Liquid Chromatography Techniques for Sample Preparation

US HUPO 2009 February 22, 2009

US HUPO 2009 Sample Prep Workshop

February 22, 2009

Peptide/Protein Liquid Chromatography

Separation Technique	Principle
Size Exclusion Chromatography (SEC)	Hydrodynamic Volume (size/radius)
Hydrophobic Interaction Chromatography (HIC)	Hydrophobic Interaction under high salt
IMAC (immobilized metal affinity chrom.)	Non-specific affinity
Ion Exchange Chromatography	Charge properties of the molecule
Reversed-Phase Chromatography	Hydrophobic Interaction
Affinity Chromatography	(Bio) Specificity for a defined ligand

Size Exclusion Chromatography (Gel Filtration)

Protein/peptide sample contains molecules of different size Column contains porous particles

Separation according to size

Particles act as

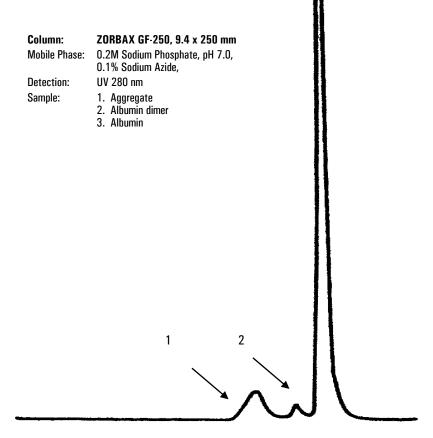
molecular sieve

1. Big molecules cannot enter pores

fast elution

2. Small molecules enter pores

later elution

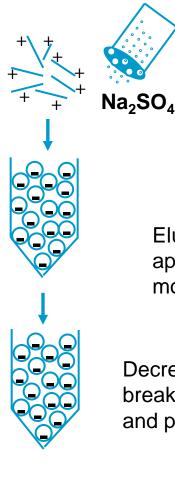


February 22, 2009

Size Exclusion (SEC) Applications with Proteins

- Commonly used for impurity testing
- MW characterization good MW accuracy and precision (<2%) over wide MW range (1000 – 10M)
- Expression and folding studies
- Separation of reaction components and products
- Protein purification
- Collection of fractions under non-denaturing conditions maintains activity

Separation of Albumin Monomer, Dimer and Aggregate



DeLeenheer, A.P. et al. *J. Pharm Sci.*, (1991) 80, 11. Reprinted with publisher's permission

Hydrophobic Interaction Chromatography


- HIC separates proteins using hydrophobic functional groups such as phenyl, octyl, or butyl
- Hydrophobic amino acid side-chains will bind to the hydrophobic groups on the stationary phase
- High ionic strength buffers (high salt) are used, more hydrophobic proteins will require less salt to promote binding
- Decreasing the salt concentration promotes protein/peptide elution
- HIC is often considered the opposite of IEX chromatography and can be used when proteins will not bind an ion exchanger

High Ionic Strength buffer applied allowing hydrophobic proteins to bind

Elution occurs by applying more and more salt diluting buffer

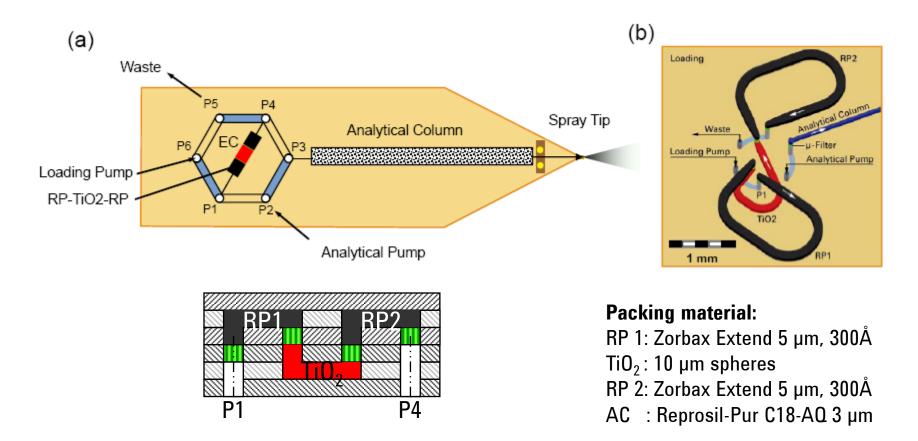
Decreasing salt concentration will break the hydrophobic interaction and proteins will elute

Samples are separated according to their differing hydrophobicity

IMAC - Immobilized Metal Affinity Chromatography

Principle

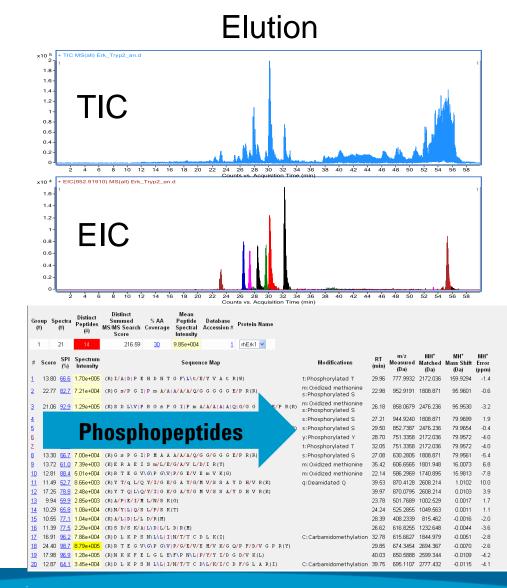
- IMAC is based on covalent binding of amino acids, particularly histidine, to metals
- Proteins with an affinity for metal ions to be retained in a column containing immobilized metal ions, such as cobalt, nickel, copper, zinc, or iron ions
- Naturally occurring proteins often do not have affinity for metal ions and recombinant DNA can be used to introduce metal affinity into a targeted protein
- Common elution methods include changing the pH and/or adding a competition molecule, such as imidazole.


Key Application

- Isolation of phosphorylated proteins or peptides from complex mixtures
- The stationary phase containing an immobilized transition metal is "charged" (Ga(III) or Fe(III)) causing the metals to form tight complexes
- Phosphorylated protein digests are loaded onto the column, the column is washed and then elution occurs either with pH change or imidazole buffer
- Detection of low-abundant phosphopeptides is difficult due to nonphosphorylated high-abundant proteins containing histidine
- Titanium oxide (TiO₂) is another metalbased chromatography method for phosphopeptide analysis

Agilent Technologies

Phosphochip With Titanium Oxide Based Enrichment


Mohammed, S., Chip-base enrichment and nanoLC-MS/MS analysis of phosphopeptides from whole lysate. JPR, 2008

Phosphochip Analysis of MAP Kinase ERK

Flow-through + TIC MS(all) Erk Tryp2 ft.d x10⁵ 2.6-2.4-2.2-2 TIC 1.8-1.6-1.4 1.2-0.8-0.6-0.4 0.2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 Counts vs. Acquisition Time (min) Distinct Group Spectra Peptides Distinct % ΔΔ Accession # Protein Name Summed Peptide MS/MS Search Coverage Spectral Intensity Score 400.16 39 2.07e+005 1 rhErk1 🔽 Spectrum RT Modifications Score Sequence Map Measured Matched Mass Shift Error (%) (Da) (Da) (Da) (ppm) 25.72 95.2 2.90e+005 (R) Y T/OLLO Y I G E/G & Y/G M/V/S/S &/Y D H V R(K) 40.48 870 0756 2608.214 -0.5 -0.001423.63 97.6 1.59e+005 (R) G S/P G I P M/A A A A A Q G G G G G F/P R(R) 25.45 904 9378 1808 871 -0.0025 -14 22.08 96.0 5.29e+005 (-) M/S|P/I|L/G/Y/W/K(I) 36.08 547.7891 1094.570 0.0006 0.6 21.83 560 605e+004 (K)Y I A W P L/O/G W O A/T/F G G G D/H/P P K(S) 43.24 776 0488 2326 140 -0.0085 -37 19.84 89.2 2.35e+004 (R) & E\I|S/M/L|E|G/A|V|L/D/I/R(Y) 41.01 758 9069 1516 804 0.0026 17 503 2617 1507 773 -0.0020 1974 935 506e+004 (R) V Y R A/P/E/I/H/L/N/S K(G) 23.70 -1.4 19.31 97.8 1.91e+005 (R) A/P E I M L/N/S K(G) 23.49 501.7679 1002.529 -0.0003 -0.3 18.93 86.2 2.24e+004 (K) I/S P/F/E/H/O T/Y/C O R(T) C: Carbamidomethylation 21.61 522.5736 1565.717 -0.0103 -6.6 18.34 80.2 1.89e+005 (K) L/T Q/S/M/A/I/I/R(Y) 25.63 516 7970 1032 587 -0.0003 -0.3 10 18.19 88.1 3.80e+005 (K) I/C|D|F/G/L A/R(I) C:Carbamidomethylation 26.86 476.2384 951.472 -2.2 -0.0021 11 17.55 89.3 2.02e+006 (R) L/K E L\I|F|Q/E/T A/R(F) 27.56 449.9257 1347.763 -0.0005 -0.4 12 17.19 85.2 4.98e+005 (R) H/L/ 374.2019 1120.593 -0.0020 -1.8 13 16.31 82.0 1.87e+005 (R) N/3 525.2842 1049.563 -0.0015 -14 **No Phosphopeptides** 14 16.23 88.3 8.54e+004 (R) R 7 580.9674 1740.895 -0.0072 -4.2 15 15.23 60.3 2.13e+004 (R) Y 535.2619 1603.772 -0.0008 16 14.59 87.2 6.64e+004 (K) E L 553 7946 1106 584 .0.0021 -19 13.99 85.2 8.73e+005 (R) FQ| PG V\L\E| A| P(-) 479 2552 957 504 0.0009 -0.9 32.20 18 13.47 81.0 1.39e+005 (K)G Q P/F/D/V/G/P R(Y) 23.83 486.7480 972.490 -0.0010 -1.1 19 13.22 82.5 1.56e+005 (K) &/L|D|L/L D/R(M) 28.24 408.2345 815.462 -0.0004 -0.5 20 12.85 81.4 4.60e+004 (R) N/Y L Q/S L/P S K/T K(V) 21.17 639.8551 1278.705 -0.0023 -1.8 21 12.60 70.1 1.40e+005 (R) I/E A I/P/Q/I D K Y L K(S) 33.07 477.6123 1430.825 -0.0030 -2.1 35.27 22 11.95 62.3 5.85e+003 (R) Y T\Q|L|Q|Y/IG E/G & Y G m/V S S/& Y D/H V R(K) m:Oxidized methionine 875 4174 2608 214 16 0240 11.1 23 11.44 63.1 2.88e+004 (-)m S|P/I/L G/Y W K(I) m: Oxidized methionine 33.02 555.7836 1094.570 15.9896 -4.8 24 10.65 76.2 3.06e+003 (R) T E\G\V|G/P G V|P G E V E H V K(G) 28.21 792.9000 1584.794 -0.0011 -0.7 25 10.18 55.4 3.77e+003 (K) Y/I\A/W/PLqGWQA\TFG/GGDHPPK(S) 45.45 776.3858 2326.140 1.0025 7.9 a:Deamidated O 26 9.82 79.0 5.72e+003 (K) L/V | C/F/K (K) C:Carbamidomethylation 21.45 333.6839 666.364 -0.0038 -5.7 a:Deamidated O 27 9.20 52.0 6.54e+003 (R) Y T Q L | q/Y/I/G E/G & Y G m V S S & Y D H V R(K) 35.42 875.7393 2608.214 16 9897 4.1 m:Oxidized methionine 28 912 598 106e+004 (R) A/PLE I/M/L/n S K(G) 24.32 502.2627 1002.529 0.9893 5.2 n:Deamidated 23 8.88 <u>52.1</u> 9.22e+003 (R) Y T/Q|L|q Y I/G E/G A Y G H 0.9943 V S S/A Y D H V R(K) g:Deamidated O 41.88 870.4075 2608.214 3.9

30 885 656 819e+003 (R)T L/R E\I O|I|L/L/R(F)

33.89 418.9338 1254.789

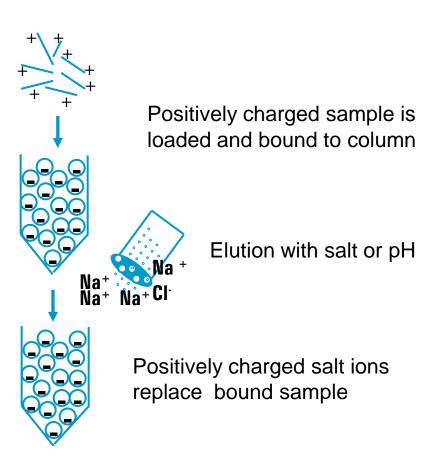
-0.0024 -1.9

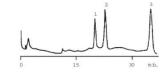
Cation Exchange Chromatography

Principle:

competitive interaction of ions: charged sample molecule competes with salt ion about fixed charges of stationary phase

Cation exchange:

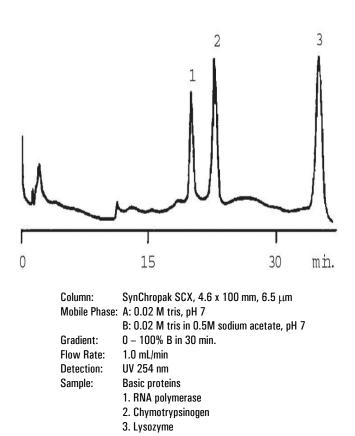

stationary phase carries negative charge, analyzed peptide molecules are positively charged (at acidic pH)


Functional groups of column are:

Sulfonic acid, sulfomethyl, sulfoethyl, sulfopropyl

Elution:

by increasing salt concentration or pH change

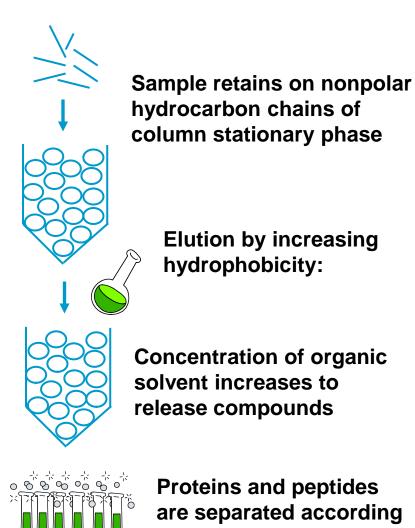


Samples are separated according to difference in their net charge

Ion Exchange Chromatography of Proteins

- Ion-exchange chromatography (IEC) discriminates between proteins on the basis of accessible surface charges and their corresponding electrostatic interaction with the column's stationary phase.
- The degree of protein retention is dependent on the strength and number of interactions.
- The 3-D structure of the protein determines which surface residues will be available to contact the column's stationary phase.
- The net charge determines the form of IEC (anion exchange or cation exchange) to be applied.
- Cation exchange is used at pH's below a proteins pI, while anion exchange is used at pH's above a proteins pI.
- Sample pl is a guideline and not absolute. Protein interaction with a column's stationary phase is dependent on the microenvironment of the interaction site.

Reversed Phase Chromatography


- Reversed phase: historical term: "nonpolar hydrocarbon chains are attached to polar groups"
- Stationary phase: silica gels with hydrocarbon chains between 1 and 18 carbon atoms (C1 to C18)
- For peptides: C18 phases are most popular

Mobile phase: organic solvent; ion pair reagent

Elutropic force

Water > Methanol > Acetonitrile > n-Propanol > THF

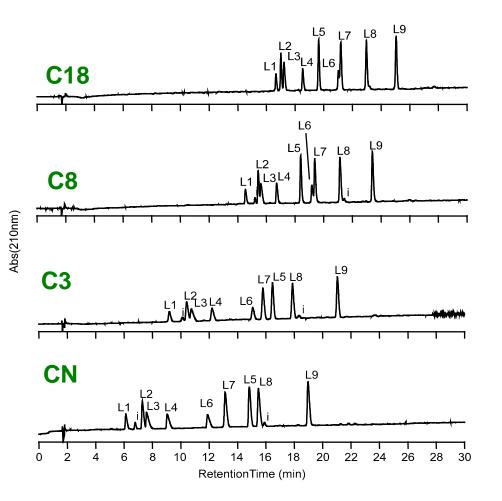
Polarity

to their polarity

Fraction collection

Reversed Phase Columns for Separations of Proteins and Peptides

Requirements


- Wide pore for unrestricted access to bonded phase (especially for intact proteins)
- LC/MS compatible bonded phases at low and high pH low bleed, high performance
- Multiple bonded phases for method optimization (differing selectivities)
- Many configurations for LC/MS compatibility, small sample sizes and 2-D HPLC for proteomics

Solvent	Application	Comments
0.05-5% TFA in Water	General	Effective solubilization of many samples
6 M Guanidine, buffered at pH 6-8	General	Very good for many proteins and peptides
5-80% Acetic Acid or Formic Acid; 0.1-0.5M Perchloric Acid	Peptides	Frequently used to extract peptides from tissues, precipitating many proteins and cellular debris
6 M Urea/ 5% Acetic aid	Hydrophobic Peptides, Proteins	Useful for membrane proteins, fragments, aggregating systems
Water-Miscible Organic Solvents: Acetonitrile, Methanol, THF, Dioxane, DMSO; +/- TFA; +/- Water	Hydrophobic Peptides, Polypeptides	Limit injection volume to avoid problems; add water, as possible, to improve volume tolerance; acidify with TFA as required

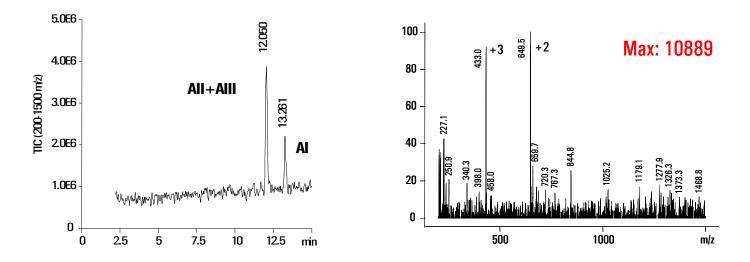
Agilent Technologies

Comparison of Small Peptide Selectivity Differences on Bonded Phases

Conditions:

Columns:ZORBAX 300SB, 4.6 x 150 mm, 5 μ mMobile Phase:Gradient, 0 - 26% B in 30min.
A = 0.1% TFA in Water
B = 0.1% TFA in AcetonitrileTemperature:40°CSample:2 μ g of each peptideFlow Rate:1.0 mL / min.Detection:UV-210nm

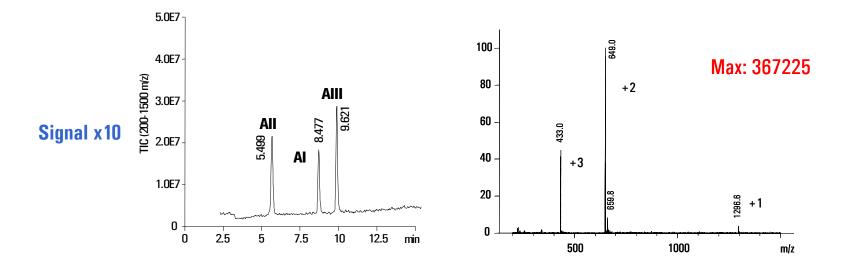
Evaluate High pH for Improved Selectivity and Resolution


- Changing pH of the mobile phase from low pH to high pH can change selectivity and retention
- Special columns are required to work at high pH many manufacturer's have columns specific for high pH
- Ideal for analysis of proteins and peptides at mid and high pH
- Ammonium hydroxide is an excellent mobile phase additive for LC and LC/MS (can use instead of TFA)

Agilent Technologies

LC/MS of Peptides: Low vs. High pH

Column: ZORBAX Extend-C18, 2.1 x 150 mm, 5 μm Flow Rate: 0.2 mL/min Temperature: 35 C Mobile Phase Gradient: 15-50% B in 15 min. A: 0.1% TFA in water B: 0.085% TFA in 80% ACN LC/MS: Pos. Ion ESI – Vf 70V, Vcap 4.5 kV, N₂-35 psi, 12L/min., 325 C Sample: Angiotensin I, II, III 2.5 μL (50 pmol each)

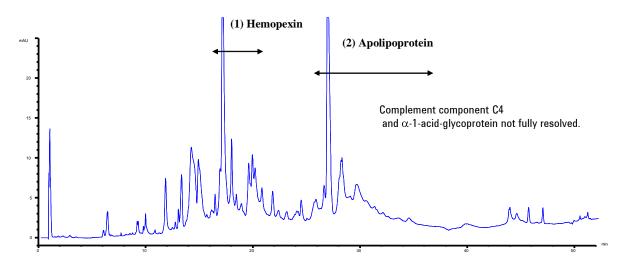


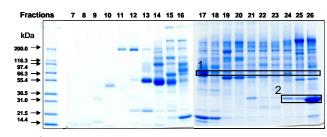
• Acidic conditions can not resolve all three Angiotensins.

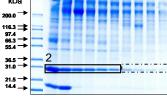
LC/MS of Peptides at High pH

Column: ZORBAX Extend-C18, 2.1 x 150 mm, 5 μm
 Flow Rate: 0.2 mL/min
 Temperature: 35 C
 Mobile Phase Gradient: 15-50% B in 15 min. A: 10 mM NH₄OH in water B: 10 mM NH₄OH in 80% ACN
 LC/MS: Pos. Ion ESI – Vf 70V, Vcap 4.5 kV, N₂-35 psi, 12L/min., 325 C
 Sample: Angiotensin I, II, III, 2.5 μL (50 pmol each)

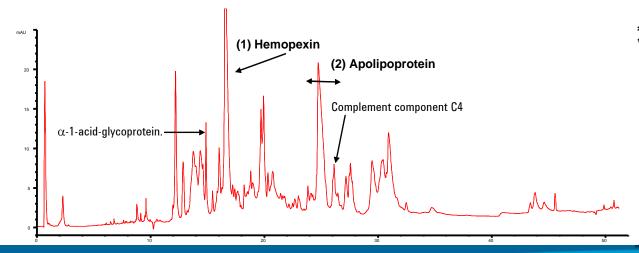
At high pH all 3 angiotensins are resolved and the mass spectrum shows greater signal and improved spectral clarity.

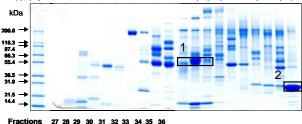

Disadvantages of Traditional Reverse Phase Techniques for Protein Fractionation

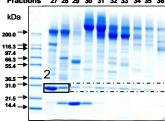

- **Recovery –** typical reverse phase can range from 30-80% recovery
- Reproducibility due to poor recovery, the reproducibility often suffers from carryover
- Capacity limited in ability to load AND resolve proteins
- Is it possible with reverse phase to:
 - Extremely high recoveries
 - High column loads
 - Improved protein resolution
- What does it take:
 - Column Packing Materials strong effect on separation characteristicsresolution, selectivity, reproducibility, load and recovery
 - Gradient improves recovery and enhances higher abundant protein resolution
 - Temperature- Improves protein separations and aids in recovery


Agilent Technologies

Macroporous Reverse Phase Column (mRP) for Protein Fractionation

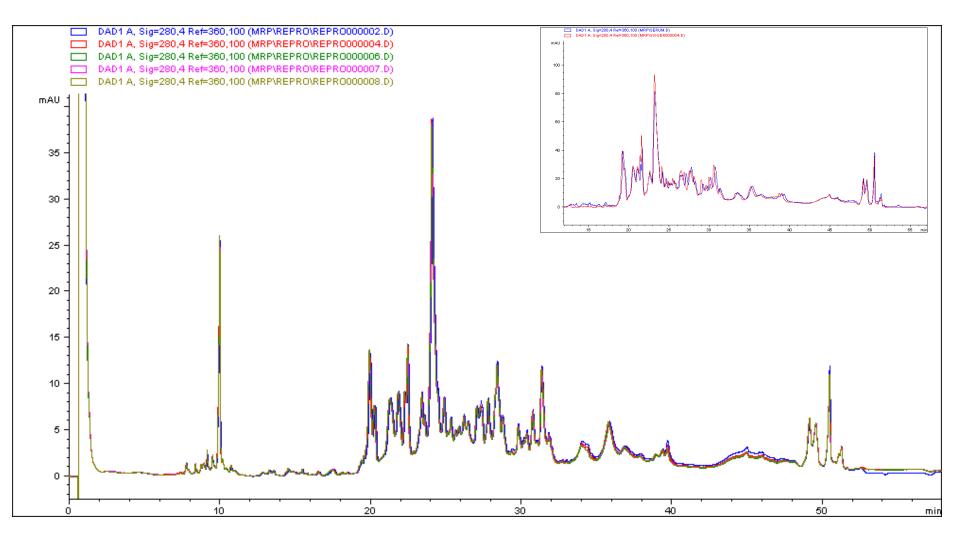



Fractions 27 28 29 30 31 32 33 34 35 36



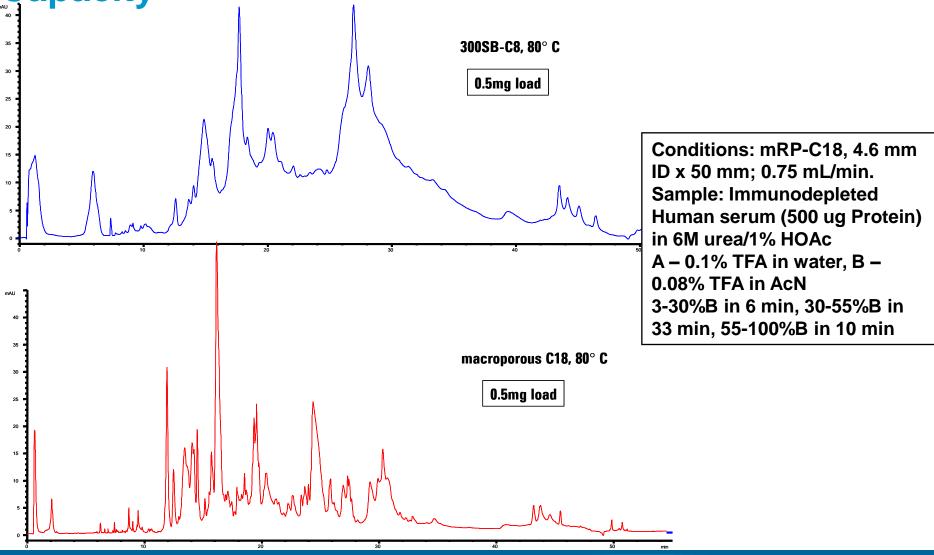
8 9 10 11 12 13 14 15 16

Fractions



Agilent Technologies US HUPO 2009 Sample Prep Workshop

17 18 19 20 21 22 23 24 25



Macro Reverse Phase Reproducibility

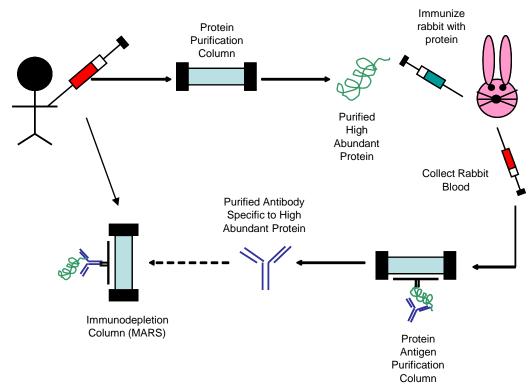
Macroporous Reverse Phase Resolution and Capacity

Affinity Chromatography

Principle:

Bio-specific technique that relies upon inherent biological properties such as shape (enzyme:substrate), confirmation changes, areas of molecule (antigen:antibody)

Immunoaffinity (example):


antibody bound to bead with proper orientation, optimize buffer to minimize non-specific interaction

Matrix Design:

Hydrophilic, large pores, rigid, inert and stable

Elution:

use specific elution if possible by competitive action or non-specific elution with buffers

Applications for Affinity Chromatography

- **Depletion of High-Abundant Proteins** ٠
- Affinity purification of selected protein or peptides ٠
- Validation of protein biomarker •

•Slow

Antibody Based	Dye Based	
Pros	Pros	
•Selectivity	•Cost	
•Robust	 Robust 	
 Specificity 	Cons	
Cons	 Reproducibility 	
•Cost	 Specificity 	
 Purity of antigen 	 Selectivity 	

HPLC and LC/MS of Proteins for Proteomics

Proteins (mixtures of ~ 10^4 to 10^5 different proteins) are present at low – high levels and one protein results in up to 70 tryptic peptide fragments

- Requires Multi-D techniques to obtain information on all proteins present use 1 or more different chromatographic techniques to reduce complexity before LC/MS analysis
- High Sensitivity LC/MS

MS for identification

- Typically 10 30 % sequence coverage is enough for a significant hit in protein data base search
- If protein mixture is too complex, MS/MS information is lost through co-elution of too many tryptic peptides -> less sequence coverage or even no protein identification

HPLC and LC/MS for Protein Fractionation

Advantages

- Recovery (always improving)
- Resolution of proteins
- Reproducibility
- Visible one can see the "proteome"
- Automation

Limitations

- Limits visibility of PTM proteome -(IMAC & TiO₂)
- Low abundant proteins are masked by high abundant proteins

2-D-HPLC for Proteomics

Advantages

- Most sensitive for low abundance proteins
- Easier automation
 - proteins stay in liquid
 - fraction collection
 - sample preparation
- Flexibility
 - separation technique
 - Chemistry
- Time
- Application for most types of proteins
- Concentrates sample
- Direct coupling to MS

Limitations

- Less resolution
- Less comparative data
- Digestion prior to separation

Applications

- Targeted (functional) proteomics
- Identify as many proteins as possible
- Protein expression profiling
- Mapping of protein modifications
- Protein-network mapping

2D/Multidimensional HPLC Principle

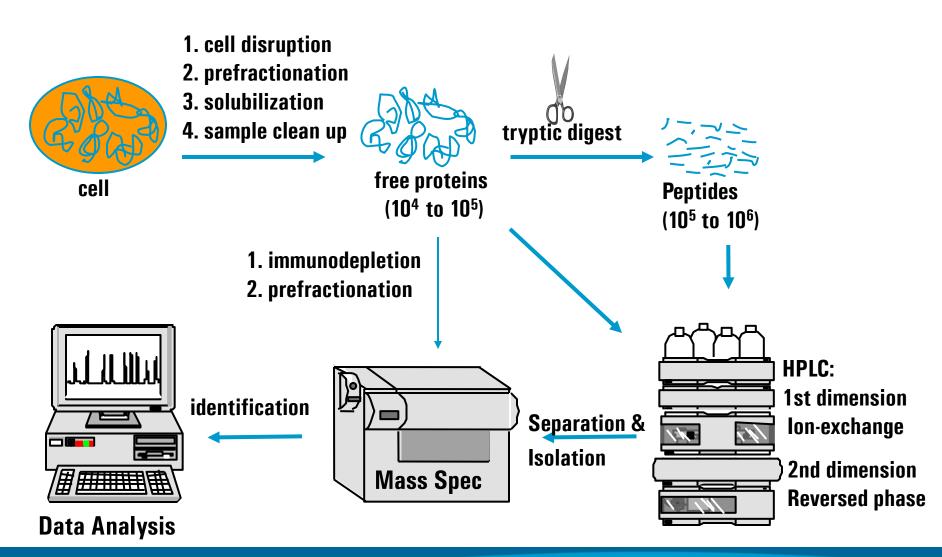
- Two or more modes of HPLC with independent physical characteristics
 - Ion Exchange/Affinity/SEC
 - Reverse Phase
- OFF-Line or ON-Line
 - ON-line more automatable
 - OFF-line allows more solvent flexibility, cleaner samples and possibly more sample capacity

OFF-Line

- Run first dimension and collect peaks
- Inject fractions on second dimension or reverse phase/MS
- Run 2D, then spot to or inject into MS

ON-Line

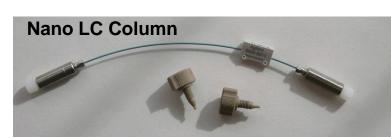
 Automate both separations on a single instrument with direct interface to MS

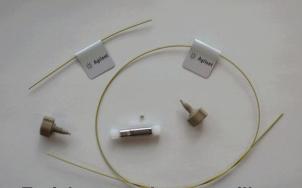

Agilent Technologies

Chromatographic Methods for Single and Multidimensional HPLC of Peptides/Proteins

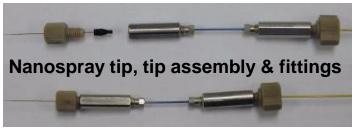
Type of Chromatography	Mechanism	Proteins and Steps Used For	Used in 2 or Multi-D
lon exchange	Charge	All/Fractionation, Initial separations, preceding RP	Yes
Reversed phase	Hydrophobic/non-polar interaction	All/1-D, 2-D and Multi-D Separations prior to MS	Yes
Size exclusion/gel filtration	Molecular size	All/Fractionation	Yes
IMAC- immobilized metal affinity	Non-specific affinity to metal ions	Histidine containing and Phosphoropeptides for fractionation	Yes
Affinity	Bio-specificity for a defined ligand	Targeted proteins by ligand used for fractionation	Yes
Hydrophobic Interaction	Hydrophobic (high salt) interaction	All	?

Typical Proteomics 2D-LC/MS -Workflow



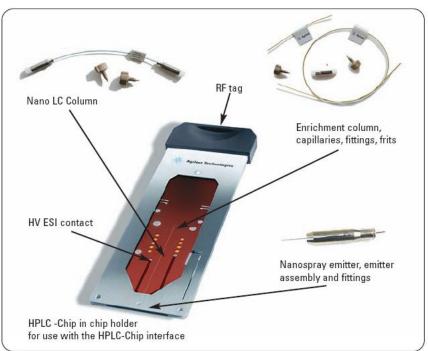


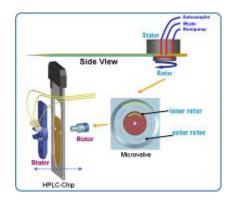
Why Use Nanospray LC/MS ?

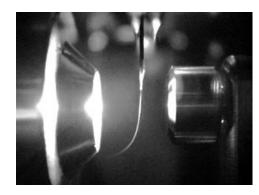

Benefit

- high sensitivity MS detection
 Issues
- challenging to implement and maintain
 - multiple small capillary tubing connections
 - frequent clogging and leaks
 - chromatographic degradation caused by tubing dead volume
- compromised reliability, ease-of-use, robustness and chromatographic performance

Enrichment column, capillary, tubing, fittings, frits


US HUPO 2009 Sample Prep Workshop


February 22, 2009


Why Use Microfluidics For Nanospray LC/MS?

Integrate functional components onto a reusable, biocompatible chip

- enrichment and analytical nanocolumns,
- nanospray emitter
- fittings and connection capillaries
- directly on a reusable biocompatible polymer chip.

Separation Options for Protein Identification

- 1D nano or capillary HPLC for simple samples, e.g. single bands
- Online sample enrichment + 1D nano or capillary HPLC for medium complex diluted samples
- 2D capillary + nano HPLC for complex samples
 e.g. 1. Cation Exchange, 2. Reversed Phase Separation
- Multidimensional Fractionation columns + 2D HPLC for complex samples, e.g. 1. IMAC, SEC, etc. 2. SCX, 3. Reversed Phase Separation
- Identify with MS

Agilent Technologies

Parting Thoughts ...

- Ion exchange chromatography, size exclusion chromatography and reversed phase HPLC columns are the most popular choices for the analysis of proteins and peptides.
- A variety of reversed phase columns make optimization of protein separations possible. And a variety of column configurations – length and id make it easy to find the right column for any size sample.
- Movement towards faster analytical separations, smaller sample sizes, and more sensitive detection has increased sample throughput and proteomics applications
- Proteomics applications use the same columns and chromatographic techniques, but with so many proteins present in each sample, pre-fractionation, orthogonal techniques and nano scale analysis are necessary.

gilent Technologies

Conclusions

- Reducing sample complexity through intelligent sample preparation leads to more positive identification of low abundant proteins
- Separation of proteins prior to sample digestion results in more proteins identified
- Improving the chromatographic separation of peptides results in more proteins identified
- Multidimensional approaches generally require more analysis time which must be taken into consideration

