

Linux and High-Performance
Computing

Outline

● Architectures & Performance
Measurement

● Linux on High-Performance
Computers

● Beowulf Clusters, ROCKS

● Kitten: A Linux-derived LWK

● Linux on I/O and Service Nodes

● Free Software for Parallel Computing

● Resource Management

● MPI (Message Passing Interface)

● OpenMP

The Cray 1, early vector processor and
universal icon of supercomputing.
(Thanks, Cray 1 Hardware Manual

Cover)

Performance Measurement

● Linpack FLOPs are the performance standard
used for consideration in the TOP500
● The specific benchmark is HPL
● Asks “how many FLOPs do you get while solving an

NxN series of linear equations, starting at N=1000?”
● Linpack is a commonly targeted application for two

reasons:
– It is useful in engineering.
– Being on the TOP500 is even more useful in marketing.

Architecture: Where does the
performance come from?

Node-level

● Clock rate (arguably the least
important.)

● CPU Microarchitecture (OoO?
SMT? How many pipeline stages?)

● Memory architecture (Cache? How
many CPUs share memory?
NUMA/NUCA/ COMA?)

● ALU Features (SIMD, vector units)

● Software Features (How good is the
compiler? Random timing
fluctuations in OS?)

Single processor chip from a Blue
Gene/L. (Thanks, Wikipedia)

Architecture: Where does the
performance come from?

System-Level

● Network

● Latency

● Bandwidth

● Topology

● Power

● What fraction of cores can be
powered at a given time?

● Memory system (again)

● Is memory distributed? If so,
what are the latencies?

Blue Gene/L System (Thanks, IBM)

The Low End: Clusters

● Normal PC hardware on low-
latency (or even Ethernet)
backplane.

● Often running straight Linux
distribution.

● Typically run MPI-based
parallel applications (most
supercomputers do, too).

● Least FLOPs/watt (doesn't
scale well)

● Greatest FLOPs/dollar
(inexpensive entry-level HPC)

Microwulf: a “personal, portable Beowulf
cluster” (thanks Calvin College)

The High-End: Supercomputers

● Can have custom processor cores
(like Cray XMT) or commodity
parts (like Red Storm)

● At the very least, have custom
board-level design with scalability
in mind.

● OS development/porting requires
major effort.
● But less effort that porting Linux to a

new workstation.

● More FLOPs/watt than clusters.

● Application-matched
network/memory systems.

● Greater initial purchase price.

Cray XMT, a modern supercomputer
architecture.(Thanks, Cray)

Linux for Clusters: The Beowulf

● ROCKS: Linux distro with
deployment on clusters in mind.

● Based on CentOS (formerly based
on Red Hat)

● Comes with:
● MPI distributions.
● Resource management utilities (like

Torque)
● Installer built for cluster-wide

deployment.

Lightweight Kernels

● Compute nodes in supercomputers don't typically run
desktop Oses.
● Too much overhead.
● Unpredictable behavior degrades performance (see Petrini, et al.,

“The Case of the Missing Supercomputer Performance”,
accompanying chart)

● Features like virtual memory aren't necessarily useful on large-
scale batch systems.

Illustration of effect of OS scheduler noise over a series of barriers.
(Thanks, Kevin Pedretti, Sandia National Labs)

Lightweight Kernels

● Kitten: A Linux-based LWK
● Uses Linux Kernel code “where it makes sense”; no

need to rewrite code like drivers, and no need to
maintain compatibility with the mainstream Linux
kernel.

● Under active development at Sandia.

● Replacement for Catamount, the LWK used on Red
Storm.

● Plan 9 from Bell Labs
● Not Linux-based (here for contrast)

● Microkernel architecture allows it to be run on
service and compute nodes.

● Has been ported to Blue Gene/L, but since it's Plan
9, no one cared.

Linux on I/O and Service Nodes

● Red Storm: Runs LWK Catamount on compute nodes, uses Linux for network-
facing nodes.

● Linux nodes handle external networking, job scheduling, software development
environment.

● Are also sometimes used for disk I/O

● Standard server facilities (OpenSSH, FTP) provided by Linux I/O nodes.

● LWKs don't have to provide OS features like sockets that these apps require.

Example of a supercomputer with four classes of node. (Thanks Kevin
Pedretti, Sandia National Labs)

Free Software Used in HPC

Resource Management
● Not much to say here. When you get access to, or have

to set up, a high-performance machine, the manual for
one of these will likely be at the top of the pile on your
desk.

● OpenPBS (Portable Batch System)
● Batch scheduling system first released by NASA in 1990.

● Torque
● Considered a replacement for OpenPBS
● Similar interface to user:

– Jobs submitted with qsub, checked with qstat.

Free Software Used in HPC

MPI

● Framework for distributed applications.
● Writing an MPI application is like writing a networked application,

except MPI also handles the launching of multiple processes
across nodes.

● Implemented entirely as a library (no compiler support
needed.)

● Deals (minimally) with the fact that programming a modern
supercomputer is like programming thousands of
workstations.
● But it still is like a cluster of workstations. In fact, so much like a

cluster of workstations that you can actually use a cluster of
workstations as a high performance machine. Thus the Beowulf.

Free Software Used in HPC

MPI: Semantics

● Each instance of a process in an MPI system is a “rank”, typically
distributed one per node.

● Grunt work handled by send and receive functions:

MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm);

MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Status *status);

● MPI_Comm is usually MPI_COMM_WORLD; MPI_Datatype can be
one of MPI_CHAR, MPI_DOUBLE, MPI_COMPLEX, etc.

● Multiple sends and receives can be combined (scatter/gather I/O) into
a single operation. MPI_Send_init, MPI_Recv_init, will prepare for a
send or receive, and then MPI_Startall or similar can be used to
complete the transaction.

Free Software Used in HPC

MPI: Implementations

● MPICH
● First MPI Implementation

● Currently maintained by Argonne National Lab

● Still commonly available on Linux distros.

● LAM/MPI
● Originally conceived as a parallel runtime for the Transputer.

● Another early MPI (although MPI support was ironically added later in its
development)

● Also still commonly available.

● OpenMPI
● LAM/MPI and several other development teams combined their efforts to create

OpenMPI.

● Should be target for all new MPI development.

Free Software Used in HPC

MPI Application: Tachyon

Launching Tachyon in a VM, shows use of mpiboot and mpirun.

Free Software Used in HPC

MPI Application: Tachyon

The Utah teapot, rendered by Tachyon
across 4 Qemu VMs.

Free Software Used in HPC

MPI Application: Tachyon

View of Tachyon trace in XMPI. Chunks are rendered by each rank and all sent back to Rank 0,
which then emits the image file. The trace can be played back with the “VCR” feature.

Free Software Used in HPC

OpenMP
● Used to parallelize applications at the node

level.
● Requires compiler support.
● Includes library for high-level thread

management.

Free Software Used in HPC

OpenMP: Semantics

● Annotate serial code with hints for the compiler.
● Tell the compiler which parts are parallel and how.

● Example (with no dependencies):

#pragma omp parallel for schedule(dynamic, 10)

for (int i = 0; i < 1000; i++)

 a[i] = (b[i] + c[i])/2;

● Optional schedule directive gives scheduling type and chunk size.

● Also supported are thread-local and shared variables, atomic
operations, and barriers.

● Much easier than pthreads for fine-grained loop parallelizations.

Free Software Used in HPC

OpenMP: GOMP
● The implementation of OpenMP in GCC.
● Includes a complete version of the runtime.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

