
Literature Review on Event Cameras

Jianhao JIAO

The Hong Kong University of Science and Technology

November 20, 2020

Outline

- 1. Challenges on Traditional Computer Vision
- 2. Introduction to Event-based Cameras
- 3. Some Important Tasks, Solutions, and Opportunities
- 4. Recap and Resources

Open Challenges in Computer Vision

The past 60 years of research have been devoted to frame-based cameras ...but they are not good enough!

Latency & Motion blur

Dynamic Range

Event cameras do not suffer from these problems!

Reference: T-PAMI 2020 paper

Event-based Vision: A Survey

Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara Bartolozzi, Brian Taba, Andrea Censi, Stefan Leutenegger, Andrew Davison, Jörg Conradt, Kostas Daniilidis, Davide Scaramuzza

Abstract— Event cameras are bio-inspired sensors that work radically different from traditional cameras. Instead of capturing images at a fixed rate, they measure per-pixel brightness changes asynchronously. This results in a stream of events, which encode the time, location and sign of the brightness changes. Event cameras posses outstanding properties compared to traditional cameras: very high dynamic range (140 dB vs. 60 dB), high temporal resolution (in the order of µs), low power consumption, and do not suffer from motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as high speed and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world.

Index Terms—Event Cameras, Bio-Inspired Vision, Asynchronous Sensor, Low Latency, High Dynamic Range, Low Power,

1 Introduction and Applications

HE brain is imagination, and that was exciting to me; I wanted to build a chip that could imagine something¹." that is how Misha Mahowald, a graduate student at Caltech in 1986, started to work with Prof. Carver Mead on the stereo problem from a joint biological and engineering per-

as well as new computer vision and robotic tasks. Sight is, by far, the dominant sense in humans to perceive the world, and, together with the brain, learn new things. In recent years, this technology has attracted a lot of attention from both academia and industry. This is due to the availability of prototype event cameras and the advantages that these devices offer to taskle problems that are currently unfoacible.

http://rpg.ifi.uzh.ch/docs/EventVisionSurvey.pdf

What is an event camera?

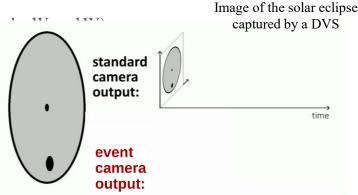
Novel sensor that measures only **motion in the scene**

First commercialized in 2008 by T. Delbruck (UZHÐ) under the name of Dynamic Vision Sensor

(DVS)

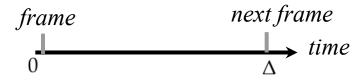
Advantages:

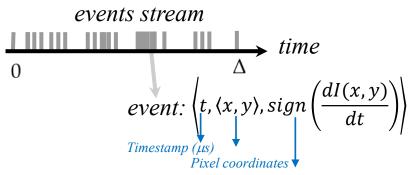
- High temporal resolution (1 MHz clock)
- Low-latency ($\sim 1 \mu s$) -> No motion blur
- High dynamic range (140 dB instead of 60 dB)


• Ultra-low power (implicit feature extraction, mean

Traditional vision algorithms cannot be used because:

- Asynchronous pixels
- No intensity information (only binary intensity changes)

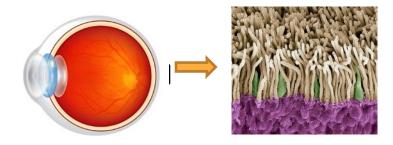

Mini DVS sensor from IniVation.com


Video from here: https://youtu.be/LauQ6LWTkxM?t=30

Camera vs Event Camera

• A traditional camera outputs frames at fixed time intervals:

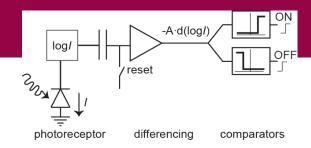
■ By contrast, a **DVS** outputs **asynchronous events** at *microsecond* **resolution**. An event is generated each time a single pixel detects an intensity changes value

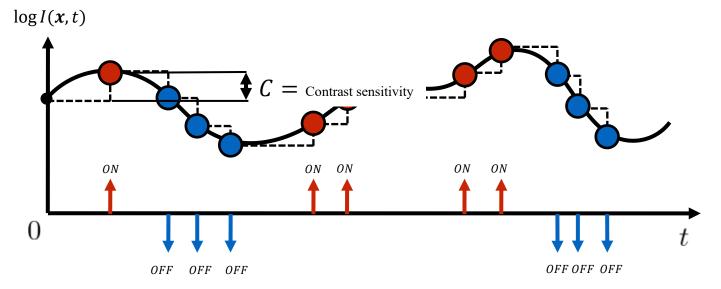

Event polarity (or sign) (-1 or 1): increase or decrease of brightness

Event cameras are inspired by the Human Eye

Human retina:

- 130 million **photoreceptors**
- But only 2 million **axons**!





Generative Event Model

Consider the intensity at a single pixel...

$$\pm C = \log I(x, t) - \log I(x, t - \Delta t)$$

Events are triggered asynchronously

Lichtsteiner et al., A 128x128 120 dB 15µs Latency Asynchronous Temporal Contrast Vision Sensor, IEEE Journal of Solid-State Circuits, 2008

Event Camera Output with No Motion

Without motion, only background noise is output

Standard Camera

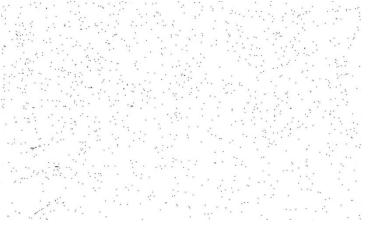
Event Camera (ON, OFF events)

$$\Delta T = 40 \text{ ms}$$

Event Camera Output with Relative Motion

Standard Camera

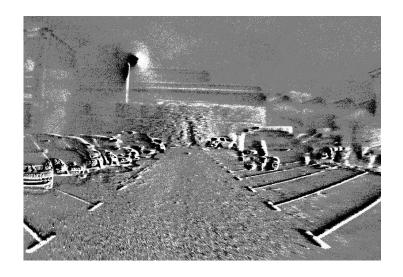
Event Camera (ON, OFF events)


 $\Delta T = 10 \text{ ms}$

Event Camera Output with Relative Motion

Standard Camera

Event Camera (ON, OFF events)



 $\Delta T = 40 \text{ ms}$

An example: Low-light Sensitivity (night drive)

GoPro Hero 6

Event Camera by Prophesee White = Positive events Black = Negative events

High-speed vs Event Cameras

	High speed camera	Standard camera	Event Camera
Max fps or measurement rate	Up to 1MHz	100-1,000 fps	1MHz
Resolution at max fps	64x16 pixels	>1Mpxl	>1Mpxl
Bits per pixels (event)	12 bits	8-10 per pixel	~40 bits/event {t,(x,y),p)}
Weight	6.2 Kg	30 g	30 g
Active cooling	yes	No cooling	No cooling
Data rate	1.5 GB/s	32MB/s	~1MB/s on average (depends on dynamics)
Mean power consumption	150 W + external light	1 W	1 mW
Dynamic range	n.a.	60 dB	140 dB

Current commercial applications of event cameras

• Internet of Things (IoT)

1. Low-power, always-on devices for monitoring and surveillance

• Automotive:

- 1. low-latency, high dynamic range (HDR) object detection
- 2. low-power training & inference
- 3. low-memory storage

AR/VR

1. low-latency, low-power tracking

• Industrial automation

1. Fast pick and place

Who sells event cameras and how much are they?

- <u>Inivation</u>:
 - 1. DAVIS sensor: frames, events, IMU.
 - 2. Resolution: ~QVGA (346x260 pixels)
 - 3. Cost: 6,000 USD
- <u>Insightness</u>:
 - 1. RINO sensor: frames, events, IMU.
 - **2. Resolution:** ~QVGA (320x262 pixels)
 - 3. Cost: 6,000 USD
- <u>Prophesee</u>:
 - 1. ATIS sensor: events, IMU, absolute intensity at the event pixel
 - 2. Resolution: 1M pixels
 - 3. Cost: 4,000 USD
- <u>CelexPixel Technology</u>:
 - 1. Celex One: events, IMU, absolute intensity at the event pixel
 - 2. Resolution: 1M pixels
 - 3. Cost: 1,000 USD.
- Samsung Electronics
 - 1. Samsung DVS: events, IMU
 - 2. Resolution: up to 1Mpxl
 - 3. Cost: not listed

Comparison of current event cameras

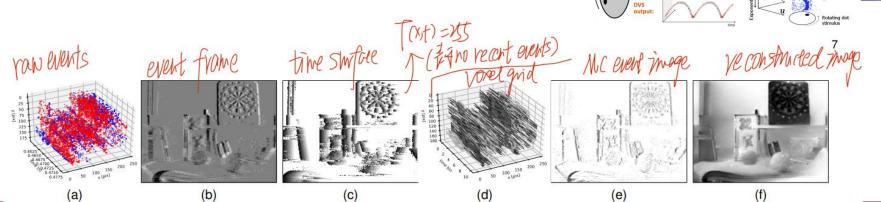
.		iniVation	V		Prop	ohesee V			Samsung		Cele	Pixel	Insightness \
model	DVS128	DAVIS240	DAVIS346	ATIS	Gen3 CD	Gen3 ATIS	Gen 4 CD	DVS-Gen2	DVS-Gen3	DVS-Gen4	CeleX-IV	CeleX-V	Rino 3
Reference	2008 [2]	2014 [4]	2017	2011 [3]	2017 [67]	2017 [67]	2020 [68]	2017 [5]	2018 [69]	2020 [39]	2017 [70]	2019 [71]	2018 [72]
lution (pixels)	128×128	240×180	346×260	304×240	640×480	480×360	1280×720	640×480	640×480	1280×960	768×640	1280×800	320×262
ncy (µs)	12μs @ 1klux	12μs @ 1klux	20	3	40 - 200	40 - 200	20 - 150	65 - 410	50	150	10	8	125μs @ 10lux
nmic range (dB)	120	120	120	143	> 120	> 120	> 124	90	90	100	90	120	> 100
contrast sensitivity (%)	17	11	14.3 - 22.5	13	12	12	11	9	15	20	30	10	15
er consumption (mW)	23	5 - 14	10 - 170	50 - 175	36 - 95	25 - 87	32 - 84	27 - 50	40	130	-	400	20-70
size (mm ²)	6.3×6	5×5	8 × 6	9.9×8.2	9.6×7.2	9.6×7.2	6.22×3.5	8×5.8	8×5.8	8.4×7.6	15.5×15.8	14.3×11.6	5.3×5.3
size (µm ²)	40×40	18.5×18.5	18.5×18.5	30×30	15×15	20×20	4.86×4.86	9 × 9	9 × 9	4.95×4.95	18×18	9.8×9.8	13 × 13
actor (%)	8.1	22	22	20	25	20	> 77	11	12	22	8.5	8	22
oly voltage (V)	3.3	1.8 & 3.3	1.8 & 3.3	1.8 & 3.3	1.8	1.8	1.1 & 2.5	1.2 & 2.8	1.2 & 2.8		1.8 & 3.3	1.2 & 2.5	1.8 & 3.3
onary noise (ev/pix/s) at 25C	0.05	0.1	0.1	-	0.1	0.1	0.1	0.03	0.03		0.15	0.2	0.1
OS technology (nm)	350	180	180	180	180	180	90	90	90	65/28	180	65	180
	2P4M	1P6M MIM	1P6M MIM	1P6M	1P6M CIS	1P6M CIS	BI CIS	1P5M BSI			1P6M CIS	CIS	1P6M CIS
scale output	no	yes	yes	yes	no	yes	no	no	no	no	yes	yes	yes
scale dynamic range (dB)	NA	55	56.7	130	NA	> 100	NA	NA	NA	NA	90	120	50
frame rate (fps)	NA	35	40	NA	NA	NA	NA	NA	NA	NA	50	100	30
Bandwidth (Meps)	1	12	12	-	66	66	1066	300	600	1200	200	140	20
face	USB 2	USB 2	USB 3		USB 3	USB 3	USB 3	USB 2	USB 3	USB 3			USB 2
output	no	$1\mathrm{kHz}$	1 kHz	no	$1\mathrm{kHz}$	$1\mathrm{kHz}$	no	no	$1\mathrm{kHz}$	no	no	no	$1\mathrm{kHz}$
a line a	Reference ution (pixels) cy (µs) mic range (dB) contrast sensitivity (%) r consumption (mW) size (mm²) size (mm²) ctor (%) ly voltage (V) nary noise (ev/pix/s) at 25C S technology (nm) sicale output cale dynamic range (dB) frame rate (fps) Bandwidth (Meps) ace	Reference ution (pixels) 2008 [2] 128 × 128 (2) (128) (2) 128 × 128 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	DVS128 DAVIS240	DVS128 DAVIS240 DAVIS346 Reference 2008 [2] 128 × 128 240 × 180 346 × 260 12µs @ 1klux 12µs @ 1klux 120	DVS128 DAVIS240 DAVIS346 ATIS	DVS128 DAVIS240 DAVIS346 ATIS Gen3 CD	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DVS128 DAVIS240 DAVIS346 ATIS Gen3 CD Gen3 ATIS Gen 4 CD	DVS128 DAVIS240 DAVIS346 ATIS Gen3 CD Gen3 ATIS Gen 4 CD DVS-Gen2	DVS128 DAVIS240 DAVIS346 ATIS Gen 3 CD Gen 3 ATIS Gen 4 CD DVS-Gen 2 DVS-Gen 3	DVS128 DAVIS240 DAVIS346 ATIS Gen 3 CD Gen 3 ATIS Gen 4 CD DVS-Gen 2 DVS-Gen 3 DVS-Gen 4	DVS128 DAVIS240 DAVIS346 ATIS Gen3 CD Gen3 ATIS Gen 4 CD DVS-Gen2 DVS-Gen3 DVS-Gen4 CeleX-IV	DVS128 DAVIS240 DAVIS346 ATIS Gen3 CD Gen3 ATIS Gen4 CD DVS-Gen2 DVS-Gen3 DVS-Gen4 CeleX-IV Cele

Table from [Guillermo et al., T-PAMI'20], Table 1

[95] P. Lichtsteiner, C. Posch, and T. Delbruck. "A 128×128 120 dB 15 μs latency asynchronous temporal contrast vision sensor". In: *IEEE J. Solid-State Circuits*, 2008, http://dx.doi.org/10.1109/JSSC.2007.914337 [135] C. Posch, D. Matolin, and R. Wohlgenannt. "A QVGA 143 dB Dynamic Range Frame-Free PWM Image Sensor With Lossless Pixel-Level Video Compression and Time-Domain CDS". In: *IEEE J. Solid-State Circuits* 46.1, 2011, http://dx.doi.org/10.1109/JSSC.2010.2085952

[16] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck. "A 240x180 130dB 3us Latency Global Shutter Spatiotemporal Vision Sensor". In: *IEEE J. Solid-State Circuits* 49.10 (2014), pp. 2333–2341. http://dx.doi.org/10.1109/JSSC.2014.2342715

- [31] https://inivation.com/wp-content/uploads/2019/07/2019-07-09-DVS-Specifications.pdf
- [138] https://www.prophesee.ai/event-based-evk/
- $[166] \, \underline{http://rpg.ifi.uzh.ch/docs/CVPR19workshop/CVPRW19} \, \underline{Eric} \, \underline{Ryu} \, \underline{Samsung.pdf}$
- [23] http://rpg.ifi.uzh.ch/docs/CVPR19workshop/CVPRW19_CelePixel.pdf


Event Representation: how to deal with events?

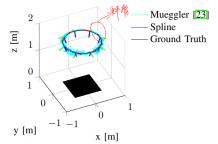
Event-by-event

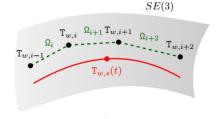
1. Individual events -> probabilistic filters, Spiking Neural Networks (SNNs)

Groups or packets of events

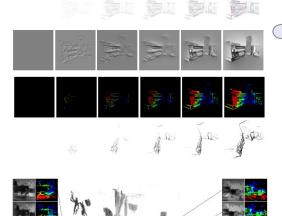
- 1. Event frame/image or 2D histogram -> conventional cv algorithms can be applied
- 2. Motion-compensated event image
- 3. Time surface (TS): each pixel stores a time value -> objective of temporal difference can be used
- 4. Voxel grid
- 5. 3D point set: utilize the spatial-temporal information: (x_k, y_k, t_k)
- 6. Point sets on image plane -> mean-shift or ICP can be applied
- 7. Reconstructed frame-based images

Task 1: Pose estimation and SLAM (monocular)


Challenges:


- 1. Dimensionality of the problem: pure rotation or 2D pose -> 6DoF pose tracking -> tracking and mapping
- 2. Type of motion: rotational or planar motion -> 6Dof motion; discrete-time trajectory -> continuous-time trajectory
- 3. Type of scene: artificial scenes -> natural scenes; indoor, small-scale -> outdoor, large-scale

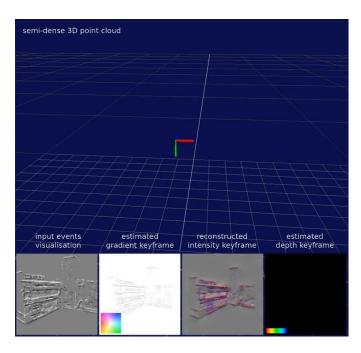
(b) Standard CMOS camera (c) Integrated DVS events (2 ms) [mueggler2014event]


6-DoF pose tracking with artificial scenes

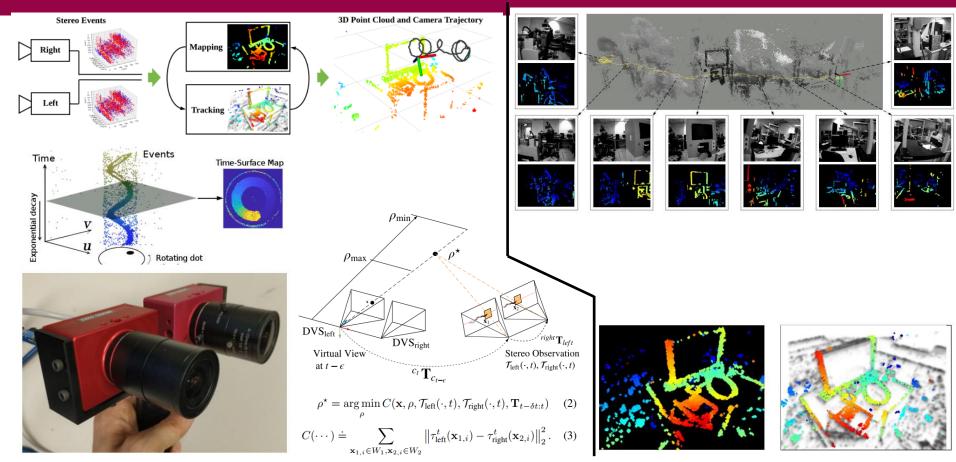
$$\mathbf{T}_{w,s}\big(u(t)\big) = \mathbf{T}_{w,i-1} \prod_{j=1}^{n} \exp\left(\tilde{\mathbf{B}}_{j}(u(t))\Omega_{i+j-1}\right)$$

[mueggler2015continuous] Continuous-time trajectory

[kim2016real] Three EKFs to estimate camera motion, log-intensity image, and inverse depth in real-time; but need GPU



Semi-Dense 3D Map

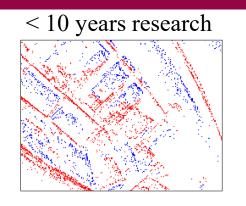

[rebecq2016evo] Semi-dense Event-based VO

Example: [kim2016real])

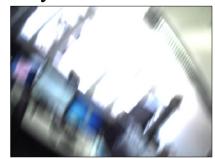
- > Tracking: EKF in 6 DOF pose
 - Uses random walk model & inverse depth
 - Use 1st order approximation of generative event model to update pose
- > Runs in real time on a GPU

Task 1: Pose estimation and SLAM (stereo)

[zhou2018semi] Semi-Dense 3D Reconstruction with a stereo event camera -> [zhou2020event] Event-based stereo visual odometry


Task 1: Pose estimation and SLAM

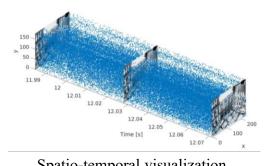
Opportunities:


- 1. Stereo event-based SLAM is seldom explored.
- 2. Most of existing works are direct-based, feature-based SLAM is not explored; bundle adjustment is also not explored;
- 3. Loop-closure capability to reduce drift.
- 4. The scales of event-based SLAM can be larger.
- 5. Robustness of SLAM systems can be improved by sensor fusion (IMUs, frame-based cameras, etc.).

Task 2: Sensor fusion (event camera + frame camera + IMU)

How to find feasible applications?

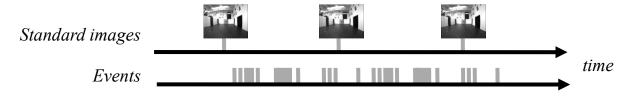
> 60 years of research!


Event Camera

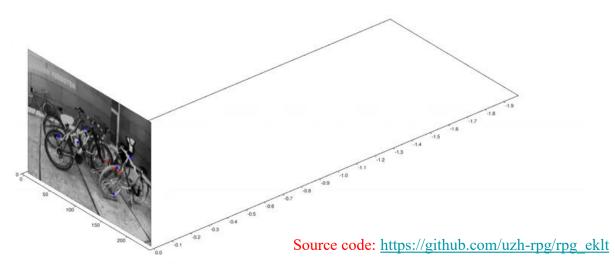
Standard Camera

Update rate	High (asynchronous): 1 MHz	Low (synchronous)
Dynamic Range	High (140 dB)	Low (60 dB)
Motion Blur	No	Yes
Static motion	No (event camera is a high pass filter)	Yes
Absolute intensity	No (reconstructable up to a constant)	Yes
Maturity	< 10 years of research	> 60 years of research!

Task 2: Sensor fusion (event camera + frame camera + IMU)


- ➤ DAVIS: Combines **an event and a standard** camera in the same pixel array (→ the same pixel can both trigger events and integrate light intensity).
- It also has an IMU
- It is useful for calibration

Spatio-temporal visualization of the output of a DAVIS sensor



Temporal aggregation of events overlaid on a DAVIS frame

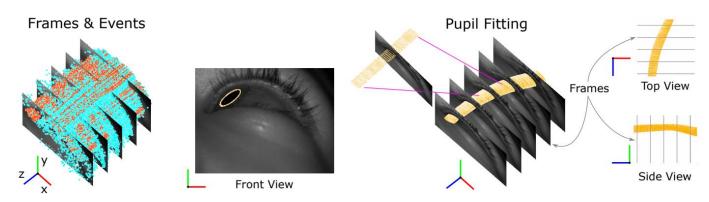
Task 2.1: Sensor fusion for feature tracking

- ➤ Goal: Extract features on frames and track them using only events in the blind time between two frames
- ➤ Uses the event generation model via joint estimation of patch warping and optic flow

Gehrig et al., EKLT: Asynchronous, Photometric Feature Tracking using Events and Frames, IJCV 2019.

PDF, YouTube, Evaluation Code, Tracking Code

Task 2.1: Sensor fusion for High-Speed, Near-Eye Gaze Tracking


Task: Estimate gaze-vector of the eye at >1'000Hz in real-time on portable system

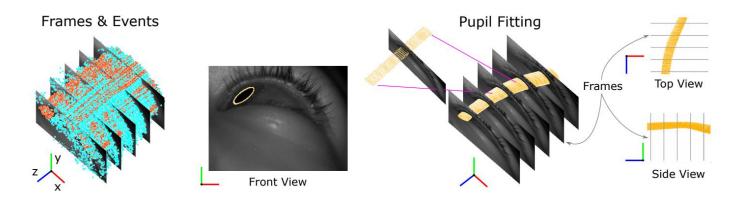
- Update Rate beyond 10 kHz
- Accuracy comparable to commercial product (EyeLink)
- Portable and low-power

Example Applications:

- AR/VR
- Driver drowsiness detection

Angelopoulos et al., "Event Based, Near-Eye Gaze Tracking Beyond 10,000Hz", Arxiv20. PDF

Task 2.1: Sensor fusion for High-Speed, Near-Eye Gaze Tracking

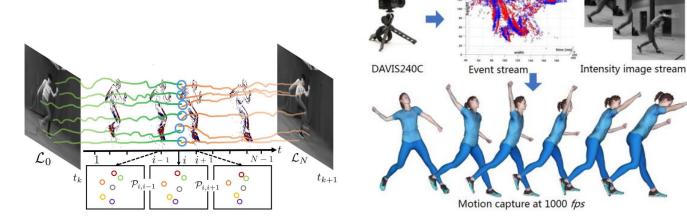

Task: Estimate gaze-vector of the eye at >1'000Hz in real-time on portable system

- Update Rate beyond 10 kHz
- Accuracy comparable to commercial product (EyeLink)
- Portable and low-power

Example Applications:

- AR/VR
- Driver drowsiness detection

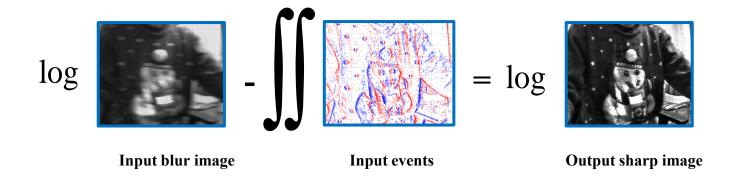
system	update rate (Hz)	accuracy (°)	portable
Pupil Labs [1]	200	~ 1	√
Tobii [3]	120	0.5–1.1	✓
EyeLink [2,14]	1,000	~ 0.5	
Ours	> 10,000	0.45 - 1.75	✓



Angelopoulos et al., "Event Based, Near-Eye Gaze Tracking Beyond 10,000Hz", Arxiv20. PDF

Task 2.1: Sensor fusion for High-Speed Human-Motion Tracking

Task: 3D human motion capture at 1'000 Hz


- 30x lower data-bandwidth than high-speed frame-based approach
- Works even in low-light
- Utilize frames (25 Hz) and events

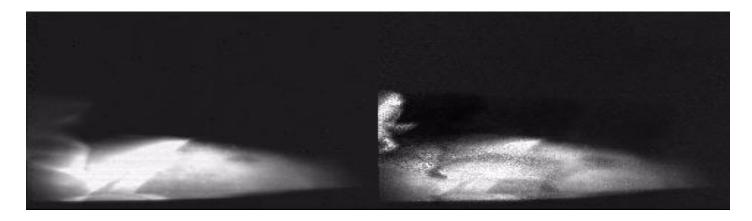
Xu et al., "EventCap: Monocular 3D Capture of High-Speed Human Motions using an Event Camera", CVPR20. PDF

Task 2.2: Sensor fusion for video deblurring

- A blurry image can be regarded as the integral of a sequence of *latent images* during the exposure time, while the events indicate the changes between the latent images.
- Finding: sharp image obtained by subtracting the double integral of event from input image

Task 2.2: Sensor fusion for video deblurring

- A blurry image can be regarded as the integral of a sequence of *latent images* during the exposure time, while the events indicate the changes between the latent images.
- Finding: sharp image obtained by subtracting the double integral of event from input image

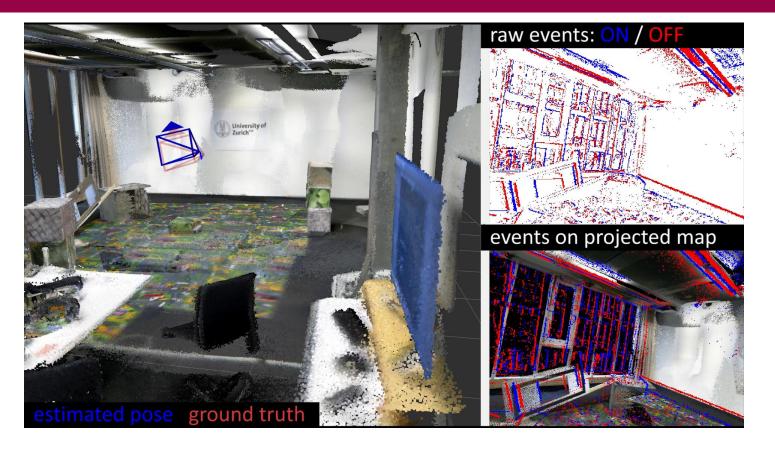


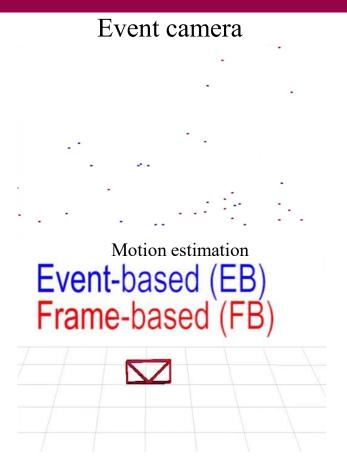
Input blur image

Output sharp video

Task 2.2: Sensor fusion for video deblurring

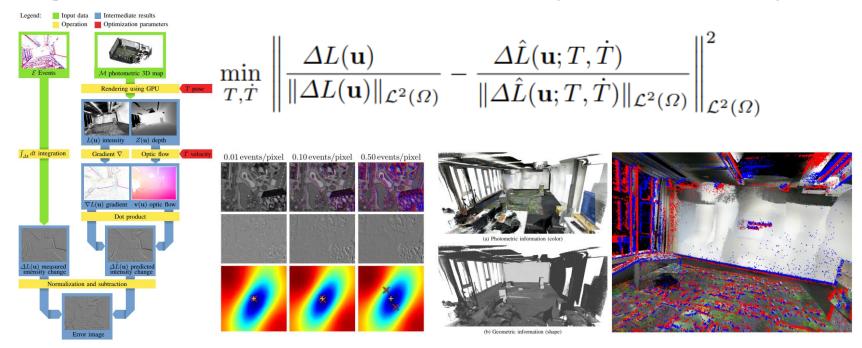
- A blurry image can be regarded as the integral of a sequence of *latent images* during the exposure time, while the events indicate the changes between the latent images.
- Finding: sharp image obtained by subtracting the double integral of event from input image




Input blur image

Output sharp video

- \triangleright Probabilistic, simultaneous motion & contrast estimation from $C = -\nabla L \cdot \mathbf{u}$
- \triangleright Assumes photometric map (x,y,z, grayscale Intensity) is given
- Useful for VR/AR applications (low-latency, HDR, no motion blur)
- Requires GPU to run in real time


Standard camera

Gallego et al., Event-based 6-DOF Camera Tracking from Photometric Depth Maps, T-PAMI'18. PDF

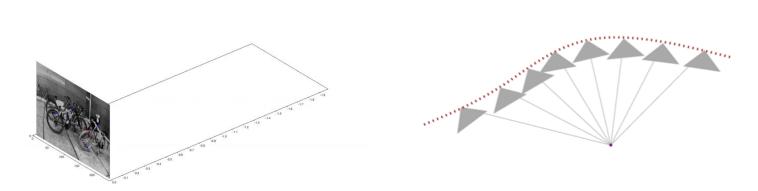
- ➤ Improve [Gallego2018Event] (filter-based) with the Nonlinear optimization
- Propose the metric the calculate difference between event images and frame-based images

Bryner et al., Event-based, Direct Camera Tracking from a Photometric 3D Map using Nonlinear Optimization, ICRA, 2019

Task 2.4: Sensor fusion for pose estimation

Challenges:

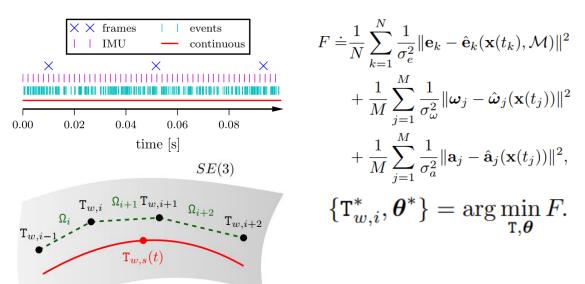
• A key issue in VIO is how to temporally fuse data from the synchronous, high-rate IMU (e.g., 1 kHz) and the asynchronous event camera.

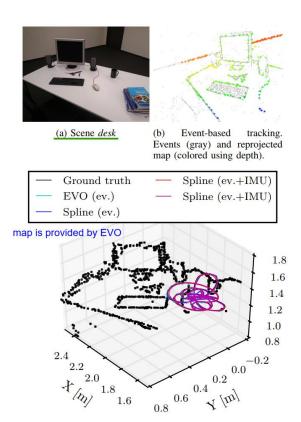

Three current solutions:

- 1. Use an asynchronous probabilistic filter
- 2. Use pre-integration theory to convert IMU data into lower-rate pieces of information at desired times where events are collected
- 3. Consider a continuous-time framework so that both sensor measurements are referred to a common temporal axis that is also used to model the camera poses.

Task 2.4: Sensor fusion for pose estimation

Ultimate SLAM: combining Events + Frames + IMU

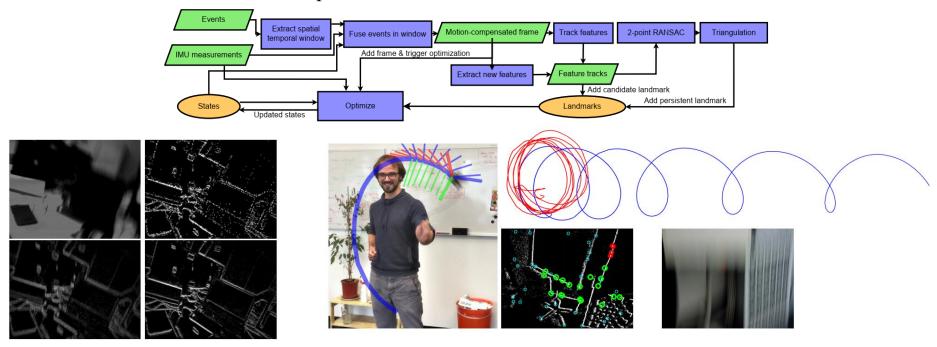

Rebecq et al., Real-time Visual-Inertial Odometry for Event Cameras using Keyframe-based Nonlinear Optimization, BMVC 2018.
Rosinol et al., Ultimate SLAM? RAL'18 – Best RAL'18 Paper Award Honorable Mention PDF. Video. IEEE Spectrum.


Mueggler et al., Continuous-Time Visual-Inertial Odometry for Event Cameras, TRO'18. PDF

Task 2.4: Sensor fusion for pose estimation

Events + IMU, continuous-time formulation

- Nonlinear Optimization
- Assumption: current data association is given

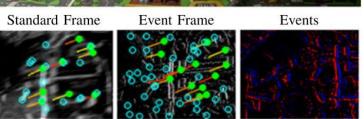


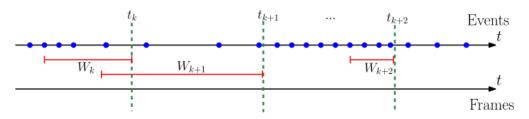
Mueggler et al., Continuous-Time Visual-Inertial Odometry for Event Cameras, TRO'18. PDF

Task 2.4: Sensor fusion for pose estimation

Events + IMU, discrete-time formulation

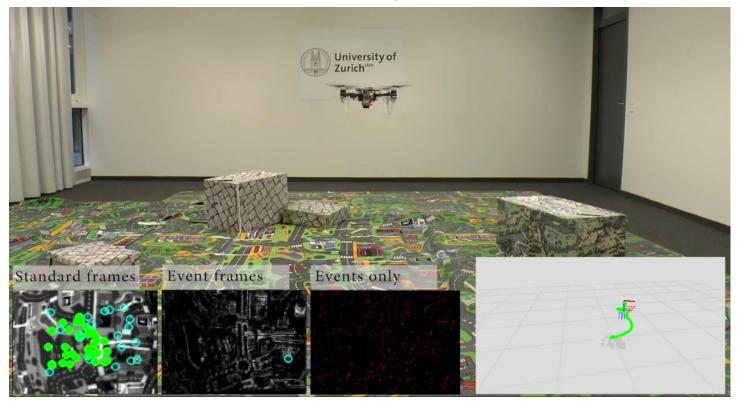
- Extend the *OKVIS* framework
- Let Use IMU measurement to compensate each event frame


Rebecq et al., Real-time Visual-Inertial Odometry for Event Cameras using Keyframe-based Nonlinear Optimization, BMVC 2018.


Application: Autonomous Drone Navigation in Low Light

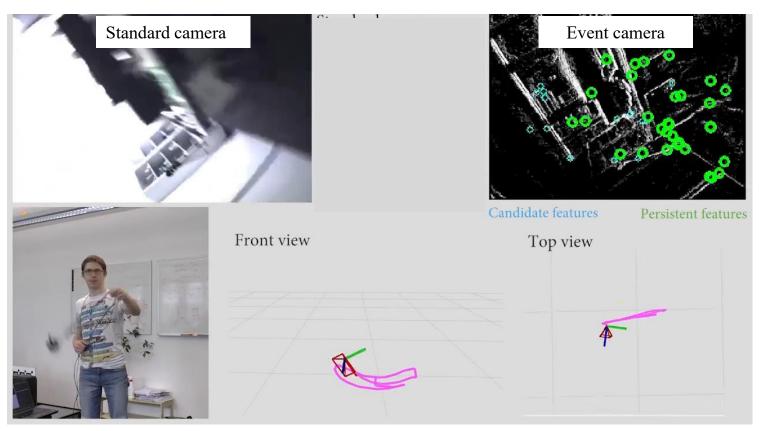
Extension: Ultimate SLAM running on board (CPU: Odroid XU4)

Extract FAST corners from event frames and standard frames; KLT trackers; nonlinear optimization



$$J = \sum_{i=0}^{1} \sum_{k=1}^{K} \sum_{j \in \mathcal{J}(i,k)} \mathbf{e}^{i,j,k} \mathbf{W}_{r}^{i,j,k} \mathbf{e}^{i,j,k} + \sum_{k=1}^{K-1} \mathbf{e}_{s}^{kT} \mathbf{W}_{s}^{k} \mathbf{e}_{s}^{k}$$

Application: Autonomous Drone Navigation in Low Light

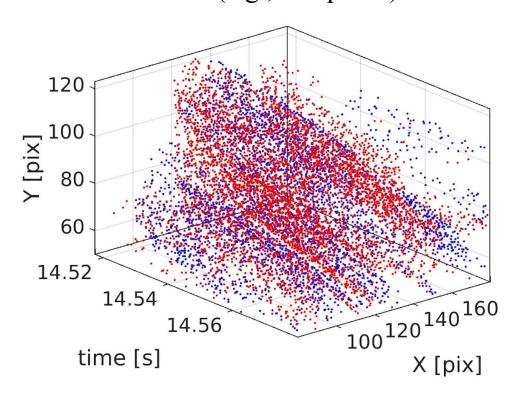

Extension: Ultimate SLAM running on board (CPU: Odroid XU4)

Rosinol et al., Ultimate SLAM? RAL'18 – Best RAL'18 Paper Award Honorable Mention PDF. Video. IEEE Spectrum.

Application: Large Motion Blur

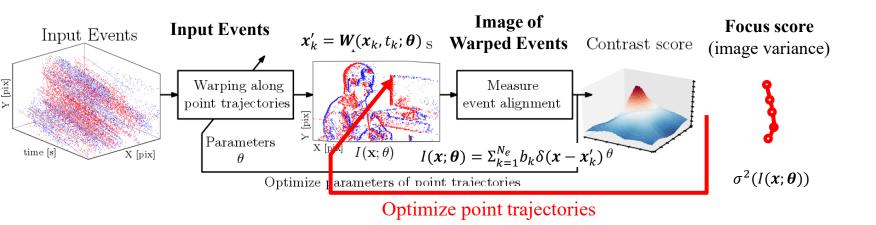
85% accuracy gain over standard Visual-Inertial SLAM in HDR and high speed scenes

Rosinol et al., Ultimate SLAM? RAL'18 – Best RAL'18 Paper Award Honorable Mention PDF. Video. IEEE Spectrum.


Task 3: Contrast Maximization

Focus Maximization for:

- Motion estimation
- 3D reconstruction
- SLAM
- Optical flow estimation
- Feature tracking
- Motion segmentation
- Unsupervised learning


Gallego et al., A Unifying Contrast Maximization Framework for Event Cameras, CVPR18, <u>PDF</u>, <u>YouTube</u> Gallego et al., Focus Is All You Need: Loss Functions for Event-based Vision, CVPR19, <u>PDF</u>.

Basic idea: Warp **spatio-temporal volume** of events to **maximize focus/contrast** (e.g., sharpness) of the resulting image

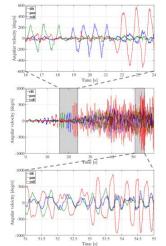
Gallego et al., A Unifying Contrast Maximization Framework for Event Cameras, CVPR18, <u>PDF</u>, <u>YouTube</u> Gallego et al., Focus Is All You Need: Loss Functions for Event-based Vision, CVPR19, <u>PDF</u>.

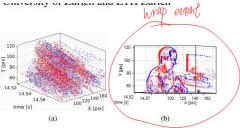
Focus Maximization Framework

Can be implemented in a sliding-window fashion to enable per low-latency, per-event update rate

Runs in real time on a CPU

Gallego et al., Accurate Angular Velocity Estimation with an Event Camera, IEEE RAL'16. PDF. Video. Gallego et al., A Unifying Contrast Maximization Framework for Event Cameras, CVPR18, PDF, YouTube Gallego et al., Focus Is All You Need: Loss Functions for Event-based Vision, CVPR19, PDF.

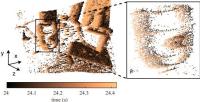

Related Work

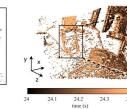

without motion estimation.

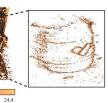
(a) Image of accumulated events (b) Image of accumulated events, rotated according to motion.

[gallego2016accurate] Estimate pure rotation

[gallege2018a] Define the contrast maximization and use apply to many tasks

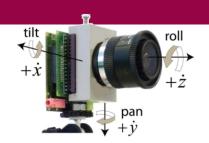

Focus Loss Function	Type	Spatial?	Goal
Variance (4) [33, 35]	Statistical	No	max
Mean Square (9) [33, 36]	Statistical	No	max
Mean Absolute Deviation (10)	Statistical	No	max
Mean Absolute Value (11)	Statistical	No	max
Entropy (12)	Statistical	No	max
Image Area (8)	Statistical	No	min
Image Range (13)	Statistical	No	max
Local Variance (14)	Statistical	Yes	max
Local Mean Square	Statistical	Yes	max
Local Mean Absolute Dev.	Statistical	Yes	max
Local Mean Absolute Value	Statistical	Yes	max
Moran's Index (17)	Statistical	Yes	min
Geary's Contiguity Ratio (18)	Statistical	Yes	max
Gradient Magnitude (5)	Derivative	Yes	max
Laplacian Magnitude (6)	Derivative	Yes	max
Hessian Magnitude (7)	Derivative	Yes	max
Difference of Gaussians	Derivative	Yes	max
Laplacian of the Gaussian	Derivative	Yes	max
Variance of Laplacian	Stat. & Deriv.	Yes	max
Variance of Gradient	Stat. & Deriv.	Yes	max
Variance of Squared Gradient	Stat. & Deriv.	Yes	max
Mean Timestamp on Pixel [37]	Statistical	No	min


[gallege2019focus] Explore different objective functions

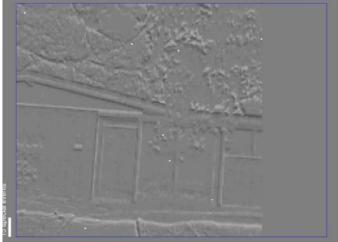

			_
	$\mathbf{Upper} \ \mathbf{Bound} \ \overline{L_N}$	$\textbf{Lower Bound } \underline{L_N}$	L_0
SoS	$\overline{L_{N-1}} + 1 + 2Q$	$\frac{L_{N-1}}{L_{N-1}} + 1 + 2I^{N-1}(\eta_N^{\theta_0}; \theta_0)$	0
Var	$\overline{L_{N-1}} + \frac{1}{N_p} - \frac{2\mu_I}{N_p} + \frac{2}{N_p}Q$	$\frac{L_{N-1}}{N_p} + \frac{1}{N_p} - \frac{2\mu_I}{N_p} + \frac{2}{N_p} I^{N-1}(\eta_N^{\theta_0}; \theta_0)$	μ_I^2
SoE	$\overline{L_{N-1}} + (e-1)e^Q$	$\frac{L_{N-1}}{L_{N-1}} + (e-1)e^{I^{N-1}}(\eta_N^{\theta_0}; \theta_0)$	N_p
SoSA	$\overline{L_{N-1}} + (e^{-\delta} - 1)e^{-\delta \cdot Q}$	$\frac{L_{N-1}}{1} + (e^{-\delta} - 1)e^{-\delta \cdot I^{N-1}}(\eta_N^{\theta_0}; \theta_0)$	N_p
SoEaS	$\overline{L_{N-1}} + 1 + 2Q + (e-1)e^{Q}$	$\frac{L_{N-1}}{L_{N-1}} + 1 + 2I^{N-1}(\eta_N^{\theta_0}; \theta_0) + (e-1)e^{I^{N-1}(\eta_N^{\theta_0}; \theta_0)}$	N_p
SoSAaS	$\overline{L_{N-1}} + 1 + 2Q + (e^{-\delta} - 1)e^{-\delta Q}$	$ \boxed{ L_{N-1} + 1 + 2I^{N-1}(\eta_N^{\theta_0}; \theta_0) + (e^{-\delta} - 1)e^{-\delta I^{N-1}}(\eta_N^{\theta_0}; \theta_0) } $	N_p

[peng2020globally] Propose the global solution: BnB to solve 6 objective functions

[liu2020globally] Propose the global solution: BnB

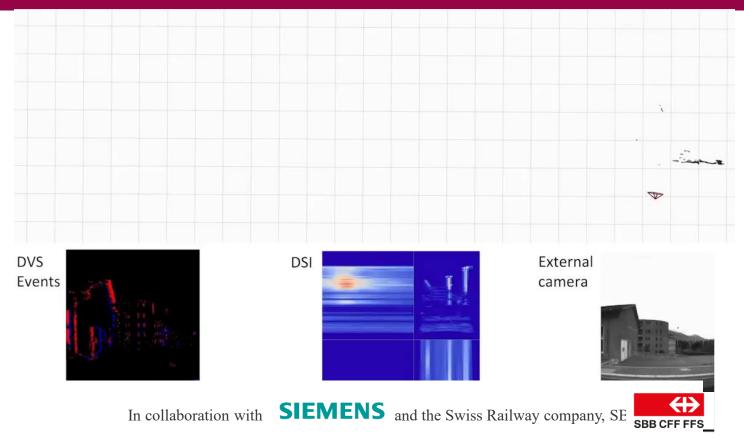


[nunes2020entropy]


Two contributions: propose new metrics: entropy minimization; new formulation to directly operate features in 3D

Application 1: Image Stabilization

- ➤ Problem: Estimate rotational motion (3DoF) of an event camera
- ➤ Can process millions of events per second in real time on a smartphone CPU (OdroidXU4)
- Works up to over $\sim 1,000 \text{ deg/s}$



Gallego et al., Accurate Angular Velocity Estimation with an Event Camera, IEEE RAL'16. PDF. Video.

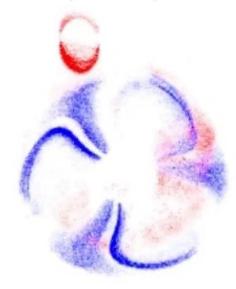
Application 2: 3D Reconstruction from a Train at 200km/h

Rebecq et al., EVO: A Geometric Approach to Event-based 6-DOF Parallel Tracking and Mapping, RAL'17. PDF.

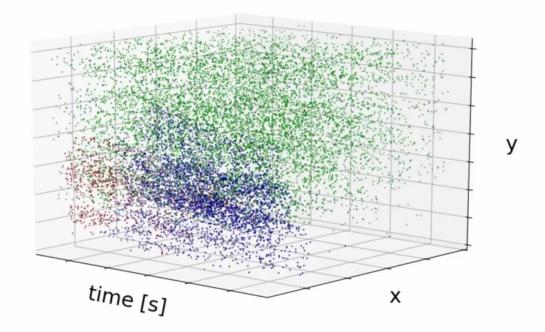
Delegant of EMVC Front hand Malt. Virginia 14CV 2019 DDF Vide Comme Col

Application 3: Motion Segmentation

Conventional Frames


Events

tim


Sequence: Fan and Coin

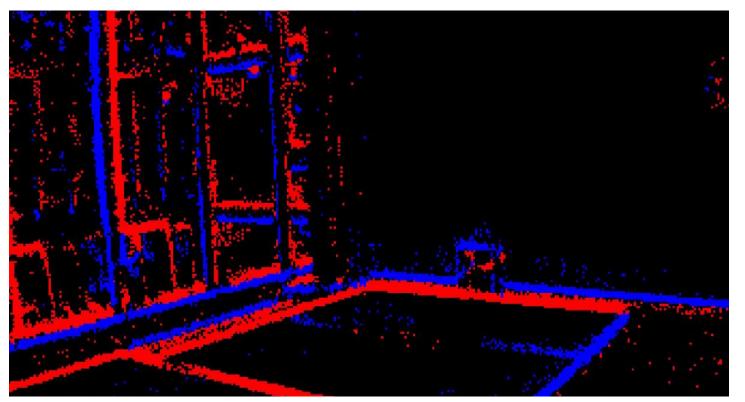
One motion model is used per cluster; one for the fan, modelling rotation, one for the coin, modelling optic flow

Motion-Compensated Segmented Events

Application 3: Motion Segmentation

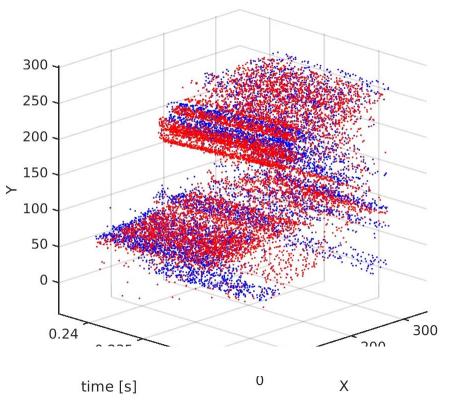
Stoffregen et al., Motion Segmentation by Motion Compensation, ICCV'19. PDF. Video.

Application 5: Drone Dodging Dynamic Obstacles


Event-based Dynamic Obstacle Detection & Avoidance

- ➤ Works with relative speeds of up to 10 m/s
- > Perception latency: 3.5 ms

Falanga et al., Dynamic Obstacle Avoidance for Quadrotors with Event Cameras, Science Robotics, 2020. PDF. Video Falanga et al. How Fast is too fast? The role of perception latency in high speed sense and avoid, RAL'19. PDF. Video


Another challenge: How can we separate events triggered by egomotion from events triggered by the moving object?

Falanga et al., Dynamic Obstacle Avoidance for Quadrotors with Event Cameras, Science Robotics, 2020. PDF.
Video

Folongo et al. How East is too fast? The role of percention latency in high speed sense and avoid DAI'10 DDE

Idea: Warp spatio-temporal volume of events to maximize contrast of the resulting image: Static objects will appear sharp, while moving ones will appeared blurred.

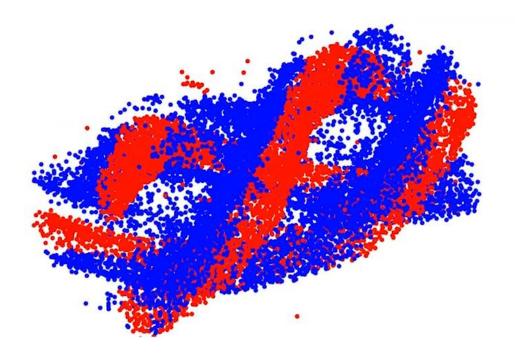
Falanga et al., Dynamic Obstacle Avoidance for Quadrotors with Event Cameras, Science Robotics, 2020. PDF.

Follower at al. How East is too fast? The vale of revention later on in high speed source and quoid DAI'10 DDE

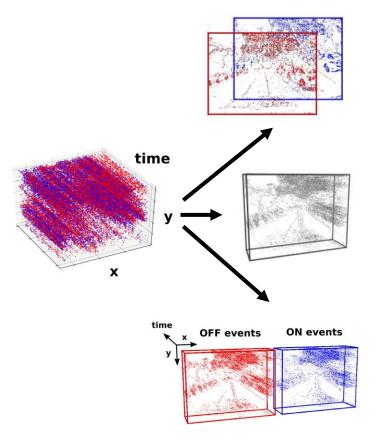
Falanga et al., Dynamic Obstacle Avoidance for Quadrotors with Event Cameras, Science Robotics, 2020. PDF.

<u>Video</u>

Falanga et al. How East is too fast? The vale of percention latency in high speed games and guard. PAL'10. PDF.


Task 4: Deep-learning based methods

Learning with Event Cameras


- Synchronous, Dense, Artificial Neural Networks (ANNs) designed for standard images
- Asynchronous, Sparse ANNs
- Asynchronous, Spiking Neural Networks (SNNs)

Task 4.1: Event Representation for network?

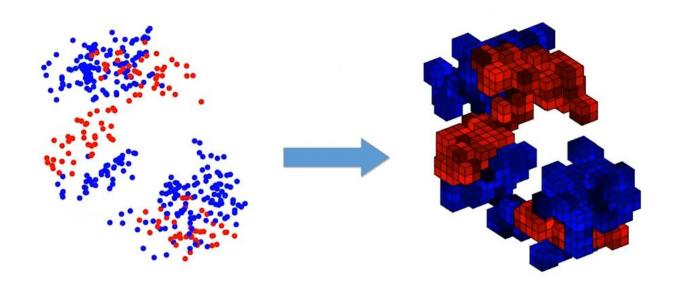
Challenges: How do we pass sparse events into a convolutional neural network designed for standard images?

Task 4.1: Event Representation for network?

[Maqueda CVPR'18], [Zhu'RSS'18]

- Aggregate positive and negative events into separate channels
- Discards temporal information

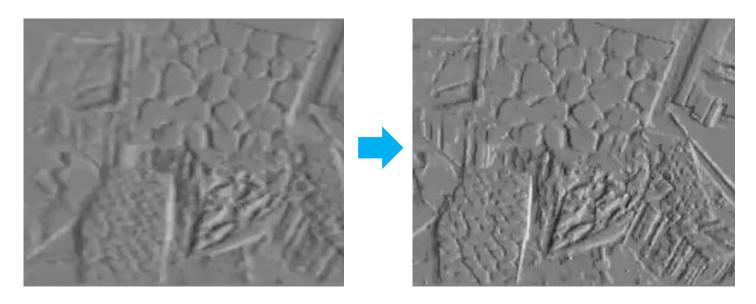
[Zhu ECCVW'18], [Rebecq, CVPR'19], [Zhu, CVPR'19]


- Represent events in space-time into a 3D voxel grid (x,y,t)
- Each voxel contains sum of ON and OFF events falling within the voxel
- Preserves temporal information but discards polarity information

[Gehrig, ICCV'19]

- Represent events in space-time as a 4D Event Spike Tensor (x,y,t,p)
- Polarity information is preserved

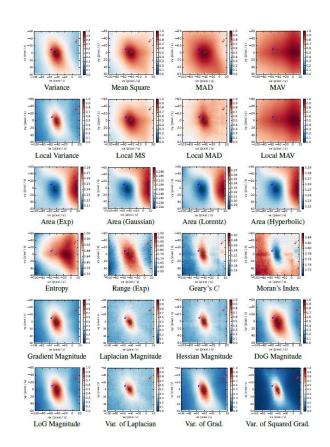
Task 4.1: Event Representation for network?


Discretized 3D volume (x,y,t): events are inserted into the volume with trilinear interpolation, resulting in minimal loss in resolution

Video from [Zhu et all, CVPR'19]

Task 4.2: Focus as Loss Function for Unsupervised Learning

Focus used as loss: maximize sharpness of the aggregated event image.

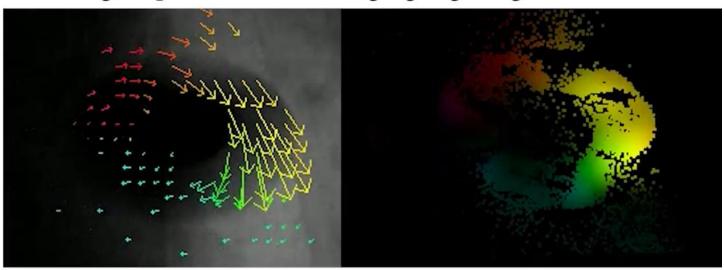


Video from here

Zhu, Unsupervised Event-based Learning of Optical Flow, Depth and Egomotion, CVPR 19. PDF Gallego et al., Focus Is All You Need: Loss Functions for Event-based Vision, CVPR19, PDF.

Focus as Loss Function for Unsupervised Learning

- We proposed and benchmarked22 focus loss functions
- Focus is the "data fidelity" term



Application: Unsupervised Learning of Optical Flow, Depth and Ego Motion

Focus used as loss: maximize sharpness of the aggregated event image.

Fidget Spinner w/ Challenging Lighting General Robotics,

Grayscale Image w/ Sparse Flow Quiver

Dense Flow Output

Zhu et al., Unsupervised Learning of Optical Flow, Depth and Ego Motion, CVPR'19

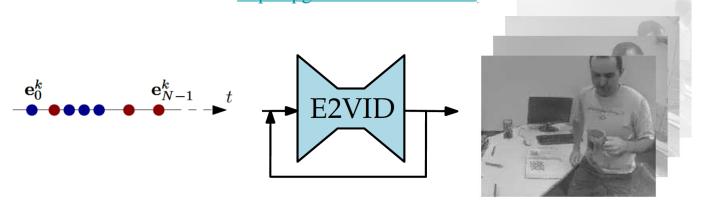

Task 4.3: How to reconstruct frame-based images?

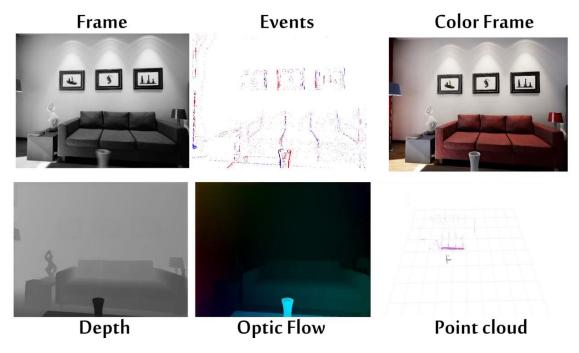
Application: Learning High-speed and HDR Video Rendering from an Event Camera

Code & datasets: https://github.com/uzh-rpg/rpg e2vid

Code & datasets: https://github.com/uzh-rpg/rpg_e2vid

Task 4.3: How to reconstruct frame-based images?


Reconstructed image from events (Samsung DVS)

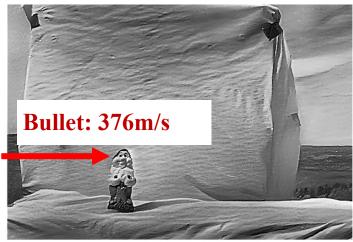

Code & datasets: https://github.com/uzh-rpg/rpg e2vid

Overview

- > Recurrent neural network (main module: Unet)
- ➤ Input: last reconstructed frame + sequences of event tensors (spatio-temporal 3D voxels grid: each voxel contains sum of ON and OFF events falling within the voxel)
- ➤ Network processes **last N** events (10,000)
- > Trained in simulation only (without seeing a single real image) (we used our event camera simulator: http://rpg.ifi.uzh.ch/esim.html

Acquire Training Data: From the Event Camera Simulator

Event Camera Simulator (ESIM): http://rpg.ifi.uzh.ch/esim.html Rebecq, ESIM: an Open Event Camera Simulator, CORL'18. PDF, YouTube, Project page


High Speed Video Reconstruction Results

Code & datasets: https://github.com/uzh-rpg/rpg e2vid

Bullet shot by a gun (376 m/s (=1,354 km/h))

Recall: trained in simulation only!

Huawei P20 Pro (240 FPS)

Our reconstruction (5400 FPS)

We used Samsung DVS

Real time

Code & datasets: https://github.com/uzh-rpg/rpg e2vid

Bullet shot by a gun (1,300 km/h)

Recall: trained in simulation only!

Huawei P20 Pro (240 FPS)

Our reconstruction (5400 FPS)

We used Samsung DVS

100 x slow motion


Code & datasets: https://github.com/uzh-rpg/rpg_e2vid

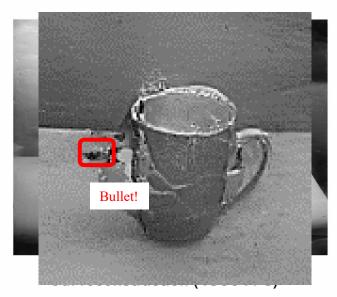
Bullet shot by a gun (1,300 km/h)

Recall: trained in simulation only!

Huawei P20 Pro (240 FPS)

Our reconstruction (4800 FPS)

We used Samsung DVS
100 x slow motion


Code & datasets: https://github.com/uzh-rpg/rpg_e2vid

Bullet shot by a gun (1,300 km/h)

Recall: trained in simulation only!

Huawei P20 Pro (240 FPS)

We used Samsung DVS

100 x slow motion

Code & datasets: https://github.com/uzh-rpg/rpg_e2vid

Popping a water balloon

Recall: trained in simulation only!

Apple iPad (120 FPS)

Our reconstruction (4800 FPS)

We used Samsung DVS Real time

Code & datasets: https://github.com/uzh-rpg/rpg e2vid

^{*} different sequences, recorded in identical conditions

Popping a water balloon

Recall: trained in simulation only!

Apple iPad (120 FPS)

Our reconstruction (4800 FPS)

100 x slow motion

Code & datasets: https://github.com/uzh-rpg/rpg e2vid

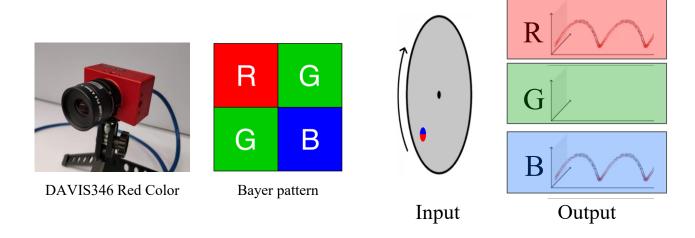
^{*} different sequences, recorded in identical conditions

HDR Video Reconstruction Results

HDR Video: Driving out of a tunnel

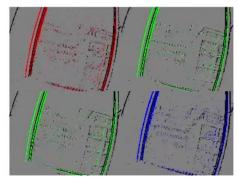
Recall: trained in simulation only!

Code & datasets: https://github.com/uzh-rpg/rpg e2vid


Rebecq et al., "Events-to-Video: Bringing Modern Computer Vision to Event Cameras", CVPR19. PDF Video. Rebecq et al., "High Speed and High Dynamic Range Video with an Event Camera", PAMI, 2019. PDF Video Code

Recall: trained in simulation only!

Code & datasets: https://github.com/uzh-rpg/rpg e2vid


Color video reconstruction Color events

- Each pixel is sensitive to **red**, **green or blue** light.
- Transmits **brightness changes** in each color channel

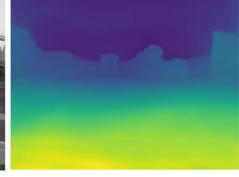
Taverni et al., Front and back illuminated Dynamic and Active Pixel Vision Sensors comparison, TCS'18

Color Event Camera Reconstruction (HDR)

Color events


Our reconstruction

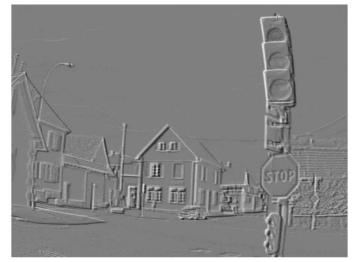
Color frame


Color Event Camera Datasets: http://rpg.ifi.uzh.ch/CED.html

Downstream Applications: What if we input the reconstructed frames to state of the art ML algorithms?

Monocular Depth Estimation

Events


Our reconstruction

Monocular depth estimation (Megadepth) applied on the reconstructed frames

Code & datasets: https://github.com/uzh-rpg/rpg e2vid

Rebecq et al., "Events-to-Video: Bringing Modern Computer Vision to Event Cameras", CVPR19. PDF Video. Rebecq et al., "High Speed and High Dynamic Range Video with an Event Camera", PAMI, 2019. PDF Video Code

Object detection

Events

Our reconstruction + object detections (YOLOv3)

Code & datasets: https://github.com/uzh-rpg/rpg e2vid

Rebecq et al., "Events-to-Video: Bringing Modern Computer Vision to Event Cameras", CVPR19. PDF Video. Rebecq et al., "High Speed and High Dynamic Range Video with an Event Camera", PAMI, 2019. PDF Video Code

Does it mean that in order to use event cameras we must first reconstruct an image?

NO!

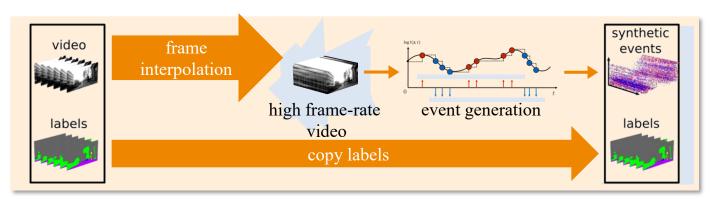
These results were only to show that it should be possible to design more efficient algorithms that process events end-to-end without passing through image reconstruction!

However, to design end-to-end approaches for event cameras, we need more data! But event cameras are new, so there is a shortage of large scale datasets compared to standard cameras!

Is it possible to **recycle existing** large-scale **video datasets** recorded with standard cameras **for event cameras**?

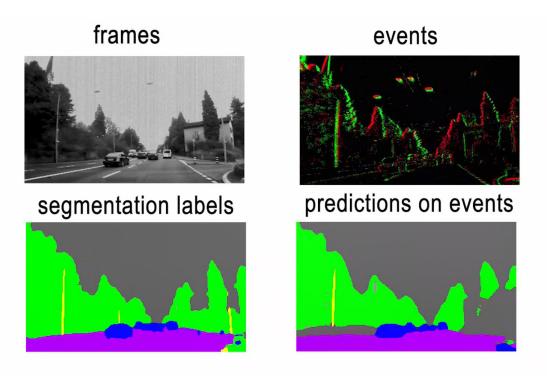
Task 4.4: How to get more event data?

Idea: convert Standard videos to events!



Code: https://github.com/uzh-rpg/rpg_vid2e

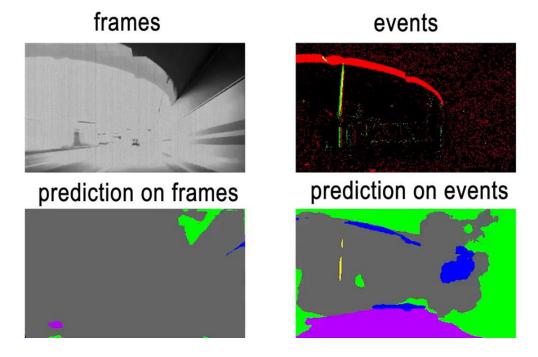
Gehrig et al., "Video to Events: Recycling Video Datasets for Event Cameras", CVPR20. PDF Video Code.


How to we convert a standard video to events?

- > Typical video has a low temporal resolution and needs to upsampled first
- ➤ We use off-the-shelf upsampling techniques (**Super SloMo** [Jiang, CVPR'18])
- > Event generation using our event camera simulator (http://rpg.ifi.uzh.ch/esim.html)
- ➤ Noise free simulation. We randomize the contrast sensitivity

Code: https://github.com/uzh-rpg/rpg_vid2e

Experiments on Semantic Segmentation

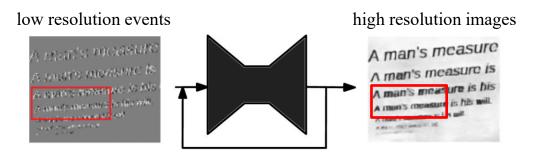


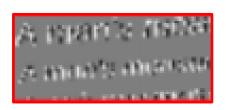
Code: https://github.com/uzh-rpg/rpg vid2e

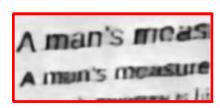
Detects Dines et al. "DDD17, End To End DAVIC Devising Detect", ICMI W/17, Detect

Method: Gehrig et al., "Video to Events: Recycling Video Datasets for Event Cameras", CVPR20. <u>PDF Video Code</u>.

Generalization to challenging HDR scenario


Code: https://github.com/uzh-rpg/rpg_vid2e

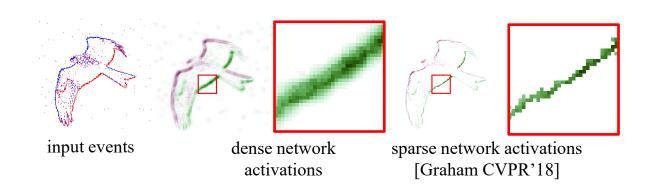

Gehrig et al., "Video to Events: Recycling Video Datasets for Event Cameras", CVPR20. <u>PDF Video Code</u>. Binas et al., "DDD17: End-To-End DAVIS Driving Dataset", ICMLW'17.


Computational Photography Revolution

Task 4.5: Event-based super-resolution

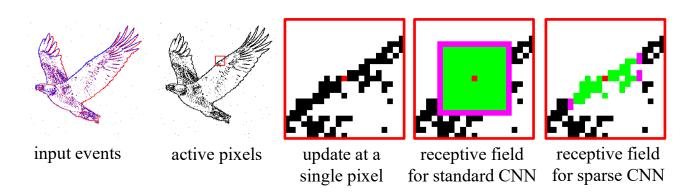
- > Given low-resolution events as input, reconstruct a high-resolution image
- For standard images, the spatial resolution is fixed and cannot change
- For event data, high spatial resolution may be hidden in the temporal resolution of the data. Networks can exploit this!

Mostafavi I. et al., "Learning to Super Resolve Intensity Images from Events", CVPR20 Wang et al. "EventSR: From Events to Image Reconstruction, Restoration, and Super-Resolution", CVPR20


Learning with Event Cameras

- Synchronous, Dense, Artificial Neural Networks (ANNs) designed for standard images
- Asynchronous, Sparse ANNs
- Asynchronous, Spiking Neural Networks (SNNs)

Adapting Neural Networks To Event-based Data


Tasks 4.6: Event-based Asynchronous Sparse Convolutional Networks

- > Convolutional neural networks process events as dense image
- ➤ However, event-data is inherently sparse and asynchronous, meaning that wasteful computation is being performed
- We can save computation by adopting **sparse convolutions** [Graham CVPR'18] which only compute the convolution at active pixels

Tasks 4.6: Event-based Asynchronous Sparse Convolutional Networks

- For each new event we do not have to update the full network layers. Just the pixels which are in the receptive field of the pixel which triggered the event.
- For regular convolutions this receptive field grows quadratically with the depth of the network. However, for sparse convolutions it grows much more slowly.
- This growth rate of the receptive field is related to the **fractal dimension**, which is an intrinsic property of event data.

Messikommer et al., "Event-based Asynchronous Sparse Convolutional Networks", ECCV'20. PDF Video.

Learning with Event Cameras

- Synchronous, Dense, Artificial Neural Networks (ANNs) designed for standard images
- Asynchronous, Sparse ANNs
- Asynchronous, Spiking Neural Networks (SNNs)

Task 4.7: Spiking Neural Networks (SNN)

- Common processing units based on **Von Neumann architectures** (**CPU and GPU**) are inefficient & very power consuming for event-by-event processing [1]
- There exists very efficient, specialized hardware for event-by-event inference: IBM TrueNorth [1], Intel Loihi [2], DynapSE & Speck (AiCTX) [3]
- Promising for Robotics, IoT, VR/AR/MR
 - 1. Low power
 - 2. Low latency
 - 3. Leverage event-based sensing
- Promise ultra-low carbon footprint!
- [1]: Merolla et. al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science. 2014
- [2]: Davies M. et. al. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro. 2018
- [3]: Moradi S. et. al.. A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors. IEEE transactions on biomedical circuits and systems. 2017. https://aictx.ai/

The Cost of Current Computer Technologies is Not Sustainable

- ➤ In 2017, > 10 zettabytes of data were
- > IT infrastructures and consumer ele electricity supply.
- > By 2025, over 50 billion of Internet-0
- > Over 180 zettabytes of data will be g consumption of one-fifth of global elec

nature

EDITORIAL · 06 FEBRUARY 2018

Big data needs a hardware revolution

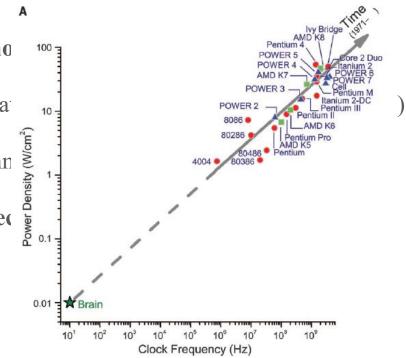
Artificial intelligence is driving the next wave of innovations in the semiconductor industry.

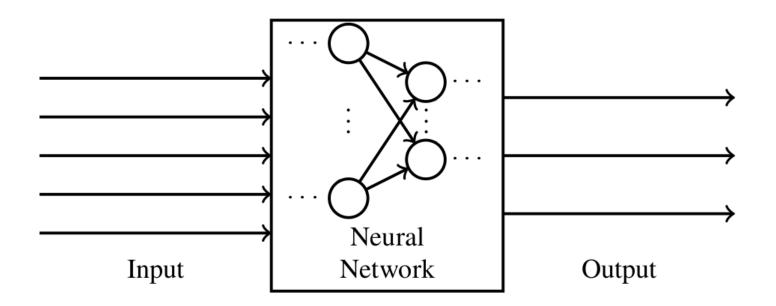
nected.

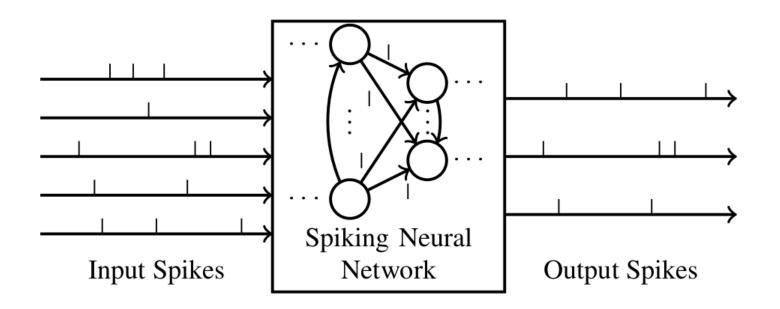
to a

"Software companies make headlines but research on computer could bring bigger rewards."

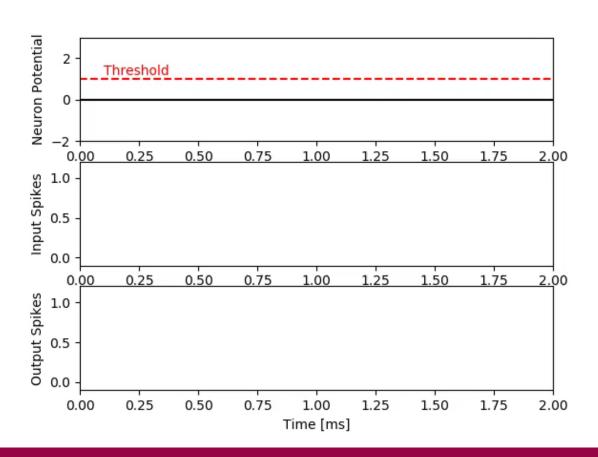
Training a single Al model can emit as much carbon as five cars in their lifetimes

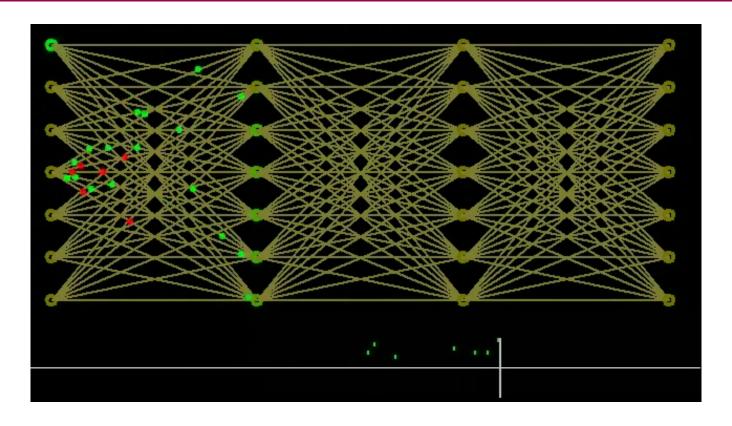

Deep learning has a terrible carbon footprint.


by **Karen Hao** Jun 6, 2019


The artificial-intelligence industry is often compared to the oil industry: once mined and refined, data, like oil, can be a highly lucrative commodity. Now it seems the metaphor may extend even further. Like its fossil-fuel counterpart, the process of deep learning has an outsize environmental impact.

Radical paradigm shift in computer hardware technologies


- Our brain is slow, noisy ("speed" is no
- Massively parallel distributed computa
- > Real-time interaction with the environm
- Complex spatio-temporal pattern rec



Model of a Spiking Neuron

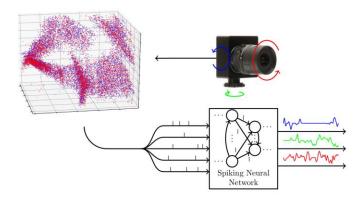
Specialized Hardware

Origins of Spiking Neural Networks

- First model (integrate-and-fire) of a spiking neuron in 1907 by Louis Lapicque [1]
- First computational model for neural networks in 1943 [2]: Neural network research split into biological processes in the brain and the application for artificial intelligence
- First scientific model of biological spike propagation by Hodgkin and Huxley in 1951 [3] (Nobel Prize in Physiology)
- A range of more general spiking neuron models are available nowadays [4]

- [1]: Lapicque L. Recherches quantitatives sur l'excitation electrique des nerfs traitee comme une polarization. *Journal de Physiologie et de Pathologie Generale*. 1907
- [2]: McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. *The bulletin of mathematical biophysics*. 1943
- [3]: Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. *The Journal of physiology*. 1952
- [4]: Gerstner W. Time structure of the activity in neural network models. *Physical review*. 1995

SNNs: Current Applications and Demos


- IBM TrueNorth
 - Targeting ultra low-power gesture control, video-surveillance and IoT with SNN on digital processor
 - 2. At CVPR 2017 gesture recognition demo (10 gestures)
 - 3. 96.5 % recognition accuracy
 - 4. 200 mW power consumption (event-camera + processing)
- Intel Loihi:
 - 1. Targeting ultra low-power surveillance and IoT with SNN on analog processor
- aiCTX (Zurich-based startup):
 - 1. Targeting ultra low-power surveillance and IoT with SNN on analog processor
 - 2. At CES'19 and CVPR'19, they demonstrated face recognition from event data on an SNN processor; total power consumption: **1mW**
 - [1]: https://aictx.ai/
 - [2]: Merolla et. al. A million spiking-neuron integrated circuit with a scalable communication network and interface. *Science*. 2014

Spiking Neural Network (SNN) Regression

Task: Estimate angular velocity of an event camera with an SNN

- SNNs are **asynchronous networks** that consume events
- Hence,
 - no additional latency
 - no preprocessing necessary
- We show that SNNs are competitive to ANNs on this task

Conclusions, Takeaways, Resources

Recap

Event cameras have many **advantages**:

- high dynamic range (HDR)
- high speed
- low latency
- low power

Current commercial applications

• IoT

monitoring and surveillance

• Automotive:

low-latency detection, object classification, low-power and low-memory storage

AR/VR

low-latency, inter-frame pose estimation, low-power

• Industrial automation

Fast pick and place

Research Challenges with Event Cameras

Quantify the trade-offs:

- Latency vs. power consumption and accuracy
- Sensitivity vs. bandwidth and processing capacity Active parameter adaptation Hardware:
 - 1. pairing event cameras with dedicated hardware (SNN hardware, e.g., Intel Loihi, aiCTX Speck)
- 2. How do we make sparse convolution in space and time efficient? Learning with event cameras:
 - How do we exploit knowledge from image-based learning to event cameras?
 - Asynchronous inference
 - Where do we find learning data? Event data is much more rare than frames. Potential solutions: unsupervised Learning, learning in simulation, transfer learning from frames to events

Reference: T-PAMI 2020 paper

Event-based Vision: A Survey

Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara Bartolozzi, Brian Taba, Andrea Censi, Stefan Leutenegger, Andrew Davison, Jörg Conradt, Kostas Daniilidis, Davide Scaramuzza

Abstract— Event cameras are bio-inspired sensors that work radically different from traditional cameras. Instead of capturing images at a fixed rate, they measure per-pixel brightness changes asynchronously. This results in a stream of events, which encode the time, location and sign of the brightness changes. Event cameras posses outstanding properties compared to traditional cameras: very high dynamic range (140 dB vs. 60 dB), high temporal resolution (in the order of µs), low power consumption, and do not suffer from motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as high speed and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world.

Index Terms—Event Cameras, Bio-Inspired Vision, Asynchronous Sensor, Low Latency, High Dynamic Range, Low Power.

1 Introduction and Applications

HE brain is imagination, and that was exciting to me; I wanted to build a chip that could imagine something¹." that is how Misha Mahowald, a graduate student at Caltech in 1986, started to work with Prof. Carver Mead on the stereo problem from a joint biological and engineering per-

as well as new computer vision and robotic tasks. Sight is, by far, the dominant sense in humans to perceive the world, and, together with the brain, learn new things. In recent years, this technology has attracted a lot of attention from both academia and industry. This is due to the availability of prototype event cameras and the advantages that these devices offer to tackle problems that are curroutly unfacible.

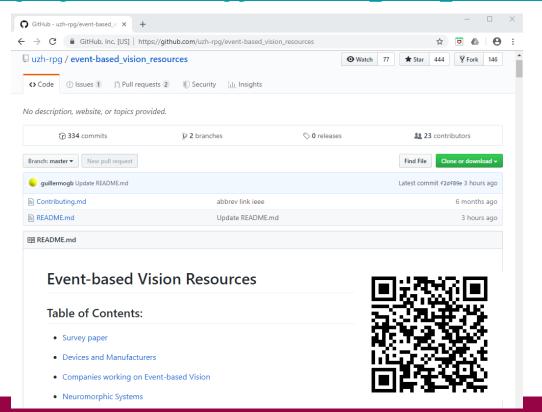
http://rpg.ifi.uzh.ch/docs/EventVisionSurvey.pdf

CVPR19 Workshop on Event-based Vision

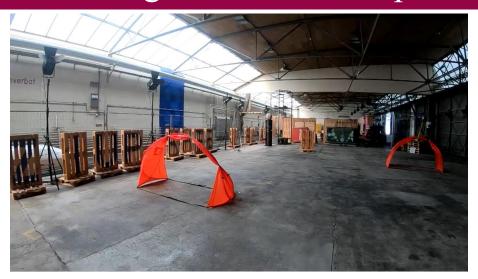
Second International Workshop on Event-based Vision and Smart Cameras June 17, Long Beach

Held in conjuction with the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach.

Photo Album of the Workshop



Full-day workshop with talks by 23 researchers on event-based cameras, including Samsung, Intel, and event-camera companies Slides and video recordings: http://rpg.ifi.uzh.ch/CVPR19_event_vision_workshop.html


List of Event-based Vision resources

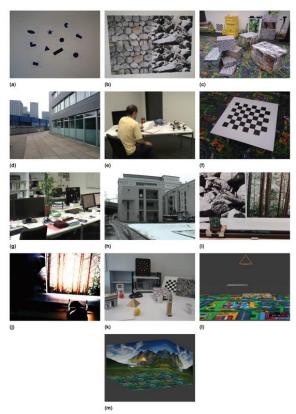
Code, datasets, papers, videos, companies on event cameras

https://github.com/uzh-rpg/event-based vision resources

UZH-FPV Drone Racing Dataset & Competition

Recorded with a drone flown by a **professional pilot up to over 20m/s**Contains over 30 sequences with **images, events, IMU**, and **ground truth from a robotic total station**: http://rpg.ifi.uzh.ch/uzh-fpv.html

IROS 2019 Drone Racing VIO competition: https://github.com/uzh-rpg/IROS2019-FPV-VIO-Competition Win up to \$2,000 plus invited talk . Submission deadline: Sep. 27, 2020


Delmerico et al. "Are We Ready for Autonomous Drone Racing? The UZH-FPV Drone Racing Dataset" ICRA'19 PDF. Video. Datasets.

Other tasks including obstacle avoidance, exploration, control on UAV etc. can be found:

http://rpg.ifi.uzh.ch/research.html

Dataset

RPG dataset http://rpg.ifi.uzh.ch/research_dvs.html

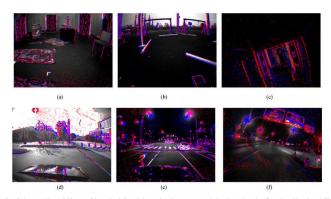
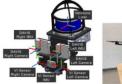



Fig. 3. Sample images with overlaid events (blue and red) from indoor and outdoor sequences, during day and evening. Best viewed in color. (a) Hexacopter indoor flight with Vicon motion capture. (b) Hexacopter outdoor flight with qualisys motion capture. (c) Handheld with difficult lighting conditions. (d) Car day 1. (e) Outdoor car evening. (f) Motorcycle highway 1.

Fig. 4. Motion capture arenas. Left: Indoor Vicon arena, right: Outdoor Qualisys arena.

Upen dataset https://daniilidis-group.github.io/mvsec/

Stereo event cameras http://rpg.ifi.uzh.ch/ECCV18_stereo_davis.html

Online Resource

- Event camera paper collection: https://github.com/uzh-rpg/event-based_vision_resources
- VO/VSLAM/VIO
 - o code: Life time estimation: https://github.com/uzh-rpg/rpg event lifetime
 - o code: Corner detection: https://github.com/uzh-rpg/rpg_corner_events
 - o code: **EventEMin**: https://github.com/ImperialCollegeLondon/EventEMin
 - o code: dvs-panotracking: https://github.com/VLOGroup/dvs-panotracking
 - o code: EVIO feature tracker: https://github.com/alexzzhu/event-feature-tracking
 - o code: EMVS_stereo depth reconstruction: https://github.com/uzh-rpg/rpg_emvs
 - o code: **ESVO**: https://github.com/HKUST-Aerial-Robotics/ESVO
 - https://git.ram-lab.com/gogojjh/M-LOAM/src/mloam_gf/eloam
- Other tasks
 - o code: EKLT_feature tracker: https://github.com/uzh-rpg/rpg_eklt
 - evaluation code: https://github.com/uzh-rpg/rpg feature tracking analysis
 - o code: End-to-end learing representation for event camera: https://github.com/uzh-rpg/rpg_event_representation_learning
 - o code: SNN for angular velocity: https://github.com/uzh-rpg/snn_angular_velocity
 - o code: Video to event image reconstruction: https://github.com/uzh-rpg/rpg_vid2e
 - o code: Event image to frame image reconstruction: https://github.com/uzh-rpg/rpg e2vid
 - o code: Event-based Asynchronous Sparse Convolutional Networks: https://github.com/uzh-rpg/rpg_asynet
 - o code: UZH drone racing: https://github.com/uzh-rpg/rpg_feature_tracking_analysis
 - o code: Simulator: http://rpg.ifi.uzh.ch/esim.html

Thank you! Q & A

Acknowledgement:

Some materials are from the tutorial on event cameras from RPG, ETH Zurich http://rpg.ifi.uzh.ch/docs/scaramuzza/Tutorial_on_Event_Cameras_Scaramuzza.pdf