I Czlab

TECHNOLOGY
TRANSFER
TEAM

Linux centered
heterogeneous multi-core
architectures

A. Paccoia, M. Rodolfi, C. Salati, M. Sartori
T3LAB, Bologna, Italy

Ordine degli Ingegneri, Bologna, novembre 2016

List of contents .I tsab

TRANSFER
TEAM

* Evolution of HW platforms

* Rationale for heterogeneous multi-core architectures
 Complex SW platforms: problems and requirements
 What's available: remoteproc and rpmsg

* Anrpsmsg based inter-kernels IPC service and its socket API
* Exporting the rpmsg bus interface to the user space

* Linux topics
* Device model
* Device Tree
* Device driver API
* Sockets

e Platform and misc drivers

HW platforms: TI| OMAP 5

From debug subsystem

Cortex-A15 | Cortex-A1:

Mastar

L4-AEE intercannest

Mastar 1

DM 1 13 bis
oMM 2 TH bis

A bis

! DMM (splitier :
and Tier) |

JL L L

Ll regug 0
: EMIF1 :: EMIF2 : : nanonor! |
| 1) DOR3 1 | PSRAM | |
(NSNS WONONGN) |WcoOmScAE |

32 bis

L4_CFG

To L3_INSTR o hits

Czlab

CE4+ (4 issues) l

Core: 32-bit fixed pis.

| =5x12C |
| - 1x HDQ@1W !
I - 4x MCSPI :
|- S UART qimos) |
|- Bx TMER 1
| - GPIO |
| = 2xMMC :
l |
| I

L4_PER interconnect

155

| 1CTRL anc Paratel &
| Serial - 212, CCP2

32 bits

H 2 his EELTY 28 bt

From Cii2
PiHD {prefiler part)

L3_INSTR
From CM1
{profier port)
From PRM
.= (profier port)
DEBUGSS

Ofver meatstan:
| -gcrasce cenusss

L4_CFG_EMU

From L3_MAIN ToL3 INSTR_EMU

|- WD_TIMER |
|- General Wakeup Cantrol moduie

L3_MAIN interconnect

L4_WHKUP interconnect

L4_CFG interconnect

—————————— -
|-EFUSE CTRL+FROM |
| -OCP2SCP x 2 [

. TECHNOLOGY
.l TRANSFER
TEAM
L4_CFG L4 PER
32 bits m=a oo 32his
1
1SS megacel _1 lysas! lusma! _ | _ _
p— S |] T
[BR2D GPU :s»,rshamDMm lpw':m'r ::
I subsystem subsystem | | I___E: ;__|—_J_|| |:
I | I 1
1] I
| | SSUSBDRD ! I
ccaz0 aioors | | e)| Il MMCt !
D graphics | | gparonies || 2 xeeonrol | jlmmMc2 |
L1332 K shared cache I | 1 UsB A0 I| |
and MMLVETM | | | controler II 1 |
54 KB RAM {16 KIE | :I ! I:
I I 1
S |
&4 b s | § 2 E T
= g3
E 2 g Ié;—tg;G Gébis 3zbes
TU HS' 32 bits. 32 bils. 32 hits
System OMA, Lt_CFG L4 PER L4_CFG
55 USB DRD, 32 bits 32 bits A2bis
HS USB Host,
Shared OCP W, H e
HS USBTLL, To L3_INSTR_EMU I T
SATA I o] -port
1T | o W S
1, | s s = | - \ Host
A=SET [saTA | | |
| CM_CORE + profler = : |} et | [onan]
B ————— = Ta
3, S (3 INSTR : - 1
 Maibox 1o -—= :
1- _
___________ - I 1 IS-DM—l I Hs
L___ 1 : HS :—l Ic
To FOIF (face detect) | LTLEE | =
To DSP subsystem T *
——————————— -

5432-awpL2ae-001

3

HW platforms: Tl Sitara AM572x ﬁl

MPU VA HD Display Subsystem

(2x ARM® 1080p Video 1x GFX Pipeline LCD1
Cortex™—-A15) Co-Processor CD2
3x Video Pipeline
LCD3
GPU BB2D Blend / Scale HDMI 14a

(2x SGX544 3D) (GC320 2D)

— IPU
(2x C6Ex™

Co-Processor) IPU2
(2x Cortex™—M4)

High-Speed Interconnect

Connectivity

USB 3.0 PCla S8 x2 I
Dual Role FS/HS/SS E—

wi PHYs (PRU_ESS x2]

— >

USB 2.0
Dual Role FS/HS GMAC_swW |

wi PHY

Program/Data Storage

S —cTT—

GPMC /ELM EMIF x2
(NAND/NOR/ 2x 32-bit
DDR3(L) ECC

Czlab

TECHNOLOGY
TRANSFER
TEAM

HW platforms:
NXP i.MX 7Solo/Dual

/

OTP Startup

Bias and
References

/Faun Detection

Configuration

E=1
(&
2
=]
e
Qo
©
&
©

PF3000 PMIC

SW1A 1A Buck
07-33V

SW1B 1.75A Buck
0.7 - 1475V

SW2 1.25A Buck
15-185V/25-33V

SW3 1.5A Buck
0.9-1.65V

VCC_SD 100mA LDO

VLDO3 100mA LDO

18-3.3V

VLDO4 350mA LDO
18-33V

SWBST 600mA Boost
5-5.5V

VDDARM_IN: 1.15V

VDDSOC_IN' 115V

VDD_SNVS_IN: 3V

VSNVS 1mA, 3V
RTC / Licell charger

VDDA _1P8 18V

VREFDDR

1.8-0.85V/285-3.15V

V33 350mA LDO
285-33V

1.8V

Cortex A7
Cortex M4

i.MX 7Solo / Dual

uSDHC 4b
GPT
SPDIF RX
VCXO
CODEC
Temp Sensor
UART
JTAG
GPMI

%

Czlab

TECHNOLOGY
TRANSFER
TEAM

Czlab

TECHNOLOGY
TRANSFER
TEAM

HW platforms:
Xilinx UltraScale MPSoC

Processing System
Ap on P High
: : speed
DDR4/3/AL, Display Port
LPDDR4/3,
ECC Support | | USB 30 ‘
32KB Geometry 2 Pixel
-Cache D-Cache || Management Processor | Processors SATA3.0 ‘
with Parity with ECC Unit PCle Gen? ‘
PS-GTR

Vectar Floaling Configuraton Gigabit Ethernet

Dual ARM Cortex™-R5 , AES Decryption, CAN
Memory Protection Authentification Power . 12¢
Unit and Secure Boot DMA, Timers, UART

— WBT, Re_sets, USB 2.0
128KB TCM § 32KB I-Cache || 32KB D-Cache Clocking .
with ECC | with ECC with ECC TrustZone System and Debug SPI

Management Quad SPI NOR

Voltage/Temp NAND

Monitor SD/eMMC

-

Programmable Logic

Storage and Signal Processing High Speed Connectivity Video Codec
Block RAM General Purpose |0 GTH 100G EMAC

High-Performance HPIO PCle Gend

Note: lllustration not drawn to scale. 6

HW platforms: Xilinx Zyng

and SW generated heterogeneity

Czlab

TECHNOLOGY
TRANSFER
TEAM

Processing System (PS)
= | riem |
QUIRNSLAS Reset Application Processor Unit (APU) I
NEON™/FPU Engine NEON™/FPU Engine
Banko0
MIO Cortex™-A9 Cortex™-A9
(16:0) : System MMU MPCore ™ MMU MPCore™
X Lavel CPU CPU
~——
Control 32KB | 32KBD 32KB| 32KBD
Regs Cache Cache Cache Cache
GIC Snoop Control Unit
D DMAS A
- MUX | ; 512 KB L2 Cache & Controller
(MI0)
ocu € 256KB OCM
Interconnect BootROM
Barki Central
Mio FLASH Memory Interconnect | 1
{63:16) Interfaces =
- Memorylinterfaces
-
Programmable DDR2/3, LPDDR2
Quad SPI == DEVC Logic to Memory | : l C ¢ |
ontroller
\ Interconnect
i Input Clock DMA! Sync
EE DB BE
ExtendedMIO " pgtopL DMA Config High Performance XADC
(EMIO) Clock Ports Chanels AES/ AXI 32b/64b Slave -
SHA Ports
e Programmable Logic (PL)
AMBA® Connection Legend
(125G Arrow direction shows control, Data flows both directions
bps) Configurable AXI3 32 bit/64 bit PCle
AXI3 64 bit / AXI3 32 bit / AHB 32 bit / APB 32 bit Gen2

Select
110

Why AMP? —
(Asymmetric Multi-Processing) nl

Czlab

TECHNOLOGY
TRANSFER
TEAM

* Consolidation of applications
» Reuse
» Space / weight / power reduction

» “A growing number of embedded use cases require
concurrent execution of isolated SW environments within
the system” (F. Baum, Mentor Graphics)

e Robustness / security
e Boot time

* Heterogeneous functional and performance
requirements

> Real time

Heterogeneous requirements:
Computing vs. controlling

* Computing
» Large and complex applications
» Heavy computational requirements
» Real time / high throughput
» Complex arithmetic

» Large data movements

* Controlling
» Real time / determinism

» Minimum latency

RRRRRRRR
TEAM

Addressing design challenges in Bl 35D
heterogeneous multicore embedded | TESNRLR "
systems (W. Kurisu, Mentor Graphics)

TEAM

1. Each device runs its own operating system or operating
environment

2. Each device runs on its own discrete processor and those

processors are typically different

the type of application drives the processor selection, ranging from low-
end microcontrollers to high-end application processors;

each component of the system has full ownership of all the hardware
available to the component. Examples of that hardware include the
processors, graphic processing units, memory, I/0, cache, etc.

3. The discrete components of this system are typically loosely

connected
each component boots independently (?) and communicates with each
other through messages over some physical connection.

RRRRRRRR
TEAM

Complex SW platforms

 Multiple kernels and multiple independent instances
of a kernel on the same chip

» Linux
» RTOS (e.g. FreeRTOS is not multicore!)

* Partitioning of resources

* Boot & life cycle of processing cores and kernels
* Interprocessor/intercore communications

* |nterprocess communications (IPC)

* Programming model

TECHNOLOGY
TRANSFER
TEAM

B czlab
il

Why Linux centered?

* Because of silicon vendors’ support
(of the main processor of the chip)

e Because of Linux support of “computing”
requirements

* Because Linux already supports, to some extent,
heterogeneous architectures

L3

ab

e, ® ° f
Partitioning of resources
TRANSFER
TEAM
Processing System (PS)
/
I/ Peripherals Reset Application Processor Unit (APU) I
NEON™/FPU Engine NEQON™/FPU Engine
Bank0
p:nlo gg P Cortex™-A9 Cortex™-A9
{16:0) T System MMU MPCore ™ MMU MPCore™
- Teval CPU CPU
Control 32KBI 32KBD 32KB| 32KBD 64b
Regs Cache Cache Cache Cache AXI
1o ¥ Snoop Control Unit 1 s‘:f:e
o MUX ; 512 KB L2 Cache & Controller Port
(MI0)
ocM 256 KB OCM
Interconne ct BootROM
Bankd Central ’
MIO FLASH Memory Interconnect - *
(63:16) Interfaces
- MemorylInterfaces
ST Programmable Kl DDR253, LPDDR2 l i
ua Logic to Me:
— 11 AL :::erconngc:'v Sontrolr
e Central memory HH
High Performance XADC
C h d . AXI 32b/64b Slave
e Cache (and snooping) Lo
ping Programmable Logic (PL) Select
* Peripherals Fale

>
» Virtual I/O

Interrupts (and handling of PIC)

13

RRRRRRRR
TEAM

Boot

* Pin mux
» Consistency with partitioning of resources
» Implications on SW factory

* Loading of executable images and coordination with
life cycle management

> MMU to match relocation address of RTOS-based
executable images

Life cycle

TECHNOLOGY
TRANSFER
TEAM

B czlab
il

* Coordinated start/stop of different kernel instances

°* remoteproc

Developed by Tl
Master-slave architecture

Integrated with rpmsg support of interprocessor/intercore
communications

» Allocation and initialization of shared memory
communication resources

» 2 cores can communicate via rpmsg only if one is the
remoteproc master of the other

Integrated in Linux main branch (master role only)

Implemented as a platform driver

Interprocessor/intercore . F2lab
communications: rpmsg

TRANSFER
TEAM

* Developed by TI
e Based on standard Linux components (virtio)

* Point-to-point architecture between remoteproc master and its
remotes (host-device pattern)

* Message style communications, based on circular buffers in shared
memory (2 uni-directional vrings per point-to-point connection)

e Cache configuration must guarantee that communicating cores have a
coherent view of shared memory

* |ntegrated in Linux as a bus driver (an 1/O subsystem)
* The API offered by the romsg bus driver in Linux is in kernel space!

e Several client drivers (network or character drivers) can support
different transport/application dialogues on the same rpmsg bus

_I Czlab

TECHNOLOGY
ll TRANSFER
TEAM

rpmsg communication topology

* Constrained by connection with remoteproc

* Allows only communications between a remoteproc master and
each of its remotes

e 2 uni-directional vrings are created for communications
between the remoteproc master and each remote

* No support for routing (e.g. by remoteproc/rpmsg master)

* Supported communication topologies
e Star

* Tree (restricted to directly linked nodes)

e Linux support limited to romsg master side (center of star)

Linux 1/0 subsystem I Czlab

(device model)

TRANSFER
TEAM

Lser A pplh:atinnp]

User Space

Kernel Space

/sys, /dev
I _ Bus sub-system
[£C Cliant
Driver
Kernal Space
Hardware ‘
2C Bus —yTIen
) os
from LDD3 I2C Device Controller 18

B czlab
il

TECHNOLOGY
TRANSFER
TEAM

rpmsg service

* Analogous to a Data Link layer service

* De/multiplexing of higher layer services (of rpmsg channels)

* A remote creates an rmpsg channel by binding to a host provided
service (identified by a string, the name of the channel)

 The channel is then identified in the 2 directions by dynamically
created numerical endpoints

 The channel (host side) identifies also the remote we are
communicating with

* There may multiple active channels on a same vring pair

* Tx side provides reliable/flow-controlled and unreliable/best-effort
services

* Rx side expects that when a message is received it is immediately
extracted from the circular buffer (is dealt with by higher layer SW)

 Reliability of an rpmsg based transport (channel) service depends on
the support of flow-control by the transport protocol!

De/multiplexing

App #1

App #2| | App #3

App #4

App #1

App #2| | App #3

App #4

A

\ /

Internet Protocol

VA

\ /

Internet Protocol

Client

Czlab

TECHNOLOGY
TRANSFER
TEAM

Czlab

TECHNOLOGY
TRANSFER
TEAM

rpmsg service

struct rpmsg driver {
struct device driver drv;
const struct rpmsg device 1d *id table;
int (*probe) (struct rpmsg channel *dev);
void (*remove) (struct rpmsg channel *dev);
void (*callback) (struct rpmsg channel *, void *data,
int len, void *priv, u32 src);

s

static struct rpmsg device id rpmsg ipcproto id table[] = {
{ .name = RPMSG PROTO CHANNEL ID }, // e.g. “rpmsg-ipcproto”
{ 1

i

MODULE DEVICE TABLE (rpmsg, rpmsg ipcproto id table);

static struct rpmsg driver rpmsg _ipcproto_driver = {
.drv.name = KBUILD MODNAME,
.1d table = rpmsg lpcproto id table,
.probe = rpmsg_ipcproto probe, // when channel created
.callback = rpmsg_ipcproto cb, // when data received
.remove = rpmsg ipcproto remove,

1 21

l TECHNOLOGY

rpmsg service

TRANSFER
TEAM

int register rpmsg driver (struct rpmsg driver

*rpdrv) ;

e Registers an rpmsg driver with the rpmsg bus.

* User should provide a pointer to an rpmsg driver struct,
which contains

* thedriver's -=>probe () and ->remove () functions,
e an rx callback, and

* anid table specifying the names of the channels this
driver is interested to be probed with (e.g.
“rpmsg-ipcproto”).

TECHNOLOGY
TRANSFER
TEAM

B czlab
il

rpmsg service

int rpmsg send(struct rpmsg channel *rpdev,

void *data, int 1len);

e Sends a message across to the remote processor on a given channel.

* The caller should specify the channel, the data it wants to send and its
length (in bytes).

* The message will be sent on the specified channel, i.e. its source and
destination address fields will be set to the channel's src and dst
addresses (endpoints).

* |n case there are no TX buffers available, the function will block until
one becomes available (i.e. until the remote processor consumes a tx
buffer and puts it back on virtio's used descriptor ring), or a timeout of
15 seconds elapses.

* When the latter happens, —-ERESTARTSYS is returned.

TECHNOLOGY
TRANSFER
TEAM

B czlab
il

rpmsg service

int rpmsg trysend(struct rpmsg channel *rpdev,

void *data, int 1len);

* Sends a message across to the remote processor on a given channel.

* The caller should specify the channel, the data it wants to send, and
its length (in bytes).

 The message will be sent on the specified channel, i.e. its source and
destination address fields will be set to the channel's src and dst
addresses.

* |n case there are no TX buffers available, the function will
immediately return —-ENOMEM without waiting until one becomes
available.

Czlab

TECHNOLOGY
TRANSFER
TEAM

rpmsg service

void (*callback) (struct rpmsg channel *rpdev,
void *data, int len, void *priv,

u32 src) ;

* Passes over to the client driver associated to the channel rpdev the
data that have been received by the bus driver, along with opaque
structure priv.

* The callback function must dispatch data so that following messages
in the vring can be processed.

TECHNOLOGY
TRANSFER
TEAM

B czlab
il

Message style IPC service

* Analogous to UDP

e Users can create their own transport communication
endpoints (service access points, analogous to UDP ports)

e Service access point identified by a numbered port

* Best-effort
* Transport protocol romsg dgproto similar to UDP

* Implemented by a (client driver) protocol module

|l(

* Onrpmsg channel “rpmsg-ipcproto”

* Interfaced via the socket (system call) API
* Address family AF RPMSG
* Socket type SOCK DGRAM

Message style IPC service

Czlab

TECHNOLOGY
TRANSFER
TEAM

Socket layer

AF INET protocol stack [AF SYSTEM protocol stack

TCP, UDP, ...
IP

subnetworks

struct sockaddr rpmsg {

short
unsigned short
unsigned long
char

};

srpmsg family;

srpmsg_port;
srpmsg_addr;

AF RPMSG protocol stack

IPC messaging
rpmsg dgproto

rpmsg

// AF_RPMSG

srpmsg_zero[8];

27

Why an additional BE :ab
transport layer? T

TRANSFER
TEAM

* Multiple application dialogues between two cores
* But why not simply using different rpomsg channels?
* Users must be able to create their communication end-points

» Different dialogues may have different requirements: e.g. tcp
supports reliable, stream based communications while udp
supports best-effort, message based communications

e Without an additional transport layer protocol rpomsg
supports only best-effort, message based communications

* If we wanta SOCK SEQPACKET semantic we need a
complex connection oriented protocol that implements flow
control

TECHNOLOGY
TRANSFER
TEAM

B czlab
il

rpmsg IPC: core address

* In our IPC autonomous cores on a chip are addressed via a
integer identifier

 When the remote requests the creation of a channel the client
driver gets a reference to the channel, and the channel allows to
locate the description of the remote in the Device Tree

* The definition of an alias in the Device Tree allows us to
associate an rpmsg core address to a remote

* The transport protocol rpmsg dgproto keeps the association
romsg channel <> core address
* Tx side: core address — rpmsg channel
* Rxside: rpmsg channel — core address

Device Tree

Czlab

TECHNOLOGY
TRANSFER
TEAM

aliases {

};

ethernet0 = &gemO;

serial0 = &uartl;
spi0 = &gspi;
rprocl = &remoteprocl; // remote core #1

remoteprocl: remoteproc@lF000000 ({

compatible = "xlnx,zynq remoteproc";
reg = < 0x1F000000 0x1000000 >;
interrupt-parent = <&intc>;
interrupts = < 0 37 0 0 38 0 >;
firmware = "firmware.elf";

ipino = <0>;

vring0 = <15>;

vringl = <14>;

30

rpmsg IPC messaging: . Fzlab
open issues

TRANSFER
TEAM

* Performance / functionalities
* Reliable communications
* Priority and guaranteed bandwidth
* Max size of messages
e 0-copy (now 2 copies Linux side)
* OCM vs. DDR (what shared memory?)
e Caching?
* Routing
* API
* Implementing SOCK SEQPACKET communications
* Extended semantics

rpmsg on RTOSs

RRRRRRRR
TEAM

* Focus on FreeRTOS but other RTOSs may be relevant
» SYSBIOS for Tl chips

* Portable implementation provided by OpenAMP
» Port available for FreeRTOS Xilinx/Freescale
» Only rpmsg bus

» No link with upstream Linux community
(port of bus driver on Linux is in user space!)

* How can we work upstream for FreeRTOS?

Multicore Association

TRANSFER
TEAM

B czlab
il

* http://www.multicore-association.org/index.php

* MCAPI: the Multicore Communications API
specification defines an APl and a semantic for
communication and synchronization between
processing cores in embedded systems

* OpenAMP: an open source framework that allows
operating systems to interact within a broad range of
complex homogeneous and heterogeneous
architectures and allows asymmetric multiprocessing
applications to leverage parallelism offered by the
multicore configuration

http://www.multicore-association.org/index.php
http://www.multicore-association.org/index.php
http://www.multicore-association.org/index.php

rpmsg APl in user space

TECHNOLOGY
TRANSFER
TEAM

B czlab
il

 Master side
* Via a character driver
* 1 major number and N minor numbers

 Each minor number associated to a pair
[remote core, rpmsg service]

* Pair [remote core, rpmsg service] associated to a
filename in /dev

e Service is best effort

User space, kernel & drivers . C3lab

TECHNOLOGY
TRANSFER
TEAM

User Program

1

Linux kernel

Kernel API (system calls)

Device driver AP

! ! 1

. Kernel
Device Driver Device Driver Device Driver services
major = K major = m T major = n AP

1 1 1

Interrupt handling API

Linux kernel

ﬁterru pt

35

Character drivers _. tzlab

TECHNOLOGY
struct file operations { i SR el

struct module *owner;

loff t (*llseek) (struct file *, loff t, int);

ssize t (*read) (struct file *, char user *, size t, loff t *);

ssize t (*write) (struct file *, const char user *, size t, loff t *);

ssize t (*aio read) (struct kiocb *, const struct iovec *, unsigned long, loff t);

ssize t (*aio write) (struct kiocb *, const struct iovec *, unsigned long, loff t);

int (*iterate) (struct file *, struct dir context *);

unsigned int (*poll) (struct file *, struct poll table struct *);

long (*unlocked ioctl) (struct file *, unsigned int, unsigned long);

long (*compat ioctl) (struct file *, unsigned int, unsigned long);

int (*mmap) (struct file *, struct vm area struct *);

int (*open) (struct inode *, struct file *);

int (*flush) (struct file *, fl owner t id);

int (*release) (struct inode *, struct file *);

int (*fsync) (struct file *, loff t, loff t, int datasync);

int (*aio_ fsync) (struct kiocb *, int datasync);

int (*fasynec) (int, struct file *, int);

int (*lock) (struct file *, int, struct file lock *);

ssize t (*sendpage) (struct file *, struct page *, int, size t, loff t *, int);

unsigned long (*get unmapped area) (struct file *, unsigned long, unsigned long,
unsigned long, unsigned long);

int (*check flags) (int);

int (*flock) (struct file *, int, struct file lock *);

ssize t (*splice write) (struct pipe inode info *, struct file *, loff t *, size t,
unsigned int);

ssize t (*splice read) (struct file *, loff t *, struct pipe inode info *, size t,
unsigned int);

int (*setlease) (struct file *, long, struct file lock **);

long (*fallocate) (struct file *file, int mode, loff t offset, loff t len);

int (*show fdinfo) (struct seq file *m, struct file *f); 36

From user space to char drivers

Userspace

Abl Read Buffer

TECHNOLOGY
TRANSFER
TEAM

Bl Czlab
il

Write String

read (x

fnrite ()

/dev/foo

copy_to user() v

Y

Major / Minor

file operations.read()/

\f ile operati

(4

A |

IRead Handler

Write Handler}«

copy from user()

ons .write ()

Kernel

%terru pt

Network protocol

Czlab

TECHNOLOGY
TRANSFER
TEAM

static const struct proto_ops rpmsg sock ops = {
.family PF RPMSG,
.owner THIS MODULE,
.release rpmsg sock release,
.connect rpmsg sock connect,
.getname rpmsg sock getname,
.sendmsqg rpmsg sock sendmsg,
.recvmsg rpmsg sock recvmsg,
.bind rpmsg_sock bind,
.poll sock no poll,
.listen sock no listen,
.accept sock no accept,
.loctl sock no ioctl,
.mmap sock no mmap,
.socketpair sock no socketpair,
.shutdown sock no shutdown,
.setsockopt sock no setsockopt,
.getsockopt sock no getsockopt

38

Network protocol

User Program

TECHNOLOGY
TRANSFER
TEAM

Bl C:lab
7 |

User space

Kernel API
(system calls)

Socket layer

Linux
kernel space

A A
Protocol module API
(proto ops interface)
\4 v
Protocol Protocol
module module
AF INET AF RPMSG

39

TECHNOLOGY
TRANSFER
TEAM

Programming model .I slab
* Pthreads

» E.g. manager-worker model:
manager on Linux, workers on RTOSs

» pthread attr setaffinity np () allowsto
control on what core a thread is created/run

» How can we share data between threads working on
different cores?

e RPC
* OpenMP

Platform driver / device

TECHNOLOGY
TRANSFER
TEAM

B czlab
il

* On embedded systems, devices are often not connected
through a bus allowing enumeration, hotplugging, and
providing unique identifiers for devices.

 However, we still want the devices to be part of the device
model.

* The solution to this is the platform driver / platform device
infrastructure.

* The platform devices are the devices that are directly
connected to the CPU (e.g. memory mapped
devices), without any kind of bus.

* https://www.kernel.org/doc/Documentation/driver-
model/platform.txt

Czlab

TECHNOLOGY
TRANSFER
TEAM

Platform driver / device

struct platform device {

const char *name;

u3l3? id;

struct device dev;

u3?2 num resources;

struct resource *resource;

s

struct platform driver {
int (*probe) (struct platform device *);
int (*remove) (struct platform device ¥*);
void (*shutdown) (struct platform device *);
int (*suspend) (struct platform device *, pm message t state);
int (*suspend late) (struct platform device ¥*,
pm message t state);
int (*resume early) (struct platform device *);
int (*resume) (struct platform device *);

struct device driver driver;

Czlab

TECHNOLOGY
TRANSFER
TEAM

Example .1/9

 From S. A. Edwards, Device Drivers, Columbia University,
http://www.cs.columbia.edu/~sedwards/classes/2014/4840/device-drivers.pdf

e Module’s API:

#ifndef VGA LED H
#define VGA LED H

#include <linux/ioctl.h>
#define VGA LED DIGITS 8

typedef struct {
unsigned char digit; // 0, 1, .. , VGA LED DIGITS-1
unsigned char segments; // LSB: segment a; MSB: decimal point
} vga led arg t;

#define VGA LED MAGIC 'g’

// ioctls and their arguments
#define VGA LED WRITE DIGIT IOW(VGA LED MAGIC, 1, vga led arg t*)
#define VGA LED READ DIGIT IOWR(VGA LED MAGIC, 2, vga led arg t*)

#fendif

43

Example .2/9

 Excerpt of the Device Tree:

lightweight bridge: bridge@0xff200000 ({
compatible = "simplebus";
#address-cells = <1>;

#size-cells = <1>;

ranges = < 0x0 O0xff200000 0x200000 >;

vga led: vga led@O {
compatible = "altr,vga led";

reg = <0x0 0x8>;

Czlab

TECHNOLOGY
TRANSFER
TEAM

44

Example .3/9

Driver source code — part 1:

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<linux/module.h>
<linux/init.h>
<linux/errno.h>
<linux/version.h>
<linux/platform device.h>
<linux/miscdevice.h>
<linux/io.h>
<linux/of.h>
<linux/of address.h>
<linux/fs.h>
<linux/uaccess.h>
"vga led.h"

#define DRIVER NAME "vga led"

struct vga led dev {

struct resource res;
void

iomem *virtbase;

u8 segments[VGA LED DIGITS];

} dev;

static voild write digit(int digit, u8 segments)

iowrite8 (segments, dev.virtbase + digit);

dev.segments[digit] = segments;

// Resource: our registers

// Pointer to registers

Czlab

TECHNOLOGY
TRANSFER
TEAM

45

TECHNOLOGY
TRANSFER
TEAM

Example 4/9 .I (3lab

 Driver source code — part 2;

static long vga_led ioctl (struct file *f, unsigned int cmd,
unsigned long arg) {
vga led arg t vla;
switch (cmd) {
case VGA LED WRITE DIGIT:
1f (copy from user (&vla, (vga led arg t *) arg,
sizeof (vga led arg t))) return -EACCES;
1if (vla.digit > 8) return -EINVAL;
write digit(vla.digit, vla.segments);
break;
case VGA LED READ DIGIT:
1f (copy from user (&vla, (vga led arg t *) arg,

sizeof (vga led arg t))) return -EACCES;
if (vla.digit > 8) return -EINVAL;
vla.segments = dev.segments[vla.digit];
1f (copy to user((vga led arg t *) arg, &vla,
sizeof (vga led arg t))) return -EACCES;

break;
default: return EINVAL;

}

return 0;

C3lab

TECHNOLOGY
TRANSFER
TEAM

Example .5/9

 Driver source code — part 3:

static const struct file operations vga led fops = {
.owner = THIS MODULE,
.unlocked ioctl = vga_led ioctl,

Y

// we define our module as a misc device, with its minor
// number dynamically assigned
static struct miscdevice vga led misc device = {
.minor = MISC DYNAMIC MINOR,
.name = DRIVER NAME,
.fops = &vga led fops,
y i

static 1nt vga led remove (struct platform device *pdev) {

iounmap (dev.virtbase) ;
release mem region(dev.res.start, resource size(&dev.res));

misc deregister (&vga led misc device);
return 0;

47

Example .6/9

Driver source code — part 4:

B C:
ull

TEAM

static int init vga led probe (struct platform device *pdev) ({

static unsigned char welcome message[VGA LED DIGITS] = ({

Ox3E, O0x7D, 0x77, 0x08, 0x38, 0x79, O0Ox5E, 0x00};
int 1, ret;
// Register ourselves as a misc device: creates /dev/vga led
ret = misc register (&vga led misc device);

// Find our registers in device tree; verify availability

ret = of address to resource (pdev->dev.of node, 0, &dev.res);
1f (ret) {
ret = —-ENOENT;

goto out deregilster;

}

if (request mem region(dev.res.start, resource size(&dev.res),

DRIVER NAME) == NULL) {
ret = EBUSY;
goto out deregister;
}
// vga_ led probe () continues

48

ab

TECHNOLOGY
TRANSFER

Czlab

TECHNOLOGY
TRANSFER
TEAM

Example 7/9

 Driver source code — part 5:

// Arrange access to our registers (calls ioremap)

dev.virtbase = of iomap (pdev->dev.of node, 0);
if (dev.virtbase == NULL) {
ret = -ENOMEM;

goto out release mem region;
}
// Display a welcome message
for (i = 0; 1 < VGA LED DIGITS; i++) ({
write digit (i, welcome message[i]);
}
return 0;
out release mem region:
release mem region(dev.res.start, resource size(&dev.res));
out deregister:
misc deregister (&vga led misc device);
return ret;

49

Czlab

TECHNOLOGY
TRANSFER
TEAM

Example .8/9

 Driver source code — part 6:

static const struct of device id vga led of match[] = {
{ .compatible = "altr,vga_led" },
{1,

s
MODULE DEVICE TABLE (of, vga led of match);

static struct platform driver vga_ led driver = {
.driver = {
.name = DRIVER NAME,
.owner = THIS MODULE,
.of match table = of match ptr(vga led of match),

by
.probe = vga_ led probe,

.remove = exlt p(vga led remove),
b7
static 1nt init vga led init (void) {
pr info (DRIVER NAME ": init\n");

return return platform driver register (&vga led driver);

}

static vold exit vga led exit (void) {
platform driver unregister (&vga led driver);
pr info (DRIVER NAME ": exit\n");

} 50

Czlab

TECHNOLOGY
TRANSFER
TEAM

Example .9/9

 Driver source code — part 7:

module init(vga led init);

module exit (vga led exit);

MODULE LICENSE ("GPL");
MODULE AUTHOR ("Stephen A. Edwards, Columbia University");
MODULE DESCRIPTION ("VGA /-segment LED Emulator");

* notes:
1. The init function of the module is vga led init ().

2. Function vga led init () registers a platform driver with
.compatible=="altr,vga led" and probe function vga led probe ().

3. Because a compatible match is found with device tree node vga 1led, function
vga led probe () is activated (a platform device structis filled with data

extracted from the device tree and passed to the probe function).

4. Function vga led probe () registers a miscDevice with the m1sc subsystem (by
invokingmisc register ()), thus completing the initialization of the vga led
driver module.

5. The only file operation supported by the vga led module is ioctl (). -

Czlab

TECHNOLOGY
TRANSFER
TEAM

Miscellaneous Character Drivers |
it

» MiscDevice is a thin layer around character devices.

 The misc driver and all miscDevices are assigned major number 10.

* Minor numbers may be assigned dynamically to miscDevices.

 The misc subsystem automatically creates the special file representing a
miscDevice in /dev directory.

* The misc driver exports two functions for user modules to register and
unregister (minor numbers must be unique among miscDevices):

#include <linux/miscdevice.h>

struct miscdevice {
int minor; // MISC DYNAMIC MINOR assigns it dynamically
const char *name; // for humans, will appearin /proc/misc file
const struct file operations *fops;
struct miscdevice *next, *prev;
// must be cleared before registering
};
int misc register(struct miscdevice *misc);

int misc deregister(struct miscdevice *misc);

remoteproc: device tree excerpt

remoteprocl: remoteproc@l ({

compatible = "xlnx,zynq remoteproc";
reg = < 0x1F000000 0x1000000 >;
//reg = < 0x18000000 0x08000000 >;
interrupt-parent = <&intc>;
interrupts = < 0 37 0 0 38 0 >;
firmware = "firmware.elf";

//status = "disabled";

ipino = <0>;

vring0 = <15>;

vringl = <14>;

Czlab

TECHNOLOGY
TRANSFER
TEAM

remoteproc: driver excerpt .1/4

~
* % ok ok ok ok ok ok % % ok ok ok ok ok * % % o*

*
~

Czlab

TECHNOLOGY
TRANSFER
TEAM

Zynqg Remote Processor driver

Copyright (C) 2012 Michal Simek <monstr@monstr.eu>
Copyright (C) 2012 Petalogix

Based on origin OMAP Remote Processor driver

Copyright (C) 2011 Texas Instruments, Inc.
Copyright (C) 2011 Google, Inc.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY,; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

Il C3lab
remoteproc: driver excerpt .2/4 =}

TECHNOLOGY
TRANSFER
TEAM

/* Match table for OF platform binding */

static const struct of device id zynq remoteproc match[]

{ .compatible = "xlnx,zynq remoteproc", 1},
{ /* end of list */ },

= {
};

MODULE DEVICE TABLE (of, zynq remoteproc _match) ;

static struct platform driver zynq remoteproc driver = ({
.probe = zyngq remoteproc probe,

.remove = zyndq remoteproc_remove,
.driver = {
.name = "zynq remoteproc”,

.of match table =

zynq_remoteproc match,
s

_I Czlab

TECHNOLOGY
il

remoteproc: driver excerpt .3/4

TRANSFER
TEAM

static int zynq remoteproc probe (struct platform device *pdev) ({

};

static int zynq remoteproc remove (struct platform device *pdev) ({

};

remoteproc: driver excerpt .3/4

TRANSFER
TEAM

Bl C:zlab
5l

TECHNOLOGY
il

module platform driver (zynq remoteproc_driver); // espande:

// module driver (zynqg remoteproc driver, platform driver register,
// platform driver unregister); // espande:

// static int __ init zynq remoteproc driver init (void) {

// return platform driver register (&zynq remoteproc_driver) ;
// '}

// module init(zynq remoteproc driver init);

//

// static void __ exit zyng remoteproc driver exit(void) ({

// platform driver unregister (&zynq remoteproc_driver) ;

// '}

// module exit(zynq remoteproc_driver exit);

module param(firmware, charp, 0);
MODULE PARM DESC (firmware, "Override the firmware image name.
Default value in DTS.");

MODULE AUTHOR ("Michal Simek <monstr@monstr.eu");
MODULE LICENSE ("GPL v2") ;
MODULE DESCRIPTION ("Zyng remote processor control driver");

Acknowledgements

 OpenNext is a project co-funded by

EBegioneEmﬂia;Bomagna
thanks to POR FESR funds

* alessio.paccoia@t3lab.it
michele.rodolfi@t3lab.it
claudio.salati@t3lab.it
matteo.sartori@t3lab.it

58

