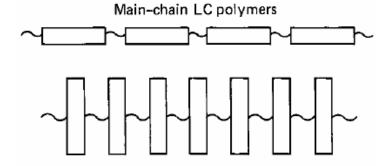

Liquid Crystalline Polymers

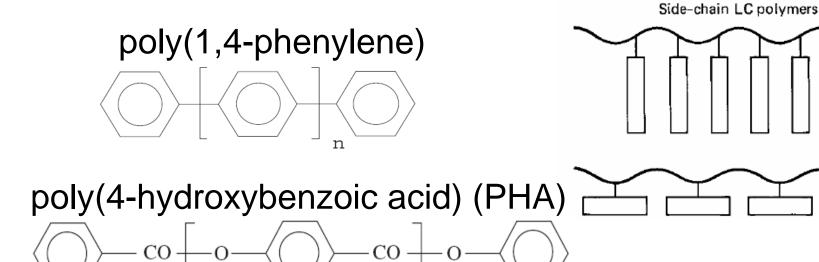
Matt Spencer May 7, 2009

http://www.doitpoms.ac.uk/tlplib/anisotropy/images/image25.jpg

Outline

- Liquid Crystals
- Liquid Crystalline Polymers
- Synthesis
- Properties
- Applications
- Characterization




Liquid Crystals (LC) п Crystalline Liquid Nematic Smectic A Smectic C

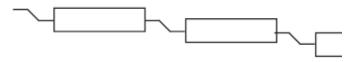
- Two Types
 - Thermotropic Phase transitions occur as temperature changes
 - Aromatic polyesters
 - Lyotropic Phase transitions are a function of concentration and temperature
 - Aramids
- Mesophases
 - Nematic
 - Smectic A, Smectic C
 - Others

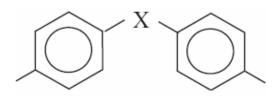
Liquid Crystalline Polymers (LCP)

- Mesogen rigid, rod-like polymer group
 - Aromatic rings
 - Amide, ester linkages

Odian, G. *Principles of Polymerization*, 4th Ed. Wiley: New York, 2004. Wang, X.; Zhou, Q. *Liquid Crystalline Polymers*. N.J World Scientific: Singapore, 2004.

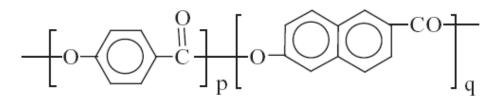
LCP Synthesis

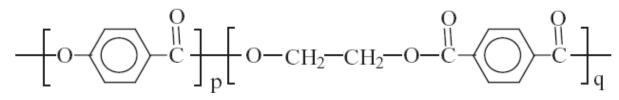

- 4-Hydroxybenzoic acid mass-produced monomer
- Remove excess acetic acid
- Condense under higher temperature conditions to increase MW


$$HO \underbrace{\bigcirc}_{COOH} \underbrace{(CH_{3}CO)_{2} 0}_{CH_{3}CO} \xrightarrow{O}_{COOH} + CH_{3}COOH \cdots (1)$$

$$n (CH_{3}CO \underbrace{\bigcirc}_{COOH}) \xrightarrow{-(0 \underbrace{\bigcirc}_{n} + n CH_{3}COOH \cdots (2))}_{n} + n CH_{3}COOH \cdots (2)$$

Liquid Crystalline Polymers (LCP)


- Flexible units included for processability
 - Side-step
 - -COO-, -CH=N-, -N=N(O)-, trans -CH=CH-, -CONH-, and 2,6-naphthalene
 - Kinked
 - $X = -O_{-}$, or $-S_{-}$, or $-CH_2^{-}$
 - Flexible Spacers
 - polymethylenes, polyoxyethylenes, polysiloxanes
 - Terminal or Lateral Substitution



Liquid Crystalline Polymers Xydar, Ekonol $\underbrace{-\left[0-\bigcirc,\overset{0}{\leftarrow}\right]_{p}}_{p}\left[0-\bigcirc,\overset{0}{\leftarrow}\right]_{q} - \underbrace{0-\overset{0}{\leftarrow},\overset{0}{\leftarrow}\right]_{q}}$

Vectra

X7G, Rodrun

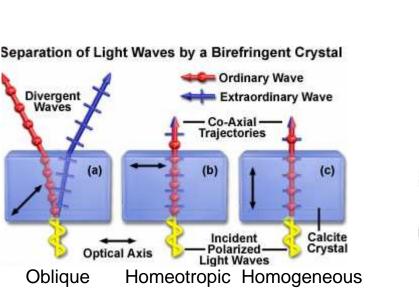
Properties

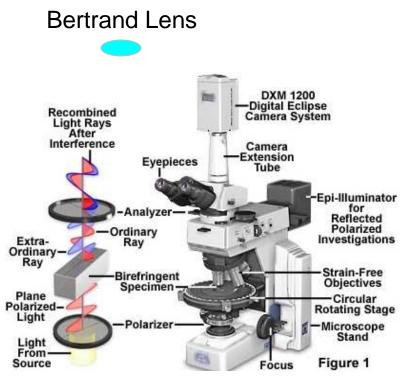
- Advantages of LCP
 - Good Chemical Resistance
 - High Heat Resistance
 - Good Moldability
 - Low Viscosity
 - Good Dimensional Stability
 - Flame Retardant
 - Good Heat Aging Resistance
 - High Vibration Absorbance
 - Thinner Parts \rightarrow Higher Strength
 - Increased proportion of surface layer

- Disadvantages of LCP
 - Highly anisotropic properties
 - Drying required before processing
 - High cost

Applications

- Electrical/Electronic Applications
- Automotive Applications
- Chemical Pumps
- Distillation Towers
- Food Containers
- Appliances
- Surgical Devices
- Thin-walled Parts
- Ropes, Cables
- Protective Apparel


http://www.ides.com/generics/LCP/LCP_overview.htm http://www.polyplastics.com/en/product/lines/lcp/index.html http://www.ticona.com/products/vectra

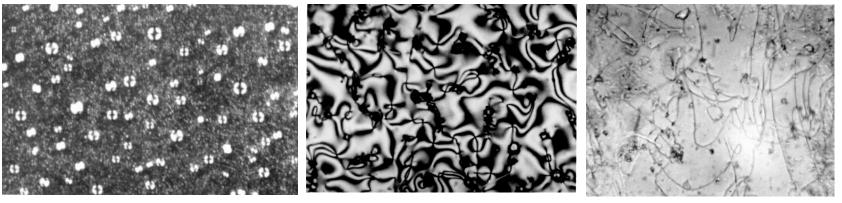

Characterization

- Polarizing Optical Microscopy (POM)
- Differential Scanning Calorimetry (DSC)
- Differential Thermal Analysis (DTA)
- X-Ray Diffraction
- Miscibility Testing
- IR
- NMR
- Small-Angle Neutron Scattering (SANS)

Polarizing Optical Microscopy (POM)

- Orthoscopic observation
- Conoscopic observation

Wang, X.; Zhou, Q. *Liquid Crystalline Polymers*. N.J World Scientific: Singapore, 2004. http://micro.magnet.fsu.edu/primer/java/polarizedlight/crystalwavefronts/index.html


Polarizing Optical Microscopy (POM)

Orthoscopic observation

- Polarization colors, defects, orientation texture
- Birefringence
- Temperature of phase transition
- Defects characteristic of mesophase
- Complicated by high polymer viscosity

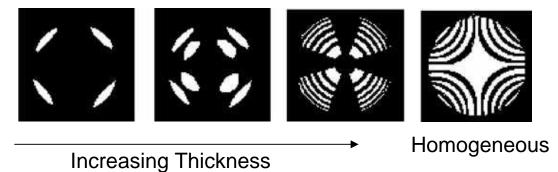
Smectic A

Focal-conic Fan Texture

Nematic

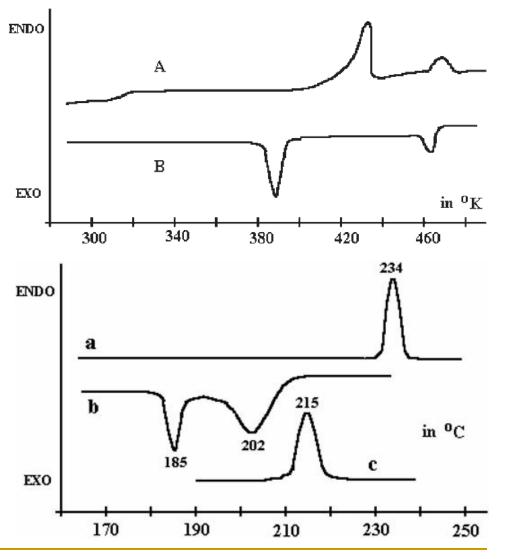
Nematic Droplets

Schlieren Texture

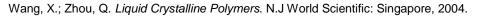

Threaded Texture

Wang, X.; Zhou, Q. Liquid Crystalline Polymers. N.J World Scientific: Singapore, 2004.

Polarizing Optical Microscopy (POM)

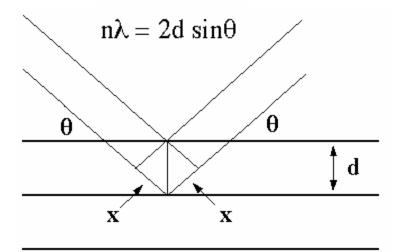

- Conoscopic observation
 - Bertrand lens
 - Interference figures

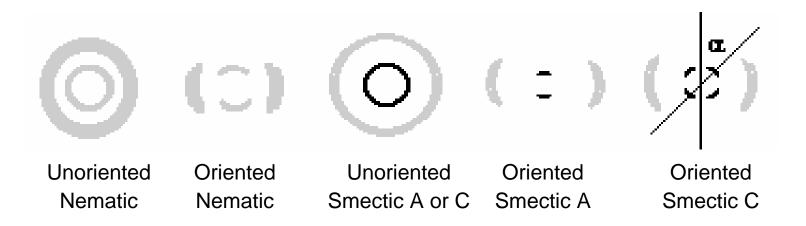
Uniaxial Crystals Homeotropic Orientation



DSC and DTA

- DTA Constant heat flow
- DSC Constant ΔT
 - Finds temperature and heat of phase transitions
 - Does not identify transition type




- Monotropic LCs form in cooling process
- Enantiotropic LCs form in both heating and cooling processes

X-Ray Diffraction

- Bragg Equation
- Used with POM
- Many variations
- Difficult to interpret

Wang, X.; Zhou, Q. *Liquid Crystalline Polymers*. N.J World Scientific: Singapore, 2004. http://materials.binghamton.edu/444/part_l/sld032.htm

Miscibility Testing

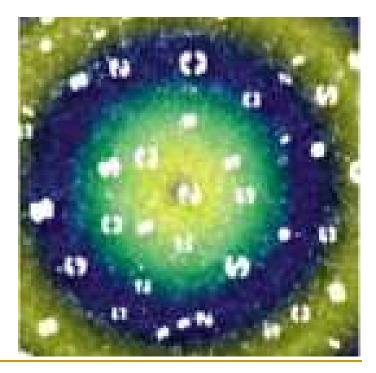
- Use well-known model liquid crystals
- Different mesophases are imiscible
- Highly viscous low mixing rates
- LCP and LC of same mesophase may be inherently incompatible
- Used for hard to determine mesophases

Other Methods

IR

Bond conformation

NMR


Identify relative motion of different parts of the polymer

SANS

Measures global conformation of polymer

Summary

- Though high in cost, LCPs have high strength and stability.
- LCPs are used in thinwalled parts, chemical equipment, and highstrength fibers.
- A combination of characterization techniques are required.

Thanks!

Questions?