
» The Linux Foundation

A White Paper By The Linux Foundation
http://www.linuxfoundation.org

Linux Kernel Development
How Fast it is Going, Who is Doing It, What They are Doing, and
Who is Sponsoring It

December 2010

..................
Jonathan Corbet, LWN.net
Greg Kroah-Hartman, SuSE Labs / Novell Inc.
Amanda McPherson, The Linux Foundation

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org
compliance@linuxfoundation.org

.....

1Linux Kernel Development

Summary
The kernel which forms the core of the Linux system is the result of one of the largest cooperative
software projects ever attempted. Regular 2-3 month releases deliver stable updates to Linux
users, each with significant new features, added device support, and improved performance. The
rate of change in the kernel is high and increasing, with approximately 10,000 patches going
into each recent kernel release. These releases each contain the work of over 1000 developers
representing around 200 corporations.

Since 2005, over 6100 individual developers from over 600 different companies have contributed
to the kernel. The Linux kernel, thus, has become a common resource developed on a massive
scale by companies which are fierce competitors in other areas.

The first version of this study was published in 2008; it was then updated in 2009. That update noted
a number of changes, including a 10% increase in the number of developers participating in each
release cycle, a notable increase in the number of companies participating, and a tripling of the
rate at which code is being added to the kernel. At that time, all of the numbers were in a period
of rapid increase.

As documented in the last paper, in 2009 the Linux community saw, with the release of 2.6.30, a
peak in the lines of code added. This can largely be attributed to significant new features being
added to the kernel, most notably the first additions of Btrfs, perf and ftrace, as well as the peak of
the inflow from the Linux-staging tree that had been happening for some time.

This update shows a slightly different picture. The number of commits peaked with the 2.6.30
release; the number of commits for 2.6.35 was 18% lower. Most other metrics have fallen as well.

In short, we see a step back from the frenzied activity of 2.6.30 even though the number of
developers involved has fallen only slightly since its peak in 2.6.32.

The numbers in this edition of the paper reflect the natural development cycle of an operating
system that had major pieces added/changed in the previous year. Of course the Linux kernel
community is still hard at work and growing. In fact, there have been 1.5 million lines of code
added to the kernel since the 2009 update. Since the last paper, additions and changes translate
to an amazing 9,058 lines added, 4,495 lines removed, and 1,978 lines changed every day -
weekends and holidays included.

The data in this year’s update also shows a good showing of new players in the Linux kernel
development space from the world of mobile/consumer electronics and embedded technology
(and their suppliers). This is a healthy development and not surprising given the growth of Linux
usage in embedded devices, even though the authors would like to see more companies from
that space participate in the Linux development community.

The overall picture shows a robust development community which continues to grow both in size
and in productivity.

http://www.linuxfoundation.org
mailto:compliance%40linuxfoundation.org?subject=Self-Assessment%20Checklist%20Inquiry

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org
compliance@linuxfoundation.org

.....

2Linux Kernel Development

Introduction
The Linux kernel is the lowest level of software running on a Linux system. It is charged with
managing the hardware, running user programs, and maintaining the overall security and integrity
of the whole system. It is this kernel which, after its initial release by Linus Torvalds in 1991, jump-
started the development of Linux as a whole. The kernel is a relatively small part of the software
on a full Linux system (many other large components come from the GNU project, the GNOME
and KDE desktop projects, the X.org project, and many other sources), but it is the core which
determines how well the system will work and is the piece which is truly unique to Linux.

The Linux kernel is an interesting project to study for a number of reasons. It is one of the largest
individual components on almost any Linux system. It also features one of the fastest-moving
development processes and involves more developers than any other open source project. Since
2005, kernel development history is also quite well documented, thanks to the use of the Git source
code management system.

This paper takes advantage of that development history to look at how the process works,
focusing on over five years of kernel history as represented by the 2.6.11 through 2.6.35
releases. This is the third version of this paper, following up on http://www.linuxfoundation.org/
sites/main/files/publications/linuxkerneldevelopment.pdf the original study which was published
in April, 2008, and http://www.linuxfoundation.org/sites/main/files/publications/whowriteslinux.pdf
the 2009 update, which looked at the history through the 2.6.30 release. A look at the five kernel
releases which have happened since then shows that, while many things remain the same, others
are changing.

Development Model
Linux kernel development proceeds under a loose, time-based release model, with a new major
kernel release occurring every 2-3 months. This model, which was first formalized in 2005, gets new
features into the mainline kernel and out to users with a minimum of delay. That, in turn, speeds
the pace of development and minimizes the number of external changes that distributors need to
apply. As a result, distributor kernels contain relatively few distribution-specific changes; this leads
to higher quality and fewer differences between distributions.

One significant change since the initial version of this paper is the establishment of the linux-
next tree. Linux-next serves as a staging area for the next kernel development cycle; as of this
writing, 2.6.36 is in the stabilization phase, so linux-next contains changes intended for 2.6.37. This
repository gives developers a better view of which changes are coming in the future and helps
them to ensure that there will be a minimum of integration problems when the next development
cycle begins. Linux-next smooths out the development cycle, helping it to scale to higher rates of
change.

After each mainline 2.6 release, the kernel’s “stable team” (currently Greg Kroah-Hartman) takes
up short-term maintenance, applying important fixes as they are developed. The stable process

http://www.linuxfoundation.org/sites/main/files/publications/linuxkerneldevelopment.pdf
http://www.linuxfoundation.org/sites/main/files/publications/linuxkerneldevelopment.pdf
http://www.linuxfoundation.org/sites/main/files/publications/whowriteslinux.pdf

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org
compliance@linuxfoundation.org

.....

3Linux Kernel Development

ensures that important fixes are made available to distributors and users and that they are
incorporated into future mainline releases as well. The stable maintenance period lasts a minimum
of one development cycle and, for specific kernel releases, can go significantly longer; some
stable update statistics will be provided below.

Release Frequency
The desired release period for a major kernel release is, by common consensus, 8-12 weeks. A
much-shorter period would not give testers enough times to find problems with new kernels,
while a longer period would allow too much work to pile up between releases. The actual time
between kernel releases tends to vary a bit, depending on the size of the release and the difficulty
encountered in tracking down the last regressions. Since 2.6.11, the actual kernel release history
looks like:

Kernel Version Release Date Days of Development

2.6.11 2005-03-02 69

2.6.12 2005-05-17 108

2.6.13 2005-08-28 73

2.6.14 2005-10-27 61

2.6.15 2006-01-02 68

2.6.16 2006-03-19 77

2.6.17 2006-06-17 91

2.6.18 2006-09-19 95

2.6.19 2006-11-29 72

2.6.20 2007-02-04 68

2.6.21 2007-04-25 81

2.6.22 2007-07-08 75

2.6.23 2007-10-09 94

2.6.24 2008-01-24 108

2.6.25 2008-04-16 83

2.6.26 2008-07-13 88

2.6.27 2008-10-09 88

2.6.28 2008-12-24 76

2.6.29 2009-03-23 89

2.6.30 2009-06-09 78

2.6.31 2009-09-09 92

2.6.32 2009-12-02 84

2.6.33 2010-02-24 84

2.6.34 2010-05-15 81

2.6.35 2010-08-01 77

The average kernel development cycle currently runs for 81 days, just under twelve weeks.

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org
compliance@linuxfoundation.org

.....

4Linux Kernel Development

Rate of Change
When preparing work for submission to the Linux kernel, developers break their changes down
into small, individual units, called patches. These patches usually do only one thing to the source
code; they are built on top of each other, modifying the source code by changing, adding, or
removing lines of code. Each patch should, when applied, yield a kernel which still builds and
works properly. This discipline forces kernel developers to break their changes down into small,
logical pieces; as a result, each change can be reviewed for code quality and correctness. One
other result is that the number of individual changes that go into each kernel release is very large,
as can be seen in the table below:

Kernel Version Changes (Patches)

2.6.11 3,616

2.6.12 5,047

2.6.13 3,904

2.6.14 3,627

2.6.15 4,959

2.6.16 5,369

2.6.17 5,727

2.6.18 6,323

2.6.19 6,685

2.6.20 4,768

2.6.21 5,016

2.6.22 6,526

2.6.23 6,662

2.6.24 9,836

2.6.25 12,243

2.6.26 9,941

2.6.27 10,628

2.6.28 9,048

2.6.29 11,678

2.6.30 11,989

2.6.31 10,883

2.6.32 10,989

2.6.33 10,871

2.6.34 9,443

2.6.35 9,801

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org
compliance@linuxfoundation.org

.....

5Linux Kernel Development

Changes to the Kernel Over Time

By taking into account the amount of time required for each kernel release, one can arrive at the
number of changes accepted into the kernel per hour. The results can be seen in this table:

Kernel Version Changes Per Hour

2.6.11 2.18

2.6.12 1.95

2.6.13 2.23

2.6.14 2.48

2.6.15 3.04

2.6.16 2.91

2.6.17 2.62

2.6.18 2.22

2.6.19 3.87

2.6.20 2.92

2.6.21 2.58

2.6.22 3.63

2.6.23 2.95

2.6.24 3.79

2.6.25 6.15

2.6.26 4.71

2.6.27 5.03

2.6.28 4.96

2.6.29 5.47

14000

12000

10000

8000

6000

4000

2000

0
2.6.11 2.6.12 2.6.13 2.6.14 2.6.15 2.6.16 2.6.17 2.6.18 2.6.19 2.6.20 2.6.21 2.6.22 2.6.23 2.6.24 2.6.25 2.6.26 2.6.27 2.6.28 2.6.29 2.6.30 2.6.31 2.6.32 2.6.33 2.6.34 2.6.35

Changes (Patches)

Kernel Version

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org
compliance@linuxfoundation.org

.....

6Linux Kernel Development

Kernel Version Changes Per Hour

2.6.30 6.40

2.6.31 4.93

2.6.32 5.46

2.6.33 5.39

2.6.34 4.86

2.6.35 5.30

So, between the 2.6.11 and 2.6.35 kernel releases (which were 1902 days apart), there were, on
average, 4.02 patches applied to the kernel tree per hour. In the time since the publication of the
previous version of this paper, that rate has been significantly higher: 5.18 patches per hour. As the
Linux kernel grows, the rate of change is growing with it.

The rate of change has slowed slightly from the rate (5.45 patches/hour) reported in the 2009
update; the peak rate seen with the 2.6.30 kernel release has not been repeated. Development
rates are naturally variable, and the rates for the kernel have never increased in a monotonic
fashion; that said, the rate of change has remained notably lower for the last year. There are a
couple of explanations for that trend:

•	 The kernels since 2.6.30 have seen the completion and stabilization of a number of long-term
projects, including the ext4 and btrfs filesystems, the addition of the ftrace and perf events
subsystems, and the reimplementation of our graphics layer. Rates of change will naturally
slow as the finishing touches are put on these developments.

•	 The addition of the staging tree in 2.6.28 began a process of merging a large amount of out-of-
tree code into the mainline kernel. By the 2.6.31 development cycle, that process was slowing
down as the backlog of code was taken care of. There are still new drivers entering the kernel
via the staging tree, but they are now arriving at a rate which more closely reflects the actual
rate of development.

The burst of activity caused by the staging tree is not likely to be repeated anytime soon, but the
pace of kernel development as a whole can be expected to increase as developers take on new
challenges in the future.

It is also worth noting that the above figures understate the total level of activity; most patches
go through a number of revisions before being accepted into the mainline kernel, and many are
never accepted at all. The ability to sustain this rate of change for years is unprecedented in any
previous public software project.

Stable Updates
As mentioned toward the beginning of this document, kernel development does not stop with a
mainline release. Inevitably, problems will be found in released kernels, and patches will be made
to fix those problems. The stable kernel update process was designed to capture those patches
in a way that ensures that both the mainline kernel and current releases are fixed. These stable

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org
compliance@linuxfoundation.org

.....

7Linux Kernel Development

updates are the base from which most distributor kernels are made.

The stable kernel update history (since the stable kernel process was introduced after the 2.6.11
release) looks like this:

Kernel Version Total Updates Fixes

2.6.11 12 79

2.6.12 6 53

2.6.13 5 44

2.6.14 7 96

2.6.15 7 110

2.6.16 62 1053

2.6.17 14 191

2.6.18 8 240

2.6.19 7 189

2.6.20 21 447

2.6.21 7 162

2.6.22 19 379

2.6.23 16 302

2.6.24 7 246

2.6.25 20 492

2.6.26 8 321

2.6.27 53 1553

2.6.28 10 613

2.6.29 6 383

2.6.30 10 419

2.6.31 14 826

2.6.32 21 1793

2.6.33 7 883

2.6.34 7 601

2.6.35 4 228

As can be seen, the number of updates going into stable kernels has grown over the years. The
main driver for this increase is a much higher level of discipline in the development community:
we have gotten much better at evaluating patches and identifying those which are applicable
to releaased kernels. Additionally, some kernels are receiving stable updates for relatively long
periods of time; the 2.6.27 kernel is still being updated as of this writing.

With just over five years of history, the stable update series has proven its value by allowing the final
fixes to be made to released kernels while, simultaneously, letting mainline development move
forward.

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org
compliance@linuxfoundation.org

.....

8Linux Kernel Development

Kernel Source Size
The Linux kernel keeps growing in size over time as more hardware is supported and new features
are added. For the following numbers, we have counted everything in the released Linux source
package as “source code” even though a small percentage of the total is the scripts used to
configure and build the kernel, as well as a minor amount of documentation. Those files, too, are
part of the larger work, and thus merit being counted.

The information in the following table shows the number of files and lines in each kernel version.

Kernel Version Files Lines

2.6.11 17,090 6,624,076

2.6.12 17,360 6,777,860

2.6.13 18,090 6,988,800

2.6.14 18,434 7,143,233

2.6.15 18,811 7,290,070

2.6.16 19,251 7,480,062

2.6.17 19,553 7,588,014

2.6.18 20,208 7,752,846

2.6.19 20,936 7,976,221

2.6.20 21,280 8,102,533

2.6.21 21,614 8,246,517

2.6.22 22,411 8,499,410

2.6.23 22,530 8,566,606

2.6.24 23,062 8,859,683

2.6.25 23,813 9,232,592

2.6.26 24,273 9,411,841

2.6.27 24,356 9,630,074

2.6.28 25,276 10,118,757

2.6.29 26,702 10,934,554

2.6.30 27,911 11,560,971

2.6.31 29,143 11,970,124

2.6.32 30,504 12,532,677

2.6.33 31,584 12,912,684

2.6.34 32,316 13,243,582

2.6.35 33,335 13,468,253

Since the first version of this paper, the kernel has grown by almost 6.7 million lines of code - 1.5
million since the 2009 update. But the kernel is not just growing. With every change that is made
to the kernel source tree, lines are added, modified, and deleted in order to accomplish the
needed changes. Looking at these numbers, broken down by days, shows how quickly the kernel
source tree is being worked on over time. This can be seen in the following table:

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org
compliance@linuxfoundation.org

.....

9Linux Kernel Development

Kernel Version Lines Added Per Day Lines Deleted Per Day Lines Modified Per Day

2.6.11 3,224 1,360 1,290

2.6.12 2,375 951 949

2.6.13 4,443 1,553 1,711

2.6.14 4,181 1,637 1,726

2.6.15 5,614 3,454 2,219

2.6.16 3,853 1,388 1,649

2.6.17 3,635 2,469 1,329

2.6.18 3,230 1,497 1,096

2.6.19 6,013 2,900 1,862

2.6.20 3,120 1,342 1,013

2.6.21 3,256 1,479 982

2.6.22 6,067 2,694 1,523

2.6.23 3,747 3,034 1,343

2.6.24 6,893 4,181 1,563

2.6.25 7,980 3,488 2,430

2.6.26 5,698 3,662 1,815

2.6.27 12,270 9,791 2,102

2.6.28 12,105 5,707 1,850

2.6.29 14,678 5,516 2,454

2.6.30 12,993 4,958 2,830

2.6.31 9,408 4,962 1,635

2.6.32 12,086 5,388 2,387

2.6.33 8,925 4,379 2,841

2.6.34 6,667 2,580 1,568

2.6.35 7,896 5,037 1,802

Summing up these numbers, it comes to an impressive 6,683 lines added, 3,774 lines removed,
and 1,797 lines changed every day for the past 5.5 years. Since 2.6.30, those numbers jump to an
amazing 9,058 lines added, 4,495 lines removed, and 1,978 lines changed every day - weekends
and holidays included. That rate of change is larger than any other public software project of any
size.

Who is Doing the Work
The number of different developers who are doing Linux kernel development and the identifiable
companies who are sponsoring this work, have been increasing over the different kernel versions,
as can be seen in the following table. In fact, the individual development community has doubled
in the last three years.

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org
compliance@linuxfoundation.org

.....

10Linux Kernel Development

Kernel Version Number of Developers Number of Known Companies

2.6.11 389 68

2.6.12 566 90

2.6.13 545 94

2.6.14 553 90

2.6.15 612 108

2.6.16 709 111

2.6.17 726 120

2.6.18 815 133

2.6.19 801 128

2.6.20 673 138

2.6.21 767 143

2.6.22 870 180

2.6.23 912 181

2.6.24 1,057 193

2.6.25 1,123 232

2.6.26 1,027 203

2.6.27 1,021 187

2.6.28 1,075 212

2.6.29 1,180 233

2.6.30 1,150 245

2.6.31 1,166 221

2.6.32 1,248 259

2.6.33 1,196 226

2.6.34 1,150 195

2.6.35 1,187 184

All 6,117 659

The identification of the different companies is described in the next section.

These numbers show a steady increase in the number of developers contributing to each kernel
release over a period of several years.

Despite the large number of individual developers, there is still a relatively small number who
are doing the majority of the work. In any given development cycle, approximately 1/3 of
the developers involved contribute exactly one patch. Over the past 5.5 years, the top 10
individual developers have contributed 10% of the total changes and the top 30 developers have
contributed almost 22% of the total. The list of individual developers, the number of changes they
have contributed, and the percentage of the overall total can be seen here:

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org
compliance@linuxfoundation.org

.....

11Linux Kernel Development

Name Number of Changes Percent of Changes
David S. Miller 2,533 1.3%
Ingo Molnar 2,273 1.2%

Al Viro 2,238 1.2%
Takashi Iwai 2,120 1.1%

Bartlomiej Zolnierkiewicz 2,014 1.1%
Adrian Bunk 1,918 1.0%
Paul Mundt 1,793 1.0%
Tejun Heo 1,691 0.9%

Ralf Baechle 1,577 0.8%
Greg Kroah-Hartman 1,506 0.8%

Andrew Morton 1,473 0.8%
Alan Cox 1,455 0.8%

Russell King 1,443 0.8%
Thomas Gleixner 1,389 0.7%

Mauro Carvalho Chehab 1,381 0.7%
Johannes Berg 1,334 0.7%

Christoph Hellwig 1,247 0.7%
Ben Dooks 1,214 0.6%

Patrick McHardy 1,205 0.6%
Andi Kleen 1,183 0.6%

Jean Delvare 1,180 0.6%
Randy Dunlap 1,171 0.6%

Trond Myklebust 1,022 0.5%
Stephen Hemminger 1,004 0.5%

Hans Verkuil 999 0.5%
Herbert Xu 969 0.5%

David Woodhouse 967 0.5%
Peter Zijlstra 951 0.5%

Alexey Dobriyan 949 0.5%
David Brownell 901 0.5%

The above numbers are drawn from the entire git repository history, starting with 2.6.12. If we look
at the commits since the second version of this paper (2.6.30) through 2.6.35, the picture is similar
but not identical:

Name Number of Changes Percent of Changes
Paul Mundt 665 1.3%

Johannes Berg 580 1.1%
Peter Zijlstra 554 1.1%

Bartlomiej Zolnierkiewicz 504 1.0%
Greg Kroah-Hartman 491 0.9%

Mark Brown 489 0.9%

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org
compliance@linuxfoundation.org

.....

12Linux Kernel Development

Name Number of Changes Percent of Changes
Takahashi Iwai 454 0.9%

Mauro Carvalho Chehab 432 0.8%
Joe Perches 415 0.8%
Ingo Molnar 412 0.8%

Arnaldo Carvalho de Melo 392 0.8%
Roel Kluin 386 0.7%

Magus Damm 378 0.7%
Ben Dooks 364 0.7%
Alan Cox 363 0.7%

Frederic Weisbecker 361 0.7%
Tejun Heo 360 0.7%

Luis R. Rodriguez 358 0.7%
Eric Dumazet 347 0.7%
Julia Lawall 326 0.6%
Sage Weil 323 0.6%

David S. Miller 315 0.6%
Christoph Hellwig 313 0.6%

Alex Deucher 304 0.6%
Mike Frysinger 303 0.6%
Steven Rostedt 303 0.6%

Thomas Gleixner 291 0.5%
Dan Carpenter 273 0.5%
Ben Hutchings 272 0.5%
Randy Dunlap 256 0.5%

It is amusing to note that Linus Torvalds (886 total changes, 168 since 2.6.30) does not appear in the
top-30 list. Linus remains an active and crucial part of the development process; his contribution
cannot be measured just by the number of changes made. We are seeing a similar pattern with a
number of other senior kernel developers; as they put more time into the review and management
of patches from others, they write fewer patches of their own. (Obscure technical detail: these
numbers do not count “merge commits,” where one set of changes is merged into another. Linus
Torvalds generates large numbers of merge commits; had these been counted he would have
shown up on this list.)

Who is Sponsoring the Work
The Linux kernel is a resource which is used by a large variety of companies. Many of those
companies never participate in the development of the kernel; they are content with the software
as it is and do not feel the need to help drive its development in any particular direction. But, as
can be seen in the table above, an increasing number of companies are working toward the
improvement of the kernel.

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org
compliance@linuxfoundation.org

.....

13Linux Kernel Development

Below we look more closely at the companies which are employing kernel developers. For each
developer, corporate affiliation was obtained through one or more of: (1) the use of company
email addresses, (2) sponsorship information included in the code they submit, or (3) simply
asking the developers directly. The numbers presented are necessarily approximate; developers
occasionally change employers, and they may do personal work out of the office. But they will be
close enough to support a number of conclusions.

There are a number of developers for whom we were unable to determine a corporate affiliation;
those are grouped under “unknown” in the table below. With few exceptions, all of the people in
this category have contributed ten or fewer changes to the kernel over the past three years, yet
the large number of these developers causes their total contribution to be quite high.

The category “None,” instead, represents developers who are known to be doing this work on their
own, with no financial contribution happening from any company.

The top 10 contributors, including the groups “unknown” and “none” make up nearly 70% of
the total contributions to the kernel. It is worth noting that, even if one assumes that all of the
“unknown” contributors were working on their own time, over 70% of all kernel development is
demonstrably done by developers who are being paid for their work.

Company Name Number of Changes Percent of Total

None 35,663 18.9%

Red Hat 23,356 12.4%

Novell 13,120 7.0%

IBM 13,026 6.9%

Unknown 12,060 6.4%

Intel 11,028 5.8%

consultants 4,817 2.6%

Oracle 4,367 2.3%

Renesas Technology 2,621 1.4%

The Linux Foundation 2,488 1.3%

academics 2,464 1.3%

SGI 2,450 1.3%

Fujitsu 2,293 1.2%

Parallels 2,226 1.2%

Analog Devices 1,955 1.0%

Nokia 1,896 1.0%

HP 1,854 1.0%

MontaVista 1,821 1.0%

Google 1,565 0.8%

AMD 1,518 0.8%

Freescale 1,501 0.8%

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org
compliance@linuxfoundation.org

.....

14Linux Kernel Development

Company Name Number of Changes Percent of Total

linutronix 1,470 0.8%

MIPS Technologies 1,410 0.7%

NetApp 1,322 0.7%

Marvell 1,241 0.7%

Atheros Communications 1,234 0.7%

Astaro 1,222 0.6%

Broadcom 1,130 0.6%

QLogic 1,076 0.6%

NTT 1,068 0.6%

What we see here is that a small number of companies is responsible for a large portion of the
total changes to the kernel. But there is a “long tail” of companies (over 500 of which do not
appear in the above list) which have made significant changes. There may be no other examples
of such a large, common resource being supported by such a large group of independent actors
in such a collaborative way.

The picture since 2.6.30 shows some interesting changes:

Company Name Number of Changes Percent of Total

None 9,911 19.1%

Red Hat 6,219 12.0%

Intel 4,037 7.8%

Novell 2,625 5.0%

IBM 2,491 4.8%

unknown 2,456 4.7%

consultants 1,265 2.4%

Nokia 1,173 2.3%

Renesas Technology 1,032 2.0%

Oracle 995 1.9%

Fujitsu 904 1.7%

AMD 860 1.7%

Texas Instruments 775 1.5%

academics 774 1.4%

Atheros Communications 728 1.4%

Analog Devices 698 1.3%

HP 523 1.0%

Pengutronix 516 1.0%

Wolfson Microelectronics 488 0.9%

Broadcom 407 0.8%

NTT 406 0.8%

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org
compliance@linuxfoundation.org

.....

15Linux Kernel Development

Company Name Number of Changes Percent of Total

Marvell 390 0.8%

NetApp 363 0.7%

New Dream Network 357 0.7%

MontaVista 349 0.7%

Google 340 0.7%

Samsung 335 0.6%

QLogic 335 0.6%

Societe Francaise du Radiotelephone 333 0.6%

Parallels 319 0.6%

The companies at the top of the listing are almost the same, and Red Hat maintains its
commanding lead here. But we see companies like Nokia, AMD, Texas Instruments, and
Samsung working up to higher contribution levels as they increase their investment in Linux kernel
development.

This rise in development of Linux sponsored by embedded/mobile companies and their suppliers
reflects the increasing importance of Linux in those markets.

Who is Reviewing the Work
Patches do not normally pass directly into the mainline kernel; instead, they pass through one
of over 100 subsystem trees. Each subsystem tree is dedicated to a specific part of the kernel
(examples might be SCSI drivers, x86 architecture code, or networking) and is under the control of
a specific maintainer. When a subsystem maintainer accepts a patch into a subsystem tree, he
or she will attach a “Signed-off-by” line to it. This line is a statement that the patch can be legally
incorporated into the kernel; the sequence of signoff lines can be used to establish the path by
which each change got into the kernel.

An interesting (if approximate) view of kernel development can be had by looking at signoff lines,
and, in particular, at signoff lines added by developers who are not the original authors of the
patches in question. These additional signoffs are usually an indication of review by a subsystem
maintainer. Analysis of signoff lines gives a picture of who admits code into the kernel - who the
gatekeepers are. Since 2.6.30, the developers who added the most non-author signoff lines are:

Name Signoff Lines Percent of Total Subsystem
David S. Miller 5,153 10.9% Networking, IDE, Sparc

John W. Linville 3,611 7.6% Wireless Networking
Greg Kroah-Hartman 3,556 7.5% USB, staging, driver core

Andrew Morton 3,042 6.4% Everything
Ingo Molnar 2,887 6.1% x86 architecture

Mauro Carvalho Chehab 2,353 5.0% Video for Linux (Media Devices)
James Bottomley 1,294 2.7% SCSI

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org
compliance@linuxfoundation.org

.....

16Linux Kernel Development

Name Signoff Lines Percent of Total Subsystem
Dave Airlie 876 1.9% DRM (Video Drivers)
Paul Mundt 654 1.4% SuperH architecture
Len Brown 651 1.4% ACPI

Takashi Iwai 647 1.4% Sound
Russell King 616 1.3% ARM architecture
Jeff Kirsher 607 1.3% Intel network drivers

Linus Torvalds 600 1.3% Everything
Avi Kivity 573 1.2% KVM

Benjamin Herrenschmidt 534 1.1% PowerPC architecture
Mark Brown 526 1.1% System-on-a-chip Sound

Reinette Chatre 524 1.1% Intel wireless drivers
Ralf Baechle 502 1.1% MIPS architecture
Peter Anvin 495 1.0% x86 architecture
Jens Axboe 487 1.0% Block layer
Jesse Barnes 454 1.0% PCI

Mike Frysinger 441 0.9% Blackfin architecture
Tony Lindgren 432 0.9% OMAP architecture

Eric Anholt 425 0.9% Intel video drivers
Ben Dooks 412 0.9% Samsung/ARM architecture

David Woodhouse 406 0.9% JFFS2, Embedded, MTD, IOMMU
Martin Schwidefsky 387 0.8% S390 architecture

Kevin Hilman 360 0.8% TI Davinci architecture
Jiri Kosina 332 0.7% HID, Trivial

From this table, we see that Linus Torvalds directly merges just over 1% of the total patch stream;
everything else comes in by way of the subsystem maintainers.

Associating signoffs with employers yields the following:

Company Name Signoff Lines Percent of Total

Red Hat 17,815 37.7%

Novell 6,345 13.4%

Intel 4,365 9,2%

Google 3,133 6.6%

none 2,268 4.8%

IBM 1,663 3.5%

consultant 1,153 2.4%

Oracle 870 1.8%

Renesas Technology 674 1.4%

The Linux Foundation 600 1.3%

Analog Devices 541 1.1%

Nokia 540 1.1%

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org
compliance@linuxfoundation.org

.....

17Linux Kernel Development

Company Name Signoff Lines Percent of Total

Wind River 539 1.1%

Wolfson Microelectronics 526 1.1%

Atomide 432 0.9%

Simtec 408 0.9%

Marvell 406 0.9%

NetApp 351 0.7%

unknown 247 0.5%

Cisco 245 0.5%

The signoff metric is a loose indication of review, so the above numbers need to be regarded
as approximations only. Still, one can clearly see that subsystem maintainers are rather more
concentrated than kernel developers as a whole; over half of the patches going into the kernel
pass through the hands of developers employed by just two companies.

Why Companies Support Kernel Development
The list of companies participating in Linux kernel development includes many of the most
successful technology firms in existence. None of these companies are supporting Linux
development as an act of charity; in each case, these companies find that improving the kernel
helps them to be more competitive in their markets. Some examples:
•	 Companies like IBM, Intel, SGI, MIPS, Freescale, HP, Fujitsu, etc. are all working to ensure that

Linux runs well on their hardware. That, in turn, makes their offerings more attractive to Linux
users, resulting in increased sales.

•	 Distributors like Red Hat, Novell, and MontaVista have a clear interest in making Linux as
capable as it can be. Though these firms compete strongly with each other for customers,
they all work together to make the Linux kernel better.

•	 Companies like Sony, Nokia, and Samsung ship Linux as a component of products like video
cameras, television sets, and mobile telephones. Working with the development process helps
these companies ensure that Linux will continue to be a solid base for their products in the
future.

There are a number of good reasons for companies to support the Linux kernel. As a result, Linux
has a broad base of support which is not dependent on any single company. Even if the largest
contributor were to cease participation tomorrow, the Linux kernel would remain on a solid footing
with a large and active development community.

1796 18th Street, Suite C
San Francisco, CA 94107
+1 415 723 9709
http://www.linuxfoundation.org
compliance@linuxfoundation.org

.....

18Linux Kernel Development

Conclusion
The Linux kernel is one of the largest and most successful open source projects that has ever come
about. The huge rate of change and number of individual contributors show that it has a vibrant
and active community, constantly causing the evolution of the kernel in response to number of
different environments it is used in. This rate of change continues to increase, as does the number
of developers and companies involved in the process; thus far, the development process has
proved that it is able to scale up to higher speeds without trouble.

There are enough companies participating to fund the bulk of the development effort, even if
many companies which could benefit from contributing to Linux have, thus far, chosen not to.
With the current expansion of Linux in the server, desktop and embedded markets, it’s reasonable
to expect this number of contributing companies – and individual developers – will continue to
increase over time. The kernel development community welcomes new developers; individuals
or corporations interested in contributing to the Linux kernel are encouraged to consult “How to
participate in the Linux community” (which can be found at http://ldn.linuxfoundation.org/book/
how-participate-linux-community) or to contact the authors of this paper or the Linux Foundation
for more information.

Thanks
The authors would like to thank the thousands of individual kernel contributors, without them,
papers like this would not be interesting to anyone.

Resources
Many of the statistics in this article were generated by the “gitdm” tool, written by Jonathan
Corbet. Gitdm is distributable under the GNU GPL; it can be obtained from git://git.lwn.net/gitdm.
git.

The information for this paper was retrieved directly from the Linux kernel releases as found at
the http://kernel.org/ web site and from the git kernel repository. Some of the logs from the git
repository were cleaned up by hand due to email addresses changing over time, and minor typos
in authorship information. A spreadsheet was used to compute a number of the statistics. All
of the logs, scripts, and spreadsheet can be found at http://www.kernel.org/pub/linux/kernel/
people/gregkh/kernel_history/

http://ldn.linuxfoundation.org/book/how-participate-linux-community
http://ldn.linuxfoundation.org/book/how-participate-linux-community
http://kernel.org/
http://www.kernel.org/pub/linux/kernel/people/gregkh/kernel_history/
http://www.kernel.org/pub/linux/kernel/people/gregkh/kernel_history/

The Linux Foundation promotes, protects and
advances Linux by providing unified resources

and services needed for open source to successfully
compete with closed platforms.

To learn more about The Linux Foundation,
and our other initiatives please visit us at

http://www.linuxfoundation.org/.

http://www.linuxfoundation.org/

