

# Linking Air Pollution Mitigation and **Energy Strategies**

Air Quality and Climate Change Policies: Separate or Joint Challenges? 21 May 2013 – Brussels

Presented by Ken Colburn, Senior Associate

#### **Presentation Overview**

- 1. Introductory Framing
- 2. Illustrations of Co-Benefits
- 3. IMPEAQ Multi-pollutant Planning Process
- 4. Initial US Experience with Integrated Multi-Pollutant Planning
- 5. Conclusions

# 1. Introductory Framing (1)

- We *breathe* on an integrated basis, so we should *plan* and *regulate* on an integrated basis
- Little progress will be made if AQ, energy, and climate regulators:
  - Do not talk to each other
  - Choose to remain ignorant of important aspects of each other's area of responsibility
  - Are prohibited from considering each other's goals by legal, institutional, or political boundaries

# 1. Introductory Framing (2)

At least 3 advantages to integrating Air Quality (AQ), Energy, and Climate Change policy:

- 1. Lower costs
- 2. Fewer trade-offs
- 3. More co-benefits

| Degree of Integration   | Resulting Interactions   | Financial Character     |  |  |
|-------------------------|--------------------------|-------------------------|--|--|
| 3 Separate Policy Areas | Conflicts and Trade-Offs | Costs & Countermeasures |  |  |
| 1 Integrated Policy     | Synergies & Co-Benefits  | Investments             |  |  |

### 2. Illustrations of Co-Benefits

# Multi-Pollutant Measures (e.g., EE) Offer Extraordinary Co-Benefits



US\$ / MWh

(Source: RAP, 2012, Vermont Data)

#### **Synergistic Effects of Multipollutant Planning**<sup>67</sup>



#### **GHG Emission Control Measures**

- Increase energy efficiency of the general public
- Increase energy efficiency of industrial production
- Implement cogeneration
- Reduce power consumption and develop renewable energy sources

#### Air Pollution Control Measures

- PM control for the general public
- PM control for large production plants
- NO<sub>x</sub> control for large production plants
- SO<sub>2</sub> control for large production plants

# Synergistic Effects of a Multi-Pollutant Approach Offer Economic Benefits

Design Task: Reduce air pollution health impacts by 50%.

(Source: Based upon Bollen et al, 2009 cited in RAP 2012, Integrating Energy and Environmental Policy)

and environment.

# **EE Impacts in ISO-NE Forecasts**



These results have already led to the cancellation of 10 planned transmission upgrades in New Hampshire and Vermont, saving \$260 million.

## IIASA's GAINS Modeling Shows Similar Results

- For 2005 TSAP strategy
  - Estimated co-control could reduce costs of GHG mitigation by 40%
- For EU 2020 GHG Target (20% → 30%)
  - Estimated costs of 2005 TSAP would be ~3 billion less in 2020
     and provide health benefits of 3.5-8 billion
- For 2012-2013 AQ Review
  - An illustrative 80% decarbonization scenario would offer similar reductions in SO<sub>2</sub>, NO<sub>x</sub> and PM emissions by 2050 compared to fully implementing remaining end-of-pipe air pollution measures

# 3. IMPEAQ Integrated Multi-Pollutant Planning Process

# Integrated, Multi-pollutant Planning for Energy and Air Quality (IMPEAQ)

Integrated **Resource Planning** (IRP): Forwardlooking focus by energy regulators on ways to meet electric system reliability needs at least-cost, but ignores public health and environmental "externalities."

Forward-looking, includes externalities. societal benefits and costs, integrates health, economic and energy models IRP **IMPFAO ATTRIBUTES ATTRIBUTES** 

State
Implementation
Plans (SIPs):
Backward-looking
focus by air quality
regulators on
achieving AQ
standards, but
ignores reliability,
cost, and (as yet)
climate issues.

Forward-looking, scenarios treat all resources equally

Best-of-both: Forwardlooking focus integrating energy reliability, cost, air quality, climate, etc. Solid air quality modeling, control measures are enforced to assure air quality objectives are met

# IMPEAQ Echoes Workshop's Rationale

- "... an integrated approach that compares the impact on climate and on air quality [and on energy] for every measure before action is taken can be effective."
- "An integrated approach... will help reach Europe's climate goals and air quality standards [and energy reliability] at the same time while avoiding inefficient loops of measures and countermeasures."



# Steps of the IMPEAQ Process (1)



# Steps of the IMPEAQ Process (2)

4

Determine (through AQ modeling) the *target emission reductions*needed to achieve satisfactory ambient pollution levels

5

Run optimization model against database of potential emission reduction measures until *target emission* reductions are reached

# Steps of the IMPEAQ Process (3)

#### 5A (if model in 5 unavailable)

AQ and energy regulators collaborate to determine energy savings (and cobenefits) achievable through cost-effective energy efficiency (EE), demand response (DR), and renewable energy (RE) measures



# Steps of the IMPEAQ Process (4)

7

Conduct regulatory processes necessary to adopt and implement the measures identified in Steps 5-6

# Conceptual Database of Co-Control Measures for IMPEAQ Optimization

| ID<br># | Descrip-<br>tion | Sources | Cost   | Units | SO2<br>Impact | NOx<br>Impact | CO2<br>Impact | HAPs<br>Impact | Pene-<br>tration<br>Limit | Interactions<br>with Other<br>Measures | Feasibility | Etc<br> |
|---------|------------------|---------|--------|-------|---------------|---------------|---------------|----------------|---------------------------|----------------------------------------|-------------|---------|
| 1       | RPS              | EGUs    | \$50   | MWh   | Υ             | Υ             | Υ             | Υ              | Х                         | #2, #3                                 | 9           | х       |
| 2       | SCR              | EGUs    | \$5000 | Ton   | N             | Υ             | Y(-)          | N              | Х                         | n/a                                    | 9           | х       |
| 3       | EE               | EGUs    | -\$5   | MWh   | Υ             | Υ             | Y             | Υ              | Х                         | #1, #2                                 | 8           | х       |
| 4       | I/M              | Cars    | \$30   | Ton   | N             | Υ             | Υ             | Υ              | Х                         | n/a                                    | 2           | Х       |

Note: All data is purely hypothetical for illustrative purposes.

RAP's draft IMPEAQ paper is available at <a href="http://www.raponline.org/document/download/id/6440">http://www.raponline.org/document/download/id/6440</a>

# 4. Initial US Experience with Integrated Multi-Pollutant Planning

Note: Multi-pollutant planning is a key component of IMPEAQ, but it is not equivalent to IMPEAQ, which includes several other important elements (e.g., target setting, optimization, etc.)

# Bay Area AQ Management District (California, 2010)

- First comprehensive, multi-pollutant clean air plan in the US; and the first to start with explicit public health goals
- Developed "Multi-Pollutant Estimation Method" tool (MPEM) to achieve public health goals by developing a value – including co-benefits – for each ton of pollution reduced
- Includes 55 control measures; many of which simultaneously reduce air pollutants and GHGs

# New York State (~2010-2013)

- Working with NESCAUM and EPA to identify an integrated set of policies to jointly reduce air pollutants (including mercury) and GHGs
- Proposed measures are modeled for:

  - Impacts on energy sector
  - **S** Local economic effects
  - ☑ Reductions in ambient PM<sub>2.5</sub> and ozone levels
- EPA's participation will help future states meet required AQ plans in an integrated fashion

# Maryland (~2009-2013) (1)

- Doing multi-pollutant approach by evaluating co-benefits of measures (to work around single-pollutant laws)
- Is depending on EE/RE to help address:
  - $PM_{2.5}$
  - Ozone
  - New SO<sub>2</sub>, NO<sub>2</sub>, and Pb standards
  - State-required GHG reduction plan
  - Deposition to Chesapeake Bay
  - Environmental justice concerns

# Maryland (~2009-2013) (2)

- Multi-pollutant framework being applied:
  - 1. Quantify the emission reductions of multiple pollutants for a broad suite of EE/RE measures
  - 2. Model the reductions in ambient ozone,  $PM_{2.5}$ , and other pollutants from those emission reductions (CMAQ)
  - 3. Estimate the public health benefits associated with improved ambient pollution levels, and
  - 4. Quantify the economic benefits and costs (REMI, BenMAP)

# Maryland (~2009-2013) (3)

- Measures analyzed:
  - Regional Greenhouse Gas Initiative (RGGI)
  - "EmPOWER Maryland" (state program to reduce energy consumption 15% by 2015)
  - Renewable Portfolio Standards (RPS)
  - Clean Cars program
  - Electric vehicle initiatives
  - "Smart Growth" initiatives
  - "Green Building" initiatives

# Maryland (~2009-2013) (4)

 Results: Projected emission reductions from EE/RE efforts to 2020





# Maryland (~2009-2013) (5)

 Results: Modeled ambient AQ benefits from EE/RE efforts





# Maryland (~2009-2013) (6)

- Public Health Benefits (morbidity + mortality):
  - PM<sub>2.5</sub>: \$170-\$573 million/year
  - Ozone: \$25-\$36 million/year
- Economic Benefits:
  - **Jobs**: Average net gain of 4,300 jobs/year through 2020
  - **Wages**: Average increase in direct wages of \$131 million/year
  - **Household Income**: Average savings of \$80/year

## 5. Conclusions

- 1. It's foolish *not* to pursue integrated measures that provide multiple economic, resource, and public health benefits
- Politicians are unlikely to pursue integration until regulators do, and regulators can often be prescriptive about the objectives, coordination, processes, and methods for programs and plans.
- Jurisdictions in the US are beginning to undertake integrated planning approaches (despite little help from the federal government)
- 4. Expertise with, and outcomes of, integrated approaches are improving with experience; sharing of best practices soon possible
- 5. Jurisdictions that don't pursue integrated approaches will be at an economic disadvantage, public health disadvantage, or both



#### **About RAP**

The Regulatory Assistance Project (RAP) is a global, non-profit team of experts that focuses on the long-term economic and environmental sustainability of the power and natural gas sectors. RAP has deep expertise in regulatory and market policies that:

- Promote economic efficiency
- Protect the environment
- Ensure system reliability
- Allocate system benefits fairly among all consumers

Learn more about RAP at www.raponline.org

Kenneth Colburn: kcolburn@raponline.org

+1 617-784-6975



Global

fax: 802-223-8172

## **Additional Slides**

## Key Prerequisites & Principles for Integration

| Category      | Key Prerequisites/Principles                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Institutional | <ul> <li>Coordinate regularly between climate, air quality, and energy regulators and their activities/programs on all levels: EU, MS, regional, local.</li> <li>Identify, record and share best practice: identify champions; create and coordinate centralized data and assumptions; keep updated.</li> </ul>                                                                                                                                     |
| Policy        | <ul> <li>Conduct air quality planning within a multi-pollutant framework targeting long-term objectives and integration of climate and energy.</li> <li>Maintain a policy measures database that includes effectiveness of measures in reducing multiple pollutant emissions and cost/benefits.</li> <li>Prioritize measures that simultaneously reduce legislated air pollutants and GHGs at least cost and offer greatest net benefit.</li> </ul> |
| Technical     | <ul> <li>Develop models to evaluate energy, health/environmental, and economic impacts of suites of policy measures to reduce pollution.</li> <li>Sequence implementation of emissions control measures and measure results (emissions, reliability, economic impacts, health, etc.).</li> </ul>                                                                                                                                                    |