Linux Kernel Networking

Rami Rosen
ramirose@gmail.com
Haifux, August 2007

mailto:ramirose@gmail.com

Disclaimer

Everything in this lecture shall not, under any
circumstances, hold any legal liability whatsoever.

Any usage of the data and information in this document
shall be solely on the responsibility of the user.

This lecture is not given on behalf of any company

or organization.

Warning

A\

* This lecture will deal with design functional
description side by side with many implementation details;

some knowledge of “C” is preferred.

General

* The Linux networking kernel code (including network device
drivers) is a large part of the Linux kernel code.

* Scope: We will not deal with wireless, IPv6, and multicasting.

— Also not with user space routing daemons/apps, and with
security attacks (like DoS, spoofing, etc.) .

* Understanding a packet walkthrough in the kernel is a key to
understanding kernel networking. Understanding it is a must if

we want to understand Netfilter or IPSec internals, and more.

* Thereis a 10 pages Linux kernel networking walkthrouh document

2 "

General - Contd.

* Though it deals with 2.4.20 Linux kernel, most of it is relevant.

* This lecture will concentrate on this walkthrough (design and
implementation details).

* References to code in this lecture are based on linux-2.6.23-rc2.

* There was some serious cleanup in 2.6.23

Hierarchy of networking layers

* The layers that we will deal with (based on the 7 layers model) are:

Transport Layer (L4) (udp,tcp...)

Network Layer (L3) (ip)

Link Layer (L2) (ethernet)

Networking Data Structures

* The two most important structures of linux kernel network layer
are:

— sk_buff (defined in include/linux/skbuft. h)
— netdevice (defined in include/linux/netdevice.h)

* Itis better to know a bit about them before delving into the
walkthrough code.

SK_BUFF

* sk _buff represents data and headers.
* sk _buff APl (examples)

— sk_Dbuff allocation is done with alloc_skb() or dev_alloc_skb(),
drivers use dev_alloc_skb(),. (free by kfree skb() and
dev_kfree skb().

* unsigned char” data : points to the current header.

* skb_pull(int len) — removes data from the start of a buffer by
advancing data to data+len and by decreasing len.

* Almost always sk _buff instances appear as “skb” in the kernel
code.

SK BUFF - contd

* sk _buff includes 3 unions; each corresponds to a kernel network
layer:

* transport_header (previously called h) — for layer 4, the transport
layer (can include tcp header or udp header or icmp header, and
more)

* network header — (previously called nh) for layer 3, the network
layer (can include ip header or ipv6 header or arp header).

* mac_header — (previously called mac) for layer 2, the link layer.

* skb_network header(skb), skb_transport _header(skb) and
skb_mac_header(skb) return pointer to the header.

SK_ BUFF - contd.

* struct dst _entry *dst — the route for this sk_buff; this route is
determined by the routing subsystem.

— It has 2 important function pointers:
* int ("input)(struct sk_buff*);
* int (“output)(struct sk_buff*);

* Input() can be assigned to one of the following : ip_local_deliver,
ip_forward, ip_mr_input, ip_error or dst_discard_in.

* output() can be assigned to one of the following :ip_output,
Ip_mc_output, ip_rt_bug, or dst_discard out.

- we will deal more with det when talkina ahoiit rotitina

SK_ BUFF - contd.

* In the usual case, there is only one dst_entry for every skb.

* When using IPSec, there is a linked list of dst_entries and only the
last one is for routing; all other dst_entries are for IPSec
transformers ; these other dst _entries have the DST NOHASH

flag set.
* tstamp (of type ktime_t) : time stamp of receiving the packet.

— net_enable timestamp() must be called in order to get values.

net_device

* net_device represents a network interface card.
* There are cases when we work with virtual devices.

— For example, bonding (setting the same IP for two or more
NICs, for load balancing and for high availability.)

— Many times this is implemented using the private data of the
device (the void *priv member of net_device);

— In OpenSolaris there is a special pseudo driver called “vnic”
which enables bandwidth allocation (project CrossBow).

* Important members:

het _device - contd

* unsigned int mtu — Maximum Transmission Unit: the maximum
size of frame the device can handle.

* Each protocol has mtu of its own; the default is 1500 for Ethernet.
* you can change the mtu with ifconfig; for example,like this:

- Ifconfig ethO mtu 1400

— You cannot of course, change it to values higher than 1500 on
10Mb/s network:

— ifconfig ethO mtu 1501 will give:
- SIOCSIFMTU: Invalid argument

het _device - contd

* unsigned int flags - (which you see or set using ifconfig utility):
for example, RUNNING or NOARP.

* unsigned char dev_addr[MAX ADDR_LEN] : the MAC address
of the device (6 bytes).

* int (*hard_start_xmit)(struct sk_buff *skb,
struct net_device *dev);

— a pointer to the device transmit method.

* int promiscuity; (a counter of the times a NIC is told to set to
work in promiscuous mode; used to enable more than one sniffing
client)

het _device - contd

* You are likely to encounter macros starting with IN_DEV like:

IN. DEV_FORWARD() or IN. DEV_RX REDIRECTS(). How are the
related to net_device ? How are these macros implemented ?

* void *ip_ptr: IPv4 specific data. This pointer is assigned to a
pointer to in_device in inetdev _init() (net/ipv4/devinet.c)

het _device - Contd.

* struct in_device have a member named cnf (instance of
ipv4_devconf). Setting /proc/sys/net/ipv4/conf/all/forwarding

eventually sets the forwarding member of in_device to 1.
The same is true to accept_redirects and send_redirects; both
are also members of cnf (ipv4_devconf).

* In most distros, /proc/sys/net/ipv4/conf/all/forwarding=0

* But probably this is not so on your ADSL router.

network interface drivers

* Most of the nics are PCI devices:; there are also some USB
network devices.

* The drivers for network PCI devices use the generic PCI calls, like
pci_register_driver() and pci_enable device().

* For more info on nic drives see the article “Writing Network
Device Driver for Linux” (link no. 9 in links) and chap17 in ldd3.

* There are two modes in which a NIC can receive a packet.

— The traditional way is interrupt-driven : each received packet is
an asynchronous event which causes an interrupt.

NAPI

* NAPI (new API).

— The NIC works in polling mode.

— In order that the nic will work in polling mode it should be built
with a proper flag.

— Most of the new drivers support this feature.
— When working with NAPI and when there is a very high load,

packets are lost; but this occurs before they are fed into the
network stack. (in the non-NAPI driver they pass into the stack)

— in Solaris, polling is built into the kernel (no need to build

Arivvare in anv enacial wav)

User Space Tools

* iputils (including ping, arping, and more)
* net-tools (ifconfig, netstat, , route, arp and more)
* IPROUTEZ2 (ip command with many options)

- Uses rtnetlink API.

— Has much wider functionalities; for example, you can create
tunnels with “ip” command.

— Note: no need for “-n” flag when using IPROUTEZ2 (because it
does not work with DNS).

Routing Subsystem

The routing table and the routing cache enable us to find the net
device and the address of the host to which a packet will be sent.

Reading entries in the routing table is done by calling
fib_lookup(const struct flowi *flp, struct fib_result *res)

FIB is the “Forwarding Information Base”.
There are two routing tables by default: (non Policy Routing case)

— local FIB table (ip_fib_local table ; ID 255).
— main FIB table (ip_fib_main_table ; 1D 254)
— See ! include/net/ip_fib.h.

Routing Subsystem - contd.

* Routes can be added into the main routing table in one of 3 ways:

— By sys admin command (route add/ip route).
— By routing daemons.

— As aresult of ICMP (REDIRECT).

* A routing table is implemented by struct fib_table.

Routing Tables

fib_lookup() first searches the local FIB table (ip_fib_local table).

In case it does not find an entry, it looks in the main FIB table
(ip_fib_main_table).

Why is it in this order ?
There is one routing cache, regardless of how many routing tables

there are.

You can see the routing cache by running “route -C”.
Alternatively, you can see it by : “cat /proc/net/rt_cache”.

— con: this way, the addresses are in hex format

Routing Cache

* The routing cache is built of rtable elements:

* struct rtable (see: /include/net/route.h)
{
union {
struct dst_entry dst;

} U;

Routing Cache - contd

The dst_entry is the protocol-independent part.

— Thus, for example, we have a dst_entry member (also
called dst) in rt6_info in ipv6. (include/net/ip6 _fib.h)

The key for a lookup operation in the routing cache is an IP
address (whereas in the routing table the key is a subnet).

Inserting elements into the routing cache by : rt_intern_hash()

There is an alternate mechanism for route cache lookup,
called fib_trie, which is inside the kernel tree
(net/ipv4/fib_trie.c)

Routing Cache - contd

* It is based on extending the lookup key.
* You should set: CONFIG_IP_FIB_TRIE (=y)
- (instead of CONFIG_IP_FIB _HASH)

* By Robert Olsson et al (see links).

Creating a Routing Cache Entry

* Allocation of rtable instance (rth) is done by: dst_alloc().

— dst_alloc() in fact creates and returns a pointer to
dst_entry and we cast it to rtable (net/core/dst.c).

* Setting input and output methods of dst:
- (rth->u.dst.input and rth->u.dst.input)
* Setting the flowi member of dst (rth->fl)

— Next time there is a lookup in the cache,for example ,
ip_route_input(), we will compare against rth->fl.

Routing Cache - Contd.

* A garbage collection call which delete
eligible entries from the routing cache.

* Which entries are not eligible ?

Policy Routing (multiple tables)

* Generic routing uses destination-address based decisions.

* There are cases when the destination-address is not the sole
parameter to decide which route to give; Policy Routing comes to
enable this.

Policy Routing (multiple tables)-contd.

Adding a routing table : by adding a line to: /etc/iproute2/rt _tables.

— For example: add the line “252 my_rt_table”.
— There can be up to 255 routing tables.

Policy routing should be enabled when building the kernel
(CONFIG_IP_MULTIPLE_TABLES should be set.)

Example of adding a route in this table:
> ip route add default via 192.168.0.1 table my_rt_table
Show the table by:

— Ip route show table my rt_table

Policy Routing (multiple tables)-contd.

* You can add a rule to the routing policy database (RPDB)
by “ip rule add ...”

- The rule can be based on input interface, TOS, fwmark
(from netfilter).

* Ip rule list— show all rules.

Policy Routing: add/delete a rule - example

* Ip rule add tos 0x04 table 252
— This will cause packets with tos=0x08 (in the iphdr)
to be routed by looking into the table we added (252)

— So the default gw for these type of packets will be
192.168.0.1

— ip rule show will give:

- 32765: from all tos reliability lookup my_rt_table

Policy Routing: add/delete a rule - example

* Delete arule : ip rule del tos 0x04 table 252

ip_route_input() in: net/ipv4/route.c Cache lookup

Routing Lookup

Hit

ip_route_input_slow()
in: net/ipv4/route.c

fib_lookup() in Hit

Deliver packet by:
ip_local deliver()

ip_fib_local_table

fib_lookup() in
ip_fib_main_table

Miss

Drop packet

or ip_forward()
according to result

33

Routing Table Diagram

fib _table

tb_lookup()
tb_insert()
tb_delete()

struct fn_zone
struct fn_zone

struct fn_zone

struct fn_zone struct fib_node fib_node
hlist_head
> et > in_alias
hlist_head fn_alias
fn_key
hlist_head y [n_key
struct fib_alias
fz_divisor
hlist_head _
fa_info
v

struct fib_info

fio_nh

Routing Tables

* Breaking the fib_table into multiple data structures gives
flexibility and enables fine grained and high level of sharing.

— Suppose that we 10 routes to 10 different networks have
the same next hop gw.

— We can have one fib_info which will be shared by 10
fib aliases.

— fz_divisor is the number of buckets

Routing Tables - contd

* Each fib_ node element represents a unique subnet.

- The fn_key member of fib_ node is the subnet (32 bit)

Routing Tables - contd

Suppose that a device goes down or enabled.
We need to disable/enable all routes which use this device.
But how can we know which routes use this device ?

In order to know it efficiently, there is the fib_info_devhash
table.

This table is indexed by the device identifier.
See fib_sync _down() and fib_sync _up() in

net/ipv4/fib_semantics.c

Routing Table lookup algorithm

* LPM (Longest Prefix Match) is the lookup algorithm.
* The route with the longest netmask is the one chosen.

* Netmask 0, which is the shortest netmask, is for the default
gateway.

— What happens when there are multiple entries with
netmask=07?

— fib_lookup() returns the first entry it finds in the fib table
where netmask length is 0.

Routing Table lookup - contd.

* It may be that this is not the best choice default gateway.

* So in case that netmask is 0 (prefixlen of the fib_result returned
from fib_look is 0) we call fib_select default|().

* fib_select default() will select the route with the lowest priority

(metric) (by comparing to fib_priority values of all default
gateways).

Receiving a packet

When working in interrupt-driven model, the nic registers an
interrupt handler with the IRQ with which the device works by
calling request irq().

This interrupt handler will be called when a frame is received
The same interrupt handler will be called when transmission of a

frame is finished and under other conditions. (depends on the
NIC; sometimes, the interrupt handler will be called when there is

some error).

Receiving a packet - contd

* Typically in the handler, we allocate sk_buff by calling
dev_alloc _skb() ; also eth _type trans() is called; among other
things it advances the data pointer of the sk_buff to point to the IP
header ; this is done by calling skb_pull(skb, ETH_HLEN).

* See : net/ethernet/eth.c

- ETH _HLEN is 14, the size of ethernet header.

Receiving a packet - contd

* The handler for receiving a packet is ip_rcv(). (net/ipv4/ip_input.c)
* Handler for the protocols are registered at init phase.

— Likewise, arp_rcv() is the handler for ARP packets.
* First, ip_rcv() performs some sanity checks. For example:
if (iph->ihl < 5 || iph->version != 4)
goto inhdr_error;
— iphis the ip header ; iph->ihl is the ip header length (4 bits).
— The ip header must be at least 20 bytes.

- |t can be up to 60 bytes (when we use ip options)

Receiving a packet - contd

* Thenitcalls ip_rcv_finish(), by:

NF_HOOK(PF_INET, NF_IP_PRE ROUTING, skb, dev, NULL,
ip_rcv_finish);

* This division of methods into two stages (where the second has
the same name with the suffix finish or slow, is typical for
networking kernel code.)

* In many cases the second method has a “slow” suffix instead of
“finish”; this usually happens when the first method looks in some
cache and the second method performs a lookup in a table, which
IS slower.

Receiving a packet - contd

* jp_rcv_finish() implementation:
if (skb->dst == NULL) {
int err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos,
Sskb->dev);

return dst_input(skb);

Receiving a packet - contd

* Ip_route_input():

First performs a lookup in the routing cache to see if there is a
match. If there is no match (cache miss), calls
ip_route_input_slow() to perform a lookup in the routing table.
(This lookup is done by calling fib_lookup()).

* fib_lookup(const struct flowi *flp, struct fib_result *res)
The results are kept in fib_result.

* ip_route_input() returns 0 upon successful lookup. (also when
there is a cache miss but a successful lookup in the routing table.)

Receiving a packet - contd

According to the results of fib_lookup(), we know if the frame is for
local delivery or for forwarding or to be dropped.

* If the frame is for local delivery , we will set the input() function
pointer of the route to ip _local deliver().

rth->u.dst.input= ip_local _deliver,

* If the frame is to be forwarded, we will set the input() function
pointer to ip_forward():

rth->u.dst.input = ip_forward,

Local Delivery

Prototype:

ip_local _deliver(struct sk_buff *skb) (net/ipv4/ip_input.c).

- calls NF_HOOK(PF_INET, NF _IP_LOCAL IN, skb, skb->dev,
NULL,ip local deliver finish);

* Delivers the packet to the higher protocol layers according to its
type.

Forwarding

* Prototype:

— Int ip_forward(struct sk_buff *skb)
* (net/ipv4/ip_forward.c)

— decreases the ttl in the ip header

— Ifthe ttl is <=1, the methods send ICMP message
(ICMP_TIME EXCEEDED) and drops the packet.

- Calls NF_HOOK(PF _INET,NF _IP_FORWARD, skb, skb->dev,
rt->u.dst.dev, ip_forward finish);

Forwarding- Contd

* ip_forward finish(): sends the packet out by calling
dst_output(skb).

* dst _output(skb) is just a wrapper, which calls

Sskb->dst->output(skb). (see include/net/dst.h)

Sending a Packet

Handling of sending a packet is done by
ip_route_output_key().

We need to perform routing lookup also in the case of
transmission.
In case of a cache miss, we calls ip_route output _slow(),

which looks in the routing table (by calling fib_lookup(), as
also is done in ip_route_input_slow).)

If the packet is for a remote host, we set dst->output to
ip output()

Sending a Packet-contd

* Ip_output() will call ip_finish_output()
— Thisisthe NF_IP_POST_ ROUTING point.

* Ip_finish_output() will eventually send the packet from a
neighbor by:

— dst->neighbour->output(skb)

— arp_bind _neighbour() sees to it that the L2 address of the
next hop will be known. (net/ipv4/arp.c)

Sending a Packet - Contd.

* If the packet is for the local machine:
— dst->output = ip_output
— dst->input = ip_local deliver
— Ip_output() will send the packet on the loopback device,

- Then we will go into ip_rev() and ip_recv _finish(), but this
time dst is NOT null; so we will end in ip_local_deliver().

* See: net/ipv4/route.c

Multipath routing

This feature enables the administrator to set multiple next
hops for a destination.

To enable multipath routing,
CONFIG_IP_ROUTE_MULTIPATH should be set when
building the kernel.

There was also an option for multipath caching: (by setting
CONFIG_IP_ROUTE_MULTIPATH_CACHED).

It was experimental and removed in 2.6.23 - See links (6).

£5 Applications Places System %e&.ﬁgd@ 5@ us o %36PM @)

= mc - root@rr:/proc/net/stat _|[=][x
Fle Edit View Terminal Tabs Help

[mc - root@rr:/proc/net/stat 3¢ | Terminal 3 mc - root@rr:fworkjpng b3

Linux Kernel v2.6.21-rc7 Configuration

Networking options
Arrow Kkeys navigate the menu. <Enter> selects submenus --->. Highlighted letters are
hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes features. Press
<Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded
<M> module < > module capable

[1] Network packet debugging
<*> Packet socket
[*] Packet socket: mmapped IO
<*> Unix domain sockets
<*> Transformation user configuration interface
[1 Transformation sub policy support (EXPERIMENTAL)
[1 Transformation migrate database (EXPERIMENTAL)
<M> PF_KEY sockets
[] PF_KEY MIGRATE (EXPERIMENTAL)
[*] TCP/IP networking
[*] IP: multicasting
[*] IP: advanced router
Choose IP: FIB lookup algorithm (choose FIB HASH if unsure) (FIB HASH)
[*] IP: policy routing
[*] IP: equal cost multipath
[*] IP: equal cost multipath with caching support (EXPERIMENTAL)
<¥> MULTIPATH: round robin algorith
< MULTIPATH: random algorithm (NEW)
< > MULTIPATH: weighted random algorithm (NEW)
< > MULTIPATH: interface round robin algorithm (NEW)

< Exit > < Help >

e iEdit - Mdet a4 MNnbox £ Mintit COne Netwn Mtectl || @l e -1 MNawval Downl Tadohe |E8l [i—]

Netfilter

* Netfilter is the kernel layer to support applying iptables rultes.

- It enables:
* Filtering
* Changing packets (masquerading)

* Connection Tracking

Netfilter rule - example

Short example:
Applying the following iptables rule:

— Iptables -A INPUT -p udp --dport 9999 - DROP
Thisis NF_IP_LOCAL _IN rule;

The packet will go to:
ip_rev()
and then: ip_rcv_finish()

And then ip_local deliver()

Netfilter rule - example (contd)

but it will NOT proceed to ip_local deliver finish() as in the
usual case, without this rule.

As a result of applying this rule it reaches nf_hook slow()
with verdict == NF_DROP (calls skb_free() to free the packet)

See /net/netfilter/core.c.

ICMP redirect message

ICMP protocol is used to notify about problems.

A REDIRECT message is sent in case the route
Is suboptimal (inefficient).

There are in fact 4 types of REDIRECT

Only one is used :

— Redirect Host (ICMP_REDIR_HOST)
See RFC 1812 (Requirements for IP Version 4 Routers).

ICMP redirect message - contd.

* To support sending ICMP redirects, the machine should be
configured to send redirect messages.

— /proc/sys/net/ipv4/conf/all/send_redirects should be 1.

* |n order that the other side will receive redirects, we should
set

/proc/sys/net/ipv4/conf/all/accept_redirects to 1.

ICMP redirect message - contd.

* Example:
* Add a suboptimal route on 192.168.0.31:

* route add -net 192.168.0.10 netmask 255.255.255.255 gw
192.168.0.121

* Running now “route” on 192.168.0.31 will show a new entry:
Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.0.10 192.168.0.121 255.255.255.255 UGH 0 0 0 eth0

ICMP redirect message - contd.
Send packets from 192.168.0.31 to 192.168.0.10 :

ping 192.168.0.10 (from 192.168.0.31)
We will see (on 192.168.0.31):

- From 192.168.0.121: icmp_seqg=2 Redirect Host(New
nexthop: 192.168.0.10)

now, running on 192.168.0.121:
- route -Cn | grep .10

shows that there is a new entry in the routing cache:

ICMP redirect message - contd.

* 192.168.0.31 192.168.0.10 192.168.0.10 ri0 0 34 eth0
* The “r” in the flags column means: RTCF_DOREDIRECT.

* The 192.168.0.121 machine had sent a redirect by calling
ip_rt_send redirect() from ip_forward().

(net/ipv4/ip_forward.c)

ICMP redirect message - contd.

And on 192.168.0.31, running “route -C | grep .10” shows
now a new entry in the routing cache: (in case
accept_redirects=1)

192.168.0.31 192.168.0.10 192.168.0.10 0 O 1
eth0

In case accept_redirects=0 (on 192.168.0.31), we will see:
192.168.0.31 192.168.0.10 192.168.0.121 0 0 0 ethO

which means that the gw is still 192.168.0.121 (which is the
rotite that we added in the beainnina)

ICMP redirect message - contd.

* Adding an entry to the routing cache as a result of getting
ICMP REDIRECT is done in ip_rt_redirect(), net/ipv4/route.c.

* The entry in the routing table is not deleted.

Neighboring Subsystem

* Most known protocol: ARP (in IPV6: ND, neighbour discovery)
* ARP table.
* Ethernet header is 14 bytes long:

— Source mac address (6 bytes).
— Destination mac address (6 bytes).
- Type (2 bytes).
* 0x0800 is the type for IP packet (ETH_P_IP)
* 0x0806 is the type for ARP packet (ETH_P_ARP)

* see: include/linux/if _ether.h

Neighboring Subsystem - contd

* When there is no entry in the ARP cache for the destination IP
address of a packet, a broadcast is sent (ARP request,
ARPOP_REQUEST: who has IP address x.y.z...). This is done by
a method called arp_solicit(). (net/ipv4/arp.c)

* You can see the contents of the arp table by running:
“cat /proc/net/arp’ or by running the “arp” from a command line .

* You can delete and add entries to the arp table; see man arp.

Bridging Subsystem
You can define a bridge and add NICs to it (“enslaving
ports”) using brctl (from bridge-utils).

You can have up to 1024 ports for every bridge device
(BR_LMAX_PORTS) .

Example:
brctl addbr mybr
brctl addif mybr ethO

brctl show

Bridging Subsystem - contd.

* When a NIC is configured as a bridge port, the br_port
member of net_device is initialized.

— (br_port is an instance of struct net_bridge pori).

* When we receive a frame, netif_receive skb() calls
handle bridge().

Bridging Subsystem - contd.

The bridging forwarding database is searched for the

destination MAC address.

In case of a hit, the frame is sent to the bridge port with
br_forward() (net/bridge/br_forward.c).

If there is a miss, the frame is flooded on all
bridge ports using br_flood() (net/bridge/br_forward.c).
Note: this is not a broadcast !

The ebtables mechanism is the L2 parallel of L3 Netfilter.

Bridging Subsystem- contd

* Ebtables enable us to filter and mangle packets

at the link layer (L2).

IPSec

Works at network IP layer (L3)
Used in many forms of secured networks like VPNSs.
Mandatory in IPv6. (not in IPv4)

Implemented in many operating systems: Linux, Solaris, Windows,
and more.

RFC2401
In 2.6 kernel : implemented by Dave Miller and Alexey Kuznetsov.
Transformation bundles.

Chain of dst entries; only the last one is for routing.

IPSec-cont.

User space tools: http://ipsec-tools.sf.net
Building VPN : http://www.openswan.org/ (Open Source).
There are also non IPSec solutions for VPN
— example: pptp
struct xfrm_policy has the following member:

— struct dst_entry *bundles.

- _ xfrm4_bundle_create() creates dst_entries (with the
DST_NOHASH flag) see: net/ipv4/xfrm4_policy.c

Transport Mode and Tunnel Mode.

http://ipsec-tools.sf.net/
http://www.openswan.org/

IPSec-contd.

* Show the security policies:
— Ip xfrm policy show

* Create RSA keys:
— Ipsec rsasigkey --verbose 2048 > keys.txt
— Ipsec showhostkey --left > left.publickey
— ipsec showhostkey --right > right.publickey

IPSec-contd.

Example: Host to Host VPN (using openswan)
In /etc/ipsec.cont:

conn linux-to-linux
left=192.168.0.189
leftnexthop=%direct
leftrsasigkey=0sAQPPQ...
right=192.168.0.45
rightnexthop=%Cdirect
rightrsasigkey=0sAQNwb...
type=tunnel

auto=start

IPSec-contd.

service ipsec start (to start the service)

ipsec verify — Check your system to see if IPsec got installed and
started correcily.

ipsec auto —status

— If you see “IPsec SA established”, this implies success.

Look for errors in /var/log/secure (tedora core) or in kernel syslog

Tips for hacking

* Documentation/networking/ip-sysctl.txt: networking kernel tunabels
* Example of reading a hex address:
* iph->daddr == 0xOAO0A8CO or

means checking if the address is 192.168.0.10 (C0=192,A8=168,
00=0,0A=10).

Tips for hacking - Contd.

Disable ping reply:

echo 1 >/proc/sys/net/ipv4/icmp_echo_ignore_all

Disable arp: ip link set eth0 arp off (the NOARP flag will be set)
Also ifconfig eth0 -arp has the same effect.

How can you get the Path MTU to a destination (PMTU)?

— Use tracepath (see man tracepath).

— Tracepath is from iputils.

Tips for hacking - Contd.

* Keep iphdr struct handy (printout): (from linux/ip.h)

struct iphdr {

__u8 ihl:4,
version:4;
___u8 tos;
__bel16 tot_len;
__bel6 id;
__be16 frag_off;
_u8 ttl;
__u8 protocol;
__sumi6 check;
__be32 saddr;
__be32 daddr;

/*The options start here. */

|§

Tips for hacking - Contd.

* NIPQUAD() : macro for printing hex addresses
* CONFIG_NET_DMA is for TCP/IP offload.

* When you encounter: xfrm / CONFIG_XFRM this has to to do with
IPSEC. (transformers).

New and future trends

IO/AT.

NetChannels (Van Jacobson and Evgeniy Polyakov).

TCP Offloading.

RDMA.

Mulitqueus. : some new nics, like e1000 and IPW2200,
allow two or more hardware Tx queues. There are already

patches to enable this.

New and future trends - contd.

See: “Enabling Linux Network Support of Hardware
Multigueue Devices”, OLS 2007.

Some more info in: Documentation/networking/multiqueue.txt
In recent Linux kernels.

Devices with multiple TX/RX queues will have the
NETIF_F MULTI QUEUE feature (include/linux/netdevice.h)

MQ nic drivers will call alloc_etherdev_mq() or
alloc_netdev_mq() instead of alloc_etherdev() or
alloc_netdev().

Links and more info

1) Linux Network Stack Walkthrough (2.4.20):
http://gicl.cs.drexel.edu/people/sevy/network/Linux_network stack we
2) Understanding the Linux Kernel, Second Edition

By Daniel P. Bovet, Marco Cesati

Second Edition December 2002

chapter 18: networking.

- Understanding Linux Network Internals, Christian benvenuti

Oreilly , First Edition.

http://gicl.cs.drexel.edu/people/sevy/network/Linux_network_stack_walkthrough.html

Links and more info

3) Linux Device Driver, by Jonathan Corbet, Alessandro Rubini, Greg
Kroah-Hartman

Third Edition February 2005.
— Chapter 17, Network Drivers
4) Linux networking: (a lot of docs about specific networking topics)
— http://linux-net.osdl.org/index.php/Main_Page

5) netdev mailing list: http://www.spinics.net/lists/netdev/

http://linux-net.osdl.org/index.php/Main_Page
http://www.spinics.net/lists/netdev/

Links and more info

6) Removal of multipath routing cache from kernel code:

http://lists.openwall.net/netdev/2007/03/12/76
http://lwn.net/Articles/241465/

7) Linux Advanced Routing & Traffic Control :
http://lartc.org/
8) ebtables — a filtering tool for a bridging:

http://ebtables.sourceforge.net/

http://lists.openwall.net/netdev/2007/03/12/76
http://lwn.net/Articles/241465/
http://lartc.org/
http://ebtables.sourceforge.net/

Links and more info

9) Writing Network Device Driver for Linux: (article)

- http://app.linux.org.mt/article/writing-netdrivers?locale=en

http://app.linux.org.mt/article/writing-netdrivers?locale=en

Links and more info

10) Netconf — a yearly networking conference; first was in 2004.

- http://vger.kernel.org/netconf2004.html
— http://vger.kernel.org/netconf2005.htm|
- http://vger.kernel.org/netconf2006.html

— Next one: Linux Conf Australia, January 2008,Melbourne

— David S. Miller, James Morris , Rusty Russell , Jamal Hadi Salim ,Stephen Hemminger
, Harald Welte, Hideaki YOSHIFUJI, Herbert Xu ,Thomas Graf ,Robert Olsson ,Arnaldo
Carvalho de Melo and others

http://vger.kernel.org/netconf2004.html
http://vger.kernel.org/netconf2005.html
http://vger.kernel.org/netconf2006.html

Links and more info

11) Policy Routing With Linux - Online Book Edition

- by Matthew G. Marsh (Sams).
- http://www.policyrouting.org/PolicyRoutingBook/
12) THRASH - A dynamic LC-trie and hash data structure:

Robert Olsson Stefan Nilsson, August 2006
http://www.csc.kth.se/~snilsson/public/papers/trash/trash.pdf
13) IPSec howto:

http://www.ipsec-howto.org/t1.html

http://www.policyrouting.org/PolicyRoutingBook/
http://www.csc.kth.se/~snilsson/public/papers/trash/trash.pdf
http://www.ipsec-howto.org/t1.html

Links and more info

14) Openswan: Building and Integrating Virtual Private
Networks , by Paul Wouters, Ken Bantoft

http://www.packtpub.com/book/openswan/mid/061205jqgdnh2by
publisher: Packt Publishing.

http://www.packtpub.com/book/openswan/mid/061205jqdnh2by

