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IntroductionIntroduction

 A virtualized environment

– runs operating systems like Linux on virtual hardware

– backing up the virtual hardware with physical hardware as required is the responsibility of a Hypervisor, like 
z/VM.

– provides significant advantages in regard of management and resource utilization

– running virtualized on shared resources introduces a new dynamic into the system

 The important part is the 'as required'

– normally do not all guests need all assigned resources all the time

– It must be possible for the Hypervisor to identify resources which are not used. 

 This presentation analyzes two issues

– Idling applications which look so frequently for work that they appear active to the Hypervisor 
• Concerns many applications running with multiple processes/threads
• Sample: 'noisy' WebSphere Application Server
• Solution: pausing guests which are know to be unused for a longer period

– A configuration question, what is better vertical or horizontal application stacking
• stacking many applications/middle ware in one very large guest
• having many guests with one guest for each application/middle ware
• or something in between
• Sample: 200 WebSphere JVMs
• Solution: Analyze the behavior of setup variations
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IntroductionIntroduction

 The requirement:

– An idling guest should not consume CPU or memory.

– Definition of idle: A guest not processing any client requests is idle 
• This is the customer view, not the view from the operating system or Hypervisor.

 The issue:

– An 'idling' WebSphere Application Server guest is so frequently looking for work, that it does not become 
idle from the Hypervisor view.

– For z/VM: it can not set the guest state to dormant and the resources, especially the memory, are 
considered as actively used:

• z/VM could use real memory pages from dormant guests easily for other active guests
• But the memory pages from idling WebSphere guests will stay in real memory and not be paged out
• The memory pages from an idling WebSphere Application server compete with really active guests for real memory 

pages

– This behavior expected to be not specific for WebSphere Application Server

 A solution

– Guests which are known as inactive, for example when the developer has finished his work, are made 
inactive to the z/VM by

• using Linux suspend mechanism (hibernates the Linux)
• using z/VM stop command (stops the virtual CPUs)

– This should help to increase the level of memory overcommitment significantly, for example for systems 
hosting WAS environments for a world wide working development groups
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How to pause the guestHow to pause the guest

 Linux Suspend/Resume

– Setup: dedicated swap disk to hold the full guest memory
zipl.conf: resume=<swap device_node> 
Optional: add a boot target with the noresume parameter as failsafe entry

– Suspend: echo disk >/sys/power/state

– Impact: controlled halt of Linux and its devices

– Resume: just IPL the guest

– more details in the device drivers book:
http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html

 z/VM CP Stop/Begin

– Setup: Privilege class: G

– Stop: CP stop cpu all (might be issued from vmcp)

– Impact: stops virtual CPUs, execution just halted, 
device states might remain undefined

– Resume: CP begin cpu all (from x3270 session, disconnect when done)

– more details in CP command reference:
http://publib.boulder.ibm.com/infocenter/zvm/v6r1/index.jsp?topic=/com.ibm.zvm.v610.hcpb7/toc.htm

http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
http://publib.boulder.ibm.com/infocenter/zvm/v6r1/index.jsp?topic=/com.ibm.zvm.v610.hcpb7/toc.htm
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Objectives - Part 1Objectives - Part 1

 Objectives – Part 1

– Determine the time needed to deactivate/activate the guest

– Show that the deactivated z/VM guest state becomes dormant

– Use a WebSphere Application Server guest and a standalone database
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Time to pause or restart the guestsTime to pause or restart the guests

 CP stop/begin is much faster

– In case of an IPL/ power loss system state is lost

– Disk and memory state of the system might be inconsistent 

 Linux suspend writes the memory image to the swap device and shutdown the devices. 

– Needs more time, but the system is left in a very controlled state

– IPL or power loss have no impact on the system state

– All devices are cleanly shutdown

Times until the guest is halted

Linux: suspend z/VM: stop command

times [sec] 8 27 immediately immediately

standalone 
database

WebSphere 
guest

standalone 
database

WebSphere 
guest

Times until the guest is started again

Linux: resume

times [sec] 19 immediately

z/VM: begin 
command
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Guest States Guest States 

 Suspend/Resume behaves ideal, full time dormant!

 With Stop/Begin the guest gets always scheduled again

– on reason is that z/VM is still processing interrupts for the virtual NICs (VSWITCH)
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Objectives - Part 2Objectives - Part 2

 Objectives – Part 2

– Show if the pages from the paused guests are really moved to XSTOR

 Environment

– use 5 guests with WebSphere Application Server and DB2 and 5 standalone database guests (from another 
vendor)

– The application server systems are in a cluster environment which require an additional guest with network 
deployment manager

– 4 Systems of interest: target systems
• 2 WebSphere + 2 standalone databases

– 4 Standby systems: activated to produce memory pressure when systems of interest are paused

• 2 WebSphere + 2 standalone databases 

– 2 Base load systems: never paused to produce a constant base load

• 1 WebSphere + 1 standalone database 
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Suspend Resume Test - Methodology Suspend Resume Test - Methodology 
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Suspend/Resume Test – What happens with the pages?Suspend/Resume Test – What happens with the pages?
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Resume Times when scaling guest sizeResume Times when scaling guest size

 The tests so far have been done with relatively small guests (<1GB memory)

 How does the resume time scale when the guest size increases

– Run multiple JVMs inside the WAS instance, each JVM had a Java heap size of 1 GB to ensure that the memory 
is really used. 

– With the guest size the number of JVMs was scaled

– The size of the guest was limited by the size of a the mod9 DASD used as swap device for the memory image 

 Resume time includes the time from IPL'ing the suspended guest until successfully perform an http get 

 Startup time includes only time for executing the startServer command for server 1 – 6 serially with a script

► Resume time was always much shorter than just starting the WebSphere application servers

2.0 GB / 1 JVM 2.6 GB / 2 JVMs 3.9 GB / 4 JVMs 5.2 GB / 6 JVMs
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ObjectivesObjectives

Which setup could be recommended: one or many JVMs per guest?Which setup could be recommended: one or many JVMs per guest?

 Expectations

– Many JVMs per guest are related with contention inside Linux (memory, CPUs)

– Many guests are related with more z/VM effort and z/VM overhead (e.g. virtual NICs, VSWITCH)

– Small guests with 1 CPU have no SMP overhead (e.g. no spinlocks)

 Methodology

– Use a total of 200 JVMs (WebSphere Application Server instances/profiles)

– Use a pure Application Server workload without database

– Scale the amount of JVMs per guest and the amount of guest accordingly to reach a total of 200

– Use one node agent per guest
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Test EnvironmentTest Environment

 Hardware:

– 1 LPAR on z196, 24 CPUs, 200GB Central storage + 2 GB expanded, 

 Software

– z/VM 6.1, SLES11 SP1, WAS 7.1

 Workload: SOA based workload without database back-end (IBM internal)

 Guest Setup:

– no memory overcommitment

#guests

200 1 24 24 1 : 1.0 8.3 200 200
100 2 12 24 1 : 1.0 8.3 100 200

50 4 6 24 1 : 1.0 8.3 50 200
20 10 3 30 1 : 1.3 6.7 20 200

CPU Overcommitment
10 20 2 40 1 : 1.7 5.0 10 200

4 50 1 50 1 : 2.1 4.0 4 200
2 100 1 100 1 : 4.2 2.0 2 200
1 200 1 200 1 : 8.3 1.0 1 200

#JVMs 
per guest

#VCPUs 
per guest

total of
#VCPUs

CPU
real : virt

JVMs 
per vCPU

guest 
memory size 

[GB]

total virtual 
memory size 

[GB]

Uniprocessor
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  Horizontal versus Vertical WAS Guest StackingHorizontal versus Vertical WAS Guest Stacking
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 Impact of JVM stacking on throughput is moderate

– Minimum = Maximum – 3.5%
– 1 JVM per guest (200 guests) has the highest throughput
– 10 JVMs per guest (20 guests) has the lowest throughput

 Impact of JVM stacking on CPU load is heavy

– Minimum = Maximum - 31%, Difference is 4.2 IFLs
– 10 JVMs per guest (20 guests) has the lowest CPU load (9.5 IFL)
– 200 JVM per guest (1 guest) has the highest CPU load (13.7 IFL)

 Page reorder 

– impact of page reorder on/off on a 4GB guest within normal variation

 VM page reorder off

– for guests with 10 JVMs and more 
(> 8 GB memory)

 CPU overcommitment 

– starts with 20 JVMs per guest

– and increases with less JVMs per guest

 Uniprocessor (UP) setup for

– 4 JVMs per guest and less

 no memory overcommmitment

Guests     1                                                                                      2                                          4                       10      20     200

  start UP setupstart CPU overcommitment +
guest CPU load < 1 IFL

CPU load [# IFL]
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  Horizontal versus Vertical WAS Guest Stacking - z/VM CPU loadHorizontal versus Vertical WAS Guest Stacking - z/VM CPU load

020406080100120140160180200

0

2

4

6

8

10

12

14

WebSphere JVMs stacking - 200 JVMs
z/VM CPU load (CP=User-Emulation, Total=User+System)

CP (attributed to the 
guest)

Emulation System (CP time not 
attributed to the 
guest)

#JVMs per guest (Total always 200)

C
P

U
 L

o
a

d
 [#

IF
L

s
]

020406080100120140160180200

0

0.1
0.2

0.3
0.4

0.5

0.6
0.7
0.8

WebSphere JVMs stacking - 200 JVMs
z/VM CPU load (CP=User-Emulation, Total=User+System)

CP (attributed to 
guests)

System (CP time not 
attributed to guests)

#JVMs per guest (Total always 200)

C
P

U
 L

o
a

d
 [#

IF
L

s
]

 Which component causes the variation in CPU load?

– CP effort in total between 0.4 and 1 IFL
• System related is at highest with 1 guest
• CP effort guest related is at highest with 200 guest, 
• At lowest between 4 and 20 guests. 

– Major contribution comes from the Linux itself (Emulation). 

 z/VM CPU load consist of:

– Emulation      →  this runs the guest

– CP effort attributed to the guest      → drives virtual interfaces, e.g VNICs, etc

– System (CP effort attributed to no guest) → pure CP effort

 VM page reorder off

– for guests with 10 JVMs and more 
(> 8 GB memory)

 CPU overcommitment 

– starts with 20 JVMs per guest

– and increases with less JVMs per guest

 Uniprocessor (UP) setup for

– 4 JVMs per guest and less

 no memory overcommmitment
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  Horizontal versus Vertical WAS Guest Stacking -Linux CPU loadHorizontal versus Vertical WAS Guest Stacking -Linux CPU load

 Which component inside Linux causes the variation in CPU load?

– Major contribution to the reduction in CPU utilization comes from the user space, e.g. inside WebSphere 
Application Server JVM

 System CPU 

– decreases with the decreasing amount of JVMs per System, 

– but increases with the Uniprocessor cases

 The amount of CPUs per guest seems to be important!
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virtual CPU scaling with 20 guests (10 JVMs each) and with 200 guestsvirtual CPU scaling with 20 guests (10 JVMs each) and with 200 guests

 Scaling the amount of virtual CPUs of the guests at the point of the lowest LPAR CPU load

– Impact of throughput is moderate (Min = Max – 4.5%), throughput with 1 vCPU is the lowest

– Impact on CPU load is high, 2 virtual CPUs provide the lowest amount of CPU utilization

– The variation is caused by the emulation part of the CPU load => Linux

 It seems that the amount of virtual CPUs has a severe impact on the total CPU load

– CPU overcommitment level is one factor, but not the only one!

– WebSphere Application Server runs on Linux better with 2 virtual CPUs in this case as long as the CPU 
overcommitment level is not too excessive
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  Horizontal versus Vertical WAS Guest Stacking – DCSS vs MinidiskHorizontal versus Vertical WAS Guest Stacking – DCSS vs Minidisk

DCSS or shared minidisks?

 Impact on throughput is nearly not noticeable 

 Impact on CPU is significant (and as expected)

– For small numbers of guests (1 – 4) it is much cheaper to use a minidisk than a DCSS (Savings: 1.4 – 2.2 IFLs)

– 10 guest was the break even

– With 20 guests and more, the environment with the DCSS needs less CPU (Savings: 1.5 – 2.2 IFLs)
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Summary – Pause a z/VM guestSummary – Pause a z/VM guest

 “No work there” is not sufficient that a WebSphere guest becomes dormant

– probably not specific to WebSphere

 Deactivating the guest helps z/VM to identify guest pages which can be moved out to the paging devices to 
use the real memory for other guest

– two Methods
• Linux suspend mechanism (hibernates the Linux)
• z/VM stop command (stops the virtual CPUs)

– Allows to increase the possible level of memory and CPU overcommitment 

 Linux suspend mechanism

– takes 10 - 30 sec to hibernate for a 850 MB guest, 20 to 30 sec to resume (1 – 5 GB guest)

– controlled halt

– the suspended guest is safe!

 z/VM stop/begin command

– system reacts immediately

– guest memory is lost in case of an IPL or power loss

– still some activity for virtual devices

 There are scenarios which are not eligible for guest deactivation (e.g. HA environments)

 For additional Information to methods to pause a z/VM guest

– http://www.ibm.com/developerworks/linux/linux390/perf/tuning_vm.html#ruis

http://www.ibm.com/developerworks/linux/linux390/perf/tuning_vm.html#ruis
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Summary – scaling JVMs per guestSummary – scaling JVMs per guest

Question: One or many WAS JVMs per guest?

Answer:

 In regard to throughput: it doesn't matter

 In regard to CPU load: it matters heavily

– Difference between maximum and minimum is about 4 IFLs(!) at a maximum total of 13.7 IFLs

– The variation in CPU load is caused by User space CPU in the guest

– z/VM overhead is small and has its maximum at both ends of the scaling 

– 2 virtual CPUs per guest provide the lowest CPU load for this workload

 Sizing recommendation

– Do not use more virtual CPUs are required

– If the CPU overcommitment level becomes not too high, use at minimum two virtual CPUs per WebSphere 
system

 DCSS vs shared disk

– There is only a difference in CPU load, but that reaches the area of 1 - 2 IFLs

– For less than 10 guests a shared disk is recommend

– For more than 20 guests a DCSS is the better choice

 For additional Information 

– WebSphere JVM stacking: http://www.ibm.com/developerworks/linux/linux390/perf/tuning_vm.html#hv

– page reorder: http://www.vm.ibm.com/perf/tips/reorder.html 

http://www.ibm.com/developerworks/linux/linux390/perf/tuning_vm.html#hv
http://www.vm.ibm.com/perf/tips/reorder.html
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BackupBackup
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Stop/Begin Test – What happens with the pages?Stop/Begin Test – What happens with the pages?
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