
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321637000
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321637000
https://plusone.google.com/share?url=http://www.informit.com/title/9780321637000
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321637000
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321637000/Free-Sample-Chapter

LINQ TO OBJECTS USING C# 4.0

This page intentionally left blank

LINQ TO OBJECTS USING C# 4.0
USING AND EXTENDING LINQ TO

OBJECTS AND PARALLEL LINQ (PLINQ)

Troy Magennis

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Magennis, Troy, 1970-
LINQ to objects using C# 4.0 : using and extending LINQ to objects and parallel LINQ (PLINQ) /

Troy Magennis.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-63700-0 (pbk. : alk. paper) 1. Microsoft LINQ. 2. Query languages (Computer sci-

ence) 3. C#
(Computer program language) 4. Microsoft .NET Framework. I. Title.
QA76.73.L228M345 2010
006.7’882—dc22

2009049530

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-63700-0
ISBN-10: 0-321-63700-3

Text printed in the United States on recycled paper at RR Donnelly in Crawfordsville, Indiana.

First printing March 2010

To my wife, Janet Doherty, for allowing me to spend those
extra hours tapping away on the keyboard; thank you for

your support and love.

This page intentionally left blank

vii

CONTENTS

Foreword . x
Preface . xii
Acknowledgments . xix
About the Author . xx

Chapter 1: Introducing LINQ . 1

What Is LINQ? . 1
The (Almost) Current LINQ Story . 3
LINQ Code Makeover—Before and After Code Examples 5
Benefits of LINQ . 12
Summary . 15
References . 15

Chapter 2: Introducing LINQ to Objects . 17

LINQ Enabling C# 3.0 Language Enhancements 17
LINQ to Objects Five-Minute Overview . 30
Summary . 39
References . 39

Chapter 3: Writing Basic Queries . 41

Query Syntax Style Options . 41
How to Filter the Results (Where Clause) . 49
How to Change the Return Type (Select Projection) 54
How to Return Elements When the Result
Is a Sequence (Select Many) . 59
How to Get the Index Position of the Results 61
How to Remove Duplicate Results . 62
How to Sort the Results . 63
Summary . 73

Chapter 4: Grouping and Joining Data . 75

How to Group Elements . 75
How to Join with Data in Another Sequence 93
Summary . 119

Chapter 5: Standard Query Operators . 121

The Built-In Operators . 121
Aggregation Operators—Working with Numbers 123
Conversion Operators—Changing Types . 131
Element Operators . 144
Equality Operator—SequenceEqual . 153
Generation Operators—Generating Sequences of Data 155
Merging Operators . 159
Partitioning Operators—Skipping and Taking Elements 160
Quantifier Operators—All, Any, and Contains 164
Summary . 171

Chapter 6: Working with Set Data . 173

Introduction . 173
The LINQ Set Operators . 174
The HashSet<T> Class . 185
Summary . 192

Chapter 7: Extending LINQ to Objects . 195

Writing a New Query Operator . 195
Writing a Single Element Operator . 196
Writing a Sequence Operator . 208
Writing an Aggregate Operator . 216
Writing a Grouping Operator . 222
Summary . 232

Chapter 8: C# 4.0 Features . 233

Evolution of C# . 233
Optional Parameters and Named Arguments 234
Dynamic Typing . 243
COM-Interop and LINQ . 251
Summary . 260
References . 260

viii Contents

Chapter 9: Parallel LINQ to Objects . 261

Parallel Programming Drivers . 261
Multi-Threading Versus Code Parallelism . 264
Parallelism Expectations, Hindrances, and Blockers 267
LINQ Data Parallelism . 271
Writing Parallel LINQ Operators . 289
Summary . 301
References . 301

Glossary . 303
Index . 307

Contents ix

FOREWORD

I have worked in the software industry for more than 15 years, the last four
years as CIO of Sabre Holdings and the prior four as CTO of Travelocity.
At Sabre, on top of our large online presence through Travelocity, we
transact $70 billion in annual gross travel sales through our network and
serve over 200 airline customers worldwide. On a given day, we will
process over 700 million transactions and handle 32,000 transactions per
second at peak. Working with massive streams of data is what we do, and
finding better ways to work with this data and improve throughput is my
role as CIO.

Troy is our VP over Architecture at Travelocity, where I have the pleas-
ure of watching his influence on a daily basis. His perspective on current
and future problems and depth of detail are observed in his architectural
decisions, and you will find this capability very evident in this book on the
subject of LINQ and PLINQ.

Developer productivity is a critical aspect for every IT solution-based
business, and Troy emphasizes this in every chapter of his book. Languages
and language features are a means to an end, and language features like
LINQ offer key advances in developer productivity. By simplifying all
types of data manipulation by adding SQL-style querying within the core
.NET development languages, developers can focus on solving business
problems rather than learning a new query language for every data source
type. Beyond developer productivity, the evolution in technology from
individual processor speed improvements to multi-core processors opened
up a big hole in run-time productivity as much of today’s software lacks
investment in parallelism required to better utilize these new processors.
Microsoft’s investment in Parallel LINQ addresses this hole, enabling
much higher utilization of today’s hardware platforms.

Open-standards and open-frameworks are essential in the software
industry. I’m pleased to see that Microsoft has approached C# and LINQ
in an open and inclusive way, by handing C# over as an ECMA/ISO

x

Foreword xi

standard, allowing everyone to develop new LINQ data-sources and to
extend the LINQ query language operators to suit their needs. This
approach showcases the traits of many successful open-source initiatives
and demonstrates the competitive advantages openness offers.

Decreasing the ramp-up speed for developers to write and exploit the
virtues of many-core processors is extremely important in today’s world
and will have a very big impact in technology companies that operate at the
scale of Sabre. Exposing common concurrent patterns at a language level
offers the best way to allow current applications to scale safely and effi-
ciently as core-count increases. While it was always possible for a small
percentage of developers to reliably code concurrency through OpenMP
or hand-rolled multi-threading frameworks, parallel LINQ allows develop-
ers to take advantage of many-core scalability with far fewer concerns
(thread synchronization, data segmentation, merging results, for example).
This approach will allow companies to scale this capability across a much
higher percentage of developers without losing focus on quality. So roll up
your sleeves and enjoy the read!

—Barry Vandevier
Chief Information Officer, Sabre Holdings

PREFACE

LINQ to Objects Using C# 4.0 takes a different approach to the subject of
Language Integrated Query (LINQ). This book focuses on the LINQ
syntax and working with in-memory collections rather than focusing on
replacing other database technologies. The beauty of LINQ is that once
you master the syntax and concepts behind how to compose clever queries,
the underlying data source is mostly irrelevant. That’s not to say that tech-
nologies such as LINQ to SQL, LINQ to XML, and LINQ to Entities are
un-important; they are just not covered in this book.

Much of the material for this book was written during late 2006 when
Language Integrated Query (LINQ) was in its earliest preview period. I was
lucky enough to have a window of time to learn a new technology when
LINQ came along. It became clear that beyond the clever data access abil-
ities being demonstrated (DLINQ at the time, LINQ to SQL eventually),
LINQ to Objects would have the most impact on the day-to-day develop-
ers’ life. Working with in-memory collections of data is one of the more
common tasks performed, and looking through code in my previous proj-
ects made it clear just how complex my for-loops and nested if-condition
statements had evolved. LINQ and the language enhancements being pro-
posed were going to change the look and feel of the way we programmed,
and from where I was sitting that was fantastic.

The initial exploration was published on the HookedOnLINQ.com
Wiki (120 odd pages at that time), and the traffic grew over the next year
or two to a healthy level. Material could have been pulled together for a
publication at that time (and been first to market with a book on this sub-
ject, something my Addison-Wesley editor will probably never forgive me
for), but I felt knowing the syntax and the raw operators wasn’t a book
worth reading. It was critical to know how LINQ works in the real world
and how to use it on real projects before I put that material into ink. The
first round of books for any new programming technology often go slightly
deeper than the online-documentation, and I wanted to wait and see how

xii

Preface xiii

the LINQ story unfolded in real-world applications and write the first book
of the second-generation—the book that isn’t just reference, but has
integrity that only real-world application can ingrain.

The LINQ story is a lot deeper and has wider impact than most peo-
ple realize at first glance of any TechEd session recording or user-group
presentation. The ability to store and pass code as a data structure and to
control when and how that code is executed builds a powerful platform for
working with all matter of data sources. The few LINQ providers shipped
by Microsoft are just the start, and many more are being built by the com-
munity through the extension points provided. After mastering the LINQ
syntax and understanding the operators’ use (and how to avoid misuse),
any developer can work more effectively and write cleaner code. This is the
purpose of this book: to assist the reader in beginning the journey, to intro-
duce how to use LINQ for more real-world examples and to dive a little
deeper than most books on the subject, to explore the performance bene-
fits of one solution over another, and to deeply look at how to create cus-
tom operators for any specific purpose.

I hope you agree after reading this book that it does offer an insight
into how to use LINQ to Objects on real projects and that the examples go
a step further in explaining the patterns that make LINQ an integral part
of day-to-day programming from this day forward.

Who Should Read This Book

The audience for this book is primarily developers who write their appli-
cations in C# and want to understand how to employ and extend the fea-
tures of LINQ to Objects. LINQ to Objects is a wide set of technology
pieces that work in tandem to make working with in-memory data sources
easier and more powerful. This book covers both the initial C# 3.0 imple-
mentation of LINQ and the updates in C# 4.0. If you are accustomed to
the LINQ syntax, this book goes deeper than most LINQ reference publi-
cation and delves into areas of performance and how to write custom
LINQ operators (either as sequential algorithms or using parallel algo-
rithms to improve performance).

If you are a beginning C# developer (or new to C# 3.0 or 4.0), this book
introduces the code changes and syntax so that you can quickly master
working with objects and collections of objects using LINQ. I’ve tried to

xiv Preface

strike a balance and not jump directly into examples before covering the
basics. You obviously should know how to build a LINQ query statement
before you start to write your own custom sequential or parallel operators
to determine the number of mountain peaks around the world that are
taller than 8,000 meters (26,000 feet approximately). But you will get to
that in the latter chapters.

Overview of the Book

LINQ to Objects Using C# 4.0 starts by introducing the intention and ben-
efits LINQ offers developers in general. Chapter 1, “Introducing LINQ,”
talks to the motivation and basic concepts LINQ introduces to the world of
writing .NET applications. Specifically, this chapter introduces before and
after code makeovers to demonstrate LINQ’s ability to simplify coding
problems. This is the first and only chapter that talks about LINQ to SQL
and LINQ to XML and does this to demonstrate how multiple LINQ data
sources can be used from the one query syntax and how this powerful con-
cept will change application development. This chapter concludes by listing
the wider benefits of embracing LINQ and attempts to build the big picture
view of what LINQ actually is, a more complex task than it might first seem.

Chapter 2, “Introducing LINQ to Objects,” begins exploring the
underlying enabling language features that are necessary to understand
how the LINQ language syntax compiles. A fast-paced, brief overview of
LINQ’s features wraps up this chapter; it doesn’t cover any of them in
depth but just touches on the syntax and capabilities that are covered at
length in future chapters.

Chapter 3, “Writing Basic Queries,” introduces reading and writing
LINQ queries in C# and covers the basics of choosing what data to proj-
ect, in what format to select that data, and in what order the final result
should be placed. By the end of this chapter, each reader should be able to
read the intention behind most queries and be able to write simple queries
that filter, project, and order data from in-memory collections.

Chapter 4, “Grouping and Joining Data,” covers the more advanced
features of grouping data in a collection and combining multiple data
sources. These partitioning and relational style queries can be structured
and built in many ways, and this chapter describes in depth when and why
to use one grouping or joining syntax over another.

Preface xv

Chapter 5, “Standard Query Operators,” lists the many additional stan-
dard operators that can be used in a LINQ query. LINQ has over 50 oper-
ators, and this chapter covers the operators that go beyond those covered
in the previous chapters.

Chapter 6, “Working with Set Data,” explores working with set-based
operators. There are multiple ways of performing set operations over in-
memory collections, and this chapter explores the merits and pitfalls of
both.

Chapter 7, “Extending LINQ to Objects,” discusses the art of building
custom operators. The examples covered in this chapter demonstrate how
to build any of the four main types of operators and includes the common
coding and error-handling patterns to employ in order to closely match the
built-in operators Microsoft supplies.

Chapter 8, “C# 4.0 Features,” is where the additional C# 4.0 language
features are introduced with particular attention to how they extend the
LINQ to Objects story. This chapter demonstrates how to use the dynamic
language features to make LINQ queries more fluent to read and write and
how to combine LINQ with COM-Interop in order to use other applica-
tions as data sources (for example, Microsoft Excel).

Chapter 9, “Parallel LINQ to Objects,” closely examines the motiva-
tion and art of building application code that can support multi-core
processor machines. Not all queries will see a performance improvement,
and this chapter discusses the expectations and likely improvement most
queries will see. This chapter concludes with an example of writing a cus-
tom parallel operator to demonstrate the thinking process that goes into
correctly coding parallel extensions in addition to those provided.

Conventions

There is significant code listed in this book. It is an unavoidable fact for
books about programming language features that they must demonstrate
those features with code samples. It was always my intention to show lots
of examples, and every chapter has dozens of code listings. To help ease the
burden, I followed some common typography conventions to make them
more readable. References to classes, variables, and other code entities are
distinguished in a monospace font. Short code listings that are to be read

inline with the surrounding text are also presented in a monospace font, but
on their own lines, and they sometimes contain code comments (lines
beginning with // characters) for clarity.

// With line-breaks added for clarity

var result = nums

.Where(n => n < 5)

.OrderBy (n => n);

Longer listings for examples that are too big to be inline with the text
or samples I specifically wanted to provide in the sample download project
are shown using a similar monospace font, but they are denoted by a listing
number and a short description, as in the following example, Listing 3-2.

Listing 3-2 Simple query using the Query Expression syntax

List<Contact> contacts = Contact.SampleData();

var q = from c in contacts

where c.State == ”WA”

orderby c.LastName, c.FirstName

select c;

foreach (Contact c in q)

Console.WriteLine(”{0} {1}”,

c.FirstName, c.LastName);

Each example should be simple and consistent. For simplicity, most
examples write their results out to the Console window. To capture these
results in this book, they are listed in the same font and format as code list-
ings, but identified with an output number, as shown in Output 3-1.

Output 3-1

Stewart Kagel

Chance Lard

Armando Valdes

xvi Preface

Preface xvii

Sample data for the queries is listed in tables, for example, Table 2-2.
Each column maps to an object property of a similar legal name for queries
to operate on.

Words in bold in normal text are defined in the Glossary, and only the
first occurrence of the word gets this treatment. When a bold monospace
font in code is used, it is to draw your attention to a particular key point
being explained at that time and is most often used when an example
evolves over multiple iterations.

Sample Download Code and Updates

All of the samples listed in the book and further reference material can be
found at the companion website, the HookedOnLINQ.com reference wiki
and website at http://hookedonlinq.com/LINQBook.ashx.

Some examples required a large sample data source and the Geonames
database of worldwide geographic place names and data. These data files
can be downloaded from http://www.geonames.org/ and specifically the
http://download.geonames.org/export/dump/allCountries.zip file. This file
should be downloaded and placed in the same folder as the executable
sample application is running from to successfully run those specific sam-
ples that parse and query this source.

Choice of Language

I chose to write the samples in this book using the C# language because
including both C# and VB.Net example code would have bloated the num-
ber of pages beyond what would be acceptable. There is no specific reason
why the examples couldn’t have been in any other .NET language that sup-
ports LINQ.

System Requirements

This book was written with the code base of .NET 4 and Visual Studio 2010
over the course of various beta versions and several community technical
previews. The code presented in this book runs with Beta 2. If the release

http://www.geonames.org/
http://hookedonlinq.com/LINQBook.ashx
http://download.geonames.org/export/dump/allCountries.zip

copy of Visual Studio 2010 and .NET 4 changes between this book publi-
cation and release, errata and updated code examples will be posted on the
companion website at http://hookedonlinq.com/LINQBook.ashx.

To run the samples available from the book’s companion website, you
will need to have Visual Studio 2010 installed on your machine. If you don’t
have access to a commercial copy of Visual Studio 2010, Microsoft has a
freely downloadable version (Visual Studio 2010 Express Edition), which is
capable of running all examples shown in this book. You can download this
edition from http://www.microsoft.com/express/.

xviii Preface

http://www.microsoft.com/express/
http://hookedonlinq.com/LINQBook.ashx

ACKNOWLEDGMENTS

It takes a team to develop this type of book, and I want our team members
to know how appreciated their time, ideas, and effort have been. This team
effort is what sets blogging apart from publishing, and I fully acknowledge
the team at Addison-Wesley, in particular my editors Joan Murray and
Olivia Basegio for their patience and wisdom.

To my technical reviewers, Nick Paldino, Derik Whittaker, Steve
Danielson, Peter Ritchie, and Tanzim Saqib—thank you for your insights
and suggestions to improve accuracy and clarity. Each of you had major
impact on the text and code examples contained in this book.

Some material throughout this book, at least in spirit, was obtained by
reading the many blog postings from Microsoft staff and skilled individu-
als from our industry. In particular I’d like to thank the various contribu-
tors to the Parallel FX team blog (http://blogs.msdn.com/pfxteam/),
notably Igor Ostrovsky (strongly influenced my approach to aggregations),
Ed Essey (helped me understand the different partitioning schemes used
in PLINQ), and Stephen Toub. Stephen Toub also has my sincere thanks
for giving feedback on the Parallel LINQ chapter during its development
(Chapter 9), which dramatically improved the content accuracy and depth.

I would also like to acknowledge founders and contributors to
Geonames.org (http://geonames.org), whose massive set of geographic data
is available for free download under creative commons attribution license.
This data is used in Chapter 9 to test PLINQ performance on large data sets.

Editing isn’t easy, and I’d like to acknowledge the patience and great
work of Anne Goebel and Chrissy White in making my words flow from
post-tech review to production. I know there are countless other staff who
touched this book in its final stages of production, and although I don’t
know your names, thank you.

Finally, I’d like to acknowledge readers like you for investing your time
to gain a deeper understanding of LINQ to Objects. I hope after reading
it you agree that this book offers valuable insights on how to use LINQ to
Objects in real projects and that the examples go that step further in
explaining the patterns that make LINQ an integral part of day-to-day pro-
gramming from this day forward. Thank you.

xix

http://blogs.msdn.com/pfxteam/
http://geonames.org

ABOUT THE AUTHOR

Troy Magennis is a Microsoft Visual C# MVP, an award given to industry
participants who dedicate time and effort to educating others about the
virtues of technology choices and industry application.

A keen traveler, Troy currently works for Travelocity, which manages
the travel and leisure websites travelocity.com, lastminute.com, and zuji.
As vice president of Architecture, he leads a talented team of architects
spread across four continents committed to being the traveler’s companion.

Technology has always been a passion for Troy. After cutting his teeth
on early 8-bit personal computers (Vic20s, Commodore 64s), he moved
into electronics engineering, which later led to positions in software appli-
cation development and architecture for some of the most prominent cor-
porations in automotive, banking, and online commerce.

Troy’s first exposure to LINQ was in 2006 when he took a sabbatical to
learn it and became hooked, ultimately leading him to publish the popular
HookedOnLINQ website.

xx

233

C H A P T E R 8

C# 4.0 FEATURES

Goals of this chapter:
■ Define new C# 4.0 language features.
■ Demonstrate the new language features in the context of LINQ to Objects.

C# is an evolving language. This chapter looks at the new features added
into C# 4.0 that combine to improve code readability and extend your abil-
ity to leverage LINQ to Object queries over dynamic data sources. The
examples in this chapter show how to improve the coding model for devel-
opers around reading data from various sources, including text files and
how to combine data from a COM-Interop source into a LINQ to
Objects query.

Evolution of C#

C# is still a relatively new language (circa 2000) and is benefiting from con-
tinuing investment by Microsoft’s languages team. The C# language is an
ECMA and ISO standard. (ECMA is an acronym for European Computer
Manufacturers Association, and although it changed its name to Ecma
International in 1994, it kept the name Ecma for historical reasons.1) The
standard ECMA-334 and ISO/IEC 23270:2006 is freely available online at
the Ecma International website2 and describes the language syntax and
notation. However, Microsoft’s additions to the language over several ver-
sions take some time to progress through the standards process, so
Microsoft’s release cycle leads Ecma’s acceptance by at least a version.

Each version of C# has a number of new features and generally a major
theme. The major themes have been generics and nullable types in C# 2.0,

234 Chapter 8 C# 4.0 Features

LINQ in C# 3.0, and dynamic types in C# 4.0. The major features added
in each release are generally considered to be the following:

■ C# 2.0—Generics (.NET Framework support was added, and C#
benefited from this); iterator pattern (the yield keyword); anony-
mous methods (the delegate keyword), nullable types, and the null
coalescing operator (??).

■ C# 3.0—Anonymous types, extension methods, object initializers,
collection initializers, implicitly typed local variables (var keyword),
lambda expressions (=>), and the LINQ query expression pattern.

■ C# 4.0—Optional Parameters and Named Arguments, Dynamic
typing (dynamic type), improved COM-Interop, and Contra and
Co-Variance.

The new features in C# 3.0 that launched language support for LINQ
can be found in Chapter 2, “Introducing LINQ to Objects,” and this chapter
documents each of the major new features in C# 4.0 from the perspective of
how they impact the LINQ story.

Optional Parameters and Named Arguments

A long-requested feature for C# was to allow for method parameters to be
optional. Two closely related features in C# 4.0 fulfill this role and enable
us to either omit arguments that have a defined default value when calling
a method, and to pass arguments by name rather than position when call-
ing a method.

OPTIONAL PARAMETERS OR OPTIONAL ARGUMENTS? Optional
parameters and named parameters are sometimes called optional arguments
and named arguments. These names are used interchangeably in this book, and
in most literature, including the C# 4.0 specification that uses both, sometimes in
the same section. I use “argument” when referring to a value passed in from a
method call and “parameter” when referring to the method signature.

The main benefit of these features is to improve COM-Interop pro-
gramming (which is covered shortly) and to reduce the number of method
overloads created to support a wide range of parameter overloads. It is a

Optional Parameters and Named Arguments 235

common programming pattern to have a master method signature con-
taining all parameters (with the actual implementation) chained to a num-
ber of overloaded methods that have a lesser parameter signature set call-
ing the master method with hard-coded default values. This common cod-
ing pattern becomes unnecessary when optional parameters are used in
the definition of the aforementioned master method signature, arguably
improving code readability and debugging by reducing clutter. (See Listing
8-2 for an example of the old and new way to create multiple overloads.)

There has been fierce debate on these features on various email lists
and blogs. Some C# users believe that these features are not necessary and
introduce uncertainty in versioning. For example if version 2 of an assem-
bly changes a default parameter value for a particular method, client code
that was assuming a specific default might break. This is true, but the exist-
ing chained method call pattern suffers from a similar issue—default val-
ues are coded into a library or application somewhere, so thinking about
when and how to handle these hard-coded defaults would be necessary
using either the existing chained method pattern or the new optional
parameters and named arguments. Given that optional parameters were
left out of the original C# implementation (even when the .NET Runtime
had support and VB.NET utilized this feature), we must speculate that
although this feature is unnecessary for general programming, coding COM-
Interop libraries without this feature is unpleasant and at times infuriating—
hence, optional parameters and specifying arguments by name has now
made its way into the language.

COM-Interop code has always suffered due to C#’s inability to handle
optional parameters as a concept. Many Microsoft Office Component
Object Model (COM) libraries, like those built to automate Excel or
Word for instance, have method signatures that contain 25 optional
parameters. Previously you had no choice but to pass dummy arguments
until you reached the “one” you wanted and then fill in the remaining
arguments until you had fulfilled all 25. Optional parameters and named
arguments solve this madness, making coding against COM interfaces
much easier and cleaner. The code shown in Listing 8-1 demonstrates the
before and after syntax of a simple Excel COM-Interop call to open an
Excel spreadsheet. It shows how much cleaner this type of code can be
written when using C# 4.0 versus any of its predecessors.

236 Chapter 8 C# 4.0 Features

Listing 8-1 Comparing the existing way to call COM-Interop and the new way using
optional parameters

// Old way – before optional parameters

var excel = new Microsoft.Office.Interop.Excel.Application();

try

{

Microsoft.Office.Interop.Excel.Workbook workBook =

excel.Workbooks.Open(fileName, Type.Missing,

Type.Missing, Type.Missing, Type.Missing,

Type.Missing, Type.Missing, Type.Missing,

Type.Missing, Type.Missing, Type.Missing,

Type.Missing, Type.Missing, Type.Missing,

Type.Missing);

// do work with Excel...

workBook.Close(false, fileName);

}

finally

{

excel.Quit();

}

// New Way – Using optional parameters

var excel = new Microsoft.Office.Interop.Excel.Application();

try

{

Microsoft.Office.Interop.Excel.Workbook workBook =

excel.Workbooks.Open(fileName);

// do work with Excel...

workBook.Close(false, fileName);

}

finally

{

excel.Quit();

}

The addition of object initializer functionality in C# 3.0 took over some of
the workload of having numerous constructor overloads by allowing public
properties to be set in line with a simpler constructor (avoiding having a

Optional Parameters and Named Arguments 237

constructor for every Select projection needed). Optional parameters and
named arguments offer an alternative way to simplify coding a LINQ Select
projection by allowing variations of a type’s constructor with a lesser set of
parameters. Before diving into how to use these features in LINQ queries, it
is necessary to understand the syntax and limitations of these new features.

Optional Parameters
The first new feature allows default parameters to be specified in a method
signature. Callers of methods defined with default values can omit those
arguments without having to define a specific overload matching that less-
er parameter list for convenience.

To define a default value in a method signature, you simply add a con-
stant expression as the default value to use when omitted, similar to mem-
ber initialization and constant definitions. A simple example method defi-
nition that has one mandatory parameter (p1, just like normal) and an
optional parameter definition (p2) takes the following form:

public void MyMethod(int p1, int p2 = 5);

The following invocations of method MyMethod are legal (will compile)
and are functionally equivalent as far as the compiler is concerned:

MyMethod(1, 5);

MyMethod(1); // the declared default for p2 (5) is used

The rules when defining a method signature that uses optional param-
eters are:

1. Required parameters cannot appear after any optional parameter.
2. The default specified must be a constant expression available at

compile time or a value type constructor without parameters, or
default(T) where T is a value type.

3. The constant expression must be implicitly convertible by an iden-
tity (or nullable conversion) to the type of the parameter.

4. Parameters with a ref or outmodifier cannot be optional parameters.
5. Parameter arrays (params) can occur after optional parameters,

but these cannot have a default value assigned. If the value is omit-
ted by the calling invocation, an empty parameter array is used in
either case, achieving the same results.

238 Chapter 8 C# 4.0 Features

Valid optional parameter definitions take the following form:

public void M1(string s, int i = 1) { }

public void M2(Point p = new Point()) { }

public void M3(Point p = default(Point)) { }

public void M4(int i = 1, params string[] values) { }

The following method definitions using optional parameters will not
compile:

//”Optional parameters must appear after all required parameters”

public void M1 (int i = 1, string s) {}

//”Default parameter value for ‘p’ must be a compile-time constant”

//(Can’t use a constructor that has parameters)

public void M2(Point p = new Point(0,0)) {}

//”Default parameter value for ‘p’ must be a compile-time constant”

//(Must be a value type (struct or built-in value types only))

public void M5(StringBuilder p = new StringBuilder()) {}

//”A ref or out parameter cannot have a default value”

public void M6(int i = 1, out string s = ””) {}

//”Cannot specify a default value for a parameter array”

public void M7(int i = 1, params string[] values = ”test”) {}

To understand how optional parameters reduce our code, Listing 8-2
shows a traditional overloaded method pattern and the equivalent
optional parameter code.

Listing 8-2 Comparing the traditional cascaded method overload pattern to the new
optional parameter syntax pattern

// Old way – before optional parameters

public class OldWay

{

// multiple overloads call the one master

// implementation of a method that handles all inputs

Optional Parameters and Named Arguments 239

public void DoSomething(string formatString)

{

// passing 0 as param1 default,

// and true as param2 default.

DoSomething(formatString, 0, true);

}

public void DoSomething(string formatString, int param1)

{

DoSomething(formatString, param1, true);

}

public void DoSomething(string formatString, bool param2)

{

DoSomething(formatString, 0, param2);

}

// the actual implementation. All variations call this

// method to implement the methods function.

public void DoSomething(

string formatString,

int param1,

bool param2)

{

Console.WriteLine(

String.Format(formatString, param1, param2));

}

}

// New Way – Using optional parameters

public class NewWay

{

// optional parameters have a default specified.

// optional parameters must come after normal params.

public void DoSomething(

string formatString,

int param1 = 0,

bool param2 = true)

{

Console.WriteLine(

String.Format(formatString, param1, param2));

}

}

240 Chapter 8 C# 4.0 Features

Named Arguments
Traditionally, the position of the arguments passed to a method call iden-
tified which parameter that value matched. It is possible in C# 4.0 to
specify arguments by name, in addition to position. This is helpful when
many parameters are optional and you need to target a specific parame-
ter without having to specify all proceeding optional parameters.

Methods can be called with any combination of positionally specified
and named arguments, as long as the following rules are observed:

1. If you are going to use a combination of positional and named
arguments, the positional arguments must be passed first. (They
cannot come after named arguments.)

2. All non-optional parameters must be specified somewhere in the
invocation, either by name or position.

3. If an argument is specified by position, it cannot then be specified
by name as well.

To understand the basic syntax, the following example creates a
System.Drawing.Point by using named arguments. It should be noted
that there is no constructor for this type that takes the y-size, x-size by posi-
tion—this reversal is solely because of named arguments.

// reversing the order of arguments.

Point p1 = new Point(y: 100, x: 10);

The following method invocations will not compile:

//”Named argument ‘x’ specifies a parameter for which a

// positional argument has already been given”

Point p3 = new Point(10, x: 10);

// “Named argument specifications must appear after all

// fixed arguments have been specified”

Point p4 = new Point(y: 100, 10);

// “The best overload for ‘.ctor’ does not have a

// parameter named ‘x’”

Point p5 = new Point(x: 10);

Optional Parameters and Named Arguments 241

To demonstrate how to mix and match optional parameters and named
arguments within method or constructor invocation calls, the code shown
in Listing 8-3 calls the method definition for NewWay in Listing 8-2.

Listing 8-3 Mixing and matching positional and named arguments in a method
invocation for methods that have optional and mandatory parameters

NewWay newWay = new NewWay();

// skipping an optional parameter

newWay.DoSomething(

”({0},{1}) New way - param1 skipped.”,

param2: false);

// any order, but if it doesn’t have a default

// it must be specified by name somewhere!

newWay.DoSomething(

param2: false,

formatString: ”({0},{1}) New way - params specified” +

” by name, in any order.”,

param1: 5);

Using Named Arguments and Optional Parameters
in LINQ Queries
Named arguments and optional parameters offer an alternative way to
reduce code in LINQ queries, especially regarding flexibility in what
parameters can be omitted in an object constructor.

Although anonymous types make it convenient to project the results of
a query into an object with a subset of defined properties, these anony-
mous types are scoped to the local method. To share a type across meth-
ods, types, or assemblies, a concrete type is needed, meaning the accumu-
lation of simple types or constructor methods just to hold variations of data
shape projections. Object initializers reduce this need by allowing a con-
crete type to have a constructor without parameters and public properties
used to assign values in the Select projection. Object-oriented purists take
issue with a parameterless constructor being a requirement; it can lead
to invalid objects being created by users who are unaware that certain

242 Chapter 8 C# 4.0 Features

properties must be set before an object is correctly initialized for use—an
opinion I strongly agree with. (You can’t compile using the object initial-
ization syntax unless the type concerned has a parameterless constructor,
even if there are other constructors defined that take arguments.)

Optional parameters and named arguments can fill this gap. Data can
be projected from queries into concrete types, and the author of that con-
crete type can ensure that the constructor maintains integrity by defining
the default values to use when an argument is omitted. Many online dis-
cussions have taken place discussing if this is a good pattern; one camp
thinks it doesn’t hurt code readability or maintainability to use optional
parameters in a constructor definition, and the other says refactoring
makes it an easy developer task to define the various constructors required
in a given type, and hence of no value. I see both sides of that argument
and will leave it up to you to decide where it should be employed.

To demonstrate how to use named arguments and optional parameters
from a LINQ query, the example shown in Listing 8-4 creates a subset of
contact records (in this case, contacts from California) but omits the email
and phone details. The Console output from this example is shown in
Output 8-1.

Listing 8-4 Example LINQ query showing how to use named arguments and optional
parameters to assist in projecting a lighter version of a larger type—see Output 8-1

var q = from c in Contact.SampleData()

where c.State == ”CA”

select new Contact(

c.FirstName, c.LastName,

state: c.State,

dateOfBirth: c.DateOfBirth

);

foreach (var c in q)

Console.WriteLine(”{0}, {1} ({2}) - {3}”,

c.LastName, c.FirstName,

c.DateOfBirth.ToShortDateString(), c.State);

public class Contact

{

// constructor defined with optional parameters

public Contact(

string firstName,

string lastName,

Dynamic Typing 243

DateTime dateOfBirth,

string email = ”unknown”, // optional

string phone = ””, // optional

string state = ”Other”) // optional

{

FirstName = firstName;

LastName = lastName;

DateOfBirth = dateOfBirth;

Email = email;

Phone = phone;

State = state;

}

public string FirstName { get; set; }

public string LastName { get; set; }

public string Email { get; set; }

public string Phone { get; set; }

public DateTime DateOfBirth { get; set; }

public string State { get; set; }

public static List<Contact> SampleData() ...

// sample data the same as used in Table 2-1.

}

Output 8-1

Gottshall, Barney (10/19/1945) - CA

Deane, Jeffery (12/16/1950) - CA

Dynamic Typing

The wow feature of C# 4.0 is the addition of dynamic typing. Dynamic
languages such as Python and Ruby have major followings and have
formed a reputation of being super-productive languages for building
certain types of applications.

The main difference between these languages and C# or VB.NET is
the type system and specifically when (and how) member names and
method names are resolved. C# and VB.NET require (or required, as you
will see) that static types be available during compile time and will fail if a

244 Chapter 8 C# 4.0 Features

member name or method name does not exist. This static typing allows for
very rigorous error checking during compile time, and generally improves
code performance because the compiler can make targeted optimizations
based on exact member name and method name resolution. Dynamic-
typed languages on the other hand enable the member and method
lookups to be carried out at runtime, rather than compile time. Why is this
good? The main identifiable reason is that this allows code to locate mem-
bers and methods dynamically at runtime and handle additions and
enhancements without requiring a recompile of one system or another.

I’m going to stay out of the religious debate as to which is better. I
believe there are positives and negatives in both approaches, and C# 4.0
allows you to make the choice depending on the coding problem you need
to solve. Dynamic typing allows very clean coding patterns to be realized,
as you will see in an upcoming example, where we code against the column
names in a CSV file without the need for generating a backing class for
every different CSV file format that might need to be read.

Using Dynamic Types
When a variable is defined with the type dynamic, the compiler ignores the
call as far as traditional error checking is concerned and instead stores away
the specifics of the action for the executing runtime to process at a later
time (at execution time). Essentially, you can write whatever method calls
(with whatever parameters), indexers, and properties you want on a dynamic
object, and the compiler won’t complain. These actions are picked up at
runtime and executed according to how the dynamic type’s binder deter-
mines is appropriate.

A binder is the code that gets the payload for an action on a dynamic
instance type at runtime and resolves it into some action. Within the
C# language, there are two paths code can take at this point, depending
on the binder being used (the binding is determined from the actual type
of the dynamic instance):

■ The dynamic type does not implement the IDynamicMeta-
ObjectProvider interface. In this case, the runtime uses reflection
and its traditional method lookup and overload resolution logic
before immediately executing the actions.

■ The dynamic type implements the IDynamicMetaObjectProvider
interface, by either implementing this interface by hand or by inheriting

Dynamic Typing 245

FIGURE 8-1 Any object declared as type dynamic is resolved at runtime. No errors will be
reported at compile time.

the new dynamic type from the System.Dynamic.DynamicObject type
supplied to make this easier.

Any traditional type of object can be declared as type dynamic.
For all dynamic objects that don’t implement the interface
IDynamicMetaObjectProvider, the Microsoft.CSharp.RuntimeBinder is
used, and reflection is employed to look up property and method invocations
at runtime. The example code shown in Figure 8-1 shows the Intellisense
balloon in Visual Studio 2010, which demonstrates an integer type declared
as dynamic. (The runtime resolves the type by the initialization expression,
just like using the local type inference var keyword.) No compile error
occurs at design time or compile time, even though the method call is not
defined anywhere in the project. When this code is executed, the runtime
uses reflection in an attempt to find and execute the fictitious method
ThisMethodIsNotDefinedAnywhere, which of course fails with the exception:

Microsoft.CSharp.RuntimeBinder.RuntimeBinderException: ‘int’ does

not contain a definition for ‘ThisMethodIsNotDefinedAnywhere’

If that method had been actually declared, it would have been simply
invoked just like any traditional method or property call.

The ability to have a type that doesn’t implement the IDynamicObject

interface should be rare. The dynamic keyword shouldn’t be used in place
of a proper type definition when that type is known at compile time. It also
shouldn’t be used in place of the var keyword when working with anony-
mous types, as that type is known at compile time. The dynamic keyword
should only be used to declare IDynamicMetaObjectProvider imple-
menters and for interoperating with other dynamic languages and for
COM-Interop.

246 Chapter 8 C# 4.0 Features

WHEN TO USE VAR AND DYNAMIC TYPE DECLARATIONS It might
seem confusing as to which type definition should be used based on circum-
stance. Here are my recommendations:

Concrete type—Use whenever you know the type at coding time. If you know
the type when defining a field, property, or return type—use it!

The var keyword—Use this when declaring an anonymous type or when
capturing the result of a LINQ query projecting to an anonymous type.

The dynamic keyword—Use only when declaring a dynamic type, generally
meaning a type that implements the IDynamicMetaObjectProvider interface.
These can be custom types or one of the run-time binders provided by Microsoft
for COM-Interop that interoperate with dynamic languages like IronPython and
IronRuby. Declaring types that do not implement this interface incurs the over-
head of reflection at runtime.

Specific binders are written to support specific purposes. IronRuby,
IronPython, and COM-Interop are just a few of the bindings available to
support dynamic language behavior from within C# 4.0. However, you can
write your own and consume these types in order to solve some common
coding problems, as you will see shortly in an example in which text file
data is exposed using a custom dynamic type and this data is used as the
source of a LINQ to Objects query.

Using Dynamic Types in LINQ Queries
Initially you might be disappointed to learn that dynamic types aren’t
supported in LINQ. LINQ relies exclusively on extension methods to
carry out each query expression operation. Extension methods cannot be
resolved at runtime due to the lack of information in the compiled
assembly. Extension methods are introduced into scope by adding the
assembly containing the extension into scope via a using clause, which is
available at compile time for method resolutions, but not available at
runtime—hence no LINQ support. However, this only means you can’t
define collection types as dynamic, but you can use dynamic types at the
instance level (the types in the collections being queried), as you will see
in the following example.

For this example we create a type that allows comma delimited text files
to be read and queried in an elegant way, often useful when importing

Dynamic Typing 247

data from another application. By “elegant” I mean not hard-coding any
column name definitions into string literals in our importing code, but
rather, allowing direct access to fields just like they are traditional property
accessors. This type of interface is often called a fluent interface. Given the
sample CSV file content shown in Listing 8-5, the intention is to allow
coders to directly reference the data columns in each row by their relevant
header names, defined in the first row—that is FirstName, LastName, and
State.

Listing 8-5 Comma separated value (CSV) file content used as example content

FirstName,LastName,State

Troy,Magennis,TX

Janet,Doherty,WA

The first row contains the column names for each row of the file, and
this particular implementation expects this to always be the case. When
writing LINQ queries against files of this format, referring to each row
value in a column by the header name makes for easily comprehensible
queries. The goal is to write the code shown in Listing 8-6, and this code
compiling without a specific backing class from every CSV file type to be
processed. (Think of it like coding against a dynamic anonymous type for
the given input file header definition.)

Listing 8-6 Query code fluently reading CSV file content without a specific backing class

var q = from dynamic line in new CsvParser(content)

where line.State == ”WA”

select line.LastName;

Dynamic typing enables us to do just that and with remarkably little
code. The tradeoff is that any property name access isn’t tested for type
safety or existence during compile time. (The first time you will see an
error is at runtime.) To fulfill the requirement of not wanting a backing
class for each specific file, the line type shown previously must be of type
dynamic. This is necessary to avoid the compile-time error that would be
otherwise reported when accessing the State and LastName properties,
which don’t exist.

248 Chapter 8 C# 4.0 Features

To create our new dynamic type, we need our type to implement
IDynamicMetaObjectProvider, and Microsoft has supplied a starting
point in the System.Dynamic.DynamicObject type. This type has virtual
implementations of the required methods that allow a dynamic type to be
built and allows the implementer to just override the specific methods
needed for a given purpose. In this case, we need to override the
TryGetMember method, which will be called whenever code tries to read a
property member on an instance of this type. We will process each of these
calls by returning the correct text out of the CSV file content for this line,
based on the index position of the passed-in property name and the header
position we read in as the first line of the file.

Listing 8-7 shows the basic code for this dynamic type. The essen-
tial aspects to support dynamic lookup of individual CSV fields within a
line as simple property access calls are shown in this code. The property
name is passed to the TryGetMember method in the binder argument,
and can be retrieved by binder.Name, and the correct value looked up
accordingly.

Listing 8-7 Class to represent a dynamic type that will allow the LINQ code (or any other
code) to parse a single comma-separated line and access data at runtime based on the
names in the header row of the text file

public class CsvLine : System.Dynamic.DynamicObject

{

string[] _lineContent;

List<string> _headers;

public CsvLine(string line, List<string> headers)

{

this._lineContent = line.Split(’,’);

this._headers = headers;

}

public override bool TryGetMember(

GetMemberBinder binder,

out object result)

{

result = null;

// find the index position and get the value

int index = _headers.IndexOf(binder.Name);

Dynamic Typing 249

if (index >= 0 && index < _lineContent.Length)

{

result = _lineContent[index];

return true;

}

return false;

}

}

To put in the plumbing required for parsing the first row, a second type
is needed to manage this process, which is shown in Listing 8-8, and is
called CsvParser. This is in place to determine the column headers to be
used for access in each line after that and also the IEnumerable imple-
mentation that will furnish each line to any query (except the header line
that contains the column names).

The constructor of the CsvParser type takes the CSV file content as
a string and parses it into a string array of individual lines. The first row
(as is assumed in this implementation) contains the column header
names, and this is parsed into a List<string> so that the index positions
of these column names can be subsequently used in the CsvLine type to
find the correct column index position of that value in the data line being
read. The GetEnumerator method simply skips the first line and then
constructs a dynamic type CsvLine for each line after that until all lines
have been enumerated.

Listing 8-8 The IEnumerable class that reads the header line and returns each line in the
content as an instance of our CsvLine dynamic type

public class CsvParser : IEnumerable

{

List<string> _headers;

string[] _lines;

public CsvParser(string csvContent)

{

_lines = csvContent.Split(’\n’);

// grab the header row and remember positions

if (_lines.Length > 0)

_headers = _lines[0].Split(’,’).ToList();

250 Chapter 8 C# 4.0 Features

}

public IEnumerator GetEnumerator()

{

// skip the header line

bool header = true;

foreach (var line in _lines)

if (header)

header = false;

else

yield return new CsvLine(line, _headers);

}

}

Listing 8-9 shows the LINQ query that reads data from a CSV file and
filters based on one of the column values. The important aspects of this
example are the dynamic keyword in the from clause, and the ability to
directly access the properties State, FirstName, and LastName from an
instance of our CsvLine dynamic type. Even though there is no explicit
backing type for those properties, they are mapped from the header row in
the CSV file itself. This code will only compile in C# 4.0, and its output is
all of the rows (in this case just one) that have a value of “WA” in the third
column position (State), as shown in Output 8-2.

Listing 8-9 Sample LINQ query code that demonstrates how to use dynamic types in
order to improve code readability and to avoid the need for strict backing classes—see
Output 8-2

string content =

“FirstName,LastName,State\n

Troy,Magennis,TX\n

Janet,Doherty,WA”;

var q = from dynamic c in new CsvParser(content)

where c.State == “WA”

select c;

foreach (var c in q)

{

COM-Interop and LINQ 251

Console.WriteLine(“{0}, {1} ({2})”,

c.LastName,

c.FirstName,

c.State);

}

Output 8-2

Doherty, Janet (WA)

As this example has shown, it is possible to mix dynamic types with
LINQ. The key point to remember is that the actual element types can be
dynamic, but not the collection being queried. In this case, we built a sim-
ple enumerator that reads the CSV file and returns an instance of our
dynamic type. Any CSV file, as long as the first row contains legal column
names (no spaces or special characters that C# can’t resolve as a property
name), can be coded against just as if a backing class containing those
columns names was created by code.

COM-Interop and LINQ

COM interoperability has always been possible within C# and .NET; how-
ever, it was often less than optimal in how clean and easy the code was to
write (or read). Earlier in this chapter, named arguments and optional
parameters were introduced, which improve coding against COM objects.
And with the additional syntax improvements offered by the dynamic type,
the code readability and conciseness is further improved.

To demonstrate how COM-Interop and LINQ might be combined, the
following example shows a desirable coding pattern to read the contents of a
Microsoft Excel spreadsheet, and use that data as a source for a LINQ to
Objects query.

const int stateCol = 5;

var q = from row in GetExcelRowEnumerator(filename, 1)

where row[stateCol] == ”WA”

select row;

252 Chapter 8 C# 4.0 Features

FIGURE 8-2 Sample Microsoft Excel spreadsheet to query using LINQ.

This query returns rows where the State column equals “WA” from the
spreadsheet data shown in Figure 8-2. Microsoft Excel is often used as the
source for importing raw data, and although there are many ways to import
this data using code, the ability to run LINQ queries over these spread-
sheets directly from C# is useful.

The strategy used to implement the Microsoft Excel interoperability
and allow LINQ queries over Excel data is:

1. Add a COM-Interop reference to the Microsoft Excel library in
order to code against its object model in C#.

2. Return the data from a chosen spreadsheet (by its filename) into
an IEnumerable collection (row by row) that can be used as a
source for a LINQ query.

Adding a COM-Interop Reference
COM-Interop programming in C# 4.0 is greatly improved in one way
because of a new style of interop backing class that is created when you add
a COM reference to a project. The improved backing class makes use of
optional parameters and named arguments and the dynamic type features
that were introduced earlier this chapter. Listing 8-10 demonstrates the

COM-Interop and LINQ 253

old code required to access an Excel spreadsheet via COM, and contrasts
it with the new programming style.

Listing 8-10 Comparing the existing way to call COM-Interop and the new way using the
improved COM reference libraries

// Old way – old COM reference and no optional parameters

var excel = new Microsoft.Office.Interop.Excel.Application();

Microsoft.Office.Interop.Excel.Workbook workBook =

excel.Workbooks.Open(

fileName,

Type.Missing, Type.Missing, Type.Missing, Type.Missing,

Type.Missing, Type.Missing, Type.Missing, Type.Missing,

Type.Missing, Type.Missing, Type.Missing, Type.Missing,

Type.Missing, Type.Missing);

// New Way – new COM reference and using optional parameters

var excel = new Microsoft.Office.Interop.Excel.Application();

Microsoft.Office.Interop.Excel.Workbook workBook =

excel.Workbooks.Open(fileName);

When a reference is added to a COM component using Visual Studio,
a backing class is generated to allow coding against that model. Listing 8-11
shows one method of the Excel COM programming model generated by
Visual Studio 2008. With no optional parameters, all arguments must be
passed when calling these methods.

Listing 8-11 Old style COM-Interop backing class added by Visual Studio 2008 for part
of the Microsoft Excel 12 Object Library

Microsoft.Office.Interop.Excel.Workbook Open(

string Filename,

object UpdateLinks,

object ReadOnly,

object Format,

object Password,

object WriteResPassword,

object IgnoreReadOnlyRecommended,

254 Chapter 8 C# 4.0 Features

object Origin,

object Delimiter,

object Editable,

object Notify,

object Converter,

object AddToMru,

object Local,

object CorruptLoad)

Listing 8-12 shows the Visual Studio 2010 COM-Interop backing class.
The addition of the default values turned all but one of the parameters (the
Filename argument) into optional parameters; therefore, all but the file-
name can be omitted when this method is called, allowing the simplifica-
tion shown in Listing 8-10.

Listing 8-12 New style COM-Interop backing class added by Visual Studio 2010—notice
the optional parameters and the dynamic types

Microsoft.Office.Interop.Excel.Workbook Open(

string Filename,

dynamic UpdateLinks = null,

dynamic ReadOnly = null,

dynamic Format = null,

dynamic Password = null,

dynamic WriteResPassword = null,

dynamic IgnoreReadOnlyRecommended = null,

dynamic Origin = null,

dynamic Delimiter = null,

dynamic Editable = null,

dynamic Notify = null,

dynamic Converter = null,

dynamic AddToMru = null,

dynamic Local = null,

dynamic CorruptLoad = null)

Adding a COM reference is painless in Visual Studio. The step-by-step
process is:

1. Open the Visual Studio C# project that the COM reference is
being added to.

COM-Interop and LINQ 255

2. Choose Project-Add Reference... from the main menu (or right-
click the References icon in the Solution Explorer and click Add

Reference...).
3. Click the COM tab and find the COM Object you want to refer-

ence from within your project, as seen in Figure 8-3.
4. Click the OK button for the Add Reference dialog box.

FIGURE 8-3 The Add Reference dialog box in Visual Studio 2010.

NEW FEATURE: NOT DEPLOYING PRIMARY INTEROP
ASSEMBLIES Primary Interop Assemblies are large pre-built .NET assemblies
built for certain COM interfaces (like MS Excel and MS Word) to allow strongly
typed coding at design time. These assemblies often were larger than the appli-
cation being built (and loaded separately at runtime) and often caused version
issues because they were deployed independently to the compiled application.

C# 4.0 introduces a no-PIA feature that compiles only the parts of the Primary
Interop Assembly actually used into the assembly (much smaller) and avoids hav-
ing to load a separate assembly at runtime (much faster).

This is the default behavior in Visual Studio 2010. To return to deploying the full
PIA assembly (the default in previous versions of Visual Studio), set the Embed
Interop Types property on the reference in question as shown in Figure 8-4.

256 Chapter 8 C# 4.0 Features

Building the Microsoft Excel Row Iterator
To expose Microsoft Excel in a way that supports LINQ queries, an itera-
tor must be built that internally reads data from an Excel spreadsheet and
exposes this data as an IEnumerable collection, row by row. The skeleton
of the Excel row iterator, without implementation is:

public IEnumerable<List<dynamic>> GetExcelRowEnumerator(

string fileName,

int sheetIndex)

{

// Declare an array to hold our values

// Create the COM reference to Excel

// Open the workbook by filename

// Get the excel worksheet, 1 for the first, etc.

// Find the used range in the sheet

// Read in the value array for all used rows and columns

// Close Excel

// Build and yield each row, one at a time

}

This iterator declaration takes arguments of a fully qualified filename
to an Excel spreadsheet and a worksheet index as a one-based number and
returns the values in each row (with each column’s value as an item in a

FIGURE 8-4 Set the Embed Interop Types to control whether the no-PIA feature is used (the
default behavior, true) or the previous Visual Studio behavior is used (false).

COM-Interop and LINQ 257

List<dynamic> collection) from the chosen worksheet in the selected Excel
file. The full implementation of this algorithm is shown in Listing 8-13.

This implementation isn’t the strategy to be used for extremely large
spreadsheets because it buffers the entire dataset into an in-memory
array with a single call and then builds the row results from this array of
values. This technique, however, is the fastest way to access data from
Excel using COM-Interop because it avoids single cell or row access and
keeps Excel open (a large executable memory footprint) for as short a
time as possible. If an application is required to read a massive spread-
sheet of data, experiment with alternative value access strategies support-
ed by Excel’s extensive object model, row by row perhaps, to avoid com-
pletely loading the entire array into memory upfront. This implementa-
tion is fine in performance and memory usage for most purposes.

THE USING DECLARATION FOR THE FOLLOWING EXAMPLES
To avoid having to prefix all calls to the Interop library with long namespaces, I
added the following using declaration at the top of my class file:

using Excel = Microsoft.Office.Interop.Excel;

This simplified the code declarations and allowed me to use Excel.Application,
Excel.Workbook (and others) rather than Microsoft.Office.Interop.Excel.Application,
Microsoft.Office.Interop.Excel.Workbook, and so on.

Listing 8-13 Full code listing for an Excel row enumerator. Calling this method
enumerates the values of a row in an Excel spreadsheet.

public IEnumerable<List<dynamic>> GetExcelRowEnumerator(

string fileName,

int sheetIndex)

{

// declare an array to hold our values

object[,] valueArray = null;

// create the COM reference to Excel

var excel = new Excel.Application();

try

{

258 Chapter 8 C# 4.0 Features

// open the workbook by filename

Excel.Workbook workBook =

excel.Workbooks.Open(fileName);

if (workBook != null &&

sheetIndex < workBook.Sheets.Count)

{

// get the worksheet, 1 for the first, etc.

Excel.Worksheet sheet =

workBook.Sheets[sheetIndex];

// find the used range in the sheet

Excel.Range usedRange = sheet.UsedRange;

// read in the value array, this is the fastest

// way to get all values in one hit.

valueArray = usedRange.get_Value(

Excel.XlRangeValueDataType.xlRangeValueDefault);

}

workBook.Close(false, fileName);

}

finally

{

// finished with Excel now, close.

excel.Quit();

}

// build and yield each row at a time

for (int rowIndex = 1;

rowIndex <= valueArray.GetLength(0);

rowIndex++)

{

List<dynamic> row =

new List<dynamic>(

valueArray.GetLength(1));

// build a list of column values for the row

for (int colIndex = 1;

colIndex <= valueArray.GetLength(1);

colIndex++)

{

row.Add(

COM-Interop and LINQ 259

valueArray[rowIndex, colIndex]);

}

yield return row;

}

}

Writing LINQ queries against Microsoft Excel data, like that shown in
Figure 8-2, can be written in the code form shown in Listing 8-14. Output
8-3 shows the three rows returned from this code, which is all rows that
have a State value of ‘WA.’

Listing 8-14 Example code for reading the data from an Excel spreadsheet and running
a LINQ query over its contents—see Output 8-3

string filename = Path.Combine(

Environment.CurrentDirectory, ”Data/SampleExcel.xlsx”);

const int firstNameCol = 0;

const int lastNameCol = 1;

const int stateCol = 5;

var q = from row in GetExcelRowEnumerator(filename, 1)

where row[stateCol] == ”WA”

select row;

Console.WriteLine(”Customers in WA ({0})”, q.Count());

foreach (var row in q)

{

Console.WriteLine(”{0}, {1}”,

row[lastNameCol].ToUpper(), row[firstNameCol]);

}

Output 8-3

Customers in WA (3)

VALDES, Armando

KAGEL, Stewart

LARD, Chance

260 Chapter 8 C# 4.0 Features

The return type of the row values is declared as type List<dynamic>.
It easily could have been declared as type List<object>. The downside of
declaring the values as type of object rather than dynamic comes down to
the ability to treat the value members as the underlying type. For exam-
ple, in Listing 8-14 the statement row[lastNameCol].ToUpper() would
fail if the element types were declared as object. The object type doesn’t
have a method called ToUpper, even though the underlying type it is repre-
senting is a string. And to access that method a type cast needs to be added,
bloating the code out to ((string)row[lastNameCol]).ToUpper().
Declaring the element type as dynamic in the collection allows the run-
time to look up method names using reflection on the underlying type at
runtime, however the particular type of that column value is declared as
in Excel (in this case a string, but some columns are DateTime and
double). The removal of the type casting when calling methods or prop-
erties on object types simplifies and improves code readability, at the
expense of performance.

The GetExcelRowEnumerator method could be enhanced by combin-
ing the header row reading and accessibility in a similar fashion to that
used by dynamic lookup in Listing 8-7, which would eliminate the need to
hardcode the column index positions and allow the row data to be
accessed by column header name using simple property access syntax.

Summary

This chapter introduced the new language features of C# 4.0 and demon-
strated how they can be combined to extend the LINQ to Objects story.
The examples provided showed how to improve the coding model around
reading data from CSV text file sources and how to combine data from
Microsoft Excel using COM-Interop into LINQ to Object queries.

References

1. Ecma International History from the Ecma International website hosted at http://www.ecma-
international.org/memento/history.htm.

2. Ecma-334—C# Language Specification from the Ecma International website at http://www.
ecma-international.org/publications/standards/Ecma-334.htm.

http://www.ecmainternational.org/memento/history.htm
http://www.ecmainternational.org/memento/history.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm

This page intentionally left blank

INDEX

307

A
adding COM-Interop interfaces,

253-256
advantages of LINQ, 13-15
aggregation operators, 123-125

Aggregate, 123-125
Average, 126-129
Count, 129-131
LongCount, 129-131
LongSum, building, 219-222
Max, 126-129
Min, 126-129, 216-219
Sum, 126-129
writing, 216-222

Amdahl’s law, 268
All operator, 164-166
anonymous types, 24-26

returning, 58-59
Any operator, 166-169
arguments for extension

methods, 18
AsEnumerable operator, 133
AsSequential operator, 285-287
Average operator, 126-129

B
benefits of LINQ, 13-15
bindings, 244
Box, Don, 2
building

custom EqualityComparers,
184-185

LongSum Operator, 219-222
row iterator in Microsoft

Excel, 256-260
Segment operator, 226-232

Soundex equality operator,
84-87

TakeRange operator, 210-216
built-in performance

optimization (LINQ to
Objects), 200

built-in string comparers,
183-185

C
C# 2.0

contract records, grouping and
sorting versus LINQ
approach, 5, 7

data, summarizing from two
collections versus LINQ
approach, 8-12

evolution of, 233-234
Callahan, David, 262
Cartesian Product, 94
case in-sensitive string ordering,

65-67
Cast operator, 133-134
choosing query syntax, 42
chunk partitioning, 277
classes, Hashset, 185-186,

191-192
code parallelism

Amdahl’s law, 268
exceptions, 270
overhead, 269
synchronization, 269
versus multi-threading,

264-267
Collection Initializers, 22
COM-Interop programming, 234

combining with LINQ,
251-260

references, adding, 253-256
versus optional parameters,

235-237
combining LINQ and

COM-Interop, 251-260
comparing

LINQ Set operators and
HashTable type methods,
186-192

query syntax options, 45-49
composite keys

grouping by, 80-83
joining elements, 102

Concat operator, 174-176
Contains operator, 169-171
contract records, comparing

LINQ and C# 2.0
grouping and sorting
approaches, 5-7

conversion operators
AsEnumerable, 133
Cast, 133-134
OfType, 134-136
ToArray, 136
ToDictionary, 136-139
ToList, 140
ToLookup, 140-143

cores, 264
Count operator, 129-131
CPUs

cores, 264
multi-threading versus code

parallelism, 264-267
overhead, 269
processor speed, 263-264
synchronization, 269

cross joins, 94-97
cultural-specific string ordering,

65-67

custom comparers, 83-87
custom EqualityComparers

building, 184-185
built-in string comparers,

183-185
customizing query result sort

comparison functions,
67-72

D
data ordering, 270
declaring

anonymous types, 24-26
extension methods, 18-21

DefaultlfEmpty operator,
144-145

deferred execution, 51
delegate keyword, 26
Distinct operator, 177-178
dot notation syntax. See exten-

sion method format, 41
drivers for parallel programming,

261-262
duplicate results, removing, 62
dynamic typing, 243-245

bindings, 244
in LINQ queries, 246-251
when to use, 246

E
ECMA, 233
Element operators

DefaultlfEmpty, 144-145
ElementAt, 145-147
ElementAtOrDefault, 145-147
First, 147-149
FirstOrDefault, 147-149
Last, 149-151
LastOrDefault, 149-151
Single, 151-153
SingleOrDefault, 151-153

ElementAt operator, 145-147
ElementAtOrDefault operator,

145-147
Empty operator, 155-156
Equality operators,

SequenceEqual, 154-155

308 Index

EqualityComparers
built-in string comparers,

183-185
custom, 183-185

error handling, adding to parallel
operators, 298-301

evolution of C#, 233-234
examples of LINQ to Objects

query syntax, 30-38
Except operator, 178-179
exceptions, 270
expression trees, 3
extension method format, 41
extension methods, 18

F
features of C#

dynamic typing, 243
bindings, 244
in LINQ queries, 246-251
when to use, 246

named arguments, 240-243
optional parameters, 237-239,

241-243
filtering query results, 49

by index position, 53-54
deferred execution, 51
Where filter

with external methods for
evaluation, 52-53

with Lambda Expression, 50
with query expressions, 51

First operator, 147-149
FirstOrDefault operator, 147-149
fluent interfaces, 247

G–H
Generation operators

Empty, 155-156
Range, 156-158
Repeat, 158-159

Geonames example of Parallel
LINQ queries, 271-275

GroupBy extension method,
76-77

grouped objects, returning, 59

grouping collection
implementation of
grouping operators,
223-225

grouping elements, 75
composite keys, grouping by,

80-83
custom comparers, specifying,

83-87
GroupBy extension method,

76-77
into new type, 88-90
keySelector expression,

77-80
query continuation, 90-93

grouping operators
grouping collection implemen-

tation, 223-225
Segment operator, building,

226-232
writing, 222-232

Gustafson, John L., 268

hash partitioning, 278
Hejlsberg, Anders, 2

I
implicitly typed local variables,

23-24
index position

obtaining from query results,
61-62

query results, filtering, 53-54
inner joins, 100
integers, nullable type, 128
interfaces (COM-Interop),

adding, 253-256
Intersect operator, 180
Into keyword for query

expression format, 45
invoking Parallel LINQ

queries, 280

J

join operator, 99-104
join/into keyword combination,

performing one-to-many
joins, 112-115

joins, 93
cross joins, 94-97
Join operator, 103-104
one-to-many, 111-112

join/into keyword
combination, 112-115

performance comparisons,
117-119

subqueries, 115-116
ToLookup operator, 116-117

one-to-one, 97
join operator, 99-101
performance comparisons,

107-111
using cross joins, 106-107
using SingleOrDefault

operator, 105-106
using subqueries, 104-105

outer joins, 101

K–L
keySelector expressions,

handling null values,
77-80

Lambda Expressions, 26-28
delegates, 27
Where filters, 50

Last operator, 149-151
building, 196-201

LastOrDefault operator, 149-151
LINQ

combining with COM-Interop,
251-260

queries
dynamic typing, 246-251
named arguments, 241-243
optional parameters,

241-243
LINQ Language Compiler

Enhancements, 3
“LINQ Project Overview”

whitepaper, 2
LINQ set operators

Concat, 174, 176
Distinct, 177-178
EqualityComparers

built-in string comparers,
183-185

custom, 183-185

Index 309

Except, 178-179
Intersect, 180
Union, 181-183

LINQ to Datasets, 4
LINQ to Entities, 4
LINQ to Objects, 4

anonymous types, 24-26
built-in performance

optimizations, 200
Collection Initializers, 22
contract records, grouping and

sorting versus C# 2.0
approach, 5, 7

data, summarizing from two
collections versus C# 2.0
approach, 8-12

extension methods
arguments, 18
declaring, 18-21

implicity typed local variables,
23-24

Lambda Expressions, 26-28
Object Initializers, 21-22
queries, syntax examples,

30-38
Query Expressions, 29-30

LINQ to SQL, 4
LINQ to XML, 4
local variables

implicit typing, 23-24
query expression format,

creating, 44-45
LongCount operator, 129-131
LongSum operator, building,

219-222

M
Max operator, 126-129
Merging operators, Zip, 159-160
Microsoft Excel, building row

iterators, 256-260
Min operator, 126-129

writing, 216-219
Moore’s Law, 261
multi-core processors, 263-264
multi-threading, versus code

parallelism, 264-267

N
named arguments, 234-243
natural sorting, 69
normalization, 94, 97
null values, handling in

keySelector expressions,
78-80

null-coalescing operators, 79
nullable type, 128

O
Object Initializers, 21-22
obtaining index position from

query results, 61-62
OfType operator, 134-136
one-to-many joins, 94, 111-112

join/into keyword
combination, 112-115

performance comparisons,
117-119

subqueries, 115-116
ToLookup operator, 116-117

one-to-one inner joins, 94
one-to-one joins, 97

join operator, 99-101
performance comparisons,

107-111
using cross joins, 106-107
using SingleOrDefault

operator, 105-106
using subqueries, 104-105

operators
Equality operators,

SequenceEqual, 154-155
Generation operators

Empty, 155-156
Range, 156-158
Repeat, 158-159

Merging operators, Zip,
159-160

Parallel LINQ operators
error handling, 298-301
testing, 295-297
writing, 289-294

Partitioning operators
Skip, 161-162
SkipWhile, 163-164
Take, 161-162
TakeWhile, 163-164

Quantifier operators
All, 164-166
Any, 166-169
Contains, 169-171

single element operators
Last, building, 196-201
RandomElement, building,

201-208
optional parameters, 234,

237-239
in LINQ queries, 241-243
versus COM-Interop

programming, 235-237
ordering Parallel LINQ query

results, 281-284
outer joins, 101

P
Parallel LINQ queries, 270

AsSequential operator,
285-287

data ordering, 281-284
data partitioning, 276

chunk partitioning, 277
hash partitioning, 278
range partitioning, 277
striped partitioning, 278

Geonames example, 271-275
invoking, 280
operators

error handling, 298-301
testing, 295-297
writing, 289-294

parallel execution, 279
parallel results, merging, 279
query analysis, 275-276
two-source operators, 287-289

parallel programming
Amdahl’s law, 268
drivers, 261-262
exceptions, 270
overhead, 269
synchronization, 269
versus multi-threading,

264-267
parallelization, 64

310 Index

parameters
optional, 234, 237-239

in LINQ queries, 241-243
versus COM-Interop

programming, 235-237
Partitioning operators

Skip, 161-162
SkipWhile, 163-164
Take, 161-162
TakeWhile, 163-164

partitioning schemes, 276
chunk partitioning, 277
hash partitioning, 278
range partitioning, 277
striped partitioning, 278

performance, Amdahl’s
law, 268

PLINQ (Parallel Extensions
to .NET and Parallel
LINQ), 4

predicates, 49
Primary Interop Assemblies, 256
processors, multi-core, 263-264
projecting grouped elements into

new type, 88-90
projections, 25

Q
Quantifier operators

All, 164-166
Any, 166-169
Contains, 169-171

queries
case in-sensitive string

ordering, 65-67
cultural-specific string

ordering, 65-67
duplicate results, removing, 62
extension method format, 41
index position of results,

obtaining, 61-62
LINQ to Objects, syntax

examples, 30-38
Parallel LINQ queries

AsSequential operator,
285-287

chunk partitioning, 277

data ordering, 281-284
data partitioning, 276-277
Geonames example,

271-275
hash partitioning, 278
invoking, 280
operators, error handling,

298-301
operators, testing, 295-297
operators, writing, 289-294
parallel execution, 279
parallel results,

merging, 279
query analysis, 275-276
striped partitioning, 278
two-source operators,

287-289
query dot format, 42
query expression format, 42-44

Into keyword, 45
local variables, creating,

44-45
results

custom sort function,
specifying, 67-72

reversing order, 65
sorting, 63-64

return type, changing, 54-59
SelectMany operator, 59-61
Standard Query Operators, 14
syntax

choosing, 42
comparing methods, 45-49

Where clause, 49-50
deferred execution, 51
filtering by index position,

53-54
query expressions, 51
with external methods,

52-53
with Lambda Expression, 50

query continuation, 90-93
query dot format, 42
query expression format, 42-44

Into keyword, 45
local variables, creating, 44-45
Where filters, 51

Query Expressions, 29-30
query operators, 121

aggregation operators
Aggregate operator, 123-125
Average operator, 126-129
Count operator, 129-131
LongCount operator,

129-131
Max operator, 126-129
Min operator, 126-129
Sum operator, 126-129
writing, 216-222

conversion operators
AsEnumerable, 133
Cast, 133-134
OfType, 134-136
ToArray, 136
ToDictionary, 136-139
ToList, 140
ToLookup, 140-143

element operators
DefaultlfEmpty, 144-145
ElementAt, 145-147
ElementAtOrDefault,

145-147
First, 147-149
FirstOrDefault, 147-149
Last, 149-151
LastOrDefault, 149-151
Single, 151-153
SingleOrDefault, 151-153

grouping operators, writing,
222-232

sequence operators
TakeRange, building,

210-216
writing, 208-216

single element operators,
writing, 196-208

R
race conditions, 265-266
RandomElement operator,

building, 201-208
Range operator, 156-158
range partitioning, 277
Repeat operator, 158-159

Index 311

return type, changing, 54
anonymous type, returning,

58-59
different type as source,

returning, 56-58
grouped objects, returning, 59
same type as source,

returning, 56
single result value,

returning, 55
returning sequenced elements

with SelectMany
operator, 59-61

reversing query result order, 65
row iterator, building in

Microsoft Excel, 256-260
Rusina, Alexandra, 200

S
Segment operator, building,

226-232
selecting query syntax, 42
selection projections

query return type, changing,
54-55

anonymous type, returning,
58-59

different type as source,
returning, 56-58

grouped objects,
returning, 59

same type as source,
returning, 56

single result value,
returning, 55

SelectMany operator, 59-61
sequence operators

TakeRange, building, 210-216
writing, 208-216

SequenceEqual operator,
154-155

sequences returning, 59-61
single element operators

Last, building, 196-201
RandomElement, building,

201-208
writing, 196-208

Single operator, 151-153
SingleOrDefault operator,

151-153
one-to-one joins, 105-106

Skip operator, 161-162
SkipWhile operator, 163-164
sorting query results

case in-sensitive string
ordering, 65-67

cultural-specific string
ordering, 65-67

custom sort comparison
functions, specifying,
67-72

reversing result sequence, 65
syntax, 63-64

Soundex equality operator,
building, 84-87

Standard Query Operators, 14
striped partitioning, 278
subqueries

one-to-many joins, performing,
115-116

one-to-one joins, performing,
104-105

Sum operator, 126, 128-129
summarizing data from two

collections, comparing
LINQ and C# 2.0
approaches, 8-12

synchronization, 269
syntax

LINQ to Objects query
examples, 30-38

queries
choosing, 42
methods, comparing, 45-49
query expression format,

43-45
results, sorting, 63-64

T
Take operator, 161-162
TakeRange operator, building,

210-216
TakeWhile operator, 163-164
ternary operators, 79

testing Parallel LINQ operators,
295-297

this modifier, 18
thread-level parallelism, 264
threading, 264
ToArray operator, 136
ToDictionary operator, 136-139
ToList operator, 140
ToLookup operator, 140-143

one-to-many joins, performing,
116-117

Toub, Stephen, 278
two-source operators, 287-289

U–V
Union operator, 181-183
unstable sorting types, 64

Visual Studio, adding
COM-Interop interfaces,
255-256

W
Where clause

query expression syntax, 51
query results, filtering, 49-50

by index position, 53-54
deferred execution, 51

with external method for
evaluation, 52-53

writing
grouping operators, 222-232
Min Operator, 216-219
Parallel LINQ operators,

289-294
query operators, grouping

operators, 222-232
sequence operators, 208-216
single element operators,

196-208
XML, comparing LINQ and

C# 2.0 and 3.0
approaches, 8-12

312 Index

X–Y–Z
XML, comparing LINQ

and C# 2.0 writing
approaches, 8-12

Zip operator, 159-160

	Foreword
	Preface
	Who Should Read This Book
	Overview of the Book
	Conventions
	Sample Download Code and Updates
	Choice of Language
	System Requirements

	Acknowledgments
	About the Author
	Chapter 8: C# 4.0 Features
	Evolution of C#
	Optional Parameters and Named Arguments
	Dynamic Typing
	COM-Interop and LINQ
	Summary
	References

	Index
	A
	B
	C
	D
	E
	F
	G–H
	I
	J
	K–L
	M
	N
	O
	P
	Q
	R
	S
	T
	U–V
	W
	X–Y–Z

