Linear Transformations
 Linear Algebra
 MATH 2010

- Functions in College Algebra: Recall in college algebra, functions are denoted by

$$
f(x)=y
$$

where $f: \operatorname{dom}(f) \rightarrow \operatorname{range}(f)$.

- Mappings: In Linear Algebra, we have a similar notion, called a map:

$$
T: V \rightarrow W
$$

where V is the domain of T and W is the codomain of T where both V and W are vector spaces.

- Terminology: If

$$
T(v)=w
$$

then

- w is called the image of v under the mapping T
$-v$ is caled the preimage of w
- the set of all images of vectors in V is called the range of T
- Example: Let

$$
T\left(\left[v_{1}, v_{2}\right]\right)=\left[2 v_{2}-v_{1}, v_{1}, v_{2}\right]
$$

then $T: \Re^{2} \rightarrow \Re^{3}$.

- Find the image of $v=[0,6]$.

$$
T([0,6])=[2(6)-0,0,6]=[12,0,6]
$$

- Findthe preimage of $w=[3,1,2]$.

$$
[3,1,2]=\left[2 v_{1}-v_{1}, v_{1}, v_{2}\right]
$$

which means

$$
\begin{aligned}
2 v_{2}-v_{1} & =3 \\
v_{1} & =1 \\
v_{2} & =2
\end{aligned}
$$

So, $v=[1,2]$.

- Example: Let

$$
T\left(\left[v_{1}, v_{2}, v_{3}\right]\right)=\left[2 v_{1}+v_{2}, v_{1}-v_{2}\right]
$$

Then $T: \Re^{3} \rightarrow \Re^{2}$.

- Find the image of $v=[2,1,4]$:

$$
T([2,1,4])=[2(2)+1,2-1]=[5,1]
$$

- Find the preimage of $w=[-1,2]$

$$
[-1,2]=\left[2 v_{1}+v_{2}, v_{1}-v_{2}\right]
$$

This leads to

$$
\begin{aligned}
2 v_{1}+v_{2} & =-1 \\
v_{1}-v_{2} & =2
\end{aligned}
$$

Recall that you are looking for $v=\left[v_{1}, v_{2}, v_{3}\right]$. So, there are really 3 unknowns in the system:

$$
\begin{aligned}
2 v_{1}+v_{2}+0 v_{3} & =-1 \\
v_{1}-v_{2}+0 v_{3} & =2
\end{aligned}
$$

This leads to the solution

$$
v=\left[\frac{1}{3},-\frac{5}{3}, k\right]
$$

where k is an real number.

- Definition: Let V and W be vector spaces. The function $T: V \rightarrow W$ is called a linear transformation of V into W if the following 2 properties are true for all u and v in V and for any scalar c :

1. $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$
2. $T(c \mathbf{u})=c T(\mathbf{u})$

- Example: Determine whether $T: \Re^{3} \rightarrow \Re^{3}$ defined by

$$
T([x, y, z])=[x+y, x-y, z]
$$

is a linear transformation.

1. Let $u=\left[x_{1}, y_{1}, z_{1}\right]$ and $v=\left[x_{2}, y_{2}, z_{2}\right]$. Then we want to prove $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$.

$$
\begin{aligned}
T(\mathbf{u}+\mathbf{v}) & =T\left(\left[x_{1}, y_{1}, z_{1}\right]+\left[x_{2}, y_{2}, z_{2}\right]\right) \\
& =T\left(\left[x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right]\right) \\
& =\left[x_{1}+x_{2}+y_{1}+y_{2}, x_{1}+x_{2}-\left(y_{1}+y_{2}\right), z_{1}+z_{2}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
T(\mathbf{u})+T(\mathbf{v}) & =T\left(\left[x_{1}, y_{1}, z_{1}\right]\right)+T\left(\left[x_{2}, y_{2}, z_{2}\right]\right) \\
& =\left[x_{1}+y_{1}, x_{1}-y_{1}, z_{1}\right]+\left[x_{2}+y_{2}, x_{2}-y_{2}, z_{2}\right] \\
& =\left[x_{1}+y_{1}+x_{2}+y_{2}, x_{1}-y_{1}+x_{2}-y_{2}, z_{1}+z_{2}\right] \\
& =\left[x_{1}+x_{2}+y_{1}+y_{2}, x_{1}+x_{2}-\left(y_{1}+y_{2}\right), z_{1}+z_{2}\right]
\end{aligned}
$$

Therefore, $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$.
2. We want to prove $T(c \mathbf{u})=c T(\mathbf{u})$.

$$
\begin{aligned}
T(c \mathbf{u}) & =T\left(c\left[x_{1}, y_{1}, z_{1}\right]\right) \\
& =T\left(\left[c x_{1}, c y_{1}, c z_{1}\right]\right) \\
& =\left[c x_{1}+c y_{1}, c x_{1}-c y_{1}, c z_{1}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
c T(\mathbf{u}) & =c T\left(\left[x_{1}, y_{1}, z_{1}\right]\right) \\
& =c\left[x_{1}+y_{1}, x_{1}-y_{1}, z_{1}\right] \\
& =\left[c\left(x_{1}+y_{1}\right), c\left(x_{1}-y_{1}\right), c z_{1}\right] \\
& =\left[c x_{1}+c y_{1}, c x_{1}-c y_{1}, c z_{1}\right]
\end{aligned}
$$

So, $T(c \mathbf{u})=c T(\mathbf{u})$.

Therefore, T is a linear transformation.

- Example: Determine whether $T: \Re^{2} \rightarrow \Re^{2}$ defined by

$$
T([x, y])=\left[x^{2}, y\right]
$$

is a linear transformation.

1. Let $u=\left[x_{1}, y_{1}\right]$ and $v=\left[x_{2}, y_{2}\right]$. Then we want to prove $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$.

$$
\begin{aligned}
T(\mathbf{u}+\mathbf{v}) & =T\left(\left[x_{1}, y_{1}\right]+\left[x_{2}, y_{2}\right]\right) \\
& =T\left(\left[x_{1}+x_{2}, y_{1}+y_{2}\right]\right) \\
& =\left[\left(x_{1}+x_{2}\right)^{2}, y_{1}+y_{2}\right] \\
& =\left[x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}, y_{1}+y_{2}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
T(\mathbf{u})+T(\mathbf{v}) & =T\left(\left[x_{1}, y_{1}\right]\right)+T\left(\left[x_{2}, y_{2}\right]\right) \\
& =\left[x_{1}^{2}, y_{1}\right]+\left[x_{2}^{2}, y_{2}\right] \\
& =\left[x_{1}^{2}+x_{2}^{2}, y_{1}+y_{2}\right]
\end{aligned}
$$

Since, $T(\mathbf{u}+\mathbf{v}) \neq T(\mathbf{u})+T(\mathbf{v}), T$ is not a linear transformation. There is no need to test the second criteria. However, you could have proved the same thing using the second criteria:
2. We would want to prove $T(c \mathbf{u})=c T(\mathbf{u})$.

$$
\begin{aligned}
T(c \mathbf{u}) & =T\left(c\left[x_{1}, y_{1}\right]\right) \\
& =T\left(\left[c x_{1}, c y_{1}\right]\right) \\
& =\left[\left(c x_{1}\right)^{2}, c y_{1}\right] \\
& =\left[c^{2} x_{1}^{2}, c y_{1}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
c T(\mathbf{u}) & =c T\left(\left[x_{1}, y_{1}\right]\right) \\
& =c\left[x_{1}^{2}, y_{1}\right] \\
& =\left[c x_{1}^{2}, c y_{1}\right]
\end{aligned}
$$

So, $T(c \mathbf{u}) \neq c T(\mathbf{u})$ either. Thus, again, we would have showed, T was not a linear transformation.

- Two Simple Linear Transformations:
- Zero Transformation: $T: V \rightarrow W$ such that $T(v)=0$ for all v in V
- Identity Transformation: $T: V \rightarrow V$ such that $T(v)=v$ for all v in V
- Theorem: Let T be a linear transformation from V into W, where u and v are in V. Then

1. $T(0)=0$
2. $T(-v)=-T(v)$
3. $T(u-v)=T(u)-T(v)$
4. If

$$
v=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}
$$

then

$$
T(v)=c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+\ldots+c_{n} T\left(v_{n}\right)
$$

- Example: Let $T: \Re^{3} \rightarrow \Re^{3}$ such that

$$
T([1,0,0])=[2,4,-1] \quad T([0,1,0])=[1,3,-2] \quad T([0,0,1])=[0,-2,2]
$$

Find $T([-2,4,-1])$. Since

$$
[-2,4,-1]=-2[1,0,0]+4[0,1,0]-1[0,0,1]
$$

we can say

$$
T([-2,4,-1])=-2 T([1,0,0])+4 T([0,1,0])-1 T([0,0,1])=-2[2,4,-1]+4[1,3,-2]-[0,-2,2]=[0,6,-8]
$$

- Theorem: Let A be a $m x n$ matrix. The function T defined by

$$
T(v)=A v
$$

is a linear transformation from $\Re^{n} \rightarrow \Re^{m}$.

- Examples:

- If $T(v)=A v$ where

$$
A=\left[\begin{array}{rr}
1 & 2 \\
-2 & 4 \\
-2 & 2
\end{array}\right]
$$

then $T: \Re^{2} \rightarrow \Re^{3}$.

- If $T(v)=A v$ where

$$
A=\left[\begin{array}{rrrrr}
-1 & 2 & 1 & 3 & 4 \\
0 & 0 & 2 & -1 & 0
\end{array}\right]
$$

then $T: \Re^{5} \rightarrow \Re^{2}$.

- Standard Matrix: Every linear transformation $T: \Re^{n} \rightarrow \Re^{m}$ has a $m \mathrm{x} n$ standard matrix A associated with it where

$$
T(v)=A v
$$

To find the standard matrix, apply T to the basis elements in \Re^{n}. This produces vectors in \Re^{m} which become the columns of A :

For example, let

$$
T\left(\left[x_{1}, x_{2}, x_{3}\right]\right)=\left[2 x_{1}+x_{2}-x_{3},-x_{1}+3 x_{2}-2 x_{3}, 3 x_{2}+4 x_{3}\right]
$$

Then

$$
T([1,0,0])=[2,-1,0] \quad T([0,1,0])=[1,3,3] \quad T([0,0,1])=[-1,-2,4]
$$

these vectors become the columns of A :

$$
A=\left[\begin{array}{rrr}
2 & 1 & -1 \\
-1 & 3 & -2 \\
0 & 3 & 4
\end{array}\right]
$$

- Shortcut Method for Finding the Standard Matrix: Two examples:

1. Let T be the linear transformation from above, i.e.,

$$
T\left(\left[x_{1}, x_{2}, x_{3}\right]\right)=\left[2 x_{1}+x_{2}-x_{3},-x_{1}+3 x_{2}-2 x_{3}, 3 x_{2}+4 x_{3}\right]
$$

Then the first, second and third components of the resulting vector w, can be written respectively as

$$
\begin{array}{r}
w_{1}=2 x_{1}+r x_{2}-x_{3} \\
w_{2}=-x_{1}+3 x_{2}-2 x_{3} \\
w_{3}=
\end{array}
$$

Then the standard matrix A is given by the coefficient matrix or the right hand side:

$$
A=\left[\begin{array}{rrr}
2 & 1 & -1 \\
-1 & 3 & -2 \\
0 & 3 & 4
\end{array}\right]
$$

So,

$$
\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]=\left[\begin{array}{rrr}
2 & 1 & -1 \\
-1 & 3 & -2 \\
0 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

2. Example: Let

$$
T([x, y, z])=[x-2 y, 2 x+y]
$$

Since $T: \Re^{3} \rightarrow \Re^{2}, A$ is a 3×2 matrix:

$$
\begin{array}{r}
w_{1}=x-2 y+0 z \\
w_{2}=2 x+y+0 z
\end{array}
$$

So,

$$
A=\left[\begin{array}{rrr}
1 & -2 & 0 \\
2 & 1 & 0
\end{array}\right]
$$

- Geometric Operators:

- Reflection Operators:

* Reflection about the y-axis: The schematic of reflection about the y-axis is given below. The transformation is given by

$$
\begin{aligned}
w_{1} & =-x \\
w_{2} & =y
\end{aligned}
$$

with standard matrix

$$
A=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

* Reflection about the x-axis: The schematic of reflection about the x-axis is given below. The transformation is given by

$$
\begin{array}{rlr}
w_{1} & =x \\
w_{2} & =-y
\end{array}
$$

with standard matrix

$$
A=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

* Reflection about the line $y=x$: The schematic of reflection about the line $y=x$ is given below. The transformation is given by

$$
\begin{aligned}
& w_{1}=y \\
& w_{2}=x
\end{aligned}
$$

with standard matrix

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

- Projection Operators:
* Projected onto x-axis: The schematic of projection onto the x-axis is given below. The transformation is given by

$$
\begin{aligned}
& w_{1}=x \\
& w_{2}=0
\end{aligned}
$$

with standard matrix

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

* Projected onto y-axis: The schematic of projection onto the y-axis is given below. The transformation is given by

$$
\begin{aligned}
& w_{1}=0 \\
& w_{2}=y
\end{aligned}
$$

with standard matrix

$$
A=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

* In \Re^{3}, you can project onto a plane. The standard matrices for the projection is given below.
- Projection onto xy-plane:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- Projection onto $x z$-plane:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Projection onto yz-plane:

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Rotation Operator: We can consider rotating through an angle θ.

If we look at a more detailed depiction of the rotation, as depicted below, we see how we can use trignometric identities to recover the standard matrix.

Using trigonometric identities, we have

$$
\begin{aligned}
& x=r \cos (\phi) \\
& y=r \sin (\phi)
\end{aligned}
$$

and

$$
\begin{aligned}
& w_{1}=r \cos (\theta+\phi) \\
& w_{2}=r \sin (\theta+\phi)
\end{aligned}
$$

Using trigonometric identities on w_{1} and w_{2}, we have

$$
\begin{aligned}
& w_{1}=r \cos (\theta) \cos (\phi)-r \sin (\theta) \sin (\phi) \\
& w_{2}=r \sin (\theta) \cos (\phi)+r \cos (\theta) \sin (\phi)
\end{aligned}
$$

which equals

$$
\begin{aligned}
& w_{1}=x \cos (\theta)-y \sin (\theta) \\
& w_{2}=x \sin (\theta)+y \cos (\theta)
\end{aligned}
$$

if we plug in x and y formulas from above. Therefore, the standard matrix is given by

$$
A=\left[\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

- Dilation and Contraction Operators: We can consider the geometric process of dilating or contracting vectors. For example, in \Re^{2}, the contraction of a vector is given below where $0<k<1$.

If

* $0<k<1$, we have contraction and
* $k>1$, we have dilation

In each case, the standard matrix is given by

$$
A=\left[\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right]
$$

In \Re^{3}, we have the standard matrix

$$
A=\left[\begin{array}{lll}
k & 0 & 0 \\
0 & k & 0 \\
0 & 0 & k
\end{array}\right]
$$

- One-to-One linear transformations: In college algebra, we could perform a horizontal line test to determine if a function was one-to-one, i.e., to determine if an inverse function exists. Similarly, we say a linear transformation $T: \Re^{n} \rightarrow \Re^{m}$ is one-to-one if T maps distincts vectors in \Re^{n} into distinct vectors in \Re^{m}. In other words, a linear transformation $T: \Re^{n} \rightarrow \Re^{m}$ is one-to-one if for every w in the range of T, there is exactly one v in \Re^{n} such that $T(v)=w$.
- Examples:

1. The rotation operator is one-to-one, because there is only one vector v which can be rotated through an angle θ to get any vector w.
2. The projection operator is not one-to-one. For example, both $[2,4]$ and $[2,-1]$ can be projected onto the x-axis and result in the vector $[2,0]$.

- Linear system equivalent statements: Recall that for a linear system, the following are equivalent statements:

1. A is invertible
2. $A x=b$ is consistent for every $n \times 1$ matrix b
3. $A x=b$ has exactly one solution for every $n \mathrm{x} 1$ matrix b

- Recall, that for every linear transformation $T: \Re^{n} \rightarrow \Re^{m}$, we can represent the linear transformation as

$$
T(v)=A v
$$

where A is the $m \times n$ standard matrix associated with T. Using the above equivalent statements with this form of the linear transformation, we have the following theorem.

- Theorem: If A is an $n \mathrm{x} n$ matrix and $T: \Re^{n} \rightarrow \Re^{n}$ is given by

$$
T(v)=A v
$$

then the following is equivalent.

1. A is invertible
2. For every w in \Re^{n}, there is some vector v in \Re^{n} such that $T(v)=w$, i.e., the range of T is \Re^{n}.
3. For every w in \Re^{n}, there is a unique vector v in \Re^{n} such that $T(v)=w$, i.e., T is one-to-one.

- Examples:

1. Rotation Operator: The standard matrix for the rotation operator is given by

$$
A=\left[\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

To determine if A is invertible, we can find the determinant of A :

$$
|A|=\cos ^{2}(\theta)+\sin ^{2}(\theta)=1 \neq 0
$$

so A is invertible. Therefore, the range of the rotation operator in \Re^{2} is all of \Re^{2} and it is one-to-one.
2. Projection Operators: For each projection operator, we can easily show that $|A|=0$. Therefore, the projection operator is not one-to-one.

- Inverse Operator: If $T: \Re^{n} \rightarrow \Re^{n}$ is a one-to-one transformation given by

$$
T(v)=A v
$$

where A is the standard matrix, then there exists an inverse operator $T^{-1}: \Re^{n} \rightarrow \Re^{n}$ and is given by

$$
T^{-1}(w)=A^{-1} v
$$

- Examples:

1. The standard matrix for the rotation operator through an angle θ is

$$
A=\left[\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

The inverse operator can be found by rotating back through an angle $-\theta$, i.e.,

$$
A=\left[\begin{array}{rr}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos (-\theta)
\end{array}\right]
$$

Using trigonometric idenitities, we can see this is the same as

$$
A^{-1}=\left[\begin{array}{rr}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

2. Let

$$
T([x, y])=[2 x+y, 3 x+4 y]
$$

Then T has the standard matrix

$$
A=\left[\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right]
$$

Thus, $|A|=5 \neq 0$, so T is one-to-one and has an inverse operator with standard matrix

$$
A^{-1}=\frac{1}{5}\left[\begin{array}{rr}
4 & -1 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{rr}
4 / 5 & -1 / 5 \\
-3 / 5 & 2 / 5
\end{array}\right]
$$

So, the inverse operator is given by

$$
T^{-1}(w)=A^{-1}\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\frac{4}{5} w_{1}-\frac{1}{5} w_{2},-\frac{3}{5} w_{1}+\frac{2}{5} w_{2}\right]
$$

- Kernel of T : One of the properties of linear transformations is that

$$
T(0)=0
$$

There may be other vectors v in V such that $T(v)=0$. The kernel of T is the set of all vectors v in V such that

$$
T(v)=0
$$

It is denoted $\operatorname{ker}(T)$.

- Example: Let $T: \Re^{2} \rightarrow \Re^{3}$ be given by

$$
T\left(\left[x_{1}, x_{2}\right]\right)=\left[x_{1}-2 x_{2}, 0,-x_{1}\right]
$$

To find $\operatorname{ker}(T)$, we need to find all vectors $v=\left[x_{1}, x_{2}\right]$ in \Re^{2}, such that $T(v)=0=[0,0,0]$ in \Re^{3}. In other words,

$$
\begin{aligned}
x_{1}-2 x_{2} & =0 \\
0 & =0 \\
-x_{1} & =0
\end{aligned}
$$

The only solution to this system if $[0,0]$. Thus

$$
\operatorname{ker}(T)=\{[0,0]\}=\{\mathbf{0}\}
$$

- Example: Let $T: \Re^{3} \rightarrow \Re^{2}$ be given by $T(x)=A x$ where

$$
A=\left[\begin{array}{rrr}
1 & -1 & -2 \\
-1 & 2 & 3
\end{array}\right]
$$

To find $\operatorname{ker}(T)$, we need to find all $v=\left[x_{1}, x_{2}, x_{3}\right]$ such that $T(v)=[0,0]$. In other words, we need to solve the system

$$
\left[\begin{array}{rrr}
1 & -1 & -2 \\
-1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Putting this in augmented form, we have

$$
\left[\begin{array}{rrr|r}
1 & -1 & -2 & 0 \\
-1 & 2 & 3 & 0
\end{array}\right]
$$

which reduces to

$$
\left[\begin{array}{rrr|r}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

Therefore, $x_{3}=t$ is a free parameter, so the solutions is given by

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] t
$$

Therefore, $\operatorname{ker}(T)=\operatorname{span}(\{[1,-1,1]\})$.

- Corollary: If $T: \Re^{n} \rightarrow \Re^{m}$ is given by

$$
T(v)=A v
$$

then $\operatorname{ker}(T)$ is equal to the nullspace of A.

- Example: Given $T(v)=A v$ where

$$
A=\left[\begin{array}{rrr}
1 & -2 & 1 \\
0 & 2 & 1
\end{array}\right]
$$

find a basis for $\operatorname{ker}(T)$.
Solving the system, we have

$$
\left[\begin{array}{rrr}
1 & -2 & 1 \\
0 & 2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & 1 & 1 / 2
\end{array}\right]
$$

Therefore, a basis for $\operatorname{ker}(T)$ is given by a basis for the nullspace of $A:\{[-2,-1 / 2,1]\}$.

- Example:Given $T(v)=A v$ where

$$
A=\left[\begin{array}{rrrrr}
1 & 2 & 0 & 1 & -1 \\
2 & 1 & 3 & 1 & 0 \\
-1 & 0 & -2 & 0 & 1 \\
0 & 0 & 0 & 2 & 8
\end{array}\right]
$$

find a basis for $\operatorname{ker}(T)$.
Ans: $\{[-2,1,1,0,0],[1,2,0,-4,1]\}$

- Terminology: The dimension of $\operatorname{ker}(T)$ is called the nullity of T. In the previous example, the nullity of T is 2 .
- Range of T : The range of T is the set of all vectors w such that $T(v)=w$. If $T: \Re^{n} \rightarrow \Re^{m}$ is given by

$$
T(v)=A v
$$

then the range of T is the column space of A.

- Onto: If $T: V \rightarrow W$ is a linear transformation from a vector space V to a vector space W, then T is said to be onto (or onto W) if every vector in W is the image of at least one vector in V, i.e., the range of $T=W$.
- Equivalence Statements for One-to-One, Kernel: If $T: V \rightarrow W$ is a linear transformation, then the following are equivalent:

1. T is one-to-one
2. $\operatorname{ker}(T)=\{0\}$

- Equivalence Statements for One-to-One, Kernel, and Onto: If $T: V \rightarrow V$ is a linear transformation and V is finite-dimensional, then the following are equivalent:

1. T is one-to-one
2. $\operatorname{ker}(T)=\{0\}$
3. T is onto

- Isomorphism: If a linear transformation $T: V \rightarrow W$ is both one-to-one and onto, then T is said to be an isomorphism and the vector spaces V and W are said to be isomorphic.

