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 C H A P T E R   5 
 
 
 
 
Linear Transformations 
and Matrices 
 
 
 
 
In Section 3.1 we defined matrices by systems of linear equations, and in 
Section 3.6 we showed that the set of all matrices over a field F may be 
endowed with certain algebraic properties such as addition and multiplication. 
In this chapter we present another approach to defining matrices, and we will 
see that it also leads to the same algebraic behavior as well as yielding impor-
tant new properties. 
 
 
5.1  LINEAR TRANSFORMATIONS 
 
Recall that vector space homomorphisms were defined in Section 2.2. We 
now repeat that definition using some new terminology. In particular, a map-
ping T: U ‘ V of two vector spaces over the same field F is called a linear 
transformation if it has the following properties for all x, y ∞ U and a ∞ F: 
 
 (a)  T(x + y) = T(x) + T(y) 
 (b)  T(ax) = aT(x)  . 
 
Letting a = 0 and -1 shows 

T(0)  =  0 
and 



LINEAR TRANSFORMATIONS AND MATRICES 216 

   T(-x)  =  -T(x)  . 
 

We also see that 
 

  T(x - y)  =  T(x + (-y))  =  T(x) + T(-y)  =  T(x) - T(y)  . 
 
It should also be clear that by induction we have, for any finite sum, 
 

T(Íaixi)  =  ÍT(aáxá)  =  ÍaáT(xá) 
 
for any vectors xá ∞ V and scalars aá ∞ F. 
 
Example 5.1   Let T: ®3 ‘ ®2 be the “projection” mapping defined for any 
u = (x, y, z) ∞ ®3 by 

  T(u)  =  T(x, y, z)  =  (x, y, 0) . 
 
Then if v = (xæ, yæ, zæ) we have 
 

 

T (u + v) = T (x + !x ,!y+ !y ,!z + !z )

= (x + !x ,!y+ !y ,!0)

= (x,!y,!0)+ ( !x ,! !y ,!0)

= T (u)+T (v)

 

and 
  T(au)  =  T(ax, ay, az)  =  (ax, ay, 0)  =  a(x, y, 0)  =  aT(u)  . 

 
Hence T is a linear transformation.  ∆ 
 
Example 5.2   Let P ∞ Mn(F) be a fixed invertible matrix. We define a map-
ping S: Mn(F) ‘ Mn(F) by S(A) = PîAP. It is easy to see that this defines a 
linear transformation since 
 

     S(åA + B)  =  Pî(åA + B)P  =  åPîAP + PîBP  =  åS(A) + S(B)  .  ∆ 
 
Example 5.3   Let V be a real inner product space, and let W be any subspace 
of V. By Theorem 2.22 we have V = W • WÊ, and hence by Theorem 2.12, 
any v ∞ V has a unique decomposition v = x + y where x ∞ W and y ∞ WÊ. 
Now define the mapping T: V ‘ W by T(v) = x. Then 
 

T(vè + vì)  =  xè + xì  =  T(vè) + T(vì) 
and 

T(av)  =  ax  =  aT(v) 
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so that T is a linear transformation. This mapping is called the orthogonal 
projection of V onto W.  ∆ 
 
 Let T: V ‘ W be a linear transformation, and let {eá} be a basis for V. 
Then for any x ∞ V we have x = Íxáeá, and hence 
 

  T(x)  =  T(Íxáeá)  =  ÍxáT(eá)  . 
 
Therefore, if we know all of the T(eá), then we know T(x) for any x ∞ V. In 
other words, a linear transformation is determined by specifying its values on 
a basis. Our first theorem formalizes this fundamental observation. 
 
Theorem 5.1   Let U and V be finite-dimensional vector spaces over F, and 
let {eè, . . . , eñ} be a basis for U. If vè, . . . , vñ are any n arbitrary vectors in V, 
then there exists a unique linear transformation T: U ‘ V such that T(eá) = vá 
for each i = 1, . . . , n. 
 
Proof   For any x ∞ U we have x = Í iˆ= 1 xáeá for some unique set of scalars xá 
(Theorem 2.4, Corollary 2). We define the mapping T by 

T (x) = x
i
v
i

i=1

n

!  

for any x ∞ U. Since the xá are unique, this mapping is well-defined (see 
Exercise 5.1.1). Noting that for any i = 1, . . . , n we have eá = Íé ∂áéeé, it fol-
lows that 

  T (ei ) = !ijv j
j=1

n

" = vi !!.  

We show that T so defined is a linear transformation. 
 If x = Íxáeá and y = Íyáeá, then x + y = Í(xá + yá)eá, and hence 
 

  T(x + y)  =  Í(xá + yá)vá  =  Íxává + Íyává  =  T(x) + T(y)  . 
 
Also, if c ∞ F then cx = Í(cxá)eá, and thus 
 

T(cx)  =  Í(cxá)vá  =  cÍxává  =  cT(u) 
 
which shows that T is indeed a linear transformation. 
 Now suppose that Tæ: U ‘ V is any other linear transformation defined by 
Tæ(eá) = vá. Then for any x ∞ U we have 
 

Tæ(x)  =  Tæ(Íxáeá)  =  ÍxáTæ(eá)  = Íxává  =  ÍxáT(eá)  =  T(Íxáeá)  =  T(x) 
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and hence Tæ(x) = T(x) for all x ∞ U. This means that Tæ = T which thus 
proves uniqueness.  ˙ 
 
Example 5.4   Let T ∞ L(Fm, Fn) be a linear transformation from Fm to Fn, 
and let {eè, . . .   , em} be the standard basis for Fm. We may uniquely define 
T by specifying any m vectors vè, . . . , vm in Fn. In other words, we define T 
by the requirement T(eá) = vá  for each i = 1, . . . , m. Since T is linear, for any 
x ∞ Fm we have x = Í i ˜=1 xáeá and hence 

T (x) = x
i
v
i
!!.

i=1

m

!  

Now define the matrix A = (aáé) ∞ Mnxm(F) with column vectors given by 
Ai = vá ∞ Fn. In other words (remember these are columns), 
 

Ai  =  (aèá, . . . , añá)  =  (vèá, . . . , vñá)  =  vá 
 
where vá = Íj ˆ= 1 févéá and {fè, . . . , fñ} is the standard basis for Fn. Writing out 
T(x) we have 
 

 

T (x) = x
i
v
i

i=1

m

! = x1

v11

!

v
n1

"

#

$
$
$

%

&

'
'
'
+!"!+x

m

v1m

!

v
nm

"

#

$
$
$

%

&

'
'
'
=

v11x1 +!"!+v1mxm

!

v
n1x1 +!"!+vnmxm

"

#

$
$
$

%

&

'
'
'

 

 
and therefore, in terms of the matrix A, our transformation takes the form 
 

 

T (x) =!

v11 ! v1m

" "

v
n1 ! v

nm

!

"

#
#
#

$

%

&
&
&

x1

"

x
m

!

"

#
#
#

$

%

&
&
&
!!.  

 
We have therefore constructed an explicit matrix representation of the 
transformation T. We shall have much more to say about such matrix repre-
sentations shortly.  ∆ 
 
 Given vector spaces U and V, we claim that the set of all linear transfor-
mations from U to V can itself be made into a vector space. To accomplish 
this we proceed as follows. If U and V are vector spaces over F   and f, g: 
U ‘ V are mappings, we naturally define 
 

(f + g)(x)  =  f(x) + g(x) 
and 
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(cf )(x)  =  cf(x) 
 
for x ∞ U and c ∞ F. In addition, if h: V ‘ W (where W is another vector 
space over F), then we may define the composite mapping h ı g: U ‘ W in 
the usual way by 

  (h ı g)(x)  =  h(g(x))  . 
 
Theorem 5.2   Let U, V and W be vector spaces over F, let c ∞ F be any 
scalar, and let f, g: U ‘ V and h: V ‘ W be linear transformations. Then the 
mappings f + g, cf, and h ı g are all linear transformations. 
 
Proof   First, we see that for x, y ∞ U and c ∞ F we have 
 

( f + g)(x + y) = f (x + y)+ g(x + y)

= f (x)+ f (y)+ g(x)+ g(y)

= ( f + g)(x)+ ( f + g)(y)

 

and 
 

( f + g)(cx) = f (cx)+ g(cx) = cf (x)+ cg(x) = c[ f (x)+ g(x)] = c( f + g)(x)  
 
and hence f + g is a linear transformation. The proof that cf is a linear 
transformation is left to the reader (Exercise 5.1.3). Finally, we see that 
 

 

(h ! g)(x + y) = h(g(x + y)) = h(g(x)+ g(y)) = h(g(x))+ h(g(y))

= (h ! g)(x)+ (h ! g)(y)
 

 
and  

 
(h ! g)(cx) = h(g(cx)) = h(cg(x)) = ch(g(x)) = c(h ! g)(x)  

 
so that h ı g is also a linear transformation.  ˙ 
 
 We define the zero mapping 0: U ‘ V by 0x = 0 for all x ∞ U. Since 
 

0(x + y)  =  0  =  0x + 0y 
and 

0(cx)  =  0  =  c(0x) 
 
it follows that the zero mapping is a linear transformation. Next, given a map-
ping f: U ‘ V, we define its negative -f: U ‘ V by (-f )(x) = -f(x) for all 
x ∞ U. If f is a linear transformation, then -f is also linear because cf is linear 
for any c ∞ F and -f = (-1)f (by Theorem 2.1(c)). Lastly, we note that 
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[ f + (! f )](x) = f (x)+ (! f )(x) = f (x)+ [! f (x)] = f (x)+ f (!x) = f (x ! x)

= f (0) = 0
 

 
for all x ∞ U so that f + (-f ) = (-f ) + f = 0 for all linear transformations f. 
 With all of this algebra out of the way, we are now in a position to easily 
prove our claim. 
 
Theorem 5.3   Let U and V be vector spaces over F. Then the set of all linear 
transformations of U to V with addition and scalar multiplication defined as 
above is a linear vector space over F. 
 
Proof   We leave it to the reader to show that the set of all such linear transfor-
mations obeys the properties (V1) - (V8) given in Section 2.1 (see Exercise 
5.1.4).  ˙ 
 
 We denote the vector space defined in Theorem 5.3 by L(U, V). (Some 
authors denote this space by Hom(U, V) since a linear transformation is just a 
vector space homomorphism). The space L(U, V) is often called the space of 
linear transformations (or mappings). In the particular case that U and V 
are finite-dimensional, we have the following important result. 
 
Theorem 5.4   Let dim U = m and dim V = n. Then 
 

  dim L(U, V)  =  (dim U)(dim V)  =  mn  . 
 
Proof   We prove the theorem by exhibiting a basis for L(U, V) that contains 
mn elements. Let {eè, . . . , em} be a basis for U, and let { eõè, . . . , eõñ} be a 
basis for V. Define the mn linear transformations Eij ∞ L(U, V) by  
 

Eij (eÉ)  =  ∂ik eõé 
 
where i, k = 1, . . . , m and j = 1, . . . , n. Theorem 5.1 guarantees that the map-
pings Eij are unique. To show that {Eij} is a basis, we must show that it is 
linearly independent and spans L(U, V). 
 If 

a ji
j=1

n

! Ei
j = 0

i=1

m

!  

for some set of scalars aji, then for any eÉ we have 
 

  0  =  Íi, jaji Eij (eÉ)  =  Íi, jaji ∂ik eõé  =  Íé ajk eõé  . 
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But the eõé are a basis and hence linearly independent, and thus we must have 
ajk = 0 for every j = 1, . . . , n and k = 1, . . . , m. This shows that the Eij are 
linearly independent. 
 Now suppose f ∞ L(U, V) and let x ∞ U. Then x = Íáxieá and 
 

   f(x)  =  f(Íáxi eá)  =  Íáxi f(eá)  . 
 
Since f(eá) ∞ V, we must have f(eá) = Íé cji eõé for some set of scalars cji, and 
hence  

   f(eá)  =  Íé cji eõé  =  Íj, k cjk ∂ki eõé  =  Íj,k cjk Ekj (eá)  . 
 
But this means that f = Íj, k cjk Ekj (Theorem 5.1), and therefore {Ekj} spans 
L(U, V).  ˙ 
 
 Suppose we have a linear mapping ƒ: V ‘F of a vector space V to the 
field of scalars. By definition, this means that 
 

ƒ(ax + by)  =  aƒ(x) + bƒ(y) 
 
for every x, y ∞ V and a, b ∞ F. The mapping ƒ is called a linear functional 
on V. 
 
Example 5.5  Consider the space Mn(F) of n-square matrices over F. Since 
the trace of any A = (aáé) ∞ Mn(F) is defined by 

Tr A = a
ii

i=1

n

!  

(see Exercise 3.6.7), it is easy to show that Tr defines a linear functional on 
Mn(F) (Exercise 5.1.5).  ∆ 
 
Example 5.6  Let C[a, b] denote the space of all real-valued continuous func-
tions defined on the interval [a, b] (see Exercise 2.1.6). We may define a 
linear functional L on C[a, b] by 

L( f ) = f (x)!dx
a

b

!  

for every f ∞ C[a, b]. It is also left to the reader (Exercise 5.1.5) to show that 
this does indeed define a linear functional on C[a, b].  ∆ 
 
 Let V be a vector space over F. Since F is also a vector space over itself, 
we may consider the space L(V, F). This vector space is the set of all linear 
functionals on V, and is called the dual space of V (or the space of linear 
functionals on V). The dual space is generally denoted by V*. From the proof 



LINEAR TRANSFORMATIONS AND MATRICES 222 

of Theorem 5.4, we see that if {eá} is a basis for V, then V* has a unique basis 
{øj} defined by 

  øj(eá)  =  ∂já   . 
 
The basis {øj} is referred to as the dual basis to the basis {eá}. We also see 
that Theorem 5.4 shows that dim V* = dim V. 
 (Let us point out that we make no real distinction between subscripts and 
superscripts. For our purposes, we use whichever is more convenient from a 
notational standpoint. However, in tensor analysis and differential geometry, 
subscripts and superscripts are used precisely to distinguish between a vector 
space and its dual. We shall follow this convention in Chapter 11.) 
 
Example 5.7   Consider the space V = Fn of all n-tuples of scalars. If we write 
any x ∞ V as a column vector, then V* is just the space of row vectors. This is 
because if ƒ ∞ V* we have 
 

ƒ(x)  =  ƒ(Íxáeá)  =  Íxáƒ(eá) 
 
where the eá are the standard (column) basis vectors for V = Fn. Thus, since 
ƒ(eá) ∞ F, we see that every ƒ(x) is the product of some scalar ƒ(eá) times the 
scalar xá, summed over i = 1, . . . , n. If we write ƒ(eá) = aá, it then follows that 
we may write 

  

 

!(x) = !(x1,!…!,!xn ) = (a1,!…!,!an )

x1

!

x
n

"

#

$
$
$

%

&

'
'
'
 (*) 

 
or simply ƒ(x) = Íaáxá. This expression is in fact the origin of the term “linear 
form.” 
 Since any row vector in Fn can be expressed in terms of the basis vectors 
ø1 = (1, 0, . . . , 0), . . . , øn = (0, 0, . . . , 1), we see from (*) that the øj do 
indeed form the basis dual to {eá} since they clearly have the property that 
øj(eá) = ∂já . In other words, the row vector øj is just the transpose of the cor-
responding column vector eé.  ∆ 
 
 Since U* is a vector space, the reader may wonder whether or not we may 
form the space U** = (U*)*. The answer is “yes,” and the space U** is called 
the double dual (or second dual) of U. In fact, for finite-dimensional vector 
spaces, it is essentially true that U** = U (in the sense that U and U** are 
isomorphic). However, we prefer to postpone our discussion of these matters 
until a later chapter when we can treat all of this material in the detail that it 
warrants. 
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Exercises  
 
1. Verify that the mapping T of Theorem 5.1 is well-defined. 
 
2. Repeat Example 5.4, except now let the matrix A = (aáé) have row vectors 

Aá = vá ∞ Fn. What is the matrix representation of the operation T(x)? 
 
3. Show that cf is a linear transformation in the proof of Theorem 5.2. 
 
4. Prove Theorem 5.3. 
 
5. (a)  Show that the function Tr defines a linear functional on Mn(F) (see 

Example 5.5). 
 (b)  Show that the mapping L defined in Example 5.6 defines a linear 

functional. 
 
6. Explain whether or not each of the following mappings f is linear: 
 (a) f: ®2 ‘ ® defined by f(x, y) = xy. 
 (b) f: ®2 ‘ ® defined by f(x, y, z) = 2x - 3y + 4z. 
 (c) f: ®2 ‘ ®3 defined by f(x, y) = (x + 1, 2y, x + y). 
 (d) f: ®3 ‘ ®2 defined by f(x, y, z) = (\x\, 0). 
 (e) f: ®2 ‘ ®2 defined by f(x, y) = (x + y, x). 
 (f ) f: ®3 ‘ ®3 defined by f(x, y, z) = (1, -x, y + z). 
 (g) f: ®2 ‘ ®2 defined by f(x, y) = (sin x, y). 
 (h) f: ®2 ‘ ® defined by f(x, y) = \x - y\. 
 
7. Let T: U ‘ V be a bijective linear transformation. Define Tî and show 

that it is also a linear transformation. 
 
8. Let T: U ‘ V be a linear transformation, and suppose that we have the 

set of vectors uè, . . . , uñ ∞ U with the property that T(uè), . . . , T(uñ) ∞ V 
is linearly independent. Show that {uè, . . . , uñ} is linearly independent. 

 
9. Let B ∞ Mn(F) be arbitrary. Show that the mapping T: Mn(F) ‘ Mn(F) 

defined by T(A) = [A, B]+ = AB + BA is linear. Is the same true for the 
mapping Tæ(A) = [A, B] = AB - BA? 
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10. Let T: F 2 ‘F 2 be the linear transformation defined by the system 
 

y
1
= !3x

1
+ x

2

y
2
=!!!!x

1
! x

2

 

 
 and let S be the linear transformation defined by the system 
 

y
1
= x

1
+ x

2

y
2
= x

1

 

 
 Find a system of equations that defines each of the following linear trans-

formations: 
 (a)  2T  (b)  T - S  (c)  T2 
 (d)  TS  (e)  ST   (f )  T2 + 2S 
 
11. Does there exist a linear transformation T: ®3 ‘ ®2 with the property 

that T(1, -1, 1) = (1, 0) and T(1, 1, 1) = (0, 1)? 
 
12. Suppose uè = (1, -1), uì = (2, -1), u3 = (-3, 2) and vè = (1, 0), vì = (0, 1), 

v3 = (1, 1). Does there exist a linear transformation T: ®2 ‘ ®2 with the 
property that Tuá = vá for each i = 1, 2, and 3? 

 
13. Find T(x, y, z) if T: ®3 ‘ ® is defined by T(1, 1, 1) = 3, T(0, 1, -2) = 1 

and T(0, 0, 1) = -2. 
 
14. Let V be the set of all complex numbers considered as a vector space 

over the real field. Find a mapping T: V ‘ V that is a linear transforma-
tion on V, but is not a linear transformation on the space ç1 (i.e., the set 
of complex numbers considered as a complex vector space). 

 
15. If V is finite-dimensional and xè, xì ∞ V with x1 ≠ x2 , prove there exists 

a linear functional f ∞ V* such that f(xè) ≠ f(xì). 
 
 
5.2   FURTHER PROPERTIES OF LINEAR TRANSFORMATIONS 
 
Suppose T ∞ L(U, V) where U and V are finite-dimensional over F. We 
define the image of T to be the set 
 

Im T  =  {T(x) ∞ V: x ∞ U} 
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and the kernel of T to be the set 
 

  Ker T  =  {x ∞ U: T(x) = 0}  . 
 
(Many authors call Im T the range of T, but we use this term to mean the 
space V in which T takes its values.)  Since T(0) = 0 ∞ V, we see that 0 ∞ 
Im T, and hence Im T ≠ Å. Now suppose xæ, yæ ∞ Im T. Then there exist x, 
y ∞ U such that T(x) = xæ and T(y) = yæ. Then for any a, b ∞ F we have 
 

axæ + byæ  =  aT(x) + bT(y)  =  T(ax + by)  ∞  Im T 
 
(since ax + by ∞ U), and thus Im T is a subspace of V. Similarly, we see that 
0 ∞ Ker T, and if x, y ∞ Ker T then 
 

T(ax + by)  =  aT(x) + bT(y)  =  0 
 
so that Ker T is also a subspace of U. Ker T is frequently called the null space 
of T. 
 We now restate Theorem 2.5 in our current terminology. 
 
Theorem 5.5   A linear transformation T ∞ L(U, V) is an isomorphism if and 
only if Ker T = {0}. 
 
 For example, the projection mapping T defined in Example 5.1 is not an 
isomorphism because T(0, 0, z) = (0, 0, 0) for all (0, 0, z) ∞ ®3. In fact, if xà 
and yà are fixed, then we have T(xà, yà, z) = (xà, yà, 0) independently of z. 
 If T ∞ L(U, V), we define the rank of T to be the number 
 

r(T)  =  dim(Im T) 
 
and the nullity of T to be the number 
 

  nul T  =  dim(Ker T)  . 
 
We will shortly show that this definition of rank is essentially the same as our 
previous definition of the rank of a matrix. The relationship between r(T) and 
nul T is given in the following important result. 
 
Theorem 5.6  If U and V are finite-dimensional over F and T ∞ L(U, V), then 
 

   r(T) + nul T  =  dim U  . 
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Proof  Let {uè, . . . , uñ} be a basis for U and suppose that Ker T = {0}. Then 
for any x ∞ U we have 
 

T(x)  =  T(Íxáuá)  =  ÍxáT(uá) 
 
for some set of scalars xá, and therefore {T(uá)} spans Im T. If ÍcáT(uá) = 0, 
then 

0  =  ÍcáT(uá)  =  ÍT(cáuá)  =  T(Ícáuá) 
 
which implies that Ícáuá = 0 (since Ker T = {0}). But the uá are linearly inde-
pendent so that we must have cá = 0 for every i, and hence {T(uá)} is linearly 
independent. Since nul T = dim(Ker T) = 0 and r(T) = dim(Im T) = n = dim U, 
we see that r(T) + nul  T = dim U. 
 Now suppose that Ker T ≠ {0}, and let {wè, . . . , wÉ} be a basis for Ker T. 
By Theorem 2.10, we may extend this to a basis {wè, . . . , wñ} for U. Since 
T(wá) = 0 for each i = 1, . . . , k it follows that the vectors T(wk+1), . . . , T(wñ) 
span Im T. If 

cjT (wj ) = 0

j=k+1

n

!  

for some set of scalars cá, then 

0 = cjT (wj ) =

j=k+1

n

! T (cjwj ) = T ( cjwj )

j=k+1

n

!
j=k+1

n

!  

so that Íj ˆ= k+1céwé ∞ Ker T. This means that 

cjwj = ajwj

j=1

k

!
j=k+1

n

!  

for some set of scalars aá. But this is just  

ajwj

j=1

k

! " cjwj = 0

j=k+1

n

!  

and hence 
aè  =  ~ ~ ~  =  aÉ  =  ck+1  =  ~ ~ ~  =  cn  =  0 

 
since the wé are linearly independent. Therefore T(wk+1 ), . . . , T(wñ) are lin-
early independent and thus form a basis for Im T. We have therefore shown 
that 
 

     dim U  =  k + (n - k)  =  dim(Ker T) + dim(Im T)  =  nul T + r(T)  .  ˙ 
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 The reader should carefully compare this theorem with Theorem 3.13 and 
Exercise 3.6.3. 
 An extremely important special case of the space L(U, V) is the space 
L(V, V) of all linear transformations of V into itself. This space is frequently 
written as L(V), and its elements are usually called linear operators on V, or 
simply operators. 
 Recall that Theorem 5.2 showed that the space L(U, V) is closed with 
respect to addition and scalar multiplication. Furthermore, in the particular 
case of L(V), the composition of two functions f, g ∞ L(V) leads naturally to a 
“multiplication” defined by fg = f ı g ∞ L(V). In view of Theorems 5.2 and 
5.3, it is now a simple matter to prove the following. 
 
Theorem 5.7  The space L(V) is an associative ring. 
 
Proof  All that remains is to verify axioms (R7) and (R8) for a ring as given in 
Section 1.4. This is quite easy to do, and we leave it to the reader (see 
Exercise 5.2.1).  ˙ 
 
 In fact, it is easy to see that L(V) is a ring with unit element. In particular, 
we define the identity mapping I ∞ L(V) by I(x) = x for all x ∞ V, and hence 
for any T ∞ L(V) we have 
 

(IT)(x)  =  I(T(x))  =  T(x)  =  T(I(x))  =  (TI)(x) 
 
so that I commutes with every member of L(V). (However L(V) is certainly 
not a commutative ring in general if dim V > 1.) 
 An associative ring A is said to be an algebra (or linear algebra) over F 
if A is a vector space over F such that 
 

a(ST)  =  (aS)T  =  S(aT) 
 
for all a ∞ F and S, T ∞ A. Another way to say this is that an algebra is a 
vector space on which an additional operation, called vector multiplication, 
is defined. This operation associates a new vector to each pair of vectors, and 
is associative, distributive with respect to addition, and obeys the rule a(ST) = 
(aS)T = S(aT) given above. Loosely put, an algebra is a vector space in which 
we can also multiply vectors to obtain a new vector. However note, for 
example, that the space ®3 with the usual “dot product” defined on it does not 
define an algebra because aï Â b ë is a scalar. Similarly, ®3 with the usual “cross 
product” is not an algebra because (aï ª b ë) ª cï ≠ aï ª (b ëª cï). 
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Theorem 5.8  The space L(V) is an algebra over F. 
 
Proof  For any a ∞ F, any S, T ∞ L(V) and any x ∞ V we have 
 

(a(ST))x  =  a(ST)(x)  =  aS(T(x))  =  (aS)T(x)  =  ((aS)T)x 
and 

  (a(ST))x  =  aS(T(x))  =  S(aT(x))  =  S((aT)x)  =  (S(aT))x  . 
 
This shows that a(ST) = (aS)T = S(aT) and, together with Theorem 5.7, 
proves the theorem.  ˙ 
 
 A linear transformation T ∞ L(U, V) is said to be invertible if there exists 
a linear transformation Tî ∞ L(V, U) such that TTî = TîT = I (note that 
technically TTî is the identity on V and TîT is the identity on U). This is 
exactly the same definition we had in Section 3.7 for matrices. The unique 
mapping Tî is called the inverse of T. 
 
Theorem 5.9  A linear transformation T ∞ L(U, V) is invertible if and only if 
it is a bijection (i.e., one-to-one and onto). 
 
Proof  First suppose that T is invertible. If T(xè) = T(xì) for xè, xì ∞ U, then 
the fact that TîT = I implies 
 

xè  =  TîT(xè)  =  TîT(xì)  =  xì 
 
and hence T is injective. If y ∞ V, then using TTî = I we have 
 

y  =  I(y)  =  (TTî)y  =  T(Tî(y)) 
 

so that y = T(x) where x = Tî(y). This shows that T is also surjective, and 
hence a bijection. 
 Conversely, let T be a bijection. We must define a linear transformation 
Tî ∞ L(V, U) with the desired properties. Let y ∞ V be arbitrary. Since T is 
surjective, there exists a vector x ∞ U such that T(x) = y. The vector x is 
unique because T is injective. We may therefore define a mapping Tî: V ‘ 
U by the rule Tî(y) = x where y = T(x). To show that Tî is linear, let yè, yì ∞ 
V be arbitrary and choose xè, xì ∞ U such that T(xè) = yè and T(xì) = yì. 
Using the linearity of T we then see that 
 

T(xè + xì)  =  yè + yì 
and hence 
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  Tî(yè + yì)  =  xè + xì  . 
 

But then 
  Tî(yè + yì)  =  xè + xì  =  Tî(yè) + Tî(yì)  . 

 
Similarly, if T(x) = y and a ∞ F, then T(ax) = aT(x) = ay so that 
 

  Tî(ay)  =  ax  =  aTî(y)  . 
 
We have thus shown that Tî ∞ L(V, U). Finally, we note that for any y ∞ V 
and x ∞ U such that T(x) = y we have 
 

TTî(y)  =  T(x)  =  y 
and 

TîT(x)  =  Tî(y)  =  x 
 
so that TTî = TîT = I.  ˙ 
 
 A linear transformation T ∞ L(U, V) is said to be nonsingular if Ker T = 
{0}. In other words, T is nonsingular if it is one-to-one (Theorem 5.5). As we 
might expect, T is said to be singular if it is not nonsingular. In other words, 
T is singular if Ker T ≠ {0}. 
 Now suppose U and V are both finite-dimensional and dim  U = dim V. If 
Ker T = {0}, then nul T = 0 and Theorem 5.6 shows that dim  U = dim(Im T). 
In other words, we must have Im T = V, and hence T is surjective. 
Conversely, if T is surjective then we are forced to conclude that nul T = 0, 
and thus T is also injective. Hence a linear transformation between two finite-
dimensional vector spaces of the same dimension is one-to-one if and only if 
it is onto. Combining this discussion with Theorem 5.9, we obtain the 
following result and its obvious corollary. 
 
Theorem 5.10  Let U and V be finite-dimensional vector spaces such that 
dim U = dim V. Then the following statements are equivalent for any linear 
transformation T ∞ L(U, V): 
 (a)  T is invertible. 
 (b)  T is nonsingular. 
 (c)  T is surjective. 
 
Corollary  A linear operator T ∞ L(V) on a finite-dimensional vector space is 
invertible if and only if it is nonsingular. 
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Example 5.8  Let V = Fn so that any x ∞ V may be written in terms of com-
ponents as x = (xè, . . . , xñ). Given any matrix A = (aáé) ∞ Mmxn(F), we define 
a linear transformation T : Fn ‘Fm by T(x) = y which is again given in 
component form by 

 

yi = aij x j !,!!!!!!!!!!i =1,!…!,!m!!.

j=1

n

!  

We claim that T is one-to-one if and only if the homogeneous system 

 

aij x j = 0!,!!!!!!!!!!i =1,!…!,!m

j=1

n

!  

has only the trivial solution. (Note that if T is one-to-one, this is the same as 
requiring that the solution of the nonhomogeneous system be unique. It also 
follows from Corollary 5 of Theorem 3.21 that if T is one-to-one, then A is 
nonsingular.) 
 First let T be one-to-one. Clearly T(0) = 0, and if v = (vè, . . . , vñ) is a 
solution of the homogeneous system, then T(v) = 0. But if T is one-to-one, 
then v = 0 is the only solution. Conversely, let the homogeneous system have 
only the trivial solution. If T(u) = T(v), then 
 

0  =  T(u) - T(v)  =  T(u - v) 
 
which implies that u - v = 0 or u = v.  ∆ 
 
Example 5.9   Let T ∞ L(®2) be defined by 
 

  T(x, y)  =  (y, 2x - y)  . 
 
If T(x, y) = (0, 0), then we must have x = y = 0, and hence Ker T = {0}. By 
the corollary to Theorem 5.10, T is invertible, and we now show how to find 
Tî. 
 Suppose we write (xæ, yæ) = T(x, y) = (y, 2x - y). Then y = xæ and 2x - y = 
yæ so that solving for x and y in terms of xæ and yæ we obtain x = (1/2)(xæ + yæ) 
and y = xæ. We therefore see that 
 

  Tî(xæ, yæ)  =  (xæ/2 + yæ/2, xæ)  . 
 
Note this also shows that T is surjective since for any (xæ, yæ) ∞ ®2 we found a 
point (x, y) = (xæ/2 + yæ/2, xæ) such that T(x, y) = (xæ, yæ).  ∆ 
 
 Our next example shows the importance of finite-dimensionality in 
Theorem 5.10. 
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Example 5.10   Let V = F[x], the (infinite-dimensional) space of all polyno-
mials over F (see Example 2.2). For any v ∞ V with v = Í iˆ= 0aáxi we define 
T ∞ L(V) by 

T (v) = a
i
xi+1

i=1

n

!  

(this is just a “multiplication by x” operation). We leave it to the reader to 
show that T is linear and nonsingular (see Exercise 5.2.2). However, it is clear 
that T can not be surjective (for example, T takes scalars into polynomials of 
degree 1), so it can not be invertible. However, it is nevertheless possible to 
find a left inverse TLî for T. To see this, we let TLî be the operation of sub-
tracting the constant term and then dividing by x: 

T
L

!1(v) = a
i
xi!1

i=1

n

" !!. 

We again leave it to the reader (Exercise 5.2.2) to show that this is a linear 
transformation, and that TLîT = I while TTLî ≠ I. 
 While the above operation T is an example of a nonsingular linear trans-
formation that is not surjective, we can also give an example of a linear trans-
formation on F[x] that is surjective but not nonsingular. To see this, consider 
the operation D = d/dx that takes the derivative of every polynomial in F[x]. It 
is easy to see that D is a linear transformation, but D can not possibly be 
nonsingular since the derivative of any constant polynomial p(x) = c is zero. 
Note though, that the image of D is all of F[x], and it is in fact possible to find 

a right inverse of D. Indeed, if we let DR
!1( f ) = f (t)!dt

0

x

"  be the (indefinite) 

integral operator, then 

D
R

!1 a
i
xi

i=0

n

"
#

$
%%

&

'
(( =

a
i
xi+1

i +1
i=0

n

"  

 
and hence DDRî = I. However, it is obvious that DRîD ≠ I because DRîD 
applied to a constant polynomial yields zero.  ∆ 
 
 
Exercises  
 
1. Finish the proof of Theorem 5.7. 
 
2. (a)  Verify that the mapping A in Example 5.8 is linear. 
 (b)  Verify that the mapping T in Example 5.9 is linear. 
 (c)  Verify that the mapping T in Example 5.10 is linear and nonsingular. 
 (d)  Verify that T TLî ≠ I in Example 5.10. 
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3. Find a linear transformation T: ®3 ‘ ®4 whose image is generated by the 
vectors (1, 2, 0, -4) and (2, 0, -1, -3). 

 
4. For each of the following linear transformations T, find the dimension 

and a basis for Im T and Ker T: 
 (a)  T: ®3 ‘ ®3 defined by T(x, y, z) = (x + 2y - z, y + z, x + y - 2z). 
 (b)  T: ®4 ‘ ®3 defined by 
 

   T(x, y, z, t)  =  (x - y + z + t, x + 2z - t, x + y + 3z - 3t)  . 
 
5. Consider the space M2(®) of real 2 x 2 matrices, and define the matrix 
 

B =
1 2

0 3

!

"
#

$

%
&!!.  

 
 Find the dimension and exhibit a specific basis for the kernel of the linear 

transformation T: M2(®) ‘ M2(®) defined by T(A) = AB - BA = [A, B]. 
 
6. Let T: U ‘ V be a linear transformation with kernel KT. If T(u) = v, 

show that Tî(v) is just the coset u + KT = {u + k: k ∞ KT} (see Section 
1.5). 

 
7. Show that a linear transformation is nonsingular if and only if it takes lin-

early independent sets into linearly independent sets. 
 
8. Consider the operator T: ®3 ‘ ®3 defined by 
 

   T(x, y, z)  =  (2x, 4x - y, 2x + 3y - z)  . 
 
 (a)  Show that T is invertible. 
 (b)  Find a formula for Tî. 
 
9. Let E be a projection (or idempotent) operator on a space V, i.e., E2 = E 

on V. Define U = Im E and W = Ker E. Show that: 
 (a)  E(u) = u for every u ∞ U. 
 (b)  If E ≠ I, then E is singular. 
 (c)  V = U • W. 
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10. If S: U ‘ V and T: V ‘ U are nonsingular linear transformations, show 
that S T is nonsingular. What can be said if S and/or T is singular? 

 
11. Let S: U ‘ V and T: V ‘ W be linear transformations. 
 (a)  Show that T S: U ‘ W is linear. 
 (b)  Show that r(T S) ¯ r(T) and r(T S) ¯ r(S), i.e., r(TS) ¯ min{r(T), 

r(S)}. 
 
12. If S, T ∞ L(V) and S is nonsingular, show that r(ST) = r(TS) = r(T). 
 
13. If S, T ∞ L(U, V), show that r(S + T) ¯ r(S) + r(T). Give an example of 

two nonzero linear transformations S, T ∞ L(U,V) such that r(S + T) = 
r(S) + r(T). 

 
14. Suppose that V = U • W and consider the linear operators Eè and Eì on 

V defined by Eè(v) = u and Eì(v) = w where u ∞ U, w ∞ W and v = u + 
w. Show that: 

 (a)   Eè and Eì are projection operators on V. 
 (b)  Eè + Eì = I. 
 (c)   EèEì = 0 = EìEè. 
 (d)  V = Im Eè • Im Eì. 
 
15. Prove that the nonsingular elements in L(V) form a group. 
 
16. Recall that an operator T ∞ L(V) is said to be nilpotent if Tn = 0 for 

some positive integer n. Suppose that T is nilpotent and T(x) = åx for 
some nonzero x ∞ V and some å ∞ F. Show that å = 0. 

17. If dim V = 1, show that L(V) is isomorphic to F. 

18. Let V = ç3 have the standard basis {eá}, and let T ∞ L(V) be defined by 
T(eè) = (1, 0, i), T(eì) = (0, 1, 1) and T(e3) = (i, 1, 0). Is T invertible? 

 
19. Let V be finite-dimensional, and suppose T ∞ L(V) has the property that 

r(T2) = r(T). Show that (Im T) ⁄ (Ker T) = {0}. 
 
 
5.3   MATRIX REPRESENTATIONS  
 
By now it should be apparent that there seems to be a definite similarity 
between Theorems 5.6 and 3.13. This is indeed the case, but to formulate this 
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relationship precisely, we must first describe the representation of a linear 
transformation by matrices. 
 Consider a linear transformation T ∞ L(U, V), and let U and V have bases 
{uè, . . . , uñ} and {vè, . . . , vm  } respectively. Since T(uá) ∞ V, it follows from 
Corollary 2 of Theorem 2.4 that there exists a unique set of scalars aèá, . . . , 
ami such that 

T (ui ) = vja ji
j=1

m

!  

for each i = 1, . . . , n. Thus, the linear transformation T leads in a natural way 
to a matrix (aáé) defined with respect to the given bases. On the other hand, if 
we are given a matrix (aáé), then Íj ˜= 1véaéá is a vector in V for each i = 1, . . . , 
n. Hence, by Theorem 5.1, there exists a unique linear transformation T 
defined by T(uá) = Í j ˜= 1véaéá. 
 Now let x be any vector in U. Then x = Íi ˆ= 1xáuá so that 
 

T (x) = T xiui
i=1

n

!
"

#
$$

%

&
'' = xiT (ui )

i=1

n

! = vja jixi !!.

j=1

m

!
i=1

n

!  

 
But T(x) ∞ V so we may write 

y = T (x) = yjvj
j=1

m

! !!. 

Since {vi} is a basis for V, comparing these last two equations shows that 

yj = ajixi
i=1

n

!  

for each j = 1, . . . , m. The reader should note which index is summed over in 
this expression for yé. 
 If we write out both of the systems T(uá) = Í j ˜= 1véaéá and yé = Íi ˆ= 1aéáxá, 
we have 

 

 

T (u1) = a11v1 +!!!+am1vm

"

T (u
n
) = a1nv1 +!!!+amnvm

 (1) 

 
and 

 

 

y
1
= a

11
x
1
+!!!+a

1nxn

"

ym = am1x1 +!!!+amnxn

 (2) 
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We thus see that the matrix of coefficients in (1) is the transpose of the matrix 
of coefficients in (2). We shall call the m x n matrix of coefficients in equa-
tions (2) the matrix representation of the linear transformation T, and we say 
that T is represented by the matrix A = (aáé) with respect to the given 
(ordered) bases {ui} and {vi}. 
 We will sometimes use the notation [A] to denote the matrix correspond-
ing to an operator A ∞ L(U, V). This will avoid the confusion that may arise 
when the same letter is used to denote both the transformation and its repre-
sentation matrix. In addition, if the particular bases chosen are important, then 
we will write the matrix representation of the above transformation as [A]u◊, 
and if A ∞ L(V), then we write simply [A]v. 
 In order to make these definitions somewhat more transparent, let us make 
the following observation. If x ∞ U has coordinates (xè, . . . , xñ) relative to a 
basis for U, and y ∞ V has coordinates (yè, . . . , ym) relative to a basis for V, 
then the expression y = A(x) may be written in matrix form as Y = [A]X 
where both X and Y are column vectors. In other words, [A]X is the coordi-
nate vector corresponding to the result of the transformation A acting on the 
vector x. An equivalent way of writing this in a way that emphasizes the bases 
involved is 

 [y]v  =  [A(x)]v  =  [A]u◊[x]u   . 
 
 If {vé} is a basis for V, then we may clearly write 
 

vá  =  Íé vé ∂éá  
 
where the ∂éá are now to be interpreted as the components of vá with respect to 
the basis {vé}. In other words, vè has components (1, 0, . . . , 0), vì has com-
ponents (0, 1, . . . , 0) and so forth. Hence, writing out [A(uè)]v = Íj ˜= 1vjaj1 , 
we see that 

 

[A(u1)]v =

a11

0

!

0

!

"

#
#
#
#

$

%

&
&
&
&

+

0

a21

!

0

!

"

#
#
#
#

$

%

&
&
&
&

+!"!+

0

0

!

a
m1

!

"

#
#
#
#

$

%

&
&
&
&

=

a11

a21

!

a
m1

!

"

#
#
#
#

$

%

&
&
&
&

 

 
so that [A(uè)]v is just the first column of [A]u◊ . Similarly, it is easy to see that 
in general, [A(uá)]v is the ith column of [A]u◊ . In other words, the matrix rep-
resentation [A]u◊ of a linear transformation A ∞ L(U, V) has columns that are 
nothing more than the images under A of the basis vectors of U. 
 We summarize this very important discussion as a theorem for easy refer-
ence. 
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Theorem 5.11  Let U and V have bases {uè, . . . , uñ} and {vè, . . . , vm} 
respectively. Then for any A ∞ L(U, V) the vector 

[A(ui )]v = vja ji
j=1

m

!  

is the ith column of the matrix [A]u◊ = (aáé) that represents A relative to the 
given bases. 
 
Example 5.11  Let V have a basis {vè, vì, v3}, and let A ∞ L(V) be defined by 

 
A(v1) = 3v1 !!!!!!!!!!!+v3

A(v2 ) =!!!v1 ! 2v2 ! v3

A(v3) =!!!!!!!!!!!!v2 + v3

 

 
Then the representation of A (relative to this basis) is 
 

  [A]v =!

3 !!1 !0

0 !2 !1

1 !1 !1

"

#

$
$
$

%

&

'
'
'
!!.   ∆ 

 
 The reader may be wondering why we wrote A(uá) = Íévéaéá rather than 
A(uá) = Íéaáévé . The reason is that we want the matrix corresponding to a 
combination of linear transformations to be the product of the individual 
matrix representations taken in the same order. (The argument that follows is 
based on what we learned in Chapter 3 about matrix multiplication, even 
though technically we have not yet defined this operation within the frame-
work of our current discussion. In fact, our present formulation can be taken 
as the definition of matrix multiplication.) 
 To see what this means, suppose A, B ∞ L(V). If we had written (note the 
order of subscripts) A(vá) = Íéaáévé and B(vá) = Íébáévé, then we would have 
found that 

(AB)(vi ) = A(B(vi )) = A(! jbijv j ) = ! jbijA(vj )

= ! j,!kbija jkvk = !kcikvk
 

 
where cáÉ = ÍébáéaéÉ. As a matrix product, we would then have [C] = [B][A]. 
However, if we write (as we did) A(vá) = Íévéaéá and B(vá) = Íévébéá, then we 
obtain 

(AB)(vi ) = A(B(vi )) = A(! jv jbji ) = ! jA(vj )bji

= ! j,!kvkakjbji = !kvkcki
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where now cÉá = ÍéaÉébéá. Since the matrix notation for this is [C] = [A][B], we 
see that the order of the matrix representation of transformations is preserved 
as desired. We have therefore proven the following result. 
 
Theorem 5.12  For any operators A, B ∞ L(V) we have [AB] = [A][B]. 
 
 From equations (2) above, we see that any nonhomogeneous system of m 
linear equations in n unknowns defines an m x n matrix (aáé). According to our 
discussion, this matrix should also define a linear transformation in a consis-
tent manner. 
 
Example 5.12   Consider the space ®2 with the standard basis 
 

e
1
=
1

0

!

"
#
$

%
&!!!!!!!!!!e2 =

0

1

!

"
#
$

%
&  

so that any X ∞ ®2 may be written as 
 

X =
x
1

x
2

!

"
#

$

%
& = x1

1

0

!

"
#
$

%
&+ x2

0

1

!

"
#
$

%
&!!.  

 
Suppose we have the system of equations 
 

y
1
= 2x

1
!!!x

2

y
2
=!!!x

1
+ 3x

2

 

which we may write in matrix form as [A]X = Y where 
 

[A] =
2 !1

1 !!3

"

#
$

%

&
'!!.  

 
Hence we have a linear transformation A(x) = [A]X. In particular, 
 

      

A(e1) =
2 !1

1 !3

"

#
$

%

&
'
1

0

"

#
$
%

&
' =

2

1

"

#
$
%

&
' = 2e1 + e2

A(e2 ) =
2 !1

1 !3

"

#
$

%

&
'
0

1

"

#
$
%

&
' =

!1

!3

"

#
$

%

&
' = !e1 + 3e2 !!.
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We now see that letting the ith column of [A] be A(eá), we arrive back at the 
original form [A] that represents the linear transformation A(eè) = 2eè + eì and 
A(eì) = -eè + 3eì.  ∆ 
 
Example 5.13   Consider the space V = ®2 with basis vectors vè = (1, 1) and 
vì = (-1, 0). Let T be the linear operator on ®2 defined by 
 

  T(x, y)  =  (4x - 2y, 2x + y)  . 
 
To find the matrix of T relative to the given basis, all we do is compute the 
effect of T on each basis vector: 
 
     T(vè)  =  T(1, 1)  =  (2, 3)  =  3vè + vì 
       T(vì)  =  T(-1, 0)  =  (-4, -2)  =  -2vè + 2vì   . 
 
Since the matrix of T has columns given by the image of each basis vector, we 
must have 

  [T ] =
3 !2

1 !!2

"

#
$

%

&
'!!.   ∆ 

 
Theorem 5.13  Let U and V be vector spaces over F with bases {uè, . . . , uñ} 
and {vè, . . . , vm} respectively. Suppose A ∞ L(U, V) and let [A] be the 
matrix representation of A with respect to the given bases. Then the mapping 
ƒ: A ‘ [A] is an isomorphism of L(U, V) onto the vector space Mmxn(F) of 
all m x n matrices over F. 
 
Proof  Part of this was proved in the discussion above, but for ease of refer-
ence, we repeat it here. Given any (aáé) ∞ Mmxn(F), we define the linear 
transformation A ∞ L(U, V) by  

A(ui ) = vja ji
j=1

m

!  

for each i = 1, . . . , n. According to Theorem 5.1, the transformation A is 
uniquely defined and is in L(U, V). By definition, [A] = (aij), and hence ƒ is 
surjective. On the other hand, given any A ∞ L(U, V), it follows from 
Corollary 2 of Theorem 2.4 that for each i = 1, . . . , n there exists a unique set 
of scalars aèá, . . . , amá ∞ F such that A(uá) = Í j ˜= 1véaéá . Therefore, any A ∞ 
L(U, V) has lead to a unique matrix (aáé) ∞ Mmxn(F). Combined with the pre-
vious result that ƒ is surjective, this shows that ƒ is injective and hence a 
bijection. Another way to see this is to note that if we also have B ∞ L(U, V) 
with [B] = [A], then 
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(B ! A)(ui ) = B(ui )! A(ui ) = vj (bji ! aji ) = 0!!.
j=1

m

"  

Since B - A is linear (Theorem 5.3), it follows that (B - A)x = 0 for all x ∞ U, 
and hence B = A so that ƒ is one-to-one. 
 Finally, to show that ƒ is an isomorphism we must show that it is also a 
vector space homomorphism (i.e., a linear transformation). But this is easy if 
we simply observe that 
 

(A + B)(uá)  =  A(uá) + B(uá)  =  Íévéaéá + Íévébéá  =  Íévé(aéá + béá) 
 
and, for any c ∞ F, 
 

  (cA)(uá)  =  c(A(uá))  =  c(Íévé aéá)  =  Íévé(caéá)  . 
 
Therefore we have shown that 
 

[A + B]  =  [A] + [B] 
and 

[cA]  =  c[A] 
 
so that ƒ is a homomorphism.  ˙ 
 
 It may be worth recalling that the space Mmxn(F) is clearly of dimension 
mn since, for example, we have 
 

a b

c d

!

"
#

$

%
& = a

1 0

0 0

!

"
#

$

%
&+ b

0 1

0 0

!

"
#

$

%
&+ c

0 0

1 0

!

"
#

$

%
&+ d

0 0

0 1

!

"
#

$

%
&!!.  

 
Therefore Theorem 5.13 provides another proof that dim L(U, V) = mn. 
 Let us return again to the space L(V) = L(V, V) where dim V = n. In this 
case, each linear operator A ∞ L(V) will be represented by an n x n matrix, 
and we then see that the space Mn(F) = Mnxn(F) of all n x n matrices over F 
is closed under addition, multiplication, and scalar multiplication. By 
Theorem 5.13, L(V) is isomorphic to Mn(F), and this isomorphism preserves 
addition and scalar multiplication. Furthermore, it also preserves the 
multiplication of operators since this was the motivation behind how we 
defined matrix representations (and hence matrix multiplication). Finally, 
recall that the identity transformation I ∞ L(V) was defined by I(x) = x for all 
x ∞ V. In particular 
 

I(uá)  =  Íéué∂éá 
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so that the matrix representation of I is just the usual n x n identity matrix that 
commutes with every other n x n matrix. 
 
Theorem 5.14  The space Mn(F) of all n x n matrices over F is a linear 
algebra. 
 
Proof   Since Mn(F) is isomorphic to L(V) where dim V = n, this theorem 
follows directly from Theorem 5.8.  ˙ 
 
 We now return to the relationship between Theorems 5.6 and 3.13. In par-
ticular, we would like to know how the rank of a linear transformation is 
related to the rank of a matrix. The answer was essentially given in Theorem 
5.11. 
 
Theorem 5.15  If A ∞ L(U, V) is represented by [A] = (aéá) ∞ Mmxn(F), then 
r(A) = r([A]). 
 
Proof   Recall that r(A) = dim(Im A) and r([A]) = cr([A]). For any x ∞ U we 
have 

A(x)  =  A(Íxáuá)  =  ÍxáA(uá) 
 
so that the A(uá) span Im A. But [A(uá)] is just the ith column of [A], and 
hence the [A(uá)] also span the column space of [A]. Therefore the number of 
linearly independent columns of [A] is the same as the number of linearly 
independent vectors in the image of A (see Exercise 5.3.1). This means that 
r(A) = cr([A]) = r([A]).  ˙ 
 
 Suppose that we have a system of n linear equations in n unknowns 
written in matrix form as [A]X = Y where [A] is the matrix representation of 
the corresponding linear transformation A ∞ L(V), and dim V = n. If we are to 
solve this for a unique X, then [A] must be of rank n (Theorem 3.16). Hence 
r(A) = n also so that nul A = dim(Ker A) = 0 by Theorem 5.6. But this means 
that Ker A = {0} and thus A is nonsingular. Note also that Theorem 3.13 now 
says that the dimension of the solution space is zero (which it must be for the 
solution to be unique) which agrees with Ker A = {0}. 
 All of this merely shows the various interrelationships between the matrix 
nomenclature and the concept of a linear transformation that should be 
expected in view of Theorem 5.13. Our discussion is summarized by the fol-
lowing useful characterization. 
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Theorem 5.16   A linear transformation A ∞ L(V) is nonsingular if and only 
if det [A] ≠ 0. 
 
Proof  Let dim V = n. If A is nonsingular then nul A = 0, and hence r([A]) = 
r(A) = n (Theorem 5.6) so that [A]î exists (Theorem 3.21). But this means 
that det [A] ≠ 0 (Theorem 4.6). The converse follows by an exact reversal of 
the argument.  ˙ 
 
 
Exercises  
 
1. Suppose A ∞ L(U, V) and let {ui}, {vi} be bases for U and V respec-

tively. Show directly that {A(ui)} is linearly independent if and only if 
the columns of [A] are also linearly independent. 

 
2. Let V be the space of all real polynomials of degree less than or equal to 

3. In other words, elements of V are of the form f(x) = aà + aèx + aìx2 + 
a3x3 where each aá ∞ ®. 

 (a)  Show that the derivative mapping D = d/dx is an element of L(V). 
 (b)  Find the matrix of D relative to the ordered basis {fá} for V defined 

by fá(x) = xi -1 . 
 
3. Let T: ®3 ‘ ®2 be defined by T(x, y, z) = (x + y, 2z - x). 
 (a)  Find the matrix of T relative to the standard bases for ®3 and ®2. 
 (b)  Find the matrix of T relative to the basis {åá} for ®3 and {∫á} for ®2 

where åè = (1, 0, -1), åì = (1, 1, 1), å3 = (1, 0, 0), ∫è = (0, 1) and ∫ì = (1, 
0). 

 
4. Relative to the standard basis, let T ∞ L(®3) have the matrix representa-

tion 

!

!!1 2 1

!!0 1 1

!1 3 4

"

#

$
$
$

%

&

'
'
'
!!. 

  
 Find a basis for Im T and Ker T. 
 
5. Let T ∞ L(®3) be defined by T(x, y, z) = (3x + z, -2x + y, -x + 2y + 4z). 
 (a)  Find the matrix of T relative to the standard basis for ®3. 
 (b)  Find the matrix of T relative to the basis {åá} given by åè = (1, 0, 1), 

åì = (-1, 2, 1) and å3 = (2, 1, 1). 
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 (c)  Show that T is invertible, and give a formula for Tî similar to that 
given in part (a) for T. 

 
6. Let T: Fn ‘Fm be the linear transformation defined by 
 

 

T (x1,!…!,!xn ) = a1i xi

i=1

n

! ,!…!,! a
mi
x
i

i=1

n

!
"

#
$$

%

&
''!!.  

 
 (a)  Show that the matrix of T relative to the standard bases of Fn and Fm 

is given by 

 

a
11

a
12
! a

1n

a
21

a
22
! a

2n

" " "

a
m1

a
m2
! a

mn

!

"

#
#
#
#

$

%

&
&
&
&

!!.  

 
 (b)  Find the matrix representation of  T: ®4 ‘ ®2 defined by 
 

T(x, y, z, t)  =  (3x - 4y + 2z - 5t, 5x + 7y - z - 2t) 
 
 relative to the standard bases of ®n. 
 
7. Suppose that T ∞ L(U, V) has rank r. Prove that there exists a basis for U 

and a basis for V relative to which the matrix of T takes the form 
 

I
r
0

0 0

!

"
#

$

%
&!!.  

 
 [Hint: Show that Ker T has a basis {wè, . . . , wm-r}, and then extend this 

to a basis {uè, . . . , ur, wè, . . . , wm-r} for U. Define vá = T(uá), and show 
that this is a basis for Im T. Now extend this to a basis for V.] 

 
8. Let {eá} be the standard basis for ®3, and let {fá} be the standard basis for 

®2. 
 (a)  Define T: ®3 ‘ ®2 by T(eè) = fì, T(eì) = fè and T(e3) = f1 + fì. Write 

down the matrix [T]eÏ. 
 (b)  Define S: ®2 ‘ ®3 by S(fè) = (1, 2, 3) and S(fì) = (2, -1, 4). Write 

down [S]f‰. 
 (c)  Find ST(eá) for each i = 1, 2, 3, and write down the matrix [ST]e of 

the linear operator ST: ®3 ‘ ®3. Verify that [ST] = [S][T]. 
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9. Suppose T ∞ L(V) and let W be a subspace of V. We say that W is 

invariant under T (or T-invariant) if T(W) ™ W. If dim W = m, show 
that T has a block matrix representation of the form 

 
A B

0 C

!

"
#

$

%
&  

 where A is an m x m matrix. 
 
10. Let T ∞ L(V), and suppose that V = U • W where both U and W are T-

invariant (see the previous problem). If dim U = m and dim W = n, show 
that T has a matrix representation of the form 

 
A 0

0 C

!

"
#

$

%
&  

 
 where A is an m x m matrix and B is an n x n matrix. 
 
11. Show that A ∞ L(V) is nonsingular implies [Aî] = [A]î. 
 
 
5.4   CHANGE OF BASIS 
 
Suppose we have a linear operator A ∞ L(V). Then, given a basis for V, we 
can write down the corresponding matrix [A]. If we change to a new basis for 
V, then we will have a new representation for A. We now investigate the rela-
tionship between the matrix representations of A in each of these bases. 
 Given a vector space V, let us consider two arbitrary bases {eè, . . . , eñ} 
and { eõè, . . . , eõñ} for V. Then any vector x ∞ V may be written as either x = 
Íxáeá or as x = Íxõáeõá . (It is important to realize that vectors and linear 
transformations exist independently of the coordinate system used to describe 
them, and their components may vary from one coordinate system to another.)  
Since each eõá is a vector in V, we may write its components in terms of the 
basis {eá}. In other words, we define the transition matrix [P] = (páé) ∞ 
Mñ(F) by 

ei = ej p ji
j=1

n

!  

for each i = 1, . . . , n. The matrix [P] must be unique for the given bases 
according to Corollary 2 of Theorem 2.4. 
 Note that [P] defines a linear transformation P ∞ L(V) by P(eá) = eõá. Since 
{P(eá)} = {eõá} spans Im P and the eõá are linearly independent, it follows that  
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r(P) = n so that P is nonsingular and hence Pî exists. By Theorem 5.13, we 
conclude that [Pî] = [P]î. (However, it is also quite simple to show directly 
that if a linear operator A is nonsingular, then [Aî] = [A]î. See Exercise 
5.3.11). 
 Let us emphasize an earlier remark. From Theorem 5.11, we know that 
[eõá] = [P(eá)] is just the ith column vector of [P]. Since relative to the basis {eá} 
we have eè = (1, 0, . . . , 0), eì = (0, 1, . . . , 0) and so on, it follows that the ith 
column of [P] represents the components of eõá relative to the basis {eá}. In 
other words, the matrix entry péá is the jth component of the ith basis vector eõá 
relative to the basis {eá}. 
 The transition matrix enables us to easily relate the components of any x ∞ 
V between the two coordinate systems. To see this, we observe that 
 

x  =  Íá xáeá  =  Íé xõéeõé  =  Íi, j xõéeápáé  =  Íi, j páéxõéeá 
 
and hence the uniqueness of the expansion implies xá = Íépáéxõé  so that 
 

   xõé  =  Íápîéáxá  . 
 
This discussion proves the following theorem. 
 
Theorem 5.17   Let [P] be the transition matrix from a basis {eá} to a basis 
{eõá} for a space V. Then for any x ∞ V we have 
 

[x]eõ  =  [P]î[x]e 

 
which we sometimes write simply as Xä = PîX. 
 
 From now on we will omit the brackets on matrix representations unless 
they are needed for clarity. Thus we will usually write both a linear transfor-
mation A ∞ L(U, V) and its representation [A] ∞ Mmxn(F) as simply A. 
Furthermore, to avoid possible ambiguity, we will sometimes denote a linear 
transformation by T, and its corresponding matrix representation by A = (aij). 
 Using the above results, it is now an easy matter for us to relate the repre-
sentation of a linear operator A ∞ L(V) in one basis to its representation in 
another basis. If A(eá) = Íéeéaéá and A(eõá) = Íéeõéaõéá , then on the one hand we 
have 

A(eõá)  =  Íé eõéaõéá  =  Íj, k eÉpÉéaõéá 
 
while on the other hand, 
 

   A(eõá)  =  A(Íé eépéá)  =  Íé A(eé)péá  =  Íj, k eÉaÉépéá  . 
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Therefore, since {eÉ} is a basis for V, we may equate each component in these 
two equations to obtain Íé pÉéaõéá = Íé aÉépéá  or 
 

   aõri  =  Íj, k pîrkaÉépéá   . 
 
In matrix notation, this is just (omitting the brackets on P) 
 

[A]eõ  =  Pî[A]e P 
 
which we will usually write in the form Aä = PîAP for simplicity. 
 If A, B ∞ Mn(F), then B is said to be similar to A if there exists a nonsin-
gular matrix S such that B = SîAS, in which case A and B are said to be 
related by a similarity transformation. We leave it to the reader to show that 
this defines an equivalence relation on Mn(F) (see Exercise 5.4.1). 
 Since we have shown that in two different bases a linear operator A is rep-
resented by two similar matrices, we might wonder whether or not there are 
any other matrices representing A that are not similar to the others. The 
answer is given by the following. 
 
Theorem 5.18   If T ∞ L(V) is represented by A relative to the basis {eá}, then 
a matrix Aä ∞ Mn(F) represents T relative to some basis {eõá} if and only if Aä is 
similar to A. If this is the case, then 
 

Aä  =  PîAP 
 
where P is the transition matrix from the basis {eá} to the basis {eõá}. 

Proof   The discussion above showed that if A and Aä represent T in two dif-
ferent bases, then Aä = PîAP where P is the transition matrix from {eá} to {eõá}. 
 On the other hand, suppose that T is represented by A in the basis {eá}, 
and assume that Aä is similar to A. Then Aä = PîAP for some nonsingular 
matrix P = (páé). We define a new basis {eõá} for V by 
 

eõá  =  P(eá)  =  Íé eépéá  
 
(where we use the same symbol for both the operator P and its matrix repre-
sentation). Then 
 

T(eõá)  =  T(Íé eépéá)  =  Íé T(eé)péá  =  Íj, k eÉaÉépéá 
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while on the other hand, if T is represented by some matrix C = (céá) in the 
basis {eõá}, then 

   T(eõá)  =  Íé eõécéá  =  Íj, keÉpÉécéá  . 
 
Equating the coefficients of eÉ in both of these expressions yields 
 

Íé aÉépéá  =  Íé pÉécéá 
so that 

cri  =  Íj, k pîrkaÉépéá 
 
and hence 

   C  =  PîAP  =  Aä  . 
 
Therefore Aä represents T in the basis {eõá}.  ˙ 
 
 Note that by Theorem 4.8 and its corollary we have 
 

det Aä  =  det(PîAP)  =  (det Pî)(det A)(det P)  =  det A 
 
and hence all matrices which represent a linear operator T have the same 
determinant. Another way of stating this is to say that the determinant is 
invariant under a similarity transformation. We thus define the determinant 
of a linear operator T ∞ L(V) as det A, where A is any matrix representing 
T. 
 Another important quantity associated with a matrix A ∞ Mn(F) is the 
sum Íi ˆ= 1 aáá of its diagonal elements. This sum is called the trace, and is 
denoted by Tr A (see Exercise 3.6.7). A simple but useful result is the 
following. 

Theorem 5.19  If A, B ∞ Mn(F), then Tr(AB) = Tr(BA). 
 
Proof  We simply compute 
 

Tr(AB) = !i (AB)ii = !i,! jaijbji = ! j!ibjiaij = ! j (BA) jj  
  = Tr(BA)!!.   ˙ 

 
 From this theorem it is easy to show that the trace is also invariant under a 
similarity transformation (see Exercise 4.2.14). Because of this, it also makes 
sense to speak of the trace of a linear operator. 
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Example 5.14   Consider the space V = ®2 with its standard basis eè = (1, 0) 
and eì = (0, 1), and let eõè = (1, 2), eõì = (3, -1) be another basis. We then see 
that 

e
1
=!!!e

1
+ 2e

2

e
2
= 3e

1
!!!!e

2

 

 
and consequently the transition matrix P from {eá} to {eõá} and its inverse Pî 
are given by 

P =
1 !!3

2 !1

"

#
$

%

&
'!!!!!!!!!!and!!!!!!!!!!P-1 =

1 7 !3 7

2 7 !1 7

"

#
$

%

&
'!!.  

 
Note that Pî may be found either using Theorem 4.11, or by solving for {eá} 
in terms of {eõá} to obtain 
 

e1 = (1 7)e1 + (2 7)e2

e2 = (3 7)e1 ! (1 7)e2
 

 
 Now let T be the operator defined by 
 

T (e1) = (20 7)e1 !!!(2 7)e2

T (e2 ) = (!3 7)e1 + (15 7)e2
 

 
so that relative to the basis {eá} we have 

A =
20 7 !3 7

!2 7 15 7

"

#
$

%

&
'!!.  

We thus find that 
 

A = P!1AP =
1 7 !3 7

2 7 !1 7

"

#
$

%

&
'
20 7 !3 7

!2 7 15 7

"

#
$

%

&
'
1 !!3

2 !1

"

#
$

%

&
' =

2 0

0 3

"

#
$

%

&
'!!.  

Alternatively, we have 
 
     T(eõè)  =  T(eè + 2eì)  =  T(eè) + 2T(eì)  =  2eè + 4eì  =  2eõè 
     T(eõì)  =  T(3eè - eì)  =  3T(eè) - T(eì)  =  (63/7)eè - 3eì  =  3eõì 
 
so that again we find 

A =
2 0

0 3

!

"
#

$

%
&!!.  
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We now see that 
Tr A  =  20/7 + 15/7  =  5  =  Tr Aä 

and also 
det A  =  6  =  det Aä 

as they should.  ∆ 
 
 We point out that in this example, Aä turns out to be a diagonal matrix. In 
this case the basis {eõá} is said to diagonalize the operator T. While it is 
certainly not true that there always exists a basis in which every operator is 
diagonal, we will spend a considerable amount of time in Chapters 7 and 8 
investigating the various standard forms (called normal or canonical) that a 
matrix representation of an operator can take. 
 Let us make one related additional comment about our last example. 
While it is true that (algebraically speaking) a linear operator is completely 
determined once its effect on a basis is known, there is no real geometric 
interpretation of this when the matrix representation of an operator is of the 
same form as A in Example 5.14. However, if the representation is diagonal as 
it is with Aä, then in this basis the operator represents a magnification factor in 
each direction. In other words, we see that Aä represents a multiplication of 
any vector in the eõè direction by 2, and a multiplication of any vector in the eõì 
direction by 3. This is the physical interpretation that we will attach to eigen-
values (see Chapter 7). 
 
 
Exercises  
 
1. Show that the set of similar matrices defines an equivalence relation on 

Mn(F). 
 
2. Let {eá} be the standard basis for ®3, and consider the basis fè = (1, 1, 1), 

fì = (1, 1, 0) and f3 = (1, 0, 0). 
 (a)  Find the transition matrix P from {eá} to {fá}. 
 (b)  Find the transition matrix Q from {fá} to {eá}. 
 (c)  Verify that Q = Pî. 
 (d)  Show that [v]f = Pî[v]e for any v ∞ ®3. 
 (e)  Define T ∞ L(®3) by T(x, y, z) = (2y + z, x - 4y, 3x). Show that [T]f 

= Pî[T]e P. 
 
3. Let {eè, eì} be a basis for V, and define T ∞ L(V) by T(eè) = 3eè - 2eì 

and T(eì) = e1 + 4eì. Define the basis {fá} for V by fè = eè + eì and fì = 
2eè + 3eì. Find [T]f. 



5.4   CHANGE OF BASIS  

 

249 

4. Consider the field ç as a vector space over ®, and define the linear 
“conjugation operator” T ∞ L(ç) by T(z) = z* for each z ∞ ç. 

 (a)  Find the matrix of T relative to the basis {eé} = {1, i}. 
 (b)  Find the matrix of T relative to the basis {fé} = {1 + i, 1 + 2i}. 
 (c)  Find the transition matrices P and Q that go from {eé} to {fé} and 

from {fé} to {eé} respectively. 
 (d)  Verify that Q = Pî. 
 (e)  Show that [T]f = Pî[T]e P. 
 (f )  Verify that Tr [T]f = Tr [T]e  and det [T]f = det [T]e. 
 
5. Let {eá}, {fá} and {gá} be bases for V, and let P and Q be the transition 

matrices from {eá} to {fá} and from {fá} to {gá} respectively. Show that 
PQ is the transition matrix from {eá} to {gá}. 

 
6. Let A be a 2 x 2 matrix such that only A is similar to itself. Show that A 

has the form 
a 0

0 a

!

"
#

$

%
&!!.  

 
7. Show that similar matrices have the same rank. 
 
8. Let A, B and C be linear operators on ®2 with the following matrices 

relative to the standard basis {eá}: 
 

 [A]
e
=
!4 !!6

!2 !3

"

#
$

%

&
'!!!!!!!![B]e =

!1 2 ! 3 2

3 2 !!1 2

"

#
$
$

%

&
'
'!!!!!!!![C]e =

!!!7 !3

!10 !4

"

#
$

%

&
'!!. 

 
 (a)  If fè = (2, -1) and fì = (3, -2), show that A(fè) = fè and A(fì) = 0. 
 (b)  Find [A]f . 
 (c)  What is the geometric effect of A? 
 (d)  Show that B is a rotation about the origin of the xy-plane, and find 

the angle of rotation (see Example 1.2). 
 (e)  If fè = (1, -2) and fì = (3, -5), find C(fè) and C(fì). 
 (f )  Find [C]f . 
 (g)  What is the geometric effect of C? 
 
9. (a)  Let {eá} be the standard basis for ®n, and let {fá} be any other ortho-

normal basis (relative to the standard inner product). Show that the 
transition matrix P from {eá} to {fá} is orthogonal, i.e., PT = Pî. 
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 (b)  Let T ∞ L(®3) have the following matrix relative to the standard 
basis: 

!

2 0 0

0 4 0

0 0 3

!

"

#
#
#

$

%

&
&
&
!!. 

 
 Find the matrix of T relative to the basis fè = (2/3, 2/3, -1/3), fì = 

(1/3, -2/3, -2/3) and f3 = (2/3, -1/3, 2/3). 
 
10. Let T ∞ L(®2) have the following matrix relative to the standard basis 

{eá} for ®2: 

[T ]
e
=
a b

c d

!

"
#

$

%
&!!.  

 
 (a)  Suppose there exist two linearly independent vectors fè and fì in ®2 

with the property that T(fè) = ¬èfè and T(fì) = ¬ìfì (where ¬á ∞ ®). If P is 
the transition matrix from the basis {eá} to the basis {fá}, show that 

 

[T ] f = P
!1[T ]eP =

"1 0

0 "2

#

$
%

&

'
(!!. 

 
 (b)  Prove there exists a nonzero vector x ∞ ®2 with the property that 

T(x) = x if and only if 
 

a !1 b

c d !1
= 0  

 
 (c)  Prove there exists a one-dimensional T-invariant subspace of ®2 if 

and only if 
a ! " b

c d ! "
= 0  

 
 for some scalar ¬. (Recall that a subspace W is T-invariant if T(W) ™ W.) 
 
11. If œ ∞ ®, show that the matrices 
 

cos! "sin!

sin! !!cos!
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5.4   CHANGE OF BASIS  
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ei! 0

0 e"i!

#
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%
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 are similar over the complex field. [Hint: Suppose T ∞ L(ç2) has the first 

matrix as its representation relative to the standard basis. Find a new 
basis {vè, vì} such that T(vè) = exp(iœ)vè and T(vì) = exp(-iœ)vì.] 

 
12. Let V = ®2 have basis vectors e1 = (1, 1) and e2 = (1, -1). Suppose we 

define another basis for V by eõ1 = (2, 4) and eõì = (3, 1). Define the tran-
sition operator P ∞ L(V) as usual by eõá = Peá. Write down the matrix [P]e‰Õ. 

 
13. Let U have bases {uá} and {uõá} and let V have bases {vá} and {võá}. 

Define the transition operators P ∞ L(U) and Q ∞ L(V) by uõá = Puá and 
võá = Qvá. If T ∞ L(U, V), express [T]u◊ in terms of [T]uõ◊Õ. 

 
14. Show that the transition matrix defined by the Gram-Schmidt process is 

upper-triangular with strictly positive determinant. 


