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1. Introduction	
The	 recent	 financial	 crises	 have	 been	 liquidity	 crises.	 Large	 hedge	 fund	
companies	 held	 positions	 that	were	 too	 large	 to	 be	 liquidated	without	 causing	
significant	price	impact.	The	breakdown	of	LTCM	in	1998	and	Amaranth	Advisors	
in	2006	are	a	 few	examples.	 In	the	sub-prime	crisis	of	2008,	a	 lot	of	banks	and	
hedge	 funds	 also	 suffered	 from	 liquidity	 shortage	 and	 had	 to	 liquidate	 their	
assets,	which	deteriorated	the	crisis	and	caused	huge	losses.	These	are	the	signs	
that	people	underestimate	the	liquidity	risk.	
Nowadays,	hedge	funds	still	use	Value-at-Risk(VaR)	to	measure	the	market	risk.	
However,	 this	 measure	 can	 cause	 problems	 because	 when	 the	 volume	 of	 the	
position	is	 large	enough	to	cause	price	effect	on	the	spread,	the	trading	price	is	
not	at	the	mid-price.	This	has	as	a	result	that	the	real	price	will	depend	on	both	
the	value	of	the	spread	and	the	price	effect	of	the	trading	volume.	And	thus,	the	
market	 liquidity	 plays	 an	 important	 role.	 To	 sum	 up,	 we	 could	 see	 that	 the	
normal	VaR	concept	lacks	a	rigorous	treatment	of	liquidity	risk.	
Regarding	 the	 liquidity	 risk,	 the	 fund	 company	 examines	 the	 fund	 position	 in	
each	holding	in	terms	of	numbers	of	shares.	Then	the	holding	is	compared	to	the	
average	 trading	 volume	of	 the	 latest	 20	days,	 to	 see	 how	much	 of	 the	 position	
that	 can	be	 liquidated	 taking	 into	account	 that	no	more	 than	10	percent	of	 the	
average	trading	volume	is	used	in	order	not	to	affect	the	prices	too	much.	But	in	
this	way	we	neither	quantify	the	liquidity	risk	in	a	monetary	value	nor	express	it	
as	a	percentage,	which	makes	it	less	convenient	to	use	when	comparing	between	
different	funds	and	controlling	the	risk.	
So	this	paper	is	devoted	to	incorporation	of	liquidity	risk	into	VaR	model,	which	
could	better	reflect	poor	liquidity	in	the	VaR	framework.	In	order	to	incorporate	
the	liquidity	risk	with	the	limited	data,	this	paper	used	a	concept	of	LIX,	which	is	
introduced	 by	 Oleh	 Danyliv,	 Bruce	 Bland,	 Daniel	 Nicholass(2014).	 It	 is	 a	 new	
measure	 of	 liquidity.	 With	 this	 measure,	 we	 could	 measure	 different	 stocks	
liquidity	and	predict	the	liquidity	in	the	future.	When	we	needed	to	quantify	the	
liquidity	risk,	we	used	the	concept	of	Cost	of	Liquidity	(COL),	which	is	half	of	the	
spread.	 	
As	for	VaR,	we	used	at	first	the	variance-covariance	method	in	calculation.	Then	
in	order	to	improve	the	accuracy,	we	used	the	extreme	value	theory	(EVT)	with	a	
new	quantile	estimator,	which	included	all	the	information	in	the	tail.	
Finally,	 we	 added	 the	 VaR	 and	 Cost	 of	 Liquidity	 in	 order	 to	 get	 the	 Liquidity	
adjusted	VaR	 and	 compared	 the	 results	 from	 a	 large	 cap	 fund	 and	 a	 small	 cap	
fund.	
The	 thesis	 is	organized	 in	 the	 following	way:	 the	 second	chapter	 introduces	all	
the	basic	concepts	we	need	to	know	in	order	to	understand	the	model.	From	the	
generalized	inverse	to	quantile	function,	and	the	definitions	of	VaR	and	fat	tails.	It	
introduces	 liquidity	 risk,	 LIX	and	 cost	of	 liquidity.	The	 third	 chapter	 shows	 the	
details	of	Liquidity	adjusted	VaR	model	and	analyzes	each	part	of	the	model.	The	
fourth	chapter	contains	the	empirical	result	and	conclusion.	
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2. Background	

2.1 Generalized	inverses	
First	of	all,	quantile	 function	 in	 fact	 is	an	application	of	generalized	 inverses	 in	
financial	 mathematics.	 Therefore	 we	 will	 begin	 with	 a	 short	 introduction	 of	
generalized	 inverses	 based	 on	 an	 article	 by	 Paul	 Embrecht	 and	 Marius	
Hofert(2013).	
The	idea	of	a	generalized	inverse	comes	from	the	fact	that,	although	a	real-valued,	
continuous,	 and	 strictly	 monotone	 function	 of	 a	 single	 variable	 have	 a	 unique	
inverse	function	on	its	range,	sometimes	the	requirement	is	too	strong.	In	order	
to	apply	it	more	easily	in	real	life,	we	have	to	drop	the	assumptions	of	continuity	
and	strict	monotonicity,	but	still	we	need	 to	get	 the	 inverse,	which	 leads	 to	 the	
notion	of	a	generalized	inverse.	

Let	 𝑇:ℝ → ℝ 	 be	 a	 non-decreasing	 function	 with	 𝑇 −∞ = lim
+→,-

𝑇(𝑥) 	 and	

𝑇 ∞ = lim
+→-

𝑇(𝑥),	the	generalized	inverse	 𝑇,1:ℝ → ℝ = [−∞,∞]	 is	defined	by	

𝑇,1 𝑦 = inf 𝑥 ∈ ℝ|	𝑦 ≤ 𝑇(𝑥) , 𝑦 ∈ ℝ.	
If	 𝑇	 is	 a	 distribution	 function	 and	 the	 target	 domain	 become	 0,1 ,	 𝑇,1 	 is	
called	quantile	function	of	 𝑇.	We	use	the	convention	that	 inf∅ = ∞.	

	
Figure:	A	non-decreasing	function	 𝑇(left)	and	its	generalized	inverse	 𝑇,1(right)	
Source:	Paul	Embrecht	and	Marius	Hofert(2013,	p.425)	

We	 could	 easily	 observe	 the	 difference	 between	 the	 generalized	 inverse	 and	
normal	 inverse	 from	 the	 figure.	 Firstly,	 we	 could	 drop	 the	 strictly	 increasing	
assumption,	 so	 𝑇	 could	 be	 flat.	 The	 flat	 part	 of	 𝑇	 corresponds	 to	 the	 jump	 in	
the	generalized	inverse	 𝑇,1.	Secondly,	we	could	drop	the	continuity	assumption,	
so	 𝑇	 could	 have	 jumps.	 The	 jump	 part	 of	 𝑇	 corresponds	 to	 the	 flat	 in	 the	
generalized	inverse	 𝑇,1.	
The	generalized	inverse	has	the	following	properties,	which	are	frequently	used	
and	proved	by	Paul	Embrecht	and	Marius	Hofert(2013).	
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Proposition	 1:	 Let	 𝑇:ℝ → ℝ 	 be	 a	 non-decreasing	 function	 with	 	 	 	 	 	 	

𝑇 −∞ = lim
+→,-

𝑇(𝑥)	 and	 𝑇 ∞ = lim
+→-

𝑇(𝑥),	let	 𝑥, 𝑦 ∈ ℝ.	 Then,	

(i) 𝑇,1 	 is	 non-decreasing.	 If	 	𝑇,1(𝑦) ∈ (−∞,∞) ,	 𝑇,1 	 is	 continuous	
from	the	left	and	has	right	limits	

(ii) If	 𝑇 	 is	 continuous	 from	 the	 right,	 then	 𝑇,1(𝑦) < ∞ 	 implies	

𝑇 𝑇,1 𝑦 ≥ 𝑦 .	 Furthermore,	 𝑦 ∈ 𝑟𝑎𝑛	𝑇 ∪ {inf 𝑟𝑎𝑛	𝑇, sup 𝑟𝑎𝑛	𝑇}	

implies	 	𝑇 𝑇,1 𝑦 = 𝑦 .	 Moreover,	 if	 𝑦 < inf 𝑟𝑎𝑛	𝑇 	 then	

𝑇 𝑇,1 𝑦 > 𝑦 	 and	 if	 𝑦 > sup 𝑟𝑎𝑛	𝑇 	 then 	𝑇 𝑇,1 𝑦 < 𝑦 ,	 where	

ran	denotes	the	abbreviation	of	range.	
(iii) 𝑇(𝑥) ≥ 𝑦 ⇒ 𝑥 ≥ 𝑇,1(𝑦).	 Furthermore,	 if	 𝑇	 is	 continuous	 from	 the	

right,	 then	 𝑇(𝑥) ≥ 𝑦 ⇔ 𝑥 ≥ 𝑇,1(𝑦) .	 Moreover,	 𝑇(𝑥) < 𝑦 ⇒ 𝑥 ≤
𝑇,1(𝑦).	

(iv) If	 𝑇1 	 and	 𝑇N 	 are	 continuous	 from	 the	 right	 and	 have	 same	
properties	as	 𝑇,	then	 𝑇1 ∘ 𝑇N ,1 = 𝑇N,1 ∘ 𝑇1,1.	

	
Proof	
	
(i) Let	 𝑦1, 𝑦N ∈ ℝ	 and	 𝑦1 < 𝑦N.	We	have	 	

𝑥 ∈ ℝ|	𝑦1 ≤ 𝑇(𝑥) ⊇ 𝑥 ∈ ℝ|	𝑦N ≤ 𝑇(𝑥) ,	
so	 𝑇,1(𝑦1) ≤ 𝑇,1(𝑦N),	 𝑇,1	 is	non-decreasing.	 	
Let	 𝑇,1(𝑦) ∈ (−∞,∞) 	 and	 𝑦Q = 𝑦 .	 Suppose	 𝑦R → 𝑦Q 	 is	 a	 strictly	
increasing	 sequence.	 In	 order	 to	 prove	 𝑇,1	 is	 continuous	 from	 the	 left,	

we	 need	 to	 prove	 lim
R→-

𝑇,1(𝑦R) = 𝑇,1(𝑦Q).	 Since	 𝑇,1	 is	 non-decreasing,	

𝑥R ∶= 𝑇,1(𝑦R) ≤ 𝑥Q ∶= 𝑇,1(𝑦Q).	Thus	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 lim
R→-

𝑥R = 𝑥 ≤ 𝑥Q		 for	some	 𝑥 ∈ ℝ.	

Therefore,	we	need	to	prove	 𝑥 = 𝑥Q.	We	assume	 𝑥 < 𝑥Q:	
From	the	definition	of	 𝑇,1,	we	have	∀𝜀 > 0	𝑎𝑛𝑑	𝑛 ∈ ℕQ = {0,1,2,3… },	

𝑇 𝑥R − 𝜀 < 𝑦R ≤ 𝑇 𝑥R + 𝜀 .	

let	 𝜀 = +\,+
N

,	 then	 for	 ∀𝑛 ∈ ℕ, 𝑦R ≤ 𝑇 𝑥R + 𝜀 ≤ 𝑇 𝑥Q − 𝜀 < 𝑦Q. 	 So	

𝑦Q = lim
R→-

𝑦R ≤ 𝑇 𝑥Q − 𝜀 < 𝑦Q, 	 which	 is	 a	 contradiction.	 𝑇,1 	 is	

continuous	from	the	left.	
In	 order	 to	 prove	 𝑇,1 	 has	 right	 limit,	 suppose	 𝑦R → 𝑦Q 	 is	 a	 strictly	
decreasing	 sequence.	 𝑇,1(𝑦R) 	 is	 a	 non-increasing	 sequence	 and	
𝑇,1 𝑦Q > −∞.	From	the	monotone	convergence	theorem,	 𝑇,1	 has	right	
limit.	

(ii) We	 have	 𝑇,1(𝑦) < ∞,	 then	 𝐴 = 𝑥 ∈ ℝ|	𝑦 ≤ 𝑇(𝑥) ≠ ∅.	 Suppose	 𝑥R →
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𝑇,1(𝑦)	 is	a	strictly	decreasing	sequence	and	 𝑥R R∈ℕ ⊆ 𝐴,	thus	 𝑇 𝑥R ≥

𝑦.	 Since	 𝑇 	 is	 continuous	 from	 the	 right,	 𝑇 𝑇,1 𝑦 = lim
R→-

𝑇(𝑥R) ≥ 𝑦 .	

We	proved	the	first	part.	
At	 first	 we	 consider	 𝑦 ∈ 𝑟𝑎𝑛	𝑇 ,	 then	 𝐵 = 𝑥 ∈ ℝ|	𝑦 = 𝑇(𝑥) ≠ ∅ .	 We	
could	 see	 𝑇,1 𝑦 = inf 𝐴 = inf 𝐵 . 	 Suppose	 𝑥R → 𝑇,1(𝑦) 	 is	 a	
non-increasing	 sequence	 and	 𝑥R R∈ℕ ⊆ 𝐵,	 thus	 𝑇 𝑥R = 𝑦.	 Since	 𝑇	 is	

continuous	 from	 the	 right,	 𝑇 𝑇,1 𝑦 = lim
R→-

𝑇 𝑥R =𝑦. 	 Now	 let	 𝑦 =

inf 𝑟𝑎𝑛	𝑇	 and	 inf 𝑟𝑎𝑛	𝑇 ∉ 𝑟𝑎𝑛	𝑇	 (otherwise	we	 could	 just	 use	 the	 proof	
above).	Thus	 𝐴 = 𝑥 ∈ ℝ|	𝑦 ≤ 𝑇(𝑥) = ℝ,	we	have	 𝑇,1 𝑦 = inf 𝐴 = −∞.	

So	 𝑇 𝑇,1 𝑦 = 𝑇 −∞ = inf 𝑟𝑎𝑛	𝑇 = 𝑦.	 At	 last	 let	 𝑦 = sup 𝑟𝑎𝑛	𝑇 	 and	

sup 𝑟𝑎𝑛	𝑇 ∉ 𝑟𝑎𝑛	𝑇	 (otherwise	 we	 could	 just	 use	 the	 proof	 of	 𝑟𝑎𝑛	𝑇).	
Thus	 𝐴 = 𝑥 ∈ ℝ|	𝑦 ≤ 𝑇(𝑥) = ∅ ,	 we	 have	 𝑇,1 𝑦 = inf 𝐴 = ∞. 	 So	

𝑇 𝑇,1 𝑦 = 𝑇 ∞ = sup 𝑟𝑎𝑛	𝑇 = 𝑦.	 We	proved	the	second	part.	

If	 𝑦 < inf 𝑟𝑎𝑛	𝑇,	 we	 have	 𝐴 = 𝑥 ∈ ℝ|	𝑦 ≤ 𝑇(𝑥) = ℝ,	 𝑇,1 𝑦 = −∞,	 so	

𝑇 𝑇,1 𝑦 = 𝑇 −∞ = inf 𝑟𝑎𝑛	𝑇 > 𝑦. 	 If	 𝑦 > sup 𝑟𝑎𝑛	𝑇, we	 have	 𝐴 =

𝑥 ∈ ℝ|	𝑦 ≤ 𝑇(𝑥) = ∅, 	 𝑇,1 𝑦 = ∞, 	 so	 𝑇 𝑇,1 𝑦 = 𝑇 ∞ =

sup 𝑟𝑎𝑛	𝑇 < 𝑦.	 We	proved	the	third	part.	
(iii) From	 the	 definition	 of	 𝑇,1 ,	 we	 have	 𝑇(𝑥) ≥ 𝑦 ⇒ 𝑥 ≥ 𝑇,1(𝑦).	 If	 𝑇	 is	

continuous	 from	 the	 right,	 and	 ∞ > 𝑥 ≥ 𝑇,1(𝑦),	 from	 property	 (ii),	 we	

have	 𝑇 𝑇,1 𝑦 ≥ 𝑦.	 So	 𝑇(𝑥) ≥ 	𝑇 𝑇,1 𝑦 ≥ 𝑦.	 Thus	 𝑇(𝑥) ≥ 𝑦 ⇔ 𝑥 ≥

𝑇,1(𝑦).	
If	 𝑇(𝑥) < 𝑦	 and	 let	𝐴 = 𝑧 ∈ ℝ|	𝑦 ≤ 𝑇(𝑧) ,	 since	 𝑇	 is	 a	 non-decreasing	
function,	 𝑇(𝑧) ≥ 𝑦 > 𝑇(𝑥) ⇒ 𝑧 > 𝑥.	So	 𝑇,1 𝑦 = inf 𝐴 ≥x.	

(iv) Let	 𝑇1	 and	 𝑇N	 are	 continuous	 from	 the	 right	 and	have	 same	properties	
as	 𝑇,	 then	 𝑇1 ∘ 𝑇N ,1 = inf 𝑥 ∈ ℝ|	𝑦 ≤ 𝑇1(𝑇N 𝑥 ) .	 by	 property	 (iii),	 we	

have	 𝑦 ≤ 𝑇1 𝑇N 𝑥 ⇔ 𝑇N 𝑥 ≥ 𝑇1,1 𝑦 ⇔ 𝑥 ≥ 𝑇N,1 𝑇1,1 𝑦 . 	 So	

𝑇1 ∘ 𝑇N ,1 = inf 𝑥 ∈ ℝ|	𝑥 ≥ 𝑇N,1(𝑇1,1(𝑦)) = 𝑇N,1 𝑇1,1 𝑦 = 𝑇N,1 ∘ 𝑇1,1.	

	
	

∎	

2.2 Quantiles	
	
Let	 𝑋	 be	a	random	variable.	If	 𝐹f	 is	the	cumulative	distribution	function	of	 𝑋,	
that	is	
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𝐹f 𝑥 = ℙ 𝑋 ≤ 𝑥 ,										𝑥 ∈ ℝ.	
We	define	the	corresponding	quantile	function	as	the	generalized	inverse	of	 𝐹:	
	

𝐹f,1 𝑞 = inf 𝑥|𝑞 ≤ 𝐹f 𝑥 ,										𝑞 ∈ 0,1 .	
	
The	 number	 𝐹f,1 𝑞 	 is	 called	 the	 q-quantile	 of	 𝑋 .	 Note	 that	 𝐹f 	 is	 always	
non-decreasing,	is	continuous	from	the	right	and	has	left	limits.	The	q-quantile	
of	 𝑋 	 is	 then	 the	 smallest	 value	 𝑥 	 such	 that	 the	 probability	 of	 𝑋 	 not	
exceeding	 𝑥	 is	not	smaller	than	 𝑞.	
We	 will	 prove	 the	 quantile	 function	 is	 equivariant	 under	 non-decreasing	 left	
continuous	 transformations.	 In	 order	 to	 prove	 it,	 we	 need	 to	 prove	 2	 lemmas	
first.	
	
Lemma	1:	(Quantile	Value	Criterion	Lemma)	
𝐹f,1(𝑞)	 is	the	only	 𝑎	 satisfying	(i)	and	(ii),	where	
	 	 	 	 	 (i)	 	 𝐹f 𝑎 ≥ 𝑞;	

(ii)	 	 𝑥 < 𝑎 ⇒ 𝐹f 𝑥 < 𝑞.	
	
Proof	
	
Suppose	 𝑥R → 𝐹f,1(𝑞) 	 is	 a	 strictly	 decreasing	 sequence.	 According	 to	 the	
definition	 of	 𝐹f,1(𝑞)	 and	 𝑥R > 𝐹f,1(𝑞),	 we	 have	 𝐹f(𝑥R) 	≥ 𝑞.	 Since	 𝐹f	 is	 right	
continuous	

lim
R→-

𝐹f 𝑥R = 𝐹f(𝐹f,1(𝑞)).	

For	 ∀𝑛 ∈ ℕ, 𝐹f 𝑥R ≥ 𝑞	 hence	 lim
R→-

𝐹f 𝑥R ≥ 𝑞	 (i)	 holds.	 So	 the	 𝐹f,1 𝑞 	 is	 the	

smallest	 value	 satisfy	 𝐹f 𝑥 ≥ 𝑞 ,	 if	 𝑥 < 𝐹f,1 𝑞 ,	 then	 𝐹f(𝑥) < 𝑞 .	 So	 𝐹f,1 𝑞 	
satisfies	both	properties.	 	
Assuming	 both	 𝑎 	 and	 𝑏 	 satisfy	 them	 and	 𝑎 < 𝑏 ,	 then	 𝐹f(𝑎) ≥ 𝑞 	 by	 (i).	
However	 𝑏 	 also	 satisfy	 both	 properties	 and	 𝑎 < 𝑏 ,	 then	 𝐹f(𝑎) < 𝑞 	 by	 (ii),	
which	is	a	contradiction.	

∎	
Let	 ℎ(𝑥) ∶ 	ℝ → ℝ	 be	a	non-decreasing	function.	We	define	 ℎ⋆(𝑦):	

ℎ⋆ 𝑦 = sup 𝑥 ℎ 𝑥 ≤ 𝑦 .	
Lemma	2:	
If	 ℎ(𝑥) ∶ 	ℝ → ℝ	 is	a	non-decreasing	function	and	left	continuous,	then	

ℎ ℎ⋆ 𝑦 ≤ 𝑦.	

Proof	
	
Suppose	 𝑥R → ℎ⋆ 𝑦 	 is	 a	 strictly	 increasing	 sequence.	 According	 to	 the	
definition	of	 ℎ⋆ 𝑦 	 and	 𝑥R < ℎ⋆ 𝑦 ,	we	have	 	

∀𝑛 ∈ ℕ, ℎ 𝑥R ≤ 𝑦.	
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Hence,	 lim
R→-

ℎ(𝑥R) ≤ 𝑦.	 ℎ(𝑥)	 is	left	continuous	 ⇒	 lim
R→-

ℎ 𝑥R = ℎ(ℎ⋆ 𝑦 ).	

Finally,	we	have	 ℎ ℎ⋆ 𝑦 ≤ 𝑦.	

∎	
Theorem:	(Quantile	Equivariant	Transformation	Theorem)	
Suppose	 ℎ ∶ 	ℝ → ℝ	 is	a	non-decreasing	function	and	left	continuous,	then	

𝐹m f
,1 𝑞 = ℎ 𝐹f,1 𝑞 .	

Proof	
	
We	 use	 Lemma	 1	 to	 prove	 this.	We	 need	 to	 show	 ℎ(𝐹f,1(𝑞))	 satisfies	 both	 (i)	
and	(ii)	in	Lemma	1.	

Firstly,	we	could	see	 𝐹m f ℎ 𝐹f,1 𝑞 = ℙ ℎ 𝑋 ≤ ℎ 𝐹f,1 𝑞 .	 Since	 ℎ(𝑥)	 is	

a	 non-decreasing	 function,	 𝑋 ≤ 𝐹f,1(𝑞) ⇒ ℎ 𝑋 ≤ ℎ 𝐹f,1 𝑞 .	 Hence	 we	 have	

ℙ ℎ 𝑋 ≤ ℎ 𝐹f,1 𝑞 ≥ ℙ 𝑋 ≤ 𝐹f,1 𝑞 	 and	from	the	definition	of	 𝐹f,1 𝑞 	 we	

have	 ℙ 𝑋 ≤ 𝐹f,1 𝑞 ≥ 𝑞.	 	 Therefore:	

	 	 	 	 	 	 	 	 	 𝐹m f ℎ 𝐹f,1 𝑞 = ℙ ℎ 𝑋 ≤ ℎ 𝐹f,1 𝑞 ≥ ℙ 𝑋 ≤ 𝐹f,1 𝑞 ≥ 𝑞.	 	

(i)	holds.	

For	(ii),	let	 𝑦 < ℎ(𝐹f,1(𝑞)).	Then	we	need	to	show	 𝐹m f (𝑦) < 𝑞.	By	the	lemma	2	

we	have	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ℎ ℎ⋆ 𝑦 ≤ 𝑦	 ⇒	 ℎ ℎ⋆ 𝑦 ≤ 𝑦 < ℎ 𝐹f,1 𝑞 .	

Because	 ℎ 	 is	 a	 non-decreasing	 function	 ⇒ ℎ⋆ 𝑦 < 𝐹f,1(𝑞) .	 Then	 we	 have	

ℙ 𝑋 ≤ ℎ⋆ 𝑦 < 𝑞	 and	 𝐹m f 𝑦 = ℙ ℎ 𝑋 ≤ 𝑦 .	 According	 to	 the	 definition	 of	

ℎ⋆ 𝑦 	 and	lemma	2,	we	know	 ℎ⋆ 𝑦 	 is	the	biggest	value	that	satisfies	 ℎ(𝑋) ≤ 𝑦.	
So	we	have	 ℎ 𝑋 ≤ 𝑦 ⇒ 𝑋 ≤ ℎ⋆ 𝑦 .	So:	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 𝐹m f 𝑦 = ℙ ℎ 𝑋 ≤ 𝑦 ≤ ℙ 𝑋 ≤ ℎ⋆ 𝑦 < 𝑞.	 	

(ii)	holds.	
∎	

2.3 	 Definition	of	VaR	
From	Choudhry	 and	Alexander(2013),	we	 could	 have	 a	 basic	 understanding	 of	
Value-at-Risk.	VaR	was	first	introduced	to	public	in	October	1994	when	JPMorgan	
launched	 RiskMetrics	 free	 over	 the	 internet.	 With	 the	 development	 of	 risk	
management,	VaR	became	an	accepted	methodology	for	quantifying	market	risk	
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and	began	to	be	adopted	by	bank	regulators.	 In	1997,	major	banks	and	dealers	
chose	 to	 include	 VaR	 information	 in	 the	 notes	 to	 their	 financial	 statements,	
because	 the	 U.S.	 Securities	 and	 Exchange	 Commission	 ruled	 that	 public	
corporations	 must	 disclose	 quantitative	 information	 about	 their	 derivatives	
activity.	Nowadays,	most	of	the	banks	and	hedge	funds	use	VaR	as	a	measure	of	
market	risk,	which	makes	VaR	become	one	of	the	most	popular	risk	measures	in	
the	world.	
Let	 𝑇 > 0	 denote	 the	 time	 horizon.	 Let	 𝑃Q	 and	 𝑃o 	 denote	 the	 current	 price	
and	 the	 future	 price	 at	 time	 𝑇	 of	 a	 stock.	 Let	 𝑐 ∈ (0,1)	 denote	 the	 confidence	
level(which	 is	 typically	 0.99	 or	 0.95).	 The	 quantity	 𝛼 = 1 − 𝑐 	 is	 called	 the	
tolerance	 level.	 The	 profit/loss	 generated	 by	 the	 portfolio	 at	 time	 𝑇 	 is	
represented	by	the	random	variable	 𝑃o − 𝑃Q.	The	value-at-risk	with	the	tolerance	
level	 𝛼	 is	defined	as	

𝑉𝑎𝑅t = −𝐹uv,u\
,1 𝛼 .	

Therefore,	VaR	is	simply	the	 𝛼	 quantile	of	the	loss/profit	random	variable	
with	a	minus	in	front.	The	minus	makes	it	positive	as	for	small	 𝛼	 the	quantile	
itself	is	usually	negative.	 	
Remark	1:	In	view	of	Quantile	Equivariant	Transformation	Theorem	

𝑉𝑎𝑅t = 𝑃Q − 𝐹uv
,1 𝛼 = −𝑃Q𝐹wv

,1 𝛼 ,	

where	 𝑅o 	 denotes	the	rate	of	return	from	the	stock:	

𝑅o =
𝑃o − 𝑃Q
𝑃Q

.	

	
Proof	
	

Let	 𝑅o = ℎ 𝑃o = uv,u\
u\

,	 ℎ	 be	 a	 non-decreasing	 and	 continuous	 function,	 from	

the	Quantile	Equivariant	Transformation	Theorem,	we	have:	

𝐹m uv
,1 𝛼 = ℎ(𝐹uv

,1(𝛼))	

⟹ 𝐹wv
,1 𝛼 =

𝐹uv
,1 𝛼 − 𝑃Q

𝑃Q
	

⟹−𝑃Q𝐹wv
,1 𝛼 = −𝑃Q

𝐹uv
,1 𝛼 − 𝑃Q

𝑃Q
= 𝑃Q − 𝐹uv

,1 𝛼 .	

∎	
This	is	why	the	alternative	definition	of	VaR	defines	it	as	the	 𝛼	 quantile	of	
the	return	random	variable	with	a	minus	in	front.	
Remark	2:	Alternatively,	we	can	consider	the	log-return	

𝑟o = 𝑙𝑛
𝑃o
𝑃Q
.	
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Then	in	view	of	Quantile	Equivariant	Transformation	Theorem	

𝑉𝑎𝑅t = 𝑃Q − 𝐹uv
,1 𝛼 = 𝑃Q 1 − exp 𝐹|v

,1 𝛼 .	

Proof	

Let	 𝑟o = ℎ 𝑃o = 𝑙𝑛 uv
u\
,	 ℎ	 is	a	non-decreasing	and	continuous	function,	from	the	

Quantile	Equivariant	Transformation	Theorem,	we	have:	

𝐹m uv
,1 𝛼 = ℎ(𝐹uv

,1(𝛼))	

⟹ 𝐹|v
,1 𝛼 = 𝑙𝑛

𝐹uv
,1(𝛼)
𝑃Q

	

⟹ 𝑃Q 1 − exp 𝐹|v
,1 𝛼 = 𝑃Q 1 − exp 𝑙𝑛

𝐹uv
,1 𝛼
𝑃Q

	

																																			= 𝑃Q 1 −
𝐹uv
,1 𝛼
𝑃Q

	

																											= 𝑃Q − 𝐹uv
,1 𝛼 .	

∎	
	
	
Remark	3:	If	 𝑃o 𝑃Q	 is	close	to	1,	then	 	

𝑟o ≈ 𝑅o.	
	
Proof	
	

𝑅o =
𝑃o − 𝑃Q
𝑃Q

=
𝑃o
𝑃Q
− 1 ⇒

𝑃o
𝑃Q
= 1 + 𝑅o 	

According	to	the	Taylor	expansion:	

𝑟o = 𝑙𝑛
𝑃o
𝑃Q
= ln 1 + 𝑅o = −1 R~1 𝑅o

R

𝑛 = 𝑅o − Ο 𝑅oN
-

R�1

	

And	 	
𝑃o
𝑃Q
→ 1 ⇒ 𝑅o =

𝑃o
𝑃Q
− 1 → 0	

Then	 Ο 𝑅oN 	 would	be	negligible;	we	have	 𝑟o ≈ 𝑅o .	
∎	

	
But	the	random	variables	 𝑟o 	 and	 𝑅o 	 have	different	distributions.	

2.4 Fat	tails	
Empirical	 studies	 show	 that	 the	 distribution	 of	 asset	 returns	 is	 usually	 not	
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normal,	 and	 instead	has	 fatter	 tails	 than	normal	distribution.	From	Daníelsson,	
Jorgensen,	Samorodnitsky(2013),	we	could	see	a	formal	definition	of	a	fat-tailed	
distribution.	Fat	 tails	means	 that	 the	 tails	vary	regularly	at	 infinity	so	 that	 they	
approximately	 follow	 a	 Pareto	 distribution,	 which	 like	 power	 expansion	 at	
infinity.	
A	cumulative	distribution	function	 𝐹(𝑥)	 varies	regularly	at	 −∞	 with	tail	index	
𝛼 > 0	 if	

lim
R→-

𝐹(−𝑡𝑥)
𝐹(−𝑡) = 𝑥,t,										∀𝑥 > 0,	

and	varies	regularly	at	 ∞	 with	tail	index	 𝛼 > 0	 if	

lim
R→-

1 − 𝐹(𝑡𝑥)
1 − 𝐹(𝑡) = 𝑥,t,								∀𝑥 > 0.	

	

It	gives	out	that	a	regularly	varying	distribution	has	a	tail	of	the	form	
𝐹 −𝑥 = 𝑥,t𝐿 𝑥 ,							𝑥 > 0.	

Where	 𝐿(𝑥)	 is	 a	 slowly	varying	 function	which	means	 ∀𝑥 > 0, 𝑡 → ∞	 we	have	
𝐿(𝑡𝑥) 𝐿(𝑡) → 1.	 And	the	constant	 𝛼 > 0	 is	the	tail	index.	

2.5 Liquidity	risk	
In	 order	 to	 understand	 liquidity	 risk,	 we	 need	 to	 understand	 liquidity	 first.	
Liquidity	describes	the	trade-off	between	how	quickly	an	asset	or	security	can	be	
bought	or	sold	in	the	market	and	how	large	the	degree	of	affecting	the	asset	or	
security’s	 price.	 In	 a	 liquid	 market,	 an	 asset	 or	 security	 can	 be	 sold	 quickly	
without	reducing	the	price	much.	However,	in	a	relatively	illiquid	market,	sell	an	
asset	or	security	quickly	will	need	to	reduce	its	price	to	some	degree.	
There	are	two	types	of	liquidity:	
1. Market	liquidity,	which	is	the	ability	that	a	market	allows	assets	to	be	bought	

and	sold	without	affecting	the	asset’s	price	to	a	significant	degree.	Cash	is	the	
most	liquid	asset.	

2. Funding	liquidity,	which	is	the	ability	an	institution	ensures	its	payment	with	
immediacy.	

Therefore,	liquidity	risk	is	the	risk	that	an	asset	or	security	could	not	be	sold	
quickly	enough	without	causing	great	change	in	the	price.	There	are	two	types	of	
liquidity	risk	respectively:	
1. Market	(asset)	liquidity	risk,	which	is	the	risk	that	a	position	cannot	be	closed	

(or	an	asset	cannot	be	sold)	quickly	enough	without	influencing	the	market	
price	to	a	significant	degree.	

2. Fund	(cash	flow)	liquidity	risk,	which	is	the	risk	that	an	institution	is	unable	
to	repay	its	liabilities	or	meet	its	obligations	when	they	come	due,	which	
leads	to	default.	

Here	in	this	paper,	we	focused	on	market	liquidity	risk.	Traditionally	it	is	
measured	by	the	following	3	aspects:	
1. ‘Width’,	which	is	also	called	bid-ask	spread.	It	is	the	difference	between	the	

ask	price	and	the	bid	price.	It	can	also	be	calculated	in	percentage	term,	
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which	is	proportional	spread.	It	is	the	difference	divided	by	the	average	of	the	
ask	price	and	the	bid	price.	It	is	measured	in	a	price	dimension.	

2. ‘Depth’.	It	is	the	market	ability	to	absorb	the	exit	of	a	position	without	
changing	the	price	dramatically,	which	is	that	the	number	of	the	securities	
can	be	bought	without	having	price	appreciation.	It	is	measured	in	a	quantity	
dimension.	

3. ‘Resiliency’.	It	is	the	time	the	market	need	to	go	back	from	incorrect	price.	It	is	
measured	in	a	time	dimension.	

There	is	also	another	measure	becoming	popular	recently,	which	is	‘volume’.	It	is	
the	amount	of	a	certain	security	traded	during	a	certain	time	period.	

2.6 The	definition	of	LIX	
This	 part	 is	 a	 summary	 of	 Oleh	 Danyliv,	 Bruce	 Bland,	 Daniel	 Nicholass(2014).	
They	give	out	a	new	measure	of	liquidity,	which	I	will	use	later	in	the	model.	So	
here	 I	 give	 a	 short	 summary	 about	 how	 they	 give	 out	 and	 define	 LIX(liquidity	
index).	 	
From	the	view	of	a	 fund	company,	dealing	with	 liquidity	risk	could	be	seen	the	
same	as	finding	an	answer	to	the	following	question:	what	amount	of	money	can	
one	trade/invest	without	moving	the	market?	In	fact,	it	is	a	very	hard	question	to	
answer,	especially	when	we	try	to	quantify	a	specific	amount	of	it.	It	also	depends	
on	how	much	time	the	trader	has	to	execute	it,	which	strategy	the	trader	uses	to	
close	 the	 position	 and	 how	 large	 the	 position	 is	 compared	 to	 average	 daily	
volume,	etc.	However,	if	we	look	at	the	problem	in	another	way,	it	will	give	us	a	
more	clear	and	precise	definition	of	liquidity.	What	amount	of	money	is	needed	to	
create	a	daily	single	unit	price	fluctuation	of	the	stock?	

𝐿𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦~
𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛
𝑃𝑟𝑖𝑐𝑒	𝑅𝑎𝑛𝑔𝑒 ≡

𝑉𝑜𝑙𝑢𝑚𝑒	×	𝑃𝑟𝑖𝑐𝑒
𝐻𝑖𝑔ℎ − 𝐿𝑜𝑤 .																									(1)		

The	 liquidity	measure	we	 got	 from	 the	 formula	 1 	 ranges	 from	 thousands	 to	
billions.	In	order	to	handle	the	numbers	more	easily,	we	take	the	logarithm	of	the	
amount,	which	reduces	the	range	to	manageable	numbers.	Since	the	value	we	got	
from	the	formula	 1 	 does	not	have	units	of	measurement,	it	is	reasonable	to	do	
so.	And	it	is	called	Liquidity	Index	(LIX):	

𝐿𝐼𝑋� = log1Q(
𝑉�𝑃���,�

𝑃���m,� − 𝑃���,�
),																																									(2)	

where	 𝑉� ! 	 is	the	trading	volume	today,	 𝑃���m,�	 is	the	highest	ask	price	today,	

𝑃���,�	 is	the	lowest	bid	price	today	and	 𝑃���,�	 is	the	average	of	ask	price	and	bid	
price.	A	logarithm	with	the	base	of	10	makes	the	 𝐿𝐼𝑋�	 into	a	range	roughly	from	
very	illiquid	5	to	very	liquid	10.	It	has	a	simple	meaning:	for	Sweden	stocks	the	
amount	of	capital	needed	to	create	1kr	price	fluctuations	can	be	estimated	as	
10��f� 	 kr.	
The	liquidity	measure	 (2)	 in	non-logged	version	 (1)	 has	already	been	used	in	
some	 published	 literature.	 In	 the	 UK	 government’s	 Foresight	 report	 by	
Linton(2012),	the	measure	 (1)	 was	used	to	investigate	the	evolution	of	market	
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liquidity	 with	 the	 following	 remark:	 “in	 the	 current	 environment	 a	 plausible	
alternative	to	close	return	is	to	use	 intraday	high	minus	 low	return,	since	there	
can	be	a	great	deal	of	intraday	movement	in	the	price	that	ends	in	no	change	at	
the	end	of	the	day’”.	
LIX	as	a	liquidity	measure	has	the	following	2	advantages:	
1. The	currency	value	is	eliminated	from	calculation,	so	we	can	compare	stocks	

on	different	international	markets	directly,	
2. The	 data	 that	 it	 requires	 is	 easy	 to	 have	 access	 to,	 comparing	 with	 other	

measures.	

2.7 Cost	of	liquidity	
In	order	to	calculate	the	cost	of	liquidity	(COL),	we	need	use	bid-ask	spread.	It	is	
the	 difference	 between	 the	 highest	 ask	 price	 today	 and	 the	 lowest	 bid	 price	
today:	

𝑆𝑝𝑟𝑒𝑎𝑑� = 𝑃���m,� − 𝑃���,�.	
It	can	also	be	calculated	in	percentage	term,	which	is	proportional	spread:	

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙	𝑠𝑝𝑟𝑒𝑎𝑑� =
𝑃���m,� − 𝑃���,�

𝑃���,�
,	

where	 𝑃���,�	 is	the	average	of	ask	price	and	bid	price.	The	full	spread	represents	
the	liquidity	cost	of	a	round	trip,	which	means	the	cost	of	buying	and	selling	the	
stock	today.	Here,	we	only	need	to	consider	the	liquidity	cost	of	selling	the	stock,	
hence	the	cost	of	liquidity	(COL)	is	only	half	of	the	spread.	

𝐶𝑂𝐿� =
1
2×𝑆𝑝𝑟𝑒𝑎𝑑� =

1
2 𝑃���m,� − 𝑃���,� ;	

𝐶𝑂𝐿� =
1
2×𝑃���,�×𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙	𝑠𝑝𝑟𝑒𝑎𝑑�;	

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝐶𝑂𝐿� =
1
2×𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙	𝑠𝑝𝑟𝑒𝑎𝑑� =

1
2
𝑃���m,� − 𝑃���,�

𝑃���,�
.	
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3. Liquidity	Adjusted	VaR	Model	 	
The	purpose	of	a	Liquidity	adjusted	VaR	model	is	to	incorporate	the	liquidity	risk	
into	VaR	model.	Bangia,	Diebold,	Schuermann	and	Stroughair(1999)	proposed	a	
model,	 which	 incorporated	 the	 exogenous	 liquidity	 risk	 into	 VaR	 model.	 They	
modeled	the	transaction	price	as	mid-price	plus	a	half	of	the	proportional	bid-ask	
spread:	

𝑃¡��,�~1 = 𝑃¡��,� exp 𝑟�~1 −
1
2𝑃�𝑆�~1,	

where	 𝑃¡�� 	 is	 the	middle	 price	 of	 the	 ask	 price	 and	 the	 bid	 price,	 𝑟�~1	 is	 the	
daily	 return	 between	 t	 and	 t+1	 and	 𝑆	 is	 a	 time-varying	 proportional	 bid-ask	
spread.	 Liquidity	 adjusted	 VaR	 is	 the	 sum	 of	 the	 normal	 VaR	 and	 Cost	 of	
liquidity(COL):	

𝐿𝑎𝑉𝑎𝑅 = 𝑃¡��,� 1 − exp 𝑧t𝜎|
£�|¡¤¥	¦¤w

+
1
2𝑃¡��,� 𝜇¨ + 𝑧t𝜎

©ª�

,	

where	 𝜎| 	 is	the	variance	of	the	daily	return,	 𝜇¨	 is	the	mean	of	the	proportional	
bid-ask	spread,	 𝜎«	 is	the	standard	deviation	of	the	proportional	bid-ask	spread.	
𝑧t 	 and	 𝑧t 	 are	 the	 𝛼 -percentile	 of	 the	 daily	 return	 distribution	 and	 the	
proportional	spread	distribution.	
Le	Saout	(2002)	extends	the	model	of	Bangia	et	al.	for	including	the	endogenous	
risk,	 by	 substituting	 the	 proportional	 bid-ask	 spread	which	 is	 used	 for	 Cost	 of	
liquidity	calculation	by	Weighted	Average	Spread	(WAS):	

𝐿𝑎𝑉𝑎𝑅 = 𝑃¡��,� 1 − exp 𝑧t𝜎|
£�|¡¤¥	¦¤w

+
1
2𝑃¡��,� 𝜇¨ ¦ + 𝑧t𝜎¨ ¦

©ª�

,	

where	 𝑆 𝑉 	 is	the	proportional	Weighted	Average	Spread,	which	is	a	function	of	
the	volume	of	the	certain	stock	we	have	in	the	portfolio.	
However,	 in	 order	 to	 get	Weighted	 Average	 Spread	 (WAS),	 we	 need	 the	 order	
book	data	from	the	stock	market,	which	is	quite	extensive	and	expensive.	
Based	on	the	idea	above,	so	instead	of	using	Weighted	Average	Spread	(WAS),	we	
use	 the	 liquidity	 measure	 LIX	 to	 forecast	 the	 spread.	 However,	 using	 LIX	 to	
forecast	 spread	 will	 produce	 unreasonable	 spread	 prediction	 under	 extreme	
situation.	In	order	to	give	out	more	realistic	prediction,	we	need	to	scale	it:	

𝐿𝑎𝑉𝑎𝑅 = 𝑁𝑜𝑟𝑚𝑎𝑙	𝑉𝑎𝑅 + 𝐶𝑂𝐿;	
𝐶𝑂𝐿 = 𝐴 ∗ 𝐶𝑂𝐿,	

where	 𝐴 > 0	 is	a	scale	coefficient,	Cost	of	 liquidity	(COL)	 is	half	of	 the	Spread,	
the	 Spread	 is	 a	 function	 of	 LIX	 and	 volume	 of	 certain	 stock	 we	 have	 in	 the	
portfolio.	 	

3.1 Model	of	Normal	VaR	
Firstly	we	calculated	the	one-day	stock	return	 𝑟�	 by	taking	the	logarithm	of	the	
ratio	of	 two	adjacent	prices.	The	price	 𝑃�	 is	estimated	by	taking	the	average	of	
bid	and	ask	price:	
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𝑟� = ln
𝑃�
𝑃�,1

.	

	
	
Then	we	assumed	the	daily	return	at	t+1	is	normally	distributed	with	the	mean	
𝐸 𝑟� 	 and	the	variance	 𝜎�N	

𝑟�~1~𝑁 𝐸 𝑟� , 𝜎�N .	
	
For	 the	 given	 confidence	 level	 we	 use	 both	 99%	 and	 95%.	 We	 calculate	 the	
standard	 normal	 distribution	 percentile	 of	 99%	 and	 95%.	 The	 1%	 left	 tail	 of	
normal	 distribution,	 Norminv(0.01)=-2.326.	 The	 5%	 left	 tail	 of	 normal	
distribution,	 Norminv(0.05)=-1.645.	 With	 the	 given	 99%	 confidence	 level,	 the	
worst	daily	return	at	time	t+1	will	be	𝑟�~1� = 𝐸 𝑟� − 2.326𝜎� .	Similarly	with	95%	
confidence	level	𝑟�~1� = 𝐸 𝑟� − 1.645𝜎� .	

Here,	 we	 consider	 the	 one-day	 horizon	 and	 thus	 we	 take	 the	 expected	 daily	
return	to	be	 𝐸 𝑟� = 0.	Hence,	the	worst	price	tomorrow	will	be	 	

𝑝�~1� = 𝑝�𝑒|�²³
´ .	

Therefore,	the	normal	Value	at	risk	for	one	share	of	the	stock	will	be	

99%	𝑉𝑎𝑅 = 𝑝� − 𝑝�~1� = 𝑝� 1 − 𝑒|�²³
´ = 𝑝� 1 − 𝑒,N.·N¸¹� ;	

95%	𝑉𝑎𝑅 = 𝑝� − 𝑝�~1� = 𝑝� 1 − 𝑒|�²³
´ = 𝑝� 1 − 𝑒,1.¸º»¹� .	

The	VaR	in	percentage	will	be	

99%	𝑉𝑎𝑅 = 1 − 𝑒,N.·N¸¹�;	

95%	𝑉𝑎𝑅 = 1 − 𝑒,1.¸º»¹�.	

We	 have	 the	 price	 directly	 on	 the	 market.	 The	 only	 parameter	 we	 need	 to	
estimate	here	 is	 𝜎� .	From	the	empirical	analysis,	 it	will	give	out	nice	results	by	
using	exponentially	weighted	moving	average.	

Exponentially	weighted	moving	average	gives	 less	weight	 to	 the	 further	data	 in	
the	past	and	more	weight	to	the	more	recent	data:	
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𝜎� = (
1 − 𝜆
1 − 𝜆o) 𝜆�,1 𝑟� − 𝐸 𝑟 N

o

��1

.	

T	 is	 the	 history	 time	 period	 we	 considered.	 𝜆	 is	 the	 decay	 factor	 which	 is	
between	 (0,1).	From	the	 industry	experience,	we	choose	 the	decay	 factor	 to	be	
0.94.	

For	the	portfolio	VaR,	We	also	need	to	estimate	the	covariance	 𝜎�½ .	Here	we	still	

use	exponentially	weighted	moving	average	way	to	do	it:	

𝜎�½ = (
1 − 𝜆
1 − 𝜆o) 𝜆�,1 𝑟�� − 𝐸 𝑟�� 𝑟½� − 𝐸 𝑟½�

o

��1

.	

In	order	to	get	the	portfolio	standard	deviation	 𝜎,	we	will	need	the	weight	of	
each	stock	in	the	portfolio	and	the	covariance	matrix:	

𝑊 = 𝑤1,𝑤N …𝑤R 	

𝑉 =
𝜎11N ⋯ 𝜎1RN
⋮ ⋱ ⋮
𝜎R1N ⋯ 𝜎RRN

	

As	for	the	weight,	VaR	of	the	cash	and	the	management	fee	is	considered	to	be	
zero.	So	we	only	consider	the	weight	of	the	stocks.	

Then	we	could	get	

𝜎N = 𝑤𝑣𝑤o.	

The	portfolio	percentage	VaR:	

99%	𝑉𝑎𝑅 = 1 − 𝑒,N.·N¸¹;	

95%	𝑉𝑎𝑅 = 1 − 𝑒,1.¸º»¹.	

However	the	assumption	that	the	daily	return	at	t+1	is	normally	distributed	may	
not	 be	 true.	 Empirical	 studies	 show	 that	 the	 asset	 returns	 is	 not	 normally	
distributed	and	in	fact	the	distribution	has	fat	tails.	Let’s	check	the	histogram	of	
different	stock	returns	in	comparison	with	normal	distribution.	
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We	could	see	from	the	figure	above,	the	distribution	of	the	stock	returns	has	fat	
tails.	 It	 is	 also	 called	 the	 tail	 coarseness	 problem.	 In	 order	 to	 deal	 with	 the	
problem,	by	Daníelsson	and	de	Vries	(2000),	we	could	use	extreme	value	theory	
(EVT),	which	gives	out	another	quantile	estimator.	

For	a	distribution	with	 fat	 tails,	 the	 tail	 asymptotically	 follows	a	power	 law,	 i.e.	
the	Pareto	distribution:	

𝐹 𝑥 = 1 − 𝐴𝑥,t.	

We	take	the	sample	size	to	be	 𝑛	 and	let	 𝑚 < 𝑛	 sufficiently	small.	Here	we	take	
the	sample	size	to	be	262,	which	is	one	year	history	instead	of	90	days,	because	
this	 method	 requires	 a	 relatively	 large	 sample	 size	 to	 accurately	 estimate	 the	
quantile.	 There	 is	 no	 good	 way	 to	 decide	 which	 m	 is	 the	 best,	 so	 we	 will	 try	
different	m.	Then	we	could	use	the	Hill	estimator	to	estimate	the	tail	index	 𝛼:	

1
𝛼(𝑚) =

1
𝑚 𝑙𝑛

𝑋(�)
𝑋(¡~1)

¡

��1

,	
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where	 𝑋(�) 	 indicates	 order	 statistics	 of	 stock	 daily	 return.	 So	 we	 need	 to	

rearrange	all	the	history	stock	daily	return	from	smallest	to	largest.	Then	we	will	
get	the	quasi	maximum	likelihood	VaR	estimator	

99%	𝑉𝑎𝑅 = 𝑋(¡~1)
𝑚 𝑛
0.01

1
t ¡

;	

95%	𝑉𝑎𝑅 = 𝑋(¡~1)
𝑚 𝑛
0.05

1
t ¡

.	

As	for	the	portfolio	VaR,	 instead	of	rearranging	all	the	history	single	stock	daily	

return	 from	 smallest	 to	 largest	 and	 give	 the	 value	 to	 𝑋(�),	 we	 calculate	 all	 the	

history	 portfolio	 daily	 return.	 And	 let	 𝑋(�)	 be	 the	 order	 statistics	 of	 portfolio	

daily	return.	Then	the	formula	will	give	out	portfolio	VaR.	

The	 quasi	 maximum	 likelihood	 VaR	 estimator	 is	 estimated	 by	 using	 all	
observations	 in	 the	 tail,	 which	 makes	 it	 less	 sensitive	 to	 the	 tail	 coarseness	
problem.	Hence,	it	produces	more	accurate	results.	

3.2 Model	of	Cost	of	liquidity(COL)	
Firstly,	we	know	that	Cost	of	liquidity	depends	on	the	spread	

𝐶𝑂𝐿�~1 =
1
2×𝑆𝑝𝑟𝑒𝑎𝑑�~1 =

1
2 𝑃���m,�~1 − 𝑃���,�~1 .	

In	 order	 to	 estimate	 the	 cost	 of	 liquidity	 at	 𝑡 + 1,	we	 only	 need	 to	 predict	 the	
spread	at	 𝑡 + 1.	According	to	the	definition	of	LIX,	we	see	that	

𝐿𝐼𝑋� = log1Q(
𝑉�𝑃���,�

𝑃���m,� − 𝑃���,�
)	;	

𝑆𝑝𝑟𝑒𝑎𝑑� = 𝑃���m,� − 𝑃���,� =
𝑉�𝑃���,�
10��f� .	

Then	we	see	the	cost	of	liquidity	as	

𝐶𝑂𝐿�~1 =
1
2
𝑉𝑃���,�~1
10��f�²³ ;	

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝐶𝑂𝐿�~1 =
𝐶𝑂𝐿

𝑃���,�~1
=
1
2

𝑉
10��f�²³ ,	

where	 𝑉	 is	 the	 volume	 of	 stock	 we	 have	 in	 the	 portfolio,	 and	 𝐿𝐼𝑋�~1	 is	 the	
liquidity	 index	 at	 𝑡 + 1.	 We	 could	 see	 it	 is	 a	 good	 measure	 to	 liquidity	 risk,	
because	the	higher	the	volume	we	have	in	the	portfolio,	the	higher	the	liquidity	
cost	will	be.	And	the	higher	 the	LIX	we	have	(which	means	the	more	 liquid	the	
stock	is),	the	lower	the	liquidity	cost	will	be.	However,	the	volume	we	have	in	the	
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portfolio	 sometimes	 is	much	 larger	 than	 the	 trading	 volume	 in	 the	market	 for	
small	 cap	 stocks	 under	 extreme	 condition,	 which	 will	 produce	 unreasonable	
𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝐶𝑂𝐿	 over	100%.	In	order	to	deal	with	this	situation,	we	introduce	a	
scale	coefficient	to	scale	it:	

𝐶𝑂𝐿�~1 = 𝐴 ∗ 𝐶𝑂𝐿�~1;	
𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝐶𝑂𝐿�~1 = 𝐴 ∗ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝐶𝑂𝐿�~1,	

where	 the	 constant	 𝐴 > 0	 is	 the	 scale	 coefficient.	 Then	we	have	 two	problems	
here:	 one	 is	 deciding	 A,	 the	 other	 is	 estimating	 the	 LIX	 at	 𝑡 + 1.	 For	 the	 first	
problem,	it	is	quite	subjective	to	choose	a	scale	since	we	lack	order	book	data	to	
check	 how	 the	 spread	 will	 look	 like	 under	 both	 crisis	 situation	 and	 colossal	
transaction	volume.	So,	we	used	the	experience	from	industry	and	discussed	with	
the	experienced	risk	controller	in	the	hedge	fund.	We	decided	to	set	 𝐴 = 1/10.	It	
is	 just	an	experience	based	choice.	When	we	could	have	access	 to	more	data	 in	
the	future,	this	coefficient	can	be	calibrated	to	provide	a	better	result.	 	
For	the	second	problem,	we	experimented	two	ways:	

1) Estimate	 𝑳𝑰𝑿𝒕~𝟏	 by	taking	average	
Nowadays	 in	the	 industry,	we	use	the	ratio	between	the	volume	we	have	 in	the	
portfolio	 and	 past	 20	 days	 average	 daily	 market	 trading	 volume	 to	 measure	
liquidity	risk.	With	the	similar	idea,	we	could	use	the	past	20	days	average	LIX	to	
estimate	the	LIX	at	𝑡 + 1:	

𝐿𝐼𝑋�~1 =
𝐿𝐼𝑋� + 𝐿𝐼𝑋�,1 + ⋯+ 𝐿𝐼𝑋�,1Ù

20 ;	

𝐿𝐼𝑋� = log1Q
𝑉�𝑃���,�

𝑃���m,� − 𝑃���,�
,	

where	 𝑉! 	 is	 the	 trading	 volume	 at	 𝑡,	 𝑃���m,� 	 is	 the	 highest	 ask	 price	 at	 𝑡	 ,	
𝑃���,�	 is	the	lowest	bid	price	at	 𝑡	 and	 𝑃���,�	 is	the	average	of	ask	price	and	bid	
price.	

2) Estimate	 𝑳𝑰𝑿𝒕~𝟏	 by	assuming	normal	distribution	
Instead	of	simply	taking	average	of	the	past	20	days	data,	we	could	assume	that	
the	 𝐿𝐼𝑋�~1	 is	 normally	 distributed	 with	 the	 mean	 𝐸 𝐿𝐼𝑋� 	 and	 the	 variance	
𝜎��f,�N 	

𝐿𝐼𝑋�~1~𝑁 𝐸 𝐿𝐼𝑋� , 𝜎��f,�N .	

	
We	also	assume	that	under	adverse	market	situation,	the	extreme	change	in	the	
stock	price	and	liquidity	index	happen	at	the	same	time.	
Therefore,	similar	to	the	normal	VaR	model,	we	use	confidence	level	both	99%	
and	95%.	The	1%	left	tail	of	normal	distribution,	Norminv(0.01)=-2.326.	The	5%	
left	tail	of	normal	distribution,	Norminv(0.05)=-1.645.	With	the	given	99%	
confidence	level,	the	worst	LIX	at	time	t+1	will	be	
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	𝐿𝐼𝑋�~1� = 𝐸 𝐿𝐼𝑋� − 2.326𝜎��f,�.	

Similarly	with	95%	confidence	level	

	𝐿𝐼𝑋�~1� = 𝐸 𝐿𝐼𝑋� − 1.645𝜎��f,�,	

where	the	equally	weighted	 𝜎	 estimator	

𝜎��f,� =
1
𝑇 𝐿𝐼𝑋� − 𝐸 𝐿𝐼𝑋 N

o

��1

.	

As	for	the	portfolio	cost	of	liquidity,	it	is	just	the	sum	of	each	stock’s	cost	of	
liquidity.	
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4. Results	and	conclusion	

4.1 Numerical	results	
In	 order	 to	 compare	 the	 liquidity	 effect	 on	 different	 funds,	 we	 perform	 the	
calculation	on	two	funds,	one	is	a	large	cap	fund	and	another	is	a	small	cap	fund.	
It	 is	known	 that	 the	small	 cap	 fund	has	higher	 liquidity	 risk	 than	 the	 large	cap	
fund.	We	want	to	quantify	the	liquidity	risk	and	compare	the	results	of	Liquidity	
adjusted	 VaR	 between	 different	 funds.	 Running	 the	 MATLAB(R2016b)	 code	 in	
Appendix,	we	could	get	the	results.	
Firstly,	 let	 us	 analyze	 the	 result	 from	 the	 large	 cap	 fund	 of	 calculating	 the	VaR	
without	considering	 tail	 coarseness	problem	and	 the	 result	of	both	methods	of	
predicting	LIX.	
We	could	see	from	the	Table	1:	the	first	result	of	a	large	cap	fund,	‘NETIB’	has	a	
relatively	 high	 Cost	 of	 liquidity	 compared	with	 other	 stocks	 in	 the	 fund.	 If	 we	
check	 the	 ratio	between	 the	volume	we	have	 in	 the	portfolio	 and	past	20	days	
average	daily	market	trading	volume,	‘NETIB’	has	an	ratio	of	11.47,	which	means	
the	 share	 we	 have	 in	 the	 portfolio	 is	 11.47	 times	 of	 the	 average	 daily	 trading	
volume	 in	 the	 market.	 Indeed,	 it	 yields	 a	 relatively	 high	 liquidity	 risk.	 This	
corroborate	our	way	of	quantifying	 liquidity	 risk.	We	could	 see	 from	 the	 result	
that	for	the	large	cap	fund	the	liquidity	risk	has	a	much	smaller	impact	than	VaR	
during	adverse	market	situation.	 	
The	assumption	that	under	adverse	market	situation,	the	extreme	change	in	the	
stock	price	and	liquidity	index	happens	at	the	same	time	may	not	be	true	in	real	
world.	In	fact,	when	the	stock	price	drops	down	extremely,	the	liquidity	goes	up	
firstly	and	then	 it	goes	down.	This	 is	why	the	second	method	of	calculating	the	
liquidity	 risk	 produces	 higher	 outcome	 comparing	 to	 the	 experience	 from	 the	
industry.	Therefore,	we	prefer	the	first	method	of	estimating	the	cost	of	liquidity.	
When	we	deal	with	 the	 small	 cap	 fund,	we	only	keep	 the	method	of	 taking	 the	
average.	
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Table	1:	the	first	result	of	a	large	cap	fund	
W
here	LIX_avg	m

eans	the	Liquidity	Index	got	by	using	m
ethod	1)	

						99%
LIX_nor	m

eans	the	Liquidity	Index	got	by	using	m
ethod	2)	w

ith	99%
	

						95%
LIX_nor	m

eans	the	Liquidity	Index	got	by	using	m
ethod	2)	w

ith	95%
	

						COL_avg	m
eans	the	Cost	of	liquidity	got	by	using	m

ethod	1)	
						99%

COL_nor	m
eans	the	Cost	of	liquidity	got	by	using	m

ethod	2)	w
ith	99%

	
						95%

COL_nor	m
eans	the	Cost	of	liquidity	got	by	using	m

ethod	2)	w
ith	95%
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Table	2:	the	first	result	of	a	small	cap	fund	
Where	LIX_avg	means	the	Liquidity	Index	got	by	taking	the	average	
	 	 	 	 	 	 COL_avg	means	the	Cost	of	liquidity	got	by	taking	the	average	
We	could	see	from	the	tables	1	and	2	that	both	funds	have	similar	VaR,	but	the	
small	 cap	 fund	has	much	higher	Cost	of	 liquidity	 than	 the	 large	 cap	 fund,	 from	
8.61%	to	0.16%.	 ‘OEM	International	B’	presents	a	very	high	Cost	of	 liquidity.	 If	
we	check	the	ratio	between	the	volume	we	have	in	the	portfolio	and	past	20	days	
average	 daily	 market	 trading	 volume,	 ‘OEM	 International	 B’	 has	 an	 ratio	 of	
701.16,	which	means	 the	 share	we	have	 in	 the	portfolio	 is	701.16	 times	of	 the	
average	daily	trading	volume	in	the	market.	According	to	the	empirical	industry	
experience,	 selling	 10%	of	 the	 average	 daily	 trading	 volume	will	 not	 affect	 the	
stock	price	significantly.	It	means	that	it	will	take	7010	trading	days	(26	years)	to	
exit	 the	 position,	 which	 definitely	 gives	 out	 a	 huge	 liquidity	 risk.	 Therefore,	
dealing	with	 large	cap	fund,	 the	 liquidity	risk	 is	not	so	significant.	Dealing	with	
small	cap	fund,	liquidity	risk	is	something	we	need	to	pay	attention.	
Secondly,	 since	 we	 can	 see	 from	 the	 histogram	 of	 stock	 returns	 that	 the	
distribution	 of	 the	 stock	 returns	 has	 fat	 tails.	 We	 used	 the	 quasi	 maximum	
likelihood	VaR	estimator	to	get	more	accurate	VaR,	and	we	did	some	experiments	
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of	different	m	on	both	funds.	
We	can	see	from	the	Table	3	and	4	that	when	 𝑚 𝑛	 is	near	the	quantile,	it	gives	
out	a	more	accurate	estimation	of	VaR.	For	 the	small	cap	 fund,	since	we	have	a	
newly	 listed	 company,	 we	 only	 have	 a	 trading	 history	 of	 173	 days.	 Instead	 of	
choosing	 𝑚 = 12,13,14 ,	 we	 chose	 𝑚 = 8,9,10 	 for	 small	 cap	 fund	 when	
predicting	 the	 95%	𝑉𝑎𝑅.	We	 can	 also	 see	 that	 the	 VaR	 estimation	 usually	 is	 a	
little	bit	higher	when	we	consider	the	fat	tail	of	the	stock	return	distribution.	 	
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Table	3:	the	second	result	of	a	large	cap	fund
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Table	4:	the	second	result	of	a	sm
all	cap	fund	



	 25	

In	the	end,	we	decided	to	combine	the	quasi	maximum	likelihood	VaR	estimator	
and	LIX	estimated	by	taking	the	average	to	get	the	final	liquidity	adjusted	VaR	for	
the	portfolio.	

	
Table	5:	the	final	result	of	a	small	cap	fund	
We	can	see	from	the	table	5	and	6	that	the	large	cap	99%	Liquidity	Adjusted	VaR	
is	1.64%,	which	1.48%	comes	from	VaR	and	0.16%	comes	from	liquidity	risk,	the	
small	cap	99%	Liquidity	Adjusted	VaR	is	11.04%,	which	2.43%	comes	from	VaR	
and	8.61%	comes	 from	liquidity	risk.	By	comparing	the	stock	LIX	 in	two	funds,	
we	can	observe	that	 the	stocks	 in	the	small	cap	fund	are	more	 illiquid	than	the	
stocks	 in	the	 large	cap	fund.	 It	also	explains	the	reason	why	the	small	cap	fund	
suffers	higher	liquidity	risk	than	the	large	cap	fund.	 	
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Table	6:	the	final	result	of	a	large	cap	fund
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4.2 Conclusion	
In	this	thesis,	the	Liquidity	adjusted	VaR	model	managed	to	avoid	the	weakness	
of	the	normal	VaR	model	by	incorporating	the	liquidity	risk.	It	makes	the	result	
more	 realistic	 since	 it	 is	 considered	 that	 the	 real	 price	 of	 transaction	 deviates	
from	the	mid	price	of	the	spread.	Due	to	the	limited	data	we	accessed,	we	used	
the	 LIX	 to	 predict	 the	 liquidity	 and	 spread	 of	 the	 stock.	 It	 yields	 results	 that	
match	the	industry	experience.	By	comparing	the	cost	of	liquidity,	we	managed	to	
distinguish	 liquid	portfolio	 and	 illiquid	portfolio.	 So	 the	Liquidity	 adjusted	VaR	
reflected	the	market	risk	more	precisely.	
For	a	future	work,	if	we	have	access	to	the	limit	order	book	data,	we	can	use	it	to	
predict	the	liquidity	and	spread	from	another	aspect.	Then	we	can	compare	the	
results	we	get	from	both	aspects.	
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Appendix:	
	
The	MATLAB	code	
% Peiyu Wang master thesis 
clear all 
close all 
clc 
  
%load the data from excel 
load StockReturnHistory 
load PriceHistory 
load weight 
load LIX_history 
load market_trading_volume 
load Volume_in_portfolio 
  
%%Model of normal VaR 
T=90; %The history period 
lamda=0.94; %The decay factor 
a=norminv(0.01);%The 1% or 5% left tail of normal distribution 
N=21;%how many stocks in the portfolio 
  
%Calculate the exponential weight 
w=(1-lamda)/(1-lamda^T)*lamda.^(0:T-1); 
%We get the last 90 days stock daily return 
SRhistory=StockReturnHistory(end:-1:end-(T-1),:); 
%Calculate the mean of the daily return of all the stocks 
E_sr=mean(SRhistory); 
M_sr=SRhistory-E_sr; 
%Calculate the Exponentially weighted moving average sigma 
sigma_sr=sqrt(w*M_sr.^2); 
  
%Then we can estimate the percentage VaR for each stock 
VaR=1-exp(a*sigma_sr); 
  
%Calculate the exponentially weighted Covarience matrix V 
V=zeros(N,N); 
for i=1:N 
    for j=1:N 
        V(i,j)=w*(M_sr(:,i).*M_sr(:,j)); 
    end 
end 
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sigma_portfolio=sqrt(weight'*V*weight); 
Var_portfolio=1-exp(a*sigma_portfolio) 
  
%for write the result into the excel 
%xlswrite('weight','VaR','C1:C21'); 
  
%%Model of Quasi maximum likelihood VaR 
m=14; 
%rearrange the Stock return history with one year 
Rear_Ln_dailyreturn=sort(StockReturnHistory); 
%rearrange the Stock return history with 90 days 
RA_SRhistory=sort(SRhistory); 
al=zeros(m,21); 
for i=1:m 
    al(i,:)=Rear_Ln_dailyreturn(i,:)./Rear_Ln_dailyreturn(m+1,:); 
    %al(i,:)=RA_SRhistory(i,:)./RA_SRhistory(m+1,:) 
end 
%calculate the one over alpha, which alpha is the tail index 
one_over_alpha=sum(al)/m; 
%calculate the quasi maximum likelihood VaR estimator 
QML_VaR=-Rear_Ln_dailyreturn(m+1,:).*(m/262/0.05).^one_over_alpha; 
%QML_VaR=RA_SRhistory(m+1,:).*(m/T/0.01).^one_over_alpha; 
  
%calculate the history portfolio daily return 
Por_Rhistory=StockReturnHistory*weight; 
%rearrange the Portfolio return history with one year 
Rear_Por_Rhistory=sort(Por_Rhistory); 
bl=zeros(m,1); 
for i=1:m 
    bl(i)=Rear_Por_Rhistory(i)./Rear_Por_Rhistory(m+1); 
end 
%calculate the one over alpha for the portfolio, which alpha is the tail 

index 
Por_one_over_alpha=sum(bl)/m; 
%calculate the quasi maximum likelihood VaR estimator for portfolio 
Por_QML_VaR=-Rear_Por_Rhistory(m+1).*(m/262/0.05).^Por_one_over_alpha

; 
  
%%Model of Cost of liquidity 
  
% 1.by taking the past 20 days average 
  
%set the scale coefficient 
A=1/10; 
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%We get the last 20 days LIX 
Lhistory=LIX_history(end:-1:end-19,:); 
%get the past 20 days average LIX 
LIX_average=mean(Lhistory); 
%Calculate the cost of liquidity 
COL_average=A.*Volume_in_portfolio'./(2*10.^LIX_average); 
COL_average_port=COL_average*weight 
  
% 2.by assuming normal distribution 
  
%We get the last 90 days LIX 
LIhistory=LIX_history(end:-1:end-(T-1),:); 
%Calculate the mean of LIX of all the stocks 
E_LIX=mean(LIhistory); 
M_LIX=LIhistory-E_LIX; 
%Calculate the sigma of LIX of all the stocks 
w_LIX=ones(1,T)*1/T; 
sigma_LIX=sqrt(w_LIX*M_LIX.^2); 
%Then we can estimate the LIX for each stock 
LIX_nor=E_LIX+a*sigma_LIX; 
%Calculate the cost of liquidity 
COL_nor=A.*Volume_in_portfolio'./(2*10.^LIX_nor); 
COL_nor_port=COL_nor*weight 
  
%draw histogram of stock returns in comparison with normal distribution 
% for i=1:21 
%     figure('Name','stock returns in comparison with normal 

distribution') 
%     

histogram(SRhistory(:,i),[-0.08:0.005:0.08],'Normalization','pdf') 
%     hold on 
%     y = -0.08:0.005:0.08; 
%     mu = mean(SRhistory(:,i)); 
%     sigma=sqrt((ones(1,T)*1/T)*(SRhistory(:,i)-mu).^2); 
%     f = exp(-(y-mu).^2./(2*sigma^2))./(sigma*sqrt(2*pi)); 
%     title('histogram of stock returns in comparison with normal 

distribution') 
%     xlabel('stock returns') 
%     ylabel('density') 
%     plot(y,f,'LineWidth',1.5) 
% end 
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