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e Functions in College Algebra: Recall in college algebra, functions are denoted by
flx) =y
where f : dom(f) — range(f).

e Mappings: In Linear Algebra, we have a similar notion, called a map:
T:V-W

where V' is the domain of T" and W is the codomain of T" where both V and W are vector spaces.

V: Domain of T

e Terminology: If
Tw)=w

then

— w is called the image of v under the mapping T
— v is caled the preimage of w

— the set of all images of vectors in V' is called the range of T

e Example: Let
T([v1,v2]) = [2v2 — v1, 01, v2]

then T : R% — R3.
— Find the image of v = [0, 6].
T(]0,6]) = [2(6) — 0,0,6] = [12,0, 6]
— Findthe preimage of w = [3,1,2].
[3,1,2] = [2v1 — v1,v1, V2]
which means
209 —v1 =3

1}1:1
112:2

So, v =[1,2].



e Example: Let
T([v1,v2,v3]) = [201 + v2,v1 — V2]

Then T : 3 — R2.
— Find the image of v = [2,1,4]:

T([2,1,4]) = 2(2) + 1,2 — 1] = [5,1]

— Find the preimage of w = [—1, 2]
[—1, 2} = [2’01 + V2,U1 — 'UQ}
This leads to
2'01 + v = -1
vT — Uy = 2

Recall that you are looking for v = [v1, v, v3]. So, there are really 3 unknowns in the system:

2v17 + wve + Ovg = -1
v — V2 + 01)3 = 2
This leads to the solution
v=l2,—2,H
33

where k is an real number.

e Definition: Let V and W be vector spaces. The function T : V' — W is called a linear transformation
of V into W if the following 2 properties are true for all u and v in V' and for any scalar c:

1. Tu+v)=T)+T(v)
2. T(cu) = ¢T'(u)

e Example: Determine whether 7 : 3 — 33 defined by
T([,CL', Y, Z]) = [:E + Y, r—y, Z]
is a linear transformation.

1. Let u = [z1,y1, 21] and v = [x9, Y2, 22]. Then we want to prove T'(u+ v) = T'(u) + T(v).

Tu+v) = T([x1,y1,21] + [T2,y2, 22])
= T([x1+ 22,91 + Y2, 21 + 22])
= [m+aety +y2, 21+ 22— (Y1 +y2), 21 + 22]
and
T(u) —|—T(V) = T([xlaylvzl}) +T([332ay2732])

(1 + y1, 21 — Y1, 21) + [2 + Y2, T2 — Y2, 22]
= [r14+yi +x2+y2, 21 —y1 + T2 — Y2, 21 + 22
(1 4+ z2+y1 +y2, 21 + 22 — (1 +y2), 21 + 22]
Therefore, T(u+v) =T (u) + T(v).
2. We want to prove T'(cu) = cT'(u).
T(cu) = T(c[z1,91,21])

= T([Cxlv CY1, CZl])
= [ex1 + cyr,cx1 — ey, cz1)

and
cT(w) = T([x1,91,21])

= ¢l +y1, 21 — Y1, 21
= [C(xl + y1)7 C(l’l - yl); CZl]
= [exy + cyr, ey — ey, ez

So, T'(cu) = T'(u).



Therefore, T is a linear transformation.

e Example: Determine whether T : 2 — R? defined by

T([z,y]) = [2*,y]

is a linear transformation.
1. Let u = [z1,11] and v = [z2,y2]. Then we want to prove T'(u+v) = T'(u) + T(v).

T(u+v) = T([xhyl] + ['/EQay2])
= T([z1+ 22,91 + y2])
= [(z1+22)% 91 +yo]
= [+ 2z122 + 23,11 + ¥2)

and
T()+T(v) = T(z1,1]) +T([x2,y2])
= [I%yl] + [l‘%, yQ]
= [af + 23,51 +y2]
Since, T(u+ v) # T(u) + T(v), T is not a linear transformation. There is no need to test the
second criteria. However, you could have proved the same thing using the second criteria:

2. We would want to prove T'(cu) = ¢T'(u).

T(cu) = T(c[z1,y1])

= T([cz1,cy1])
[(cx1)?, cyn]
= [c22?, cyi]

and

¢T'(u) cI'([x1,1])
C[I%, yl]
= [ex?, ey

So, T'(cu) # ¢T'(u) either. Thus, again, we would have showed, T' was not a linear transformation.

e Two Simple Linear Transformations:

— Zero Transformation: T': V' — W such that T'(v) =0 for all v in V
— Identity Transformation: T': V' — V such that T'(v) = v for all v in V/

e Theorem: Let T be a linear transformation from V into W, where v and v are in V. Then

1. T(0)=0
2. T(—v) = -T(v)
3. T(u—v)=T(u) —T(v)
4. If
V= C1V1 + CoV3 + ... + CrLUp
then

Tw) =c1T(v1) 4+ 2T (ve) + ... + T (vy)
e Example: Let 7 : ®2 — R3 such that

T([1,0,0]) = [2,4, —1] T7(]0,1,0]) = [1, 3, —2] T7([0,0,1]) = [0, -2, 2]
Find T([-2,4,—1]). Since
[—2,4,—1] = —2[1,0,0] + 4[0, 1,0] — 1[0, 0, 1]
we can say

T([~2,4, —1]) = —27([1,0,0])+4T([0, 1,0])—17(0,0,1]) = —2[2, 4, —1]+4[1, 3, —2]—[0, —2, 2] = [0, 6, —8]



e Theorem: Let A be a mxn matrix. The function T' defined by

T(v) = Av
is a linear transformation from R — R™.
e Examples:
— If T(v) = Av where
1 2
A=1| -2 4
-2 2
then 7' : R2 — R3.
— If T(v) = Av where
-1 2 1 3 4
A= 0 0 2 1 0

then T : R® — R2.

e Standard Matrix: Every linear transformation 7' : R — R™ has a mxn standard matrix A associ-
ated with it where

T(v) = Av

To find the standard matrix, apply T to the basis elements in ™. This produces vectors in " which
become the columns of A:

1 a“ 0 a|2 0 a‘n
0 2 1 aﬂ 0 2n
T :|= LT10|= T i |=
: 0
0 0 1
_am_ _amz _amn_
in R" r st nd last
inRm |1 2 ol
col col
1" a|2 ah
a21 aﬂ aZn
A =
_am| am2 N anm_

For example, let

T([x1,z2,x3]) = [221 + 2 — x5, —x1 + 3T2 — 223, 32 + 4u5]
Then
T([1,0,0]) = [2,-1,0] T([0,1,0]) =[1,3,3] T7([0,0,1]) = [-1,—2,4]
these vectors become the columns of A:
2 1 -1

A= -1 3 =2
0 3 4



e Shortcut Method for Finding the Standard Matrix: Two examples:
1. Let T be the linear transformation from above, i.e.,
T([.’El,,fg, 1‘3]) = [21‘1 + 2o — x3,—x1 + 3T2 — 223,372 + 45(}3]

Then the first, second and third components of the resulting vector w, can be written respectively

as
wp = 2£E1 + o — I3
wy = —x1 + 3x2 — 2x3
w3 = 3rs + 4dx3

Then the standard matrix A is given by the coefficient matrix or the right hand side:

2 1 -1
A=| -1 3 =2
0 3 4
So,
w1 2 1 -1 T
wy | = -1 3 =2 To
w3 0 3 4 T3

2. Example: Let

Since T : #% — N2, A is a 3x2 matrix:

wy, = x — 2y + 0z
wy = 2z + y + 0Oz

So,

e Geometric Operators:

— Reflection Operators:

x Reflection about the y-axis: The schematic of reflection about the y-axis is given below. The
transformation is given by

w = —X
w2 = Yy
with standard matrix
-1 0
=7 ]
(XY hg - A=y

T(v)=w v




x Reflection about the x-axis: The schematic of reflection about the z-axis is given below. The
transformation is given by

w, = X
w2 = -y
with standard matrix
1 0
v Y
T(({)=w 5]

x Reflection about the line y = x: The schematic of reflection about the line y = x is given
below. The transformation is given by

w1 = Yy
wy = T
with standard matrix
0 1
=190

- (4.2)

— Projection Operators:

x Projected onto x-axis: The schematic of projection onto the z-axis is given below. The
transformation is given by

w1 = T
wo = 0
with standard matrix
A 1 0
100



vy

%00

x Projected onto y-azxis: The schematic of projection onto the y-axis is given below. The
transformation is given by

w1 =0
(105} = y
with standard matrix
A - 0 0
101
OV - - oplxy)

* In N3, you can project onto a plane. The standard matrices for the projection is given below.
- Projection onto xy-plane:

100
A=1[10 1 0
|0 0 0 |
- Projection onto xz-plane:
[1 0 0]
A=10 0
|0 0 1 |
- Projection onto yz-plane:
[0 0 0]
A=1(10 1 0
| 0 0 1 |




— Rotation Operator: We can consider rotating through an angle 6.

(wy,w,)

Lo (xy)

If we look at a more detailed depiction of the rotation, as depicted below, we see how we can use
trignometric identities to recover the standard matrix.

(w,w,)
/1
Lo 1)
A
Using trigonometric identities, we have
x = rcos(o)
y = rsin(¢)
and
wy; = rcos(f+¢)
wy = rsin(f+ ¢)

Using trigonometric identities on w; and wy, we have

wy = rcos(f)cos(p) — rsin(f)sin(ep)
wy = rsin(f)cos(d) + rcos(f)sin(g)
which equals
wp = wzcos(f) — ysin(f)
we = xsin(@) + ycos(h)

if we plug in z and y formulas from above. Therefore, the standard matrix is given by

cos(f) —sin(0)
sin(d)  cos(6)



— Dilation and Contraction Operators: We can consider the geometric process of dilating
or contracting vectors. For example, in R2, the contraction of a vector is given below where
0<k<l

(kx,k

w=kv

(xy)
v

If

* 0 < k <1, we have contraction and
* k> 1, we have dilation

In each case, the standard matrix is given by

k 0
-5 2]
In N3, we have the standard matrix
kK 0 0
A=10 k£ 0
0 0 k&

One-to-One linear transformations: In college algebra, we could perform a horizontal line test to
determine if a function was one-to-one, i.e., to determine if an inverse function exists. Similarly, we
say a linear transformation 7' : " — R™ is one-to-one if T maps distincts vectors in R™ into distinct
vectors in ™. In other words, a linear transformation 7' : R” — R™ is one-to-one if for every w in
the range of T, there is ezactly one v in R™ such that T'(v) = w.

Examples:
1. The rotation operator is one-to-one, because there is only one vector v which can be rotated
through an angle 6 to get any vector w.
2. The projection operator is not one-to-one. For example, both [2,4] and [2, —1] can be projected

onto the z-axis and result in the vector [2,0].

Linear system equivalent statements: Recall that for a linear system, the following are equivalent
statements:

1. A is invertible

2. Ax = b is consistent for every nx1 matrix b

3. Ax = b has exactly one solution for every nxl matrix b

Recall, that for every linear transformation 7' : ™ — R™, we can represent the linear transformation

as
T(v) = Av

where A is the mxn standard matrix associated with T. Using the above equivalent statements with
this form of the linear transformation, we have the following theorem.



e Theorem: If A is an nxn matrix and T : R — R™ is given by
T(v) = Av
then the following is equivalent.

1. A is invertible
2. For every w in ", there is some vector v in "™ such that T'(v) = w, i.e., the range of T is R".

3. For every w in R"™, there is a unique vector v in R™ such that T'(v) = w, i.e., T is one-to-one.
e Examples:
1. Rotation Operator: The standard matrix for the rotation operator is given by

cos(f) —sin(6)
sin(d)  cos(0)

To determine if A is invertible, we can find the determinant of A:
|A| = cos®(0) +sin?(f) =1 #0

so A is invertible. Therefore, the range of the rotation operator in %2 is all of R? and it is
one-to-one.

2. Projection Operators: For each projection operator, we can easily show that |A| = 0. Therefore,
the projection operator is not one-to-one.

e Inverse Operator: If T : " — RN™ is a one-to-one transformation given by
T(v) = Av
where A is the standard matrix, then there exists an inverse operator 7! : % — R” and is given by
T ' w)=A"1
e Examples:

1. The standard matrix for the rotation operator through an angle 6 is

[ )]

The inverse operator can be found by rotating back through an angle —#0, i.e.,

N e d

Using trigonometric idenitities, we can see this is the same as

-y )

2. Let
T([x,y]) = 22 + y, 3z + 4y]

(2]

Thus, |A| =5 # 0, so T is one-to-one and has an inverse operator with standard matrix
PR S I I B IV R Vs
50 -3 2 ~3/5  2/5

w1 4 1 _§
5 5

Then T has the standard matrix



e Kernel of T: One of the properties of linear transformations is that
T(0)=0

There may be other vectors v in V' such that T'(v) = 0. The kernel of T is the set of all vectors v in V'
such that
T(v)=0

It is denoted ker(T).
e Example: Let T : R2 — R3 be given by
T([iﬂl,l’g]) = [1’1 — QCEQ, O, 71’1]
To find ker(T), we need to find all vectors v = [z1, 23] in R?, such that T(v) = 0 = [0,0,0] in R3. In
other words,
r1 — 2.%'2 = 0
0 =0
—X1 = 0
The only solution to this system if [0,0]. Thus
ker(T) = {[0,0]} = {0}
e Example: Let T : %% — R? be given by T'(x) = Ax where
1 -1 -2
A= { -1 2 3 ]
To find ker(T'), we need to find all v = [z, z2, 23] such that T'(v) = [0,0]. In other words, we need to

solve the system
1 -1 =2
-1 2 3 |||~

Putting this in augmented form, we have
1 -1 =2 ] 0
-1 2 310

10 -1 1] 0
01 1] 0

Therefore, x3 =t is a free parameter, so the solutions is given by

which reduces to

X t 1
To = —t = -1 t
I3 t 1

Therefore, ker(T) = span({[1,—1,1]}).

e Corollary: If T : * — R™ is given by
T(v) = Av

then ker(T) is equal to the nullspace of A.
e Example: Given T'(v) = Av where

find a basis for ker(T).

Solving the system, we have
1 -2 1 - 10 2
0o 21 0 1 1/2

Therefore, a basis for ker(T) is given by a basis for the nullspace of A: {[-2,—-1/2,1]}.



Example:Given T'(v) = Av where

1 2 01 -1
2 1 3 1 0
A= -1 0 -2 0 1
0 0 0 2 8

find a basis for ker(T).
Ans: {[-2,1,1,0,0],[1,2,0, —4,1]}

Terminology: The dimension of ker(T) is called the nullity of 7. In the previous example, the nullity
of T is 2.

Range of T: The range of T is the set of all vectors w such that T'(v) = w. If T : R — R™ is given
by
T(v) = Av

then the range of T is the column space of A.

Onto: If T: V — W is a linear transformation from a vector space V to a vector space W, then T
is said to be onto (or onto W) if every vector in W is the image of at least one vector in V, i.e., the
range of T = W.

Equivalence Statements for One-to-One, Kernel: If T : V — W is a linear transformation, then
the following are equivalent:

1. T is one-to-one
2. ker(T) = {0}

Equivalence Statements for One-to-One, Kernel, and Onto: If T: V — V is a linear transfor-
mation and V is finite-dimensional, then the following are equivalent:

1. T is one-to-one
2. ker(T) = {0}
3. T is onto

Isomorphism: If a linear transformation 7" : V' — W is both one-to-one and onto, then T is said to
be an isomorphism and the vector spaces V and W are said to be isomorphic.



