
Linux centered
 heterogeneous multi-core

architectures

 A. Paccoia, M. Rodolfi, C. Salati, M. Sartori

T3LAB, Bologna, Italy

Ordine degli Ingegneri, Bologna, novembre 2016

List of contents

• Evolution of HW platforms

• Rationale for heterogeneous multi-core architectures

• Complex SW platforms: problems and requirements

• What’s available: remoteproc and rpmsg

• An rpsmsg based inter-kernels IPC service and its socket API

• Exporting the rpmsg bus interface to the user space

• Linux topics

• Device model

• Device Tree

• Device driver API

• Sockets

• Platform and misc drivers 2

HW platforms: TI OMAP 5

3

HW platforms: TI Sitara AM572x

4

HW platforms:
NXP i.MX 7Solo/Dual

5

HW platforms:
Xilinx UltraScale MPSoC

6

HW platforms: Xilinx Zynq
and SW generated heterogeneity

7

Why AMP?
(Asymmetric Multi-Processing)

• Consolidation of applications

 Reuse

 Space / weight / power reduction

 “A growing number of embedded use cases require
concurrent execution of isolated SW environments within
the system” (F. Baum, Mentor Graphics)

• Robustness / security

• Boot time

• Heterogeneous functional and performance
requirements

 Real time
8

Heterogeneous requirements:
Computing vs. controlling

• Computing

 Large and complex applications

 Heavy computational requirements

 Real time / high throughput

 Complex arithmetic

 Large data movements

• Controlling

 Real time / determinism

 Minimum latency
9

Addressing design challenges in
heterogeneous multicore embedded
systems (W. Kurisu, Mentor Graphics)

1. Each device runs its own operating system or operating
environment

2. Each device runs on its own discrete processor and those
processors are typically different
the type of application drives the processor selection, ranging from low-
end microcontrollers to high-end application processors;
each component of the system has full ownership of all the hardware
available to the component. Examples of that hardware include the
processors, graphic processing units, memory, I/O, cache, etc.

3. The discrete components of this system are typically loosely
connected
each component boots independently (?) and communicates with each
other through messages over some physical connection.

10

Complex SW platforms

• Multiple kernels and multiple independent instances
of a kernel on the same chip

 Linux

 RTOS (e.g. FreeRTOS is not multicore!)

• Partitioning of resources

• Boot & life cycle of processing cores and kernels

• Interprocessor/intercore communications

• Interprocess communications (IPC)

• Programming model
11

Why Linux centered?

• Because of silicon vendors’ support
(of the main processor of the chip)

• Because of Linux support of “computing”
requirements

• Because Linux already supports, to some extent,
heterogeneous architectures

12

Partitioning of resources

13

• Central memory

• Cache (and snooping)

• Peripherals

 Interrupts (and handling of PIC)

 Virtual I/O

Boot

• Pin mux

 Consistency with partitioning of resources

 Implications on SW factory

• Loading of executable images and coordination with
life cycle management

 MMU to match relocation address of RTOS-based
executable images

14

Life cycle

• Coordinated start/stop of different kernel instances

• remoteproc

• Developed by TI

• Master-slave architecture

• Integrated with rpmsg support of interprocessor/intercore
communications

 Allocation and initialization of shared memory
communication resources

 2 cores can communicate via rpmsg only if one is the
remoteproc master of the other

• Integrated in Linux main branch (master role only)

• Implemented as a platform driver
15

Interprocessor/intercore
communications: rpmsg

• Developed by TI

• Based on standard Linux components (virtio)

• Point-to-point architecture between remoteproc master and its
remotes (host-device pattern)

• Message style communications, based on circular buffers in shared
memory (2 uni-directional vrings per point-to-point connection)

• Cache configuration must guarantee that communicating cores have a
coherent view of shared memory

• Integrated in Linux as a bus driver (an I/O subsystem)

• The API offered by the rpmsg bus driver in Linux is in kernel space!

• Several client drivers (network or character drivers) can support
different transport/application dialogues on the same rpmsg bus

16

rpmsg communication topology

• Constrained by connection with remoteproc

• Allows only communications between a remoteproc master and
each of its remotes

• 2 uni-directional vrings are created for communications
between the remoteproc master and each remote

• No support for routing (e.g. by remoteproc/rpmsg master)

• Supported communication topologies

• Star

• Tree (restricted to directly linked nodes)

• Linux support limited to rpmsg master side (center of star)
17

Linux I/O subsystem
(device model)

18
from LDD3

Bus sub-system

Virtual

rpmsg service

• Analogous to a Data Link layer service

• De/multiplexing of higher layer services (of rpmsg channels)

• A remote creates an rmpsg channel by binding to a host provided
service (identified by a string, the name of the channel)

• The channel is then identified in the 2 directions by dynamically
created numerical endpoints

• The channel (host side) identifies also the remote we are
communicating with

• There may multiple active channels on a same vring pair

• Tx side provides reliable/flow-controlled and unreliable/best-effort
services

• Rx side expects that when a message is received it is immediately
extracted from the circular buffer (is dealt with by higher layer SW)

• Reliability of an rpmsg based transport (channel) service depends on
the support of flow-control by the transport protocol! 19

De/multiplexing

20

rpmsg service
struct rpmsg_driver {

 struct device_driver drv;

 const struct rpmsg_device_id *id_table;

 int (*probe)(struct rpmsg_channel *dev);

 void (*remove)(struct rpmsg_channel *dev);

 void (*callback)(struct rpmsg_channel *, void *data,

 int len, void *priv, u32 src);

};

static struct rpmsg_device_id rpmsg_ipcproto_id_table[] = {

 { .name = RPMSG_PROTO_CHANNEL_ID }, // e.g. “rpmsg-ipcproto”

 { },

};

MODULE_DEVICE_TABLE(rpmsg, rpmsg_ipcproto_id_table);

static struct rpmsg_driver rpmsg_ipcproto_driver = {

 .drv.name = KBUILD_MODNAME,

 .id_table = rpmsg_ipcproto_id_table,

 .probe = rpmsg_ipcproto_probe, // when channel created

 .callback = rpmsg_ipcproto_cb, // when data received

 .remove = rpmsg_ipcproto_remove,

}; 21

rpmsg service

int register_rpmsg_driver(struct rpmsg_driver

 *rpdrv);

• Registers an rpmsg driver with the rpmsg bus.

• User should provide a pointer to an rpmsg_driver struct,
which contains

• the driver‘s ->probe() and ->remove() functions,

• an rx callback, and

• an id_table specifying the names of the channels this
driver is interested to be probed with (e.g.
“rpmsg-ipcproto”).

22

rpmsg service

int rpmsg_send(struct rpmsg_channel *rpdev,

 void *data, int len);

• Sends a message across to the remote processor on a given channel.

• The caller should specify the channel, the data it wants to send and its
length (in bytes).

• The message will be sent on the specified channel, i.e. its source and
destination address fields will be set to the channel's src and dst
addresses (endpoints).

• In case there are no TX buffers available, the function will block until
one becomes available (i.e. until the remote processor consumes a tx
buffer and puts it back on virtio's used descriptor ring), or a timeout of
15 seconds elapses.

• When the latter happens, -ERESTARTSYS is returned. 23

rpmsg service

int rpmsg_trysend(struct rpmsg_channel *rpdev,

 void *data, int len);

• Sends a message across to the remote processor on a given channel.

• The caller should specify the channel, the data it wants to send, and
its length (in bytes).

• The message will be sent on the specified channel, i.e. its source and
destination address fields will be set to the channel's src and dst
addresses.

• In case there are no TX buffers available, the function will
immediately return -ENOMEM without waiting until one becomes
available.

24

rpmsg service

void (*callback)(struct rpmsg_channel *rpdev,

 void *data, int len, void *priv,

 u32 src);

• Passes over to the client driver associated to the channel rpdev the
data that have been received by the bus driver, along with opaque
structure priv.

• The callback function must dispatch data so that following messages
in the vring can be processed.

25

Message style IPC service

• Analogous to UDP

• Users can create their own transport communication
endpoints (service access points, analogous to UDP ports)

• Service access point identified by a numbered port

• Best-effort

• Transport protocol rpmsg_dgproto similar to UDP

• Implemented by a (client driver) protocol module

• On rpmsg channel “rpmsg-ipcproto”

• Interfaced via the socket (system call) API

• Address family AF_RPMSG

• Socket type SOCK_DGRAM

26

Message style IPC service

27

Socket layer

AF_INET protocol stack AF_SYSTEM protocol stack AF_RPMSG protocol stack

TCP, UDP, … IPC messaging
rpmsg_dgproto IP

subnetworks rpmsg

struct sockaddr_rpmsg {

 short srpmsg_family; // AF_RPMSG

 unsigned short srpmsg_port;

 unsigned long srpmsg_addr;

 char srpmsg_zero[8];

};

Why an additional
transport layer?

• Multiple application dialogues between two cores

• But why not simply using different rpmsg channels?

• Users must be able to create their communication end-points

• Different dialogues may have different requirements: e.g. tcp
supports reliable, stream based communications while udp
supports best-effort, message based communications

• Without an additional transport layer protocol rpmsg
supports only best-effort, message based communications

• If we want a SOCK_SEQPACKET semantic we need a
complex connection oriented protocol that implements flow
control

28

rpmsg IPC: core address

• In our IPC autonomous cores on a chip are addressed via a
integer identifier

• When the remote requests the creation of a channel the client
driver gets a reference to the channel, and the channel allows to
locate the description of the remote in the Device Tree

• The definition of an alias in the Device Tree allows us to
associate an rpmsg core address to a remote

• The transport protocol rpmsg_dgproto keeps the association
rpmsg channel  core address

• Tx side: core address  rpmsg channel

• Rx side: rpmsg channel  core address

29

Device Tree
{

...

aliases {

 ethernet0 = &gem0;

 serial0 = &uart1;

 spi0 = &qspi;

 rproc1 = &remoteproc1; // remote core #1

 };

...

remoteproc1: remoteproc@1F000000 {

 compatible = "xlnx,zynq_remoteproc";

 reg = < 0x1F000000 0x1000000 >;

 interrupt-parent = <&intc>;

 interrupts = < 0 37 0 0 38 0 >;

 firmware = "firmware.elf";

 ipino = <0>;

 vring0 = <15>;

 vring1 = <14>;

 };

...

}; 30

rpmsg IPC messaging:
open issues

• Performance / functionalities

• Reliable communications

• Priority and guaranteed bandwidth

• Max size of messages

• 0-copy (now 2 copies Linux side)

• OCM vs. DDR (what shared memory?)

• Caching?

• Routing

• API

• Implementing SOCK_SEQPACKET communications

• Extended semantics
31

rpmsg on RTOSs

• Focus on FreeRTOS but other RTOSs may be relevant

 SYSBIOS for TI chips

• Portable implementation provided by OpenAMP

 Port available for FreeRTOS Xilinx/Freescale

 Only rpmsg bus

 No link with upstream Linux community
(port of bus driver on Linux is in user space!)

• How can we work upstream for FreeRTOS?

32

Multicore Association

• http://www.multicore-association.org/index.php

• MCAPI: the Multicore Communications API
specification defines an API and a semantic for
communication and synchronization between
processing cores in embedded systems

• OpenAMP: an open source framework that allows
operating systems to interact within a broad range of
complex homogeneous and heterogeneous
architectures and allows asymmetric multiprocessing
applications to leverage parallelism offered by the
multicore configuration

33

http://www.multicore-association.org/index.php
http://www.multicore-association.org/index.php
http://www.multicore-association.org/index.php

rpmsg API in user space

• Master side

• Via a character driver

• 1 major number and N minor numbers

• Each minor number associated to a pair
[remote core, rpmsg service]

• Pair [remote core, rpmsg service] associated to a
filename in /dev

• Service is best effort

34

User space, kernel & drivers

35

Kernel API (system calls)

Device driver API

User Program

Linux kernel

Device Driver

major = k

Device Driver

major = m

Device Driver

major = n

. . .

Interrupt handling API

interrupt

Linux kernel

Kernel

services

API

Character drivers

36

struct file_operations {

 struct module *owner;

 loff_t (*llseek) (struct file *, loff_t, int);

 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);

 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);

 ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);

 ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);

 int (*iterate) (struct file *, struct dir_context *);

 unsigned int (*poll) (struct file *, struct poll_table_struct *);

 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);

 long (*compat_ioctl) (struct file *, unsigned int, unsigned long);

 int (*mmap) (struct file *, struct vm_area_struct *);

 int (*open) (struct inode *, struct file *);

 int (*flush) (struct file *, fl_owner_t id);

 int (*release) (struct inode *, struct file *);

 int (*fsync) (struct file *, loff_t, loff_t, int datasync);

 int (*aio_fsync) (struct kiocb *, int datasync);

 int (*fasync) (int, struct file *, int);

 int (*lock) (struct file *, int, struct file_lock *);

 ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);

 unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long,

 unsigned long, unsigned long);

 int (*check_flags)(int);

 int (*flock) (struct file *, int, struct file_lock *);

 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t,

 unsigned int);

 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t,

 unsigned int);

 int (*setlease)(struct file *, long, struct file_lock **);

 long (*fallocate)(struct file *file, int mode, loff_t offset, loff_t len);

 int (*show_fdinfo)(struct seq_file *m, struct file *f);

};

From user space to char drivers

37

read() write()

file_operations.read() file_operations.write()

interrupt

copy_to_user() copy_from_user()

Network protocol

38

static const struct proto_ops rpmsg_sock_ops = {

 .family = PF_RPMSG,

 .owner = THIS_MODULE,

 .release = rpmsg_sock_release,

 .connect = rpmsg_sock_connect,

 .getname = rpmsg_sock_getname,

 .sendmsg = rpmsg_sock_sendmsg,

 .recvmsg = rpmsg_sock_recvmsg,

 .bind = rpmsg_sock_bind,

 .poll = sock_no_poll,

 .listen = sock_no_listen,

 .accept = sock_no_accept,

 .ioctl = sock_no_ioctl,

 .mmap = sock_no_mmap,

 .socketpair = sock_no_socketpair,

 .shutdown = sock_no_shutdown,

 .setsockopt = sock_no_setsockopt,

 .getsockopt = sock_no_getsockopt

};

Network protocol

39

Kernel API

(system calls)

Protocol module API
(proto_ops interface)

User Program

Linux

kernel space

Protocol

module
AF_INET

Socket layer

. . .

User space

Protocol

module
AF_RPMSG

Programming model

• Pthreads

 E.g. manager-worker model:
manager on Linux, workers on RTOSs

 pthread_attr_setaffinity_np() allows to
control on what core a thread is created/run

 How can we share data between threads working on
different cores?

• RPC

• OpenMP

40

Platform driver / device

• On embedded systems, devices are often not connected
through a bus allowing enumeration, hotplugging, and
providing unique identifiers for devices.

• However, we still want the devices to be part of the device
model.

• The solution to this is the platform driver / platform device
infrastructure.

• The platform devices are the devices that are directly
connected to the CPU (e.g. memory mapped
devices), without any kind of bus.

• https://www.kernel.org/doc/Documentation/driver-
model/platform.txt 41

Platform driver / device

42

struct platform_device {

 const char *name;

 u32 id;

 struct device dev;

 u32 num_resources;

 struct resource *resource;

};

struct platform_driver {

 int (*probe)(struct platform_device *);

 int (*remove)(struct platform_device *);

 void (*shutdown)(struct platform_device *);

 int (*suspend)(struct platform_device *, pm_message_t state);

 int (*suspend_late)(struct platform_device *,

 pm_message_t state);

 int (*resume_early)(struct platform_device *);

 int (*resume)(struct platform_device *);

 struct device_driver driver;

};

43

Example .1/9
• From S. A. Edwards, Device Drivers, Columbia University,

http://www.cs.columbia.edu/~sedwards/classes/2014/4840/device-drivers.pdf

• Module’s API:

#ifndef _VGA_LED_H

#define _VGA_LED_H

#include <linux/ioctl.h>

#define VGA_LED_DIGITS 8

typedef struct {

 unsigned char digit; // 0, 1, .. , VGA_LED_DIGITS-1

 unsigned char segments; // LSB: segment a; MSB: decimal point

} vga_led_arg_t;

#define VGA_LED_MAGIC ’q’

// ioctls and their arguments

#define VGA_LED_WRITE_DIGIT _IOW(VGA_LED_MAGIC, 1, vga_led_arg_t*)

#define VGA_LED_READ_DIGIT _IOWR(VGA_LED_MAGIC, 2, vga_led_arg_t*)

#endif

44

• Excerpt of the Device Tree:

lightweight_bridge: bridge@0xff200000 {

 compatible = "simplebus";

 #address-cells = <1>;

 #size-cells = <1>;

 ranges = < 0x0 0xff200000 0x200000 >;

 vga_led: vga_led@0 {

 compatible = "altr,vga_led";

 reg = <0x0 0x8>;

 };

};

Example .2/9

45

• Driver source code – part 1:

#include <linux/module.h>

#include <linux/init.h>

#include <linux/errno.h>

#include <linux/version.h>

#include <linux/platform_device.h>

#include <linux/miscdevice.h>

#include <linux/io.h>

#include <linux/of.h>

#include <linux/of_address.h>

#include <linux/fs.h>

#include <linux/uaccess.h>

#include "vga_led.h"

#define DRIVER_NAME "vga_led"

struct vga_led_dev {

 struct resource res; // Resource: our registers

 void __iomem *virtbase; // Pointer to registers

 u8 segments[VGA_LED_DIGITS];

} dev;

static void write_digit(int digit, u8 segments) {

 iowrite8(segments, dev.virtbase + digit);

 dev.segments[digit] = segments;

}

Example .3/9

46

• Driver source code – part 2:

static long vga_led_ioctl(struct file *f, unsigned int cmd,

 unsigned long arg) {

 vga_led_arg_t vla;

 switch (cmd) {

 case VGA_LED_WRITE_DIGIT:

 if (copy_from_user(&vla, (vga_led_arg_t *) arg,

 sizeof(vga_led_arg_t))) return -EACCES;

 if (vla.digit > 8) return -EINVAL;

 write_digit(vla.digit, vla.segments);

 break;

 case VGA_LED_READ_DIGIT:

 if (copy_from_user(&vla, (vga_led_arg_t *) arg,

 sizeof(vga_led_arg_t))) return -EACCES;

 if (vla.digit > 8) return -EINVAL;

 vla.segments = dev.segments[vla.digit];

 if (copy_to_user((vga_led_arg_t *) arg, &vla,

 sizeof(vga_led_arg_t))) return -EACCES;

 break;

 default: return EINVAL;

 }

 return 0;

}

Example .4/9

47

• Driver source code – part 3:

static const struct file_operations vga_led_fops = {

 .owner = THIS_MODULE,

 .unlocked_ioctl = vga_led_ioctl,

};

// we define our module as a misc device, with its minor

// number dynamically assigned

static struct miscdevice vga_led_misc_device = {

 .minor = MISC_DYNAMIC_MINOR,

 .name = DRIVER_NAME,

 .fops = &vga_led_fops,

};

static int vga_led_remove(struct platform_device *pdev) {

 iounmap(dev.virtbase);

 release_mem_region(dev.res.start, resource_size(&dev.res));

 misc_deregister(&vga_led_misc_device);

 return 0;

}

Example .5/9

48

• Driver source code – part 4:

static int __init vga_led_probe(struct platform_device *pdev) {

 static unsigned char welcome_message[VGA_LED_DIGITS] = {

 0x3E, 0x7D, 0x77, 0x08, 0x38, 0x79, 0x5E, 0x00};

 int i, ret;

 // Register ourselves as a misc device: creates /dev/vga_led

 ret = misc_register(&vga_led_misc_device);

 // Find our registers in device tree; verify availability

 ret = of_address_to_resource(pdev->dev.of_node, 0, &dev.res);

 if (ret) {

 ret = -ENOENT;

 goto out_deregister;

 }

 if (request_mem_region(dev.res.start, resource_size(&dev.res),

 DRIVER_NAME) == NULL) {

 ret = EBUSY;

 goto out_deregister;

 }

 // vga_led_probe() continues

Example .6/9

49

• Driver source code – part 5:

 // Arrange access to our registers (calls ioremap)

 dev.virtbase = of_iomap(pdev->dev.of_node, 0);

 if (dev.virtbase == NULL) {

 ret = -ENOMEM;

 goto out_release_mem_region;

 }

 // Display a welcome message

 for (i = 0; i < VGA_LED_DIGITS; i++) {

 write_digit(i, welcome_message[i]);

 }

 return 0;

out_release_mem_region:

 release_mem_region(dev.res.start, resource_size(&dev.res));

out_deregister:

 misc_deregister(&vga_led_misc_device);

 return ret;

}

Example .7/9

50

• Driver source code – part 6:

static const struct of_device_id vga_led_of_match[] = {

 { .compatible = "altr,vga_led" },

 {},

};

MODULE_DEVICE_TABLE(of, vga_led_of_match);

static struct platform_driver vga_led_driver = {

 .driver = {

 .name = DRIVER_NAME,

 .owner = THIS_MODULE,

 .of_match_table = of_match_ptr(vga_led_of_match),

 },

 .probe = vga_led_probe,

 .remove = __exit_p(vga_led_remove),

};

static int __init vga_led_init(void) {

 pr_info(DRIVER_NAME ": init\n");

 return return platform_driver_register(&vga_led_driver);

}

static void __exit vga_led_exit(void) {

 platform_driver_unregister(&vga_led_driver);

 pr_info(DRIVER_NAME ": exit\n");

}

Example .8/9

51

• Driver source code – part 7:

module_init(vga_led_init);

module_exit(vga_led_exit);

MODULE_LICENSE("GPL");

MODULE_AUTHOR("Stephen A. Edwards, Columbia University");

MODULE_DESCRIPTION("VGA 7–segment LED Emulator");

• notes:

1. The init function of the module is vga_led_init().

2. Function vga_led_init() registers a platform driver with

.compatible=="altr,vga_led" and probe function vga_led_probe().

3. Because a compatible match is found with device tree node vga_led, function

vga_led_probe() is activated (a platform_device struct is filled with data

extracted from the device tree and passed to the probe function).

4. Function vga_led_probe() registers a miscDevice with the misc subsystem (by

invoking misc_register()), thus completing the initialization of the vga_led

driver module.

5. The only file operation supported by the vga_led module is ioctl().

Example .9/9

52

Miscellaneous Character Drivers

• MiscDevice is a thin layer around character devices.

• The misc driver and all miscDevices are assigned major number 10.

• Minor numbers may be assigned dynamically to miscDevices.

• The misc subsystem automatically creates the special file representing a

miscDevice in /dev directory.

• The misc driver exports two functions for user modules to register and

unregister (minor numbers must be unique among miscDevices):

#include <linux/miscdevice.h>

struct miscdevice {

 int minor; // MISC_DYNAMIC_MINOR assigns it dynamically

 const char *name; // for humans, will appear in /proc/misc file

 const struct file_operations *fops;

 struct miscdevice *next, *prev;

 // must be cleared before registering

};

int misc_register(struct miscdevice *misc);

int misc_deregister(struct miscdevice *misc);

remoteproc: device tree excerpt

 …

 remoteproc1: remoteproc@1 {

 compatible = "xlnx,zynq_remoteproc";

 reg = < 0x1F000000 0x1000000 >;

 //reg = < 0x18000000 0x08000000 >;

 interrupt-parent = <&intc>;

 interrupts = < 0 37 0 0 38 0 >;

 firmware = "firmware.elf";

 //status = "disabled";

 ipino = <0>;

 vring0 = <15>;

 vring1 = <14>;

 };

 …

53

remoteproc: driver excerpt .1/4

/*

 * Zynq Remote Processor driver

 *

 * Copyright (C) 2012 Michal Simek <monstr@monstr.eu>

 * Copyright (C) 2012 PetaLogix

 *

 * Based on origin OMAP Remote Processor driver

 *

 * Copyright (C) 2011 Texas Instruments, Inc.

 * Copyright (C) 2011 Google, Inc.

 *

 * This program is free software; you can redistribute it and/or

 * modify it under the terms of the GNU General Public License

 * version 2 as published by the Free Software Foundation.

 *

 * This program is distributed in the hope that it will be useful,

 * but WITHOUT ANY WARRANTY; without even the implied warranty of

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 * GNU General Public License for more details.

 */
54

remoteproc: driver excerpt .2/4

. . .

/* Match table for OF platform binding */

static const struct of_device_id zynq_remoteproc_match[] = {

 { .compatible = "xlnx,zynq_remoteproc", },

 { /* end of list */ },

};

MODULE_DEVICE_TABLE(of, zynq_remoteproc_match);

static struct platform_driver zynq_remoteproc_driver = {

 .probe = zynq_remoteproc_probe,

 .remove = zynq_remoteproc_remove,

 .driver = {

 .name = "zynq_remoteproc",

 .of_match_table = zynq_remoteproc_match,

 },

};

. . .

55

remoteproc: driver excerpt .3/4

. . .

static int zynq_remoteproc_probe(struct platform_device *pdev) {

 . . .

};

. . .

static int zynq_remoteproc_remove(struct platform_device *pdev) {

 . . .

};

. . .

56

remoteproc: driver excerpt .3/4

. . .

module_platform_driver(zynq_remoteproc_driver); // espande:

// module_driver(zynq_remoteproc_driver, platform_driver_register,

// platform_driver_unregister); // espande:

// static int __init zynq_remoteproc_driver_init(void) {

// return platform_driver_register(&zynq_remoteproc_driver);

// }

// module_init(zynq_remoteproc_driver_init);

//

// static void __exit zynq_remoteproc_driver_exit(void) {

// platform_driver_unregister(&zynq_remoteproc_driver);

// }

// module_exit(zynq_remoteproc_driver_exit);

module_param(firmware, charp, 0);

MODULE_PARM_DESC(firmware, "Override the firmware image name.

Default value in DTS.");

MODULE_AUTHOR("Michal Simek <monstr@monstr.eu");

MODULE_LICENSE("GPL v2");

MODULE_DESCRIPTION("Zynq remote processor control driver"); 57

Acknowledgements

• OpenNext is a project co-funded by

thanks to POR FESR funds

• alessio.paccoia@t3lab.it
michele.rodolfi@t3lab.it
claudio.salati@t3lab.it
matteo.sartori@t3lab.it

58

