
Lipyeow Lim
University of Hawai`i at Mānoa

Bishwaranhan Bhattacharjee
IBM Thomas J Watson

Research Center

  A large US Bank with a financial data warehouse
  200,000 business units defining hierarchies
  Dimension tables grew to 100 million rows
  At most 20 users (out of 1500) able to use the

system at any one time.

Financial Data Repository

.........
200,000 “Data Marts”

TxnID EmployeeID Time Expense

Time Quarter Year ... Manager1 EmployeeID

Fact Table
Dimension Dimension Measure

Dimension Table

Dimension
Hierarchy Hierarchies are typically

used for roll-up
aggregations

Primary
Hierarchy

Application
Hierarchies

Leaf nodes of
application hierarchies

are FK into primary
hierarchy nodes

  If only Bank X had used MDM, there would
not be an uncontrolled proliferation of
application hierarchies ...but...

  What can be done to deal with the slow down
caused by the large number of application
hierarchies ?
◦  Pre-compute aggregations on hierarchies
◦  Cache and reuse previous aggregations

  Consider a query for an aggregation of “Asia”
  Suppose aggregation of “Project 1”

precomputed
  Can the aggregate for “Project 1” be used to

answer query for “Asia” ?

Optimizer does not know
the equivalence between

the two subtrees!

  Off-line Phase finds and stores overlaps
◦  Sub-tree isomorphism problem

  On-line Phase rewrites queries using overlap
information to exploit pre-computed results
◦  View containment problem

Find
Overlaps

Overlap Info

Query
Rewrite
Query

Query

exploits
precomputed

results

HierarchyA HierarchyB NodeA NodeB 3: overlaps we
want to find

1: Match the
leaves

2: Merge the
matching leaves

  Given Trees { h1, h2,
h3, ... hn }

  Consider all pairs of
trees
◦  O(n2) - too expensive

  Use an inverted index
◦  Construct an inverted index

of leaf labels to tree IDs.
◦  Eliminate all singleton

inverted lists.
◦  Starting from the smallest

inverted list, consider all
pairs.
◦  Keep track of which pairs

have been “done”

Sales
Team h1 h3 h10

Accounting
Team h2 h3 h6

h12 h13

HR
Dept h1 h3

... Inverted Index

Each list contains tree
that have some overlap

Start with the shortest
list to minimize the

quadratic factor

Query on h1: Accounting Team 2
+ Sales Team

h1

h2

1: Find QN, the set of
covering tree nodes

HierarchyA HierarchyB NodeA NodeB 2: Find hierarchies that
overlap with h1

3: Find set of alternate
nodes that are

equivalent to each
covering tree node

  We evaluated the off-line phase using
synthetically generated trees with controlled
overlaps

  Perl prototype
  Data generation
◦  Generate 100 random trees to be used as overlaps
◦  Generate application hierarchies that include an “overlap

tree” with some probability “sharedprob”
◦  Otherwise expand tree using “expandprob” and a

maximum fanout.
◦  Recursion stops when maximum depth is reached.

  Results show that the off-line phase is feasible.

  We found problems with uncontrolled proliferation of
application hierarchies in a real data warehouse
deployment at a bank

  One key performance problem is the inability to
exploit pre-computed aggregates.

  We propose to find hierarchy overlap information and
exploit them for optimizing queries using pre-
computed aggregations.

  Our preliminary experiments show that finding
overlap information is feasible.

  Future work: an end-to-end experimental evaluation

Maxfanout = 5
Maxdepth = 16
Expandprob = 0.8
Sharedprob = 0.8

Averaged over 10
random data sets

Count the
number of
shared pairs
output for the x-
axis

Vs Max Fanout Vs Max Depth

No. Hierarchies = 200
Maxdepth = 16
Expandprob = 0.8
Sharedprob = 0.8

No. Hierarchies = 200
Maxfanout = 10
Expandprob = 0.8
Sharedprob = 0.8

  Treescape
  View Selection Problem
  Subtree mining
  Partial sums

