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• Functions in College Algebra: Recall in college algebra, functions are denoted by

f(x) = y

where f : dom(f)→ range(f).

• Mappings: In Linear Algebra, we have a similar notion, called a map:

T : V →W

where V is the domain of T and W is the codomain of T where both V and W are vector spaces.

• Terminology: If
T (v) = w

then

– w is called the image of v under the mapping T

– v is caled the preimage of w

– the set of all images of vectors in V is called the range of T

• Example: Let
T ([v1, v2]) = [2v2 − v1, v1, v2]

then T : <2 → <3.

– Find the image of v = [0, 6].

T ([0, 6]) = [2(6)− 0, 0, 6] = [12, 0, 6]

– Findthe preimage of w = [3, 1, 2].

[3, 1, 2] = [2v1 − v1, v1, v2]

which means
2v2 − v1 = 3

v1 = 1
v2 = 2

So, v = [1, 2].



• Example: Let
T ([v1, v2, v3]) = [2v1 + v2, v1 − v2]

Then T : <3 → <2.

– Find the image of v = [2, 1, 4]:

T ([2, 1, 4]) = [2(2) + 1, 2− 1] = [5, 1]

– Find the preimage of w = [−1, 2]

[−1, 2] = [2v1 + v2, v1 − v2]

This leads to
2v1 + v2 = −1
v1 − v2 = 2

Recall that you are looking for v = [v1, v2, v3]. So, there are really 3 unknowns in the system:

2v1 + v2 + 0v3 = −1
v1 − v2 + 0v3 = 2

This leads to the solution
v = [

1
3
,−5

3
, k]

where k is an real number.

• Definition: Let V and W be vector spaces. The function T : V →W is called a linear transformation
of V into W if the following 2 properties are true for all u and v in V and for any scalar c:

1. T (u + v) = T (u) + T (v)

2. T (cu) = cT (u)

• Example: Determine whether T : <3 → <3 defined by

T ([x, y, z]) = [x+ y, x− y, z]

is a linear transformation.

1. Let u = [x1, y1, z1] and v = [x2, y2, z2]. Then we want to prove T (u + v) = T (u) + T (v).

T (u + v) = T ([x1, y1, z1] + [x2, y2, z2])
= T ([x1 + x2, y1 + y2, z1 + z2])
= [x1 + x2 + y1 + y2, x1 + x2 − (y1 + y2), z1 + z2]

and
T (u) + T (v) = T ([x1, y1, z1]) + T ([x2, y2, z2])

= [x1 + y1, x1 − y1, z1] + [x2 + y2, x2 − y2, z2]
= [x1 + y1 + x2 + y2, x1 − y1 + x2 − y2, z1 + z2]
= [x1 + x2 + y1 + y2, x1 + x2 − (y1 + y2), z1 + z2]

Therefore, T (u + v) = T (u) + T (v).

2. We want to prove T (cu) = cT (u).

T (cu) = T (c[x1, y1, z1])
= T ([cx1, cy1, cz1])
= [cx1 + cy1, cx1 − cy1, cz1]

and
cT (u) = cT ([x1, y1, z1])

= c[x1 + y1, x1 − y1, z1]
= [c(x1 + y1), c(x1 − y1), cz1]
= [cx1 + cy1, cx1 − cy1, cz1]

So, T (cu) = cT (u).



Therefore, T is a linear transformation.

• Example: Determine whether T : <2 → <2 defined by

T ([x, y]) = [x2, y]

is a linear transformation.

1. Let u = [x1, y1] and v = [x2, y2]. Then we want to prove T (u + v) = T (u) + T (v).

T (u + v) = T ([x1, y1] + [x2, y2])
= T ([x1 + x2, y1 + y2])
= [(x1 + x2)2, y1 + y2]
= [x2

1 + 2x1x2 + x2
2, y1 + y2]

and
T (u) + T (v) = T ([x1, y1]) + T ([x2, y2])

= [x2
1, y1] + [x2

2, y2]
= [x2

1 + x2
2, y1 + y2]

Since, T (u + v) 6= T (u) + T (v), T is not a linear transformation. There is no need to test the
second criteria. However, you could have proved the same thing using the second criteria:

2. We would want to prove T (cu) = cT (u).

T (cu) = T (c[x1, y1])
= T ([cx1, cy1])
= [(cx1)2, cy1]
= [c2x2

1, cy1]

and
cT (u) = cT ([x1, y1])

= c[x2
1, y1]

= [cx2
1, cy1]

So, T (cu) 6= cT (u) either. Thus, again, we would have showed, T was not a linear transformation.

• Two Simple Linear Transformations:

– Zero Transformation: T : V →W such that T (v) = 0 for all v in V

– Identity Transformation: T : V → V such that T (v) = v for all v in V

• Theorem: Let T be a linear transformation from V into W , where u and v are in V . Then

1. T (0) = 0

2. T (−v) = −T (v)

3. T (u− v) = T (u)− T (v)

4. If
v = c1v1 + c2v2 + ...+ cnvn

then
T (v) = c1T (v1) + c2T (v2) + ...+ cnT (vn)

• Example: Let T : <3 → <3 such that

T ([1, 0, 0]) = [2, 4,−1] T ([0, 1, 0]) = [1, 3,−2] T ([0, 0, 1]) = [0,−2, 2]

Find T ([−2, 4,−1]). Since

[−2, 4,−1] = −2[1, 0, 0] + 4[0, 1, 0]− 1[0, 0, 1]

we can say

T ([−2, 4,−1]) = −2T ([1, 0, 0])+4T ([0, 1, 0])−1T ([0, 0, 1]) = −2[2, 4,−1]+4[1, 3,−2]−[0,−2, 2] = [0, 6,−8]



• Theorem: Let A be a mxn matrix. The function T defined by

T (v) = Av

is a linear transformation from <n → <m.

• Examples:

– If T (v) = Av where

A =

 1 2
−2 4
−2 2


then T : <2 → <3.

– If T (v) = Av where

A =
[
−1 2 1 3 4

0 0 2 −1 0

]
then T : <5 → <2.

• Standard Matrix: Every linear transformation T : <n → <m has a mxn standard matrix A associ-
ated with it where

T (v) = Av

To find the standard matrix, apply T to the basis elements in <n. This produces vectors in <m which
become the columns of A:

For example, let

T ([x1, x2, x3]) = [2x1 + x2 − x3,−x1 + 3x2 − 2x3, 3x2 + 4x3]

Then
T ([1, 0, 0]) = [2,−1, 0] T ([0, 1, 0]) = [1, 3, 3] T ([0, 0, 1]) = [−1,−2, 4]

these vectors become the columns of A:

A =

 2 1 −1
−1 3 −2

0 3 4





• Shortcut Method for Finding the Standard Matrix: Two examples:

1. Let T be the linear transformation from above, i.e.,

T ([x1, x2, x3]) = [2x1 + x2 − x3,−x1 + 3x2 − 2x3, 3x2 + 4x3]

Then the first, second and third components of the resulting vector w, can be written respectively
as

w1 = 2x1 + x2 − x3

w2 = −x1 + 3x2 − 2x3

w3 = 3x2 + 4x3

Then the standard matrix A is given by the coefficient matrix or the right hand side:

A =

 2 1 −1
−1 3 −2

0 3 4


So,  w1

w2

w3

 =

 2 1 −1
−1 3 −2

0 3 4

 x1

x2

x3


2. Example: Let

T ([x, y, z]) = [x− 2y, 2x+ y]

Since T : <3 → <2, A is a 3x2 matrix:

w1 = x − 2y + 0z
w2 = 2x + y + 0z

So,

A =
[

1 −2 0
2 1 0

]
• Geometric Operators:

– Reflection Operators:

∗ Reflection about the y-axis: The schematic of reflection about the y-axis is given below. The
transformation is given by

w1 = −x
w2 = y

with standard matrix

A =
[
−1 0

0 1

]



∗ Reflection about the x-axis: The schematic of reflection about the x-axis is given below. The
transformation is given by

w1 = x
w2 = −y

with standard matrix

A =
[

1 0
0 −1

]

∗ Reflection about the line y = x: The schematic of reflection about the line y = x is given
below. The transformation is given by

w1 = y
w2 = x

with standard matrix

A =
[

0 1
1 0

]

– Projection Operators:

∗ Projected onto x-axis: The schematic of projection onto the x-axis is given below. The
transformation is given by

w1 = x
w2 = 0

with standard matrix

A =
[

1 0
0 0

]



∗ Projected onto y-axis: The schematic of projection onto the y-axis is given below. The
transformation is given by

w1 = 0
w2 = y

with standard matrix

A =
[

0 0
0 1

]

∗ In <3, you can project onto a plane. The standard matrices for the projection is given below.
· Projection onto xy-plane:

A =

 1 0 0
0 1 0
0 0 0


· Projection onto xz-plane:

A =

 1 0 0
0 0 0
0 0 1


· Projection onto yz-plane:

A =

 0 0 0
0 1 0
0 0 1





– Rotation Operator: We can consider rotating through an angle θ.

If we look at a more detailed depiction of the rotation, as depicted below, we see how we can use
trignometric identities to recover the standard matrix.

Using trigonometric identities, we have

x = r cos(φ)
y = r sin(φ)

and
w1 = r cos(θ + φ)
w2 = r sin(θ + φ)

Using trigonometric identities on w1 and w2, we have

w1 = r cos(θ) cos(φ) − r sin(θ) sin(φ)
w2 = r sin(θ) cos(φ) + r cos(θ) sin(φ)

which equals
w1 = x cos(θ) − y sin(θ)
w2 = x sin(θ) + y cos(θ)

if we plug in x and y formulas from above. Therefore, the standard matrix is given by

A =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]



– Dilation and Contraction Operators: We can consider the geometric process of dilating
or contracting vectors. For example, in <2, the contraction of a vector is given below where
0 < k < 1.

If

∗ 0 < k < 1, we have contraction and
∗ k > 1, we have dilation

In each case, the standard matrix is given by

A =
[
k 0
0 k

]
In <3, we have the standard matrix

A =

 k 0 0
0 k 0
0 0 k


• One-to-One linear transformations: In college algebra, we could perform a horizontal line test to

determine if a function was one-to-one, i.e., to determine if an inverse function exists. Similarly, we
say a linear transformation T : <n → <m is one-to-one if T maps distincts vectors in <n into distinct
vectors in <m. In other words, a linear transformation T : <n → <m is one-to-one if for every w in
the range of T , there is exactly one v in <n such that T (v) = w.

• Examples:

1. The rotation operator is one-to-one, because there is only one vector v which can be rotated
through an angle θ to get any vector w.

2. The projection operator is not one-to-one. For example, both [2, 4] and [2,−1] can be projected
onto the x-axis and result in the vector [2, 0].

• Linear system equivalent statements: Recall that for a linear system, the following are equivalent
statements:

1. A is invertible

2. Ax = b is consistent for every nx1 matrix b

3. Ax = b has exactly one solution for every nx1 matrix b

• Recall, that for every linear transformation T : <n → <m, we can represent the linear transformation
as

T (v) = Av

where A is the mxn standard matrix associated with T . Using the above equivalent statements with
this form of the linear transformation, we have the following theorem.



• Theorem: If A is an nxn matrix and T : <n → <n is given by

T (v) = Av

then the following is equivalent.

1. A is invertible
2. For every w in <n, there is some vector v in <n such that T (v) = w, i.e., the range of T is <n.
3. For every w in <n, there is a unique vector v in <n such that T (v) = w, i.e., T is one-to-one.

• Examples:

1. Rotation Operator: The standard matrix for the rotation operator is given by

A =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
To determine if A is invertible, we can find the determinant of A:

|A| = cos2(θ) + sin2(θ) = 1 6= 0

so A is invertible. Therefore, the range of the rotation operator in <2 is all of <2 and it is
one-to-one.

2. Projection Operators: For each projection operator, we can easily show that |A| = 0. Therefore,
the projection operator is not one-to-one.

• Inverse Operator: If T : <n → <n is a one-to-one transformation given by

T (v) = Av

where A is the standard matrix, then there exists an inverse operator T−1 : <n → <n and is given by

T−1(w) = A−1v

• Examples:

1. The standard matrix for the rotation operator through an angle θ is

A =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
The inverse operator can be found by rotating back through an angle −θ, i.e.,

A =
[

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]
Using trigonometric idenitities, we can see this is the same as

A−1 =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
2. Let

T ([x, y]) = [2x+ y, 3x+ 4y]

Then T has the standard matrix

A =
[

2 1
3 4

]
Thus, |A| = 5 6= 0, so T is one-to-one and has an inverse operator with standard matrix

A−1 =
1
5

[
4 −1
−3 2

]
=
[

4/5 −1/5
−3/5 2/5

]
So, the inverse operator is given by

T−1(w) = A−1

[
w1

w2

]
= [

4
5
w1 −

1
5
w2,−

3
5
w1 +

2
5
w2]



• Kernel of T : One of the properties of linear transformations is that

T (0) = 0

There may be other vectors v in V such that T (v) = 0. The kernel of T is the set of all vectors v in V
such that

T (v) = 0

It is denoted ker(T ).

• Example: Let T : <2 → <3 be given by

T ([x1, x2]) = [x1 − 2x2, 0,−x1]

To find ker(T ), we need to find all vectors v = [x1, x2] in <2, such that T (v) = 0 = [0, 0, 0] in <3. In
other words,

x1 − 2x2 = 0
0 = 0

−x1 = 0

The only solution to this system if [0, 0]. Thus

ker(T ) = {[0, 0]} = {0}

• Example: Let T : <3 → <2 be given by T (x) = Ax where

A =
[

1 −1 −2
−1 2 3

]
To find ker(T ), we need to find all v = [x1, x2, x3] such that T (v) = [0, 0]. In other words, we need to
solve the system [

1 −1 −2
−1 2 3

] x1

x2

x3

 =
[

0
0

]
Putting this in augmented form, we have[

1 −1 −2 | 0
−1 2 3 | 0

]
which reduces to [

1 0 −1 | 0
0 1 1 | 0

]
Therefore, x3 = t is a free parameter, so the solutions is given by x1

x2

x3

 =

 t
−t
t

 =

 1
−1

1

 t
Therefore, ker(T ) = span({[1,−1, 1]}).

• Corollary: If T : <n → <m is given by
T (v) = Av

then ker(T ) is equal to the nullspace of A.

• Example: Given T (v) = Av where

A =
[

1 −2 1
0 2 1

]
find a basis for ker(T ).

Solving the system, we have [
1 −2 1
0 2 1

]
→
[

1 0 2
0 1 1/2

]
Therefore, a basis for ker(T ) is given by a basis for the nullspace of A: {[−2,−1/2, 1]}.



• Example:Given T (v) = Av where

A =


1 2 0 1 −1
2 1 3 1 0
−1 0 −2 0 1

0 0 0 2 8


find a basis for ker(T ).

Ans: {[−2, 1, 1, 0, 0], [1, 2, 0,−4, 1]}

• Terminology: The dimension of ker(T ) is called the nullity of T . In the previous example, the nullity
of T is 2.

• Range of T : The range of T is the set of all vectors w such that T (v) = w. If T : <n → <m is given
by

T (v) = Av

then the range of T is the column space of A.

• Onto: If T : V → W is a linear transformation from a vector space V to a vector space W , then T
is said to be onto (or onto W ) if every vector in W is the image of at least one vector in V , i.e., the
range of T = W .

• Equivalence Statements for One-to-One, Kernel: If T : V →W is a linear transformation, then
the following are equivalent:

1. T is one-to-one

2. ker(T ) = {0}

• Equivalence Statements for One-to-One, Kernel, and Onto: If T : V → V is a linear transfor-
mation and V is finite-dimensional, then the following are equivalent:

1. T is one-to-one

2. ker(T ) = {0}
3. T is onto

• Isomorphism: If a linear transformation T : V → W is both one-to-one and onto, then T is said to
be an isomorphism and the vector spaces V and W are said to be isomorphic.


