

F =
SSRP − (SSR1 + SSR2)

SSR1 + SSR2

n − 2(k + 1)

k + 1

1 Estimate pooled (i.e., restricted) model with no interactions and save
SSRP

2 Estimate model on group 1 and save SSR1

3 Estimate model on group 2 and save SSR2

4 Plug into F-stat formula.

Often used to detect a structural break across time periods.

Requires homoskedasticity.
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Asymptotic Distribution of OLS Estimates

If
1 u are i.i.d. with mean 0 an dvariance σ2, and
2 x meet Grenander conditions (look it up), then

β̂
a→ N

[
β,
σ2

n
Q−1

]
where Q = plim(X ′X/n)

Basically, under fairly weak conditions, OLS estimates are
asymptotically normal and centered around the true parameter
values.
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The Delta Method

How do we compute variance of nonlinear function of random
variables? Use a Taylor expansion around the expectation

If
√

n(zn − µ)
d→ N(0, σ2) and g(zn) is continuous function not

involving n, then
√

n(g(zn)− g(µ))
d→ N(0, g ′(µ)2σ2)

If Zn is K × 1 sequence of vectgor-valued random variables:
√

n(Zn −M)
d→ N(0,Σ) and C (Zn) is a set of J continuous

functions not involving n, then
√

n(C (Zn)− C (M))
d→ N(0,G (M)ΣG (M)′)

where G (M) is the J × K matrix ∂C (M)/∂M ′. The jth row of
G (M) is the vector of partial derivatives of the jth fxn with respect
to M ′
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The Delta Method in Action

Consdier two estimators β̂1 and β̂2 of β1 and β2:[
β̂1

β̂2

]
a∼ N

[(
0
0

)
,Σ

]
where Σ =

(
σ11 σ12

σ21 σ22

)
What is asymptotic distribution of f (β̂1, β̂2) = β̂1/(1− β̂2)

∂f

∂β1
=

1

1− β2

∂f

∂β2
=

β1

(1− β2)2

AVar f (β̂1, β̂2) =

(
1

1− β2

β1

(1− β2)2

)
Σ

(
1

1−β2
β1

(1−β2)2

)
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Reporting Regression Results

A table of OLS regression output should show the following:
1 the dependent variable,
2 the independent variables (or a subsample and description of the

other variables),
3 the corresponding estimated coefficients,
4 the corresponding standard errors (or t-stats),
5 stars by the coefficient to indicate the level of statistical significance,

if any (1 star for 5%, 2 stars for 1%),
6 the adjusted R2, and
7 the number of observations used in the regression.

In the body of paper, focus discussion on variable(s) of interest:
sign, magnitude, statistical & economic significance, economic
interpretation.

Discuss “other” coefficients if they are “strange” (e.g., wrong sign,
huge magnitude, etc.)
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Example: Reporting Regression Results

Book Leverage
(1) (2) (3) (4)

Industry Avg. Leverage 0.067** 0.053** 0.018**
( 35.179) ( 25.531) ( 7.111)

Log(Sales) 0.022** 0.017** 0.018**
( 11.861) ( 8.996) ( 9.036)

Market-to-Book -0.024** -0.017** -0.018**
( -17.156) ( -12.175) ( -12.479)

EBITDA / Assets -0.035** -0.035** -0.036**
( -20.664) ( -20.672) ( -20.955)

Net PPE / Assets 0.049** 0.031** 0.045**
( 24.729) ( 15.607) ( 16.484)

Firm Fixed Effects No No No No
Industry Fixed Effects No No No Yes
Year Fixed Effects Yes Yes Yes Yes

Obs 77,328 78,189 77,328 77,328
Adj. R2 0.118 0.113 0.166 0.187
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