
LLVM and the automatic vectorization of loops
invoking math routines: -fsimdmath

1st Francesco Petrogalli
Arm Ltd.

Cambridge, United Kingdom
francesco.petrogalli@arm.com

2nd Paul Walker
Arm Ltd.

Manchester, United Kingdom
paul.walker@arm.com

Abstract—The vectorization of loops invoking math function is
an important optimization that is available in most commercial
compilers. This paper describes a new command line option,
-fsimdmath, available in Arm Compiler for HPC [1], that
enables auto-vectorization of math functions in C and C++ code,
and that will also be applicable to Fortran code in a future
versions.

The design of -fsimdath is based on open standards and
public architectural specifications. The library that provides the
vector implementation of the math routines, libsimdmath.so,
is shipped with the compiler and based on the SLEEF library
libsleefgnuabi.so. SLEEF1 is a project that aims to provide
a vector implementation of all C99 math functions, for a wide
variety of vector extensions and architectures, across multiple
platforms.

This feature is very important for HPC programmers, because
the vector units of new CPUs are getting wider. Whether you are
targeting Intel architectures with the AVX512 vector extension,
or Arm architectures with the Scalable Vector Extension, good
quality auto-vectorization is of increasing importance.

Although -fsimdmath has been implemented in a com-
mercial compiler, it has been designed with portability and
compatibility in mind, so that its use is not limited only to the
vector extensions of the Arm architectures, but can be easily
introduced as a major optimization for all the vector extensions
that LLVM supports.

If accepted upstream, this new feature will enlarge the set of
loops that LLVM will be able to auto-vectorize.

Index Terms—compilers, vector math routines, SIMD, Arm,
SVE, fsimdmath, SLEEF

I. INTRODUCTION

Arm Compiler for HPC is the LLVM-based compiler that
Arm distributes to enable the development of High Perfor-
mance Computing applications on supercomputers based on
the ARMv8 architecture.

The compiler is packaged together with a set of libraries and
tools that allow programmers to achieve the best performance
on the target machine.

One key optimization that HPC compilers like Intel C
Compiler and PGI Compiler have added to their tool-chain
is the auto-vectorization of loops that invoke the math rou-
tines defined in the C99 standard. The same optimization
is available for Arm Compiler for HPC when targeting the

1https://sleef.org

Advanced SIMD vector extension (NEON) and the Scalable
Vector Extension (SVE) [3] of ARMv8.2

This feature is very important in the HPC domain, because
many HPC applications rely on expensive computation that
use the math routines.

The automatic vectorization of the math routines performed
by Arm Compiler for HPC is completely transparent to the
user, and requires only the addition of the command-line
option -fsimdmath.

This article will cover the following topics:
1) The user interface.
2) How the functionality is implemented in the compiler.
3) The library used to provide the math routines.
4) Application speedup examples.
5) Results and analysis of the implementation.
A section on the future development of the feature describes:
1) How Arm would like to to contribute the functionality

back to the open source version of clang, in collabo-
ration with the community.

2) How the SLEEF project can enable the same function-
ality for most of the architectures supported by LLVM.

II. USAGE

The automatic vectorization of math routines is enabled
by invoking the compiler with the command-line option
-fsimdmath, together with the standard command-line op-
tions to enable auto-vectorization, -O2 and above.

The complete syntax of the option is shown is figure 1. The
optional value assigned to -fsimdmath is used to specify
which library the linker needs to use, to find the symbols of
the vector functions that are generated by the compiler. The
value of -fsimdmath is set by default to simdmath, so
that a plain invocation of -fsimdmath passes -lsimdmath
to the linker, and therefore links the user code against
libsimdmath.so. Any other value -fsimdmath=<X> is
passed to the linker as -l<X> for linking the code against
lib<X>.so, which must be visible in the search path of the
linker.

When the compiler is invoked with the math function auto-
vectorization feature on a loop that invokes a math function

2https://developer.arm.com/products/software-development-tools/hpc/
documentation/vector-math-routines

https://sleef.org
https://developer.arm.com/products/software-development-tools/hpc/documentation/vector-math-routines
https://developer.arm.com/products/software-development-tools/hpc/documentation/vector-math-routines

$ armclang[++] -fsimdmath{=[<vector math library> | simdmath]}

Fig. 1. Command-line interface for the -fsimdmath option. simdmath is the default value if no value is specified.

#include <math.h>

double foo(double * restrict x, double * restrict y, unsigned n) {
for (unsigned i = 0; i < n; ++i)

y[i] = sin(x[i]);
}

Fig. 2. Scalar loop with a call to sin.

like the one in figure 2, it converts the original scalar loop
to a vector loop, inserting an appropriate call to the vector
function that corresponds to the original scalar function. The
function call that the compiler generates depends on the vector
extension that the compiler is targeting, whether NEON or
SVE, plus the usual parameters that are involved in auto-
vectorization, such as the number of concurrent lanes on which
the vector loop will operate, or whether or not masking is
needed.

For example, when targeting NEON vectorization of the
code in figure 2, the function call that the compiler generates in
the auto-vectorized loop is _ZGVnN2v_sin, which operates
concurrently on two elements loaded from the array x. The
NEON assembly code of the loop block generated by the
compiler can be seen in figure 3.

When targeting SVE vectorization, the function call that the
compiler generates is _ZGVsMxv_sin, which is a vector-
length agnostic (VLA) vector function that operates on up to
as many elements as an SVE implementation can carry.3 The
SVE assembly code generated by the compiler in this case
can be seen in figure 4. Notice that the vector-length agnostic
instruction set architecture means that there is no loop tail
or hard-coded vector width, and the ABI chosen for these
vectorized math functions must be usable in this context.

The name of the vector functions generated by the compiler
in the vector loop conforms to the mangling scheme of the
Vector function ABI specification for AArch64 (VABI) [2]. An
explanation of the rules of the VABI is given in the appendix
at the end of this paper.

All the vector function calls that the compiler generates
are provided via libsimdmath.so, a shared library that is
packaged with the tool-chain.

III. DESIGN AND IMPLEMENTATION

The extensions to LLVM to support the auto-vectorization
of math functions have been designed around two standards:

3More information on SVE and the VLA vectorization techniques can be
found at https://developer.arm.com/products/software-development-tools/hpc/
sve.

• The declare simd directive of the OpenMP4 standard
is used to inform the compiler about the availability of
vector math functions.

• The Vector function ABI specifications for AArch64 is
used to define the interface between the programs gener-
ated by the compiler and the vector math library.

The implementation required a set of changes in LLVM and
clang, together with the selection of an appropriate vector
math library, which is included with the compiler.

A. Changes in clang and LLVM

The implementation of -fsimdmath required modifica-
tions to several software components of the compiler:

1) The front-end clang.
2) The Target Library Info (TLI) in LLVM.
3) The Loop Vectorizer (LV) pass in LLVM.
The interaction of the three components is as follows.
1) A wrapper around the system header file math.h

informs clang of the availability of the vector math
routines in libsimdmath.so. The header is shipped
with the compiler and is added to the sources of clang
in <clang>/lib/Headers/math.h. It contains a
set of additional declarations of the math functions dec-
orated with the appropriate declare simd directive.
The new declarations are added after loading the stan-
dard math.h header file available in the system. The
declare simd directives reflect the vector version
available in the library.

2) The OpenMP code generator module of clang popu-
lates the IR module with a list of global names that carry
the information about the available vector functions,
their mangled name and the signature. This informa-
tion is generated according to the Vector function ABI
specification for AArch64. The scalar-to-vector mapping
rules of the ABI have been added to the code OpenMP
code generator module of clang.

3) The list of vector names and vector signatures is passed
to the TLI via the BackendUtils module of clang. The

4The declare simd directive of the OpenMP standard is supported since
version 4.0. For more information, see https://www.openmp.org/.

https://developer.arm.com/products/software-development-tools/hpc/sve
https://developer.arm.com/products/software-development-tools/hpc/sve
https://www.openmp.org/

$ armclang -O2 -fsimdmath -S -o - foo.c

// ... loop header ...
.LBB0_9: // vector loop body

ldp q0, q16, [x24, #-16]
bl _ZGVnN2v_sin
mov v17.16b, v0.16b
mov v0.16b, v16.16b
bl _ZGVnN2v_sin
stp q17, q0, [x25, #-16]
add x24, x24, #32
subs x26, x26, #4
add x25, x25, #32
b.ne .LBB0_9

// ... loop tail ...

Fig. 3. Auto-vectorized sin call for NEON generate from the code in figure 2.

$ armclang -mcpu=armv8-a+sve -O2 -fsimdmath -S -o - foo.c

// ... loop header
.LBB0_5: // Vector loop body

ld1d {z0.d}, p0/z, [x20, x22, lsl #3]
str p0, [x29, #8, mul vl]
bl _ZGVsMxv_sin
ldr p0, [x29, #8, mul vl]
st1d {z0.d}, p0, [x19, x22, lsl #3]
incd x22
whilelo p0.d, x22, x21
b.mi .LBB0_5

Fig. 4. Auto-vectorized sin call for SVE generated from the code in figure 2.

TLI uses it to populate a table that holds three fields
that describe the mapping between the scalar function
and the vector function. The table provides the original
name of the scalar function, and the mangled name and
the signature of the vector function associated to it.

4) The LV pass is provided with an interface that enables
it to query the TLI based on the original scalar name
and the expected signature of the vector function.

For example, figure 5 shows the re-declaration of sin in
lib/Headers/math.h.

From the re-declarations of sin in figure 5, the compiler
populates the dynamic table of the TLI as in table I.

The LV pass then determines if a scalar function can be
vectorized by looking at the scalar-to-vector mappings in the
TLI interface, searching for the scalar name and the expected
vector signature. If a match is found, the vector name and the
vector signature are used to generate the function call in the
vector loop.

A diagram of the components of the implementation and
their interactions is shown in figure 6.

B. The library libsimdmath.so

As stated previously, the default behaviour of
-fsimdmath is to assume that a libsimdmath.so
library is available that implements the required vector math
functions. The implementation used in Arm compiler for
HPC is based on SLEEF, an open source project developed
by Naoki Shibata of the Nara Institute of Science and
Technology (NAIST)5 in Japan. The project is a joint
collaboration between NAIST, Arm, and other industrial
partners. The project is maintained by a small community,
with some occasional contributors that are using SLEEF
in other open source or commercial projects. The project
is gaining more and more attention from the open source
community, and it is now part of the experimental release of
Debian and Ubuntu.6

5http://www.naist.jp
6The packages libsleef3 and libsleef-dev are officially part of

Debian unstable, for all the architectures that Debian supports. See https://
packages.debian.org/unstable/libsleef3. The maintainer of the Debian package
provides also an unofficial PPA for Ubuntu at https://launchpad.net/∼lumin0/
+archive/ubuntu/sleef.

http://www.naist.jp
https://packages.debian.org/unstable/libsleef3
https://packages.debian.org/unstable/libsleef3
https://launchpad.net/~lumin0/+archive/ubuntu/sleef
https://launchpad.net/~lumin0/+archive/ubuntu/sleef

/* system math.h inclusion */
#include_once <math.h>
#ifdef __cplusplus
extern "C" {
#endif

#if defined(__ARM_NEON) && !defined(__ARM_FEATURE_SVE)
#pragma omp declare simd simdlen(2) notinbranch
double sin(double);

#endif

#if defined(__ARM_FEATURE_SVE)
#pragma omp declare simd
double sin(double);

#endif

#ifdef __cplusplus
}
#endif

Fig. 5. Redefinition of sin in math.h.

Scalar Name Vector Name Vector Signature (llvm::FunctionTy *)
sin _ZGVnN2v_sin <2 x double>(2 x double)
sin _ZGVsMxv_sin <n x 2 x double>(n x 2 x double)

TABLE I
SCALAR FUNCTION TO VECTOR FUNCTION MAPPING.

Arm choose SLEEF to provide the vector math routines
for a couple of reasons. First, it is very easy to add
new vector extensions to it. In fact, it is just a matter of
adding a header file that maps the generic C intrinsics
used to program the math routines to the target specific C
intrinsics. As an example of this, let’s consider the function
vdouble vadd_vd_vd_vd(vdouble, vdouble);
that adds two vectors in the target independent C intrinsic
language of the library. The mapping of this intrinsic to
a target specific C intrinsic for SVE is done as shown in
figure 7.

With this mechanism, adding a new target is just a matter
of preparing a header file with all the mappings between the
core operation of the library and the target C intrinsics, and
including it in the sources of the library. Implementations are
already available for:

Intel
SSE2, SSE4.1, AVX, FMA4, AVX2+FMA3,
AVX512F.

ARMv8
Advanced SIMD (Neon), SVE.

ARMv7
Neon.

IBM Power
VSX.

Another advantage of choosing SLEEF is that its design fits
the VLA programming model of SVE. In fact, the size of the

vectors used in the library is not encoded anywhere in the
sources, other than in the typedef re-mapping of the target-
specific header file, and the size it is not exposed in the user
interface.

Finally, as shown in figure 8, the library has performance
numbers comparable to a number of other industrial projects,
like SVML,7 and has been successfully used in the Blue
Gene/Q compiler bgclang compiler [5] developed at the
Argonne National Lab.8

Our feature requires that the vector math library con-
forms to the GNU ABI, and SLEEF provides the
libsleefgnuabi.so variant that does this.

IV. RESULTS

The implementation of this functionality in Arm compiler
for HPC is in its early stages. The focus has been to pro-
vide a functional end-to-end implementation of the capability,
rather than on performance. Moreover, the runtime library
libsimdmath.so is not tuned to fully exploit the capability
of the vector extensions of AArch64. We expect sensible
improvements on a wide range of programs when we start
to make performance improvements in the future.

Additionally, the cost model of the LV needs to be tweaked
so that it is able to decide whether or not the vectorization of
a function call is going to be beneficial.

7〈https://software.intel.com/en-us/node/524289
8https://www.alcf.anl.gov/user-guides/bgclang-compiler.

<https://software.intel.com/en-us/node/524289
https://www.alcf.anl.gov/user-guides/bgclang-compiler

Fig. 6. Diagram of the components of -fsimdmath in clang and LLVM, and their interactions. The independence between the frontend and the backend is
broken by the link between the BackendUtils and the TargetLibraryInfo modules (in green). The signature of the mappings in the TLI Dynamic
Table has been omitted to save space, but it is visible in the declaration of the functions in (*).

#include <arm_sve.h>
typedef vdouble svfloat64_t;
static vdouble vadd_vd_vd_vd(vdouble x, vdouble y) {
return svadd_f64(svptrue_b64(), x, y);

}

Fig. 7. Example C intrinsics mapping in SLEEF for SVE.

Fig. 8. Comparison of SVML versus SLEEF 3.2 on x86. Image credit: Naoki Shibata, Nara Institute of Science and Technology. Image retrieved from
http://sleef.org/benchmark.xhtml, on September 9th, 2018.

However, even at these early stages, some of our cus-
tomers using -fsimdmath have already reported a signif-
icant speedup on some HPC applications. For example, the
Quantum Monte Carlo simulation code qmcpack9 [4] experi-
ences a speedup of 1.2x on NEON when using -fsimdmath
on real-life input data (see fig 9).

V. ANALYSIS OF THE IMPLEMENTATION

This section presents an analysis of the implementation of
-fsimdmath in Arm Compiler for HPC.

A. Advantages

The mappings between scalar functions and vector func-
tions are based on an open standard, the declare simd
directive of OpenMP. Relying on standard specifications in

9https://www.qmcpack.org/

the implementation of a compiler is beneficial as it guarantees
portability. Both the compiler and the library are implementing
the Vector function ABI specification for AArch64, with the
results that compiler and library can be de-coupled from each
other. In fact, any compiler compliant with the specifications
can use libsimdmath.so as a target for auto-vectorization
of math functions, and at the same time any other vector math
library compliant with the Vector function ABI specifications
can be used by Arm Compiler for HPC, as described in
section II. This is an important feature because GCC plan for
auto-vectorization of math routines relies on a vector version
of libm, called libmvec, which provides vector functions
with names and signatures based on the Vector function ABI
specifications of the target architecture.

The implementation in Arm compiler for HPC is easily
maintainable and extendible. In fact, adding or removing math

http://sleef.org/benchmark.xhtml
https://www.qmcpack.org/

Original -fsimdmath
0

0.2

0.4

0.6

0.8

1

1.2
sp

ee
du

p

Fig. 9. Speedup on qmcpack when compiling with -fsimdmath.

functions that need to be considered for auto-vectorization
by the compiler is just a matter of tweaking the header file
shipped with the compiler. The lists of such functions are not
expected to be the same in each library that provides vector
math routines for a specific architecture, but pre-processor
macros can be used to make sure the compiler knows which
one to select. This seems to be a major improvement over
the current auto-vectorization capabilities of upstream LLVM
that are implemented via the veclib command-line option,
which rely on maintaining a set of static arrays in the sources
of the TargetLibraryInfo (TLI).

One additional advantage of relying on names for the
vector functions that are generated according to a Vector
function ABI is that it enables the linker to generate scalar
code in situations where the vector function generated by
the compiler is not available in a library that is visible at
link time. As an example of this situation, suppose that the
code in figure 2 is used in the development of an application
that is being compiled with -fsimdmath. Suppose that the
user has access to a machine that provides a vector math
library that presents a subset of the symbols available in
libsimdmath.so, or that the user wants to invoke the
compiler with -fsimdmath=X to link the executable to
libX.so instead of libsimdmath.so. These situations
could generate a failure in the compiler, but such failure could
be prevented by a smart linker that could demangle the name
of the vector call planted by the compiler, and understand that
a call to a missing symbol like _ZGVsMxv_sin could be
replaced by a series of calls to sin in libm that loops over
the values of the vector registers passed to _ZGVsMxv_sin.
.

One key advantage of this implementation is the choice
of the vector math library shipped with the compiler. Al-
though Arm compiler for HPC provides only a Linux build
of libsimdmath.so, targeting the vector extensions of
AArch64, SLEEF supports a rich variety of operating systems
and platforms, therefore the compiler can be easily extended

to support -fsimdmath on such systems. SLEEF works on
Linux, OSX, Windows, and FreeBSD. It can be built using
clang, GCC, Intel C Compiler and Microsoft Visual Studio,
and it targets all major vector extensions available on x86,
ARMv7, ARMv8 and powerpc.

B. Limitations

The scalar-to-vector-function mechanism used by the com-
piler in this implementation of -fsimdmath via the OpenMP
directive declare simd works very well with the functions
of the math libraries, but it cannot be extended to fully support
the directive for user-defined functions. in particular, there
is limited support for the linear and uniform clauses
of the declare simd directive. Those directives can still
be used, as for example, the linear clause is needed for
functions like sincos[f] (see section IV), but the interface
with the LoopVectorizer (LV) would not be able to distinguish
the linear step of the clause, and its modifiers, because such
informations can not be encoded in the signature of the vector
functions. This would require adding new fields to the dynamic
table of the TLI - a solution that, although possible, it does
not conform to the plan the open source community has for
implementing the declare simd directive.10

The code in libsimdmath.so is not fully optimized to
achieve the best performance on AArch64, especially for SVE.
In the current implementation, the masking interface of the
function is simulated with wrappers around the non-masked
functions. Moreover, the algorithms used in the core of the
library do not utilize the accelerators that the instruction set
of SVE specifically introduces for improving the computation
speed of some of the math functions.

Finally, one of the drawbacks of this implementation of
-fsimdmath is that it requires the whole tool-chain for
testing, because the TLI is populated via the pass manager
and not via metadata stored in the IR module. Therefore, it is
not possible to unit test the LV functionality in the middle-end
of LLVM.

VI. THE STATUS OF MATH FUNCTIONS IN LLVM ANDS ITS
INTERACTION WITH -FSIMDMATH .

Auto-vectorization of math routines requires a link between
scalar function names and their vectored counterpart. One of
the obstacles LLVM introduces is that the vector versions are
new, whereas LLVM has had years to optimize the usage of the
scalar versions. Typically, LLVM does this by converting the
scalar calls into something that LLVM finds easier to work
with. The problem with this is that it breaks the scalar-to-
vector mapping and therefore killing the auto-vectorization.

This can be seen today with calls to pow where, when
built with -ffast-math, LLVM replaces it with a call to

10The current plan for implementing the declare simd directive is
outlined in the RFC from Intel at http://lists.llvm.org/pipermail/cfe-dev/
2016-March/047732.html. This plan covers function vectorization in the
generic case of function definitions, not in the specific case of vector math
function declarations. The upstream development of -fsimdmath should
be based on the generic functionality, because it could reuse some of the
components described in the RFC.

http://lists.llvm.org/pipermail/cfe-dev/2016-March/047732.html
http://lists.llvm.org/pipermail/cfe-dev/2016-March/047732.html

an intrinsic with a different name, llvm.pow.f64 in this
case. At a higher level it means that loops calling pow call
vectorized functions at -O3 but not at -Ofast (at this level
the loop might not even vectorize).

Another example is during code generation. It is at this
phase of compilation that LLVM will combine calls to sin
and cos into sincos. Again, it does this by converting the
scalar call into something easier to work with (ISD nodes in
this case) with the two nodes later combined into a SINCOS
node. As the vectorized versions of these routines are new, the
code generator does not yet know how to combine them, which
results in vectorized loops with -fsimdmath being slower
than using a highly optimized scalar library (libamath.so)
when the loop contains sin/cos that can be combined as
described above.

We think that there are two routes to success:
1) Stop the special case conversion of math routines and

instead teach LLVM how to work with the original calls
efficiently.

2) Alternatively, teach the special case handling about the
vectorized versions that now exist in the backend.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that the auto-vectorization of
math functions is beneficial for real HPC applications.

The functionality is based on open standards, and therefore
we think that the LLVM community might be interested in
adopting -fsimdmath as a new command-line option for
the front-end.

At the time of writing, an implementation of the declare
simd directive is based on a proposal from Intel11 is being
discussed upstream. The proposal is based on the declare
simd directive, and it will be easy to extend it to the other
architectures supported by LLVM.

In this direction, Intel is contributing to a new pass, called
the Vector Clone Pass,12 that generates IR metadata to describe
the available vector function generated from user code deco-
rated with the declare simd directive. The IR meta-data is
exposed to the vectorizer pass to enable function vectorization.

Once the Vector Clone Pass will be part of LLVM, the work
that needs to be done to support -fsimdmath will have to
be based on it.

An implementation of -fsimdmath based on the Vector
Clone Pass has the advantage to enable unit testing without
the need to use a front-end, as the list of the available vector
functions is stored in the IR.

The underlying mechanism of -fsimdmath has also
shown that the declare simd of OpenMP has an important
role in enabling users to provide their own vector libraries,
as it applies to any function, not only to the math functions.
For this reason, we believe it is a superior solution to the
current vector library interface of clang which relies on the
-veclib command-line flag. For example, many machine

11http://lists.llvm.org/pipermail/cfe-dev/2016-March/047732.html
12https://reviews.llvm.org/D22792

learning algorithms rely on computations that are not listed in
any standard, such as rectifier or sigmoid functions, which as
often used as activation functions. Users could in fact interface
their own libraries with vector implementation of such func-
tions, and achieve auto-vectorization of loops invoking them,
by simply adding the appropriate scalar declarations in header
files, without needing to hack in to the compiler to enable
them via -veclib.

In the long term, the introduction of the directive declare
variant in the upcoming release of OpenMP 5.0 will
make it possible to use the declare simd mechanism in
conjunction with vector math libraries that do not follow the
naming conventions that a Vector Function ABI specification
mandates for a vector extension.

As a final note, it is worth mentioning that SLEEF can also
be compiled in the form of a bit-code library when compiling
it with clang. This has the potential to further improve
the performance of the code that relies on vectorizable loops
containing math function calls, as it would enable the compiler
to access not only the code outside the vector function call,
but also the target-independent IR instructions of the vector
routine.

APPENDIX: VECTOR FUNCTION ABI NAME MANGLING
SCHEME

The Vector function ABI specification for AArch64 mandates
that the vector function names generated by a compiler are
mangled according to set of rules. The vector name is created
so that it is possible to reconstruct the signature of the vector
function, and trace its origin back to the scalar declaration
with which it is associated.

The name mangling scheme for AArch64 is based on the
Itanium C++ ABI mangling scheme described in [6]. In
particular, the name mangling rules have been designed to be
compatible with those defined for the x86 architecture in [7].

The vector names are in the form
ZGV<isa><mask><len><parameters><name>.
Each token in the mangling is defined as follows:
<isa>

This token specifies the vector extension used in the
vector function, where n is for NEON and s is for
SVE.

<mask>
The value of this token is M for masked functions,
which accept an additional mask parameter, and N
for unmasked functions.

<len>
This value represents the number of concurrent lanes
on which the vector functions operate. In case of
VLA vectorization for SVE, the value is set to x.
Note that for SVE this can be set as a number when
targeting vector-length specific vectorization.

<parameters>
This is a list of the parameters expecteted in the
signature of the vector function, according to the
qualification of the scalar parameters given through

http://lists.llvm.org/pipermail/cfe-dev/2016-March/047732.html
https://reviews.llvm.org/D22792

the declare simd directive in the declaration of
the scalar function. For example, v is for vector
and l2 is for a parameters that is associated with
a linear modifier with a step of 2.

<name>
This token is the original assembly name of the scalar
function.

For example, the vector function _ZGVsMxv_sin asso-
ciated to sin in figure 2 is an SVE (s) vector function,
which accept a mask parameter (M), is in VLA form (x)
and has a vector parameter as first input (v). From this
information, it is possible to reconstruct the signature of the
vector function, which can be written using the SVE Arm C
Language Extensions (SVE ACLE) [8], and the original scalar
declaration it comes from, as in figure 10.

// Scalar declaration.
#pragma omp declare simd
double sin(double);
// SVE vector function name
// and signature.
svfloat64_t _ZGVsMxv_sin(svfloat64_t,

svbool_t);

Fig. 10. Scalar declaration of sin and associated SVE vector function.

Figure 11 shows the example of a vector function tar-
geting NEON vectorization. In this case, the <len> and
masking token of the vector function name have been set
using the simdlen, linear and notinbranch clauses
of the declare simd directive. The signature of the vector
function is represented as a C declaration using the Advanced
SIMD (NEON) Arm C Language Extensions (ACLE) [9].

// Scalar declaration.
#pragma omp declare simd simdlen(4) \
linear(x:2) notinbanch

float foo(int x, unsigned short y);
// NEON vector function name and
// signature.
int32x4_t _ZGVnN4l2v_foo(int32x4_t,

int16x4_t);

Fig. 11. Example of vector function with a NEON signature generated with
the Vector Function ABI rules.

ACKNOWLEDGMENTS

The authors would like to thank Geraint North, Will Lovett,
and Ganesh Dasika for their help and valuable suggestions.
Arm is grateful to Naoki Shibata for the work he has done on
SLEEF.

The authors would like to express their gratitude to Julie
Gaskin, for proofreading this article.

REFERENCES

[1] Arm Compiler for HPC, https://developer.arm.com/products/
software-development-tools/hpc/arm-compiler-for-hpc

[2] Vector Function ABI specification for AArch64, https://developer.arm.
com/products/software-development-tools/hpc/arm-compiler-for-hpc/
vector-function-abi

[3] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou
Eyole, Giacomo Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro
Martinez, Nathanael Premillieu, Alastair Reid, Alejandro Rico, Paul
Walker, The ARM Scalable Vector Extension, IEEE Micro (Volume:
37, Issue: 2, Mar.-Apr. 2017), https://doi.org/10.1109/MM.2017.35.

[4] Jeongnim Kim et al. QMCPACK: an open source ab initio quantum
Monte Carlo package for the electronic structure of atoms, molecules
and solids, Journal of Physics: Condensed Matter, Volume 30, Number
19, https://doi.org/10.1088/1361-648X/aab9c3.

[5] Hal Finkel, bgclang: Creating an Alternative, Customizable, Toolchain
for the Blue Gene/Q. IEEE/ACM International Conference for High
Performance Computing, Networking, Storage, and Analysis, November
16 - 21, 2014. http://sc14.supercomputing.org/sites/all/themes/sc14/files/
archive/tech poster/tech poster pages/post119.html

[6] Itanium C++ ABI, Revised March 14, 2017, http://itanium-cxx-abi.
github.io/cxx-abi/

[7] Vector (SIMD) Function ABI, Xinmin Tian, Hideki Saito, Sergey
Kozhukhov, Kevin B. Smith, Robert Geva, Milind Girkar and Serguei
V. Preis. Intel® Mobile Computing and Compilers, https://software.intel.
com/en-us/articles/vector-simd-function-abi

[8] Arm C Language Extensions for SVE, https://developer.arm.com/docs/
100987/latest/arm-c-language-extensions-for-sve.

[9] NEON Intrinsics Reference, https://developer.arm.com/technologies/
neon/intrinsics.

https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc
https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc
https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi
https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi
https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1088/1361-648X/aab9c3
http://sc14.supercomputing.org/sites/all/themes/sc14/files/archive/tech_poster/tech_poster_pages/post119.html
http://sc14.supercomputing.org/sites/all/themes/sc14/files/archive/tech_poster/tech_poster_pages/post119.html
http://itanium-cxx-abi.github.io/cxx-abi/
http://itanium-cxx-abi.github.io/cxx-abi/
https://software.intel.com/en-us/articles/vector-simd-function-abi
https://software.intel.com/en-us/articles/vector-simd-function-abi
https://developer.arm.com/docs/100987/latest/arm-c-language-extensions-for-sve
https://developer.arm.com/docs/100987/latest/arm-c-language-extensions-for-sve
https://developer.arm.com/technologies/neon/intrinsics
https://developer.arm.com/technologies/neon/intrinsics

	Introduction
	Usage
	Design and implementation
	Changes in clang and LLVM
	The library libsimdmath.so

	Results
	 Analysis of the implementation
	Advantages
	Limitations

	The status of math functions in LLVM ands its interaction with -fsimdmath.
	Conclusions and future work
	References

