

LIQUID CRYSTAL DISPLAY MODULE

Product Specification

PRODUCT NUMBER LWD70570FW320G240WTD
--

INTERNAL	APPROVALS
Engineering	Document Control
Michael Gu	

Product No.	LWD70570FW320G240WTD	REV. A		Page	1 / 24	l
			-			

TABLE OF CONTENTS

1	MAIN FEATURES	4
2	MECHANICAL DRAWING	5
3	ABSOLUTE MAXIMUM RATINGS	6
4	ELECTRICAL CHARACTERISTICS	7
4 4	4.1 OPERATING CONDITIONS4.2 LED DRIVING CONDITIONS	7 7
5	DC CHARACTERISTICS	9
6	AC CHARACTERISTICS	
6 6 6	 5.1 SYSTEM BUS TIMING FOR 6800 SERIES MPU 5.2 SYSTEM BUS TIMING FOR 8080 SERIES MPU 5.3 SYSTEM BUS TIMING FOR 4-LINE SERIAL INTERFACE 5.4 SYSTEM BUS TIMING FOR 3-LINE SERIAL INTERFACE 	
7	OPTICAL CHARACTERISTICS	
7 8	OPTICAL CHARACTERISTICS INTERFACE PIN ASSIGNMENT	14
7 8 8	OPTICAL CHARACTERISTICS INTERFACE PIN ASSIGNMENT 3.1 BACKLIGHT UNIT SECTION	14 16
7 8 8 9	OPTICAL CHARACTERISTICS INTERFACE PIN ASSIGNMENT	
7 8 9 10	OPTICAL CHARACTERISTICS INTERFACE PIN ASSIGNMENT 3.1 BACKLIGHT UNIT SECTION BLOCK DIAGRAM RELIABILITY	
7 8 9 10	OPTICAL CHARACTERISTICS INTERFACE PIN ASSIGNMENT 3.1 BACKLIGHT UNIT SECTION BLOCK DIAGRAM RELIABILITY	
7 8 9 10 11	OPTICAL CHARACTERISTICS INTERFACE PIN ASSIGNMENT 3.1 BACKLIGHT UNIT SECTION BLOCK DIAGRAM RELIABILITY 10.1 RELIABILITY TEST INITIAL CODE	
7 8 9 10 11 11 12	OPTICAL CHARACTERISTICS INTERFACE PIN ASSIGNMENT 3.1 BACKLIGHT UNIT SECTION BLOCK DIAGRAM RELIABILITY 10.1 RELIABILITY TEST INITIAL CODE PART NUMBER LABELLING	
7 8 9 10 11 11 12 13	OPTICAL CHARACTERISTICS INTERFACE PIN ASSIGNMENT	

Product No.

LWD70570FW320G240WTD REV. A

Page 2 / 24

REVISION RECORD

Rev.	Date	Page	Sec.	Comment	ECN No.
А	03/11/16			New Densitron Release	E5195

Product No.

LWD70570FW320G240WTD REV. A

Page 3 / 24

1 MAIN FEATURES

ITEM	DESCRIPTION	UNIT
Display Format	320 x 240	dots
Outline Dimension	160.0 (W) x 109.0 (H) x 7.0 (D)	mm
Viewing Area	118.28 (W) x 88.64 (H)	mm
Active Area	115.2 (W) x 86.4 (H)	mm
LCD Type	TFT / Transmissive	
Viewing Angle	12:00	
Backlight	LED	
Color	White	
Interface	Parallel/Serial	
Operating Temperature	-20 ~ 70	°C
Storage Temperature	-30 ~ 80	°C
RoHS Compliant	Yes	

Product No.

LWD70570FW320G240WTD

Page 4 / 24

Copyright ©2016 DENSITRON CORPORATION All rights reserved. – Proprietary Data FORM No. DT-029 V2

REV. A

2 MECHANICAL DRAWING

Page 5 / 24

3 ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Min	Тур	Max	Unit
Operating Temperature	TOP	-20	-	+70	°C
Storage Temperature	TST	-30	-	+80	°C

Note:

-

1. Device is subject to be damaged permanently if it is stressed beyond the above absolute maximum ratings listed above.

2. Temp. ≦60°C, 90% RH MAX. Temp. > 60°C, Absolute humidity shall be less than 90% RH at 60°C

<u> </u>	Ambient Tem. vs Alloeable Forward Curren
4m)	40
rrent IF	30
'ard Cu	20
le Forw	10
lloeabl	0 20 40 60 80 100
Ā	Ambient Temperature(oC)

Product No. LWD70570FW320G240WTD REV. A Page 6/24	Product No.	LWD70570FW320G240WTD	REV. A		Page	6 / 24
---	-------------	----------------------	--------	--	------	--------

4 ELECTRICAL CHARACTERISTICS

4.1 OPERATING CONDITIONS

Item	Symbol	Condition	Min	Тур	Max	Unit	Remark
Supply Voltage For LCM	VDD	-	3.0	3.3	3.6	V	
Supply Current For LCM	IDD	-	-	20	30	mA	Note1
Power Consumption	-	-	-	66	108	mW	

Note:

1. This value test is for VDD = 3.3V only.

4.2 LED DRIVING CONDITIONS

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED current		-	140	-	mA	
Power Consumption		1120	-	1386	mW	
LED voltage	VLED+	8.0	9.0	9.9	V	Note 1
LED Life Time		-	50,000	-	Hr	Note 2,3,4

Note:

1. Power supplied to the backlight specification.

2. Ta = 25° C

	Product No.	LWD70570FW320G240WTD	REV. A		Page	7 / 24
--	-------------	----------------------	--------	--	------	--------

- 3. Brightness to be decreased to 50% of the initial value.
- 4. Single LED lamp case.

Product No.

LWD70570FW320G240WTD REV. A

Page 8 / 24

5 DC CHARACTERISTICS

Parameter	Symbol	Rating			∐nit	Condition
i arameter	Symbol	Min	Тур	Max	Unit	Condition
Low level input voltage	V_{IL}	0	-	0.3VDD	V	
High level input voltage	VIH	0.7VDD	-	VDD	V	

Product No.

LWD70570FW320G240WTD REV. A

Page 9 / 24

6 AC CHARACTERISTICS

6.1 SYSTEM BUS TIMING FOR 6800 SERIES MPU

System Bus Timing for 6800 Series MPU

Note:

1. The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, $(tr + tf) \le (tCYC8 - tCCLW - tCCHW)$ for $(tr + tf) \le (tCYC8 - tCCLR - tCCHR)$ are specified.

2. All timing is specified using 20% and 80% of VDDI as the reference.

3. tCCLW and tCCLR are specified as the overlap between CSB being "L" and /WR and /RD being at the "L" level.CSB and /WR (or /RD) cannot act at the same time and CSB should be 100ns wider than /WR (or /RD).

Product No.
I TOULUCT INO.

LWD70570FW320G240WTD REV. A

Page 10 / 24

6.2 SYSTEM BUS TIMING FOR 8080 SERIES MPU

Note:

1. The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, $(tr + tf) \le (tCYC8 - tCCLW - tCCHW)$ for $(tr + tf) \le (tCYC8 - tCCLR - tCCHR)$ are specified.

2. All timing is specified using 20% and 80% of VDDI as the reference.

3. tCCLW and tCCLR are specified as the overlap between CSB being "L" and /WR and /RD being at the "L" level.CSB and /WR (or /RD) cannot act at the same time and CSB should be 100ns wider than /WR (or /RD).

Product No.

LWD70570FW320G240WTD REV. A

Page 11 / 24

6.3 SYSTEM BUS TIMING FOR 4-LINE SERIAL INTERFACE

Item	Signal	Symbol	Condition	Min	Max	Unit
Serial clock period		tSCYC	-	80	-	
SCL "H" pulse width	SCL	tSHW	-	40	-	
SCL "L" pulse width		tSLW	-	40	-	
Address setup time	10	tSAS	-	40	-	
Address hold time	AU	tSAH	-	40	-	
Data setup time	SDA	tSDS	-	15	-	115
Data hold time	SDA	tSDH	-	20	-	
CSB-SCL time		tCSS	-	40	-	
CSB-SCL time	CSB	tCSH	-	40	-	
CSB "H" pulse width		tCSW	_	15	_	

Note:

1. The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

2. All timing is specified using 20% and 80% of VDDI as the standard.

Product No.

LWD70570FW320G240WTD REV. A

Page 12 / 24

6.4 SYSTEM BUS TIMING FOR 3-LINE SERIAL INTERFACE

Item	Signal	Symbol	Condition	Min	Max	Unit
Serial clock period		tSCYC	-	80	-	
SCL "H" pulse width	SCL	tSHW	-	40	-	
SCL "L" pulse width		tSLW	-	40	-	
Data setup time	SDA	tSDS	-	15	-	20
Data hold time	SDA	tSDH	-	20	-	118
CSB-SCL time		tCSS	-	40	-	
CSB-SCL time	CSB	tCSH	-	40	-	
CSB "H" pulse width		tCSW	-	15	-	

Note:

- 1. The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
- 2. All timing is specified using 20% and 80% of VDDI as the standard.

Product No.	LWD70570FW

0570FW320G240WTD REV. A

Page 13 / 24

7 OPTICAL CHARACTERISTICS

Item		Symbol	Condition.	Min	Тур.	Max.	Unit	Remark
Response time		Tr	$\theta = 0^{\circ}, \Phi = 0^{\circ}$	-	20	30	.ms	Note 3.5
10000 0000 0000		Tf		-	10	15	.ms	11000 0,0
Contrast ratio		CR	At optimized viewing angle	-	800	-	-	Note 4,5
	Hor	ΘR			60			
Viewing angle	1101.	ΘL	CR□10	60			Deg.	Note 1
(Gray Scale Inversion Direction)	Ver.	ФТ	CILLIO	60				
		ФВ		50				
Brightness		-	-	900	1000	-	cd/m²	Center of
								display

Ta=25±2°C, IL=140mA

1. Definition of viewing angle range

2. Test equipment setup: After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7(BM-5) luminance meter 1.0° field of view at a distance of 50cm and normal direction.

Product No.	LWD70570FW320G240WTD	REV. A	Page	14 / 24	

3. Definition of Response time:

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time, Tr, is the time between photo detector output intensity changed from 90% to 10%. And fall time, Tf, is the time between photo detector output intensity changed from 10% to 90%

4. Definition of contrast ratio:

The contrast ratio is defined as the following expression.

Contrast ratio (CR) = $\frac{\text{Luminance measured when LCD on the "White" state}}{\text{Luminance measured when LCD on the "Black" state}}$

5. White $Vi = Vi50 \pm 1.5V$

Black Vi = Vi50 ± 2.0 V

"±" means that the analog input signal swings in phase with VCOM signal.

"±" means that the analog input signal swings out of phase with VCOM signal.

The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

6. Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Product No.	LWD70570FW320G240WTD	REV. A		Page	15 / 24	
			-			

8 INTERFACE PIN ASSIGNMENT

Pin	Symbol	Function	Remark
1	GND	System ground	
2	VDD	Power Supply : +3.3V	
3	NC	No connect	
4	A0	Data/Command select	
5	/WR(R/W)	Write strobe signal	
6	/RD(E)	Read strobe signal	
7	DB0	Data bus	
8	DB1	Data bus	
9	DB2	Data bus	
10	DB3	Data bus	
11	DB4	Data bus	
12	DB5	Data bus	
13	DB6	Data bus	
14	DB7	Data bus	
15	/CS	Chip select	
16	/RESET(RSTB)	Hardware reset	
17	IF0	Mode select	Nota1
18	IF1	Wode select	note1
19	A	LED +	
20	K	LED -	
21	NC	No connect	
22	NC	No connect	

Note:

1.

Sett	ing	MCUTure		Interface Pin Function			
IF1	IF0	MCU Type	CSB	A0	RWR	ERD	D[7:0]
L	L	Parallel 8080 series MCU			/WR	/RD	D[7:0]
L	Н	Parallel 6800 series MCU	CCD	A0	R/W	Е	D[7:0]
Н	Н	Serial 4-Line series MCU	CSB		-	-	D7=SCL, D0=SDA, D[6:1] are
Н	L	Serial 3-Line series MCU		-	-	-	not used

The un-used pins are marked as "-" and should be connected to "H" by VDDI.

Product No.

LWD70570FW320G240WTD REV. A

Page 16 / 24

8.1 BACKLIGHT UNIT SECTION

LED Light Bar connector is used for the the integral backlight system. The recommended model is "JST XH-3" manufactured by JST.

Pin No.	Symbol	I/O	Function	Remark
1	VLED+	Р	Power for LED backlight anode (A)	Red
3	VLED-	Р	Power for LED backlight cathode (K)	White

Product No.

LWD70570FW320G240WTD REV. A

Page 17 / 24

9 BLOCK DIAGRAM

Copyright ©2016 DENSITRON CORPORATION All rights reserved. – Proprietary Data FORM No. DT-029 V2

10 RELIABILITY

10.1 RELIABILITY TEST

Environmental Test			
Test Item	Content of Test	Test Condition	Note
High Temperature	Endurance test applying the high storage	80℃	2
storage	temperature for a long time.	200hrs	
Low Temperature	Endurance test applying the low storage	-30°C	1,2
storage	temperature for a long time.	200hrs	
High Temperature	Endurance test applying the electric stress	70°C	
Operation	(Voltage & Current) and the thermal stress to the element for a long time.	200hrs	
Low Temperature	Endurance test applying the electric stress under	-20°C	1
Operation	low temperature for a long time.	200hrs	
High Temperature/	The module should be allowed to stand at 60	60℃,90%RH	1,2
Humidity Operation	°C,90%RH max	96hrs	
Thermal shock	The sample should be allowed stand the	-20°C/70°C	
resistance	following 10 cycles of operation $-20^{\circ}C$ $25^{\circ}C$ $70^{\circ}C$	10 cycles	
	30min 5min 30min 1 cycle		
Vibration test	Endurance test applying the vibration during	Total fixed	3
	transportation and using.	amplitude : 15mm	
		Vibration Frequency :	
		10~55Hz	
		to 3 directions of	
		X VZ for Each 15	
		minutes	
Static electricity test	Endurance test applying the electric stress to the	VS=±600V(contact).	
	terminal.	±800v(air),	
		RS=330Ω	
		CS=150pF	
		10 times	

Content of Reliability Test (Wide temperature, $-30^{\circ}C \sim 80^{\circ}C$)

Note:

1. No dew condensation to be observed.

2. The function test shall be conducted after 4 hours of s torage at the normal temperature and humidity after removing from the test chamber

3. The packing must include the vibration test.

Product No.

LWD70570FW320G240WTD REV. A

Page 19 / 24

11 INITIAL CODE

					Americ
void Initial_code	0				
{					
Write_Co	ommand(0xae);				
Write_Da	ita(0xa5);				
Write Co	ommand(0x61);				
Write Da	uta(0x8f);				
Write_Da	tta(0x04);				
Write_Da	tta(0xa5);				
Write_Da	tta(0xa5);				
Write Co	nmand(0x62)				
Write Da	$t_{2}(0x_{3}6)$				
Write Da	ta(0x0b):				
Write Da	ta(0x0b);				
Write Data(0xa5):					
—					
Write_Command(0x33);					
Write_Data(0x07);					
Write_Da	tta(0x2c);				
Write_Data(0x09);					
Write_Da	tta(0x2a);				
Write Comma	und(0x63);				
Write_Data(0x09);					
Write_Data(0x17);					
Write_Data(0xa5);					
Write_Data(0xa5);					
Write Comm	and(0x91).				
Write Data(0x00):					
Write_Data(0x16);					
Write_Data(0x1B);					
Write_Data(0x1C);					
Write_Command(0x92);					
Write_Data(0x1E);					
Write_Data(0x1F);					
Write_Data(0x20);					
Write_Data(0x21);					
Write_Command(0x93);					
Write_Data(0x23);					
Write_Data($0x24$);					
Write_Data(0	x26);				
Product No.	LWD70570FW320G240WTD	REV. A		Page	20 / 24

Densitron

Write_Data(0x28); Write_Command(0x94); Write Data(0x2B); Write Data(0x2F); Write Data(0x34); Write_Data(0x3f); Write Command(0x99); Write_Data(0x00); Write Data(0x16); Write_Data(0x1B); Write_Data(0x1C); Write Command(0x9a); Write Data(0x1E); Write_Data(0x1F); Write Data(0x20); Write_Data(0x21); Write Command(0x9b); Write_Data(0x23); Write Data(0x24); Write_Data(0x26); Write_Data(0x28); Write_Command(0x9c); Write_Data(0x2B); Write_Data(0x2F); Write Data(0x34); Write_Data(0x3F); Write_Command(0x12); Write_Data(0xa5); Write_Command(0x24); Write_Data(0x01); Write_Data(0xa5); Write_Data(0xa5); Write_Data(0xa5); Write_Command(0x22); Write Data(0x00); Write_Data(0xa5);

> Write_Command(0x15); Write_Data(0xa5); _nop_();

Write_Data(0xa5);
Write_Data(0xa5);

```
}
```

```
Product No.
```

LWD70570FW320G240WTD REV. A

Page 21 / 24

12 PART NUMBER LABELLING

All parts will be labelled with the below Part Number.

DENSITRON LWD70570FW320G240WTD Rev X TAIWAN YYMM

* where "Rev X" denotes the current Revision and YY and MM the 2-digit Year and Month of manufacture

Product No.

LWD70570FW320G240WTD REV. A

Page 22 / 24

13 PART NUMBER DECODER

Mono TFT displays LWD 70570 ① ② 320G240 ③ ④ ⑤ Internal Note: Model No detail DCA LWD series 7 057 0 Factory code Model Number (1 digit) E = Transmissive Normally black Mode F = Transmissive Normally White Mode Screen size (3 digit) W = White Backlight Model series No. For Higher Resolutions such as 1200x1920 please ignore the last < Dot X Dot Resolution digits, in this case it will be 120G192 W = Wide Temperature Range T= TN I = IPSD = Parallel Interface

 Product No.
 LWD70570FW320G240WTD
 REV. A
 Page
 23 / 24

14 HANDLING PRECAUTIONS

Safety

If the LCD panel breaks, be careful not to get the liquid crystal fluid in your mouth or in your eyes. If the liquid crystal touches your skin or clothes, wash it off immediately using soap and plenty of water.

Mounting and Design

Place a transparent plate (e.g. acrylic, polycarbonate or glass) on the display surface to protect the display from external pressure. Leave a small gap between the transparent plate and the display surface. When assembling with a zebra connector, clean the surface of the pads with alcohol and keep the surrounding air very clean. Design the system so that no input signal is given unless the power supply voltage is applied.

Caution during LCD Cleaning

Lightly wipe the display surface with a soft cloth soaked with Isopropyl alcohol, Ethyl alcohol or Trichlorotriflorothane. Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use aromatic solvents (toluene and xylene), or ketonic solvents (ketone and acetone).

Caution against Static Charge

As the display uses C-MOS LSI drivers, connect any unused input terminals to VDD or VSS. Do not input any signals before power is turned on. Also, ground your body, work / assembly table and assembly equipment to protect against static electricity.

Packaging

Displays use LCD elements, and must be treated as such. Avoid strong shock and drop from a height. To prevent displays from degradation, do not operate or store them exposed directly to sunlight or high temperature / humidity.

Caution during Operation

It is indispensable to drive the display within the specified voltage limit since excessive voltage shortens its life. Direct current causes an electrochemical reaction with remarkable deterioration of the display quality. Give careful consideration to prevent direct current during ON/OFF timing and during operation. Response time is extremely delayed at temperatures lower than the operating temperature range while, at high temperatures, displays become dark. However, this phenomenon is reversible and does not mean a malfunction or a display that has been permanently damaged. If the display area is pushed on hard during operation, some graphics will be abnormally displayed but returns to a normal condition after turning off the display once. Even a small amount of condensation on the contact pads (terminals) can cause an electro-chemical reaction which causes missing rows and columns. Give careful attention to avoid condensation.

Storage

Store the display in a dark place where the temperature is $25^{\circ}C \pm 10^{\circ}C$ and the humidity below 50% RH. Store the display in a clean environment, free from dust, organic solvents and corrosive gases. Do not crash, shake or jolt the display (including accessories).

Product No.LWD70570FW320G240WTDREV. APage24 / 24