

Pedagogy in teaching

Computer Science
in schools:

A Literature Review

Jane Waite
Queen Mary University of London and King's College London

2

Table of Contents

Table of Contents .. 2

List of Tables ... 3

List of Figures .. 3

1 Introduction .. 4

2 Research Methodology ... 5

3 Findings ... 8

4 Discussion and Recommendations ... 41

5 Summary. .. 52

Bibliography .. 53

Appendix A .. 75

Appendix B .. 85

Appendix C .. 87

Appendix D .. 88

Glossary ... 89

3

List of Tables

Table 1 Theme specific search terms .. 5

Table 2 Study attributes .. 6

Table 3 Teaching phases ... 7

List of Figures

Figure 1 Pedagogy literature review categories ... 8

Figure 2 The Block Model as explained by Clear 2012 (Clear, 2012) .. 11

Figure 3 Use-Modify-Create framework (Lee et al., 2011) ... 12

Figure 4 New combined taxonomy (Meerbaum-Salant et al., 2013) ... 14

Figure 5 UDL Hypothetical learning progression (Dwyer et al., 2014).. 15

Figure 6 Interpretation of path diagram (Lopez et al., 2008) ... 19

Figure 7 The PTD framework (Bers, 2010, p. 5) .. 25

Figure 8 Primary and Secondary Programming Languages from CAS Survey 2015 (Sentance, 2015) 33

4

1 Introduction

As commissioned by the Royal Society, this work provides a supplementary addendum to the Royal Society

Computing Education Project Report (Crick, 2017) by providing a review of current literature of pedagogy

in teaching computer science in schools.

This literature review summarises, what is known about pedagogies for teaching computing in schools.

The overall intention is to identify what recent clear evidence is emerging from research and identify

potential gaps where useful pedagogy research could be carried out to support teaching computing in

the UK.

The ICT curricula across the UK have been, or are in the process of being, changed to incorporate computer

science, including programming and computational thinking. These changes require teachers to

understand not only the content but also consider how it should be delivered. How much is understood

about how programming and the other elements of the computing curriculum should be taught is not

clear. This report adds to this body of knowledge by collating evidence from existing research.

5

2 Research Methodology

We adopt the approach of Gough, Sandy, & James (2013, p. 26) who suggest that a combined review of

reviews with an additional synthesis of new studies can provide an overview of a study area.

The following approach was adopted:

1. Identification of recent literature reviews;

2. Selection of those reviews with the best coverage and methodology and with most clarity;

3. Identification of new empirical studies undertaken after the literature reviews were written;

4. Summarise the literature reviews and new studies;

5. Make recommendations for future research.

Literature reviews and studies were identified using searches of research databases alongside tracing of

citations of papers. The research databases searched were: ACM Digital Library, IEEE, Taylor and Francis,

Wiley Online Library and Eric. A search for the term "pedagogy" and "school" was used to collate an initial

set of papers. For emerging themes, additional specific searches were undertaken using search terms as

shown in Table 1. These extra searches were included as the generic searches retrieved limited coverage

of the themes under consideration.

Theme Generic search terms Specific search terms

Contexts, Physical computing School Physical computing

Student Engagement, Pair programming School Pair programming

Programming Languages, Block to text-based
programming transition

School Transition, block

Table 1 Theme specific search terms

The search results were de-duplicated, and the abstracts of the remaining studies were read to decide

whether to retain or discard the paper using the following selection criteria:

 Papers were included for further consideration if they related to school age students (under 18

years of age) unless there was no school age research for a field of interest, or the work was a

significant contribution, based on our knowledge of the field;

 Papers were included for further consideration if they were literature reviews, qualitative or

quantitative studies. Opinion pieces were removed as the focus of this report is to gather

evidence-based research. However, several significant commonly cited opinion pieces which

provide context have been retained to situate studies;

6

 Papers published since 2007 were included for further consideration; studies older than 10 years

were removed as the focus of this report is to gather recent research. However, older work has

been included where there was a significant contribution and it situated a theme;

 Papers with a strong evidence base were included for further consideration. Studies with weak

empirical evidence were removed, as the focus of this report is to review research with clear

evidence on which to base recommendations. However, where there was a lack of studies for a

theme, some less rigorous reports were retained to situate discussion;

 Material already highlighted in the main Royal Society Report (Crick, 2017) was excluded, such as

discussion of computational thinking.

To aid review of the selected studies, the attributes shown in Table 2 were summarised for each paper.

Attribute Description Notes

Theme The theme for the study as
categorised for this report

School Phase The phase of school learning Primary, Secondary HE (Higher Education), KS1, KS2,
KS3, KS4, KS5. See Table 3 Teaching phases

Country of origin The country of most authors Where there was no majority, the first author's
country was selected

Research approach The approach taken for the research Literature Review, Qualitative, Quantitative, Mixed

Participation scale The number of participants of the
study

Small: 1-50 participants, Medium: 51-151
participants, Large: more than 151 participants

Study Context The context of the study Specific details, such as setting
Table 2 Study attributes

This initial search resulted in over 700 papers. The numbers of studies retrieved by data source are shown

in Appendix D. Using the selection criteria explained above the number of papers was reduced to 86, the

list of selected studies is shown in Appendix A. The papers are grouped by theme and shown in the same

order that they are referenced in the main body of this report. The remainder of this study is organised

as follows. For each theme, an overview of the studies is presented. Emerging evidence is then

summarised, and potential gaps where useful pedagogy research could be carried out to support teaching

computing in schools in the UK is outlined.

7

Table 3 Teaching phases

 England and
Wales key stage

England
and Wales

Scottish
Grades

Northern
Ireland Grades

USA Pupil Grades Student age
(years old)

 Early Years Early Years Primary 1 Nursery 4-5

Primary Key Stage 1 Year 1 Primary 2 P1 Kindergarten (K) 5-6

Year 2 Primary 3 P2 Grade 1 (K1) 6-7

Key Stage 2 Years 3 to 6 Primary 4
to 7

P3-P7 Grades 2 to 5
(K2-K5)

7- 11

Secondary Key Stage 3 Years 7 to 9 S1 to S3 Year 8 to 10 Grades 6 to 8
(K6-K8)
(middle school)

12-14

Key Stage 4 Years 10 to
11

S4 to S5 Year 12 to 12 Grades 9 to 10
(K9-K10)

15-16

Key Stage 5 Years 12 to
13

S6 Year 13 to 14 Grades 11 to 12
(K11-K12)

17-18

8

3 Findings

The literature has been grouped into the themes shown in Figure 1 to support the process of review.

These broad groupings became evident as the literature was synthesised. The material was aligned to

these emergent themes using our knowledge of the field. The groupings exemplify some of the choices

that teachers make as they decide how to meet a computer science learning objective. They draw upon

significant models, select specific instructional techniques, choose a context to situate the learning, select

a programming language and select a method of student engagement to maximise learning for their

cohort of students.

Figure 1 Pedagogy literature review categories

3.1 Learning Models and Instructional Techniques

Four literature reviews are first summarised, followed by a review of studies not covered by these papers.

In a literature review of teaching and learning of computational thinking through programming in K-12,

Lye & Koh (2014) concluded that further research should be situated in class settings as less than half of

the studies synthesised were in primary or secondary classrooms. The authors recommended that

learners should be taught to verbalise their understanding using think-aloud techniques and that

qualitative data should be framed within established programming study categories. Further, they

Pedagogy

Learning Models

& Instructional

Techniques

Learning Models &
Curricula

Frameworks

Instructional
Techniques &

Teaching Strategies

Context

Physical Computing
Pedagogy

Game Making
Pedagogy

Unplugged

Pedagogy

Cross-curricular

Pedagogy

Programming
Languages

Block to Text

Pedagogy

Other Prorgamming
Language

Opportunities

Student Engagement

Pair Programming

Other Learner
Engagement

9

proposed instruction should use a constructionism-based authentic problem-solving approach with

information processing, scaffolding and reflection activities. The authors emphasised that students ought

to be 'thinking doing and not just doing'.

Falkner & Vivian (2015), in their systematic review of K-12 resources for the Australian Curriculum,

identified that pedagogical support was generally missing from the resources reviewed, noting the focus

was on content knowledge. The authors stated there was a need to develop teachers' resources that

demonstrated and modelled learning progression and implementation plans. The authors reported

further resources were required to support data and functional requirements analysis; algorithm design

and evaluation; programming as an element of this process; evaluation and critical analysis and

readymade unplugged resources for younger primary learners.

In a 2015 systematic literature review of computing education in K-12 schools, Garneli, Giannakos, &

Chorianopoulos (2015) concluded that despite challenges, computing could be an effective and enjoyable

learning experience and that there was no one pedagogical solution for all classes. The authors cited a

range of instructional approaches used in the reviewed studies, including using visual programming

languages to introduce young learners to programming and the use of authentic text-based languages.

Game-making and physical computing were mentioned to motivate learners and using physical computing

to explore concepts. Further, they suggested making creative products with much scaffolding to start with,

combining kinaesthetic activities with programming activities and the careful selection of educational

contexts. Studying, modifying and extending code samples, as well as using demonstrations and tutorials

and debugging tools was recommended. The Use-Modify-Create strategy was mentioned (Lee et al., 2011)

as well as problem and project-based learning and an 'in-time' approach to present new learning as and

when needed.

In a K-8 study to provoke discussion rather than to raise immediate research agendas, Rich, Strickland, &

Franklin's (2017) literature review catalogued computer science learning goals that experts had theorised

as important to teach, and compared this to learning goals that had been explored and researched to

identify discrepancies between the two. The most commonly cited unmatched goal was designing

solutions. This goal related to the high-level planning of solutions in applied scenarios, usually before

coding, requiring the abstraction away of details, clearly stating problems, reformulating problems so they

can be solved computationally and avoiding implementation constraints. The authors raised the question

of how focused on coding, rather than applied problem-solving computer science might be.

10

Rich et al. (2017) also noted that there was ample literature related to teaching learners about the

mechanics of loops and functions. However, the authors could not find any research on K-8 learners

concerning how to decide whether to create loops or functions, asking when to introduce considerations

of clean, efficient, readable code and whether this needs to be explicitly taught. Further, they raised the

issue of extremely fine-grained programming (EFGP) and the impact on debugging and testing, asking how

thorough we might expect young learners to be.

3.1.1 Learning Models & Curricula Frameworks

Theoretical models for teaching and learning are now outlined that situate pedagogical choices.

Du Boulay (1986) highlights the concept of a programmers' mental model of a 'notational machine': the

behaviour of static code as it becomes a running process. Opinion is divided on the significance of this

model to novice programmers, and how it might come to be appreciated or taught to learners. There are

calls for further research into this area (Ben-Ari, 1998; Berry & Kölling, 2013; Greening, 2000; Sorva, 2013).

Schulte (2008) and Schulte, Clear, Taherkhani, Busjahn, & Paterson (2010) suggest a holistic model of

learner understanding of programming, the Block Model. A diagrammatic representation of the Block

Model is presented in Figure 2. Using the Block Model, Schulte et al. (2010) suggest teaching and learning

sequences: micro sequences that focus on one example, such as a single activity to implement an

algorithm; and macro sequences that focus on a course of many activities. They concluded with a

summary of three critical aspects of teaching and learning to program 1) domain knowledge is

underestimated in pedagogy, 2) experts having a flexible understanding of programs based on more than

just reading the program text is rarely discussed, 3) there are lots of possible learning tasks for reading

and comprehending programs, such as tracing examples of code or explaining the purpose of a piece of

code in plain English. An analogy cited by the authors, is that the process of learning to program is like

sewing a patchwork quilt, with each cell in the model being one of the squares, and each knowledge layer

like the stuffing. As knowledge is acquired the quilt becomes more robust and coherent, with novice

programmers having a 'holey knowledge' (Schulte et al., 2010) or a 'holey quilt' (Clear, 2012).

11

Figure 2 The Block Model as explained by Clear 2012 (Clear, 2012)

The Block Model's distinction between a novice programmer's understanding of the structural atomic

detail of a program, the code, the functional goals of the program, and the problem (Schulte et al., 2010)

resonate with the development of the levels of abstraction model (Armoni, 2013; Cutts, Esper, Fecho,

Foster, & Simon, 2012; Hazzan, 2003; Perrenet & Kaasenbrood, 2006; Statter & Armoni, 2016; Taub,

Armoni, & Ben-Ari, 2014; Waite, Curzon, Marsh, & Sentance, 2016). Here initial work focused on university

students' understanding of algorithms and data structures in terms of levels of abstraction (Aharoni, 2000;

Cutts et al., 2012; Hazzan, 2003), but more recently attention has turned to younger learners (Armoni,

2013; Statter & Armoni, 2016; Waite et al., 2016).

Statter & Armoni (2016) reported on a study of 119 grade 7 pupils taught the levels of abstraction model;

namely the execution level, program level, algorithm and problem level. The authors reported that the

experimental group attended more to the algorithm level, using more written and verbal descriptions

12

than the control group. There are synergies here with the call from Rich et al. (2017) for research related

to design, as the algorithm level of abstraction maps to this stage of problem-solving (Waite et al., 2016).

In a separate study also looking at the understanding of abstractions when programming, Cutts et al.

(2012) created an Abstraction Transition (AT) taxonomy. They described the taxonomy as having three

main levels of: code; CS speak, and English and claim using it will develop students' programming. An

example transition goal given by the authors was 'Given a technical description (CS Speak) of how to

achieve a goal, choose code that will accomplish that goal'.

Grover & Pea (2013a) investigated a discourse-intensive pedagogy and highlighted the value of the social

aspect of learning and how the deliberate introduction of talk into a curriculum can shape the 'process of

development' (Grover & Pea, 2013a, p. 726) concluding with a call for further research on 'computational

discourse'.

Returning to the Block Model, Schulte et al. (2010) proposed the problem of 'holey' knowledge and

suggested time on task as the dimension to practise and develop depth of understanding. Lee et al. (2011)

suggested a framework to afford developing depth of understanding, related to time on task, but with a

finer progression of learning of 'Use- Modify-Create' as shown in Figure 3.

Figure 3 Use-Modify-Create framework (Lee et al., 2011)

Lister (2011) reported on cumulative work investigating learning of programming in higher education and

proposed a model for learning that informs pedagogy. Based on Neo-Piagetian theory, the model maps

stages of programming development to pre-operational, operational and formal operational reasoning.

This theory has been used as the lens for some of the university student studies by Teague, Lister and

Corney. They acknowledge limitations of generalisation of their findings, as studies are either of a small

population or qualitative. However, they suggested that there is evidence that novices need more support

to secure basic programming constructs, requiring educators to assess learners' stage of development

13

and tailor teaching to their needs. They suggest that further quantitative research is needed (Corney,

Teague, Ahadi, & Lister, 2012; Teague & Lister, 2014a, 2014b).

Lister summarised his Neo-Piagetian theory and concluded that the gap between academics and teachers

needed to be bridged else computing curricula would be developed that would not work in class. He called

for practical day to day material to be created that was informed by research and incorporated learners'

stages of development (Lister, 2016). This leads to consideration of pedagogical themes inherent in recent

studies of teaching and learning material, developed by academic teams for practical use in classrooms.

Meerbaum-Salant, Armoni, & Ben-Ari (2013) reported on the evaluation of teaching materials they had

developed and used to teach programming in Israeli middle schools using Scratch. The report concluded

that Scratch was a suitable platform for teaching programming as most students reached a reasonable

level of computer science understanding. However, the authors reported difficulties in teaching certain

topics such as repeated execution, variables and concurrency. The authors urged caution, advising that

close and effective mentoring was needed by teachers for effective learning to be achieved, as left to their

own devices learners created media and learnt very little.

The same research team combined Bloom's taxonomy with the Solo taxonomy to create a new

hierarchical taxonomy to support their curriculum development. The authors claimed that higher levels

of the taxonomy imply deeper comprehension than the superficial, lower levels. The report provided the

dimensions for their new taxonomy and three examples as depicted in Figure 4. The authors asserted that

learners progress from 'unistructural understand' for easiest student performance to 'relational create'

the highest level of mastery (Meerbaum-Salant et al., 2013).

Rather than teaching Scratch features, the pedagogy for delivery of teaching sequences was for concepts

to be taught. These 'concepts based teaching sequences' were taught in a carefully considered order. For

example, concurrency was taught early and variables late. Programming constructs were introduced as

needed, with problems carefully selected so that constructs were not needed earlier than they had been

introduced (Meerbaum-Salant et al., 2013).

14

Figure 4 New combined taxonomy (Meerbaum-Salant et al., 2013)

Hansen, Hansen, Dwyer, Harlow, & Franklin (2016) reported on a curriculum they had developed for

slightly younger learners, grades 4 to 6, again using a block-based programming language, but this time

using LaPlaya, a specially developed 'Scratch like' environment. Franklin & Harlow's interdisciplinary team

at the University of Chicago and UC Santa Barbara spent some five years working with local schools to

design, implement and evaluate their new programming environment (LaPlaya) and associated

curriculum. In support of this, the group developed the Universal Design of Learning (UDL) framework

which underpinned the curriculum development and informed teachers' ongoing use of the curriculum

provided. Informed by research on differentiated learning, the UDL framework was created to support

the needs of all learners, meeting their cognitive, language and mathematical needs, incorporating gender

neutral and appropriate ethnic and linguistic curricula content.

The UDL team have written over a dozen academic papers related to the curriculum development. Here

five studies with significant pedagogical findings are mentioned. Dwyer, Hill, Carpenter, Harlow, & Franklin

(2014) explored progression in algorithmic thinking and programming using unplugged activities and

suggested a strand of their hypothetical learning progression as shown in Figure 5.

Create

Ability to create very small
scripts for doing one thing,

or adding an instruction
with local effect to an

existing script

Apply
The ability to track a

program and grasp its
various parts but not the
whole entity they form

Understand

The ability to fully
understand a complex

concept (such as
concurency) and to

coherently explain its
variosus features

Unistructural Multistructural Relational

15

Figure 5 UDL Hypothetical learning progression (Dwyer et al., 2014)

Hansen, Iveland, et al. (2016) reported that user-centred design in block-based programming languages

was more complex than originally thought and that it required explicit instruction. In a further study

Hansen, Hansen, et al. (2016) suggested creating a sandbox, for learners to apply new skills, as some

learners completed activities early and spent time changing the appearance of their work. There are

synergies here with comments made by the Israeli curriculum team on focused learning activities

(Meerbaum-Salant et al., 2013) and the Use-Modify-Create model (Lee et al., 2011).

Franklin et al. (2016) suggested that it is important to design gradations of task from simple to complex.

They also argued and there is a need to analyse and understand all aspects of introductory computer

science instruction and not to take atomic units such as initialisation for granted. There are links here with

the 'holey knowledge' and the Block Model (Clear, 2012; Schulte, 2008). Franklin et al. (2017) reported

that activities with precise mathematics caused undesirable difficulty and were a barrier for some

students to learn the underlying computer science.

Further work is needed to understand the UDL framework and its commonalities with other models,

curriculum frameworks, instructional techniques and strategies.

Grover, Pea, & Cooper (2015) created and tested a blended computer science course for middle school

students, called 'Foundations of Advancing Computational Thinking' (FACT). Their 2015 study stated the

material had been developed for 'deeper learning', focusing on pedagogical strategies to support and

assess the transfer from block to text-based programming, including materials to remedy misconceptions

16

and provide systems of assessment. The authors reported that students using FACT achieved substantial

gains in algorithmic thinking; could transfer their learning from Scratch to text-based languages and

achieved significant growth in a more mature understanding of computing. Maths ability and prior

computing experience were found to be strong predictors of learning outcomes. This association of maths

ability and computing aptitude supports Franklin et al.'s comments on mathematics being a barrier for

some students (Franklin et al., 2017) and merits further investigation.

The FACT pedagogy is clearly documented by the study, including a rationale for the choices made. The

authors explain that no single pedagogical approach is employed. Instead, a blended approach is

advocated. This approach incorporates inquiry-based learning, scaffolding (Pea, 2004), cognitive

apprenticeship (Collins & others, 1987), code reading and tracing, think aloud, use of computing language,

directed and open-ended projects, independent and pair work and a carefully controlled introduction of

concepts in a pre-determined order. There are similarities here with the carefully ordered curriculum of

Meerbaum-Salant et al. (2013) and opportunity to compare the progression advised by each curriculum.

Grover et al. (2015) refer to the contention raised by Mayer (2004) that: a minimally guided discovery

approach often makes for higher learner engagement and agency but misses out on helping students

develop mental models of concepts. Referring to Papert & Harel (1991) , they balance this with the idea

that an 'instructionist' approach does not engage prior learning. The report cites a central theme for the

curriculum of incorporating 'preparation for future learning' PFL, including assessment of this.

Probably the most widely cited academic generated framework for block-based programming curriculum

is that of Brenan & Resnick's framework for studying and assessing the development of computational

thinking (Brennan & Resnick, 2012). The concepts, practises and perspectives of this framework are often

mentioned by research studies when considering progression for both curricula development and

assessment.

Similarly, Seiter & Foreman (2013) propose a model for understanding and assessing progression in

computational thinking, the Progression of Early Computational Thinking (PECT) model. To pilot test the

model the authors analysed 150 Scratch projects, concluding that as learners get older their

computational thinking skills increase. Further research is currently being conducted to validate the PECT

model, to define a prototype progression in computational thinking.

Picking up this reoccurring theme of computational thinking, the National Curriculum in England requires

teachers to 'equip pupils to use computational thinking and creativity to understand and change the

17

world' (DfE, 2013a, p. 1, 2013b, p. 1). Despite a lack of consensus on exactly what computational thinking

is (Barr & Stephenson, 2011; CSTA, 2011a; Grover & Pea, 2013b; Lye & Koh, 2014; Selby & Woollard, 2014)

and its merit (Tedre & Denning, 2016), proponents (Wing, 2011) advocate its importance and emerging

guidance on teaching computing incorporates computational thinking in a variety of forms in computing

materials and curricula (Benton, Hoyles, & Noss, 2016; Berry, 2015a; Berry et al., 2015; Bers, Flannery,

Kazakoff, & Sullivan, 2014; Brennan & Resnick, 2012; Google, 2016; Grover et al., 2015; Gujberova & Kalas,

2013; Hansen, Hansen, et al., 2016; Kafai & Burke, 2015; Lee et al., 2011; Repenning et al., 2015;

Rodriguez, Kennicutt, Rader, & Camp, 2017; Seiter & Foreman, 2013; Weintrop, Holbert, Horn, &

Wilensky, 2016). The remit of this literature review is not to reflect upon the veracity of computational

thinking, rather highlight significant pedagogical themes. Clearly, computational thinking is one such

theme and as such any ongoing research on computing pedagogy requires review of what computational

thinking is, how it can be developed, how it impacts on teaching and learning and its role within the

pedagogy advocated.

3.1.2 Instructional Techniques & Teaching Strategies

The work of Papert runs as a thread throughout the curriculum frameworks devised by the various

research communities. Reference is made to learners constructing knowledge as they explore and develop

a personal understanding of newly introduced concepts or devices (Papert, 1980). However, balanced

with this, is a call for guided instruction to ensure that learners circumnavigate a carefully constructed

progression to develop a complete mental model (Garneli, Giannakos, & Chorianopoulos, 2015; Grover et

al., 2015; Lye & Koh, 2014; Meerbaum-Salant et al., 2013; Schulte, 2008). Grover et al. (2015) suggest that

to foster deep learning a combination of guided discovery and instruction rather than pure discovery and

'tinkering' would be more successful. Attention is now turned from generic models and frameworks to

strategies and instructional techniques which develop depth of understanding, teach difficult concepts

and address specific misconceptions.

A 6th to 8th-grade (n=100) study assessing understanding after an introductory programming course in

Scratch revealed that learners were unfamiliar with the use of variables, and had trouble with loops and

Boolean Logic. The authors suggested that constructionist activities should be combined with targeted

conceptual learning for foundational constructs (Grover & Basu, 2017). This sentiment is echoed by a

number of studies with emerging evidence that some of the more difficult concepts such as initialisation,

variables and loops need to be explicitly taught (Hubwieser, Armoni, Giannakos, & Mittermeir, 2014;

Kirschner, Sweller, & Clark, 2006; Statter & Armoni, 2016; Sweller, Kirschner, & Clark, 2007). Other studies

18

raise the need for learners' cognitive load to be managed by more closely controlling learning

opportunities and learning experiences (Alexandron, Armoni, Gordon, & Harel, 2014; Paas, Renkl, &

Sweller, 2003; Tsai, Yang, & Chang, 2015; Van Merrienboer & Sweller, 2005). As a body of studies there

are implications here for pedagogy in school, with suggestion that targeted teaching is needed for difficult

concepts within a controlled progression of learning experiences.

Meerbaum-Salant, Armoni, & Ben-Ari (2011) asserted that Scratch promotes certain 'habits of mind' such

as a bottom-up approach to development where using trial and error novice programmers build up

programs which are 'extremely fine grained'. The authors reported such programs are not well-structured,

hard to understand and debug, leading to the question of whether this might cause problems as learners'

advance in programming. They concluded that while Scratch is motivating and easy to use, the question

of whether learners should start with 'the right way' or learn this later requires further qualitative and

quantitative research.

A recent analysis of 250,000 Scratch projects, found most programs were small and included dead code.

The authors reported code duplication was common and procedures, an essential component of well-

structured programs, were rare (Aivaloglou & Hermans, 2016). This theme of quality of code and what

learners perceive to be correct was focused upon in a large-scale study of how grade 10 to 12 learners

evaluated the correctness of programs. Kolikant & Mussai (2008) concluded that learners' notions of

partial or relative correctness of programs included 'a grain of correctness'. So, if a program met some of

the requirements, it was deemed as correct. Only if there were no 'grains of correctness' was a program

considered incorrect. The authors commented that the older participants were less tolerant of logic

errors. However, they advised that younger students should be educated that even a small error means

that the program is incorrect. Further research on the idea that non-working programs are considered as

incorrect was recommended as well as an exploration of teachers' beliefs about what makes a 'correct

program'. This leads to the notion of code comprehension, reading and tracing code.

In an Australian university study, Lopez, Whalley, Robbins, & Lister (2008) compared code tracing

performance to results from code writing tasks, comparing students' ability to explain programs in plain

English to code writing outcomes. The authors suggested a path of related tasks and understanding, a

path diagram, to support programming development. Figure 6, depicts an interpretation of the path.

There are synergies here with the Block Model (Schulte, 2008).

19

Figure 6 Interpretation of path diagram (Lopez et al., 2008)

Teague and Lister have created a body of work related to code comprehension in novice undergraduate

programmers linking progression to their work on a Neo-Piagetian model of abstraction. In studies

comparing tracing skills to code writing, reports have concluded a direct correlation (Lister, Fidge, &

Teague, 2009; Lopez et al., 2008; Venables, Tan, & Lister, 2009). Lister described novices requiring 50%

tracing code accuracy before they could independently write code with confidence (Lister, 2011).

Teague & Lister (2014c) reported that learning to program is sequential and cumulative, with tracing

requiring students to draw on accumulated knowledge to conceive a big picture. The authors suggested

novice learners should be focused on very small tasks with single elements, with emphasis on reading and

tracing code before they are expected to write code snippets; scaffolded sequences of carefully chosen

tasks should then be used to facilitate further progress. They concluded that the challenge lay with

identifying at what stage students were, and then giving them time to master skills within their stage of

development, calling for other academics to investigate this area. In a longitudinal study of a single

student, Teague & Lister (2014a) evidenced these stages of development using a case study of a single

student. Similar conclusions were made from a study of variables and assignment statements, the authors

stating that teaching approaches needed to change to better identify learners' understanding, calling for

further quantitative work (Teague & Lister, 2014b). This theme of assessing learners' current

understanding, and tailoring work to build upon it resonates with the UDL philosophy of differentiation

and supporting the needs of all learners (Hansen, Hansen, et al., 2016).

Data

Knowledge of basic
data structures

Tracing 1
Non-iterative

Basics
Knowledge of basic

programming
constructs

Sequence Tracing 2
Iterative

Explain

Writing

Exceptions

20

Studies related to code comprehension have highlighted the importance of reading code to address

misconceptions of algorithm efficiency (Gal-Ezer & Zur, 2004) and the use of worked examples to

understand how variables change over time (Sudol-DeLyser, Stehlik, & Carver, 2012).

Busjahn & Schulte (2013) interviewed high school teachers on code reading and concluded that further

research was required to investigate improved reading strategies. In a higher education study, they

investigated eye movements and the differences between how novice and expert programmers read

source code. They reported that experts read code LESS linearly than novices. The authors suggested that

cuing visual attention to locations that experts might attend to could be an avenue for further research,

concluding that instructors and students could monitor their own progress using eye tracking tools

(Busjahn et al., 2015).

In work related to younger students and how they look at code, Dwyer et al. (2015) reported several

significant findings. Firstly, reading code in such environments is complex and secondly the visual nature

of block-based environments impacts on reading in both intended and unintended ways. They reported

that as well as using the code itself, learners used information from the 'stage' where the program was

running or had run, as well as information about blocks from the code editing areas. In some cases, this

information was helpful, in others not. The report suggested that younger learners may need explicit

instruction on how different features work independently and together. The authors concluded further

work was needed to analyse the reading of a variety of projects as well as to look at what visual cues were

used by different groups of students.

Gujberova & Kalas (2013), working with primary students using a route-based programming environment,

recommended a sequence of carefully graded learning activities to improve programming and

computational thinking. Within these gradations was a stage where learners read and interpreted each

line of code, as well as a stage for reading the entire program and predicting the outcome. The authors

were cautious to interpret the results of their study, due to the test questions' similarity to intervention

activities, concluding that further work is needed to understand the difficulty and similarities of

programming tasks.

A further idea related to looking carefully at code is that of subgoal modelling, where meaningful labels

are added to worked examples to visually group steps into subgoals thereby highlighting the structure of

code. Two higher education studies, Margulieux & Catrambone (2016) and Morrison, Margulieux, Ericson,

& Guzdial (2016), used this strategy with exemplar text, worked examples and problems. Both reports

21

concluded that those students given subgoals performed significantly better than those who had no

subgoals or who added their own subgoals. The authors linked their work with the concept of cognitive

load, and suggested the labels reduced the extraneous load related to the detail of the example, and

learning was improved as the intrinsic load was also reduced by providing a way to organise the problem

in memory.

In a KS3 study, learners were asked to add notes explaining their code by annotating it within the

programming environment. The authors reported those adding annotations performed significantly

better than those who did not. However, the intervention group not only used the annotation tool but

also problem-based learning. Therefore, it is difficult to conclude that the annotation strategy resulted in

the performance gains rather than the other changes (Su, Yang, Hwang, Huang, & Tern, 2014).

In a different line of research, a comparison was made between university students reviewing static code

versus their instructor modelling coding 'live'. Rubin (2013) concluded that for the end of term projects,

students' grades were significantly higher if they were part of the live coding version of the course.

Furthermore, in midterm assessments, the live coding cohort performed as well as the static code group

(Rubin, 2013).

The strategy of a teacher modelling the creation of a piece of work is a common instructional technique

used in non-computing primary settings, as the teacher thinks aloud to explain the choices in writing a

story or choosing a method to use to solve a mathematics problem. This form of apprenticeship is

mentioned by Grover et al. (2015) in their description of the FACT framework as teachers think aloud as

they model creating solutions including the writing of pseudo-code.

Cutts, Connor, Michaelson, & Donaldson (2014) reported on the effectiveness of pseudo-code as an

instrument in formal computer science examinations and recommended that it be replaced with a

reference language. They refer to the Block Model (Schulte, 2008) and the distinction between

understanding the functional domain that a program is situated in, and the structural features of the

program (see Figure 2). They revealed how natural language is overlaid to facilitate understanding and

suggested it may be this overlay that confuses novice programmers.

As well as the confusion caused by using natural language to describe problems and programming

solutions, novice programmers may have misconceptions about the detail of how programming

constructs and commands work. A Finish group, at the University of Turku, (Veerasamy, D’Souza, &

Laakso, 2016) revealed a range of misconceptions that impact novice programmers' comprehension. In a

22

study of university students (n=39) completing an end of course Python programming e-exam, they

reported students misunderstood the meaning of inbuilt functions and their application and students

were confused about the use of return statements and the data type of parameter passing. Further,

students misunderstood the process of flow of control statements, particularly nested if and the for-loop

process, index positions and referencing list elements. Critically, students who had misconceptions made

knowledge errors and failed to complete the task. They recommended that further research should be

conducted to measure the correlation between types of errors and misconceptions, particularly

considering if there are any gender effects. However, they urged caution about generalising their results

due to small sample size, and limitations in not investigating other possible influencing factors. Finally, in

apparent opposition to the earlier theme raised that being able to trace a concept should mean improved

ability to write code using the concept, the authors found that 83% of the students who failed to trace a

loop could write a program using a loop, suggesting this was because students had remembered this code

from an earlier experience.

The same Finnish team undertook another undergraduate study comparing experts to novices as they

solved a simple Java programming problem (Lokkila et al., 2016). They concluded that experts seemed to

abstract the task more than students, suggesting this was most likely due to them being able to draw upon

existing templates and /or plans on how to solve a certain type of problem. The authors recommended

that students would benefit from instruction and strategies on how to abstract tasks highlighting the

importance of teaching students 'learning templates' and a process for problem-solving.

These two Finnish studies emphasise the point that coding does not occur in a vacuum, that it is situated

in a problem domain. Therefore, our attention is turned next to the context in which computing activities

occur.

3.2 Contexts

Teaching activities take place in situated contexts, such as making games, using physical computing or

embedded within cross-curricular topics. These contexts are not distinct: an activity may engage in several

contexts. For example, a KS1 year class might be learning about direction in maths and use a

programmable toy to deepen understanding. A KS2 class might create a computer game for a history

topic, augmenting the input with a modelling dough game board to learn about conductivity and science

at the same time. In KS3, a class might use a microcontroller to make a sensor to measure speed for maths

and science learning. A KS4 class might use e-textiles to design a product in design and technology. In KS5

students could create a games app that teaches about politics.

23

3.2.1 Physical Computing Pedagogy

Physical computing is often linked to Papert's constructionist framework, where a learner builds meaning

through making (Papert, 1980). It is implied in the English national curriculum at Key Stage 2 where

learners are required to design and write programs including controlling or simulating physical systems

(DfE, 2013b).

The term 'control', as used in this programme of study statement, relates to controlling actions such as

turning a motor on, activating a speaker, or turning a light on and off. Associated with a physical output

is the idea of a physical input, such as a button being pressed, or movement, light or sound detected.

Examples of physical computing devices range from programmable robots such as the Bee-Bot1; robotic

kits such as Lego Mindstorms2, programmable input devices or output devices such as the Makey Makey3;

educational microcontrollers such as the crumble4 and micro:bit5, tangible interfaces such as the KIBO6;

electronic and maker kits such as LittleBits7 and single board computers such as the Raspberry Pi8. A list

of example devices is shown in Appendix B exemplifying the wide range of products available to teachers.

This list is not exhaustive and new devices are constantly being introduced and withdrawn from the

educational technology market.

Four systematic literature reviews are summarised that contribute to a view of research related to

programmable robots and robotic kits in primary and secondary education. A review of the educational

potential of robotics in school presented only 10 studies, reporting that empirical evidence was limited

with some learners making progress in Science Technology, Engineering and Maths (STEM) and others not

(Benitti, 2012). Major, Kyriacou, & Brereton (2012) reported on 36 studies of which 11 were primary or

secondary and similarly concluded that there was a need for large-scale, high-quality research to

determine the effectiveness of using robotics to teach programming. More recently, Toh et al. (2016)

synthesised research from the previous ten years and presented 27 studies. The authors concluded that

quantitative analysis and experimental methods were lacking, with only four articles cited as evidencing

an increase in academic development. Across these reviews the conclusions are the same, there is limited

1 http://www.tts-group.co.uk/bee-bot-rechargeable-floor-robot/1001794.html accessed 5/4/2017
2 https://www.lego.com/en-us/mindstorms accessed 5/4/2017
3 http://www.makeymakey.com/ accessed 6/4/2017
4 http://redfernelectronics.co.uk/crumble/ accessed 14/4/2017
5 http://microbit.org/ accessed 5/4/2017
6 http://www.shop.kinderlabrobotics.com/KIBO-Sets_c7.htm accessed 5/4/2017
7 http://littlebits.cc/ accessed 5/4/2017
8 https://www.raspberrypi.org/ accessed 5/4/2017

http://www.tts-group.co.uk/bee-bot-rechargeable-floor-robot/1001794.html
https://www.lego.com/en-us/mindstorms
http://www.makeymakey.com/
http://redfernelectronics.co.uk/crumble/
http://microbit.org/
http://www.shop.kinderlabrobotics.com/KIBO-Sets_c7.htm
http://littlebits.cc/
https://www.raspberrypi.org/

24

clear evidence that using robotics results in progress in STEM or programming, with calls for high quality,

larger scale research.

Falkner & Vivian (2015) highlighted that despite the growing availability of physical computing technology,

they found few resources to support robotics and physical devices. They also noted that these resources

did not exploit opportunities to integrate with Design and Technology; were exemplars demonstrating

use; and that tutorial resources for teachers were needed as well as illustrations of appropriate pedagogy.

Across the systematic literature reviews reported here, the most cited resource set was Lego Mindstorms9

kit. How representative this research is of what is happening in UK schools now is not clear, nor whether

the approach to teach and learn with this product is the same as teaching and learning with others.

The literature reviews presented focused on robotics with the most recent study reviewing papers

published up until 2013. However, since that time, there has been a seed change in the types of research

being addressed, with a new interest in tangible interfaces and microcontroller studies as evidenced by

the additional reports added here.

Bers and her team, at Tufts University in the US, over a five-year period, have contributed to the field of

teaching and learning in early robotics and tangible interfaces developing the Positive Technological

Development (PTD) framework (shown in Figure 7) and associated TangibleK curriculum (Bers et al., 2014;

Bers, 2010; Horn, Crouser, & Bers, 2012; Kazakoff & Bers, 2012; Strawhacker & Bers, 2015). Their research

uses products such as the Lego Education WeDo Construction sets10, the CHERP programming language 11

(a visual block-based language with a restricted number of commands to control the WeDo components),

and a tangible interface of physical blocks that represent each CHERP command. Bers' studies include

control groups, with the pupils' teachers delivering the physical computing lesson material, usually of in-

class courses of 20 hours. Both qualitative and quantitative data measures are used to evaluate aspects

of teaching and learning.

Kazakoff & Bers (2012) concluded that pupils improved their sequencing skills as a result of learning how

to program robots using the TangibleK programme. A study in 2014, concluded learners using their PTD

framework and curriculum, were both interested in, and able to learn, many aspects of robotics,

programming and computational thinking (Bers et al., 2014). A later 2015 study (Strawhacker & Bers,

9 https://www.lego.com/en-us/mindstorms accessed 5/4/2017
10https://education.lego.com/en-gb/primary/explore/computing?CMP=KAC-EDUK16JunWeDo2campaign 5/4/2017
11 https://ase.tufts.edu/DevTech/tangiblek/research/cherp.asp 5/4/2017

https://www.lego.com/en-us/mindstorms
https://education.lego.com/en-gb/primary/explore/computing?CMP=KAC-EDUK16JunWeDo2campaign
https://ase.tufts.edu/DevTech/tangiblek/research/cherp.asp

25

2015) compared three types of interface: tangible blocks, on-screen programming and a combination of

the two. Although the results were not conclusive, the study indicated that using a tangible interface may

enhance understanding of repeat loops and other abstract concepts for younger learners. These three

studies showcase a systematic approach to in-school research, whereby the research community works

closely with educators to create, test and refine frameworks and resources over time.

Figure 7 The PTD framework (Bers, 2010, p. 5)

In an Australian study, McDonald & Howell (2012) taught Lego WeDo robot construction lessons over a 6-

week period with a small cohort of 16 KS1 pupils following an approach of 'model, explore, evaluate'. The

authors cited development in emergent literacy and numeracy, digital access and basic engineering

concepts. The authors recommended further investigation of the balance between teacher control and

pupil autonomy. How cognitive load might be controlled by teaching sequences was explored by Jin,

Haynie, & Kearns (2016) who proposed that physical computing can have a high cognitive overload and

trialled a teaching sequence to reduce this. They suggested a sequence including introduction, program

demonstration, learner guided activities with support from the teacher (including program design,

development, testing) and post discussion. The authors concluded that cognitive load was managed and

content knowledge increased. However, there was no control group to compare the outcomes to.

Our attention is turned next to microcontrollers and input and output devices, the pedagogical aspects of

recent research for these areas is next outlined.

26

A small-scale study of KS2 learners using the Makey Makey12 with modelling dough and other crafting

materials to make game controllers and augmented game boards, led to a conclusion that crafting and

coding was a valid approach for novice programmers as most learners went beyond surface changes in

remixing code and design. The authors highlighted the importance of learners playing each other's games

to provide an authentic audience, concluding that further research and implementation studies were

needed to support the introduction of crafting and coding activities into schools (Kafai & Vasudevan,

2015).

In a recent UK focus group study, 54 KS3 students were interviewed concerning their use of the micro:bit13.

Sentance, Waite, Hodges, MacLeod, & Yeomans (2017) reported that the device encouraged students to

work creatively and motivated the learners because of its physical nature and novelty. Further, the

authors suggested understanding was supported by the tangibility of the device. Teachers interviewed

reported using a range of pedagogical approaches to incorporate the device in the curriculum. The authors

concluded that further research was needed to support the claim that simply using such a device would

guarantee the benefits illustrated by the interviews.

In a US high-school e-textiles study of 15 students over a 10-week elective course using Lilypad Arduino14,

Kafai, Lee, Searle, Fields, Kaplan & Lui (2014) reported a range of pedagogies used to support students.

Suggested strategies included the use of a starter kit and starter code to learn basic skills, short code

concept lessons, reading code and debugging code activities. Sample code and remixing design challenges,

as well as drawing designs, was recommended as well as expert support and flexible lessons. While the

students had engaged in learning through various strategies, the authors concluded that a significant

finding from their study was the role of remixing in students' learning and personal and creative

expression. They advised that future research should further analyse remixing of ideas and crafting

techniques as well as remixing of circuit designs and code. The authors claimed the biggest success was

that both girls and boys were equally engaged in the crafting, circuitry and coding.

The theme of remixing was echoed in 2017 work, again of electronic textiles using Arduino15 for teaching

23 US high school students. The emphasis of the study was on reading, remixing and writing codable

12 http://www.makeymakey.com/ accessed 6/4/2017
13 http://microbit.org/ accessed 5/4/2017
14 https://www.arduino.cc/en/Main/ArduinoBoardLilyPad accessed 14/4/2017
15 https://www.arduino.cc/ accessed 14/4/2017

http://www.makeymakey.com/
http://microbit.org/
https://www.arduino.cc/en/Main/ArduinoBoardLilyPad
https://www.arduino.cc/

27

circuits. Litts, Kafai, Lui, Walker, & Widman's (2017) concluded that additional research was needed on

designing and developing resources and tools to support making activities.

DesPortes, Anupam, Pathak, & DiSalvo (2016), in a small-scale study of 44 high school students using

alternative breadboards, reported that cognitive load was reduced with a simplified design. They

concluded that further research of cognitive load and physical computing learning environments should

be undertaken.

In keeping with this theme of small-scale KS5 studies, Brinkmeier & Kalbreyer (2016) studied students

(n=25) assembling and programming a model goods conveyer system. Most student time was spent

dealing with problems with the model. The authors ultimately asked whether 'premade designs' might be

used as a tutorial to lead to new ideas for subsequent projects and stimulate creativity.

Creativity and progression of support were also suggested by Sentance & Schwiderski-Grosche (2012). In

a cross-phase study with KS3 to KS5 students, they reported that the tangible nature of the .NET

Gadgeteer16 microcontroller kit encouraged creativity, engagement, and students valued an exploratory

bricolage approach to learning. They recommended future work should investigate more staged support

and learning of programming concepts.

Recent work by Przybylla & Romeike (2014) and Przybylla (2016) has explored situating physical

computing in secondary education. As well as relating the importance of creativity and making in physical

projects, these authors explore how other aspects of the computer science curriculum can be taught

through physical computing. They have suggested teaching embedded systems, control, interactive

systems, memory, processor, inputs, outputs, interaction, hardware design and ubiquitous computing

with physical computing. Similarly, Eickholt & Shrestha (2017) reported on opportunities to use physical

computing to teach big data by learners having access to physical clusters. However, there have been no

empirical studies in classroom settings concerning these curricula material.

That teachers have been using physical computing for some time, and are using a range of physical

computing in class, is implied by previous English programmes of study, product donations to schools, and

teacher resources. The 1999 to 2014 ICT programme of study in England specifically mentioned

programmable toys, requiring pupils 'to plan and give instructions to make things happen [for example,

programming a floor turtle, placing instructions in the right order]' (DfE, 1999). In 2016, all year 7, KS3,

16 http://www.netmf.com/gadgeteer/ accessed 14/4/2017

http://www.netmf.com/gadgeteer/

28

pupils in England state schools received a microcontroller for free as part of the 2016 BBC micro:bit17

programme (Sentance et al., 2017). The Barefoot Computing Programme (Berry et al., 2015), and the

QuickStart Primary Project (Berry, 2015b) also include activities using programmable toys. The Computing

At School June 2016 survey confirmed this use: 38% of some 750 teachers said they used physical

computing often, 47% sometimes and 15% never (Sentance, 2016).

Therefore, there is evidence that teachers are using physical computing in class. However, the literature

reviews and studies described here indicate there is limited empirical research to inform teachers' choices

of what devices to use, what pedagogy to use and how effective these approaches are for learners to

make progress.

3.2.2 Game-making Pedagogy

Game-making as a context for learning computing is next considered, here one recent literature review is

outlined followed by a notable large scale programme that has developed a distinct pedagogy for teaching

computing through games and simulations.

Kafai & Burke (2015), in their analysis of 55 studies of game-making in primary and secondary settings,

found that most studies focused on teaching coding and academic content. The authors contended that

making games more genuinely introduced children to technical skills and connected them to each other,

countering the issue of access and diversity in traditional digital gaming cultures. Results from the review

were overwhelmingly positive, but also raised four concerns. Firstly, it was difficult to synthesise findings

from such diverse studies. Secondly, the studies reviewed had viewed learning differently, and the

framework used to analyse them did not support all that was needed to conceptualise and assess

computational thinking. Thirdly, the studies varied in the provision of basic data on research conducted,

with much data missing. Fourth, few negative findings were observed in their review, apart from the lack

of success for constructionist gaming to raise career aspirations in girls. Kafai and Burke suggested further

work is needed for a wider view of participation, including social and cultural dimensions. They also

recommended that short and long time frame studies be included in further research and collaborative

arrangements should be studied. In conclusion, they called for a joining of instructionist efforts and

constructionist approaches to create an approach with no distinction between players and designers

coining the phrase 'connected gaming'.

17 http://microbit.org/ accessed 5/4/2017

http://microbit.org/

29

Over a fifteen-year period, Repenning et al.'s Scalable Games Design (SGD) project has engaged over

10,000 students in the making of games. The Colorado University led programme has been used by

schools predominantly in the USA but more recently also in Mexico and Switzerland. SGD requires learners

to design and program games and then transfer skills as they move on to design and program simulations

in Science and other cross-curricular subjects. Rather than teaching programming by focusing on

programming constructs such as loops, if-then statements and data structures, SGD focusses on teaching

'computational thinking patterns'. These patterns are based on game and simulation design patterns, such

as generation, absorption, diffusion and transportation. The software used to code these design patterns

is AgentSheets or AgentCubes. In a study with over 10,000 middle school students, Repenning et al. (2015)

claim rapid adoption of SGD by teachers from multiple disciplines, high student motivation, high levels of

participation by women, and interest regardless of demographic background. They also note the

importance of learner ownership of created projects for motivation and the transition from following

tutorials to creating new games.

In one study of SGD, Webb, Repenning, & Koh (2012) concluded that the way that it is taught influenced

the motivation of girls and boys differently. The authors categorised the 27 teachers in the study as either

delivering SGD through direct instruction, a highly scaffolded approach, or a guided discovery approach

that was less scaffolded. Reporting on the results of 1420 completed student surveys, they concluded that

the girls were less likely to be motivated by direct instruction. They also pointed to a negative impact on

girls' motivation due to a higher ratio of boys to girls in class but stated that this influence could be

overcome by using guided discovery scaffolding rather than direct instruction. The authors accepted that

conclusions should not be generalised but called for further research on the impact of different teaching

approaches on motivation and gender differences.

3.2.3 Unplugged Pedagogy

Teaching computing without a computer, or 'unplugged pedagogy', could be classified as an instructional

technique. However, here it is reported as a context to highlight the interest and apparent popularity of

the approach.

In a recent UK survey of computing teachers, unplugged pedagogy was cited as one of the most used and

most successful strategies (Sentance & Csizmadia, 2016). Similarly, in curriculums and computing articles

unplugged is heralded as an effective pedagogical approach (Berry, 2015b; CSTA, 2011b).

30

Perhaps the most well-known unplugged activities are those provided by Bell, Alexander, Freeman, &

Grimley (2009), the CS Unplugged team who introduce a wide range of computer science concepts, such

as binary, sorting algorithms and cryptography without the use of a computer (Bell et al., 2009).

Further unplugged activities can be found on a number of online websites including cs4fn18 (Curzon, 2013),

Teaching London Computing19, CSTA20 (CSTA, 2011a), Barefoot21 (Berry et al., 2015), Digital School House22

(Digital School House, 2016), Code.org23 (Code.org, 2016) and Google24 (Google, 2016).

Research related to university outreach programs is often descriptive (Bell et al., 2009; Bell & Newton,

n.d.; Curzon, McOwan, Cutts, & Bell, 2009; Curzon, McOwan, Plant, & Meagher, 2014; Curzon, 2013; Cutts,

Brown, Kemp, & Matheson, 2007) rather than rigorous and evaluative of long-term impact on learning.

Some studies have questioned the effectiveness of CS Unplugged activities (Feaster, Segars, Wahba, &

Hallstrom, 2011; Taub, Armoni, & Ben-Ari, 2012; Thies & Vahrenhold, 2012, 2016) with recommendations

of the need to adapt learning for specific class settings.

Several recent studies indicate increased interest in exploiting and better understanding unplugged

approached. In a small-scale study, of 11 grade 3 to 5 learners, Aggarwal, Gardner-McCune, & Touretzky

(2017) investigated the use of physical manipulatives to support learners' understanding of Kodu. They

reported that students who used the physical manipulatives performed better at the rule construction,

whereas the students who engaged with the programming environment had a better mental simulation

of the rules and a better understanding of the concepts. In separate recent study of 36 high school

students in a summer camp, Ford, Siraj, Haynes, & Brown (2017) reported students showed increased

understanding of cyber-related material following an unplugged project. They concluded that further

unplugged cybersecurity activities would contribute to growing interest in cybersecurity education.

Rodriguez et al. (2017), reported on a 3-year research project developing and refining CS unplugged

material for middle school learners. They concluded that further work was needed to understand how

computer science techniques might map to computational thinking concepts. The authors urged caution

18 http://www.cs4fn.org/ last accessed 14/5/2017
19 https://teachinglondoncomputing.org/ last accessed 14/5/2017
20 https://www.iste.org/explore/articleDetail?articleid=152&category=Solutions&article=Computational-thinking-
for-all last accessed 14/5/2017
21 http://barefootcas.org.uk/ last accessed 14/5/2017
22 http://www.digitalschoolhouse.org.uk/ last accessed 14/5/2017
23 https://code.org/curriculum/unplugged last accessed 14/52017
24 www.google.com/edu/computational-thinking last accesed 14/5/2017

http://www.cs4fn.org/
https://teachinglondoncomputing.org/
https://www.iste.org/explore/articleDetail?articleid=152&category=Solutions&article=Computational-thinking-for-all
https://www.iste.org/explore/articleDetail?articleid=152&category=Solutions&article=Computational-thinking-for-all
http://barefootcas.org.uk/
http://www.digitalschoolhouse.org.uk/
https://code.org/curriculum/unplugged
http://www.google.com/edu/computational-thinking

31

that forcing a mapping of every assessment of computing skills to computational thinking might be

counterproductive.

Despite mixed evidence of the impact of unplugged activities on student learning, the approach appears

to be popular with teachers as a pedagogical approach. Much more research is needed to determine how

best to use it effectively.

3.2.4 Cross-curricular Pedagogy

Papert proposed, in a 2005 interview:

'programming is the most powerful medium of developing the sophisticated and rigorous thinking

needed for mathematics, for grammar, for physics, for statistics, for all the 'hard' subjects.... In

short, I believe more than ever that programming should be a key part of the intellectual

development of people growing up' (Kestenbaum, 2005, p. 38).

Papert's championing of programming as a way to develop thinking in other subjects provides an

attractive rational for teachers to situate computing in cross-curricular contexts. However, to what extent

cross-curricular programming, or computing in more general, is occurring in the UK is not clear, nor how

effective a cross-curricular approach is, nor what pedagogies are being used to implement it. Here, one

related systematic literature review is presented followed by an overview of a notable cross-curricular

initiative.

Moreno-León & Robles (2016) presented a systematic literature review of studies using Scratch to teach

non-computing subjects. They reported on 15 papers and concluded that 8 of these studies indicated that

programming could be a tool to improve learning in other subjects. However, they stated that these

studies lacked rigour. The other 7 studies were more rigorous and evidenced improvements in pupils'

problem-solving, logical reasoning and creativity. The authors recommended that more empirical

research in classrooms, with larger samples of students, was needed to obtain clear conclusions about the

types of learning that could be enhanced through programming. They did not summarise the detail of

pedagogical approaches used in cross-curricular computing, but focused on evidence of effectiveness.

A notable recent cross-curricular computing initiative is the ScratchMaths programme. Funded by the

Education Endowment Fund, it involved a 2-year intervention for learners aged 9-11 years. The outcome

of the intervention will be measured in the summer of 2017 by national standardised mathematics test

scores. The underlying pedagogy for the intervention was described as the '5Es': Explore; Explain;

Envisage; Exchange; and bridgE. In an early study of the intervention before final evaluation, Benton,

32

Hoyles, & Noss (2017) note that live coding was likely to lead to deep learning. They also suggested that

relating learning to previous maths work and returning to concepts may result in more learners

successfully achieving outcomes. The authors suggested that the '5Es' gave teachers the flexibility to adapt

the material in a way that met pupils' needs but that further time in CPD might be given to sharing more

teaching strategies. They finished by asking what the conceptual and pedagogical obstacles to teaching

maths through programming might be and how they might be addressed. Further work is needed to

understand the instructional techniques available for the teaching of other subjects through computing

and research to evaluate the merits and effectiveness of cross-curricular computing.

3.3 Programming Languages

In this section, research related to the pedagogy associated with the transition from block to text-based

languages is presented. Following this, other programming language opportunities are reported including:

toolsets which visualise programs as they are running; collaborative programming environments and

research of less common programming languages.

3.3.1 Block to Text Pedagogy

Sometimes called block-based, visual or graphical programming languages, these languages use graphical

images to represent programming commands (Wu, Tseng, & Huang, 2008). Educational block-based

languages have been developed to be easy to get started with but to be powerful enough to create

advanced programs, and have been available since the 1990's. Alice was released in 2000, Scratch in 2005,

Kodu in 2009, Blockly in 2012 and GP a new graphical programming language is due out in mid-201725.

Block-based programming languages are currently advocated as being the most appropriate type of

programming environment for young learners, such as those at primary schools, with a prediction that

this will remain so for the foreseeable future (Kölling, 2015). With over twenty educational block-based

languages currently available (see Appendix C) teachers must decide which is the best for their learners

both for in terms of the learners' current level of expertise and how this will support their next steps in

learning.

In England, learners, as they move to secondary school, are required in computing lessons to learn text-

based programming languages (DfE, 2013a) and therefore, any pupil who has used a block-based language

25 https://harc.ycr.org/project/gp/ last accessed 14/5/2017

https://harc.ycr.org/project/gp/

33

is required to transition to text. Text-based languages include those developed for education, such as

LOGO and those developed for industry, such as Python, Java and C.

In the 2015 Computing at School (CAS) annual survey, (Sentance, 2015) 96% of primary teachers (n=318)

and 84% of secondary teachers who responded reported they were teaching Scratch (or that it was being

taught in their school) (n=76726) as shown in Figure 8. Whether participants of the survey, CAS members,

were representative of the entire teaching population is not known. However, it seems likely that many

secondary teachers are required to transition their pupils from a block-based language to a text based

one (most likely Scratch to Python, the most popular text-based secondary school language in the survey).

Figure 8 Primary and Secondary Programming Languages from CAS Survey 2015 (Sentance, 2015)

Despite anecdotal reports that the transition from block to text is a significant challenge for learners and

teachers (Garneli, Giannakos, & Chorianopoulos, 2015; Sentance & Csizmadia, 2015), there is limited

empirical research in this area, and evidence from studies is mixed (Armoni, Meerbaum-Salant, & Ben-Ari,

2015; Garlick & Cankaya, 2010; Kölling, Brown, & Altadmri, 2015; Kölling, 2015; Powers, Ecott, &

Hirshfield, 2007; Weintrop et al., 2016; Weintrop & Holbert, 2017; Weintrop & Wilensky, 2015).

Irrespective of the lack of conclusive academic evidence, pedagogies (Armoni et al., 2015; Dorling & White,

2015; Franklin et al., 2016; Grover & Basu, 2017; Lukkarinen & Sorva, 2016) and toolsets (Kölling et al.,

26 Of the 137 teachers that selected 'Others', a small percentage were from further education or sixth form colleges,
many were at schools that crossed the primary and secondary phases.

34

2015; Price, Dong, & Lipovac, 2017; Weintrop & Holbert, 2017; Weintrop & Wilensky, 2015) have been

developed to attempt to support the transition.

In Falkner & Vivian's (2015) systematic review of computer science resources for primary and secondary

classes, the authors stated they could find no classroom resources addressing transition. However,

Garneli, Giannakos, & Chorianopoulos (2015), in the same year, in a systematic literature review of

computing education in K-12 schools, cited a range of instructional approaches to support transition from

block to text, including creating a solution in more than one language and using physical computing, but

called for further research on pedagogies for transitioning between text, visual and tangible tools.

Dorling & White (2015) suggested using unplugged activities and side by side code to support block to text

transition and presented anecdotal evidence of the effectiveness of this pedagogy in class.

Franklin et al. (2016) in an investigation of teaching initialisation in Scratch, suggested that the

initialisation concept should be incorporated into the block-based programming curriculum so as to

support understanding of the concept in text-based languages. However, they provided no empirical

evidence to substantiate their proposal. They also recommended analysis of other operations and

constructs to identify further transition opportunities. In keeping with this suggestion, that transition to

text based languages should be considered when teaching block based programming, Grover et al. (2015)

reported on 54 students using their FACT curriculum. It was developed specifically to support transfer

from block to text-based programming. The authors concluded that students could transfer from block to

text but students' ability to transfer learning was dependent on earlier learning and the depth of

understanding of underlying concepts and constructs.

There is an implication here that prior learning of block-based programming may impact on students'

ability to learn text-based languages. This was evidenced in a study by Armoni et al. (2015) on students

learning C# and Java. Students with prior learning in Scratch performed better in a range of text-based

programming tests and recognised text-based programming concepts earlier in the teaching process than

students with no prior experience. In their extensive study of 120 students the authors also reported

anecdotal evidence that the teaching process was shortened; there were reduced difficulties in teaching

and learning and higher self-confidence for those learners with Scratch experience. They suggested

further research was needed in to why Scratch improves short-term learning of some concepts, such as

repeated loops, but not others, such as variables. Further, the authors called for investigation of the

longer-term impact of having learned to program with blocks before text.

35

In a mixed KS5 and higher education study, Weintrop & Holbert (2017) investigated the use of Pencil Code,

a hybrid programming language, where learners can switch between block and text modes. They

concluded that novice programmers used both modalities throughout their programming experience.

They also reported that all learners started with the block-based mode first; with some quickly moving to

text while others stayed in block-based mode, and all learners successfully completed the tasks given.

Weintrop & Holbert suggested that the opportunity to switch between modalities provided a means by

which all learners could participate while keeping the more experienced programmers engaged.

In a separate two-year, higher education study, Dann, Cosgrove, Slater, Culyba, & Cooper (2012)

employed an adapted version of Alice, to help learners transition between Alice and Java. The pedagogy

combined several approaches and included:

 instructors showing sample code and directly comparing individual commands that accomplished

the same outcome in Alice 3 and Java;

 learners reading code and learners writing code equivalents on paper;

 learners modifying code and undertaking debugging activities.

The intervention was implemented across two successive years, with consistent improvements of

learners' achieving a full grade higher in both trials.

Price, Brown, Lipovac, Barnes, & Kölling's (2016) small scale evaluation of Stride, a frame-based

programming language, concluded that learners using Stride completed tasks set more quickly than those

writing Java using a traditional editor. They also reported the Stride users spent less time on syntactic

edits to their code and significantly less time with non-compilable code. The study was limited due to

sample size, sample selection and the short-term nature of the out of school study. The authors called for

further research on the relationship between block, frame and text editors, how the transition might be

mediated, with a focus on long-term effects and impact on learning gains, as well as a more in-depth

investigation of learner perception of the editors.

Hybrid programming languages such as edublocks27 (a block to Python text hybrid), pencilcode28, j2code29,

and applab30 (block to JavaScript hybrids) are now available for teachers to use in class. Some are free;

27 http://edublocks.org/ accessed 17/4/2017
28 https://pencilcode.net/ accessed 17/4/2017
29 https://www.j2e.com/visual.html?edit accessed 17/4/2017
30 https://code.org/educate/applab accessed 17/4/2017

http://edublocks.org/
https://pencilcode.net/
https://www.j2e.com/visual.html?edit
https://code.org/educate/applab

36

others require subscription. How these products are being used in school and with what success in

classroom settings has not yet been studied.

3.3.2 Other Programming Language Opportunities

To address the development of learners' understanding of the notional machine (Du Boulay, 1986),

toolsets have been created that visualise the behaviour of programs as they run. Sorva, Karavirta, & Malmi

(2013) reviewed such systems, recommending research on their integration in to introductory

programming pedagogy.

A notable stream of such research is that by a Finnish research team on the ViLLE tool. Over a series of

university student studies, they reported that program visualisation is particularly useful to novice

programmers (Rajala, Laakso, Kaila, & Salakoski, 2008) and when learners are familiarised with the tool

before use (Laakso, Rajala, Kaila, & Salakoski, 2008). They found the tool is more effective when used

collaboratively (Rajala, Kaila, Laakso, & Salakoski, 2009) and when learners are actively engaged using it

in exercises (Kaila, Laakso, Rajala, & Salakoski, 2009). In a 2010 study of the long-term effects of ViLLE on

high school students (aged 16 to 19) learning Python, Kaila, Rajala, Laakso, & Salakoski (2010) reported

significantly better final exam results for those students using ViLLE throughout the course. They

concluded that program visualisations could be a highly beneficial method for teaching basic

programming concepts, particularly when tracing the execution of function calls. They also pointed to the

opportunity the tool afforded for lots of code reading activity, the significance of learners being given real-

time feedback and program visualisation supporting independent rehearsal of code execution(Kaila et al.,

2010).

Online toolsets to support collaborative learning are popular in professional domains and have been

trialled in university settings. However, this has not yet been explored with the younger school aged

group. Al-Jarrah & Pontelli (2014) developed a version of Alice, AliCe-ViLlagE (Alice as a Collaborative

Virtual Learning Environment), for collaborative learning specifically to support 'virtual pair programming'

where two learners remotely share their virtual world and interact in its construction. Empirical

investigation is needed to evaluate the usefulness and effectiveness of this approach.

Further strands of research have investigated other programming languages such Flip (Good, 2011),

Processing (Colubri & Fry, 2012; Parrish, Fry, & Reas, 2016), route based programming (Gujberova & Kalas,

2013) and NetsBlox for teaching distributed programming (Broll et al., 2017).

37

3.4 Student Engagement

Teachers can choose from a variety of approaches how learners will contribute to, and be engaged in, a

learning activity. Firstly, pair programming is reviewed followed by an overview of other student

engagement approaches including various problem-solving approaches.

3.4.1 Pair Programming

Used in industry and education, pair programming is a collaborative approach to programming where two

people work at one computer to complete a single design, algorithm, coding or testing task (Williams &

Kessler, 2000). One person takes the role of the driver, having control over the keyboard and mouse, and

the second person is the navigator or observer. The navigator constantly reviews the code written, keeps

track of progress against the design (McDowell, Werner, Bullock, & Fernald, 2006) and continuously

collaborates (Williams & Kessler, 2000). While working on a task, the driver and navigator swap roles after

a certain period of time and code is only changed with the agreement of both parties (McDowell et al.,

2006).

Studies of pair programming as a pedagogical tool in primary and secondary computing education are

scarce. A literature review of game-making that references pair programming (Kafai & Burke, 2015), a

systematic literature review of resources (Falkner & Vivian, 2015) and two higher education literature

reviews on pair programming (Hanks, Fitzgerald, McCauley, Murphy, & Zander, 2011; Salleh, Mendes, &

Grundy, 2011) are summarised below.

In Kafai & Burke's (2015) analysis of 55 studies of game-making in primary and secondary settings,

collaborative aspects were infrequently attended to, with the exception of two studies which referred to

pair programming, both by US researchers Werner and Denner. They found insufficient research into the

way that collaboration in game-making can be constructed and supported. Falkner & Vivian (2015) study

found that lesson plans rarely included discussion of the pedagogy used, such as pair programming and

there was little guidance for teachers on student project management or pedagogy for student teamwork.

The authors recommended more rigorous research within conventional classroom settings. However,

there is evidence that pair programming, compared to independent coding, improves higher education

learners' grades on assignments, although it did not improve final exam scores (Salleh et al. 2011).

Hanks et al. (2011) concurred that there was evidence that pair programming led to improved learning

for both task outcome and code quality in a unversity setting. They recommended further study of partner

compatibility and investigation of the detail of how and why pair programming works or does not work.

38

They suggested broadening research to investigate pair programming in K-12 education and research of

less strictly defined collaborative strategies.

Werner and Denner, have co-authored on US research studies for more than 10 years to build a

developing body of computing education work with middle school learners. Included in their research, is

consideration of pair programming. A number of research studies has culminated in the development of

a 'pair effectiveness score'. They concluded that programming knowledge increased over time but that

the greatest increases in knowledge occurred for confident partners who were paired with a friend who

has relatively more initial programming knowledge. However, the findings were limited due to how

'friendship' was assessed and the small sample size (Werner et al., 2013).

In a 2014 paper, comparisons were made between those learners working in pairs and those working

'solo' leading to the conclusion that working with a partner had advantages for building programming

knowledge and computational thinking (Denner, Werner, Campe, & Ortiz, 2014). Using video recordings,

their most recent 2016 study, compared in detail the body language and verbal communication of Latino,

White and mixed pairs of girls' while they pair programmed. Ruvalcaba, Werner, & Denner (2016)

reported evidence of subtle differences in approaches to collaboration related to ethnicity, but raised

questions about the validity of their conclusions due to the small sample size, calling for further research.

In a separate summer school study of 40 grade 6 learners, Lewis (2011) also compared pair programming

to solo programming, concluding that pair programming resulted in pairs completing less work, and did

not increase overall progression in learning compared to the solo programmers. These findings appear

to contradict the findings of the Denner and Werner team. However, Lewis' solo programmers did not

work in isolation; they worked collaboratively through peer support with an assigned partner. Also, the

pairings of Lewis' learners' were set and changed every day by the course leader. Whereas in Denner et

al.'s studies learners were involved in choosing their pair assignment, were then given an initial trial

period, and finally assigned a partner for the duration of the course. In the Lewis study, roles were

swapped every 5 minutes, whereas in the Denner et al. studies this happened every 20 minutes. There

were other differences between the studies, including the pedagogy used to deliver material (Denner et

al., 2014; Lewis, 2011; Werner et al., 2013). How levels of participation and agency were influenced by

the different working practises in the studies merits further research.

In a recent 2016 Italian study of the use of the agile software methodology in high school (KS5), Missiroli,

Russo, & Ciancarini (2016) concluded that pair programming was motivational, improved code quality and

39

for some learners their grades. However, despite a study population of over 80 students, the length of

study, of one day, leads to a question of long-term impact.

In Sentance & Csizmadia's (2016) survey of UK primary and secondary teachers, teachers were asked what

successful strategies they used in computing classes. Of the 339 survey respondents to this question, peer

mentoring was mentioned 32 times, team coding/pair programming 23 times, and collaboration 22 times.

However, the survey population might not have been representative as it was sourced from the UK

computing teachers' association, Computing At School, membership.

Pair programming appears to be an attractive method for engaging students in the process of

programming, with evidence that it can improve teaching and learning. How effective the approach is

within UK classroom settings is yet to be determined.

Industry research of pair programming (Plonka, Segal, Sharp, & Linden, 2011) reported professional

programmers switched role in a fluid way, without a complicated timing routine, and that on average 33%

of the time was 'non-driving' time, including waiting-time, discussions, use of external representations,

searching for advice from others and interruptions. The pairs with the highest non-driving time had

complex problems which led to use of external representations and discussion. How off-screen time is

used by school pupils, as they tackle complex problems may be a valuable avenue of research within

studies of collaborative pedagogy.

3.4.2 Other Learner Engagement

Beyond pair programming, there is also an opportunity to explore other pedagogy for learner engagement

in computing lessons. The Digital Leaders Network31 advocates collaborative learning through pupil peer

support and apprenticeship. Passey (2014) reported a case study of Digital Leaders, in which they

concluded that the initiative involved some students who tended not to be normally involved in leadership

activities. The authors highlighted that digital leaders provided technological support and advice for peers

and teaching staff. However, Passey did not quantitatively evaluate the impact on teaching and learning

nor define the pedagogical approaches used. The authors recommended further research on the balance

of activities undertaken and outcomes of interventions as well as an investigation of perceptions of the

programme on digital leaders themselves. Ching & Kafai (2008), reported on peer pedagogy, similarly

31 http://www.digitalleadernetwork.co.uk/ accessed 16.4.2017

http://www.digitalleadernetwork.co.uk/

40

recommending further research on learners' explicit motivations and reasoning about peer pedagogy as

well as the effect on learning for the pupils providing the peer support.

Several studies have investigated the use of agile methodologies in high schools. Missiroli et al. (2016)

concluded groups with mixed skills performed better than those with the same skill level, and there was

a general increase in code quality and student satisfaction. In another study, Kastl & Romeike (2015)

reported teachers as saying that learners using agile in problem-based learning (PBL) projects were more

self-sufficient. In a summary of agile projects across schools, Kastl, Kiesmüller, & Romeike (2016) stated

that the objectives for all learners had been met. However, these three studies were not quantitative, had

small populations, and did not have a control to compare against. Therefore, conclusions about the

pedagogy associated with agile methodologies and their effectiveness are currently promising but limited.

Research into structured problem-, process- and project-based approaches which claim to improve

learner engagement and teaching outcomes provide promising results. However, studies are often of

small number of learners, or opinion pieces and call for more rigorous work to be undertaken. Problem-

based learning (PBL), originally developed for medical training, has different interpretations of what

constitutes a PBL project (Michaelson, 2015). However, evidence from higher education indicates

improved motivation and increases in generic skills from using the approach (Nuutila, Törmä, & Malmi,

2005). Similarly, Process Oriented Guided Inquiry Learning (PoGiL) originally developed for chemistry

education, appears to provide opportunities for application in computing lessons (Kussmaul, 2012) with

claims of its effectiveness in a comparative case study of two USA middle school teachers' experiences

(Griffin, Pirmann, & Gray, 2016). Garneli, Giannakos, Chorianopoulos, & Jaccheri (2015), in a study of 53

middle school learners, compared learning to program in three scenarios, namely using a Project Based

Learning (PjBL) strategy, a traditional learning strategy and a game development strategy. They reported

that the PjBL students completed their activity with fewer mistakes, while the traditional group

experimented with more complex concepts, though not always successfully. The authors acknowledged

generalisation from the study were limited due to the specificity of the population. They called for further

research to be undertaken to explore the three approaches.

There is also opportunity to build upon the 'student contribution pedagogy' framework originally

developed for older learners (Hamer et al., 2008). As well as merit in investigating code reviews (Bergin

et al., n.d.), community and computational participation (Ching & Kafai, 2008; Kafai & Burke, 2013), peer

instruction (Porter et al., 2016), value of peer interaction (Cajander, Daniels, & McDermott, 2012) and

collaborative problem-solving (Cukurova, Avramides, Spikol, Luckin, & Mavrikis, 2016).

41

4 Discussion and Recommendations

Generally, there is limited clear empirical evidence to support advice on pedagogies for use in schools.

The research focus has been on older learners in higher education with that for school aged learners

predominantly lacking applicability or rigour, due to small scale of studies, short time frames, out of school

settings or methodological shortfalls (Benitti, 2012; Falkner & Vivian, 2015; Garneli, Giannakos, &

Chorianopoulos, 2015; Kafai & Burke, 2015; Lye & Koh, 2014; Major et al., 2012; Moreno-León & Robles,

2016; Toh et al., 2016). However, there are some gems of research, contributed by communities

undertaking longer term programmes (Benton et al., 2016; Bers et al., 2014; Grover et al., 2015; Hansen,

Hansen, et al., 2016; Kafai & Vasudevan, 2015; Kaila et al., 2010; Meerbaum-Salant et al., 2013; Repenning

et al., 2015; Werner, Denner, & Campe, 2015) with promising results on which UK research could build.

Similarly, there are many rich threads of research with novice programmers at university which provide

starting points for classroom research. For each theme, we provide discussion and specific

recommendations but first we state generic recommendations that hold across all themes.

1. Why is programming difficult?

First of all, investigation of why programming is so difficult, in any context, for any learner should be

a focus as well as exploring what concepts are difficult to grasp and what barriers to learning and

misconceptions prevail (Gal-Ezer & Zur, 2004; Grover et al., 2015; Sudol-DeLyser et al., 2012;

Veerasamy et al., 2016).

2. How to support teachers?

As well conducting investigations in classrooms with pupils, research focusing on teachers is also

recommended. Consideration should be given of teachers' perceptions and understanding of

pedagogy and how they can be involved in their own ongoing professional development (Buchholz,

Saeli, & Schulte, 2013; Menekse, 2015; Rahimi, Barendsen, & Henze, 2016; Rolandsson, 2012;

Sentance & Csizmadia, 2015; Yadav, Gretter, Hambrusch, & Sands, 2016).

3. Which pedagogy for which learner?

Attention should be given to the effectiveness of pedagogies in different phases of education and for

different learners with consideration of gender, diversity and inclusion (Hansen, Hansen, et al., 2016;

Teague & Lister, 2014b; Webb et al., 2012).

4. What role might vocabulary and tools play?

42

Similarly, the role of vocabulary (Grover & Pea, 2013a; Statter & Armoni, 2016), manipulatives

(Aggarwal et al., 2017; Benton et al., 2016), tools (Busjahn et al., 2015; Dwyer et al., 2015; Kaila et al.,

2010; Sorva et al., 2013) and resources to support, augment and transform learning should be

considered.

5. How can computational thinking be effectively embedded?

Despite a lack of consensus on the merit of computational thinking and exactly what it (Barr &

Stephenson, 2011; CSTA, 2011a; Grover & Pea, 2013b; Lye & Koh, 2014; Selby & Woollard, 2014; Tedre

& Denning, 2016), emerging guidance for teachers incorporates computational thinking in a variety

of forms in computing materials and curricula (Benton et al., 2016; Berry, 2015a; Berry et al., 2015;

Bers et al., 2014; Brennan & Resnick, 2012; Google, 2016; Grover et al., 2015; Gujberova & Kalas,

2013; Hansen, Hansen, et al., 2016; Kafai & Burke, 2015; Lee et al., 2011; Repenning et al., 2015;

Rodriguez et al., 2017; Seiter & Foreman, 2013; Weintrop et al., 2016). Therefore, any ongoing

research on computing pedagogy requires review of what computational thinking is, how it impacts

on teaching and learning and its role within the pedagogy advocated.

6. What is the current practice? What is already known?

For each of the review categories, it would be useful to survey current practice as a precursor to more

substantial research. These surveys should include a review of the associated computing curricula and

resources used by, and available to, teachers. These materials should be correlated to learning models

and instructional techniques as outline in 4.1. Similarly, systematic literature reviews of each category

are recommended as first steps of any significant programme of investigation.

4.1 Learning Models and Instructional Techniques

Despite UK curricula requiring classroom practitioners to teach computing32 33 34 (DfE, 2013a, 2013b) there

is limited rigorous empirical research related to the underpinning pedagogy that teachers should use to

inform teaching and learning of computing (Falkner & Vivian, 2015; Garneli, Giannakos, & Chorianopoulos,

2015; Lye & Koh, 2014; Rich et al., 2017). Studies mention that resources available to teachers focus on

32 http://learning.gov.wales/resources/browse-all/digital-competence-framework/?lang=en accessed 13/05/2017
33 https://www.education.gov.scot/Documents/Technologies-es-os.pdf accessed 13/05/2017
34 http://www.nicurriculum.org.uk/curriculum_microsite/uict_ks1_and_ks2/what_is_UICT/index.asp
http://ccea.org.uk/sites/default/files/docs/curriculum/area_of_learning/statutory_requirements/statutory_curric
ulum_ks3.pdf
http://ccea.org.uk/curriculum/key_stage_4/areas_learning/science_and_technology
accessed 13/05/2017

http://learning.gov.wales/resources/browse-all/digital-competence-framework/?lang=en
https://www.education.gov.scot/Documents/Technologies-es-os.pdf
http://www.nicurriculum.org.uk/curriculum_microsite/uict_ks1_and_ks2/what_is_UICT/index.asp
http://ccea.org.uk/sites/default/files/docs/curriculum/area_of_learning/statutory_requirements/statutory_curriculum_ks3.pdf
http://ccea.org.uk/sites/default/files/docs/curriculum/area_of_learning/statutory_requirements/statutory_curriculum_ks3.pdf
http://ccea.org.uk/curriculum/key_stage_4/areas_learning/science_and_technology

43

coding and content, rather than problem-solving and pedagogy (Falkner & Vivian, 2015; Kafai &

Vasudevan, 2015; Rich et al., 2017), and that computing education research is rarely situated in school

settings (Lye & Koh, 2014). Most attention, to-date, appears to have been focused on investigations with

university students or small groups of pupils. Notable exceptions include several long-term, centrally-

funded curricula development programmes such as the Israeli curriculum (Meerbaum-Salant et al., 2013),

the Universal Design for Learning (UDL) initiative (Hansen, Hansen, et al., 2016), Grover et al.'s (2015)

Foundations for Advancing Computational Thinking (FACT) blended pedagogy, the Positive Technological

Development (PTD) framework (Bers et al., 2014),the ScratchMaths intervention funded by the Education

Endowment Fund (Benton et al., 2016, 2017), the Scalable Games Design project (Repenning et al., 2015)

and Brennan & Resnick's (2012) work on Scratch. However, these programs vary in confidence of

outcomes, scale, focus and coverage. There is clearly promising work to build upon, but how these

programmes relate to the requirements of UK school teachers is not clear.

Synergies between the notational machine model (Du Boulay, 1986); levels of abstraction framework

(Armoni, 2013; Perrenet & Kaasenbrood, 2006; Statter & Armoni, 2016; Taub et al., 2014); abstraction

transition taxonomy (Cutts et al., 2012); discourse intensive pedagogy (Grover & Pea, 2013a) and Use-

Modify-Create approach (Lee et al., 2011) should be explored to create a cohesive view. There are

opportunities here to address calls for more focus on design (Falkner & Vivian, 2015; Rich et al., 2017) and

learning how to abstract problems (Lokkila et al., 2016).

Similarly, learning models and instructional techniques should be audited against emerging primary and

secondary frameworks (Benton et al., 2016; Grover et al., 2015; Hansen, Hansen, et al., 2016; Meerbaum-

Salant et al., 2013; Repenning et al., 2015).

A recurrent theme across studies was the debate related to how scaffolded teaching should be, with

tension between constructivist exploration (Ackermann, 2001; Piaget, 1951; Solomon, 1986),

constructionist making (Brennan & Resnick, 2012; Lye & Koh, 2014; Papert, 1980), and a controlled

progression of the teaching of more difficult concepts (Hubwieser et al., 2014; Kirschner et al., 2006;

Lourenço, 2012; Meerbaum-Salant et al., 2013; Sentance & Schwiderski-Grosche, 2012; Statter & Armoni,

2016; Sweller et al., 2007; Teague & Lister, 2014a, 2014b). A blended approach encompassing a range of

pedagogies is advocated by some (Garneli, Giannakos, & Chorianopoulos, 2015; Grover et al., 2015;

Grover & Basu, 2017; Hansen, Hansen, et al., 2016; Kafai & Burke, 2015). With others highlighting the

importance of differentiation and access for all (Hansen, Hansen, et al., 2016; Teague & Lister, 2014b) and

management of cognitive load (Alexandron et al., 2014; DesPortes et al., 2016; Jin et al., 2016; Margulieux

44

& Catrambone, 2016; Paas et al., 2003; Tsai et al., 2015; Van Merrienboer & Sweller, 2005). It is imperative

that this continuum of scaffolding be explored and guidance provided for teachers to better understand

the choices available to them.

Furthermore, there is merit in the investigation of extremely fine-grained programming and

understanding of what program correctness means (Aivaloglou & Hermans, 2016; Kolikant & Mussai,

2008; Meerbaum-Salant et al., 2011; Rich et al., 2017) for both primary and secondary learners and their

teachers.

There is also an opportunity to build upon a rich seam of research with novice university programmers

related to the relationship between code reading, tracing and writing (Busjahn & Schulte, 2013; Busjahn

et al., 2015; Corney et al., 2012; DeLyser, Mascio, & Finkel, 2016; Dwyer et al., 2015; Gal-Ezer & Zur, 2004;

Gujberova & Kalas, 2013; Lister et al., 2009; Lister, 2011; Lopez et al., 2008; Teague & Lister, 2014c;

Venables et al., 2009) for both primary and secondary learners and align this perhaps to the Use-Modify-

Create framework (Lee et al., 2011), the Block Model (Schulte, 2008) and path diagram (Lopez et al., 2008).

Investigation is recommended in primary and secondary school settings of worked examples (Sudol-

DeLyser et al., 2012), subgoal modelling (Margulieux & Catrambone, 2016; Morrison et al., 2016), code

annotation (Su et al., 2014), live coding and think aloud techniques (Grover & Pea, 2013a; Lye & Koh, 2014;

Rubin, 2013), pseudo code and reference languages (Cutts et al., 2014) and both what the main

misconceptions are and how to overcome them (Gal-Ezer & Zur, 2004; Lokkila et al., 2016; Veerasamy et

al., 2016).

A high priority should be to audit the pedagogical foundations of centrally developed programmes that

are currently recommended to teachers such as the Barefoot Programme35, QuickStart36, Tenderfoot37

and PlanC38 materials as well as other popular curriculum resources.

Further, the role of computational thinking in primary computing should be reviewed particularly related

to how it is incorporated in teaching programming. There are risks that computational thinking in primary

may not be incorporated in programming tasks and only taught through unplugged cross curricular

activities.

35 http://barefootcas.org.uk/ accessed 14/4/2017
36 http://primary.quickstartcomputing.org/ accessed 14/4/2017
37 https://www.computingatschool.org.uk/custom_pages/56-tenderfoot accessed 14/7/2017
38 http://www.cas.scot/plan-c/ accessed 14/4/2017

http://barefootcas.org.uk/
http://primary.quickstartcomputing.org/
https://www.computingatschool.org.uk/custom_pages/56-tenderfoot
http://www.cas.scot/plan-c/

45

Recommended research opportunities

In summary, it is recommended that there is need to evaluate and develop learning models, curricula

frameworks, specific instructional techniques and teaching strategies for computing in school.

Studies related to specific instructional techniques and frameworks should include classroom

investigation of the impact and/or effectiveness of:

 different views on program correctness (of both teachers and students);

 extremely fine graining programming;

 code reading;

 code tracing;

 subgoal modelling;

 code annotation;

 live coding;

 worked program examples;

 using a reference language;

 techniques for addressing misconceptions;

 specific misconceptions such as algorithm efficiency, variables & assignment;

 the Use Modify Create framework;

 copy code and other direct instruction approaches;

 the role of design in programming projects;

 tinkering and exploratory learning;

 guided discovery;

 adapting and remixing;

 think aloud techniques;

 learning templates;

 computational thinking in programming activities.

Specific attention should be given to investigating the gaps outlined by Falkner & Vivian (2015) of:

 data and functional requirements analysis;

 algorithm design and evaluation;

 programming as an element of this process;

 evaluation and critical analysis.

46

4.2 Contexts

The contexts reported here are not exhaustive as puzzle based activities, route based problems,

simulation tasks, working on contests are other examples of contexts for programming and computing

projects. A review of contexts available to teachers and potential new contexts would be a good starting

point for ongoing research. This would provide a framework to investigate and evaluate types of pedagogy

particularly associated with different contexts, perhaps linked to underlying concepts, models and

approaches such as in Section 3.1 and recommendations in Section 4.1 and vice versa.

4.2.1 Physical computing

Using programmable robots to teach programming is not new. The work of Papert (1980) in the 1970's

and 80's inspired several devices such as the Roamer39 and Bee-Bot. Similarly, the Raspberry Pi40, Arduino41

and similar products have been available for use in education for many years. However, the emergence

of the maker community and the development of low-cost educational microcontrollers and block-based

programming languages has created renewed interest and new opportunities for teachers to consider. In

line with these recent changes to the physical computing landscape, research has started to emerge, but

it is fragmented and limited (Benitti, 2012; Falkner & Vivian, 2015; Major et al., 2012; Toh et al., 2016) .

Bers (2010), Przybylla & Romeike (2014) and Kafai et al. (2014) are starting to develop physical computing

frameworks and approaches that can be built upon. However, further work is needed to validate these

approaches in UK class settings. Without large-scale, robust empirical studies that have evaluated physical

computing pedagogies, there is a risk that schools will invest in resources that they do not use effectively

and do not fully exploit.

Recommended research opportunities

With respect to physical computing, research is needed to develop and evaluate pedagogies for primary

and secondary school use of:

 tangible interfaces;

 microcontrollers;

 programmable robots;

 other subjects (such as art & design, design & technology, science, maths and music) using

physical computing;

39 http://www.valiant-technology.com/uk/pages/roamertoohome.php?cat=8&8 accessed 14/4/2017
40 https://www.raspberrypi.org/ accessed 14/4/2017
41 https://www.arduino.cc/ accessed 14/4/2017

http://www.valiant-technology.com/uk/pages/roamertoohome.php?cat=8&8
https://www.raspberrypi.org/
https://www.arduino.cc/

47

 computer science concepts (such as networks, cybersecurity, big data, hardware) using physical

computing.

Further, there are opportunities to compare and evaluate the teaching strategies employed in physical

computing studies with a focus on:

 remixing;

 creativity;

 the distinction between the design phase and coding phase;

 cognitive load;

 learning about crafting and behaviour of the components and devices.

4.2.2 Game-making

Using games to learn how to program is cited as being highly motivational (Kafai & Burke, 2015; Repenning

et al., 2015). However, what pedagogies are particularly suited to game-making rather than other contexts

is not clear.

There are opportunities to compare the teaching strategies of game-making studies (Kafai & Burke, 2015;

Repenning et al., 2015) to the techniques, models and approaches outlined in Section 3.1 and

recommendations in Section 4.1 and vice versa.

Recommended research opportunities

Research is needed to develop and evaluate pedagogies for game-making in primary and secondary

schools.

Studies should include classroom investigation:

 transition from following tutorials to creating new games;

 using a design pattern specific pedagogy for teaching gaming rather than teaching programming

constructs;

 social and cultural dimension of gaming;

 gender differences.

48

4.2.3 Unplugged

Despite mixed evidence of the effectiveness of the unplugged approach to teaching computing (Bell et al.,

2009; Curzon, 2013; Feaster et al., 2011; Thies & Vahrenhold, 2016). There is some new evidence of

positive outcomes (Ford et al., 2017; Rodriguez et al., 2017). However, this is limited. Teachers claiming

the effectiveness of unplugged pedagogy (Sentance & Csizmadia, 2015, 2016) may be doing so because

they are adapting activities, and are situating them within a planned progression. Therefore, there is a

need for rigorous classroom research to evaluate how teachers are using unplugged activities, how they

can most effectively be used, as well as an evaluation of effectiveness. Underlying theory of why

unplugged approaches are believed to work and the validation or otherwise of such theory is urgent.

Recommended research opportunities

Research is needed to develop and evaluate teaching and learning pedagogies for unplugged approaches

in primary and secondary schools.

Studies should include classroom investigation of:

 how teachers are successfully embedding unplugged activities in programming projects;

 how teachers are successfully embedding unplugged activities to teach computational thinking;

 how teachers are successfully embedding unplugged activities to teach computer science

concepts;

 how best to use unplugged activities, and the effectiveness of the different types of unplugged

activities, including how they should be best combined with other approaches such as in teaching

programming.

4.2.4 Cross-curricular Teaching

Moreno-León & Robles (2016) reported promising evidence that cross-curricular learning can be achieved

through computing contexts. However, they did not report on the pedagogies used and called for

empirical and larger scale research to provide clear conclusions on the effectiveness of using programming

to teach other subjects. Falkner & Vivian (2015) noted a lack of pedagogical advice related to the

integration of design and technology in physical computing resources.

Cross-curricular opportunities were mentioned in several studies. In Repenning et al.'s (2015) Scalable

Games Design Programme the pedagogy is predicated on using science or other subjects for the making

of simulations as a context in which to apply and develop knowledge, skills and understanding acquired

during preceding learning through game-making. McDonald & Howell (2012) cited the development of

49

emergent literacy and mathematics in a study using physical computing. However, neither of these studies

provide quantitative evidence of progress made in the 'other subjects', nor detail the underlying learning

models and instructional techniques used to teach the 'other subjects'.

If learners taking part in the ScratchMaths intervention (Benton et al., 2016, 2017) show improved exam

results in national Maths tests in 2017, then this research, may have a profound impact on interest in

using 'coding to learn' (Resnick, 2013) and afford a high-profile opportunity to champion cross-curricular

computing. This intervention has clearly stated pedagogical foundations and detailed instructional

approaches which could be built upon to develop further maths and ‘other subject’ curricula material.

Recommended research opportunities

Research is needed to develop and evaluate teaching and learning pedagogies for cross-curricular

computing in primary and secondary schools.

Studies should include classroom investigation of:

 the instructional techniques for teaching ‘other subjects’ through computing;

 the merits and effectiveness of cross-curricular computing both for computing and the paired

subject.

A suggested priority is to evaluate the pedagogies used by the Barefoot Programme42 as this initiative

provides a range of cross-curricular computing resources that are recommended to primary schools (Berry

et al., 2015). Similarly, the pedagogies used by popular cross-curricular computing materials produced by

universities, local authority teams, commercial groups, schools and individual teachers should be

evaluated to provide additional information to teachers so they can make more informed choices and

adapt material as needed.

4.3 Programming Languages

There are significant opportunities within the UK to add to the body of understanding in the transition of

learners from block to text-based programming. Kölling's team at King's College London have developed

a toolset, Greenfoot and Stride (Kölling et al., 2015; Kölling, 2015), specifically to address this challenge,

and are keen to support researchers undertaking trials in school. There are opportunities to build upon

the work by Weintrop and Price (Price & Barnes, 2015; Price et al., 2016; Weintrop & Holbert, 2017;

42 http://barefootcas.org.uk/ accessed 14/4/2017

http://barefootcas.org.uk/

50

Weintrop & Wilensky, 2015), Grover et al. (2015), Armoni et al. (2015) and Dann et al. (2012) who have

completed promising work in this area.

Further, the release of GP43 due in 2017 will generate much interest and afford an opportunity to study

its implementation in schools. It is expected this product may be attractive to primary schools looking for

progression beyond Scratch. There are opportunities to compare the pedagogies associated with Scratch,

2Code44, Espresso Coding45, Code.org46 and other tools popular in the UK. This work could build upon the

recommendations and experiences of Franklin et al. (2016) and Armoni et al. (2015).

There are also opportunities to review the effectiveness of, and how to best use: program visualisation

tools (Kaila et al., 2009, 2010; Laakso et al., 2008; Rajala et al., 2008; Rajala, Salakoski, Laakso, Kaila, &

others, 2009; Sorva et al., 2013); online programming collaboration tools (Al-Jarrah & Pontelli, 2014);

other programming languages such as Flip (Good, 2011) and Processing (Colubri & Fry, 2012; Parrish et

al., 2016); puzzle and route based environments (Gujberova & Kalas, 2013) and NetsBlox for teaching

distributed programming (Broll et al., 2017).

Recommended research opportunities

Research is needed to develop and evaluate the pedagogies associated with:

1. Transition from block to text programming in secondary schools;

Studies should include classroom investigation of the best way to use and effectiveness of:

 frame-based editors;

 hybrid program languages;

 use of physical computing to support transition;

 unplugged, side-by-side code and other instructional approaches;

 specially designed transition curricula.

2. Preparing primary pupils for the transition from block to text-based programming;

Studies should include classroom investigation of:

 block-based curricula which have been specially designed with transition in mind;

43 https://harc.ycr.org/project/gp/ accessed 17/4/2017
44 http://www.2simple.com/2Code accessed 17/4/2017
45 http://www.discoveryeducation.co.uk/what-we-offer/discovery-education-coding#newlook accessed 17/4/2017
46 https://code.org/ accessed 17/4/2017

https://harc.ycr.org/project/gp/
http://www.2simple.com/2Code
http://www.discoveryeducation.co.uk/what-we-offer/discovery-education-coding#newlook
https://code.org/

51

 why specific programming constructs transition easily and other are difficult.

3. Use of program visualisation tools.

4.4 Student Engagement

Despite limited studies of younger learners' use of pair programming, recommendations regarding

student engagement from reviews of pedagogy (Falkner & Vivian, 2015; Kafai & Vasudevan, 2015) align

with university studies' calls for further research on understanding in more detail why and how pairings

do or do not work (Hanks et al., 2011; Salleh et al., 2011). There are opportunities to build upon work on

'pair effectiveness' (Denner et al., 2014) and influences on pair effectiveness (Ruvalcaba et al., 2016).

Investigation of off-screen activity during pair programming (Plonka et al., 2011) has merit perhaps aligned

to research on discourse (Grover & Pea, 2013a), levels of abstraction (Armoni, 2013; Statter & Armoni,

2016), abstraction transition (AT) taxonomy (Cutts et al., 2012) and calls for design to be included in

programming projects (Falkner & Vivian, 2015; Rich et al., 2017).

Recommended research opportunities

Research is needed to develop and evaluate pedagogies for student engagement in primary and

secondary schools.

Studies should include classroom investigation of:

 pair programming including building upon work on pair effectiveness and influences on

collaborative engagement and off-screen time collaboration;

 apprenticeship, digital leaders and peer instruction;

 other forms of student contribution including collaborative problem-solving.

A suggested priority is to review pedagogy employed with digital leaders(Passey, 2014), apprenticeship

and peer instruction (Cajander et al., 2012; Ching & Kafai, 2008; Porter et al., 2016) as, despite a lack of

research related to these approaches, they appear to be popular in UK schools.

Further, studies to develop the 'student contribution pedagogy' (Hamer et al., 2008), investigate problem-

solving approaches (Garneli, Giannakos, Chorianopoulos, et al., 2015; Griffin et al., 2016; Kastl et al., 2016;

Kastl & Romeike, 2015; Kussmaul, 2012; Lokkila et al., 2016; Missiroli et al., 2016; Nuutila et al., 2005) and

build upon recent work on collaborative problem solving (Cajander et al., 2012; Cukurova et al., 2016) is

suggested as changes in this dimension of the pedagogy of computing teaching may have profound impact

on both academic progress and motivation of girls and boys.

52

5 Summary.

The tension between exploratory (constructivist), making (constructionist) and direct teaching needs to

be quickly addressed. Teachers are currently presented with a plethora of educational technology

resources that lack pedagogical instruction. Research with university students indicates that targeted

pedagogies teaching specific skills such as tracing code and subgoal modelling are essential to successful

programming learning. Emerging research with school aged pupils indicates that a blended pedagogy,

including guided exploration, targeted tasks and creative open problem solving provides a more effective

learning scenario. However, these indications need to be verified in UK school settings in rigorous studies.

Benefits from physical computing are cited, but evidence to justify these claims are very limited. As

physical computing often requires funding and there is much interest in this context for learning, there is

an urgent need for practical guidance for teachers on what pedagogy should be employed to maximise

investment and minimise risk. Similarly, teaching computing through game-making is cited as being highly

motivational. However, there is limited and mixed evidence of the long-term progression of pupils when

being taught computing in this context. Therefore, research is needed to trial different pedagogical

approaches in different game-making programming environments and compare outcomes. The

effectiveness of unplugged activities seems to be evidenced by teacher adoption of this approach.

However, research seems to counter this confidence with mixed results from (mostly small scale or

qualitative) existing studies. Robust research is required to verify teacher adoption. In the same vein,

cross-curricular contexts are cited as being an effective context for learning computing. However, research

here is very sparse, results mixed and studies often lack in rigour. A notable exception to this is the recent

ScratchMaths programme, which could prove to be a template for further research studies.

There are clear opportunities for building upon promising work related to the transition from block to

text-based languages. Both in secondary schools at the point of transition and in primary schools for

preparation through changes to block based curriculum. Similarly, visualisation tools hold much promise,

but research with school aged pupils is needed.

Teachers are already employing a range of student engagement approaches, including pair programming,

problem-based learning, digital leaders and apprenticeship. However, whether teachers or learners are

getting the most out of these strategies is not clear, nor even what the optimal arrangement might be for

those approaches. There is promising research from industry, older learners and from research

53

communities across the world to build upon. Research of pedagogy of student engagement could be

transformative in both informing pupil progress and increasing motivation for girls and boys in computing.

In conclusion, existing research related to computing pedagogy has generally focused on older learners or

is not robust, due to small populations, short time frames or methodology. Where investigations have

been effective, research has often been associated with longitudinal studies of research teams working

with schools to produce curricula materials. In doing this, these communities have designed pedagogical

frameworks and tested instructional techniques in situ with teachers. A similar approach is recommended,

of long-term, collaborative in-class studies. Contrasting pedagogies need to be evaluated and clear

practical guidance on how to teach computing should be created. Teachers need robust pedagogical

frameworks built on verified foundational theories, with clearly identified learning models and effective

instructional techniques. Differing approaches may be needed for different contexts. However, all

approaches must provide for progression for all students and afford flexibility of student engagement. So,

that teachers can plan and deliver lessons that are motivational for all students irrespective of their prior

experience in computing, interests and gender.

 Bibliography

Ackermann, E. (2001). Piaget’s constructivism, Papert’s constructionism: What’s the difference. Future of

learning group publication, 5(3), 438.

Aggarwal, A., Gardner-McCune, C., & Touretzky, D. S. (2017). Evaluating the Effect of Using Physical

Manipulatives to Foster Computational Thinking in Elementary School. Proceedings of the 2017

ACM SIGCSE Technical Symposium on Computer Science Education (pp. 9–14). ACM.

Aharoni, D. (2000). Cogito, Ergo sum! cognitive processes of students dealing with data structures. ACM

SIGCSE Bulletin, 32(1), 26–30.

Aivaloglou, E., & Hermans, F. (2016). How kids code and how we know: An exploratory study on the scratch

repository. Proceedings of the 2016 ACM Conference on International Computing Education

Research (pp. 53–61). ACM.

Al-Jarrah, A., & Pontelli, E. (2014). AliCe-ViLlagE" Alice as a Collaborative Virtual Learning Environment.

Frontiers in Education Conference (FIE), 2014 IEEE (pp. 1–9). IEEE.

54

Alexandron, G., Armoni, M., Gordon, M., & Harel, D. (2014). Scenario-based programming: reducing the

cognitive load, fostering abstract thinking. Companion Proceedings of the 36th International

Conference on Software Engineering (pp. 311–320). ACM.

Armoni, M. (2013). On Teaching Abstraction in Computer Science to Novices. Journal of Computers in

Mathematics and Science Teaching, 32(3), 265–284.

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From Scratch to “real” programming. ACM

Transactions on Computing Education (TOCE), 14(4), 25.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what is

the role of the computer science education community? ACM Inroads, 2(1), 48–54.

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science unplugged: School students

doing real computing without computers. The New Zealand Journal of Applied Computing and

Information Technology, 13(1), 20–29.

Bell, T., & Newton, H. (n.d.). USING COMPUTER SCIENCE UNPLUGGED AS A TEACHING TOOL. Accessed

Online [5th Oct. 2014] http://nzacditt. org. nz/system/files/Bell,% 20Newton.

Ben-Ari, M. (1998). Constructivism in computer science education. ACM SIGCSE bulletin (Vol. 30, pp. 257–

261). ACM.

Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review.

Computers & Education, 58(3), 978–988.

Benton, L., Hoyles, C., & Noss, I. K. anRichard. (2016). Building mathematical knowledge with

programming: insights from the ScratchMaths project. Constructionism.

Benton, L., Hoyles, C., & Noss, I. K. anRichard. (2017). Bridging Primary Programming and Mathematics:

some findings of design research in England. Digital Experiences in Mathematics Education.

Bergin, J., Duvall, R. C., Mercer, R., Wallingford, E., Gabriel, R. P., West, D., & Rostal, P. M. (n.d.). A Snapshot

of Studio Based Learning.

55

Berry. (2015a). QuickStart Primary Handbook. Swindon.

Berry. (2015b). QuickStart Computing Primary Handbook. Retrieved from

http://primary.quickstartcomputing.org/resources/pdf/qs_handbook.pdf

Berry, M., & Kölling, M. (2013). The design and implementation of a notional machine for teaching

introductory programming. Proceedings of the 8th Workshop in Primary and Secondary

Computing Education (pp. 25–28). ACM.

Berry, Woollard, J., Hughes, P., Chippendal, J., Ross, Z., & Waite, J. (2015). Barefoot computing resoruces.

Retrieved from http://barefootcas.org.uk/

Bers, M. (2010). The TangibleK Robotics program: Applied computational thinking for young children.

Early Childhood Research & Practice, 12(2), n2.

Bers, M., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering:

Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145–157.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of

computational thinking. Proceedings of the 2012 annual meeting of the American Educational

Research Association, Vancouver, Canada.

Brinkmeier, M., & Kalbreyer, D. (2016). A Case Study of Physical Computing in Computer Science

Education. Proceedings of the 11th Workshop in Primary and Secondary Computing Education (pp.

54–59). ACM.

Broll, B., Lédeczi, A., Volgyesi, P., Sallai, J., Maroti, M., Carrillo, A., Weeden-Wright, S. L., et al. (2017). A

Visual Programming Environment for Learning Distributed Programming. Proceedings of the 2017

ACM SIGCSE Technical Symposium on Computer Science Education (pp. 81–86). ACM.

Buchholz, M., Saeli, M., & Schulte, C. (2013). PCK and reflection in computer science teacher education.

Proceedings of the 8th workshop in primary and secondary computing education (pp. 8–16). ACM.

56

Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, J. H., Schulte, C., Sharif, B., et al. (2015). Eye

movements in code reading: Relaxing the linear order. Program Comprehension (ICPC), 2015 IEEE

23rd International Conference on (pp. 255–265). IEEE.

Busjahn, T., & Schulte, C. (2013). The use of code reading in teaching programming. Proceedings of the

13th Koli Calling International Conference on Computing Education Research (pp. 3–11). ACM.

Cajander, Å., Daniels, M., & McDermott, R. (2012). On valuing peers: theories of learning and intercultural

competence. Computer Science Education, 22(4), 319–342.

Ching, C. C., & Kafai, Y. B. (2008). Peer pedagogy: Student collaboration and reflection in a learning-

through-design project. Teachers College Record, 110(12), 2601–2632.

Clear, T. (2012). The hermeneutics of program comprehension: a ’holey quilt’ theory. ACM Inroads, 3(2),

6–7.

Code.org. (2016). Abstraction. Retrieved from https://studio.code.org/s/20-hour/stage/14/puzzle/1

Collins, A., & others. (1987). Cognitive Apprenticeship: Teaching the Craft of Reading, Writing, and

Mathematics. Technical Report No. 403.

Colubri, A., & Fry, B. (2012). Introducing Processing 2.0. ACM SIGGRAPH 2012 Talks (p. 12). ACM.

Corney, M., Teague, D., Ahadi, A., & Lister, R. (2012). Some empirical results for neo-Piagetian reasoning

in novice programmers and the relationship to code explanation questions. Proceedings of the

Fourteenth Australasian Computing Education Conference-Volume 123 (pp. 77–86). Australian

Computer Society, Inc.

Crick. (2017, April). Royal Society Computing Education Project Review of Literature: Literature on

effective computing pedagogy.

Crouch, C. H., & Mazur, E. (2001). Peer instruction: Ten years of experience and results. American journal

of physics, 69(9), 970–977.

57

CSTA. (2011a). Computational Thinking Teacher Resources 2nd Edition. Retrieved from

https://www.iste.org/explore/articleDetail?articleid=152&category=Solutions&article=Computa

tional-thinking-for-all

CSTA. (2011b). K-12 Computer Science Standards Revised 2011. Retrieved from

https://csta.acm.org/Curriculum/sub/K12Standards.html

Cukurova, M., Avramides, K., Spikol, D., Luckin, R., & Mavrikis, M. (2016). An analysis framework for

collaborative problem solving in practice-based learning activities: A mixed-method approach.

Proceedings of the Sixth International Conference on Learning Analytics & Knowledge (pp. 84–88).

ACM.

Curzon, P. (2013). cs4fn and computational thinking unplugged. Proceedings of the 8th Workshop in

Primary and Secondary Computing Education (pp. 47–50). ACM.

Curzon, P., McOwan, P. W., Cutts, Q. I., & Bell, T. (2009). Enthusing & inspiring with reusable kinaesthetic

activities. ACM SIGCSE Bulletin (Vol. 41, pp. 94–98). ACM.

Curzon, P., McOwan, P. W., Plant, N., & Meagher, L. R. (2014). Introducing teachers to computational

thinking using unplugged storytelling. Proceedings of the 9th Workshop in Primary and Secondary

Computing Education (pp. 89–92). ACM. doi:10.1145/2670757.2670767

Cutts, Connor, R., Michaelson, G., & Donaldson, P. (2014). Code or (not code): separating formal and

natural language in CS education. Proceedings of the 9th Workshop in Primary and Secondary

Computing Education (pp. 20–28). ACM.

Cutts, Esper, S., Fecho, M., Foster, S., & Simon, B. (2012). The abstraction transition taxonomy: developing

desired learning outcomes through the lens of situated cognition. Proceedings of the ninth annual

international conference on International computing education research (pp. 63–70). ACM.

Cutts, Q. I., Brown, M. I., Kemp, L., & Matheson, C. (2007). Enthusing and informing potential computer

science students and their teachers. ACM SIGCSE Bulletin (Vol. 39, pp. 196–200). ACM.

58

Dann, W., Cosgrove, D., Slater, D., Culyba, D., & Cooper, S. (2012). Mediated transfer: Alice 3 to java.

Proceedings of the 43rd ACM technical symposium on Computer Science Education (pp. 141–146).

ACM.

DeLyser, L. A., Mascio, B., & Finkel, K. (2016). Introducing Student Assessments with Evidence of Validity

for NYC’s CS4All. Proceedings of the 11th Workshop in Primary and Secondary Computing

Education (pp. 17–26). ACM.

Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014). Pair programming: Under what conditions is it

advantageous for middle school students? Journal of Research on Technology in Education, 46(3),

277–296.

DesPortes, K., Anupam, A., Pathak, N., & DiSalvo, B. (2016). BitBlox: A Redesign of the Breadboard.

Proceedings of the The 15th International Conference on Interaction Design and Children (pp. 255–

261). ACM.

DfE. (1999). The national curriculum for England ICT. Retrieved from

http://webarchive.nationalarchives.gov.uk/20100202100434/http://curriculum.qcda.gov.uk/key

-stages-1-and-2/subjects/ict/keystage1/index.aspx

DfE Computing programmes of study: key stages 3 and 4 National curriculum in England (2013).

Department for Education. Retrieved from

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/239067/SECO

NDARY_national_curriculum_-_Computing.pdf

DfE Computing programmes of study key stages 1 and 2 National Curriculum in England (2013).

Department of Education. Retrieved from

https://www.gov.uk/government/publications/national-curriculum-in-england-computing-

programmes-of-study

59

Digital School House. (2016). Digital School House, range of unplugged lessons. {Digital School House}.

Retrieved from http://archive.digitalschoolhouse.org.uk/data/227-toptrumps

Dorling, M., & White, D. (2015). Scratch: A way to logo and python. Proceedings of the 46th ACM Technical

Symposium on Computer Science Education (pp. 191–196). ACM.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational Computing Research,

2(1), 57–73.

Dwyer, H., Hill, C., Carpenter, S., Harlow, D., & Franklin, D. (2014). Identifying elementary students’ pre-

instructional ability to develop algorithms and step-by-step instructions. Proceedings of the 45th

ACM technical symposium on Computer science education (pp. 511–516). ACM.

Dwyer, H., Hill, C., Hansen, A., Iveland, A., Franklin, D., & Harlow, D. (2015). Fourth Grade Students Reading

Block-Based Programs: Predictions, Visual Cues, and Affordances. Proceedings of the eleventh

annual International Conference on International Computing Education Research (pp. 111–119).

ACM.

Eickholt, J., & Shrestha, S. (2017). Teaching Big Data and Cloud Computing with a Physical Cluster.

Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education (pp.

177–181). ACM.

Falkner, K., & Vivian, R. (2015). A review of computer science resources for learning and teaching with K-

12 computing curricula: An Australian case study. Computer Science Education, 25(4), 390–429.

Falkner, K., Vivian, R., & Falkner, N. (2015). Teaching Computational Thinking in K-6: The CSER Digital

Technologies MOOC. Proceedings of the 17th Australasian Computing Education Conference (ACE

2015) (Vol. 27, p. 30).

Feaster, Y., Segars, L., Wahba, S. K., & Hallstrom, J. O. (2011). Teaching CS Unplugged in the High School

(with Limited Success). Proceedings of the 16th Annual Joint Conference on Innovation and

60

Technology in Computer Science Education, ITiCSE ’11 (pp. 248–252). Darmstadt, Germany: ACM.

doi:10.1145/1999747.1999817

Ford, V., Siraj, A., Haynes, A., & Brown, E. (2017). Capture the Flag Unplugged: an Offline Cyber

Competition. Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science

Education (pp. 225–230). ACM.

Franklin, D., Hill, C., Dwyer, H. A., Hansen, A. K., Iveland, A., & Harlow, D. B. (2016). Initialization in Scratch:

Seeking Knowledge Transfer. Proceedings of the 47th ACM Technical Symposium on Computing

Science Education (pp. 217–222). ACM.

Franklin, D., Skifstad, G., Rolock, R., Mehrotra, I., Ding, V., Hansen, A., Weintrop, D., et al. (2017). Using

Upper-Elementary Student Performance to Understand Conceptual Sequencing in a Blocks-based

Curriculum. Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science

Education (pp. 231–236). ACM.

Gal-Ezer, J., & Zur, E. (2004). The efficiency of algorithms—misconceptions. Computers & Education, 42(3),

215–226.

Garlick, R., & Cankaya, E. C. (2010). Using alice in CS1: a quantitative experiment. Proceedings of the

fifteenth annual conference on Innovation and technology in computer science education (pp.

165–168). ACM.

Garneli, V., Giannakos, M. N., & Chorianopoulos, K. (2015). Computing education in K-12 schools: A review

of the literature. Global Engineering Education Conference (EDUCON), 2015 IEEE (pp. 543–551).

IEEE.

Garneli, V., Giannakos, M. N., Chorianopoulos, K., & Jaccheri, L. (2015). Serious game development as a

creative learning experience: lessons learnt. Proceedings of the Fourth International Workshop on

Games and Software Engineering (pp. 36–42). IEEE Press.

61

Good, J. (2011). Learners at the wheel: Novice programming environments come of age. International

Journal of People-Oriented Programming (IJPOP), 1(1), 1–24.

Google. (2016). Exploring Computational Thinking. Retrieved from www.google.com/edu/computational-

thinking

Gough, D. A., Sandy, O., & James, T. (2013). Learning from research: systematic reviews for informing

policy decisions: a quick guide. Nesta London, UK.

Greening, T. (2000). Emerging Constructivist Forces in Computer Science Education: Shaping a New

Future? In T. Greening (Ed.), Computer Science Education in the 21st Century (pp. 47–80). New

York, NY: Springer New York. doi:10.1007/978-1-4612-1298-0_5

Griffin, J., Pirmann, T., & Gray, B. (2016). Two Teachers, Two Perspectives on CS Principles. Proceedings of

the 47th ACM Technical Symposium on Computing Science Education (pp. 461–466). ACM.

Grover, Pea, & Cooper. (2015). Designing for deeper learning in a blended computer science course for

middle school students. Computer Science Education, 25(2), 199–237.

Grover, S., & Basu, S. (2017). Measuring Student Learning in Introductory Block-Based Programming:

Examining Misconceptions of Loops, Variables, and Boolean Logic. Proceedings of the 2017 ACM

SIGCSE Technical Symposium on Computer Science Education (pp. 267–272). ACM.

Grover, S., & Pea, R. (2013a). Using a discourse-intensive pedagogy and android’s app inventor for

introducing computational concepts to middle school students. Proceeding of the 44th ACM

technical symposium on Computer science education (pp. 723–728). ACM.

Grover, S., & Pea, R. (2013b). Computational Thinking in K–12 A Review of the State of the Field.

Educational Researcher, 42(1), 38–43. doi:10.3102/0013189X12463051

Gujberova, M., & Kalas, I. (2013). Designing productive gradations of tasks in primary programming

education. Proceedings of the 8th Workshop in Primary and Secondary Computing Education (pp.

108–117). ACM.

62

Hamer, J., Cutts, Q., Jackova, J., Luxton-Reilly, A., McCartney, R., Purchase, H., Riedesel, C., et al. (2008).

Contributing student pedagogy. ACM SIGCSE Bulletin, 40(4), 194–212.

Hanks, B., Fitzgerald, S., McCauley, R., Murphy, L., & Zander, C. (2011). Pair programming in education: a

literature review. Computer Science Education, 21(2), 135–173.

Hansen, A., Hansen, E., Dwyer, H., Harlow, D., & Franklin, D. (2016). Differentiating for Diversity: Using

Universal Design for Learning in Elementary Computer Science Education. Proceedings of the 47th

ACM Technical Symposium on Computing Science Education (pp. 376–381). ACM.

Hansen, A., Iveland, A., Carlin, C., Harlow, D. B., & Franklin, D. (2016). User-Centered Design in Block-Based

Programming: Developmental & Pedagogical Considerations for Children. Proceedings of the The

15th International Conference on Interaction Design and Children (pp. 147–156). ACM.

Hazzan, O. (2003). How students attempt to reduce abstraction in the learning of mathematics and in the

learning of computer science. Computer Science Education, 13(2), 95–122.

Horn, M. S., Crouser, R. J., & Bers, M. U. (2012). Tangible interaction and learning: the case for a hybrid

approach. Personal and Ubiquitous Computing, 16(4), 379–389.

Hubwieser, P., Armoni, M., Giannakos, M. N., & Mittermeir, R. T. (2014). Perspectives and visions of

computer science education in primary and secondary (K-12) schools. ACM Transactions on

Computing Education (TOCE), 14(2), 7.

Jin, K. H., Haynie, K., & Kearns, G. (2016). Teaching Elementary Students Programming in a Physical

Computing Classroom. Proceedings of the 17th Annual Conference on Information Technology

Education (pp. 85–90). ACM.

Kafai, Y. B., & Burke, Q. (2013). The social turn in K-12 programming: moving from computational thinking

to computational participation. Proceeding of the 44th ACM technical symposium on computer

science education (pp. 603–608). ACM.

63

Kafai, Y. B., & Burke, Q. (2015). Constructionist gaming: Understanding the benefits of making games for

learning. Educational psychologist, 50(4), 313–334.

Kafai, Y. B., Lee, E., Searle, K., Fields, D., Kaplan, E., & Lui, D. (2014). A crafts-oriented approach to

computing in high school: Introducing computational concepts, practices, and perspectives with

electronic textiles. ACM Transactions on Computing Education (TOCE), 14(1), 1.

Kafai, Y. B., & Vasudevan, V. (2015). Constructionist Gaming Beyond the Screen: Middle School Students’

Crafting and Computing of Touchpads, Board Games, and Controllers. Proceedings of the

Workshop in Primary and Secondary Computing Education (pp. 49–54). ACM.

Kaila, E., Laakso, M.-J., Rajala, T., & Salakoski, T. (2009). Evaluation of Learner Engagement in Program

Visualization. 12th IASTED International Conference on Computers and Advanced Technology in

Education (CATE 2009).

Kaila, E., Rajala, T., Laakso, M.-J., & Salakoski, T. (2010). Effects of course-long use of a program

visualization tool. Proceedings of the Twelfth Australasian Conference on Computing Education-

Volume 103 (pp. 97–106). Australian Computer Society, Inc.

Kastl, P., Kiesmüller, U., & Romeike, R. (2016). Starting out with Projects: Experiences with Agile Software

Development in High Schools. Proceedings of the 11th Workshop in Primary and Secondary

Computing Education (pp. 60–65). ACM.

Kastl, P., & Romeike, R. (2015). Now they just start working, and organize themselves First Results of

Introducing Agile Practices in Lessons. Proceedings of the Workshop in Primary and Secondary

Computing Education (pp. 25–28). ACM.

Kazakoff, E., & Bers, M. (2012). Programming in a robotics context in the kindergarten classroom: The

impact on sequencing skills. Journal of Educational Multimedia and Hypermedia, 21(4), 371–391.

Kestenbaum, D. (2005). The Challenges of IDC: What Have We Learned from Our Past? Commun. ACM,

48(1), 35–38. doi:10.1145/1039539.1039566

64

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work:

An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-

based teaching. Educational psychologist, 41(2), 75–86.

Kolikant, Y. B.-D., & Mussai, M. (2008). So my program doesn’t run! Definition, origins, and practical

expressions of students’ (mis) conceptions of correctness. Computer Science Education, 18(2),

135–151.

Kölling, M. (2015). Lessons from the Design of Three Educational Programming Environments: Blue, BlueJ

and Greenfoot. International Journal of People-Oriented Programming (IJPOP), 4(1), 5–32.

Kölling, M., Brown, N. C., & Altadmri, A. (2015). Frame-based editing: Easing the transition from blocks to

text-based programming. Proceedings of the Workshop in Primary and Secondary Computing

Education (pp. 29–38). ACM.

Kussmaul, C. (2012). Process oriented guided inquiry learning (POGIL) for computer science. Proceedings

of the 43rd ACM technical symposium on Computer Science Education (pp. 373–378). ACM.

Laakso, M.-J., Rajala, T., Kaila, E., & Salakoski, T. (2008). The impact of prior experience in using a

visualization tool on learning to program. Proceeding of Cognition and Exploratory Learning in

Digital Age (CELDA 2008), 13–15.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., et al. (2011).

Computational thinking for youth in practice. ACM Inroads, 2(1), 32–37.

Lewis, C. M. (2011). Is pair programming more effective than other forms of collaboration for young

students? Computer Science Education, 21(2), 105–134.

Lister, R. (2011). Concrete and other neo-Piagetian forms of reasoning in the novice programmer.

Proceedings of the Thirteenth Australasian Computing Education Conference-Volume 114 (pp. 9–

18). Australian Computer Society, Inc.

65

Lister, R. (2016). Toward a Developmental Epistemology of Computer Programming. Proceedings of the

11th Workshop in Primary and Secondary Computing Education (pp. 5–16). ACM.

Lister, R., Fidge, C., & Teague, D. (2009). Further evidence of a relationship between explaining, tracing

and writing skills in introductory programming. ACM SIGCSE Bulletin (Vol. 41, pp. 161–165). ACM.

Litts, B. K., Kafai, Y. B., Lui, D., Walker, J., & Widman, S. (2017). Understanding High School Students’

Reading, Remixing, and Writing Codeable Circuits for Electronic Textiles. Proceedings of the 2017

ACM SIGCSE Technical Symposium on Computer Science Education (pp. 381–386). ACM.

Lokkila, E., Rajala, T., Veerasamy, A., Enges-Pyykönen, P., Laakso, M. J., & Salakoski, T. (2016). How

students’ programming process differs from experts – a case study with a robot programming

exercise. EDULEARN16 Proceedings, 8th International Conference on Education and New Learning

Technologies (pp. 1555–1562). Barcelona, Spain: IATED. doi:10.21125/edulearn.2016.1308

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008). Relationships between reading, tracing and writing

skills in introductory programming. Proceedings of the fourth international workshop on

computing education research (pp. 101–112). ACM.

Lourenço, O. (2012). Piaget and Vygotsky: Many resemblances, and a crucial difference. New Ideas in

Psychology, 30(3), 281–295.

Lukkarinen, A., & Sorva, J. (2016). Classifying the tools of contextualized programming education and

forms of media computation. Proceedings of the 16th Koli Calling International Conference on

Computing Education Research (pp. 51–60). ACM.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through

programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.

Major, L., Kyriacou, T., & Brereton, O. P. (2012). Systematic literature review: Teaching novices

programming using robots. IET software, 6(6), 502–513.

66

Margulieux, L. E., & Catrambone, R. (2016). Improving problem solving with subgoal labels in expository

text and worked examples. Learning and Instruction, 42, 58–71.

Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? American

psychologist, 59(1), 14.

McDonald, S., & Howell, J. (2012). Watching, creating and achieving: Creative technologies as a conduit

for learning in the early years. British journal of educational technology, 43(4), 641–651.

McDowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2006). Pair programming improves student

retention, confidence, and program quality. Communications of the ACM, 49(8), 90–95.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2011). Habits of programming in Scratch. Proceedings

of the 16th annual joint conference on Innovation and technology in computer science education

(pp. 168–172). ACM.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science concepts with

scratch. Computer Science Education, 23(3), 239–264.

Menekse, M. (2015). Computer science teacher professional development in the United States: a review

of studies published between 2004 and 2014. Computer Science Education, 1–26.

Michaelson, G. (2015). Teaching Programming with Computational and Informational Thinking. Journal of

Pedagogic Development, 5(1).

Missiroli, M., Russo, D., & Ciancarini, P. (2016). Learning Agile software development in high school: an

investigation. Proceedings of the 38th International Conference on Software Engineering

Companion (pp. 293–302). ACM.

Moreno-León, J., & Robles, G. (2016). Code to learn with Scratch? A systematic literature review. Global

Engineering Education Conference (EDUCON), 2016 (pp. 150–156). IEEE.

67

Morrison, B. B., Margulieux, L. E., Ericson, B., & Guzdial, M. (2016). Subgoals help students solve Parsons

problems. Proceedings of the 47th ACM Technical Symposium on Computing Science Education

(pp. 42–47). ACM.

Nuutila, E., Törmä, S., & Malmi, L. (2005). PBL and computer programming—the seven steps method with

adaptations. Computer Science Education, 15(2), 123–142.

Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent

developments. Educational psychologist, 38(1), 1–4.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.

Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36(2), 1–11.

Parrish, A., Fry, B., & Reas, C. (2016). Getting Started with Processing.Py: Making Interactive Graphics with

Python’s Processing Mode (1st ed.). USA: Maker Media, Inc.

Passey, D. (2014). Intergenerational learning practices—Digital leaders in schools. Education and

Information Technologies, 19(3), 473–494.

Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts

for learning, education, and human activity. The journal of the learning sciences, 13(3), 423–451.

Perrenet, J., & Kaasenbrood, E. (2006). Levels of abstraction in students’ understanding of the concept of

algorithm: the qualitative perspective. ACM SIGCSE Bulletin, 38(3), 270–274.

Piaget, J. (1951). The Psychology of Intelligence. (K. Paul, Ed.). Routledge.

Plonka, L., Segal, J., Sharp, H., & Linden, J. van der. (2011). Collaboration in pair programming: driving and

switching. International Conference on Agile Software Development (pp. 43–59). Springer.

Porter, L., Bouvier, D., Cutts, Q., Grissom, S., Lee, C., McCartney, R., Zingaro, D., et al. (2016). A multi-

institutional study of peer instruction in introductory computing. ACM Inroads, 7(2), 76–81.

Powers, K., Ecott, S., & Hirshfield, L. M. (2007). Through the looking glass: teaching CS0 with Alice. ACM

SIGCSE Bulletin, 39(1), 213–217.

68

Price, T. W., & Barnes, T. (2015). Comparing textual and block interfaces in a novice programming

environment. Proceedings of the eleventh annual International Conference on International

Computing Education Research (pp. 91–99). ACM.

Price, T. W., Brown, N. C., Lipovac, D., Barnes, T., & Kölling, M. (2016). Evaluation of a Frame-based

Programming Editor. Proceedings of the 2016 ACM Conference on International Computing

Education Research (pp. 33–42). ACM.

Price, T. W., Dong, Y., & Lipovac, D. (2017). iSnap: Towards Intelligent Tutoring in Novice Programming

Environments. Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science

Education (pp. 483–488). ACM.

Przybylla, M. (2016). Situating Physical Computing in Secondary CS Education. Proceedings of the 2016

ACM Conference on International Computing Education Research (pp. 287–288). ACM.

Przybylla, M., & Romeike, R. (2014). Physical computing in computer science education. Proceedings of

the 9th Workshop in Primary and Secondary Computing Education (pp. 136–137). ACM.

Rahimi, E., Barendsen, E., & Henze, I. (2016). Typifying Informatics Teachers’ PCK of Designing Digital

Artefacts in Dutch Upper Secondary Education. International Conference on Informatics in

Schools: Situation, Evolution, and Perspectives (pp. 65–77). Springer.

Rajala, T., Kaila, E., Laakso, M.-J., & Salakoski, T. (2009). Effects of Collaboration in Program Visualization.

Proceedings of 2009 Technology Enhanced Learning Conference (TELearn 2009).

Rajala, T., Laakso, M.-J., Kaila, E., & Salakoski, T. (2008). Effectiveness of Program Visualization: A Case

Study with the ViLLE Tool. Journal of Information Technology Education, 7, 15–32.

Rajala, T., Salakoski, T., Laakso, M.-J., Kaila, E., & others. (2009). Effects, experiences and feedback from

studies of a program visualization tool. Informatics in Education-An International Journal, (8 /1),

17–34.

69

Repenning, A., Webb, D. C., Koh, K. H., Nickerson, H., Miller, S. B., Brand, C., Basawapatna, A., et al. (2015).

Scalable Game Design: A strategy to bring systemic Computer Science Education to schools

through game design and simulation creation. ACM Transactions on Computing Education (TOCE),

15(2), 11.

Resnick, M. (2013). Learn to code, code to learn. EdSurge, May.

Rich, K., Strickland, C., & Franklin, D. (2017). A Literature Review through the Lens of Computer Science

Learning Goals Theorized and Explored in Research. Proceedings of the 2017 ACM SIGCSE

Technical Symposium on Computer Science Education (pp. 495–500). ACM.

Rodriguez, B., Kennicutt, S., Rader, C., & Camp, T. (2017). Assessing Computational Thinking in CS

Unplugged Activities. Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer

Science Education (pp. 501–506). ACM.

Rolandsson, L. (2012). Changing Computer Programming Education; The Dinosaur that Survived in School:

An explorative study of educational issues based on teachers’ beliefs and curriculum development

in secondary school. KTH Royal Institute of Technology.

Rubin, M. J. (2013). The effectiveness of live-coding to teach introductory programming. Proceeding of

the 44th ACM technical symposium on Computer science education (pp. 651–656). ACM.

Ruvalcaba, O., Werner, L., & Denner, J. (2016). Observations of Pair Programming: Variations in

Collaboration Across Demographic Groups. Proceedings of the 47th ACM Technical Symposium on

Computing Science Education (pp. 90–95). ACM.

Salleh, N., Mendes, E., & Grundy, J. (2011). Empirical studies of pair programming for CS/SE teaching in

higher education: A systematic literature review. IEEE Transactions on Software Engineering,

37(4), 509–525.

70

Schulte, C. (2008). Block Model: an educational model of program comprehension as a tool for a scholarly

approach to teaching. Proceedings of the Fourth international Workshop on Computing Education

Research (pp. 149–160). ACM.

Schulte, C., Clear, T., Taherkhani, A., Busjahn, T., & Paterson, J. H. (2010). An introduction to program

comprehension for computer science educators. Proceedings of the 2010 ITiCSE working group

reports (pp. 65–86). ACM.

Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational thinking of primary

grade students. Proceedings of the ninth annual international ACM conference on International

computing education research (pp. 59–66). ACM.

Selby, C., & Woollard, J. (2014). Refining an understanding of computational thinking. Retrieved from

http://eprints.soton.ac.uk/372410/1/372410UnderstdCT.pdf

Sentance, S. (2015, May). Computing At School Annual Survey 2015.

http://community.computingatschool.org.uk/files/6098/original.pdf.

Sentance, S. (2016). Computing At School Annual Survey 2016. Retrieved from

http://community.computingatschool.org.uk/files/8106/original.pdf

Sentance, S., & Csizmadia, A. (2015). Teachers’ perspectives on successful strategies for teaching

computing in school. IFIP TC3 Working Conference, 2015.

Sentance, S., & Csizmadia, A. (2016). Computing in the curriculum: Challenges and strategies from a

teacher’s perspective. Education and Information Technologies, 1–27.

Sentance, S., & Schwiderski-Grosche, S. (2012). Challenge and creativity: using. NET gadgeteer in schools.

Proceedings of the 7th Workshop in Primary and Secondary Computing Education (pp. 90–100).

ACM.

71

Sentance, S., Waite, J., Hodges, S., MacLeod, E., & Yeomans, L. (2017). Creating Cool Stuff: Pupils’

Experience of the BBC micro: bit. Proceedings of the 2017 ACM SIGCSE Technical Symposium on

Computer Science Education (pp. 531–536). ACM.

Solomon, C. (1986). Papert: Constructivism and Piagetian Learning.

Sorva, J. (2013). Notional machines and introductory programming education. ACM Transactions on

Computing Education (TOCE), 13(2), 8.

Sorva, J., Karavirta, V., & Malmi, L. (2013). A review of generic program visualization systems for

introductory programming education. ACM Transactions on Computing Education (TOCE), 13(4),

15.

Statter, D., & Armoni, M. (2016). Teaching Abstract Thinking in Introduction to Computer Science for 7th

Graders. Proceedings of the 11th Workshop in Primary and Secondary Computing Education (pp.

80–83). ACM.

Strawhacker, A., & Bers, M. U. (2015). I want my robot to look for food Comparing Kindergartner’s

programming comprehension using tangible, graphic, and hybrid user interfaces. International

Journal of Technology and Design Education, 25(3), 293–319.

Su, A., Yang, S. J., Hwang, W.-Y., Huang, C. S., & Tern, M.-Y. (2014). Investigating the role of computer-

supported annotation in problem-solving-based teaching: An empirical study of a Scratch

programming pedagogy. British Journal of Educational Technology, 45(4), 647–665.

Sudol-DeLyser, L. A., Stehlik, M., & Carver, S. (2012). Code comprehension problems as learning events.

Proceedings of the 17th ACM annual conference on Innovation and technology in computer

science education (pp. 81–86). ACM.

Sweller, J., Kirschner, P. A., & Clark, R. E. (2007). Why minimally guided teaching techniques do not work:

A reply to commentaries. Educational Psychologist, 42(2), 115–121.

72

Taub, R., Armoni, M., & Ben-Ari, M. (2012). CS unplugged and middle-school students’ views, attitudes,

and intentions regarding CS. ACM Transactions on Computing Education (TOCE), 12(2), 8.

Taub, R., Armoni, M., & Ben-Ari, M. M. (2014). Abstraction as a bridging concept between computer

science and physics. Proceedings of the 9th Workshop in Primary and Secondary Computing

Education (pp. 16–19). ACM. doi:10.1145/2670757.2670777

Teague, D., & Lister, R. (2014a). Longitudinal think aloud study of a novice programmer. Proceedings of

the Sixteenth Australasian Computing Education Conference-Volume 148 (pp. 41–50). Australian

Computer Society, Inc.

Teague, D., & Lister, R. (2014b). Manifestations of preoperational reasoning on similar programming tasks.

Proceedings of the Sixteenth Australasian Computing Education Conference-Volume 148 (pp. 65–

74). Australian Computer Society, Inc.

Teague, D., & Lister, R. (2014c). Programming: reading, writing and reversing. Proceedings of the 2014

conference on Innovation & technology in computer science education (pp. 285–290). ACM.

Tedre, M., & Denning, P. J. (2016). The long quest for computational thinking. Proceedings of the 16th Koli

Calling Conference on Computing Education Research (pp. 24–27).

Thies, R., & Vahrenhold, J. (2012). Reflections on outreach programs in CS classes: learning objectives for

unplugged activities. Proceedings of the 43rd ACM technical symposium on Computer Science

Education (pp. 487–492). ACM.

Thies, R., & Vahrenhold, J. (2016). Back to School: Computer Science Unplugged in the Wild. Proceedings

of the 2016 ACM Conference on Innovation and Technology in Computer Science Education (pp.

118–123). ACM.

Toh, L. P. E., Causo, A., Tzuo, P. W., Chen, I.-M., Yeo, S. H., & others. (2016). A Review on the Use of Robots

in Education and Young Children. Educational Technology & Society, 19(2), 148–163.

73

Tsai, C.-Y., Yang, Y.-F., & Chang, C.-K. (2015). Cognitive Load Comparison of Traditional and Distributed

Pair Programming on Visual Programming Language. Proceedings of the International Conference

of Educational Innovation through Technology (EITT), (pp. 143–146). IEEE.

Van Merrienboer, J. J., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent

developments and future directions. Educational psychology review, 17(2), 147–177.

Veerasamy, A. K., D’Souza, D., & Laakso, M.-J. (2016). Identifying Novice Student Programming

Misconceptions and Errors From Summative Assessments. Journal of Educational Technology

Systems, 45(1), 50–73.

Venables, A., Tan, G., & Lister, R. (2009). A closer look at tracing, explaining and code writing skills in the

novice programmer. Proceedings of the fifth international workshop on Computing education

research workshop (pp. 117–128). ACM.

Waite, J., Curzon, P., Marsh, W., & Sentance, S. (2016). Abstraction and common classroom activities.

Proceedings of the 11th Workshop in Primary and Secondary Computing Education (pp. 112–113).

ACM.

Webb, D. C., Repenning, A., & Koh, K. H. (2012). Toward an emergent theory of broadening participation

in computer science education. Proceedings of the 43rd ACM technical symposium on Computer

Science Education (pp. 173–178). ACM.

Weintrop, D., & Holbert, N. (2017). From Blocks to Text and Back: Programming Patterns in a Dual-

Modality Environment. Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer

Science Education (pp. 633–638). ACM.

Weintrop, D., Holbert, N., Horn, M. S., & Wilensky, U. (2016). Computational thinking in constructionist

video games. International Journal of Game-Based Learning (IJGBL), 6(1), 1–17.

74

Weintrop, D., & Wilensky, U. (2015). To block or not to block, that is the question: students’ perceptions

of blocks-based programming. Proceedings of the 14th International Conference on Interaction

Design and Children (pp. 199–208). ACM.

Werner, L., Denner, J., & Campe, S. (2015). Children programming games: a strategy for measuring

computational learning. ACM Transactions on Computing Education (TOCE), 14(4), 24.

Werner, L., Denner, J., Campe, S., Ortiz, E., DeLay, D., Hartl, A., & Laursen, B. (2013). Pair programming for

middle school students: does friendship influence academic outcomes? Proceeding of the 44th

ACM technical symposium on Computer science education (pp. 421–426). ACM.

Williams, L. A., & Kessler, R. R. (2000). All I really need to know about pair programming I learned in

kindergarten. Communications of the ACM, 43(5), 108–114.

Wing, J. M. (2011). Computational thinking. VL/HCC (p. 3).

Wu, C.-C., Tseng, I.-C., & Huang, S.-L. (2008). Visualization of program behaviors: Physical robots versus

robot simulators. International Conference on Informatics in Secondary Schools-Evolution and

Perspectives (pp. 53–62). Springer.

Yadav, A., Gretter, S., Hambrusch, S., & Sands, P. (2016). Expanding computer science education in

schools: understanding teacher experiences and challenges. Computer Science Education, 1–20.

75

 Appendix A

Research studies per theme are shown in the tables below. Papers are ordered in the same order as they

are referenced in the report.

Concepts and techniques

Sub
headi
ng

Pha
se

Articles included Cou
ntry

Study
Type

Study
Size

Study
context

Litera
ture
revie
ws

Pri
mar
y
and
Sec
ond
ary

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and
learning of computational thinking through
programming: What is next for K-12? Computers in
Human Behavior, 41, 51–61.

USA Litera
ture
revie
w

27
papers
review
ed

Computa
tional
thinking
through
program
ming

1

Falkner, K., & Vivian, R. (2015). A review of computer
science resources for learning and teaching with K-12
computing curricula: An Australian case study. Computer
Science Education, 25(4), 390–429

Aus
trali
a

Syste
matic
Reso
urce
Revie
w

65
resourc
es

Curriculu
m
resource
s

2

Garneli, V., Giannakos, M. N., & Chorianopoulos, K.
(2015). Computing education in K-12 schools: A review of
the literature. Global Engineering Education Conference
(EDUCON), 2015 IEEE (pp. 543–551). IEEE.

Gre
ece

Syste
matic
literat
ure
revie
w

47
papers

Computi
ng
Educatio
n

3

Rich, K., Strickland, C., & Franklin, D. (2017). A Literature
Review through the Lens of Computer Science Learning
Goals Theorized and Explored in Research. Proceedings
of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (pp. 495–500). ACM.

USA Litera
ture
revie
w

 Raising
question
s paper

4

LOA
&
disco
urse

KS3
13/
14
yea
rs'
old

Statter, D., & Armoni, M. (2016). Teaching Abstract
Thinking in Introduction to Computer Science for 7th
Graders. Proceedings of the 11th Workshop in Primary
and Secondary Computing Education (pp. 80–83). ACM

Isra
el

Mixe
d

Mediu
m
129

 5

Uni
vers
ity

Cutts, Q., Esper, S., Fecho, M., Foster, S. R., & Simon, B.
(2012). The abstraction transition taxonomy: developing
desired learning outcomes through the lens of situated
cognition. Proceedings of the 9th Annual International
Conference on International Computing Education
Research (pp. 63–70). ACM.

UK Post
hoc
analy
sis

133
Peer
instruct
ion
questio
ns

 6

KS3

Grover, S. & Pea, R., 2013. Using a discourse-intensive
pedagogy and android’s app inventor for introducing
computational concepts to middle school students. In
Proceeding of the 44th ACM technical symposium on
Computer science education. ACM, pp. 723–728.

USA Mixe
d

Small
7
student
s

 7

76

Curric
ulum
devel
oped
by
resea
rch
com
munit
y

KS3 Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013).
Learning computer science concepts with Scratch.
Computer Science Education, 23(3), 239–264.

Isra
el

Mixe
d

Mediu
m 108 +
40

 8

KS2
/3
(gra
des
4-6)

Hansen, A., Hansen, E., Dwyer, H., Harlow, D., & Franklin,
D. (2016). Differentiating for Diversity: Using Universal
Design for Learning in Elementary Computer Science
Education. Proceedings of the 47th ACM Technical
Symposium on Computing Science Education (pp. 376–
381). ACM.

USA Theor
y

N/A Explains
UDL

9

Dwyer, H., Hill, C., Carpenter, S., Harlow, D., & Franklin,
D. (2014). Identifying elementary students’ pre-
instructional ability to develop algorithms and step-by-
step instructions. Proceedings of the 45th ACM technical
symposium on Computer science education (pp. 511–
516). ACM.

USA Quali
tative

Mediu
m
55

 10

Hansen, A.K. et al., 2016. User-Centered Design in Block-
Based Programming: Developmental & Pedagogical
Considerations for Children. In Proceedings of the 15th
International Conference on Interaction Design and
Children. ACM, pp. 147–156.

USA Quali
tative

Mediu
m
(123
student
s)

 11

Franklin, D., Hill, C., Dwyer, H. A., Hansen, A. K., Iveland,
A., & Harlow, D. B. (2016). Initialization in Scratch:
Seeking Knowledge Transfer. Proceedings of the 47th
ACM Technical Symposium on Computing Science
Education (pp. 217–222). ACM.

USA Revie
w of
field
notes
analy
sis of
code

Not
stated

 12

Franklin, D., Skifstad, G., Rolock, R., Mehrotra, I., Ding, V.,
Hansen, A., Weintrop, D., et al. (2017). Using Upper-
Elementary Student Performance to Understand
Conceptual Sequencing in a Blocks-based Curriculum.
Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education (pp. 231–
236). ACM.

USA Mixe
d

Mediu
m
(123
student
s)

 13

KS3
11-
14

Grover, S., Pea, R. & Cooper, S., 2015. Designing for
deeper learning in a blended computer science course for
middle school students. Computer Science Education,
25(2), pp.199–237.

USA Mixe
d

Mediu
m
54

 14

N/A Seiter, L., & Foreman, B. (2013). Modeling the learning
progressions of computational thinking of primary grade
students. Proceedings of the ninth annual international
ACM conference on International computing education
research (pp. 59–66). ACM

USA Quan
titativ
e

N/A
150
progra
ms

 15

Guide
d
Disco
very

KS3 Grover, S. & Basu, S., 2017. Measuring Student Learning
in Introductory Block-Based Programming: Examining
Misconceptions of Loops, Variables, and Boolean Logic.
In Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education. ACM, pp.
267–272.

USA Quan
titativ
e

mediu
m
(100
school
student
s)

 16

Extre
mely
Fine

KS4 Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2011).
Habits of programming in Scratch. Proceedings of the
16th annual joint conference on Innovation and

Isra
el

Quali
tative

Small
46

Findings
arose in a

17

77

Grain
ed

technology in computer science education (pp. 168–172).
ACM.

study.
EFPG

N/A Aivaloglou, E., & Hermans, F. (2016). How kids code and
how we know: An exploratory study on the Scratch
repository. Proceedings of the 2016 ACM Conference on
International Computing Education Research (pp. 53–
61). ACM.

Holl
and

Quan
titativ
e

250,00
0
Scratch
progra
ms

 18

KS4
/5
gra
des
10-
12

Kolikant, Y. B.-D., & Mussai, M. (2008). "So my program
doesn't run" Definition, origins, and practical expressions
of students’ (mis) conceptions of correctness. Computer
Science Education, 18(2), 135–151.

Isra
el

Quali
tative

Large
(159
student
s)

 19

Traci
ng &
Readi
ng

HE Teague, D., & Lister, R. (2014c). Programming: reading,
writing and reversing. Proceedings of the 2014
conference on Innovation & technology in computer
science education (pp. 285–290). ACM

Aus
trali
a

Quali
tative

Small
4

 20

HE Teague, D., & Lister, R. (2014a). Longitudinal think aloud
study of a novice programmer. Proceedings of the
Sixteenth Australasian Computing Education Conference-
Volume 148 (pp. 41–50). Australian Computer Society,
Inc.

Aus
trali
a

Quali
tative

Small 1

 21

HE Teague, D., & Lister, R. (2014b). Manifestations of
preoperational reasoning on similar programming tasks.
Proceedings of the Sixteenth Australasian Computing
Education Conference-Volume 148 (pp. 65–74).
Australian Computer Society, Inc

Aus
trali
a

Quali
tative

Small
11

 22

KS5
gra
de
10/
11

Gal-Ezer, J., & Zur, E. (2004). The efficiency of
algorithms—misconceptions. Computers & Education,
42(3), 215–226.

Isra
el

Quan
titativ
e

Large
319

 23

HE Sudol-DeLyser, L. A., Stehlik, M., & Carver, S. (2012). Code
comprehension problems as learning events.
Proceedings of the 17th ACM annual conference on
Innovation and technology in computer science
education (pp. 81–86). ACM.

Finl
and

Quan
titativ
e

Large
345

Code
compreh
ension
for
learning

24

KS4
high
sch
ool

Busjahn, T., & Schulte, C. (2013). The use of code reading
in teaching programming. Proceedings of the 13th Koli
Calling International Conference on Computing
Education Research (pp. 3–11). ACM.

Ger
ma
ny

Quali
tative

Small 6
teacher
s

Teachers
interview
ed in 3
countries
using
block
model

25

HE
and
adul
t

Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson,
J. H., Schulte, C., Sharif, B., et al. (2015). Eye movements
in code reading: Relaxing the linear order. Program
Comprehension (ICPC), 2015 IEEE 23rd International
Conference on (pp. 255–265). IEEE.

Ger
ma
ny

Quali
tative

Small
20

eye
moveme
nts

26

KS2 Gujberova, M. & Kalas, I., 2013. Designing productive
gradations of tasks in primary programming education. In

Slov
enia

Quan
titativ
e

Mediu
m
(128)

Route
based
aimed at

27

78

Age
8 to
10

Proceedings of the 8th Workshop in Primary and
Secondary Computing Education. ACM, pp. 108–117

 improvin
g Bebras

 KS2
/3
(gra
des
4-6)

Dwyer, H., Hill, C., Carpenter, S., Harlow, D., & Franklin,
D. (2014). Identifying elementary students’ pre-
instructional ability to develop algorithms and step-by-
step instructions. Proceedings of the 45th ACM technical
symposium on Computer science education (pp. 511–
516). ACM.

USA Quali
tative

Mediu
m
55

 28

Sub
goal

HE Margulieux, L. E., & Catrambone, R. (2016). Improving
problem-solving with subgoal labels in expository text
and worked examples. Learning and Instruction, 42, 58–
71.

USA Quan
titativ
e

mediu
m 120

 29

HE Morrison, B. B., Margulieux, L. E., Ericson, B., & Guzdial,
M. (2016). Subgoals help students solve Parsons
problems. Proceedings of the 47th ACM Technical
Symposium on Computing Science Education (pp. 42–
47). ACM.

USA Quan
titativ
e

Mediu
m
119

 30

Anno
tating
code
and
PBL

KS3 Su, A., Yang, S. J., Hwang, W.-Y., Huang, C. S., & Tern, M.-
Y. (2014). Investigating the role of computer-supported
annotation in problem-solving-based teaching: An
empirical study of a Scratch programming pedagogy.
British Journal of Educational Technology, 45(4), 647–
665.

Tai
wan

Quan
titativ
e

Mediu
m
135

 31

Live
codin
g

HE Rubin, M. J. (2013). The effectiveness of live-coding to
teach introductory programming. Proceeding of the 44th
ACM technical symposium on Computer science
education (pp. 651–656). ACM.

USA Mixe
d

Large
166
student
s

 32

Pseu
do
code

KS4
/5

Cutts, Connor, R., Michaelson, G., & Donaldson, P. (2014).
Code or (not code): separating formal and natural
language in CS education. Proceedings of the 9th
Workshop in Primary and Secondary Computing
Education (pp. 20–28). ACM.

UK N/A N/A Review
of exam
question
s

33

Misc
once
ption
s

Uni
vers
ity

Veerasamy, A. K., D’Souza, D., & Laakso, M.-J. (2016).
Identifying Novice Student Programming Misconceptions
and Errors From Summative Assessments. Journal of
Educational Technology Systems, 45(1), 50–73.

Finl
and

Mixe
d

Small
39

Review
of results
from an
e-exam

34

Lokkila, E., Rajala, T., Veerasamy, A., Enges-Pyykönen, P.,
Laakso, M. J., & Salakoski, T. (2016). How students’
programming process differs from experts – a case study
with a robot programming exercise. EDULEARN16
Proceedings, 8th International Conference on Education
and New Learning Technologies (pp. 1555–1562).
Barcelona, Spain: IATED.

Finl
and

Mixe
d

3
experts
197
student
s

Compare
d expert
program
s to
novice

35

79

Contexts

The
me

Phase Articles included Cou
ntry

Study
Type

Study
Size

Study
context

Physi
cal

Primary
and
Second
ary

Benitti, F.B.V., 2012. Exploring the educational
potential of robotics in schools: A systematic
review. Computers & Education, 58(3), pp.978–
988.

Bra
zil

Literatu
re
Review

10
paper
s

 1

Primary
Second
ary and
HE

Major, L., Kyriacou, T. & Brereton, O.P., 2012.
Systematic literature review: Teaching novices
programming using robots. IET software, 6(6),
pp.502–513.

UK Literat
ure
Revie
w

36
pape
rs

 2

Primary
and
Second
ary

Falkner, K., & Vivian, R. (2015). A review of
computer science resources for learning and
teaching with K-12 computing curricula: An
Australian case study. Computer Science
Education, 25(4), 390–429

Aus
trali
a

System
atic
Resour
ce
Review

65
resou
rces

 3

Toh, L.P.E. et al., 2016. A Review on the Use of
Robots in Education and Young Children.
Educational Technology & Society, 19(2),
pp.148–163.

Sing
apo
re

System
atic
Literatu
re
Review

55
paper
s

 4

KS1 Kazakoff, E. & Bers, M., 2012. Programming in a
robotics context in the kindergarten classroom:
The impact on sequencing skills. Journal of
Educational Multimedia and Hypermedia, 21(4),
pp.371–391.

US Mixed
With
control
group

Medi
um
54

2 groups in
class time
CHERP
Lego WeDo

5

Bers, M.U. et al., 2014. Computational thinking
and tinkering: Exploration of an early childhood
robotics curriculum. Computers & Education,
72, pp.145–157.

US Mixed
With
control
group

Medi
um
53

3 classes in
class time
CHERP
Lego WeDo

6

Strawhacker, A. & Bers, M.U., 2015. "I want my
robot to look for food“ Comparing
Kindergartner”s programming comprehension
using tangible, graphic, and hybrid user
interfaces. International Journal of Technology
and Design Education, 25(3), pp.293–319.

US Mixed
With
control
group

Medi
um
53

3 classes in
class time
CHERP
Lego WeDo

7

McDonald, S. & Howell, J., 2012. Watching,
creating and achieving: Creative technologies as
a conduit for learning in the early years. British
journal of educational technology, 43(4),
pp.641–651.

Aus
trali
a

Qualita
tive no
control
group

Small
16

1 class Lego
WeDo

8

KS2 Jin, K.H., Haynie, K. & Kearns, G., 2016. Teaching
Elementary Students Programming in a Physical
Computing Classroom. In Proceedings of the
17th Annual Conference on Information
Technology Education. ACM, pp. 85–90.

US Mixed Small
30
(age
8 to
10)

Summer
school

Lego
Mindstor
ms

9

KS3

Kafai, Y.B. & Vasudevan, V., 2015.
Constructionist Gaming Beyond the Screen:
Middle School Students’ Crafting and
Computing of Touchpads, Board Games, and

USA Qualita
tive
Descrip
tive

Small
28
stude
nts

In class but
taught by
researcher

1
0

80

Controllers. In Proceedings of the Workshop in
Primary and Secondary Computing Education
ACM, pp. 49–54.

Scratch,

Makey
Makey;

Sentance, S., Waite, J., Hodges, S., MacLeod, E.,
Yeomans, L., 2017. Creating Cool Stuff: Pupils’
Experience of the BBC micro: bit, in: Proceedings
2017 ACM SIGCSE Technical
SymposiumComputerScienceEducation. ACM,
pp. 531–536.

UK Qualita
tive
Descrip
tive

Small
28
stude
nts

Focus
groups
Microbit

1
1

17 to
18
High
school
KS5

Kafai, Y.B., Lee, E., Searle, K., Fields, D., Kaplan,
E., Lui, D., 2014. A crafts-oriented approach to
computing in high school: Introducing
computational concepts, practices, and
perspectives with electronic textiles. ACM
Transactions on Computing Education (TOCE)
14, 1.

USA Qualita
tive

Small
15

Lilypad
Arduino, in
class

1
2

Litts, B.K., Kafai, Y.B., Lui, D., Walker, J., Widman,
S., 2017. Understanding High School Students’
Reading, Remixing, and Writing Codeable
Circuits for Electronic Textiles, in: Proceedings
2017 ACM SIGCSE Technical
SymposiumComputerScienceEducation. ACM,
pp. 381–386.

USA Mixed Small
23

Arduino in
class

1
3

DesPortes, K., Anupam, A., Pathak, N., DiSalvo,
B., 2016. BitBlox: A Redesign of the Breadboard,
in: Proceedings The 15th International
ConferenceInteractionDesign Children. ACM,
pp. 255–261.

USA Qualita
tive

Small
44

BitBlox vs
Breadboar
d In class

1
4

Brinkmeier, M., Kalbreyer, D., 2016. A Case
Study of Physical Computing in Computer
Science Education, in: Proceedings 11th
WorkshopPrimary Secondary Computing
Education. ACM, pp. 54–59.

Ger
ma
ny

Qualita
tive

Small
25

Abbozza!
And
Adruino

1
5

11 to
17

Sentance, S., Schwiderski-Grosche, S., 2012.
Challenge and creativity: using. NET gadgeteer
in schools, in: Proceedings 7th
WorkshopPrimary Secondary Computing
Education. ACM, pp. 90–100.

UK Qualita
tive

Small
16
interv
iewed

.NET
gadgeteer
afterschool

1
6

Gam
e-
maki
ng

Primary Kafai, Y.B. & Burke, Q., 2015. Constructionist
gaming: Understanding the benefits of making
games for learning. Educational psychologist,
50(4), pp.313–334.

USA Literatu
re
Review

55
paper
s

Making
Games

1
7

KS3 11-
14

Repenning, A., Webb, D. C., Koh, K. H.,
Nickerson, H., Miller, S. B., Brand, C.,
Basawapatna, A., et al. (2015). Scalable game
design: A strategy to bring systemic computer
science education to schools through game
design and simulation creation. ACM
Transactions on Computing Education (TOCE),
15(2), 11.

USA Qualita
tive

Large
10,00
0

 1
8

Webb, D. C., Repenning, A., & Koh, K. H. (2012).
Toward an emergent theory of broadening

USA Qualita
tive

Large
1420

 1
9

81

participation in computer science education.
Proceedings of the 43rd ACM technical
symposium on Computer Science Education (pp.
173–178). ACM.

Unpl
ugge
d

KS3

Grade
7

Rodriguez, B., Kennicutt, S., Rader, C., & Camp,
T. (2017). Assessing Computational Thinking in
CS Unplugged Activities. Proceedings of the
2017 ACM SIGCSE Technical Symposium on
Computer Science Education (pp. 501–506).
ACM.

USA Quantit
ative

Medi
um
141
stude
nts

 2
0

KS5
(High
school)

Ford, V., Siraj, A., Haynes, A., & Brown, E. (2017).
Capture the Flag Unplugged: an Offline Cyber
Competition. Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer
Science Education (pp. 225–230). ACM.

USA Mixed Small
36

 2
1

Cross
curri
cula

N/A Moreno-León, J., & Robles, G. (2016). Code to
learn with Scratch? A systematic literature
review. Global Engineering Education
Conference (EDUCON), 2016 (pp. 150–156).
IEEE.

Spai
n

System
atic
literatu
re
review

15
paper
s

Learning
non-
computing
subjects
using
Scratch

2
2

KS2 Benton, L., Hoyles, C., & Noss, I. K. anRichard.
(2017). Bridging Primary Programming and
Mathematics: some findings of design research
in England. Digital Experiences in Mathematics
Education.

UK Qualita
tive

Medi
um
(55
stude
nts)

 2
3

Programming Languages

 Phase Articles included Cou
ntry

Study
Type

Study
Size

Study
context

Peda
gogy
based
transi
tion

Primary
and
KS3

Dorling, M., & White, D. (2015). Scratch: A way
to logo and Python. Proceedings of the 46th
ACM Technical Symposium on Computer
Science Education (pp. 191–196). ACM.

UK Theore
tical

N/A 1

 Franklin, D., Hill, C., Dwyer, H. A., Hansen, A. K.,
Iveland, A., & Harlow, D. B. (2016). Initialization
in Scratch: Seeking Knowledge Transfer.
Proceedings of the 47th ACM Technical
Symposium on Computing Science Education
(pp. 217–222). ACM.

USA Review
of field
notes,
analysi
s of
code

Not
stated

 2

KS3 Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M.
(2015). From Scratch to "real" programming.
ACM Transactions on Computing Education
(TOCE), 14(4), 25.

Isra
el

Mixed
+
Control
group

Medi
um
(120
stude
nts)

Scratch to
C# or Java
across 5
classes, 4
schools, 4
teachers

3

Hybri
d

KS5
and
older

Weintrop, D., & Holbert, N. (2017). From Blocks
to Text and Back: Programming Patterns in a
Dual-Modality Environment. Proceedings of the
2017 ACM SIGCSE Technical Symposium on

US Quantit
ative

Small
23
(13
KS5 +

Could
choose
which

4

82

Computer Science Education (pp. 633–638).
ACM.

10
HE)

modality
to use

Hybri
d and
peda
gogy

Univers
ity

Dann, W., Cosgrove, D., Slater, D., Culyba, D., &
Cooper, S. (2012). Mediated transfer: Alice 3 to
java. Proceedings of the 43rd ACM technical
symposium on Computer Science Education (pp.
141–146). ACM.

USA Quantit
ative

Medi
um
78

2 cohorts 5

Fram
e
based

KS3 Price, T. W., Brown, N. C., Lipovac, D., Barnes, T.,
& Kölling, M. (2016). Evaluation of a Frame-
based Programming Editor. Proceedings of the
2016 ACM Conference on International
Computing Education Research (pp. 33–42).
ACM.

USA Quantit
ative

Small
32
stude
nts

Elective
outreach 1
hour
lesson

6

Notat
ional
Mach
ine
and
visual
isatio
n

N/A Sorva, J., Karavirta, V., & Malmi, L. (2013). A
review of generic program visualization systems
for introductory programming education. ACM
Transactions on Computing Education (TOCE),
13(4), 15.

Finl
and

Produc
t
review

Appro
x. 40
Visual
progr
ammi
ng
syste
ms

 7

HE
HE

Rajala, T., Laakso, M.-J., Kaila, E., & Salakoski, T.
(2008). Effectiveness of Program Visualization: A
Case Study with the ViLLE Tool. Journal of
Information Technology Education, 7.

Finl
and

Quantit
ative

Medi
um 72
stude
nts

VILLE tool 8

Laakso, M.-J., Rajala, T., Kaila, E., & Salakoski, T.
(2008). The impact of prior experience in using a
visualization tool on learning to program.
Proceedings of Cognition and Exploratory
Learning in Digital Age (CELDA 2008), 13–15.

Finl
and

Quantit
ative

Small
24
stude
nts

VILLE tool 9

Rajala, T., Kaila, E., Laakso, M.-J., & Salakoski, T.
(2009). Effects of Collaboration in Program
Visualization. Proceedings of 2009 Technology
Enhanced Learning Conference (TELearn 2009).

Finl
and

Quantit
ative

Small VILLE tool 1
0

Kaila, E., Laakso, M.-J., Rajala, T., & Salakoski, T.
(2009). Evaluation of Learner Engagement in
Program Visualization. 12th IASTED
International Conference on Computers and
Advanced Technology in Education (CATE 2009).

Finl
and

Quantit
ative

Small VILLE tool 1
1

KS5 16-
19
years'
old

Kaila, E., Rajala, T., Laakso, M.-J., & Salakoski, T.
(2010). Effects of course-long use of a program
visualization tool. Proceedings of the Twelfth
Australasian Conference on Computing
Education-Volume 103 (pp. 97–106). Australian
Computer Society, Inc.

Finl
and

Quantit
ative
(with
control
group)

Small
23

ViLLE tool
embedded
in high
school
Python
course

1
2

83

Student Engagement

 Phase Articles included Countr
y

Study
Type

Study
Size

Study
context

Pair
progr
ammi
ng

Prima
ry
and
Secon
dary

Kafai, Y.B. & Burke, Q., 2015. Constructionist
gaming: Understanding the benefits of making
games for learning. Educational psychologist,
50(4), pp.313–334.

USA Literat
ure
Review

55
papers

 1

Falkner, K., & Vivian, R. (2015). A review of
computer science resources for learning and
teaching with K-12 computing curricula: An
Australian case study. Computer Science
Education, 25(4), 390–429

Australi
a

System
atic
Resour
ce
Review

65
resourc
es

 2

HE Hanks, B. et al., 2011. Pair programming in
education: a literature review. Computer
Science Education, 21(2), pp.135–173.

USA Literat
ure
Review

43
papers

 3

Salleh, N., Mendes, E. & Grundy, J., 2011.
Empirical studies of pair programming for
CS/SE teaching in higher education: A
systematic literature review. IEEE Transactions
on Software Engineering, 37(4), pp.509–525.

USA Literat
ure
Review

74
papers

 4

KS3 Werner, L. Denner, J. Campe, S. Ortiz, E. DeLay,
D. Hartl, A. Laursen, B. 2013. Pair
programming for middle school students: does
friendship influence academic outcomes? In
Proceeding of the 44th ACM technical
symposium on Computer science education.
ACM, pp. 421–426.

USA Mixed Large
 189
student
s

Alice in
school
2009-2011
study
Focus
friendship

5

Werner, L. Denner, J. Campe S. and Ortiz E
2014. Pair programming: Under what
conditions is it advantageous for middle school
students? Journal of Research on Technology
in Education, 46(3), pp.277–296.

USA Mixed Large
320
student
s

Alice in
school
2009-2011
Focus Pair
vs Solo

6

Ruvalcaba, O., Werner, L. & Denner, J., 2016.
Observations of Pair Programming: Variations
in Collaboration Across Demographic Groups.
In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education.
ACM, pp. 90–95.

USA Qualita
tive
(Video
analysi
s)

Large
 158
student
s

Alice in
school
2009-2011
Focus
ethnicity

7

Lewis, C.M., 2011. Is pair programming more
effective than other forms of collaboration for
young students? Computer Science Education,
21(2), pp.105–134.

USA Mixed Small
40
student
s

Summer
school

8

KS4 Missiroli, M., Russo, D. & Ciancarini, P., 2016.
Learning Agile software development in high
school: an investigation. In Proceedings of the
38th International Conference on Software
Engineering Companion. ACM, pp. 293–302.

Italian Qualita
tive

Mediu
m
84
student
s

In school 9

KS3 Passey, D., 2013. inspire – Wolverhampton’s
Local Education Partnership: evaluating the

UK 2 Case
Studies

Not
clear

Digital
Leaders

10

84

development and practices of digital leaders in
Wolverhampton schools, Lancaster University.
Passey, D., 2014. Intergenerational learning
practices—Digital leaders in schools.
Education and Information Technologies,
19(3), pp.473–494.

KS2 Ching, C.C. & Kafai, Y.B., 2008. Peer pedagogy:
Student collaboration and reflection in a
learning-through-design project. Teachers
College Record, 110(12), pp.2601–2632.

USA Design
based
researc
h
Qualita
tive

Mediu
m
63
student
s

Peer
apprentice
ship

11

N/A Al-Jarrah, A. & Pontelli, E., 2014. AliCe-ViLlagE"
Alice as a Collaborative Virtual Learning
Environment. In Frontiers in Education
Conference (FIE), 2014 IEEE. IEEE, pp. 1–9.

USA Theore
tical

N/A Toolset
research

12

PjBL KS3 Garneli, V. et al., 2015. Serious game
development as a creative learning
experience: lessons learnt. In Proceedings of
the Fourth International Workshop on Games
and Software Engineering. IEEE Press, pp. 36–
42

Greec
e

Quantit
ative

(of
code
create
d)

mediu
m

(53
school
studen
ts

 13

Agile KS4 Missiroli, M., Russo, D. & Ciancarini, P., 2016.
Learning Agile software development in high
school: an investigation. In Proceedings of the
38th International Conference on Software
Engineering Companion. ACM, pp. 293–302.

Italian Qualita
tive

Mediu
m
84
student
s

In school 14

 KS5
(High
scho
ol)

Kastl, P., Kiesmüller, U., & Romeike, R. (2016).
Starting out with Projects: Experiences with
Agile Software Development in High Schools.
Proceedings of the 11th Workshop in Primary
and Secondary Computing Education (pp. 60–
65). ACM.

Germa
ny

Qualita
tive

Mediu
m 140

 15

 KS2 Aggarwal, A., Gardner-McCune, C., &
Touretzky, D. S. (2017). Evaluating the Effect of
Using Physical Manipulatives to Foster
Computational Thinking in Elementary School.
Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science
Education (pp. 9–14). ACM.

USA Mixed Small

11
 16

85

 Appendix B

List of example physical computing programmable devices.

Product name Device type Weblink

Bee-Bot Programmable Robot
http://www.tts-group.co.uk/bee-bot-rechargeable-floor-robot/1001794.html

Blue Bot
Programmable Robot http://www.tts-group.co.uk/blue-bot-bluetooth-programmable-floor-

robot/1007812.html?gclid=CJqHgpLdos8CFQw6Gwods5kNYw

Codybot Programmable Robot
http://www.makeblock.com/codeybot

Cubetto Programmable Robot
https://www.primotoys.com/

Dash and Dot Programmable Robot
https://www.makewonder.com/dash

Edison Programmable Robot
https://meetedison.com

Finch Programmable Robot
http://www.finchrobot.com/

KIBO

Programmable robot
and
Tangible programming
interface http://www.shop.kinderlabrobotics.com/KIBO-Sets_c7.htm

mbot Programmable Robot
http://www.makeblock.com/mbot-v1-1-stem-educational-robot-kit

Moway Programmable Robot
http://moway-robot.com/en/

Nao Programmable Robot https://www.ald.softbankrobotics.com/en/cool-robots/nao

Ollie Programmable Robot
http://www.sphero.com/ollie

Ozobot Programmable Robot
http://ozobot.com/

Pro- Bot Programmable Robot
http://www.tts-group.co.uk/pro-bot-rechargeable-floor-robot/1009825.html

Roamer Programmable Robot
http://www.valiant-technology.com/uk/pages/roamertoohome.php?cat=8&8

Sphero Programmable Robot
http://www.sphero.com/

Arduino Microcontroller https://www.arduino.cc/

Bareconductive Microcontroller https://makerclub.org/product/bare-conductive-touch-board/

BBC micro:bit Microcontroller https://www.microbit.co.uk/

Codebug Microcontroller http://www.codebug.org.uk/

Crumble Microcontroller http://redfernelectronics.co.uk/crumble/

Engduino Microcontroller
http://www.engduino.org/html/index.html

.NET Gadgeteer Microcontroller http://www.netmf.com/gadgeteer/

GoGO board Microcontroller http://gogoboard.org/

gpio box

Control box for
microcontrollers and
Raspberry Pi http://www.gpio.co.uk/

hornet board Microcontroller https://makerclub.org/product/the-hornet-board/

http://www.tts-group.co.uk/bee-bot-rechargeable-floor-robot/1001794.html
http://www.tts-group.co.uk/blue-bot-bluetooth-programmable-floor-robot/1007812.html?gclid=CJqHgpLdos8CFQw6Gwods5kNYw
http://www.tts-group.co.uk/blue-bot-bluetooth-programmable-floor-robot/1007812.html?gclid=CJqHgpLdos8CFQw6Gwods5kNYw
http://www.makeblock.com/codeybot
https://www.primotoys.com/
https://www.makewonder.com/dash
https://meetedison.com/
http://www.finchrobot.com/
http://www.makeblock.com/mbot-v1-1-stem-educational-robot-kit
http://moway-robot.com/en/
https://www.ald.softbankrobotics.com/en/cool-robots/nao
http://www.sphero.com/ollie
http://ozobot.com/
http://www.tts-group.co.uk/pro-bot-rechargeable-floor-robot/1009825.html
http://www.valiant-technology.com/uk/pages/roamertoohome.php?cat=8&8
http://www.sphero.com/
https://www.arduino.cc/
https://makerclub.org/product/bare-conductive-touch-board/
https://www.microbit.co.uk/
http://www.codebug.org.uk/
http://redfernelectronics.co.uk/crumble/
http://www.engduino.org/html/index.html
http://www.gpio.co.uk/
https://makerclub.org/product/the-hornet-board/

86

Hummingbird
robotics kit

Programmable kit
(electronics/maker kit) http://www.hummingbirdkit.com/

Lego
Mindstorms

Programmable Kit
(robotics) http://www.lego.com/nl-nl/mindstorms

LEGO WeDo
Programmable
input/output device https://education.lego.com/en-us/elementary/shop/wedo-2

little bits
Programmable kit
(electronics/maker kit) https://littlebits.cc/bits/w6-arduino

Meccano robots
Programmable kit
(electronics/maker kit http://www.meccano.com/meccanoid-about

Picoboard
Programmable
input/output device http://www.picocricket.com/picoboard.html

Raspberry Pi

Single board Computer
and programmable
electronics/maker kits https://www.raspberrypi.org/

Tech will save us
kits

Programmable kit
(electronics/maker kit) https://www.techwillsaveus.com/

Makey Makey
Programmable input
device http://makeymakey.com/

Scratch
controller

Programmable input
device http://www.tts-group.co.uk/Scratch-controller-input-device/1010503.html

Scratch LED
matrix

Programmable input
device http://www.tts-group.co.uk/Scratch-led-rainbow-matrix/1011571.html

Bloxels
Tangible programming
interface http://www.bloxelsbuilder.com/education-overview/

Makeblock
Tangible programming
interface http://www.makeblock.com

Osmo
Tangible programming
interface https://www.playosmo.com/en/coding/

puzzlet
Tangible programming
interface https://www.digitaldreamlabs.com/educators/

lightup
Tangible programming
interface http://www.lightup.io/

http://www.lego.com/nl-nl/mindstorms
https://education.lego.com/en-us/elementary/shop/wedo-2
https://littlebits.cc/bits/w6-arduino
http://www.meccano.com/meccanoid-about
http://www.picocricket.com/picoboard.html
https://www.raspberrypi.org/
https://www.techwillsaveus.com/
http://makeymakey.com/
http://www.tts-group.co.uk/scratch-controller-input-device/1010503.html
http://www.tts-group.co.uk/scratch-led-rainbow-matrix/1011571.html
http://www.bloxelsbuilder.com/education-overview/
http://www.makeblock.com/
https://www.playosmo.com/en/coding/
https://www.digitaldreamlabs.com/educators/
http://www.lightup.io/

87

 Appendix C

List of example educational block-based programming languages.

Language Weblink Notes

AgentSheets http://www.agentsheets.com/

Alice https://www.alice.org/

AppInventor http://appinventor.mit.edu/explore/

AppLab https://code.org/educate/applab Hybrid (JavaScript)

Blockly https://blockly-games.appspot.com/

Bubble https://bubble.is/

BYOB/ Snap https://snap.berkeley.edu/

Code.org https://code.org/

codecombat https://codecombat.com/

CTSiM http://www.ctsim.org/

Daisy the Dinosaur http://www.daisythedinosaur.com/

edublocks http://edublocks.org/ hybrid (Python)

Espresso coding
http://www.discoveryeducation.co.uk/what-we-offer/discovery-education-
coding#newlook

Etoys http://www.squeakland.org/

Flowgorithm http://www.flowgorithm.org/

Gamefoot
http://gamefroot.com/knowledgebase/how-to-use-scripts-to-program-game-
objects/

GameMaker
http://www.yoyogames.com/gamemaker?utm_source=google
_adwords&utm_medium=text_ads&utm_campaign=Game_Making_
UK&utm_term=Game_Maker&gclid=COOurq6tq9MCFXEz0wodGCMM2w

GameSalad http://gamesalad.com/

GP https://harc.ycr.org/project/gp/

Greenfoot https://www.greenfoot.org/door visual tools to learn java

Hopscotch https://www.gethopscotch.com/

J2Code https://www.j2e.com/visual.html?edit Hybrid (JavaScript)

Kodu https://www.kodugamelab.com/

LaPlaya http://people.cs.uchicago.edu/~dmfranklin/kelpcs/why.html

LaPlaya https://discover.cs.ucsb.edu/kelpcs/why-kelp-cs.html

Lego NXT [1] https://www.lego.com/en-gb/mindstorms

Modkit http://www.modkit.com/

NetsBlox https://netsblox.org/

PencilCode https://pencilcode.net/

Hybrid (JavaScript, HTML,
CSS)

PicoBlocks http://www.picocricket.com/download.html

PocketCode https://play.google.com/store/apps/details?id=org.catrobat.catroid&hl=en_GB

Raptor http://raptor.martincarlisle.com/

Scratch https://Scratch.mit.edu/

Sketchware http://sketchware.io/

Stagecast http://acypher.com/creator/

StarLogo http://education.mit.edu/portfolio_page/starlogo-tng/

Stencyl http://www.stencyl.com/

Toontalk http://www.toontalk.com/

Tynker https://www.tynker.com/

Visual Logic http://www.visuallogic.org/

https://code.org/educate/applab
http://edublocks.org/
http://www.yoyogames.com/gamemaker?utm_source=google
https://harc.ycr.org/project/gp/
https://www.greenfoot.org/door
https://www.j2e.com/visual.html?edit
https://pencilcode.net/

88

 Appendix D

List of literature studies per source by theme, showing literature counts by sources.

Theme Number of papers retrieved from initial search per source Papers

included ACM IEE Taylor Wiley Eric Total

Pedagogy 215 7 131 88 22 485 35

Contexts 31 12 22 17 29 112 23

Programming 18 12 0 9 3 42 12

Student Engagement 20 10 2 3 79 114 16

Totals 733 86

89

 Glossary

Term Definition

Abstraction Transition
(AT) Taxonomy

A taxonomy suggested by Cutts et al. (2012) to support the learning of programming,
which classifies kinds of student knowing and practices. The model includes three main
levels of code; CS speak; and English and nine transitions across the three levels each
with a how and why goal defined. These 18 goals are claimed to develop students'
programming. An example transition goal given by the study was 'Given a technical
description (CS Speak) of how to achieve a goal, choose code that will accomplish that
goal'.

Block Model A three-dimensional educational model of program comprehension, suggested by
Schulte et al. (2010). The model includes a vertical axis of levels of code detail, a
horizontal axis of the continuum of structure (including text surface and notional
machine) and function axis and a third dimension representing time on task depicting
a range of understanding from fragile to deep.

Foundations of
Advancing
Computational
Thinking (FACT)

Grover et al.'s (2015) blended computer science course for middle school students
developed for 'deeper learning' focusing on pedagogical strategies to support and
assess the transfer from block to text-based programming, including materials to
remedy misconceptions and provide systems of assessment. (Grover et al., 2015).

Levels of abstraction A framework, depicting programming projects in terms of a problem level, a
design/object/algorithm level, a code level and a code running level (Armoni, 2013;
Perrenet & Kaasenbrood, 2006; Statter & Armoni, 2016; Waite et al., 2016).

New combined
taxonomy

A programming progression taxonomy which combines the Solo taxonomy (horizontal
axis) and elements of Bloom's taxonomy (vertical axis). Created to support an Israeli
middle school Scratch curriculum, the authors claimed that higher levels of the
taxonomy imply deeper comprehension than the superficial lower levels as learners
progress from 'unistructural understand' for easiest student performance to 'relational
create' the highest level of mastery (Meerbaum-Salant et al., 2013).

Pair Programming A collaborative approach to programming where two people work at one computer to
complete a single design, algorithm, coding or testing task (Williams & Kessler, 2000).
One person takes the role of the driver, having control over the keyboard and mouse,
and the second person is the navigator or observer, constantly reviewing the code
written, keeping track of progress against the design (McDowell et al., 2006) and
continuously collaborating (Williams & Kessler, 2000). Whilst working on a task, the
driver and navigator swap roles after a certain period of time, code is only included or
removed with agreement between parties (McDowell et al., 2006).

Path Diagram A path of related task and understanding to support programming development,
including knowing about data structures, programming constructs, tracing, explaining
and writing programs (Lopez et al., 2008).

Peer Instruction A research based teaching method where students apply, discuss and explain concepts
by engaging students independently and collaboratively with carefully designed
questions. The method was pioneered by Eric Mazur, professor at Harvard University
for teaching undergraduate Physics. Simply put, the teacher formulates a question that
addresses a misconception or concept. This is presented for students to independently
answer, sometimes by using a voting system. Students then work in small groups to
arrive at a consensus answer, requiring the students to explain and clarify their
understanding. Each student is then asked to vote again. Finally, the teacher leads a
class discussion to review answers and address any misunderstandings (Crouch &
Mazur, 2001).

90

Positive Technological
Development (PTD)
framework

Developed to support the TangibleK curriculum, this framework supports the
development of learning of robotics. The framework incorporates assets, behaviours
and classroom practise to situate progression in a sociocultural context (Bers et al.,
2014).

Process Oriented
Guided Inquiry
Learning47 (POGiL)

A user-centred, guided inquiry, problem-solving approach originally developed for
chemistry students that guides learners to construct new knowledge. Students work in
small groups and are assigned specific roles to ensure they are fully engaged in the
learning process.

Program visualisation
tools

Tools that visually illustrate the behaviour of a program in different states as it
executes. Program visualisation tools typically show the values of variables, expression
evaluation or object and function dependencies. Often they include options to step
forwards and backwards in a program. They can be used by teachers as whole class
demonstrations or independently by learners. Some toolsets allow teachers to create
embedded questions that actively engage students in the tool use.

Progression of Early
Computational
Thinking (PECT) model

Seiter & Forman's model for understanding and assessing progression in computational
thinking. The model includes computational thinking concepts, Design Pattern
Variables (ability to recognise and use commands and programming constructs for a
particular purpose) and Evidence Variables (code blocks) (Seiter & Foreman, 2013). The
model is intended to be used to analyse programs, such as Scratch code, to evaluate
the programmers' progression in computational thinking.

Subgoal modelling A teaching approach whereby meaningful labels are added to programs to highlight the
structure of the code (Margulieux & Catrambone, 2016; Morrison et al., 2016).

Universal Design of
Learning (UDL)
framework

The UDL framework is a teaching and learning framework created to support the needs
of all learners, meeting their cognitive, language and mathematical needs,
incorporating gender neutral and appropriate ethnic and linguistic curricula content
(Hansen, Hansen, et al., 2016)

Use-Modify-Create A teaching framework for supporting progression in learning to program. Learners
move along a continuum where the start using programs made by someone else to
finally create their own programs. Between these points they modify work made by
someone else so that the modified material becomes 'theirs'. Once students start to
create their own programs they employ an iterative process of refine, test, analyse (Lee
et al., 2011).

Scalable Games Design
(SGD)

A teaching and learning initiative that includes teacher training, online authoring tools
(AgentSheets and AgentCubes), an environment for sharing work created and
curriculum materials. This is a long-term project-based at the University of Colorado,
which uses a project first approach for learning object oriented programming. Over
10,000 learners have been involved, mainly in the US and more recently in Mexico and
Switzerland. Rather than teaching programming constructs such as loops, if-then
statements or data structures the approach is to teach computational thinking patterns
which are common in the design of games, such as generation, absorption, collision.
These patterns are first learned in the making of games and then reapplied in the
making of simulations for science, maths and other subjects (Repenning et al., 2015).

47 https://pogil.org/about last accessed 13/5/2017

https://pogil.org/about

